Sample records for airs infrared images

  1. Infrared imaging results of an excited planar jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, R.B.

    1991-12-01

    Planar jets are used for many applications including heating, cooling, and ventilation. Generally such a jet is designed to provide good mixing within an enclosure. In building applications, the jet provides both thermal comfort and adequate indoor air quality. Increased mixing rates may lead to lower short-circuiting of conditioned air, elimination of dead zones within the occupied zone, reduced energy costs, increased occupant comfort, and higher indoor air quality. This paper discusses using an infrared imaging system to show the effect of excitation of a jet on the spread angle and on the jet mixing efficiency. Infrared imaging captures amore » large number of data points in real time (over 50,000 data points per image) providing significant advantages over single-point measurements. We used a screen mesh with a time constant of approximately 0.3 seconds as a target for the infrared camera to detect temperature variations in the jet. The infrared images show increased jet spread due to excitation of the jet. Digital data reduction and analysis show change in jet isotherms and quantify the increased mixing caused by excitation. 17 refs., 20 figs.« less

  2. Tropical Storm Bonnie as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image of tropical storm Bonnie was captured on August 11 at 1:30am CDT. Located in the Gulf of Mexico, the center of the storm is positioned about 280 miles south-southwest of the mouth of the Mississippi River. Bonnie is a small tropical storm with wind speeds sustained at 45 mph and extending 30 miles from the storm center. It is moving northward at 5 mph.

    About the Movies The major contribution to radiation (infrared light) that AIRS infrared channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movies, a set of AIRS infrared channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses.

    Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles.

    We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Images [figure removed for brevity, see original site] August 11, 2004 Infrared image. [figure removed for brevity, see original site] August 10, 2004 Daylight snapshot from AIRS visible/near-infrared sensor.

    [figure removed for brevity, see original site] August 11, 2004 At this time, Bonnie is a small tropical storm with wind speeds sustained at 50 mph (85 km/h), and it moving northward at 6 mph. August 10, 2004 Infrared

  3. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  4. Thermal imaging for cold air flow visualisation and analysis

    NASA Astrophysics Data System (ADS)

    Grudzielanek, M.; Pflitsch, A.; Cermak, J.

    2012-04-01

    In this work we present first applications of a thermal imaging system for animated visualization and analysis of cold air flow in field studies. The development of mobile thermal imaging systems advanced very fast in the last decades. The surface temperature of objects, which is detected with long-wave infrared radiation, affords conclusions in different problems of research. Modern thermal imaging systems allow infrared picture-sequences and a following data analysis; the systems are not exclusive imaging methods like in the past. Thus, the monitoring and analysing of dynamic processes became possible. We measured the cold air flow on a sloping grassland area with standard methods (sonic anemometers and temperature loggers) plus a thermal imaging system measuring in the range from 7.5 to 14µm. To analyse the cold air with the thermal measurements, we collected the surface infrared temperatures at a projection screen, which was located in cold air flow direction, opposite the infrared (IR) camera. The intention of using a thermal imaging system for our work was: 1. to get a general idea of practicability in our problem, 2. to assess the value of the extensive and more detailed data sets and 3. to optimise visualisation. The results were very promising. Through the possibility of generating time-lapse movies of the image sequences in time scaling, processes of cold air flow, like flow waves, turbulence and general flow speed, can be directly identified. Vertical temperature gradients and near-ground inversions can be visualised very well. Time-lapse movies will be presented. The extensive data collection permits a higher spatial resolution of the data than standard methods, so that cold air flow attributes can be explored in much more detail. Time series are extracted from the IR data series, analysed statistically, and compared to data obtained using traditional systems. Finally, we assess the usefulness of the additional measurement of cold air flow with thermal

  5. Hyperspectral imaging polarimeter in the infrared

    NASA Astrophysics Data System (ADS)

    Jensen, Gary L.; Peterson, James Q.

    1998-11-01

    The Space Dynamics Laboratory at Utah State University is building an infrared Hyperspectral Imaging Polarimeter (HIP). Designed for high spatial and spectral resolution polarimetry of backscattered sunlight from cloud tops in the 2.7 micrometer water band, it will fly aboard the Flying Infrared Signatures Technology Aircraft (FISTA), an Air Force KC-135. It is a proof-of-concept sensor, combining hyperspectral pushbroom imaging with high speed, solid state polarimetry, using as many off-the-shelf components as possible, and utilizing an optical breadboard design for rapid prototyping. It is based around a 256 X 320 window selectable InSb camera, a solid-state Ferro-electric Liquid Crystal (FLC) polarimeter, and a transmissive diffraction grating.

  6. Hurricane Alex as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for August 3, 2004 movie, slicing down the atmosphere with the AIRS infrared sensor

    These images of hurricane Alex were captured on August 3, 2004 at 1:30pm EDT. Located in the Atlantic Ocean located about 80 miles south-southeast of Charleston, South Carolina, Alex is now a category 2 hurricane with maximum sustained winds were near 100 mph (161 kph). Alex's center was about 65 miles (104 kilometers) northeast of Cape Hatteras and moving away from the U.S. coast.

    The major contribution to radiation (infrared light) that AIRS infrared channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movies, a set of AIRS infrared channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses.

    Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles.

    We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Images [figure removed for brevity, see original site] August 2, 2004, 1:30am ET Frame from August 2 movie, slicing down the atmosphere with the AIRS infrared sensor. Alex a tropical storm, sustained winds at 60 mph. The storm is 115 miles southeast of Charleston, South

  7. Eclipse Science Results from the Airborne Infrared Spectrometer (AIR-Spec)

    NASA Astrophysics Data System (ADS)

    Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.; Judge, P. G.; Lussier, L.; Madsen, C. A.; Marquez, V.; Tomczyk, S.; Vira, A.

    2017-12-01

    We present the first science results from the commissioning flight of the Airborne Infrared Spectrometer (AIR-Spec), an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). During the eclipse, AIR-Spec will image five magnetically sensitive coronal emission lines between 1.4 and 4 microns to determine whether they may be useful probes of coronal magnetism. The instrument will measure emission line intensity, FWHM, and Doppler shift from an altitude of over 14 km, above local weather and most of the absorbing water vapor. Instrumentation includes an image stabilization system, feed telescope, grating spectrometer, infrared camera, and visible slit-jaw imager. Results from the 2017 eclipse are presented in the context of the mission's science goals. AIR-Spec will identify line strengths as a function of position in the solar corona and search for the high frequency waves that are candidates for heating and acceleration of the solar wind. The instrument will also identify large scale flows in the corona, particularly in polar coronal holes. Three of the five lines are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. Finally, the AIR-Spec measurements will complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure infrared emission of ions observed in the visible from the ground, giving insight into plasma heating and acceleration at radial distances inaccessible to existing or planned spectrometers.

  8. [Investigation on remote measurement of air pollution by a method of infrared passive scanning imaging].

    PubMed

    Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng

    2012-07-01

    Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.

  9. Ultraspectral Infrared Measurements from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas

    2003-01-01

    Aqua measures the Earth's water cycle, energy fluxes, vegetation and temperatures. The Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB) were launched on the EOS Aqua spacecraft in May 2002. AIRS has had good radiometric and spectral sensitivity, stability, and accuracy and is suitable for climate studies. Temperature products compare well with radiosondes and models over the limited test range (|LAT| less than 40 degrees). Early trace gas products demonstrate the potential of AIRS. NASA is developing the next generation of hyperspectral IR imagers. JPL is ready to participate with US government agencies and US industry to transfer AIRS technology and science experience.

  10. Non-contact optoacoustic imaging with focused air-coupled transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deán-Ben, X. Luís; Pang, Genny A.; Razansky, Daniel, E-mail: dr@tum.de

    2015-08-03

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that anmore » air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.« less

  11. New NASA Infrared Image of Irma Shows an Angry Eye

    NASA Image and Video Library

    2017-09-05

    Hurricane Irma is the strongest hurricane ever recorded outside the Caribbean Sea and Gulf of Mexico. These two images from the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite show what Hurricane Irma looked like when Aqua passed overhead just before 1 p.m. local time (10 a.m. PDT) on Sept. 5, 2017. Forecasts at the National Hurricane Center have Irma passing near the major islands to its west before turning northward near Florida this weekend. The first image (top) is an infrared snapshot from AIRS (see Figure 1 for larger image). In orange and red areas, the ocean surface shines through, while blue and purple areas represent cold, high clouds that obscure what lies below. Typical of well-developed hurricanes, Irma is nearly circular with a well-defined eye at its center. The eye is about 25 miles (40 kilometers) in diameter. Careful scrutiny shows a red pixel in the center of the eye, which means that AIRS achieved a bulls-eye with one of its "looks" and was able to see to the ocean between the dense clouds in the eye wall. The second image (bottom) shows the view through AIRS' microwave-colored "lenses" (see Figure 2 for larger image). Here the ocean surface looks yellow, while green represents various degrees of cloudiness. Blue shows areas where it is raining heavily. The eye is not apparent in this image because the "pixel size" of the microwave sounder, about 30 miles (50 kilometers), is larger than the eye and therefore cannot "thread the needle." The infrared sounder, on the other hand, has a pixel size of only 10 miles (16.5 kilometers) and can distinguish the small eye. https://photojournal.jpl.nasa.gov/catalog/PIA21941

  12. AIRES: an Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Haas, M. R.; Colgan, S. W. J.; Roellig, T.; Simpson, J. P.; Telesco, C. M.; Pina, R. K.; Young, E. T.; Wolf, J.

    1997-12-01

    The Stratospheric Observatory for Infrared Astronomy, SOFIA, is a 2.7 meter telescope which is scheduled to begin observations in a Boeing 747 in October 2001. Among other SOFIA science instruments recently selected for development is the facility spectrometer AIRES. AIRES is designed for studies of a broad range of phenomena occuring in the interstellar medium (ISM) which are uniquely enabled by SOFIA. Examples include accretion and outflow in protostars and young stellar objects, the morphology, dynamics, and excitation of neutral and ionized gas at the Galactic center, and the recycling of material to the ISM from evolved stars. Astronomers using AIRES will be able to select any wavelength from 17 to 210 mu m., with corresponding spectral resolving powers ranging from 60,000 to 4000 in less than a minute. This entire wavelength range is important because it contains spectral features, often widely separated in wavelength, which characterize fundamental ISM processes. AIRES will utilize two-dimensional detector arrays and a large echelle grating to achieve spectral imaging with excellent sensitivity and unparalleled angular resolution at these wavelengths. As a facility science instrument, AIRES will provide guest investigators frequent opportunities for far infrared spectroscopic observations when SOFIA begins operations.

  13. MIRIADS: miniature infrared imaging applications development system description and operation

    NASA Astrophysics Data System (ADS)

    Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.

    2001-10-01

    A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.

  14. Projective rectification of infrared images from air-cooled condenser temperature measurement by using projection profile features and cross-ratio invariability.

    PubMed

    Xu, Lijun; Chen, Lulu; Li, Xiaolu; He, Tao

    2014-10-01

    In this paper, we propose a projective rectification method for infrared images obtained from the measurement of temperature distribution on an air-cooled condenser (ACC) surface by using projection profile features and cross-ratio invariability. In the research, the infrared (IR) images acquired by the four IR cameras utilized are distorted to different degrees. To rectify the distorted IR images, the sizes of the acquired images are first enlarged by means of bicubic interpolation. Then, uniformly distributed control points are extracted in the enlarged images by constructing quadrangles with detected vertical lines and detected or constructed horizontal lines. The corresponding control points in the anticipated undistorted IR images are extracted by using projection profile features and cross-ratio invariability. Finally, a third-order polynomial rectification model is established and the coefficients of the model are computed with the mapping relationship between the control points in the distorted and anticipated undistorted images. Experimental results obtained from an industrial ACC unit show that the proposed method performs much better than any previous method we have adopted. Furthermore, all rectified images are stitched together to obtain a complete image of the whole ACC surface with a much higher spatial resolution than that obtained by using a single camera, which is not only useful but also necessary for more accurate and comprehensive analysis of ACC performance and more reliable optimization of ACC operations.

  15. Thermal Imaging of Flame in Air-assisted Atomizer for Burner System

    NASA Astrophysics Data System (ADS)

    Amirnordin, S. H.; Khalid, Amir; Zailan, M. F.; Fawzi, Mas; Salleh, Hamidon; Zaman, Izzuddin

    2017-08-01

    Infrared thermography was used as a part of non-intrusion technique on the flame temperature analysis. This paper demonstrates the technique to generate the thermal images of flame from the air-assisted atomizer. The multi-circular jet plate acts as a turbulence generator to improve the fuel and air mixing in the atomizer. Three types of multi-circular jet plate geometry were analysed at different equivalence ratio. Thermal infrared imaging using FLIR thermal camera were used to obtain the flame temperature. Multi-circular jet 1 shows the highest flame temperature obtained compared to other plates. It can be concluded that the geometry of the plate influences the combustion, hence affects the flame temperature profile from the air-assisted atomizer.

  16. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  17. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  18. Retinex enhancement of infrared images.

    PubMed

    Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili

    2008-01-01

    With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.

  19. Design of high-efficiency diffractive optical elements towards ultrafast mid-infrared time-stretched imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Xie, Hongbo; Ren, Delun; Wang, Chao; Mao, Chensheng; Yang, Lei

    2018-02-01

    Ultrafast time stretch imaging offers unprecedented imaging speed and enables new discoveries in scientific research and engineering. One challenge in exploiting time stretch imaging in mid-infrared is the lack of high-quality diffractive optical elements (DOEs), which encode the image information into mid-infrared optical spectrum. This work reports the design and optimization of mid-infrared DOE with high diffraction-efficiency, broad bandwidth and large field of view. Using various typical materials with their refractive indices ranging from 1.32 to 4.06 in ? mid-infrared band, diffraction efficiencies of single-layer and double-layer DOEs have been studied in different wavelength bands with different field of views. More importantly, by replacing the air gap of double-layer DOE with carefully selected optical materials, one optimized ? triple-layer DOE, with efficiency higher than 95% in the whole ? mid-infrared window and field of view greater than ?, is designed and analyzed. This new DOE device holds great potential in ultrafast mid-infrared time stretch imaging and spectroscopy.

  20. Near-Infrared Image of Typhoon Usagi Between Taiwan and the Philippines

    NASA Image and Video Library

    2017-12-08

    On Sept. 21, Typhoon Usagi was moving between the northern Philippines and Taiwan when NASA's Aqua satellite passed overhead. NASA's AIRS instrument that flies aboard the Aqua satellite captured this near-infrared image on Sept. 21 at 505 UTC/1:05 a.m. EDT as Usagi. The near-infrared image is similar to how the clouds of the typhoon would appear in the daylight. Image Credit: NASA JPL, Ed Olsen Caption: NASA Goddard, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. The review on infrared image restoration techniques

    NASA Astrophysics Data System (ADS)

    Li, Sijian; Fan, Xiang; Zhu, Bin Cheng; Zheng, Dong

    2016-11-01

    The goal of infrared image restoration is to reconstruct an original scene from a degraded observation. The restoration process in the application of infrared wavelengths, however, still has numerous research possibilities. In order to give people a comprehensive knowledge of infrared image restoration, the degradation factors divided into two major categories of noise and blur. Many kinds of infrared image restoration method were overviewed. Mathematical background and theoretical basis of infrared image restoration technology, and the limitations or insufficiency of existing methods were discussed. After the survey, the direction and prospects of infrared image restoration technology for the future development were forecast and put forward.

  2. Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS and SeaWinds Scatterometer

    NASA Image and Video Library

    2004-08-30

    This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435

  3. Integrated infrared and visible image sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2000-01-01

    Semiconductor imaging devices integrating an array of visible detectors and another array of infrared detectors into a single module to simultaneously detect both the visible and infrared radiation of an input image. The visible detectors and the infrared detectors may be formed either on two separate substrates or on the same substrate by interleaving visible and infrared detectors.

  4. Generative technique for dynamic infrared image sequences

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cao, Zhiguo; Zhang, Tianxu

    2001-09-01

    The generative technique of the dynamic infrared image was discussed in this paper. Because infrared sensor differs from CCD camera in imaging mechanism, it generates the infrared image by incepting the infrared radiation of scene (including target and background). The infrared imaging sensor is affected deeply by the atmospheric radiation, the environmental radiation and the attenuation of atmospheric radiation transfers. Therefore at first in this paper the imaging influence of all kinds of the radiations was analyzed and the calculation formula of radiation was provided, in addition, the passive scene and the active scene were analyzed separately. Then the methods of calculation in the passive scene were provided, and the functions of the scene model, the atmospheric transmission model and the material physical attribute databases were explained. Secondly based on the infrared imaging model, the design idea, the achievable way and the software frame for the simulation software of the infrared image sequence were introduced in SGI workstation. Under the guidance of the idea above, in the third segment of the paper an example of simulative infrared image sequences was presented, which used the sea and sky as background and used the warship as target and used the aircraft as eye point. At last the simulation synthetically was evaluated and the betterment scheme was presented.

  5. Variable waveband infrared imager

    DOEpatents

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  6. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    PubMed

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C 60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  7. Investigation of Infra-red and Nonequilibrium Air Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, Christophe O.

    1994-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program was intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Prior to this work, the radiative emission of air plasmas in the infrared had been the object of few experimental investigations, and although several infrared systems were already modeled in radiation codes such as NEQAIR, measurements were required to validate numerical predictions and indicate whether all transitions of importance were accounted for in the model. The program was further motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Detailed comparisons between measured and simulated spectra are presented.

  8. AIRES: An Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie J.; Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Telesco, Charles M.; Pina, Robert K.; Wolf, Juergen; Young, Erick T.

    1999-01-01

    SOFIA will enable astronomical observations with unprecedented angular resolution at infrared wavelengths obscured from the ground. To help open this new chapter in the exploration of the infrared universe, we are building AIRES, an Airborne Infra-Red Echelle Spectrometer. AIRES will be operated as a first generation, general purpose facility instrument by USRA, NASA's prime contractor for SOFIA. AIRES is a long slit spectrograph operating from 17 - 210 microns. In high resolution mode the spectral resolving power is approx. 10(exp 6) microns/A or approx. 10(exp 4) at 100 microns. Unfortunately, since the conference, a low resolution mode with resolving power about 100 times lower has been deleted due to budgetary constraints. AIRES includes a slit viewing camera which operates in broad bands at 18 and 25 microns.

  9. Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter

    NASA Technical Reports Server (NTRS)

    Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)

    2001-01-01

    The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.

  10. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows Hurricane Frances as captured by instruments onboard two different satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean.

    The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures.

    The power of the SeaWinds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked.

    While the SeaWinds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In

  11. A debugging method of the Quadrotor UAV based on infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Cui, Guangjie; Hao, Qian; Yang, Jianguo; Chen, Lizhi; Hu, Hongkang; Zhang, Lijun

    2018-01-01

    High-performance UAV has been popular and in great need in recent years. The paper introduces a new method in debugging Quadrotor UAVs. Based on the infrared thermal technology and heat transfer theory, a UAV is under debugging above a hot-wire grid which is composed of 14 heated nichrome wires. And the air flow propelled by the rotating rotors has an influence on the temperature distribution of the hot-wire grid. An infrared thermal imager below observes the distribution and gets thermal images of the hot-wire grid. With the assistance of mathematic model and some experiments, the paper discusses the relationship between thermal images and the speed of rotors. By means of getting debugged UAVs into test, the standard information and thermal images can be acquired. The paper demonstrates that comparing to the standard thermal images, a UAV being debugging in the same test can draw some critical data directly or after interpolation. The results are shown in the paper and the advantages are discussed.

  12. Intercalibration of infrared channels of polar-orbiting IRAS/FY-3A with AIRS/Aqua data.

    PubMed

    Jiang, Geng-Ming

    2010-02-15

    This work intercalibrated the infrared window channels 8 (12.47 microm), 9 (11.11 microm) and 19 (3.98 microm) of the InfraRed Atmospheric Sounder (IRAS) aboard the Chinese second generation polar-orbiting meteorological satellite FengYun 3A (FY-3A) with high spectral resolution data acquired by the Atmospheric InfraRed Sounder (AIRS) aboard Aqua. A North Pole study area was selected according to the IRAS and AIRS' viewing geometry. The IRAS/FY-3A L1 data and AIRS/Aqua 1B Infrared geolocated and calibrated radiances (AIRIBRAD) in July of 2008 were used in this work. A sub-pixel registration method was developed and applied to the IRAS and AIRS images to improve the intercalibration accuracy. The co-located measurement pairs were picked out with absolute Viewing Zenith Angle differences less than 5 degrees (|Delta VZA|<5 degrees), absolute Viewing Azimuth Angle differences less than 90 degrees (|Delta VAA|<90 degrees) and absolute time differences less than 15 min (|Delta T|<15'). The results reveal that the convolved AIRS/Aqua measurements are highly linearly related to the IRAS/FY-3A measurements with correlation coefficients greater than 0.93, and calibration discrepancies exist between IRAS and AIRS channels indeed. When the brightness temperatures in IRAS/FY-3A channels change from 230.0 K to 310.0 K, the AIRS-IRAS temperature adjustment linearly varies from -3.3 K to 1.7 K for IRAS/FY-3A channel 8, from -2.9 K to 2.6 K for IRAS/FY-3A channel 9, and from -5.3 K to 1.1 K for IRAS/FY-3A channel 19.

  13. Calibrated infrared ground/air radiometric spectrometer

    NASA Astrophysics Data System (ADS)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  14. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Microwave 89Ghz imageFigure 2: Visible/near infrared sensor

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday.

    These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama.

    This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple

  15. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  16. Infrared super-resolution imaging based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Sui, Xiubao; Chen, Qian; Gu, Guohua; Shen, Xuewei

    2014-03-01

    The theoretical basis of traditional infrared super-resolution imaging method is Nyquist sampling theorem. The reconstruction premise is that the relative positions of the infrared objects in the low-resolution image sequences should keep fixed and the image restoration means is the inverse operation of ill-posed issues without fixed rules. The super-resolution reconstruction ability of the infrared image, algorithm's application area and stability of reconstruction algorithm are limited. To this end, we proposed super-resolution reconstruction method based on compressed sensing in this paper. In the method, we selected Toeplitz matrix as the measurement matrix and realized it by phase mask method. We researched complementary matching pursuit algorithm and selected it as the recovery algorithm. In order to adapt to the moving target and decrease imaging time, we take use of area infrared focal plane array to acquire multiple measurements at one time. Theoretically, the method breaks though Nyquist sampling theorem and can greatly improve the spatial resolution of the infrared image. The last image contrast and experiment data indicate that our method is effective in improving resolution of infrared images and is superior than some traditional super-resolution imaging method. The compressed sensing super-resolution method is expected to have a wide application prospect.

  17. Infrared thermal imaging in medicine.

    PubMed

    Ring, E F J; Ammer, K

    2012-03-01

    This review describes the features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine. The technique essentially uses naturally emitted infrared radiation from the skin surface. Recent studies have investigated the influence of equipment and the methods of image recording. The credibility and acceptance of thermal imaging in medicine is subject to critical use of the technology and proper understanding of thermal physiology. Finally, we review established and evolving medical applications for thermal imaging, including inflammatory diseases, complex regional pain syndrome and Raynaud's phenomenon. Recent interest in the potential applications for fever screening is described, and some other areas of medicine where some research papers have included thermal imaging as an assessment modality. In certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.

  18. Monitoring machining conditions by infrared images

    NASA Astrophysics Data System (ADS)

    Borelli, Joao E.; Gonzaga Trabasso, Luis; Gonzaga, Adilson; Coelho, Reginaldo T.

    2001-03-01

    During machining process the knowledge of the temperature is the most important factor in tool analysis. It allows to control main factors that influence tool use, life time and waste. The temperature in the contact area between the piece and the tool is resulting from the material removal in cutting operation and it is too difficult to be obtained because the tool and the work piece are in motion. One way to measure the temperature in this situation is detecting the infrared radiation. This work presents a new methodology for diagnosis and monitoring of machining processes with the use of infrared images. The infrared image provides a map in gray tones of the elements in the process: tool, work piece and chips. Each gray tone in the image corresponds to a certain temperature for each one of those materials and the relationship between the gray tones and the temperature is gotten by the previous of infrared camera calibration. The system developed in this work uses an infrared camera, a frame grabber board and a software composed of three modules. The first module makes the image acquisition and processing. The second module makes the feature image extraction and performs the feature vector. Finally, the third module uses fuzzy logic to evaluate the feature vector and supplies the tool state diagnostic as output.

  19. Infrared Imaging; A casebook in clinical medicine

    NASA Astrophysics Data System (ADS)

    Ring, Francis

    2015-09-01

    Infrared thermal imaging is a rapid and non-invasive procedure for mapping skin temperature distribution of the human body. Advanced software and high-resolution infrared detectors has allowed for a renaissance in the use of infrared thermal imaging or thermography in medical research and practice. After a review of theory, technology and methodology of medical infrared imaging, the remainder of the book consists of a collection of clinical case studies demonstrating the wide variety of applications of thermography in modern medicine. The combined expertise from a number of centres is used to create this database of images and cases that will be invaluable for medical researchers and practitioners in making diagnoses and measuring treatment efficacy. This book is recommended reading for practising and training radiographers, medical physicists and clinicians.

  20. Hurricane Ivan as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS

    NASA Image and Video Library

    2004-09-15

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday. These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama. This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red. http://photojournal.jpl.nasa.gov/catalog/PIA00431

  1. Infrared thermal imaging figures of merit

    NASA Technical Reports Server (NTRS)

    Kaplan, Herbert

    1989-01-01

    Commercially available types of infrared thermal imaging instruments, both viewers (qualitative) and imagers (quantitative) are discussed. The various scanning methods by which thermal images (thermograms) are generated will be reviewed. The performance parameters (figures of merit) that define the quality of performance of infrared radiation thermometers will be introduced. A discussion of how these parameters are extended and adapted to define the performance of thermal imaging instruments will be provided. Finally, the significance of each of the key performance parameters of thermal imaging instruments will be reviewed and procedures currently used for testing to verify performance will be outlined.

  2. Infrared Sky Imager (IRSI) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Victor R.

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing amore » real-time display of sky conditions.« less

  3. Infrared imaging of the crime scene: possibilities and pitfalls.

    PubMed

    Edelman, Gerda J; Hoveling, Richelle J M; Roos, Martin; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-09-01

    All objects radiate infrared energy invisible to the human eye, which can be imaged by infrared cameras, visualizing differences in temperature and/or emissivity of objects. Infrared imaging is an emerging technique for forensic investigators. The rapid, nondestructive, and noncontact features of infrared imaging indicate its suitability for many forensic applications, ranging from the estimation of time of death to the detection of blood stains on dark backgrounds. This paper provides an overview of the principles and instrumentation involved in infrared imaging. Difficulties concerning the image interpretation due to different radiation sources and different emissivity values within a scene are addressed. Finally, reported forensic applications are reviewed and supported by practical illustrations. When introduced in forensic casework, infrared imaging can help investigators to detect, to visualize, and to identify useful evidence nondestructively. © 2013 American Academy of Forensic Sciences.

  4. Comparison of image deconvolution algorithms on simulated and laboratory infrared images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, D.

    1994-11-15

    We compare Maximum Likelihood, Maximum Entropy, Accelerated Lucy-Richardson, Weighted Goodness of Fit, and Pixon reconstructions of simple scenes as a function of signal-to-noise ratio for simulated images with randomly generated noise. Reconstruction results of infrared images taken with the TAISIR (Temperature and Imaging System InfraRed) are also discussed.

  5. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos,; Stavros, Staggs [Livermore, CA; Michael, C [Tracy, CA

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  6. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  7. Femtowatt incoherent image conversion from mid-infrared light to near-infrared light

    NASA Astrophysics Data System (ADS)

    Huang, Nan; Liu, Hongjun; Wang, Zhaolu; Han, Jing; Zhang, Shuan

    2017-03-01

    We report on the experimental conversion imaging of an incoherent continuous-wave dim source from mid-infrared light to near-infrared light with a lowest input power of 31 femtowatt (fW). Incoherent mid-infrared images of light emission from a heat lamp bulb with an adjustable power supply at window wavelengths ranging from 2.9 µm to 3.5 µm are used for upconversion. The sum-frequency generation is realized in a laser cavity with the resonant wavelength of 1064 nm pumped by an LD at 806 nm built around a periodically poled lithium niobate (PPLN) crystal. The converted infrared image in the wavelength range ~785 nm with a resolution of about 120  ×  70 is low-noise detected using a silicon-based camera. By optimizing the system parameters, the upconversion quantum efficiency is predicted to be 28% for correctly polarized, on-axis and phase-matching light.

  8. Infrared Radiography: Modeling X-ray Imaging Without Harmful Radiation

    NASA Astrophysics Data System (ADS)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the detection of transmitted radiation, the spatial organization and composition of materials in the body can be ascertained. In this paper, we describe an original apparatus that teaches these concepts by utilizing near infrared radiation and an up-converting phosphorescent screen to safely probe the contents of an opaque enclosure.

  9. Human body region enhancement method based on Kinect infrared imaging

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  10. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  11. Determining Directional Emittance With An Infrared Imager

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E., Jr.; Puram, Chith K.

    1994-01-01

    Directional emittances of flat specimen of smooth-surfaced, electrically nonconductive material at various temperatures computed from measurements taken by infrared radiometric imager operating in conjunction with simple ancillary equipment. Directional emittances useful in extracting detailed variations of surface temperatures from infrared images of curved, complexly shaped other specimens of same material. Advantages: simplification of measurement procedure and reduction of cost.

  12. Teaching physics and understanding infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2017-08-01

    Infrared thermal imaging is a very rapidly evolving field. The latest trends are small smartphone IR camera accessories, making infrared imaging a widespread and well-known consumer product. Applications range from medical diagnosis methods via building inspections and industrial predictive maintenance etc. also to visualization in the natural sciences. Infrared cameras do allow qualitative imaging and visualization but also quantitative measurements of the surface temperatures of objects. On the one hand, they are a particularly suitable tool to teach optics and radiation physics and many selected topics in different fields of physics, on the other hand there is an increasing need of engineers and physicists who understand these complex state of the art photonics systems. Therefore students must also learn and understand the physics underlying these systems.

  13. An analytical optimization model for infrared image enhancement via local context

    NASA Astrophysics Data System (ADS)

    Xu, Yongjian; Liang, Kun; Xiong, Yiru; Wang, Hui

    2017-12-01

    The requirement for high-quality infrared images is constantly increasing in both military and civilian areas, and it is always associated with little distortion and appropriate contrast, while infrared images commonly have some shortcomings such as low contrast. In this paper, we propose a novel infrared image histogram enhancement algorithm based on local context. By constraining the enhanced image to have high local contrast, a regularized analytical optimization model is proposed to enhance infrared images. The local contrast is determined by evaluating whether two intensities are neighbors and calculating their differences. The comparison on 8-bit images shows that the proposed method can enhance the infrared images with more details and lower noise.

  14. Ultrabroadband infrared nanospectroscopic imaging

    PubMed Central

    Bechtel, Hans A.; Muller, Eric A.; Olmon, Robert L.; Martin, Michael C.; Raschke, Markus B.

    2014-01-01

    Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity. PMID:24803431

  15. Infrared Imaging Sharpens View in Critical Situations

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Innovative Engineering and Consulting (IEC) Infrared Systems, a leading developer of thermal imaging systems and night vision equipment, received a Glenn Alliance for Technology Exchange (GATE) award, half of which was in the form of additional NASA assistance for new product development. IEC Infrared Systems worked with electrical and optical engineers from Glenn's Diagnostics and Data Systems Branch to develop a commercial infrared imaging system that could differentiate the intensity of heat sources better than other commercial systems. The research resulted in two major thermal imaging solutions: NightStalkIR and IntrudIR Alert. These systems are being used in the United States and abroad to help locate personnel stranded in emergency situations, defend soldiers on the battlefield abroad, and protect high-value facilities and operations. The company is also applying its advanced thermal imaging techniques to medical and pharmaceutical product development with a Cleveland-based pharmaceutical company.

  16. Atmospheric Infrared Sounder (AIRS) thermal test program

    NASA Astrophysics Data System (ADS)

    Coda, Roger C.; Green, Kenneth E.; McKay, Thomas; Overoye, Kenneth; Wickman-Boisvert, Heather A.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program with a scheduled launch on the first post meridian (PM-1) platform in December 2000. AIRS is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to climate studies and weather predictions. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive infrared remote sensing using a precisely calibrated, high spectral resolution grating spectrometer providing high sensitivity operation over the 3.7 micrometer - 15.4 micrometer region. To meet the challenge of high performance over this broad wavelength range, the spectrometer is cooled to 155 K using a passive two-stage radiative cooler and the HgCdTe focal plane is cooled to 58 K using a state-of-the-art long life, low vibration Stirling/pulse tube cryocooler. Electronics waste heat is removed through a spacecraft provided heat rejection system based on heat pipe technology. All of these functions combine to make AIRS thermal management a key aspect of the overall instrument design. Additionally, the thermal operating constraints place challenging requirements on the test program in terms of proper simulation of the space environment and the logistic issues attendant with testing cryogenic instruments. The AIRS instrument has been fully integrated and thermal vacuum performance testing is underway. This paper provides an overview of the AIRS thermal system design, the test methodologies and the key results from the thermal vacuum tests, which have been completed at the time of this publication.

  17. Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator

    NASA Astrophysics Data System (ADS)

    Meola, Joseph; Absi, Anthony; Islam, Mohammed N.; Peterson, Lauren M.; Ke, Kevin; Freeman, Michael J.; Ifaraguerri, Agustin I.

    2014-06-01

    Hyperspectral imaging systems are currently used for numerous activities related to spectral identification of materials. These passive imaging systems rely on naturally reflected/emitted radiation as the source of the signal. Thermal infrared systems measure radiation emitted from objects in the scene. As such, they can operate at both day and night. However, visible through shortwave infrared systems measure solar illumination reflected from objects. As a result, their use is limited to daytime applications. Omni Sciences has produced high powered broadband shortwave infrared super-continuum laser illuminators. A 64-watt breadboard system was recently packaged and tested at Wright-Patterson Air Force Base to gauge beam quality and to serve as a proof-of-concept for potential use as an illuminator for a hyperspectral receiver. The laser illuminator was placed in a tower and directed along a 1.4km slant path to various target materials with reflected radiation measured with both a broadband camera and a hyperspectral imaging system to gauge performance.

  18. Visualizing Chemistry with Infrared Imaging

    ERIC Educational Resources Information Center

    Xie, Charles

    2011-01-01

    Almost all chemical processes release or absorb heat. The heat flow in a chemical system reflects the process it is undergoing. By showing the temperature distribution dynamically, infrared (IR) imaging provides a salient visualization of the process. This paper presents a set of simple experiments based on IR imaging to demonstrate its enormous…

  19. 2001 Mars Odyssey Images Earth (Visible and Infrared)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    2001 Mars Odyssey's Thermal Emission Imaging System (THEMIS) acquired these images of the Earth using its visible and infrared cameras as it left the Earth. The visible image shows the thin crescent viewed from Odyssey's perspective. The infrared image was acquired at exactly the same time, but shows the entire Earth using the infrared's 'night-vision' capability. Invisible light the instrument sees only reflected sunlight and therefore sees nothing on the night side of the planet. In infrared light the camera observes the light emitted by all regions of the Earth. The coldest ground temperatures seen correspond to the nighttime regions of Antarctica; the warmest temperatures occur in Australia. The low temperature in Antarctica is minus 50 degrees Celsius (minus 58 degrees Fahrenheit); the high temperature at night in Australia 9 degrees Celsius(48.2 degrees Fahrenheit). These temperatures agree remarkably well with observed temperatures of minus 63 degrees Celsius at Vostok Station in Antarctica, and 10 degrees Celsius in Australia. The images were taken at a distance of 3,563,735 kilometers (more than 2 million miles) on April 19,2001 as the Odyssey spacecraft left Earth.

  20. Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators

    PubMed Central

    Bai, Xiangzhi

    2015-01-01

    The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229

  1. Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.

    PubMed

    Bai, Xiangzhi

    2015-07-15

    The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.

  2. Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging.

    PubMed

    Miao, Jinshui; Song, Bo; Xu, Zhihao; Cai, Le; Zhang, Suoming; Dong, Lixin; Wang, Chuan

    2018-01-01

    Infrared imaging systems have wide range of military or civil applications and 2D nanomaterials have recently emerged as potential sensing materials that may outperform conventional ones such as HgCdTe, InGaAs, and InSb. As an example, 2D black phosphorus (BP) thin film has a thickness-dependent direct bandgap with low shot noise and noncryogenic operation for visible to mid-infrared photodetection. In this paper, the use of a single-pixel photodetector made with few-layer BP thin film for near-infrared imaging applications is demonstrated. The imaging is achieved by combining the photodetector with a digital micromirror device to encode and subsequently reconstruct the image based on compressive sensing algorithm. Stationary images of a near-infrared laser spot (λ = 830 nm) with up to 64 × 64 pixels are captured using this single-pixel BP camera with 2000 times of measurements, which is only half of the total number of pixels. The imaging platform demonstrated in this work circumvents the grand challenges of scalable BP material growth for photodetector array fabrication and shows the efficacy of utilizing the outstanding performance of BP photodetector for future high-speed infrared camera applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    PubMed

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  4. Application of near-infrared image processing in agricultural engineering

    NASA Astrophysics Data System (ADS)

    Chen, Ming-hong; Zhang, Guo-ping; Xia, Hongxing

    2009-07-01

    Recently, with development of computer technology, the application field of near-infrared image processing becomes much wider. In this paper the technical characteristic and development of modern NIR imaging and NIR spectroscopy analysis were introduced. It is concluded application and studying of the NIR imaging processing technique in the agricultural engineering in recent years, base on the application principle and developing characteristic of near-infrared image. The NIR imaging would be very useful in the nondestructive external and internal quality inspecting of agricultural products. It is important to detect stored-grain insects by the application of near-infrared spectroscopy. Computer vision detection base on the NIR imaging would be help to manage food logistics. Application of NIR imaging promoted quality management of agricultural products. In the further application research fields of NIR image in the agricultural engineering, Some advices and prospect were put forward.

  5. 110 °C range athermalization of wavefront coding infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong

    2017-09-01

    110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.

  6. Temperature, Pressure, and Infrared Image Survey of an Axisymmetric Heated Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Nelson, Edward L.; Mahan, J. Robert; Birckelbaw, Larry D.; Turk, Jeffrey A.; Wardwell, Douglas A.; Hange, Craig E.

    1996-01-01

    The focus of this research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate computational fluid dynamic (CFD) codes through infrared imaging. The technique of reducing the three-dimensional field variable domain to a two-dimensional infrared image invokes the use of an inverse Monte Carlo ray trace algorithm and an infrared band model for exhaust gases. This report describes an experiment in which the above-mentioned field variables were carefully measured. Results from this experiment, namely tables of measured temperature and pressure data, as well as measured infrared images, are given. The inverse Monte Carlo ray trace technique is described. Finally, experimentally obtained infrared images are directly compared to infrared images predicted from the measured field variables.

  7. Infrared thermal facial image sequence registration analysis and verification

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  8. Space-based infrared sensors of space target imaging effect analysis

    NASA Astrophysics Data System (ADS)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  9. Thermoelectric infrared imaging sensors for automotive applications

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki; Nakajima, Yasushi; Saito, Masanori; Satou, Fuminori; Uchiyama, Makoto

    2004-07-01

    This paper describes three low-cost thermoelectric infrared imaging sensors having a 1,536, 2,304, and 10,800 element thermoelectric focal plane array (FPA) respectively and two experimental automotive application systems. The FPAs are basically fabricated with a conventional IC process and micromachining technologies and have a low cost potential. Among these sensors, the sensor having 2,304 elements provide high responsivity of 5,500 V/W and a very small size with adopting a vacuum-sealed package integrated with a wide-angle ZnS lens. One experimental system incorporated in the Nissan ASV-2 is a blind spot pedestrian warning system that employs four infrared imaging sensors. This system helps alert the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person"s body. The system can also prevent the vehicle from moving in the direction of the pedestrian. The other is a rearview camera system with an infrared detection function. This system consists of a visible camera and infrared sensors, and it helps alert the driver to the presence of a pedestrian in a rear blind spot. Various issues that will need to be addressed in order to expand the automotive applications of IR imaging sensors in the future are also summarized. This performance is suitable for consumer electronics as well as automotive applications.

  10. Aural stealth of portable cryogenically cooled infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Vilenchick, Herman; Broyde, Ramon; Pundak, Nachman

    2006-05-01

    Novel tactics for carrying out military and antiterrorist operations calls for the development of a new generation of portable infrared imagers, the focal plane arrays of which are maintained at a cryogenic temperature. The rotary Stirling cryogenic engines providing for this cooling are usually mounted directly upon the light thin-walled imager frame, which is used for optical alignment, mechanical stability and heat sinking. The known disadvantage of this design approach is that the wideband vibration export produced by the cooler results in structural resonances and therefore in excessive noise radiation from the above imagers. The "noisy" thermal imager may be detected from quite a long distance using acoustic equipment relying upon a high-sensitive unidirectional microphone or aurally spotted when used in a close proximity to the opponent force. As a result, aural stealth along with enhanced imagery, compact design, low power consumption and long life-times become a crucial figure of merit characterising the modern infrared imager. Achieving the desired inaudibility level is a challenging task. As a matter of fact, even the best examples of modern "should-be silent" infrared imagers are quite audible from as far as 50 meters away even when operating in a steady-state mode. The authors report on the successful effort of designing the inaudible at greater then 10 meters cryogenically cooled infrared imager complying with the stringent MIL-STD-1774D (Level II) requirements.

  11. Fusion of infrared polarization and intensity images based on improved toggle operator

    NASA Astrophysics Data System (ADS)

    Zhu, Pan; Ding, Lei; Ma, Xiaoqing; Huang, Zhanhua

    2018-01-01

    Integration of infrared polarization and intensity images has been a new topic in infrared image understanding and interpretation. The abundant infrared details and target from infrared image and the salient edge and shape information from polarization image should be preserved or even enhanced in the fused result. In this paper, a new fusion method is proposed for infrared polarization and intensity images based on the improved multi-scale toggle operator with spatial scale, which can effectively extract the feature information of source images and heavily reduce redundancy among different scale. Firstly, the multi-scale image features of infrared polarization and intensity images are respectively extracted at different scale levels by the improved multi-scale toggle operator. Secondly, the redundancy of the features among different scales is reduced by using spatial scale. Thirdly, the final image features are combined by simply adding all scales of feature images together, and a base image is calculated by performing mean value weighted method on smoothed source images. Finally, the fusion image is obtained by importing the combined image features into the base image with a suitable strategy. Both objective assessment and subjective vision of the experimental results indicate that the proposed method obtains better performance in preserving the details and edge information as well as improving the image contrast.

  12. A robust color image fusion for low light level and infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Zhang, Xiao-hui; Hu, Qing-ping; Chen, Yong-kang

    2016-09-01

    The low light level and infrared color fusion technology has achieved great success in the field of night vision, the technology is designed to make the hot target of fused image pop out with intenser colors, represent the background details with a nearest color appearance to nature, and improve the ability in target discovery, detection and identification. The low light level images have great noise under low illumination, and that the existing color fusion methods are easily to be influenced by low light level channel noise. To be explicit, when the low light level image noise is very large, the quality of the fused image decreases significantly, and even targets in infrared image would be submerged by the noise. This paper proposes an adaptive color night vision technology, the noise evaluation parameters of low light level image is introduced into fusion process, which improve the robustness of the color fusion. The color fuse results are still very good in low-light situations, which shows that this method can effectively improve the quality of low light level and infrared fused image under low illumination conditions.

  13. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics

    PubMed Central

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity. PMID:26339284

  14. Thermoelectric infrared imager and automotive applications

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki; Satou, Fuminori; Saito, Masanori; Kishi, Youichi; Nakajima, Yasushi; Uchiyama, Makato

    2001-10-01

    This paper describes a newly developed thermoelectric infrared imager having a 48 X 32 element thermoelectric focal plane array (FPA) and an experimental vehicle featuring a blind spot pedestrian warning system, which employs four infrared imagers. The imager measures 100 mm in width, 60 mm in height and 80 mm in depth, weighs 400 g, and has an overall field of view (FOV) of 40 deg X 20 deg. The power consumption of the imager is 3 W. The pedestrian detection program is stored in a CPU chip on a printed circuit board (PCB). The FPA provides high responsivity of 2,100 V/W, a time constant of 25 msec, and a low cost potential. Each element has external dimensions of 190 μm x 190 μm, and consists of six pairs of thermocouples and an Au-black absorber that is precisely patterned by low-pressure evaporation and lift-off technologies. The experimental vehicle is called the Nissan ASV-2 (Advanced Safety Vehicle-2), which incorporates a wide range of integrated technologies aimed at reducing traffic accidents. The blind spot pedestrian warning system alerts the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person's body. This system also prevents the vehicle from moving in the direction of the pedestrian.

  15. Tone mapping infrared images using conditional filtering-based multi-scale retinex

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Xu, Lingyun; Hui, Bin; Chang, Zheng

    2015-10-01

    Tone mapping can be used to compress the dynamic range of the image data such that it can be fitted within the range of the reproduction media and human vision. The original infrared images that captured with infrared focal plane arrays (IFPA) are high dynamic images, so tone mapping infrared images is an important component in the infrared imaging systems, and it has become an active topic in recent years. In this paper, we present a tone mapping framework using multi-scale retinex. Firstly, a Conditional Gaussian Filter (CGF) was designed to suppress "halo" effect. Secondly, original infrared image is decomposed into a set of images that represent the mean of the image at different spatial resolutions by applying CGF of different scale. And then, a set of images that represent the multi-scale details of original image is produced by dividing the original image pointwise by the decomposed image. Thirdly, the final detail image is reconstructed by weighted sum of the multi-scale detail images together. Finally, histogram scaling and clipping is adopted to remove outliers and scale the detail image, 0.1% of the pixels are clipped at both extremities of the histogram. Experimental results show that the proposed algorithm efficiently increases the local contrast while preventing "halo" effect and provides a good rendition of visual effect.

  16. Infrared hyperspectral imaging sensor for gas detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2000-11-01

    A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.

  17. A Look at Hurricane Matthew from NASA AIRS

    NASA Image and Video Library

    2016-10-06

    Hurricane Matthew, currently an extremely dangerous Category 4 storm on the Saffir-Simpson Hurricane Wind Scale, continues to bear down on the southeastern United States. At 11:27 a.m. PDT (2:27 p.m. EDT and 18:23 UT) today, NASA's Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite observed the storm as its eye was passing over the Bahamas. An AIRS false-color infrared image shows that the northeast and southwest quadrants of the storm had the coldest cloud tops, denoting the regions of the storm where the strongest precipitation was occurring at the time. Data from the Advanced Microwave Sounding Unit (AMSU), another of AIRS' suite of instruments, indicate that the northeast quadrant, which appears smaller in the infrared image, likely had the most intense rain bands at the time. The AIRS infrared image shows that at the time of the image the storm had full circulation, with a small eye surrounded by a thick eye wall and can be seen at http://photojournal.jpl.nasa.gov/catalog/PIA21092.

  18. Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Katagiri, T.; Matsuura, Y.

    2017-02-01

    Bundled glass tubular fibers were fabricated by glass drawing technique for endoscopic infrared-thermal imaging. The bundle fibers were made of borosilicate glass and have a structure like a photonic crystal fiber having multiple hollow cores. Fabricated fibers have a length of 90 cm and each pixel sizes are less than 80 μm. By setting the thickness of glass wall to a quarter-wavelength optical thickness, light is confined in the air core as a leaky mode with a low loss owing to the interference effect of the thin glass wall and this type of hollow-core fibers is known as tube leaky fibers. The transmission losses of bundled fibers were firstly measured and it was found that bundled tube-leaky fibers have reasonably low transmission losses in spite of the small pixel size. Then thermal images were delivered by the bundled fibers combining with an InSb infrared camera. Considering applications with rigid endoscopes, an imaging system composed of a 30-cm long fiber bundle and a half-ball lens with a diameter of 2 mm was fabricated. By using this imaging system, a metal wire with a thickness of 200 μm was successfully observed and another test showed that the minimum detected temperature was 32.0 °C and the temperature resolution of the system was around 0.7 °C.

  19. Motion detection and compensation in infrared retinal image sequences.

    PubMed

    Scharcanski, J; Schardosim, L R; Santos, D; Stuchi, A

    2013-01-01

    Infrared image data captured by non-mydriatic digital retinography systems often are used in the diagnosis and treatment of the diabetic macular edema (DME). Infrared illumination is less aggressive to the patient retina, and retinal studies can be carried out without pupil dilation. However, sequences of infrared eye fundus images of static scenes, tend to present pixel intensity fluctuations in time, and noisy and background illumination changes pose a challenge to most motion detection methods proposed in the literature. In this paper, we present a retinal motion detection method that is adaptive to background noise and illumination changes. Our experimental results indicate that this method is suitable for detecting retinal motion in infrared image sequences, and compensate the detected motion, which is relevant in retinal laser treatment systems for DME. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  1. Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction

    NASA Astrophysics Data System (ADS)

    Zheng, Lintao; Shi, Hengliang; Gu, Ming

    2017-07-01

    The infrared traffic image acquired by the intelligent traffic surveillance equipment has low contrast, little hierarchical differences in perceptions of image and the blurred vision effect. Therefore, infrared traffic image enhancement, being an indispensable key step, is applied to nearly all infrared imaging based traffic engineering applications. In this paper, we propose an infrared traffic image enhancement algorithm that is based on dark channel prior and gamma correction. In existing research dark channel prior, known as a famous image dehazing method, here is used to do infrared image enhancement for the first time. Initially, in the proposed algorithm, the original degraded infrared traffic image is transformed with dark channel prior as the initial enhanced result. A further adjustment based on the gamma curve is needed because initial enhanced result has lower brightness. Comprehensive validation experiments reveal that the proposed algorithm outperforms the current state-of-the-art algorithms.

  2. Infrared imagery acquisition process supporting simulation and real image training

    NASA Astrophysics Data System (ADS)

    O'Connor, John

    2012-05-01

    The increasing use of infrared sensors requires development of advanced infrared training and simulation tools to meet current Warfighter needs. In order to prepare the force, a challenge exists for training and simulation images to be both realistic and consistent with each other to be effective and avoid negative training. The US Army Night Vision and Electronic Sensors Directorate has corrected this deficiency by developing and implementing infrared image collection methods that meet the needs of both real image trainers and real-time simulations. The author presents innovative methods for collection of high-fidelity digital infrared images and the associated equipment and environmental standards. The collected images are the foundation for US Army, and USMC Recognition of Combat Vehicles (ROC-V) real image combat ID training and also support simulations including the Night Vision Image Generator and Synthetic Environment Core. The characteristics, consistency, and quality of these images have contributed to the success of these and other programs. To date, this method has been employed to generate signature sets for over 350 vehicles. The needs of future physics-based simulations will also be met by this data. NVESD's ROC-V image database will support the development of training and simulation capabilities as Warfighter needs evolve.

  3. Report on Operations of the Air Force Geophysics Laboratory Infrared Array Spectrometer

    DTIC Science & Technology

    1993-01-25

    AIR FORCE GEOPHYSICS LABORATORY INFRARED ARRAY... LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010 93-27655IEEE|EIIE1ENI This technical report has...ACKNOWLEDGMENT We are grateful to the Air Force Office of Scientific Research , especially Henry Radowski. for their financial corn- mitment to this project.

  4. Infrared hyperspectral imaging miniaturized for UAV applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-02-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4

  5. Infrared Imaging for Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Xie, Charles; Hazzard, Edmund

    2011-01-01

    Based on detecting long-wavelength infrared (IR) radiation emitted by the subject, IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words, an IR camera has great potential in teaching heat transfer, which is otherwise invisible. The idea of using IR imaging in teaching was first…

  6. Multi-spectral imaging with infrared sensitive organic light emitting diode

    PubMed Central

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  7. Multi-spectral imaging with infrared sensitive organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-08-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.

  8. Image reconstruction of dynamic infrared single-pixel imaging system

    NASA Astrophysics Data System (ADS)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  9. TIRCAM2: The TIFR near infrared imaging camera

    NASA Astrophysics Data System (ADS)

    Naik, M. B.; Ojha, D. K.; Ghosh, S. K.; Poojary, S. S.; Jadhav, R. B.; Meshram, G. S.; Sandimani, P. R.; Bhagat, S. B.; D'Costa, S. L. A.; Gharat, S. M.; Bakalkar, C. B.; Ninan, J. P.; Joshi, J. S.

    2012-12-01

    TIRCAM2 (TIFR near infrared imaging camera - II) is a closed cycle cooled imager that has been developed by the Infrared Astronomy Group at the Tata Institute of Fundamental Research for observations in the near infrared band of 1 to 3.7 μm with existing Indian telescopes. In this paper, we describe some of the technical details of TIRCAM2 and report its observing capabilities, measured performance and limiting magnitudes with the 2-m IUCAA Girawali telescope and the 1.2-m PRL Gurushikhar telescope. The main highlight is the camera's capability of observing in the nbL (3.59 mum) band enabling our primary motivation of mapping of Polycyclic Aromatic Hydrocarbon (PAH) emission at 3.3 mum.

  10. Subaru Near Infrared Coronagraphic Images of T Tauri

    NASA Astrophysics Data System (ADS)

    Mayama, Satoshi; Tamura, Motohide; Hayashi, Masahiko; Itoh, Yoichi; Fukagawa, Misato; Suto, Hiroshi; Ishii, Miki; Murakawa, Koji; Oasa, Yumiko; Hayashi, Saeko S.; Yamashita, Takuya; Morino, Junichi; Oya, Shin; Naoi, Takahiro; Pyo, Tae-Soo; Nishikawa, Takayuki; Kudo, Tomoyuki; Usuda, Tomonori; Ando, Hiroyasu; Miyama, Shoken M.; Kaifu, Norio

    2006-04-01

    High angular resolution near-infrared (JHK) adaptive optics images of T Tau were obtained with the infrared camera Coronagraphic Imager with Adaptive Optics (CIAO) mounted on the 8.2m Subaru Telescope in 2002 and 2004. The images resolve a complex circumstellar structure around a multiple system. We resolved T Tau Sa and Sb as well as T Tau N and S. The estimated orbit of T Tau Sb indicates that it is probably bound to T Tau Sa. The K band flux of T Tau S decreased by ˜ 1.7 Jy in 2002 November compared with that in 2001 mainly because T Tau Sa became fainter. The arc-like ridge detected in our near-infrared images is consistent with what is seen at visible wavelengths, supporting the interpretation in previous studies that the arc is part of the cavity wall seen relatively pole-on. Halo emission is detected out to ˜2''from T Tau N. This may be light scattered off the common envelope surrounding the T Tauri multiple system.

  11. Real-time mid-infrared imaging of living microorganisms.

    PubMed

    Haase, Katharina; Kröger-Lui, Niels; Pucci, Annemarie; Schönhals, Arthur; Petrich, Wolfgang

    2016-01-01

    The speed and efficiency of quantum cascade laser-based mid-infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm(-1) and 1160 cm(-1) , respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal-to-noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm(-1) . Mid-infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full-frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal-to-noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid-infrared imaging of living organisms at VGA standard and video frame rate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; hide

    2012-01-01

    High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpness

  13. Infrared Images of Boundary Layer Transition on the D8 Transport Configuration in the LaRC 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Gatlin, Gregory M.

    2015-01-01

    Grit, trip tape, or trip dots are routinely applied on the leading-edge regions of the fuselage, wings, tails or nacelles of wind tunnel models to trip the flow from laminar to turbulent. The thickness of the model's boundary layer is calculated for nominal conditions in the wind tunnel test to determine the effective size of the trip dots, but the flow over the model may not transition as intended for runs with different flow conditions. Temperature gradients measured with an infrared camera can be used to detect laminar to turbulent boundary layer transition on a wind tunnel model. This non-intrusive technique was used in the NASA Langley 14- by 22-Foot Subsonic Tunnel to visualize the behavior of the flow over a D8 transport configuration model. As the flow through the wind tunnel either increased to or decreased from the run conditions, a sufficient temperature difference existed between the air and the model to visualize the transition location (due to different heat transfer rates through the laminar and the turbulent boundary layers) for several runs in this test. Transition phenomena were visible without active temperature control in the atmospheric wind tunnel, whether the air was cooler than the model or vice-versa. However, when the temperature of the model relative to the air was purposely changed, the ability to detect transition in the infrared images was enhanced. Flow characteristics such as a wing root horseshoe vortex or the presence of fore-body vortical flows also were observed in the infrared images. The images of flow features obtained for this study demonstrate the usefulness of current infrared technology in subsonic wind tunnel tests.

  14. Neonatal infrared thermography imaging: Analysis of heat flux during different clinical scenarios

    NASA Astrophysics Data System (ADS)

    Abbas, Abbas K.; Heimann, Konrad; Blazek, Vladimir; Orlikowsky, Thorsten; Leonhardt, Steffen

    2012-11-01

    IntroductionAn accurate skin temperature measurement of Neonatal Infrared Thermography (NIRT) imaging requires an appropriate calibration process for compensation of external effects (e.g. variation of environmental temperature, variable air velocity or humidity). Although modern infrared cameras can perform such calibration, an additional compensation is required for highly accurate thermography. This compensation which corrects any temperature drift should occur during the NIRT imaging process. We introduce a compensation technique which is based on modeling the physical interactions within the measurement scene and derived the detected temperature signal of the object. Materials and methodsIn this work such compensation was performed for different NIRT imaging application in neonatology (e.g. convective incubators, kangaroo mother care (KMC), and an open radiant warmer). The spatially distributed temperatures of 12 preterm infants (average gestation age 31 weeks) were measured under these different infant care arrangements (i.e. closed care system like a convective incubator, and open care system like kangaroo mother care, and open radiant warmer). ResultsAs errors in measurement of temperature were anticipated, a novel compensation method derived from infrared thermography of the neonate's skin was developed. Moreover, the differences in temperature recording for the 12 preterm infants varied from subject to subject. This variation could be arising from individual experimental setting applied to the same region of interest over the neonate's body. The experimental results for the model-based corrections is verified over the selected patient group. ConclusionThe proposed technique relies on applying model-based correction to the measured temperature and reducing extraneous errors during NIRT. This application specific method is based on different heat flux compartments present in neonatal thermography scene. Furthermore, these results are considered to be

  15. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  16. Super resolution reconstruction of infrared images based on classified dictionary learning

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng

    2018-05-01

    Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.

  17. Miniature infrared hyperspectral imaging sensor for airborne applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-05-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each

  18. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  19. New Finger Biometric Method Using Near Infrared Imaging

    PubMed Central

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  20. Sensitivity of an imaging space infrared interferometer.

    PubMed

    Nakajima, T; Matsuhara, H

    2001-02-01

    We study the sensitivities of space infrared interferometers. We formulate the signal-to-noise ratios of infrared images obtained by aperture synthesis in the presence of source shot noise, background shot noise, and detector read noise. We consider the case in which n beams are combined pairwise at n(n-1)/2 detectors and the case in which all the n beams are combined at a single detector. We apply the results to future missions, Terrestrial Planet Finder and Darwin. We also discuss the potential of a far-infrared interferometer for a deep galaxy survey.

  1. Infrared Imaging of Boundary Layer Transition Flight Experiments

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J., Jr.; Schwartz, Richard; Ross, Martin; Anderson, Brian; Campbell, Charles H.

    2008-01-01

    The Hypersonic Thermodynamic Infrared Measurement (HYTHIRM) project is presently focused on near term support to the Shuttle program through the development of an infrared imaging capability of sufficient spatial and temporal resolution to augment existing on-board Orbiter instrumentation. Significant progress has been made with the identification and inventory of relevant existing optical imaging assets and the development, maturation, and validation of simulation and modeling tools for assessment and mission planning purposes, which were intended to lead to the best strategies and assets for successful acquisition of quantitative global surface temperature data on the Shuttle during entry. However, there are longer-term goals of providing global infrared imaging support to other flight projects as well. A status of HYTHIRM from the perspective of how two NASA-sponsored boundary layer transition flight experiments could benefit by infrared measurements is provided. Those two flight projects are the Hypersonic Boundary layer Transition (HyBoLT) flight experiment and the Shuttle Boundary Layer Transition Flight Experiment (BLT FE), which are both intended for reducing uncertainties associated with the extrapolation of wind tunnel derived transition correlations for flight application. Thus, the criticality of obtaining high quality flight data along with the impact it would provide to the Shuttle program damage assessment process are discussed. Two recent wind tunnel efforts that were intended as risk mitigation in terms of quantifying the transition process and resulting turbulent wedge locations are briefly reviewed. Progress is being made towards finalizing an imaging strategy in support of the Shuttle BLT FE, however there are no plans currently to image HyBoLT.

  2. Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography

    NASA Astrophysics Data System (ADS)

    Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René

    2009-07-01

    Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.

  3. Impact Site: Infrared Image

    NASA Image and Video Library

    2017-09-15

    This montage of images, made from data obtained by Cassini's visual and infrared mapping spectrometer, shows the location on Saturn where the NASA spacecraft entered Saturn's atmosphere on Sept. 15, 2017. This view shows Saturn in the thermal infrared, at a wavelength of 5 microns. Here, the instrument is sensing heat coming from Saturn's interior, in red. Clouds in the atmosphere are silhouetted against that inner glow. This location -- the site of Cassini's atmospheric entry -- was at this time on the night side of the planet, but would rotate into daylight by the time Cassini made its final dive into Saturn's upper atmosphere, ending its remarkable 13-year exploration of Saturn. Both an annotated version and an animation are available at https://photojournal.jpl.nasa.gov/catalog/PIA21896

  4. Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

    2004-11-01

    The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

  5. The infrared bands Pechan prism axis parallel detection method

    NASA Astrophysics Data System (ADS)

    Qiang, Hua; Ji, Ming; He, Yu-lan; Wang, Nan-xi; Chang, Wei-jun; Wang, Ling; Liu, Li

    2017-02-01

    In this paper, we put forward a new method to adjust the air gap of the total reflection air gap of the infrared Pechan prism. The adjustment of the air gap in the air gap of the Pechan prism directly affects the parallelism of the optical axis, so as to affect the consistency of the optical axis of the infrared system. The method solves the contradiction between the total reflection and the high transmission of the infrared wave band, and promotes the engineering of the infrared wave band. This paper puts forward the method of adjusting and controlling, which can ensure the full reflection and high penetration of the light, and also can accurately measure the optical axis of the optical axis of the different Pechan prism, and can achieve the precision of the level of the sec. For Pechan prism used in the infrared band image de rotation, make the product to realize miniaturization, lightweight plays an important significance.

  6. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study

    PubMed Central

    Sappa, Angel D.; Carvajal, Juan A.; Aguilera, Cristhian A.; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X.

    2016-01-01

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR). PMID:27294938

  7. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study.

    PubMed

    Sappa, Angel D; Carvajal, Juan A; Aguilera, Cristhian A; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X

    2016-06-10

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).

  8. Ship detection based on rotation-invariant HOG descriptors for airborne infrared images

    NASA Astrophysics Data System (ADS)

    Xu, Guojing; Wang, Jinyan; Qi, Shengxiang

    2018-03-01

    Infrared thermal imagery is widely used in various kinds of aircraft because of its all-time application. Meanwhile, detecting ships from infrared images attract lots of research interests in recent years. In the case of downward-looking infrared imagery, in order to overcome the uncertainty of target imaging attitude due to the unknown position relationship between the aircraft and the target, we propose a new infrared ship detection method which integrates rotation invariant gradient direction histogram (Circle Histogram of Oriented Gradient, C-HOG) descriptors and the support vector machine (SVM) classifier. In details, the proposed method uses HOG descriptors to express the local feature of infrared images to adapt to changes in illumination and to overcome sea clutter effects. Different from traditional computation of HOG descriptor, we subdivide the image into annular spatial bins instead of rectangle sub-regions, and then Radial Gradient Transform (RGT) on the gradient is applied to achieve rotation invariant histogram information. Considering the engineering application of airborne and real-time requirements, we use SVM for training ship target and non-target background infrared sample images to discriminate real ships from false targets. Experimental results show that the proposed method has good performance in both the robustness and run-time for infrared ship target detection with different rotation angles.

  9. Non-contact optoacoustic imaging by raster scanning a piezoelectric air-coupled transducer

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Pang, Genny A.; Montero de Espinosa, Francisco; Razansky, Daniel

    2016-03-01

    Optoacoustic techniques rely on ultrasound transmission between optical absorbers within tissues and the measurement location. Much like in echography, commonly used piezoelectric transducers require either direct contact with the tissue or through a liquid coupling medium. The contact nature of this detection approach then represents a disadvantage of standard optoacoustic systems with respect to other imaging modalities (including optical techniques) in applications where non-contact imaging is needed, e.g. in open surgeries or when burns or other lesions are present in the skin. Herein, non-contact optoacoustic imaging using raster-scanning of a spherically-focused piezoelectric air-coupled ultrasound transducer is demonstrated. When employing laser fluence levels not exceeding the maximal permissible human exposure, it is shown possible to attain detectable signals from objects as small as 1 mm having absorption properties representative of blood at near-infrared wavelengths with a relatively low number of averages. Optoacoustic images from vessel-mimicking tubes embedded in an agar phantom are further showcased. The initial results indicate that the air-coupled ultrasound detection approach can be potentially made suitable for non-contact biomedical imaging with optoacoustics.

  10. Graphene metamaterial spatial light modulator for infrared single pixel imaging.

    PubMed

    Fan, Kebin; Suen, Jonathan Y; Padilla, Willie J

    2017-10-16

    High-resolution and hyperspectral imaging has long been a goal for multi-dimensional data fusion sensing applications - of interest for autonomous vehicles and environmental monitoring. In the long wave infrared regime this quest has been impeded by size, weight, power, and cost issues, especially as focal-plane array detector sizes increase. Here we propose and experimentally demonstrated a new approach based on a metamaterial graphene spatial light modulator (GSLM) for infrared single pixel imaging. A frequency-division multiplexing (FDM) imaging technique is designed and implemented, and relies entirely on the electronic reconfigurability of the GSLM. We compare our approach to the more common raster-scan method and directly show FDM image frame rates can be 64 times faster with no degradation of image quality. Our device and related imaging architecture are not restricted to the infrared regime, and may be scaled to other bands of the electromagnetic spectrum. The study presented here opens a new approach for fast and efficient single pixel imaging utilizing graphene metamaterials with novel acquisition strategies.

  11. Infrared imaging - A validation technique for computational fluid dynamics codes used in STOVL applications

    NASA Technical Reports Server (NTRS)

    Hardman, R. R.; Mahan, J. R.; Smith, M. H.; Gelhausen, P. A.; Van Dalsem, W. R.

    1991-01-01

    The need for a validation technique for computational fluid dynamics (CFD) codes in STOVL applications has led to research efforts to apply infrared thermal imaging techniques to visualize gaseous flow fields. Specifically, a heated, free-jet test facility was constructed. The gaseous flow field of the jet exhaust was characterized using an infrared imaging technique in the 2 to 5.6 micron wavelength band as well as conventional pitot tube and thermocouple methods. These infrared images are compared to computer-generated images using the equations of radiative exchange based on the temperature distribution in the jet exhaust measured with the thermocouple traverses. Temperature and velocity measurement techniques, infrared imaging, and the computer model of the infrared imaging technique are presented and discussed. From the study, it is concluded that infrared imaging techniques coupled with the radiative exchange equations applied to CFD models are a valid method to qualitatively verify CFD codes used in STOVL applications.

  12. Adaptive fusion of infrared and visible images in dynamic scene

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi

    2011-11-01

    Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.

  13. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  14. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  15. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering.

    PubMed

    He, Si; Wang, Xia; Xia, Runqiu; Jin, Weiqi; Liang, Jian'an

    2018-03-01

    A novel method to simulate the polarimetric infrared imaging of a synthetic sea surface with atmospheric Mie scattering effects is presented. The infrared emission, multiple reflections, and infrared polarization of the sea surface and the Mie scattering of aerosols are all included for the first time. At first, a new approach to retrieving the radiative characteristics of a wind-roughened sea surface is introduced. A two-scale method of sea surface realization and the inverse ray tracing of light transfer calculation are combined and executed simultaneously, decreasing the consumption of time and memory dramatically. Then the scattering process that the infrared light emits from the sea surface and propagates in the aerosol particles is simulated with a polarized light Monte Carlo model. Transformations of the polarization state of the light are calculated with the Mie theory. Finally, the polarimetric infrared images of the sea surface of different environmental conditions and detection parameters are generated based on the scattered light detected by the infrared imaging polarimeter. The results of simulation examples show that our polarimetric infrared imaging simulation can be applied to predict the infrared polarization characteristics of the sea surface, model the oceanic scene, and guide the detection in the oceanic environment.

  16. Weber-aware weighted mutual information evaluation for infrared-visible image fusion

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoyan; Wang, Shining; Yuan, Ding

    2016-10-01

    A performance metric for infrared and visible image fusion is proposed based on Weber's law. To indicate the stimulus of source images, two Weber components are provided. One is differential excitation to reflect the spectral signal of visible and infrared images, and the other is orientation to capture the scene structure feature. By comparing the corresponding Weber component in infrared and visible images, the source pixels can be marked with different dominant properties in intensity or structure. If the pixels have the same dominant property label, the pixels are grouped to calculate the mutual information (MI) on the corresponding Weber components between dominant source and fused images. Then, the final fusion metric is obtained via weighting the group-wise MI values according to the number of pixels in different groups. Experimental results demonstrate that the proposed metric performs well on popular image fusion cases and outperforms other image fusion metrics.

  17. Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems.

    PubMed

    Meza, Pablo; Machuca, Guillermo; Torres, Sergio; Martin, Cesar San; Vera, Esteban

    2015-07-20

    In this article, we present a novel algorithm to achieve simultaneous digital super-resolution and nonuniformity correction from a sequence of infrared images. We propose to use spatial regularization terms that exploit nonlocal means and the absence of spatial correlation between the scene and the nonuniformity noise sources. We derive an iterative optimization algorithm based on a gradient descent minimization strategy. Results from infrared image sequences corrupted with simulated and real fixed-pattern noise show a competitive performance compared with state-of-the-art methods. A qualitative analysis on the experimental results obtained with images from a variety of infrared cameras indicates that the proposed method provides super-resolution images with significantly less fixed-pattern noise.

  18. Infrared moving small target detection based on saliency extraction and image sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomin; Ren, Kan; Gao, Jin; Li, Chaowei; Gu, Guohua; Wan, Minjie

    2016-10-01

    Moving small target detection in infrared image is a crucial technique of infrared search and tracking system. This paper present a novel small target detection technique based on frequency-domain saliency extraction and image sparse representation. First, we exploit the features of Fourier spectrum image and magnitude spectrum of Fourier transform to make a rough extract of saliency regions and use a threshold segmentation system to classify the regions which look salient from the background, which gives us a binary image as result. Second, a new patch-image model and over-complete dictionary were introduced to the detection system, then the infrared small target detection was converted into a problem solving and optimization process of patch-image information reconstruction based on sparse representation. More specifically, the test image and binary image can be decomposed into some image patches follow certain rules. We select the target potential area according to the binary patch-image which contains salient region information, then exploit the over-complete infrared small target dictionary to reconstruct the test image blocks which may contain targets. The coefficients of target image patch satisfy sparse features. Finally, for image sequence, Euclidean distance was used to reduce false alarm ratio and increase the detection accuracy of moving small targets in infrared images due to the target position correlation between frames.

  19. Image-guided cancer surgery using near-infrared fluorescence

    PubMed Central

    Vahrmeijer, Alexander L.; Hutteman, Merlijn; van der Vorst, Joost R.; van de Velde, C.J.H.; Frangioni, John V.

    2013-01-01

    Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better, and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this review, we introduce the concept of near-infrared fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key issues pertaining to imaging system and contrast agent optimization, discuss limitations and leverage, and provide a framework for making the technology available for the routine care of cancer patients in the near future. PMID:23881033

  20. High bit depth infrared image compression via low bit depth codecs

    NASA Astrophysics Data System (ADS)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  1. Reflective all-sky thermal infrared cloud imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redman, Brian J.; Shaw, Joseph A.; Nugent, Paul W.

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference thatmore » is used to estimate and remove thermal emission from the metal sphere. In conclusion, once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.« less

  2. Reflective all-sky thermal infrared cloud imager

    DOE PAGES

    Redman, Brian J.; Shaw, Joseph A.; Nugent, Paul W.; ...

    2018-04-17

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference thatmore » is used to estimate and remove thermal emission from the metal sphere. In conclusion, once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.« less

  3. Reflective all-sky thermal infrared cloud imager.

    PubMed

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  4. Improved detection probability of low level light and infrared image fusion system

    NASA Astrophysics Data System (ADS)

    Luo, Yuxiang; Fu, Rongguo; Zhang, Junju; Wang, Wencong; Chang, Benkang

    2018-02-01

    Low level light(LLL) image contains rich information on environment details, but is easily affected by the weather. In the case of smoke, rain, cloud or fog, much target information will lose. Infrared image, which is from the radiation produced by the object itself, can be "active" to obtain the target information in the scene. However, the image contrast and resolution is bad, the ability of the acquisition of target details is very poor, and the imaging mode does not conform to the human visual habit. The fusion of LLL and infrared image can make up for the deficiency of each sensor and give play to the advantages of single sensor. At first, we show the hardware design of fusion circuit. Then, through the recognition probability calculation of the target(one person) and the background image(trees), we find that the trees detection probability of LLL image is higher than that of the infrared image, and the person detection probability of the infrared image is obviously higher than that of LLL image. The detection probability of fusion image for one person and trees is higher than that of single detector. Therefore, image fusion can significantly enlarge recognition probability and improve detection efficiency.

  5. Infrared Thermal Imaging System on a Mobile Phone

    PubMed Central

    Lee, Fu-Feng; Chen, Feng; Liu, Jing

    2015-01-01

    A novel concept towards pervasively available low-cost infrared thermal imaging system lunched on a mobile phone (MTIS) was proposed and demonstrated in this article. Through digestion on the evolutional development of milestone technologies in the area, it can be found that the portable and low-cost design would become the main stream of thermal imager for civilian purposes. As a representative trial towards this important goal, a MTIS consisting of a thermal infrared module (TIM) and mobile phone with embedded exclusive software (IRAPP) was presented. The basic strategy for the TIM construction is illustrated, including sensor adoption and optical specification. The user-oriented software was developed in the Android environment by considering its popularity and expandability. Computational algorithms with non-uniformity correction and scene-change detection are established to optimize the imaging quality and efficiency of TIM. The performance experiments and analysis indicated that the currently available detective distance for the MTIS is about 29 m. Furthermore, some family-targeted utilization enabled by MTIS was also outlined, such as sudden infant death syndrome (SIDS) prevention, etc. This work suggests a ubiquitous way of significantly extending thermal infrared image into rather wide areas especially health care in the coming time. PMID:25942639

  6. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  7. POLICAN: A near-infrared imaging polarimeter at OAGH

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Luna, A.; Carrasco, L.; Mayya, Y. D.; Serrano-Bernal, O.

    2017-07-01

    We present a near-infrared linear imaging polarimeter POLICAN, developed for the Cananea near-infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. POLICAN reaches a limiting magnitude to about 16th mag with a polarimetric accuracy of about 1% for bright sources.

  8. Uncooled Micro-Cantilever Infrared Imager Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panagiotis, Datskos G.

    2008-02-05

    We report on the development, fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to bemore » comparable to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000 x 2000, without progressively growing device complexity and cost. The overall technical objective of the proposed work was to develop uncooled infrared arrays based on micromechanical sensors. Currently used miniature sensors use a number of different readout techniques to accomplish the sensing. The use of optical readout techniques sensing require the deposition of thin coatings on the surface of micromechanical thermal detectors. Oak Ridge National Laboratory (ORNL) is uniquely qualified to perform the required research and development (R&D) services that will assist our ongoing activities. Over the past decade ORNL has developed a number of unique methods and

  9. Uncooled emissive infrared imagers for CubeSats

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Masini, Paolo

    2014-09-01

    Raytheon's fourth generation uncooled microbolometer array technology with digital output, High Definition (HD) 1920 × 1200 format and 12 μm cell size enables uncooled thermal infrared (TIR) multispectral imagers with the sensitivity and spatial sampling needed for a variety of Earth observation missions in LEO, GEO and HEO. A powerful combination of small detector cell size, fast optics and high sensitivity achieved without cryogenic cooling leads to instruments that are much smaller than current TIR systems, while still offering the capability to meet challenging measurement requirements for Earth observation missions. To consider how this technology could be implemented for Earth observation missions, we extend our previous studies with visible wavelength CubeSat imagers for environmental observations from LEO and examine whether small thermal infrared imagers based on fourth generation uncooled technology could be made small enough to fit onboard a 3U CubeSat and still meet challenging requirements for legacy missions. We found that moderate spatial resolution (~200 m) high sensitivity cloud and surface temperature observations meeting legacy MODIS/VIIRS requirements could be collected successfully with CubeSat-sized imagers but that multiple imagers are needed to cover the full swath for these missions. Higher spatial resolution land imagers are more challenging to fit into the CubeSat form factor, but it may be possible to do so for systems that require roughly 100 m spatial resolution. Regardless of whether it can fit into a CubeSat or not, uncooled land imagers meeting candidate TIR requirements can be implemented with a much smaller instrument than previous imagers. Even though this technology appears to be very promising, more work is needed to qualify this newly available uncooled infrared technology for use in space. If these new devices prove to be as space worthy as the first generation arrays that Raytheon qualified and built into the THEMIS imager

  10. Normalized methodology for medical infrared imaging

    NASA Astrophysics Data System (ADS)

    Vargas, J. V. C.; Brioschi, M. L.; Dias, F. G.; Parolin, M. B.; Mulinari-Brenner, F. A.; Ordonez, J. C.; Colman, D.

    2009-01-01

    A normalized procedure for medical infrared imaging is suggested, and illustrated by a leprosy and hepatitis C treatment follow-up, in order to investigate the effect of concurrent treatment which has not been reported before. A 50-year-old man with indeterminate leprosy and a 20-year history of hepatitis C was monitored for 587 days, starting from the day the patient received treatment for leprosy. Standard therapy for hepatitis C started 30 days later. Both visual observations and normalized infrared imaging were conducted periodically to assess the response to leprosy treatment. The primary end points were effectiveness of the method under different boundary conditions over the period, and rapid assessment of the response to leprosy treatment. The patient achieved sustained hepatitis C virological response 6 months after the end of the treatment. The normalized infrared results demonstrate the leprosy treatment success in spite of the concurrent hepatitis C treatment, since day 87, whereas repigmentation was visually assessed only after day 182, and corroborated with a skin biopsy on day 390. The method detected the effectiveness of the leprosy treatment in 87 days, whereas repigmentation started only in 182 days. Hepatitis C and leprosy treatment did not affect each other.

  11. Three-dimensional dynamic thermal imaging of structural flaws by dual-band infrared computed tomography

    NASA Astrophysics Data System (ADS)

    DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.

    1993-11-01

    We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.

  12. LaAlO3:Mn4+ as Near-Infrared Emitting Persistent Luminescence Phosphor for Medical Imaging: A Charge Compensation Study

    PubMed Central

    De Clercq, Olivier Q.; Korthout, Katleen

    2017-01-01

    Mn4+-activated phosphors are emerging as a novel class of deep red/near-infrared emitting persistent luminescence materials for medical imaging as a promising alternative to Cr3+-doped nanomaterials. Currently, it remains a challenge to improve the afterglow and photoluminescence properties of these phosphors through a traditional high-temperature solid-state reaction method in air. Herein we propose a charge compensation strategy for enhancing the photoluminescence and afterglow performance of Mn4+-activated LaAlO3 phosphors. LaAlO3:Mn4+ (LAO:Mn4+) was synthesized by high-temperature solid-state reaction in air. The charge compensation strategies for LaAlO3:Mn4+ phosphors were systematically discussed. Interestingly, Cl−/Na+/Ca2+/Sr2+/Ba2+/Ge4+ co-dopants were all found to be beneficial for enhancing LaAlO3:Mn4+ luminescence and afterglow intensity. This strategy shows great promise and opens up new avenues for the exploration of more promising near-infrared emitting long persistent phosphors for medical imaging. PMID:29231901

  13. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    NASA Astrophysics Data System (ADS)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  14. Development of infrared thermal imager for dry eye diagnosis

    NASA Astrophysics Data System (ADS)

    Chiang, Huihua Kenny; Chen, Chih Yen; Cheng, Hung You; Chen, Ko-Hua; Chang, David O.

    2006-08-01

    This study aims at the development of non-contact dry eye diagnosis based on an infrared thermal imager system, which was used to measure the cooling of the ocular surface temperature of normal and dry eye patients. A total of 108 subjects were measured, including 26 normal and 82 dry eye patients. We have observed that the dry eye patients have a fast cooling of the ocular surface temperature than the normal control group. We have developed a simplified algorithm for calculating the temperature decay constant of the ocular surface for discriminating between normal and dry eye. This study shows the diagnostic of dry eye syndrome by the infrared thermal imager system has reached a sensitivity of 79.3%, a specificity of 75%, and the area under the ROC curve 0.841. The infrared thermal imager system has a great potential to be developed for dry eye screening with the advantages of non-contact, fast, and convenient implementation.

  15. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  16. A near-infrared BSA coated DNA-AgNCs for cellular imaging.

    PubMed

    Mu, Wei-Yu; Yang, Rui; Robertson, Akrofi; Chen, Qiu-Yun

    2018-02-01

    Near-infrared silver nanoclusters, have potential applications in the field of biosensing and biological imaging. However, less stability of most DNA-AgNCs limits their application. To obtain stable near-infrared fluorescence DNA-AgNCs for biological imaging, a new kind of near-infrared fluorescent DNA-Ag nanoclusters was constructed using the C3A rich aptamer as a synthesis template, GAG as the enhancer. In particular, a new DNA-AgNCs-Trp@BSA was obtained based on the self-assembly of bovine serum albumin (BSA) and tryptophan loaded DNA-AgNCs by hydrophobic interaction. This self-assembly method can be used to stabilize DNAn-Ag (n = 1-3) nanoclusters. Hence, the near-infrared fluorescence DNA-AgNCs-Trp@BSA was applied in cellular imaging of HepG-2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Method of passive ranging from infrared image sequence based on equivalent area

    NASA Astrophysics Data System (ADS)

    Yang, Weiping; Shen, Zhenkang

    2007-11-01

    The information of range between missile and targets is important not only to missile controlling component, but also to automatic target recognition, so studying the technique of passive ranging from infrared images has important theoretic and practical meanings. Here we tried to get the range between guided missile and target and help to identify targets or dodge a hit. The issue of distance between missile and target is currently a hot and difficult research content. As all know, infrared imaging detector can not range so that it restricts the functions of the guided information processing system based on infrared images. In order to break through the technical puzzle, we investigated the principle of the infrared imaging, after analysing the imaging geometric relationship between the guided missile and the target, we brought forward the method of passive ranging based on equivalent area and provided mathematical analytic formulas. Validating Experiments demonstrate that the presented method has good effect, the lowest relative error can reach 10% in some circumstances.

  18. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. Detecting ship targets in spaceborne infrared image based on modeling radiation anomalies

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Zou, Zhengxia; Shi, Zhenwei; Li, Bo

    2017-09-01

    Using infrared imaging sensors to detect ship target in the ocean environment has many advantages compared to other sensor modalities, such as better thermal sensitivity and all-weather detection capability. We propose a new ship detection method by modeling radiation anomalies for spaceborne infrared image. The proposed method can be decomposed into two stages, where in the first stage, a test infrared image is densely divided into a set of image patches and the radiation anomaly of each patch is estimated by a Gaussian Mixture Model (GMM), and thereby target candidates are obtained from anomaly image patches. In the second stage, target candidates are further checked by a more discriminative criterion to obtain the final detection result. The main innovation of the proposed method is inspired by the biological mechanism that human eyes are sensitive to the unusual and anomalous patches among complex background. The experimental result on short wavelength infrared band (1.560 - 2.300 μm) and long wavelength infrared band (10.30 - 12.50 μm) of Landsat-8 satellite shows the proposed method achieves a desired ship detection accuracy with higher recall than other classical ship detection methods.

  1. High-quality infrared imaging with graphene photodetectors at room temperature.

    PubMed

    Guo, Nan; Hu, Weida; Jiang, Tao; Gong, Fan; Luo, Wenjin; Qiu, Weicheng; Wang, Peng; Liu, Lu; Wu, Shiwei; Liao, Lei; Chen, Xiaoshuang; Lu, Wei

    2016-09-21

    Graphene, a two-dimensional material, is expected to enable broad-spectrum and high-speed photodetection because of its gapless band structure, ultrafast carrier dynamics and high mobility. We demonstrate a multispectral active infrared imaging by using a graphene photodetector based on hybrid response mechanisms at room temperature. The high-quality images with optical resolutions of 418 nm, 657 nm and 877 nm and close-to-theoretical-limit Michelson contrasts of 0.997, 0.994, and 0.996 have been acquired for 565 nm, 1550 nm, and 1815 nm light imaging measurements by using an unbiased graphene photodetector, respectively. Importantly, by carefully analyzing the results of Raman mapping and numerical simulations for the response process, the formation of hybrid photocurrents in graphene detectors is attributed to the synergistic action of photovoltaic and photo-thermoelectric effects. The initial application to infrared imaging will help promote the development of high performance graphene-based infrared multispectral detectors.

  2. New technology of functional infrared imaging and its clinical applications

    NASA Astrophysics Data System (ADS)

    Yang, Hongqin; Xie, Shusen; Lu, Zukang; Liu, Zhongqi

    2006-01-01

    With improvements in infrared camera technology, the promise of reduced costs and noninvasive character, infrared thermal imaging resurges in medicine. The paper introduces a new technology of functional infrared imaging, thermal texture maps (TTM), which is not only an apparatus for thermal radiation imaging but also a new method for revealing the relationship between the temperature distribution of the skin surface and the emission field inside body. The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Any disease in the body is associated with an alteration of the thermal distribution of human body. Infrared thermography is noninvasive, so it is the best choice for studying the physiology of thermoregulation and the thermal dysfunction associated with diseases. Reading and extracting information from the thermograms is a complex and subjective task that can be greatly facilitated by computerized techniques. Through image processing and measurement technology, surface or internal radiation sources can be non-invasively distinguished through extrapolation. We discuss the principle, the evaluation procedure and the effectiveness of TTM technology in the clinical detection and diagnosis of cancers, especially in their early stages and other diseases by comparing with other imaging technologies, such as ultrasound. Several study cases are given to show the effectiveness of this method. At last, we point out the applications of TTM technology in the research field of traditional medicine.

  3. Reduction and analysis techniques for infrared imaging data

    NASA Technical Reports Server (NTRS)

    Mccaughrean, Mark

    1989-01-01

    Infrared detector arrays are becoming increasingly available to the astronomy community, with a number of array cameras already in use at national observatories, and others under development at many institutions. As the detector technology and imaging instruments grow more sophisticated, more attention is focussed on the business of turning raw data into scientifically significant information. Turning pictures into papers, or equivalently, astronomy into astrophysics, both accurately and efficiently, is discussed. Also discussed are some of the factors that can be considered at each of three major stages; acquisition, reduction, and analysis, concentrating in particular on several of the questions most relevant to the techniques currently applied to near infrared imaging.

  4. Investigation of skin structures based on infrared wave parameter indirect microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Liu, Xuefeng; Xiong, Jichuan; Zhou, Lijuan

    2017-02-01

    Detailed imaging and analysis of skin structures are becoming increasingly important in modern healthcare and clinic diagnosis. Nanometer resolution imaging techniques such as SEM and AFM can cause harmful damage to the sample and cannot measure the whole skin structure from the very surface through epidermis, dermis to subcutaneous. Conventional optical microscopy has the highest imaging efficiency, flexibility in onsite applications and lowest cost in manufacturing and usage, but its image resolution is too low to be accepted for biomedical analysis. Infrared parameter indirect microscopic imaging (PIMI) uses an infrared laser as the light source due to its high transmission in skins. The polarization of optical wave through the skin sample was modulated while the variation of the optical field was observed at the imaging plane. The intensity variation curve of each pixel was fitted to extract the near field polarization parameters to form indirect images. During the through-skin light modulation and image retrieving process, the curve fitting removes the blurring scattering from neighboring pixels and keeps only the field variations related to local skin structures. By using the infrared PIMI, we can break the diffraction limit, bring the wide field optical image resolution to sub-200nm, in the meantime of taking advantage of high transmission of infrared waves in skin structures.

  5. Onychomycosis diagnosis using fluorescence and infrared imaging systems

    NASA Astrophysics Data System (ADS)

    da Silva, Ana Paula; Fortunato, Thereza Cury; Stringasci, Mirian D.; Kurachi, Cristina; Bagnato, Vanderlei S.; Inada, Natalia M.

    2015-06-01

    Onychomycosis is a common disease of the nail plate, constituting approximately half of all cases of nail infection. Onychomycosis diagnosis is challenging because it is hard to distinguish from other diseases of the nail lamina such as psoriasis, lichen ruber or eczematous nails. The existing methods of diagnostics so far consist of clinical and laboratory analysis, such as: Direct Mycological examination and culture, PCR and histopathology with PAS staining. However, they all share certain disadvantages in terms of sensitivity and specificity, time delay, or cost. This study aimed to evaluate the use of infrared and fluorescence imaging as new non-invasive diagnostic tools in patients with suspected onychomycosis, and compare them with established techniques. For fluorescence analysis, a Clinical Evince (MM Optics®) was used, which consists of an optical assembly with UV LED light source wavelength 400 nm +/- 10 nm and the maximum light intensity: 40 mW/cm2 +/- 20%. For infrared analysis, a Fluke® Camera FKL model Ti400 was used. Patients with onychomycosis and control group were analyzed for comparison. The fluorescence images were processed using MATLAB® routines, and infrared images were analyzed using the SmartView® 3.6 software analysis provided by the company Fluke®. The results demonstrated that both infrared and fluorescence could be complementary to diagnose different types of onychomycosis lesions. The simplicity of operation, quick response and non-invasive assessment of the nail patients in real time, are important factors to be consider for an implementation.

  6. Uncooled infrared imaging using bimaterial microcantilever arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grbovic, Dragoslav; Lavrik, Nickolay V; Rajic, Slobodan

    2006-01-01

    We report on the fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparablemore » to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000x2000, without progressively growing device complexity and cost.« less

  7. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOEpatents

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  8. Landsat and Thermal Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Arvidson, Terry; Barsi, Julia; Jhabvala, Murzy; Reuter, Dennis

    2012-01-01

    The purpose of this chapter is to describe the collection of thermal images by Landsat sensors already on orbit and to introduce the new thermal sensor to be launched in 2013. The chapter describes the thematic mapper (TM) and enhanced thematic mapper plus (ETM+) sensors, the calibration of their thermal bands, and the design and prelaunch calibration of the new thermal infrared sensor (TIRS).

  9. Infrared thermal imaging of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Watt, David; Mchugh, John

    1990-01-01

    A technique for analyzing infrared atmospheric images to obtain cross-wind measurement is presented. The technique is based on Taylor's frozen turbulence hypothesis and uses cross-correlation of successive images to obtain a measure of the cross-wind velocity in a localized focal region. The technique is appealing because it can possibly be combined with other IR forward look capabilities and may provide information about turbulence intensity. The current research effort, its theoretical basis, and its applicability to windshear detection are described.

  10. Image processing system design for microcantilever-based optical readout infrared arrays

    NASA Astrophysics Data System (ADS)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  11. Infrared spectroscopic imaging for noninvasive detection of latent fingerprints.

    PubMed

    Crane, Nicole J; Bartick, Edward G; Perlman, Rebecca Schwartz; Huffman, Scott

    2007-01-01

    The capability of Fourier transform infrared (FTIR) spectroscopic imaging to provide detailed images of unprocessed latent fingerprints while also preserving important trace evidence is demonstrated. Unprocessed fingerprints were developed on various porous and nonporous substrates. Data-processing methods used to extract the latent fingerprint ridge pattern from the background material included basic infrared spectroscopic band intensities, addition and subtraction of band intensity measurements, principal components analysis (PCA) and calculation of second derivative band intensities, as well as combinations of these various techniques. Additionally, trace evidence within the fingerprints was recovered and identified.

  12. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  13. Midwave Infrared Imaging Fourier Transform Spectrometry of Combustion Plumes

    DTIC Science & Technology

    2009-09-01

    nonuniformity by spatially-smoothing the image cube. The algorithm was applied to a LWIR hyperspectral image of simultaneous release of CHF3 (trifluo...99 43. A series of LWIR thermal images of the explosive detonation release of MeS...Abbreviation Page IEDs Improvised Explosive Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LWIR longwave infrared

  14. A wavelet-based adaptive fusion algorithm of infrared polarization imaging

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang

    2011-08-01

    The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.

  15. Infrared Imaging System for Studying Brain Function

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  16. Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.

    2012-01-01

    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.

  17. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  18. Comparison of spatial variability in visible and near-infrared spectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1992-01-01

    The visible and near-infrared bands of the Landsat Thematic Mapper (TM) and the Satellite Pour l'Observation de la Terre (SPOT) were analyzed to determine which band contained more spatial variability. It is important for applications that require spatial information, such as those dealing with mapping linear features and automatic image-to-image correlation, to know which spectral band image should be used. Statistical and visual analyses were used in the project. The amount of variance in an 11 by 11 pixel spatial filter and in the first difference at the six spacings of 1, 5, 11, 23, 47, and 95 pixels was computed for the visible and near-infrared bands. The results indicate that the near-infrared band has more spatial variability than the visible band, especially in images covering densely vegetated areas. -Author

  19. Near-infrared dental imaging using scanning fiber endoscope

    NASA Astrophysics Data System (ADS)

    Zhou, Yaxuan; Lee, Robert; Sadr, Alireza; Seibel, Eric J.

    2018-02-01

    Near-infrared (NIR) wavelength range of 1300-1500nm has the potential to outperform or augment other dental imaging modalities such as fluorescence imaging, owing to its lower scattering coefficient in enamel and trans- parency on stains and non-cariogenic plaque. However, cameras in this wavelength range are bulky and expensive, which lead to difficulties for in-vivo use and commercialization. Thus, we have proposed a new imaging device combining the scanning fiber endoscopy (SFE) and NIR imaging technology. The NIR SFE system has the advantage of miniature size (1.6 mm), flexible shaft, video frame rate (7Hz) and expandable wide field-of-view (60 degrees). Eleven extracted human teeth with or without occlusal caries were scanned by micro-computed X-ray tomography (micro-CT) to obtain 3D micro-CT images, which serve as the standard for comparison. NIR images in reflection mode were then taken on all the occlusal surfaces, using 1310nm super luminescent diode and 1460nm laser diode respectively. Qualitative comparison was performed between near-infrared im- ages and micro-CT images. Enamel demineralization in NIR appeared as areas of increased reflectivity, and distinguished from non-carious staining at the base of occlusal fissures or developmental defects on cusps. This preliminary work presented proof for practicability of combining NIR imaging technology with SFE for reliable and noninvasive dental imaging with miniaturization and low cost.

  20. Near infrared fluorescence for image-guided surgery

    PubMed Central

    2012-01-01

    Near infrared (NIR) image-guided surgery holds great promise for improved surgical outcomes. A number of NIR image-guided surgical systems are currently in preclinical and clinical development with a few approved for limited clinical use. In order to wield the full power of NIR image-guided surgery, clinically available tissue and disease specific NIR fluorophores with high signal to background ratio are necessary. In the current review, the status of NIR image-guided surgery is discussed along with the desired chemical and biological properties of NIR fluorophores. Lastly, tissue and disease targeting strategies for NIR fluorophores are reviewed. PMID:23256079

  1. Far Infrared Imaging Spectrometer for Large Aperture Infrared Telescope System

    DTIC Science & Technology

    1985-12-01

    resolution Fabry - Perot spectrometer (103 < Resolution < 104) for wavelengths from about 50 to 200 micrometer, employing extended field diffraction limited...photo- metry. The Naval Research Laboratory will provide a high resolution Far Infrared Imaging Spectrometer (FIRIS) using Fabry - Perot techniques in...detectors to provide spatial information. The Fabry - Perot uses electromagnetic coil displacement drivers with a lead screw drive to obtain parallel

  2. The design of real time infrared image generation software based on Creator and Vega

    NASA Astrophysics Data System (ADS)

    Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu

    2013-09-01

    Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.

  3. Automated Infrared Inspection Of Jet Engine Turbine Blades

    NASA Astrophysics Data System (ADS)

    Bantel, T.; Bowman, D.; Halase, J.; Kenue, S.; Krisher, R.; Sippel, T.

    1986-03-01

    The detection of blocked surface cooling holes in hollow jet engine turbine blades and vanes during either manufacture or overhaul can be crucial to the integrity and longevity of the parts when in service. A fully automated infrared inspection system is being established under a tri-service's Manufacturing Technology (ManTech) contract administered by the Air Force to inspect these surface cooling holes for blockages. The method consists of viewing the surface holes of the blade with a scanning infrared radiometer when heated air is flushed through the blade. As the airfoil heats up, the resultant infrared images are written directly into computer memory where image analysis is performed. The computer then makes a determination of whether or not the holes are open from the inner plenum to the exterior surface and ultimately makes an accept/reject decision based on previously programmed criteria. A semiautomatic version has already been implemented and is more cost effective and more reliable than the previous manual inspection methods.

  4. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  5. Detection of cracks on tomatoes using hyperspectral near-infrared reflectance imaging system

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detection of cuticle cracks on tomatoes. A hyperspectral near-infrared reflectance imaging system in the region of 1000-1700 nm was used to obtain hyperspectral reflectance ima...

  6. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranec, Christoph; Atkinson, Dani; Hall, Donald

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible andmore » infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.« less

  7. Improved image processing of road pavement defect by infrared thermography

    NASA Astrophysics Data System (ADS)

    Sim, Jun-Gi

    2018-03-01

    This paper intends to achieve improved image processing for the clear identification of defects in damaged road pavement structure using infrared thermography non-destructive testing (NDT). To that goal, 4 types of pavement specimen including internal defects were fabricated to exploit the results obtained by heating the specimens by natural light. The results showed that defects located down to a depth of 3 cm could be detected by infrared thermography NDT using the improved image processing method.

  8. Parallel algorithm of real-time infrared image restoration based on total variation theory

    NASA Astrophysics Data System (ADS)

    Zhu, Ran; Li, Miao; Long, Yunli; Zeng, Yaoyuan; An, Wei

    2015-10-01

    Image restoration is a necessary preprocessing step for infrared remote sensing applications. Traditional methods allow us to remove the noise but penalize too much the gradients corresponding to edges. Image restoration techniques based on variational approaches can solve this over-smoothing problem for the merits of their well-defined mathematical modeling of the restore procedure. The total variation (TV) of infrared image is introduced as a L1 regularization term added to the objective energy functional. It converts the restoration process to an optimization problem of functional involving a fidelity term to the image data plus a regularization term. Infrared image restoration technology with TV-L1 model exploits the remote sensing data obtained sufficiently and preserves information at edges caused by clouds. Numerical implementation algorithm is presented in detail. Analysis indicates that the structure of this algorithm can be easily implemented in parallelization. Therefore a parallel implementation of the TV-L1 filter based on multicore architecture with shared memory is proposed for infrared real-time remote sensing systems. Massive computation of image data is performed in parallel by cooperating threads running simultaneously on multiple cores. Several groups of synthetic infrared image data are used to validate the feasibility and effectiveness of the proposed parallel algorithm. Quantitative analysis of measuring the restored image quality compared to input image is presented. Experiment results show that the TV-L1 filter can restore the varying background image reasonably, and that its performance can achieve the requirement of real-time image processing.

  9. DSP+FPGA-based real-time histogram equalization system of infrared image

    NASA Astrophysics Data System (ADS)

    Gu, Dongsheng; Yang, Nansheng; Pi, Defu; Hua, Min; Shen, Xiaoyan; Zhang, Ruolan

    2001-10-01

    Histogram Modification is a simple but effective method to enhance an infrared image. There are several methods to equalize an infrared image's histogram due to the different characteristics of the different infrared images, such as the traditional HE (Histogram Equalization) method, and the improved HP (Histogram Projection) and PE (Plateau Equalization) method and so on. If to realize these methods in a single system, the system must have a mass of memory and extremely fast speed. In our system, we introduce a DSP + FPGA based real-time procession technology to do these things together. FPGA is used to realize the common part of these methods while DSP is to do the different part. The choice of methods and the parameter can be input by a keyboard or a computer. By this means, the function of the system is powerful while it is easy to operate and maintain. In this article, we give out the diagram of the system and the soft flow chart of the methods. And at the end of it, we give out the infrared image and its histogram before and after the process of HE method.

  10. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  11. THE VALUE OF RETINAL IMAGING WITH INFRARED SCANNING LASER OPHTHALMOSCOPY IN PATIENTS WITH STARGARDT DISEASE

    PubMed Central

    Chun, Robert; Fishman, Gerald A.; Collison, Frederick T.; Stone, Edwin M.; Zernant, Jana; Allikmets, Rando

    2014-01-01

    Purpose To demonstrate the value of infrared scanning laser ophthalmoscopy (SLO) for determining structural retinal and choroidal changes in patients with Stargardt disease and its comparison to findings on short-wavelength fundus autofluorescence (SW-AF) imaging, spectral-domain optical coherence tomography, and microperimetry measurements. Methods Forty-four eyes of 22 patients with Stargardt disease were studied using infrared-SLO, spectral-domain optical coherence tomography, macular microperimetry, SW-AF, electroretinography, and fundus photography. Results Although SW-AF imaging outlined the regions of retinal pigment epithelial (RPE) atrophy (hypofluorescence) and enhanced the visibility of more funduscopically apparent flecks (hyperfluorescence), infrared-SLO imaging outlined the regions of choroidal, and RPE, atrophic changes. Degenerative changes in photoreceptor and RPE cell layers, evident on spectral-domain optical coherence tomography imaging, were associated with either hyporeflective or hyperreflective images on infrared-SLO imaging, depending on whether both RPE and choroidal atrophy (hyperreflectance) or solely RPE atrophy (hyporeflectance) was present. Threshold elevations on microperimetry testing corresponded to both RPE and choroidal atrophy on infrared-SLO imaging and RPE atrophy on SW-AF. Conclusion Although SW-AF identifies regions of RPE atrophy, infrared-SLO also identifies the involvement of the choroid that has important implications for the potential improvement in visual function from treatment. Thus, infrared-SLO imaging offers an additional advantage beyond that obtained with SW-AF. PMID:24317291

  12. Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin

    2017-10-01

    There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.

  13. Low-cost infrared glass for IR imaging applications

    NASA Astrophysics Data System (ADS)

    Graham, Amy G.; LeBlanc, Richard A.; Hilton, Ray A., Sr.

    2003-09-01

    With the advent of the uncooled detectors, the fraction of infrared (IR) imaging system cost due to lens elements has risen to the point where work was needed in the area of cost. Since these IR imaging systems often have tight packaging requirements which drive the optical elements to have complex surfaces, typical IR optical elements are costly to manufacture. The drive of our current optical material research is to lower the cost of the materials as well as the element fabrication for IR imaging systems. A low cost, moldable amorphous material, Amtir-4, has been developed and characterized. Ray Hilton Sr., Amorphous Materials Inc., Richard A. LeBlanc, Amy Graham and Others at Lockheed Martin Missiles and Fire Control Orlando (LMMFC-O) and James Johnson, General Electric Global Research Center (GE-GRC), along with others have been doing research for the past three years characterizing and designing IR imaging systems with this material. These IR imaging systems have been conventionally fabricated via diamond turning and techniques required to mold infrared optical elements have been developed with this new material, greatly reducing manufacturing costs. This paper will outline efforts thus far in incorporating this new material into prototype IR imaging systems.

  14. Infrared and visible image fusion with spectral graph wavelet transform.

    PubMed

    Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Zong, Jing-guo

    2015-09-01

    Infrared and visible image fusion technique is a popular topic in image analysis because it can integrate complementary information and obtain reliable and accurate description of scenes. Multiscale transform theory as a signal representation method is widely used in image fusion. In this paper, a novel infrared and visible image fusion method is proposed based on spectral graph wavelet transform (SGWT) and bilateral filter. The main novelty of this study is that SGWT is used for image fusion. On the one hand, source images are decomposed by SGWT in its transform domain. The proposed approach not only effectively preserves the details of different source images, but also excellently represents the irregular areas of the source images. On the other hand, a novel weighted average method based on bilateral filter is proposed to fuse low- and high-frequency subbands by taking advantage of spatial consistency of natural images. Experimental results demonstrate that the proposed method outperforms seven recently proposed image fusion methods in terms of both visual effect and objective evaluation metrics.

  15. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  16. High-Resolution Mars Camera Test Image of Moon Infrared

    NASA Image and Video Library

    2005-09-13

    This crescent view of Earth Moon in infrared wavelengths comes from a camera test by NASA Mars Reconnaissance Orbiter spacecraft on its way to Mars. This image was taken by taken by the High Resolution Imaging Science Experiment camera Sept. 8, 2005.

  17. The infrared imaging radiometer for PICASSO-CENA

    NASA Astrophysics Data System (ADS)

    Corlay, Gilles; Arnolfo, Marie-Christine; Bret-Dibat, Thierry; Lifferman, Anne; Pelon, Jacques

    2017-11-01

    Microbolometers are infrared detectors of an emerging technology mainly developed in US and few other countries for few years. The main targets of these developments are low performing and low cost military and civilian applications like survey cameras. Applications in space are now arising thanks to the design simplification and the associated cost reduction allowed by this new technology. Among the four instruments of the payload of PICASSO-CENA, the Imaging Infrared Radiometer (IIR) is based on the microbolometer technology. An infrared camera in development for the IASI instrument is the core of the IIR. The aim of the paper is to recall the PICASSO-CENA mission goal, to describe the IIR instrument architecture and highlight its main features and performances and to give the its development status.

  18. A new evaluation method research for fusion quality of infrared and visible images

    NASA Astrophysics Data System (ADS)

    Ge, Xingguo; Ji, Yiguo; Tao, Zhongxiang; Tian, Chunyan; Ning, Chengda

    2017-03-01

    In order to objectively evaluate the fusion effect of infrared and visible image, a fusion evaluation method for infrared and visible images based on energy-weighted average structure similarity and edge information retention value is proposed for drawbacks of existing evaluation methods. The evaluation index of this method is given, and the infrared and visible image fusion results under different algorithms and environments are made evaluation experiments on the basis of this index. The experimental results show that the objective evaluation index is consistent with the subjective evaluation results obtained from this method, which shows that the method is a practical and effective fusion image quality evaluation method.

  19. A fast fusion scheme for infrared and visible light images in NSCT domain

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhui; Guo, Yunting; Wang, Yulei

    2015-09-01

    Fusion of infrared and visible light images is an effective way to obtain a simultaneous visualization of details of background provided by visible light image and hiding target information provided by infrared image, which is more suitable for browsing and further processing. Two crucial components for infrared and visual light image fusion are improving its fusion performance as well as reducing its computational burden. In this paper, a novel fusion algorithm named pixel information estimation is proposed, which determines the weights by evaluating the information of pixel and is well applied in visible light and infrared image fusion with better fusion quality and lower time-consumption. Besides, a fast realization of non-subsampled contourlet transform is also proposed in this paper to improve the computational efficiency. To verify the advantage of the proposed method, this paper compares it with several popular ones in six evaluation metrics over four different image groups. Experimental results show that the proposed algorithm gets a more effective result with much less time consuming and performs well in both subjective evaluation and objective indicators.

  20. Infrared imaging enhances retinal crystals in Bietti's crystalline dystrophy.

    PubMed

    Brar, Vikram S; Benson, William H

    2015-01-01

    Infrared imaging dramatically increased the number of crystalline deposits visualized compared with clinical examination, standard color fundus photography, and red free imaging in patients with Bietti's crystalline dystrophy. We believe that this imaging modality significantly improves the sensitivity with which these lesions are detected, facilitating earlier diagnosis and may potentially serve as a prognostic indicator when examined over time.

  1. Quantitative computational infrared imaging of buoyant diffusion flames

    NASA Astrophysics Data System (ADS)

    Newale, Ashish S.

    Studies of infrared radiation from turbulent buoyant diffusion flames impinging on structural elements have applications to the development of fire models. A numerical and experimental study of radiation from buoyant diffusion flames with and without impingement on a flat plate is reported. Quantitative images of the radiation intensity from the flames are acquired using a high speed infrared camera. Large eddy simulations are performed using fire dynamics simulator (FDS version 6). The species concentrations and temperature from the simulations are used in conjunction with a narrow-band radiation model (RADCAL) to solve the radiative transfer equation. The computed infrared radiation intensities rendered in the form of images and compared with the measurements. The measured and computed radiation intensities reveal necking and bulging with a characteristic frequency of 7.1 Hz which is in agreement with previous empirical correlations. The results demonstrate the effects of stagnation point boundary layer on the upstream buoyant shear layer. The coupling between these two shear layers presents a model problem for sub-grid scale modeling necessary for future large eddy simulations.

  2. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  3. Near--Infrared Imaging of the Starburst Ring in UGC12815

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Herter, T.; Haynes, M. P.; Neff, S. G.

    1995-05-01

    Starburst galaxies define an enigmatic class of objects undergoing a brief, intense episode of star formation. In order to investigate the nature of nearby starbursts, we have analyzed the 20 starburst galaxies with the highest 4.85 GHz luminosities from the survey of Condon, Frayer, & Broderick (1991, AJ, 101, 362) at infrared and optical wavelengths. As part of our study, we recently used the Cassegrain Infrared Camera at the Hale 5 m telescope to obtain high spatial resolution near--infrared images of the cores of 17 of these galaxies in order to better understand the starburst triggering mechanism. We find that one galaxy, UGC12815 (NGC7771), possesses a nucleus surrounded by a bright starburst ring. We present 1.25, 1.65, and 2.2 microns (J, H, and K band) images of the nuclear region of UGC12815 and a preliminary analysis of the properties of the starburst ring. The resolution of our K band image is 0.6('') FWHM. The ring is ~ 1.6 kpc (6('') ) in diameter assuming H_0=75 km/s/Mpc; several knots are detected in the ring at 2.2 microns. The spatial distribution of these knots is compared to that observed at 6 cm. The luminosities of the ring and nucleus, as mapped in the near--infrared and radio, are also discussed. Color maps (H-K and J-H) constructed from the near--infrared images trace the relative roles of extinction, and emission from evolved red stars, blue stars, thermal gas, and hot dust in the nucleus and starburst ring. A comparison between UGC12815 and other systems with circumnuclear starbursts is also made.

  4. Tracking and detecting occupational diseases for teachers with infrared imaging method

    NASA Astrophysics Data System (ADS)

    Chen, Shu-wang; An, Sheng-biao; Wang, Shu-hai

    2009-05-01

    Most academic teachers are chairborne and often revise the exercises for students for a long time, so they often have some occupational diseases, such as sciatica, vertebral ache, and so on. Some early diseases are so difficult to be detected that the patients lose the better curable time. The infrared imaging is a non-touch and harmless method and it is efficient in prophylactic iatrology. The paper introduces a method to track and detect the occupational diseases for academic teachers. The infrared pictures of the same position for the same person are collected at the different period. The position is one of the usually parts of the teacher's occupational diseases, such as the neck, the shoulder, the back, the wrist, and so on. For each position of a certain person, the infrared pictures are collected and saved at different period. The period may be 6 month or one year. Infrared pictures are collected by the infrared imaging device, and a database of the infrared pictures is established. According to the difference of the infrared pictures of the same position at different period, the latent disease part may be found out and the ailing degree can be detected.

  5. Infrared spectroscopy and spectroscopic imaging in forensic science.

    PubMed

    Ewing, Andrew V; Kazarian, Sergei G

    2017-01-16

    Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.

  6. Mitigating fringing in discrete frequency infrared imaging using time-delayed integration

    PubMed Central

    Ran, Shihao; Berisha, Sebastian; Mankar, Rupali; Shih, Wei-Chuan; Mayerich, David

    2018-01-01

    Infrared (IR) spectroscopic microscopes provide the potential for label-free quantitative molecular imaging of biological samples, which can be used to aid in histology, forensics, and pharmaceutical analysis. Most IR imaging systems use broadband illumination combined with a spectrometer to separate the signal into spectral components. This technique is currently too slow for many biomedical applications such as clinical diagnosis, primarily due to the availability of bright mid-infrared sources and sensitive MCT detectors. There has been a recent push to increase throughput using coherent light sources, such as synchrotron radiation and quantum cascade lasers. While these sources provide a significant increase in intensity, the coherence introduces fringing artifacts in the final image. We demonstrate that applying time-delayed integration in one dimension can dramatically reduce fringing artifacts with minimal alterations to the standard infrared imaging pipeline. The proposed technique also offers the potential for less expensive focal plane array detectors, since linear arrays can be more readily incorporated into the proposed framework. PMID:29552416

  7. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  8. Experimental Demonstration of Adaptive Infrared Multispectral Imaging Using Plasmonic Filter Array (Postprint)

    DTIC Science & Technology

    2016-10-10

    AFRL-RX-WP-JA-2017-0189 EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...March 2016 – 23 May 2016 4. TITLE AND SUBTITLE EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios

  9. Small-target leak detection for a closed vessel via infrared image sequences

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Yang, Hongjiu

    2017-03-01

    This paper focus on a leak diagnosis and localization method based on infrared image sequences. Some problems on high probability of false warning and negative affect for marginal information are solved by leak detection. An experimental model is established for leak diagnosis and localization on infrared image sequences. The differential background prediction is presented to eliminate the negative affect of marginal information on test vessel based on a kernel regression method. A pipeline filter based on layering voting is designed to reduce probability of leak point false warning. A synthesize leak diagnosis and localization algorithm is proposed based on infrared image sequences. The effectiveness and potential are shown for developed techniques through experimental results.

  10. Research and applications of infrared thermal imaging systems suitable for developing countries

    NASA Astrophysics Data System (ADS)

    Weili, Zhang; Danyu, Cai

    1986-01-01

    It is a common situation in most developing countries that the utilization ratio of the sources of energy is low, the reliability service of equipment is poor, the cost of installation maintenance is high, the loss due to conflagration is heavy, and so on. Therefore, they are in urgent need of using infrared thermal imaging technique to improve their energy saving, equipment diagnosis as well as fire searching. But the infrared thermal imaging systems in the world market so far are not suitable for their use. This paper summarizes the research on two dimensional real time infrared thermal imaging systems on the basis of electron beam scanning and pyroelectric detection, as well as their applications in industry in China.

  11. The infrared image simulation of the tank under different movement states

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Mu, Cheng-po; Peng, Ming-song; Dong, Qing-xian; Zhang, Rui-heng

    2017-07-01

    Tank, as a vital ground weapon, plays an irreplaceable role in the war. The article did the research of infrared image of the tank. Firstly, the 3D model of tank was established. And then the infrared radiation model of the target was constructed by analysing the infrared characteristics of the tank's different parts.. Finally the infrared radiation value of the tank under different states was calculated and the simulation of infrared characteristics of the tank under different states was done, which will provide reference for the research on infrared characteristics of the army's battlefield target.

  12. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences

    PubMed Central

    Cardone, Daniela; Merla, Arcangelo

    2017-01-01

    Thermal infrared imaging has been proposed, and is now used, as a tool for the non-contact and non-invasive computational assessment of human autonomic nervous activity and psychophysiological states. Thanks to a new generation of high sensitivity infrared thermal detectors and the development of computational models of the autonomic control of the facial cutaneous temperature, several autonomic variables can be computed through thermal infrared imaging, including localized blood perfusion rate, cardiac pulse rate, breath rate, sudomotor and stress responses. In fact, all of these parameters impact on the control of the cutaneous temperature. The physiological information obtained through this approach, could then be used to infer about a variety of psychophysiological or emotional states, as proved by the increasing number of psychophysiology or neurosciences studies that use thermal infrared imaging. This paper presents a review of the principal achievements of thermal infrared imaging in computational psychophysiology, focusing on the capability of the technique for providing ubiquitous and unwired monitoring of psychophysiological activity and affective states. It also presents a summary on the modern, up-to-date infrared sensors technology. PMID:28475155

  13. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences.

    PubMed

    Cardone, Daniela; Merla, Arcangelo

    2017-05-05

    Thermal infrared imaging has been proposed, and is now used, as a tool for the non-contact and non-invasive computational assessment of human autonomic nervous activity and psychophysiological states. Thanks to a new generation of high sensitivity infrared thermal detectors and the development of computational models of the autonomic control of the facial cutaneous temperature, several autonomic variables can be computed through thermal infrared imaging, including localized blood perfusion rate, cardiac pulse rate, breath rate, sudomotor and stress responses. In fact, all of these parameters impact on the control of the cutaneous temperature. The physiological information obtained through this approach, could then be used to infer about a variety of psychophysiological or emotional states, as proved by the increasing number of psychophysiology or neurosciences studies that use thermal infrared imaging. This paper presents a review of the principal achievements of thermal infrared imaging in computational psychophysiology, focusing on the capability of the technique for providing ubiquitous and unwired monitoring of psychophysiological activity and affective states. It also presents a summary on the modern, up-to-date infrared sensors technology.

  14. GOODS Far Infrared Imaging with Herschel

    NASA Astrophysics Data System (ADS)

    Frayer, David T.; Elbaz, D.; Dickinson, M.; GOODS-Herschel Team

    2010-01-01

    Most of the stars in galaxies formed at high redshift in dusty environments, where their energy was absorbed and re-radiated at infrared wavelengths. Similarly, much of the growth of nuclear black holes in active galactic nuclei (AGN) was also obscured from direct view at UV/optical and X-ray wavelengths. The Great Observatories Origins Deep Survey Herschel (GOODS-H) open time key program will obtain the deepest far-infrared view of the distant universe, mapping the history of galaxy growth and AGN activity over a broad swath of cosmic time. GOODS-H will image the GOODS-North field with the PACS and SPIRE instruments at 100 to 500 microns, matching the deep survey of GOODS-South in the guaranteed time key program. GOODS-H will also observe an ultradeep sub-field within GOODS-South with PACS, reaching the deepest flux limits planned for Herschel (0.6 mJy at 100 microns with S/N=5). GOODS-H data will detect thousands of luminous and ultraluminous infrared galaxies out to z=4 or beyond, measuring their far-infrared luminosities and spectral energy distributions, and providing the best constraints on star formation rates and AGN activity during this key epoch of galaxy and black hole growth in the young universe.

  15. Polarized near-infrared autofluorescence imaging combined with near-infrared diffuse reflectance imaging for improving colonic cancer detection.

    PubMed

    Shao, Xiaozhuo; Zheng, Wei; Huang, Zhiwei

    2010-11-08

    We evaluate the diagnostic feasibility of the integrated polarized near-infrared (NIR) autofluorescence (AF) and NIR diffuse reflectance (DR) imaging technique developed for colonic cancer detection. A total of 48 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated NIR DR (850-1100 nm) and NIR AF imaging at the 785 nm laser excitation. The results showed that NIR AF intensities of cancer tissues are significantly lower than those of normal tissues (p<0.001, paired 2-sided Student's t-test, n=48). NIR AF imaging under polarization conditions gives a higher diagnostic accuracy (of ~92-94%) compared to non-polarized NIR AF imaging or NIR DR imaging. Further, the ratio imaging of NIR DR to NIR AF with polarization provides the best diagnostic accuracy (of ~96%) among the NIR AF and NIR DR imaging techniques. This work suggests that the integrated NIR AF/DR imaging under polarization condition has the potential to improve the early diagnosis and detection of malignant lesions in the colon.

  16. Infrared imaging-based combat casualty care system

    NASA Astrophysics Data System (ADS)

    Davidson, James E., Sr.

    1997-08-01

    A Small Business Innovative Research (SBIR) contract was recently awarded to a start up company for the development of an infrared (IR) image based combat casualty care system. The company, Medical Thermal Diagnostics, or MTD, is developing a light weight, hands free, energy efficient uncooled IR imaging system based upon a Texas Instruments design which will allow emergency medical treatment of wounded soldiers in complete darkness without any type of light enhancement equipment. The principal investigator for this effort, Dr. Gene Luther, DVM, Ph.D., Professor Emeritus, LSU School of Veterinary Medicine, will conduct the development and testing of this system with support from Thermalscan, Inc., a nondestructive testing company experienced in IR thermography applications. Initial research has been done with surgery on a cat for feasibility of the concept as well as forensic research on pigs as a close representation of human physiology to determine time of death. Further such studies will be done later as well as trauma studies. IR images of trauma injuries will be acquired by imaging emergency room patients to create an archive of emergency medical situations seen with an infrared imaging camera. This archived data will then be used to develop training material for medical personnel using the system. This system has potential beyond military applications. Firefighters and emergency medical technicians could directly benefit from the capability to triage and administer medical care to trauma victims in low or no light conditions.

  17. Utilizing the Precessing Orbit of TRMM to Produce Hourly Corrections of Geostationary Infrared Imager Data with the VIRS Sensor

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra

    2017-01-01

    Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infrared-channel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration

  18. Broadband infrared imaging spectroscopy for standoff detection of trace explosives

    NASA Astrophysics Data System (ADS)

    Kendziora, Christopher A.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; McGill, R. Andrew

    2016-05-01

    This manuscript describes advancements toward a mobile platform for standoff detection of trace explosives on relevant substrates using broadband infrared spectroscopic imaging. In conjunction with this, we are developing a technology for detection based on photo-thermal infrared (IR) imaging spectroscopy (PT-IRIS). PT-IRIS leverages one or more IR quantum cascade lasers (QCL), tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. Here we describe methods to increase both sensitivity to trace explosives and selectivity between different analyte types by exploiting a broader spectral range than in previous configurations. Previously we demonstrated PT-IRIS at several meters of standoff distance indoors and in field tests, while operating the lasers below the infrared eye-safe intensity limit (100 mW/cm2). Sensitivity to explosive traces as small as a single 10 μm diameter particle (~1 ng) has been demonstrated.

  19. Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes.

    PubMed

    Iizumi, Yoko; Yudasaka, Masako; Kim, Jaeho; Sakakita, Hajime; Takeuchi, Tsukasa; Okazaki, Toshiya

    2018-04-19

    Chemical modification of carbon nanotube surface can controllably modulate their optical properties. Here we report a simple and effective synthesis method of oxygen-doped single-walled carbon nanotubes (o-SWCNTs), in which a thin film of SWCNTs is just irradiated under the UV light for a few minutes in air. By using this method, the epoxide-type oxygen-adducts (ep-SWCNTs) were produced in addition to the ether-type oxygen-adducts (eth-SWCNTs). The Treated (6, 5) ep-SWCNTs show a red-shifted luminescence at ~1280 nm, which corresponds to the most transparent regions for bio-materials. Immunoassay, fluorescence vascular angiography and observation of the intestinal contractile activity of mice were demonstrated by using the produced o-SWCNTs as infrared fluorescent labels and imaging agents.

  20. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.

    2007-04-01

    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  1. Infrared image enhancement based on the edge detection and mathematical morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Linlin; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Yu, Xiaomei; Hui, Mei; Chu, Xuhong; Gong, Cheng

    2010-11-01

    The development of the un-cooled infrared imaging technology from military necessity. At present, It is widely applied in industrial, medicine, scientific and technological research and so on. The infrared radiation temperature distribution of the measured object's surface can be observed visually. The collection of infrared images from our laboratory has following characteristics: Strong spatial correlation, Low contrast , Poor visual effect; Without color or shadows because of gray image , and has low resolution; Low definition compare to the visible light image; Many kinds of noise are brought by the random disturbances of the external environment. Digital image processing are widely applied in many areas, it can now be studied up close and in detail in many research field. It has become one kind of important means of the human visual continuation. Traditional methods for image enhancement cannot capture the geometric information of images and tend to amplify noise. In order to remove noise and improve visual effect. Meanwhile, To overcome the above enhancement issues. The mathematical model of FPA unit was constructed based on matrix transformation theory. According to characteristics of FPA, Image enhancement algorithm which combined with mathematical morphology and edge detection are established. First of all, Image profile is obtained by using the edge detection combine with mathematical morphological operators. And then, through filling the template profile by original image to get the ideal background image, The image noise can be removed on the base of the above method. The experiments show that utilizing the proposed algorithm can enhance image detail and the signal to noise ratio.

  2. Quantum Cascade Lasers in Biomedical Infrared Imaging.

    PubMed

    Bird, Benjamin; Baker, Matthew J

    2015-10-01

    Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation

    PubMed Central

    Zhang, Rui; Zhu, Shiping; Zhou, Qin

    2016-01-01

    Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models. PMID:27775660

  4. A sensitive infrared imaging up converter and spatial coherence of atmospheric propagation

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An infrared imaging technique based on the nonlinear interaction known as upconversion was used to obtain images of several astronomical objects in the 10 micrometer spectral region, and to demonstrate quantitatively the sharper images allowed for wavelengths beyond the visible region. The deleterious effects of atmospheric inhomogeneities on telescope resolution were studied in the infrared region using the technique developed. The low quantum efficiency of the device employed severely limited its usefulness as an astronomical detector.

  5. Edge enhancement and noise suppression for infrared image based on feature analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Meng

    2018-06-01

    Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.

  6. Infrared and visible image fusion based on total variation and augmented Lagrangian.

    PubMed

    Guo, Hanqi; Ma, Yong; Mei, Xiaoguang; Ma, Jiayi

    2017-11-01

    This paper proposes a new algorithm for infrared and visible image fusion based on gradient transfer that achieves fusion by preserving the intensity of the infrared image and then transferring gradients in the corresponding visible one to the result. The gradient transfer suffers from the problems of low dynamic range and detail loss because it ignores the intensity from the visible image. The new algorithm solves these problems by providing additive intensity from the visible image to balance the intensity between the infrared image and the visible one. It formulates the fusion task as an l 1 -l 1 -TV minimization problem and then employs variable splitting and augmented Lagrangian to convert the unconstrained problem to a constrained one that can be solved in the framework of alternating the multiplier direction method. Experiments demonstrate that the new algorithm achieves better fusion results with a high computation efficiency in both qualitative and quantitative tests than gradient transfer and most state-of-the-art methods.

  7. Spectrum Tunable Quantum Dot-In-A-Well Infrared Detector Arrays for Thermal Imaging

    DTIC Science & Technology

    2008-09-01

    Spectrum tunable quantum dot-in-a- well infrared detector arrays for thermal imaging Jonathan R. Andrews1, Sergio R. Restaino1, Scott W. Teare2...Materials at the University of New Mexico has been investigating quantum dot and quantum well detectors for thermal infrared imaging applications...SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Spectrum tunable quantum dot-in-a- well infrared

  8. Performance characteristics of multicolor versus blue light and infrared imaging in the identification of reticular pseudodrusen.

    PubMed

    Badal, Josep; Biarnés, Marc; Monés, Jordi

    2018-02-01

    To describe the appearance of reticular pseudodrusen on multicolor imaging and to evaluate its diagnostic accuracy as compared with the two modalities that may be considered the current reference standard, blue light and infrared imaging. Retrospective study in which all multicolor images (constructed from images acquired at 486 nm-blue, 518 nm-green and 815 nm-infrared) of 45 consecutive patients visited in a single center was reviewed. Inclusion criteria involved the presence of >1 reticular pseudodrusen on a 30° × 30° image centered on the fovea as seen with the blue light channel derived from the multicolor imaging. Three experienced observers, masked to each other's results with other imaging modalities, independently classified the number of reticular pseudodrusen with each modality. The median interobserver agreement (kappa) was 0.58 using blue light; 0.65 using infrared; and 0.64 using multicolor images. Multicolor and infrared modalities identified a higher number of reticular pseudodrusen than blue light modality in all fields for all observers (p < 0.0001). Results were not different when multicolor and infrared were compared (p ≥ 0.27). These results suggest that multicolor and infrared are more sensitive and reproducible than blue light in the identification of RPD. Multicolor did not appear to add a significant value to infrared in the evaluation of RDP. Clinicians using infrared do not need to incorporate multicolor for the identification and quantification of RPD.

  9. A dual-band adaptor for infrared imaging.

    PubMed

    McLean, A G; Ahn, J-W; Maingi, R; Gray, T K; Roquemore, A L

    2012-05-01

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 μm wavelengths and transmits 7-10 μm wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  10. TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Buizer, James M.; Bartkiewicz, Anna; Szymczak, Marian, E-mail: jdebuizer@sofia.usra.edu

    2012-08-01

    Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combinationmore » of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.« less

  11. An adaptive multi-feature segmentation model for infrared image

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  12. History of infrared optronics in France

    NASA Astrophysics Data System (ADS)

    Fouilloy, J. P.; Siriex, Michel B.

    1995-09-01

    In France, the real start of work on the applications of infrared radiations occurred around 1947 - 1948. During many years, technological research was performed in the field of detectors, optical material, modulation techniques, and a lot of measurements were made in order to acquire a better knowledge of the propagation medium and radiation of IR sources, namely those of jet engines. The birth of industrial infrared activities in France started with the Franco-German missile guidance programs: Milan, HOT, Roland and the French air to air missile seeker programs: R530, MAGIC. At these early stages of IR technologies development, it was a great technical adventure for both the governmental agencies and industry to develop: detector technology with PbS and InSb, detector cooling for 3 - 5 micrometer wavelength range, optical material transparent in the infrared, opto mechanical design, signal processing and related electronic technologies. Etablissement Jean Turck and SAT were the pioneers associated with Aerospatiale, Matra and under contracts from the French Ministry of Defence (DGA). In the 60s, the need arose to enhance night vision capability of equipment in service with the French Army. TRT was chosen by DGA to develop the first thermal imagers: LUTHER 1, 2, and 3 with an increasing number of detectors and image frequency rate. This period was also the era in which the SAT detector made rapid advance. After basic work done in the CNRS and with the support of DGA, SAT became the world leader of MCT photovoltaic detector working in the 8 to 12 micron waveband. From 1979, TRT and SAT were given the responsibility for the joint development and production of the first generation French thermal imaging modular system so-called SMT. Now, THOMSON TTD Optronique takes over the opto-electronics activities of TRT. Laser based systems were also studied for military application using YAG type laser and CO2 laser: Laboratoire de Marcousis, CILAS, THOMSON CSF and SAT have

  13. Adaptive coded aperture imaging in the infrared: towards a practical implementation

    NASA Astrophysics Data System (ADS)

    Slinger, Chris W.; Gilholm, Kevin; Gordon, Neil; McNie, Mark; Payne, Doug; Ridley, Kevin; Strens, Malcolm; Todd, Mike; De Villiers, Geoff; Watson, Philip; Wilson, Rebecca; Dyer, Gavin; Eismann, Mike; Meola, Joe; Rogers, Stanley

    2008-08-01

    An earlier paper [1] discussed the merits of adaptive coded apertures for use as lensless imaging systems in the thermal infrared and visible. It was shown how diffractive (rather than the more conventional geometric) coding could be used, and that 2D intensity measurements from multiple mask patterns could be combined and decoded to yield enhanced imagery. Initial experimental results in the visible band were presented. Unfortunately, radiosity calculations, also presented in that paper, indicated that the signal to noise performance of systems using this approach was likely to be compromised, especially in the infrared. This paper will discuss how such limitations can be overcome, and some of the tradeoffs involved. Experimental results showing tracking and imaging performance of these modified, diffractive, adaptive coded aperture systems in the visible and infrared will be presented. The subpixel imaging and tracking performance is compared to that of conventional imaging systems and shown to be superior. System size, weight and cost calculations indicate that the coded aperture approach, employing novel photonic MOEMS micro-shutter architectures, has significant merits for a given level of performance in the MWIR when compared to more conventional imaging approaches.

  14. AIRS First Light Data: Northern Europe, July 20, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    These images, taken over northern Europe on July 20, 2002, depict a few of the different views of Earth and its atmosphere that are produced by the Atmospheric Infrared Sounder experiment system operating on NASA's Aqua spacecraft.

    The image in Figure 1 is from an infrared channel from the AIRS instrument that measures the surface temperature in clear areas and cloud top temperatures in cloudy areas. The image reveals very warm conditions in France and a storm off the east coast of the United Kingdom.

    The image in Figure 2 represents a microwave channel from the Advanced Microwave Sounding Unit instrument that sees through most clouds and observes surface conditions everywhere.

    The image in Figure 3 is a microwave channel from the Humidity Sounder for Brazil instrument that is very sensitive to humidity and does not see the surface at all, but instead reveals the structure of moisture streams in the troposphere.

    The infrared and microwave data from the AIRS experiment are integrated to retrieve a single set of temperature, moisture, and cloud values. These three channels represent only a small portion of the 2,400-channel multispectral experiment, whose primary objectives are to improve the accuracy of weather forecasts and to study climate change.

    The AIRS experiment system also takes pictures of the Earth at four visible and near-infrared wavelengths that can be combined into a color picture. This image shows a swirling low-pressure system over England, clear skies over much of France, and frontal systems in the North Atlantic. Because AIRS is sensitive to different wavelengths than your eye, the colors shown are different from what you would see. For example, plants appear very red to AIRS. There are also subtle color differences in the clouds that relate to their altitude and thickness (compare the white

  15. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  16. Pattern recognition applied to infrared images for early alerts in fog

    NASA Astrophysics Data System (ADS)

    Boucher, Vincent; Marchetti, Mario; Dumoulin, Jean; Cord, Aurélien

    2014-09-01

    Fog conditions are the cause of severe car accidents in western countries because of the poor induced visibility. Its forecast and intensity are still very difficult to predict by weather services. Infrared cameras allow to detect and to identify objects in fog while visibility is too low for eye detection. Over the past years, the implementation of cost effective infrared cameras on some vehicles has enabled such detection. On the other hand pattern recognition algorithms based on Canny filters and Hough transformation are a common tool applied to images. Based on these facts, a joint research program between IFSTTAR and Cerema has been developed to study the benefit of infrared images obtained in a fog tunnel during its natural dissipation. Pattern recognition algorithms have been applied, specifically on road signs which shape is usually associated to a specific meaning (circular for a speed limit, triangle for an alert, …). It has been shown that road signs were detected early enough in images, with respect to images in the visible spectrum, to trigger useful alerts for Advanced Driver Assistance Systems.

  17. The visible, near-infrared and short wave infrared channels of the EarthCARE multi-spectral imager

    NASA Astrophysics Data System (ADS)

    Doornink, J.; de Goeij, B.; Marinescu, O.; Meijer, E.; Vink, R.; van Werkhoven, W.; van't Hof, A.

    2017-11-01

    The EarthCARE satellite mission objective is the observation of clouds and aerosols from low Earth orbit. The payload will include active remote sensing instruments being the W-band Cloud Profiling Radar (CPR) and the ATLID LIDAR. These are supported by the passive instruments Broadband Radiometer (BBR) and the Multispectral Imager (MSI) providing the radiometric and spatial context of the ground scene being probed. The MSI will form Earth images over a swath width of 150 km; it will image the Earth atmosphere in 7 spectral bands. The MSI instrument consists of two parts: the Visible, Near infrared and Short wave infrared (VNS) unit, and the Thermal InfraRed (TIR) unit. Subject of this paper is the VNS unit. In the VNS optical unit, the ground scene is imaged in four spectral bands onto four linear detectors via separate optical channels. Driving requirements for the VNS instrument performance are the spectral sensitivity including out-of-band rejection, the MTF, co-registration and the inter-channel radiometric accuracy. The radiometric accuracy performance of the VNS is supported by in-orbit calibration, in which direct solar radiation is fed into the instrument via a set of quasi volume diffusers. The compact optical concept with challenging stability requirements together with the strict thermal constraints have led to a sophisticated opto-mechanical design. This paper, being the second of a sequence of two on the Multispectral Imager describes the VNS instrument concept chosen to fulfil the performance requirements within the resource and accommodation constraints.

  18. Cloud Optical Depth Measured with Ground-Based, Uncooled Infrared Imagers

    NASA Technical Reports Server (NTRS)

    Shaw, Joseph A.; Nugent, Paul W.; Pust, Nathan J.; Redman, Brian J.; Piazzolla, Sabino

    2012-01-01

    Recent advances in uncooled, low-cost, long-wave infrared imagers provide excellent opportunities for remotely deployed ground-based remote sensing systems. However, the use of these imagers in demanding atmospheric sensing applications requires that careful attention be paid to characterizing and calibrating the system. We have developed and are using several versions of the ground-based "Infrared Cloud Imager (ICI)" instrument to measure spatial and temporal statistics of clouds and cloud optical depth or attenuation for both climate research and Earth-space optical communications path characterization. In this paper we summarize the ICI instruments and calibration methodology, then show ICI-derived cloud optical depths that are validated using a dual-polarization cloud lidar system for thin clouds (optical depth of approximately 4 or less).

  19. Design of a Remote Infrared Images and Other Data Acquisition Station for outdoor applications

    NASA Astrophysics Data System (ADS)

    Béland, M.-A.; Djupkep, F. B. D.; Bendada, A.; Maldague, X.; Ferrarini, G.; Bison, P.; Grinzato, E.

    2013-05-01

    The Infrared Images and Other Data Acquisition Station enables a user, who is located inside a laboratory, to acquire visible and infrared images and distances in an outdoor environment with the help of an Internet connection. This station can acquire data using an infrared camera, a visible camera, and a rangefinder. The system can be used through a web page or through Python functions.

  20. First THEMIS Infrared and Visible Images of Mars

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This picture shows both a visible and a thermal infrared image taken by the thermal emission imaging system on NASA's 2001 Mars Odyssey spacecraft on November 2, 2001. The images were taken as part of the ongoing calibration and testing of the camera system as the spacecraft orbited Mars on its 13threvolution of the planet.

    The visible wavelength image, shown on the right in black and white, was obtained using one of the instrument's five visible filters. The spacecraft was approximately 22,000 kilometers (about 13,600 miles) above Mars looking down toward the south pole when this image was acquired. It is late spring in the martian southern hemisphere.

    The thermal infrared image, center, shows the temperature of the surface in color. The circular feature seen in blue is the extremely cold martian south polar carbon dioxide ice cap. The instrument has measured a temperature of minus 120 degrees Celsius (minus 184 degrees Fahrenheit) on the south polar ice cap. The polar cap is more than 900 kilometers (540 miles) in diameter at this time.

    The visible image shows additional details along the edge of the ice cap, as well as atmospheric hazes near the cap. The view of the surface appears hazy due to dust that still remains in the martian atmosphere from the massive martian dust storms that have occurred over the past several months.

    The infrared image covers a length of over 6,500 kilometers (3,900 miles)spanning the planet from limb to limb, with a resolution of approximately 5.5 kilometers per picture element, or pixel, (3.4 miles per pixel) at the point directly beneath the spacecraft. The visible image has a resolution of approximately 1 kilometer per pixel (.6 miles per pixel) and covers an area roughly the size of the states of Arizona and New Mexico combined.

    An annotated image is available at the same resolution in tiff format. Click the image to download (note: it is a 5.2 mB file) [figure removed for brevity, see original site]

    NASA's Jet

  1. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  2. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  4. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  5. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  6. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  7. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  8. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  10. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  11. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  12. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  13. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  14. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  15. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  16. Device model for pixelless infrared image up-converters based on polycrystalline graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Shur, M. S.; Ryzhii, M.; Karasik, V. E.; Otsuji, T.

    2018-01-01

    We developed a device model for pixelless converters of far/mid-infrared radiation (FIR/MIR) images into near-infrared/visible (NIR/VIR) images. These converters use polycrystalline graphene layers (PGLs) immersed in the van der Waals materials integrated with a light emitting diode (LED). The PGL serves as an element of the PGL infrared photodetector (PGLIP) sensitive to the incoming FIR/MIR due to the interband absorption. The spatially non-uniform photocurrent generated in the PGLIP repeats (mimics) the non-uniform distribution (image) created by the incident FIR/MIR. The injection of the nonuniform photocurrent into the LED active layer results in the nonuniform NIR/VIR image reproducing the FIR/MIR image. The PGL and the entire layer structure are not deliberately partitioned into pixels. We analyze the characteristics of such pixelless PGLIP-LED up-converters and show that their image contrast transfer function and the up-conversion efficiency depend on the PGL lateral resistivity. The up-converter exhibits high photoconductive gain and conversion efficiency when the lateral resistivity is sufficiently high. Several teams have successfully demonstrated the large area PGLs with the resistivities varying in a wide range. Such layers can be used in the pixelless PGLIP-LED image up-converters. The PGLIP-LED image up-converters can substantially surpass the image up-converters based on the quantum-well infrared photodetector integrated with the LED. These advantages are due to the use of the interband FIR/NIR absorption and a high photoconductive gain in the GLIPs.

  17. Infrared and visible image fusion based on robust principal component analysis and compressed sensing

    NASA Astrophysics Data System (ADS)

    Li, Jun; Song, Minghui; Peng, Yuanxi

    2018-03-01

    Current infrared and visible image fusion methods do not achieve adequate information extraction, i.e., they cannot extract the target information from infrared images while retaining the background information from visible images. Moreover, most of them have high complexity and are time-consuming. This paper proposes an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis (RPCA) and compressed sensing (CS). The novel framework consists of three phases. First, RPCA decomposition is applied to the infrared and visible images to obtain their sparse and low-rank components, which represent the salient features and background information of the images, respectively. Second, the sparse and low-rank coefficients are fused by different strategies. On the one hand, the measurements of the sparse coefficients are obtained by the random Gaussian matrix, and they are then fused by the standard deviation (SD) based fusion rule. Next, the fused sparse component is obtained by reconstructing the result of the fused measurement using the fast continuous linearized augmented Lagrangian algorithm (FCLALM). On the other hand, the low-rank coefficients are fused using the max-absolute rule. Subsequently, the fused image is superposed by the fused sparse and low-rank components. For comparison, several popular fusion algorithms are tested experimentally. By comparing the fused results subjectively and objectively, we find that the proposed framework can extract the infrared targets while retaining the background information in the visible images. Thus, it exhibits state-of-the-art performance in terms of both fusion effects and timeliness.

  18. Chemistry of wood in 3D: new infrared imaging

    Treesearch

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Casey Crooks; Marli Oliveira; Carol Hirschmugl

    2015-01-01

    Chemical detection, mapping and imaging in three dimensions will help refine our understanding of wood properties and durability. We describe here a pioneering infrared method to create visual 3D images of the chemicals in wood, providing for the first time, spatial and architectural information at the cellular level without liquid extraction or prior fixation....

  19. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Treesearch

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  20. Near-surface Thermal Infrared Imaging of a Mixed Forest

    NASA Astrophysics Data System (ADS)

    Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.

    2014-12-01

    Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will

  1. Shuttle Entry Imaging Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne

  2. Fusion of infrared and visible images based on saliency scale-space in frequency domain

    NASA Astrophysics Data System (ADS)

    Chen, Yanfei; Sang, Nong; Dan, Zhiping

    2015-12-01

    A fusion algorithm of infrared and visible images based on saliency scale-space in the frequency domain was proposed. Focus of human attention is directed towards the salient targets which interpret the most important information in the image. For the given registered infrared and visible images, firstly, visual features are extracted to obtain the input hypercomplex matrix. Secondly, the Hypercomplex Fourier Transform (HFT) is used to obtain the salient regions of the infrared and visible images respectively, the convolution of the input hypercomplex matrix amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale which is equivalent to an image saliency detector are done. The saliency maps are obtained by reconstructing the 2D signal using the original phase and the amplitude spectrum, filtered at a scale selected by minimizing saliency map entropy. Thirdly, the salient regions are fused with the adoptive weighting fusion rules, and the nonsalient regions are fused with the rule based on region energy (RE) and region sharpness (RS), then the fused image is obtained. Experimental results show that the presented algorithm can hold high spectrum information of the visual image, and effectively get the thermal targets information at different scales of the infrared image.

  3. Performance evaluation of infrared imaging system in field test

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Guo, Xiaodong; Ren, Tingting; Zhang, Zhi-jie

    2014-11-01

    Infrared imaging system has been applied widely in both military and civilian fields. Since the infrared imager has various types and different parameters, for system manufacturers and customers, there is great demand for evaluating the performance of IR imaging systems with a standard tool or platform. Since the first generation IR imager was developed, the standard method to assess the performance has been the MRTD or related improved methods which are not perfect adaptable for current linear scanning imager or 2D staring imager based on FPA detector. For this problem, this paper describes an evaluation method based on the triangular orientation discrimination metric which is considered as the effective and emerging method to evaluate the synthesis performance of EO system. To realize the evaluation in field test, an experiment instrument is developed. And considering the importance of operational environment, the field test is carried in practical atmospheric environment. The test imagers include panoramic imaging system and staring imaging systems with different optics and detectors parameters (both cooled and uncooled). After showing the instrument and experiment setup, the experiment results are shown. The target range performance is analyzed and discussed. In data analysis part, the article gives the range prediction values obtained from TOD method, MRTD method and practical experiment, and shows the analysis and results discussion. The experimental results prove the effectiveness of this evaluation tool, and it can be taken as a platform to give the uniform performance prediction reference.

  4. High-speed spectral infrared imaging of spark ignition engine combustion. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComiskey, T.; Jiang, H.; Qian, Y.

    1993-03-05

    In-cylinder flame propagation and its impact on thermal characteristics of the combustion chamber were studied by using a new high-speed spectral infrared imaging system. In this work, successive spectral IR images of combustion chamber events were captured while varying several parameters, including fuel/air, spark timing, speed, and warming-up period. Some investigation of cyclic variation, knock, and high-temperature components during the non-combustion period was also conducted. It was found that the spectral images obtained in both short and long wavelength bands exhibited unique pieces of in-cylinder information, i.e., (qualitative) distributions of temperature and combustion products, respectively. During the combustion period, themore » temperature of early-formed combustion products continued to increase while the flame front temperature, e.g. near the end gas zone, remained relatively low. The exhaust valve emitted strong radiation starting from the early stage of the combustion period. The spark plug emitted the strongest radiation during the non-combustion period. Considerable cyclic variation in growth of the flame front and completion of the reaction was observable. The radiation from both spectral bands became stronger as the engine warm-up period in While operating the engine with the addition of n-heptane in the intake to produce knock, we captured spectral IR images of the end gas right before it was abruptly consumed. The combustion products that were formed in the end-gas volume upon knock, showed no evidence of higher temperature than other zones in the combustion chamber.... Spectral infrared imaging, High-speed, Digital data, Instantaneous distribution, Spark ignition combustion.« less

  5. Spacecraft design project: High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  6. Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Gao, Changsheng; Jing, Wuxing

    2018-03-01

    Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.

  7. MOEMS Fabry-Pérot interferometer with point-anchored Si-air mirrors for middle infrared

    NASA Astrophysics Data System (ADS)

    Tuohiniemi, Mikko; Näsilä, Antti; Akujärvi, Altti; Blomberg, Martti

    2014-09-01

    We studied how a micromachined Fabry-Pérot interferometer, realized with wide point-anchored Si/air-gap reflectors, performs at the middle-infrared. A computational analysis of the anchor mechanical behavior is also presented. Compared with solid-film reflectors, this technology features better index contrast, which enables a wider stop band and potentially higher resolution. In this work, we investigate whether the performance is improved according to the index-contrast benefit, or whether the mechanical differences play a role. For comparison, we manufactured and characterized another design that applies solid-film reflectors of Si/SiO2 structure. This data is exploited as a reference for a middle-infrared interferometer and as a template for mapping the performance from the simulation results to the measured data. The novel Si/air-gap device was realized as a non-tunable proof-of-concept version. The measured data is mapped into an estimate of the achievable performance of a tunable version. We present the measured transmission and resolution data and compare the simulation models that reproduce the data. The prediction for the tunable middle-infrared Si/air-gap device is then presented. The results indicate that the interferometer’s resolution is expected to have improved twofold and have a much wider stop band compared with the prior art.

  8. Quantitative image fusion in infrared radiometry

    NASA Astrophysics Data System (ADS)

    Romm, Iliya; Cukurel, Beni

    2018-05-01

    Towards high-accuracy infrared radiance estimates, measurement practices and processing techniques aimed to achieve quantitative image fusion using a set of multi-exposure images of a static scene are reviewed. The conventional non-uniformity correction technique is extended, as the original is incompatible with quantitative fusion. Recognizing the inherent limitations of even the extended non-uniformity correction, an alternative measurement methodology, which relies on estimates of the detector bias using self-calibration, is developed. Combining data from multi-exposure images, two novel image fusion techniques that ultimately provide high tonal fidelity of a photoquantity are considered: ‘subtract-then-fuse’, which conducts image subtraction in the camera output domain and partially negates the bias frame contribution common to both the dark and scene frames; and ‘fuse-then-subtract’, which reconstructs the bias frame explicitly and conducts image fusion independently for the dark and the scene frames, followed by subtraction in the photoquantity domain. The performances of the different techniques are evaluated for various synthetic and experimental data, identifying the factors contributing to potential degradation of the image quality. The findings reflect the superiority of the ‘fuse-then-subtract’ approach, conducting image fusion via per-pixel nonlinear weighted least squares optimization.

  9. Standoff midwave infrared hyperspectral imaging of ship plumes

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Gagnon, Jean-Philippe; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Chamberland, Martin; Marcotte, Frédérick

    2016-05-01

    Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.

  10. Standoff midwave infrared hyperspectral imaging of ship plumes

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Gagnon, Jean-Philippe; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Chamberland, Martin

    2016-10-01

    Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.

  11. Fluorescence lifetime imaging of calcium flux in neurons in response to pulsed infrared light

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Sedelnikova, Anna; Tolstykh, Gleb P.; Ibey, Bennett L.; Beier, Hope T.

    2017-02-01

    Pulsed infrared light can excite action potentials in neurons; yet, the fundamental mechanism underlying this phenomenon is unknown. Previous work has observed a rise in intracellular calcium concentration following infrared exposure, but the source of the calcium and mechanism of release is unknown. Here, we used fluorescence lifetime imaging of Oregon Green BAPTA-1 to study intracellular calcium dynamics in primary rat hippocampal neurons in response to infrared light exposure. The fluorescence lifetime of Oregon Green BAPTA-1 is longer when bound to calcium, and allows robust measurement of intracellular free calcium concentrations. First, a fluorescence lifetime calcium calibration curve for Oregon Green BAPTA-1 was determined in solutions. The normalized amplitude of the short and long lifetimes was calibrated to calcium concentration. Then, neurons were incubated in Oregon Green BAPTA-1 and exposed to pulses of infrared light (0-1 J/cm2; 0-5 ms; 1869 nm). Fluorescence lifetime images were acquired prior to, during, and after the infrared exposure. Fluorescence lifetime images, 64x64 pixels, were acquired at 12 or 24 ms for frame rates of 83 and 42 Hz, respectively. Accurate α1 approximations were achieved in images with low photon counts by computing an α1 index value from the relative probability of the observed decay events. Results show infrared light exposure increases intracellular calcium in neurons. Altogether, this study demonstrates accurate fluorescence lifetime component analysis from low-photon count data for improved imaging speed.

  12. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.

    1995-01-01

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  13. Infrared imaging enhances retinal crystals in Bietti’s crystalline dystrophy

    PubMed Central

    Brar, Vikram S; Benson, William H

    2015-01-01

    Infrared imaging dramatically increased the number of crystalline deposits visualized compared with clinical examination, standard color fundus photography, and red free imaging in patients with Bietti’s crystalline dystrophy. We believe that this imaging modality significantly improves the sensitivity with which these lesions are detected, facilitating earlier diagnosis and may potentially serve as a prognostic indicator when examined over time. PMID:25931805

  14. On the Integration of Medium Wave Infrared Cameras for Vision-Based Navigation

    DTIC Science & Technology

    2015-03-01

    SWIR Short Wave Infrared VisualSFM Visual Structure from Motion WPAFB Wright Patterson Air Force Base xi ON THE INTEGRATION OF MEDIUM WAVE INFRARED...Structure from Motion Visual Structure from Motion ( VisualSFM ) is an application that performs incremental SfM using images fed into it of a scene [20...too drastically in between frames. When this happens, VisualSFM will begin creating a new model with images that do not fit to the old one. These new

  15. Near-infrared imaging of demineralization under sealants

    NASA Astrophysics Data System (ADS)

    Tom, Henry; Simon, Jacob C.; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2014-07-01

    Previous studies have shown that near-infrared (NIR) reflectance and transillumination imaging can be used to acquire high contrast images of early caries lesions and composite restorative materials. The aim of the study was to determine the optimum NIR wavelengths for imaging demineralized areas under dental sealants. Fifteen natural human premolars and molars with occlusal lesions were used in this in vitro study. Images before and after application of sealants were acquired using NIR reflectance and NIR transillumination at wavelengths of 1300, 1460, and 1500 to 1700 nm. Images were also acquired using polarization sensitive optical coherence tomography (OCT) for comparison. The highest contrast for NIR reflectance was at 1460 nm and 1500 to 1700 nm. These NIR wavelengths are coincident with higher water absorption. The clear Delton sealant investigated was not visible in either copolarization or cross-polarization OCT images. The wavelength region between 1500 and 1700 nm yielded the highest contrast of lesions under sealants for NIR reflectance measurements.

  16. Near-infrared imaging of demineralization under sealants.

    PubMed

    Tom, Henry; Simon, Jacob C; Chan, Kenneth H; Darling, Cynthia L; Fried, Daniel

    2014-01-01

    Previous studies have shown that near-infrared (NIR) reflectance and transillumination imaging can be used to acquire high contrast images of early caries lesions and composite restorative materials. The aim of the study was to determine the optimum NIR wavelengths for imaging demineralized areas under dental sealants. Fifteen natural human premolars and molars with occlusal lesions were used in this in vitro study. Images before and after application of sealants were acquired using NIR reflectance and NIR transillumination at wavelengths of 1300, 1460, and 1500 to 1700 nm. Images were also acquired using polarization sensitive optical coherence tomography (OCT) for comparison. The highest contrast for NIR reflectance was at 1460 nm and 1500 to 1700 nm. These NIR wavelengths are coincident with higher water absorption. The clear Delton sealant investigated was not visible in either copolarization or cross-polarization OCT images. The wavelength region between 1500 and 1700 nm yielded the highest contrast of lesions under sealants for NIR reflectance measurements.

  17. Real time imaging and infrared background scene analysis using the Naval Postgraduate School infrared search and target designation (NPS-IRSTD) system

    NASA Astrophysics Data System (ADS)

    Bernier, Jean D.

    1991-09-01

    The imaging in real time of infrared background scenes with the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) System was achieved through extensive software developments in protected mode assembly language on an Intel 80386 33 MHz computer. The new software processes the 512 by 480 pixel images directly in the extended memory area of the computer where the DT-2861 frame grabber memory buffers are mapped. Direct interfacing, through a JDR-PR10 prototype card, between the frame grabber and the host computer AT bus enables each load of the frame grabber memory buffers to be effected under software control. The protected mode assembly language program can refresh the display of a six degree pseudo-color sector in the scanner rotation within the two second period of the scanner. A study of the imaging properties of the NPS-IRSTD is presented with preliminary work on image analysis and contrast enhancement of infrared background scenes.

  18. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  19. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.

    PubMed

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A S; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H; Choyke, Peter L; Urano, Yasuteru

    2007-11-01

    Current contrast agents generally have one function and can only be imaged in monochrome; therefore, the majority of imaging methods can only impart uniparametric information. A single nanoparticle has the potential to be loaded with multiple payloads. Such multimodality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multicolor in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near-infrared emission. To this end, we synthesized nanoprobes with multimodal and multicolor potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and five-color near-infrared optical lymphatic imaging using a multiple-excitation spectrally resolved fluorescence imaging technique.

  20. Representation of thermal infrared imaging data in the DICOM using XML configuration files.

    PubMed

    Ruminski, Jacek

    2007-01-01

    The DICOM standard has become a widely accepted and implemented format for the exchange and storage of medical imaging data. Different imaging modalities are supported however there is not a dedicated solution for thermal infrared imaging in medicine. In this article we propose new ideas and improvements to final proposal of the new DICOM Thermal Infrared Imaging structures and services. Additionally, we designed, implemented and tested software packages for universal conversion of existing thermal imaging files to the DICOM format using XML configuration files. The proposed solution works fast and requires minimal number of user interactions. The XML configuration file enables to compose a set of attributes for any source file format of thermal imaging camera.

  1. Infrared imaging of subcutaneous veins.

    PubMed

    Zharov, Vladimir P; Ferguson, Scott; Eidt, John F; Howard, Paul C; Fink, Louis M; Waner, Milton

    2004-01-01

    Imaging of subcutaneous veins is important in many applications, such as gaining venous access and vascular surgery. Despite a long history of medical infrared (IR) photography and imaging, this technique is not widely used for this purpose. Here we revisited and explored the capability of near-IR imaging to visualize subcutaneous structures, with a focus on diagnostics of superficial veins. An IR device comprising a head-mounted IR LED array (880 nm), a small conventional CCD camera (Toshiba Ik-mui, Tokyo, Japan), virtual-reality optics, polarizers, filters, and diffusers was used in vivo to obtain images of different subcutaneous structures. The same device was used to estimate the IR image quality as a function of wavelength produced by a tunable xenon lamp-based monochrometer in the range of 500-1,000 nm and continuous-wave Nd:YAG (1.06 microm) and diode (805 nm) lasers. The various modes of optical illumination were compared in vivo. Contrast of the IR images in the reflectance mode was measured in the near-IR spectral range of 650-1,060 nm. Using the LED array, various IR images were obtained in vivo, including images of vein structure in a pigmented, fatty forearm, varicose leg veins, and vascular lesions of the tongue. Imaging in the near-IR range (880-930 nm) provides relatively good contrast of subcutaneous veins, underscoring its value for diagnosis. This technique has the potential for the diagnosis of varicose veins with a diameter of 0.5-2 mm at a depth of 1-3 mm, guidance of venous access, podiatry, phlebotomy, injection sclerotherapy, and control of laser interstitial therapy. Copyright 2004 Wiley-Liss, Inc.

  2. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    PubMed

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. ASTER First Views of Red Sea, Ethiopia - Thermal-Infrared TIR Image monochrome

    NASA Image and Video Library

    2000-03-11

    ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history. The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02452

  4. Hyperspectral imaging using near infrared spectroscopy to monitor coat thickness uniformity in the manufacture of a transdermal drug delivery system.

    PubMed

    Pavurala, Naresh; Xu, Xiaoming; Krishnaiah, Yellela S R

    2017-05-15

    Hyperspectral imaging using near infrared spectroscopy (NIRS) integrates spectroscopy and conventional imaging to obtain both spectral and spatial information of materials. The non-invasive and rapid nature of hyperspectral imaging using NIRS makes it a valuable process analytical technology (PAT) tool for in-process monitoring and control of the manufacturing process for transdermal drug delivery systems (TDS). The focus of this investigation was to develop and validate the use of Near Infra-red (NIR) hyperspectral imaging to monitor coat thickness uniformity, a critical quality attribute (CQA) for TDS. Chemometric analysis was used to process the hyperspectral image and a partial least square (PLS) model was developed to predict the coat thickness of the TDS. The goodness of model fit and prediction were 0.9933 and 0.9933, respectively, indicating an excellent fit to the training data and also good predictability. The % Prediction Error (%PE) for internal and external validation samples was less than 5% confirming the accuracy of the PLS model developed in the present study. The feasibility of the hyperspectral imaging as a real-time process analytical tool for continuous processing was also investigated. When the PLS model was applied to detect deliberate variation in coating thickness, it was able to predict both the small and large variations as well as identify coating defects such as non-uniform regions and presence of air bubbles. Published by Elsevier B.V.

  5. Utilizing the precessing orbit of TRMM to produce hourly corrections of geostationary infrared imager data with the VIRS sensor

    NASA Astrophysics Data System (ADS)

    Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra

    2017-08-01

    Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infraredchannel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration

  6. Astronomical imaging Fourier spectroscopy at far-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Brad G.; van der Wiel, Matthijs H. D.; Makiwa, Gibion

    2013-11-01

    The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach–Zehnder (MZ) interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the MZ design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel–SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.

  7. High-Definition Infrared Spectroscopic Imaging

    PubMed Central

    Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew V.; Carney, P. Scott; Bhargava, Rohit

    2013-01-01

    The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments. PMID:23317676

  8. High-definition infrared spectroscopic imaging.

    PubMed

    Reddy, Rohith K; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit

    2013-01-01

    The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments.

  9. Air, telescope, and instrument temperature effects on the Gemini Planet Imager’s image quality

    NASA Astrophysics Data System (ADS)

    Tallis, Melisa; Bailey, Vanessa P.; Macintosh, Bruce; Hayward, Thomas L.; Chilcote, Jeffrey K.; Ruffio, Jean-Baptiste; Poyneer, Lisa A.; Savransky, Dmitry; Wang, Jason J.; GPIES Team

    2018-01-01

    We present results from an analysis of air, telescope, and instrument temperature effects on the Gemini Planet Imager’s (GPI) image quality. GPI is a near-infrared, adaptive optics-fed, high-contrast imaging instrument at the Gemini South telescope, designed to directly image and characterize exoplanets and circumstellar disks. One key metric for instrument performance is “contrast,” which quantifies the sensitivity of an image in terms of the flux ratio of the noise floor vs. the primary star. Very high contrast signifies that GPI could succeed at imaging a dim, close companion around the primary star. We examine relationships between multiple temperature sensors placed on the instrument and telescope vs. image contrast. These results show that there is a strong correlation between image contrast and the presence of temperature differentials between the instrument and the temperature outside the dome. We discuss potential causes such as strong induced dome seeing or optical misalignment due to thermal gradients. We then assess the impact of the current temperature control and ventilation strategy and discuss potential modifications.

  10. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  11. Simulation of the fixed optical path difference of near infrared wind imaging interferometer

    NASA Astrophysics Data System (ADS)

    Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen

    2017-02-01

    As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.

  12. Simulation of target interpretation based on infrared image features and psychology principle

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Chen, Yu-hua; Gao, Hong-sheng; Wang, Zhan-feng; Wang, Ji-jun; Su, Rong-hua; Huang, Yan-ping

    2009-07-01

    It's an important and complicated process in target interpretation that target features extraction and identification, which effect psychosensorial quantity of interpretation person to target infrared image directly, and decide target viability finally. Using statistical decision theory and psychology principle, designing four psychophysical experiment, the interpretation model of the infrared target is established. The model can get target detection probability by calculating four features similarity degree between target region and background region, which were plotted out on the infrared image. With the verification of a great deal target interpretation in practice, the model can simulate target interpretation and detection process effectively, get the result of target interpretation impersonality, which can provide technique support for target extraction, identification and decision-making.

  13. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

    1995-08-22

    A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

  14. Uncooled long-wave infrared hyperspectral imaging

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G. (Inventor)

    2006-01-01

    A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.

  15. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  16. Global and Regional Seasonal Variability of Mid-Tropospheric CO2 as Measured by the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.

  17. Infrared thermal imaging for automated detection of diabetic foot complications.

    PubMed

    van Netten, Jaap J; van Baal, Jeff G; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A

    2013-09-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. © 2013 Diabetes Technology Society.

  18. Infrared Thermal Imaging for Automated Detection of Diabetic Foot Complications

    PubMed Central

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2013-01-01

    Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). Results No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. Conclusions With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. PMID:24124937

  19. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution

    PubMed Central

    Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N.; Eakins, Gregory; Cheng, Ji-Xin

    2016-01-01

    Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption–induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans. The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy. PMID:27704043

  20. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution.

    PubMed

    Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N; Eakins, Gregory; Cheng, Ji-Xin

    2016-09-01

    Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption-induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans . The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy.

  1. Intraoperative near-infrared autofluorescence imaging of parathyroid glands.

    PubMed

    Ladurner, Roland; Sommerey, Sandra; Arabi, Nora Al; Hallfeldt, Klaus K J; Stepp, Herbert; Gallwas, Julia K S

    2017-08-01

    To identify parathyroid glands intraoperatively by exposing their autofluorescence using near-infrared light. Fluorescence imaging was carried out during minimally invasive and open parathyroid and thyroid surgery. After identification, the parathyroid glands as well as the surrounding tissue were exposed to near-infrared (NIR) light with a wavelength of 690-770 nm using a modified Karl Storz near-infrared/indocyanine green (NIR/ICG) endoscopic system. Parathyroid tissue was expected to show near-infrared autofluorescence, captured in the blue channel of the camera. Whenever possible the visual identification of parathyroid tissue was confirmed histologically. In preliminary investigations, using the original NIR/ICG endoscopic system we noticed considerable interference of light in the blue channel overlying the autofluorescence. Therefore, we modified the light source by interposing additional filters. In a second series, we investigated 35 parathyroid glands from 25 patients. Twenty-seven glands were identified correctly based on NIR autofluorescence. Regarding the extent of autofluorescence, there were no noticeable differences between parathyroid adenomas, hyperplasia and normal parathyroid glands. In contrast, thyroid tissue, lymph nodes and adipose tissue revealed no substantial autofluorescence. Parathyroid tissue is characterized by showing autofluorescence in the near-infrared spectrum. This effect can be used to distinguish parathyroid glands from other cervical tissue entities.

  2. Recent changes in solar irradiance and infrared irradiance related with air temperature and cloudiness at the King Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Kim, J.; Cho, H.; Lee, B.

    2006-12-01

    The polar region play a critical role in the surface energy balance and the climate system of the Earth. The important question in the region is that what is the role of the Antarctic atmospheric heat sink of global climate. Thus, this study shows the trends of global solar irradiance, infrared irradiance, air temperature and cloudiness measured at the King Sejong station, Antarctica, during the period of 1996-2004 and determines their relationship and variability of the surface energy balance. Annual average of solar radiation and cloudiness is 81.8 Wm-2 and 6.8 oktas and their trends show the decrease of -0.24 Wm-2yr-1(-0.30 %yr-1) and 0.02 oktas yr-1(0.30 %yr-1). The change of solar irradiance is directly related to change of cloudiness and decrease of solar irradiance presents radiative cooling at the surface. Monthly mean infrared irradiance, air temperature and specific humidity shows the decrease of -2.11 Wm^{- 2}yr-1(-0.75 %yr-1), -0.07 'Cyr-1(-5.15 %yr-1) and -0.044 gkg-1yr-1(-1.42 %yr-1), respectively. Annual average of the infrared irradiance is 279.9 Wm-2 and correlated with the air temperature, specific humidity and cloudiness. A multiple regression model for estimation of the infrared irradiance using the components has been developed. Effects of the components on the infrared irradiance changes show 52 %, 19 % and 10 % for air temperature, specific humidity and cloudiness, respectively. Among the components, air temperature has a great influence on infrared irradiance. Despite the increase of cloudiness, the decrease in the infrared irradiance is due to the decrease of air temperature and specific humidity which have a cooling effect. Therefore, the net radiation of the surface energy balance shows radiative cooling of negative 11-24 Wm^{- 2} during winter and radiative warming of positive 32-83 Wm-2 during the summer. Thus, the amount of shortage and surplus at the surface is mostly balanced by turbulent flux of sensible and latent heat.

  3. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  4. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  5. Detection of buried objects by fusing dual-band infrared images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-11-01

    We have conducted experiments to demonstrate the enhanced detectability of buried land mines using sensor fusion techniques. Multiple sensors, including visible imagery, infrared imagery, and ground penetrating radar (GPR), have been used to acquire data on a number of buried mines and mine surrogates. Because the visible wavelength and GPR data are currently incomplete. This paper focuses on the fusion of two-band infrared images. We use feature-level fusion and supervised learning with the probabilistic neural network (PNN) to evaluate detection performance. The novelty of the work lies in the application of advanced target recognition algorithms, the fusion of dual-band infraredmore » images and evaluation of the techniques using two real data sets.« less

  6. Infrared image background modeling based on improved Susan filtering

    NASA Astrophysics Data System (ADS)

    Yuehua, Xia

    2018-02-01

    When SUSAN filter is used to model the infrared image, the Gaussian filter lacks the ability of direction filtering. After filtering, the edge information of the image cannot be preserved well, so that there are a lot of edge singular points in the difference graph, increase the difficulties of target detection. To solve the above problems, the anisotropy algorithm is introduced in this paper, and the anisotropic Gauss filter is used instead of the Gauss filter in the SUSAN filter operator. Firstly, using anisotropic gradient operator to calculate a point of image's horizontal and vertical gradient, to determine the long axis direction of the filter; Secondly, use the local area of the point and the neighborhood smoothness to calculate the filter length and short axis variance; And then calculate the first-order norm of the difference between the local area of the point's gray-scale and mean, to determine the threshold of the SUSAN filter; Finally, the built SUSAN filter is used to convolution the image to obtain the background image, at the same time, the difference between the background image and the original image is obtained. The experimental results show that the background modeling effect of infrared image is evaluated by Mean Squared Error (MSE), Structural Similarity (SSIM) and local Signal-to-noise Ratio Gain (GSNR). Compared with the traditional filtering algorithm, the improved SUSAN filter has achieved better background modeling effect, which can effectively preserve the edge information in the image, and the dim small target is effectively enhanced in the difference graph, which greatly reduces the false alarm rate of the image.

  7. The application of infrared speckle interferometry to the imaging of remote galaxies and AGN

    NASA Technical Reports Server (NTRS)

    Olivares, Robert O.

    1995-01-01

    A 1.5 meter reflector, used for both infrared and optical astronomy, is also being used for infrared speckle interferometry and CCD imaging. The application of these imaging techniques to remote galaxies and active galactic nuclei are discussed. A simple model for the origin of speckle in coherent imaging systems is presented. Very careful photometry of the continuum of the galaxy M31 is underway using CCD images. It involves extremely intensive data reduction because the object itself is very large and has low surface brightness.

  8. Finding a Cold Needle in a Warm Haystack: Infrared Imaging Applied to Locating Cryocooled Crystals in Loops

    NASA Technical Reports Server (NTRS)

    Snell, E. H.; vanderWoerd, M. J.; Miller, M. D.; Deacon, A. M.

    2004-01-01

    We demonstrate the use of inbred imaging to locate crystals mounted in cryoloops and cryopreserved in a nitrogen gas stream at 100K. In the home laboratory crystals are clearly seen in the infrared images with light transmitting through the sample while irradiating the crystal from behind, and with illumination from a direction perpendicular to the direction of view. The crystals transmit and reflect infrared radiation differently from the surrounding mother liquor and loop. Because of differences in contrast between crystals and their surrounding mother liquor, it is possible to clearly identify the crystal position. In use at the synchrotron, with robotically mounted crystals the small depth of field of the lens required the recording of multiple images at different focal points. Image processing techniques were then used to produce a clear image of the crystal. The resulting infrared images and intensity profiles show that infrared imaging can be a powerful complement to visual imaging in locating crystals in cryocooled loops.

  9. Confocal Retinal Imaging Using a Digital Light Projector with a Near Infrared VCSEL Source

    PubMed Central

    Muller, Matthew S.; Elsner, Ann E.

    2018-01-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1″ LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging. PMID:29899586

  10. Confocal retinal imaging using a digital light projector with a near infrared VCSEL source

    NASA Astrophysics Data System (ADS)

    Muller, Matthew S.; Elsner, Ann E.

    2018-02-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1" LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging.

  11. Stand-off detection of trace explosives by infrared photothermal imaging

    NASA Astrophysics Data System (ADS)

    Papantonakis, Michael R.; Kendziora, Chris; Furstenberg, Robert; Stepnowski, Stanley V.; Rake, Matthew; Stepnowski, Jennifer; McGill, R. Andrew

    2009-05-01

    We have developed a technique for the stand-off detection of trace explosives using infrared photothermal imaging. In this approach, infrared quantum cascade lasers tuned to strong vibrational absorption bands of the explosive particles illuminate a surface of interest, preferentially heating the explosives material. An infrared focal plane array is used to image the surface and detect a small increase in the thermal intensity upon laser illumination. We have demonstrated the technique using TNT and RDX residues at several meters of stand-off distance under laboratory conditions, while operating the lasers below the eye-safe intensity limit. Sensitivity to explosives traces as small as a single grain (~100 ng) of TNT has been demonstrated using an uncooled bolometer array. We show the viability of this approach on a variety of surfaces which transmit, reflect or absorb the infrared laser light and have a range of thermal conductivities. By varying the incident wavelength slightly, we demonstrate selectivity between TNT and RDX. Using a sequence of lasers at different wavelengths, we increase both sensitivity and selectivity while reducing the false alarm rate. At higher energy levels we also show it is possible to generate vapor from solid materials with inherently low vapor pressures.

  12. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARMmore » Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.« less

  13. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications

    NASA Astrophysics Data System (ADS)

    Paramanandham, Nirmala; Rajendiran, Kishore

    2018-01-01

    A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.

  14. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis.

    PubMed

    Türker-Kaya, Sevgi; Huck, Christian W

    2017-01-20

    Plant cells, tissues and organs are composed of various biomolecules arranged as structurally diverse units, which represent heterogeneity at microscopic levels. Molecular knowledge about those constituents with their localization in such complexity is very crucial for both basic and applied plant sciences. In this context, infrared imaging techniques have advantages over conventional methods to investigate heterogeneous plant structures in providing quantitative and qualitative analyses with spatial distribution of the components. Thus, particularly, with the use of proper analytical approaches and sampling methods, these technologies offer significant information for the studies on plant classification, physiology, ecology, genetics, pathology and other related disciplines. This review aims to present a general perspective about near-infrared and mid-infrared imaging/microspectroscopy in plant research. It is addressed to compare potentialities of these methodologies with their advantages and limitations. With regard to the organization of the document, the first section will introduce the respective underlying principles followed by instrumentation, sampling techniques, sample preparations, measurement, and an overview of spectral pre-processing and multivariate analysis. The last section will review selected applications in the literature.

  15. Early caries imaging and monitoring with near-infrared light.

    PubMed

    Fried, Daniel; Featherstone, John D B; Darling, Cynthia L; Jones, Robert S; Ngaotheppitak, Patara; Bühler, Christopher M

    2005-10-01

    Enamel is highly transparent in the near infrared (NIR); therefore, this region of the electromagnetic spectrum is suited ideally for the development of new optical diagnostic tools for the detection and imaging of early dental caries. This article discusses the NIR optical properties of sound and demineralized dental enamel and the potential use of polarization sensitive optical coherence tomography and NIR transillumination for the imaging of dental caries.

  16. An update of commercial infrared sensing and imaging instruments

    NASA Technical Reports Server (NTRS)

    Kaplan, Herbert

    1989-01-01

    A classification of infrared sensing instruments by type and application, listing commercially available instruments, from single point thermal probes to on-line control sensors, to high speed, high resolution imaging systems is given. A review of performance specifications follows, along with a discussion of typical thermographic display approaches utilized by various imager manufacturers. An update report on new instruments, new display techniques and newly introduced features of existing instruments is given.

  17. A color fusion method of infrared and low-light-level images based on visual perception

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa

    2014-11-01

    The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.

  18. Infrared-thermography imaging system multiapplications for manufacturing

    NASA Astrophysics Data System (ADS)

    Stern, Sharon A.

    1990-03-01

    Imaging systems technology has been utilized traditionally for diagnosing structural envelope or insulation problems in the general thermographic comunity. Industrially, new applications for utilizing thermal imaging technology have been developed i n pred i cti ve/preventi ye mai ntenance and prod uct moni tori ng prociures at Eastman Kodak Company, the largest photographic manufacturering producer in the world. In the manufacturing processes used at Eastman Kodak Company, new applications for thermal imaging include: (1) Fluid transfer line insulation (2) Web coating drying uniformity (3) Web slitter knives (4) Heating/cooling coils (5) Overheated tail bearings, and (6) Electrical phase imbalance. The substantial cost benefits gained from these applications of infrared thermography substantiate the practicality of this approach and indicate the desirability of researching further appl i cati ons.

  19. Infrared Spectroscopic Imaging of Latent Fingerprints and Associated Forensic Evidence

    PubMed Central

    Chen, Tsoching; Schultz, Zachary D.; Levin, Ira W.

    2011-01-01

    Fingerprints reflecting a specific chemical history, such as exposure to explosives, are clearly distinguished from overlapping, and interfering latent fingerprints using infrared spectroscopic imaging techniques and multivariate analysis. PMID:19684917

  20. Development of the User Interface for AIR-Spec

    NASA Astrophysics Data System (ADS)

    Cervantes Alcala, E.; Guth, G.; Fedeler, S.; Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.

    2016-12-01

    The airborne infrared spectrometer (AIR-Spec) is an imaging spectrometer that will observe the solar corona during the 2017 total solar eclipse. This eclipse will provide a unique opportunity to observe infrared emission lines in the corona. Five spectral lines are of particular interest because they may eventually be used to measure the coronal magnetic field. To avoid infrared absorption from atmospheric water vapor, AIR-Spec will be placed on an NSF Gulfstream aircraft flying above 14.9 km. AIR-Spec must be capable of taking stable images while the plane moves. The instrument includes an image stabilization system, which uses fiber-optic gyroscopes to determine platform rotation, GPS to calculate the ephemeris of the sun, and a voltage-driven mirror to correct the line of sight. An operator monitors a white light image of the eclipse and manually corrects for residual drift. The image stabilization calculation is performed by a programmable automatic controller (PAC), which interfaces with the gyroscopes and mirror controller. The operator interfaces with a separate computer, which acquires images and computes the solar ephemeris. To ensure image stabilization is successful, a human machine interface (HMI) was developed to allow connection between the client and PAC. In order to make control of the instruments user friendly during the short eclipse observation, a graphical user interface (GUI) was also created. The GUI's functionality includes turning image stabilization on and off, allowing the user to input information about the geometric setup, calculating the solar ephemeris, refining estimates of the initial aircraft attitude, and storing data from the PAC on the operator's computer. It also displays time, location, attitude, ephemeris, gyro rates and mirror angles.

  1. Near-infrared fluorescent proteins for multicolor in vivo imaging

    PubMed Central

    Shcherbakova, Daria M.; Verkhusha, Vladislav V.

    2013-01-01

    Near-infrared fluorescent proteins are in high demand for in vivo imaging. We developed four spectrally distinct fluorescent proteins, iRFP670, iRFP682, iRFP702, and iRFP720, from bacterial phytochromes. iRFPs exhibit high brightness in mammalian cells and tissues and are suitable for long-term studies. iRFP670 and iRFP720 enable two-color imaging in living cells and mice using standard approaches. Five iRFPs including previously engineered iRFP713 allow multicolor imaging in living mice with spectral unmixing. PMID:23770755

  2. Direct Imaging of Shale Gas Leaks Using Passive Thermal Infrared Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Marcotte, F.; Chamberland, M.; Morton, V.; Gagnon, M. A.

    2017-12-01

    Natural gas is an energy resource in great demand worldwide. There are many types of gas fields including shale formations which are common especially in the St-Lawrence Valley (Qc). Regardless of its origin, methane (CH4) is the major component of natural gas. Methane gas is odorless, colorless and highly flammable. It is also an important greenhouse gas. Therefore, dealing efficiently with methane emanations and/or leaks is an important and challenging issue for both safety and environmental considerations. In this regard, passive remote sensing represents an interesting approach since it allows characterization of large areas from a safe location. The high propensity of methane contributing to global warming is mainly because it is a highly infrared-active molecule. For this reason, thermal infrared remote sensing represents one of the best approaches for methane investigations. In order to illustrate the potential of passive thermal infrared hyperspectral imaging for research on natural gas, imaging was carried out on a shale gas leak that unexpectedly happen during a geological survey near Hospital Enfant-Jésus (Québec City) in December 2014. Methane was selectively identified in the scene by its unique infrared signature. The estimated gas column density near the leak source was on the order of 65 000 ppm×m. It was estimated that the methane content in the shale gas is on the order of 6-7 %, which is in good agreement with previous geological surveys carried out in this area. Such leaks represent a very serious situation because such a methane concentration lies within the methane lower/upper explosion limits (LEL-UEL, 5-15 %). The results show how this novel technique could be used for research work dealing with methane gas.

  3. NASA AIRS Examines Hurricane Matthew Cloud Top Temperatures

    NASA Image and Video Library

    2016-10-07

    At 11:29 p.m. PDT on Oct. 6 (2:29 a.m. EDT on Oct. 7), NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite produced this false-color infrared image of Matthew as the storm moved up Florida's central coast. The image shows the temperature of Matthew's cloud tops or the surface of Earth in cloud-free regions, with the most intense thunderstorms shown in purples and blues. http://photojournal.jpl.nasa.gov/catalog/PIA21097

  4. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  5. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  6. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Astrophysics Data System (ADS)

    Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-11-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  7. Infrared imaging of cotton fibers using a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    Vibrational spectroscopy studies can be used to examine the quality and structure of cotton fibers. An emerging area of research relates to the imaging of cotton fibers. Herein, we report the use of a Fourier-transform infrared (FTIR) microscope to image developing cotton fibers. Studies were perfor...

  8. Infrared imaging of cotton fiber bundles using a focal plane array detector and a single reflectance accessory

    USDA-ARS?s Scientific Manuscript database

    Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report the use of an infrared instrument equippe...

  9. Imaging reconstruction for infrared interferometry: first images of YSOs environment

    NASA Astrophysics Data System (ADS)

    Renard, S.; Malbet, F.; Thiébaut, E.; Berger, J.-P.

    2008-07-01

    The study of protoplanetary disks, where the planets are believed to form, will certainly allow the formation of our Solar System to be understood. To conduct observations of these objects at the milli-arcsecond scale, infrared interferometry provides the right performances for T Tauri, FU Ori or Herbig Ae/Be stars. However, the only information obtained so far are scarce visibility measurements which are directly tested with models. With the outcome of recent interferometers, one can foresee obtaining images reconstructed independently of the models. In fact, several interferometers including IOTA and AMBER on the VLTI already provide the possibility to recombine three telescopes at once and thus to obtain the data necessary to reconstruct images. In this paper, we describe the use of MIRA, an image reconstruction algorithm developed for optical interferometry data (squared visibilities and closure phases) by E. Thiébaut. We foresee also to use the spectral information given by AMBER data to constrain even better the reconstructed images. We describe the use of MIRA to reconstruct images of young stellar objects out of actual data, in particular the multiple system GW Orionis (IOTA, 2004), and discuss the encountered difficulties.

  10. Comparison of time-series registration methods in breast dynamic infrared imaging

    NASA Astrophysics Data System (ADS)

    Riyahi-Alam, S.; Agostini, V.; Molinari, F.; Knaflitz, M.

    2015-03-01

    Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time-temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user-independent. We implemented and evaluated 3 different 3D time-series registration methods: 1. Linear affine, 2. Non-linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons' registration method outperforms also with the best breast alignment and non-negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons' registration as an effective technique for time-series dynamic infrared registration, to stabilize the local temperature oscillation.

  11. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  12. A novel false color mapping model-based fusion method of visual and infrared images

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Kun, Gao; Tian, Yue-xin; Zhu, Zhen-yu

    2013-12-01

    A fast and efficient image fusion method is presented to generate near-natural colors from panchromatic visual and thermal imaging sensors. Firstly, a set of daytime color reference images are analyzed and the false color mapping principle is proposed according to human's visual and emotional habits. That is, object colors should remain invariant after color mapping operations, differences between infrared and visual images should be enhanced and the background color should be consistent with the main scene content. Then a novel nonlinear color mapping model is given by introducing the geometric average value of the input visual and infrared image gray and the weighted average algorithm. To determine the control parameters in the mapping model, the boundary conditions are listed according to the mapping principle above. Fusion experiments show that the new fusion method can achieve the near-natural appearance of the fused image, and has the features of enhancing color contrasts and highlighting the infrared brilliant objects when comparing with the traditional TNO algorithm. Moreover, it owns the low complexity and is easy to realize real-time processing. So it is quite suitable for the nighttime imaging apparatus.

  13. Effectiveness of digital infrared thermal imaging in detecting lower extremity deep venous thrombosis.

    PubMed

    Deng, Fangge; Tang, Qing; Zeng, Guangqiao; Wu, Hua; Zhang, Nuofu; Zhong, Nanshan

    2015-05-01

    The authors aimed to determine the effectiveness of infrared thermal imaging (IRTI) as a novel, noninvasive technique in adjunctive diagnostic screening for lower limb deep venous thrombosis (DVT). The authors used an infrared thermal imaging sensor to examine the lower limbs of 64 DVT patients and 64 healthy volunteers. The DVT patients had been definitively diagnosed with either Doppler vascular compression ultrasonography or angiography. The mean area temperature (T_area) and mean linear temperature (T_line) in the region of interest were determined with infrared thermal imaging. Images were evaluated with qualitative pseudocolor analysis to verify specific color-temperature responses and with quantitative temperature analysis. Differences in T_area and T_line between the DVT limb and the nonaffected limb in each DVT patient and temperature differences (TDs) in T_area (TDarea) and T_line (TDline) between DVT patients and non-DVT volunteers were compared. Qualitative pseudocolor analysis revealed visible asymmetry between the DVT side and non-DVT side in the presentation and distribution characteristics (PDCs) of infrared thermal images. The DVT limbs had areas of abnormally high temperature, indicating the presence of DVT. Of the 64 confirmed DVT patients, 62 (96.88%) were positive by IRTI detection. Among these 62 IRTI-positive cases, 53 (82.81%) showed PDCs that agreed with the DVT regions detected by Doppler vascular compression ultrasonography or angiography. In nine patients (14.06%), IRTI PDCs did not definitively agree with the DVT regions established with other testing methods, but still correctly indicated the DVT-affected limb. There was a highly significant difference between DVT and non-DVT sides in DVT patients (P < 0.01). The TDarea and TDline in non-DVT volunteers ranged from 0.19 ± 0.15 °C to 0.21 °C ± 0.17 °C; those in DVT patients ranged from 0.86 °C ± 0.71 °C to 1.03 °C ± 0.79 °C (P < 0.01). Infrared thermal imaging

  14. Fast Infrared Chemical Imaging with a Quantum Cascade Laser

    PubMed Central

    2015-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm–1) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546

  15. Fast infrared chemical imaging with a quantum cascade laser.

    PubMed

    Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit

    2015-01-06

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues.

  16. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) is lifted to vertical on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) is lifted to vertical on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, a solid rocket booster (SRB) is lifted into the mobile service tower, joining two others. They are three of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, a solid rocket booster (SRB) is lifted into the mobile service tower, joining two others. They are three of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  18. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, help steady a solid rocket booster (SRB) being lifted into the mobile service tower. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, help steady a solid rocket booster (SRB) being lifted into the mobile service tower. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, another solid rocket booster (SRB) is being raised from its transporter to lift it to vertical. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, another solid rocket booster (SRB) is being raised from its transporter to lift it to vertical. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, help guide the upper canister toward the Space Infrared Telescope Facility (SIRTF) at left. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, help guide the upper canister toward the Space Infrared Telescope Facility (SIRTF) at left. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  1. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting it up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting it up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. Below the rocket is the flame trench, and in the foreground is the overflow pool. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. Below the rocket is the flame trench, and in the foreground is the overflow pool. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lift the upper canister to move it to the Space Infrared Telescope Facility (SIRTF) at right. After encapsulation, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lift the upper canister to move it to the Space Infrared Telescope Facility (SIRTF) at right. After encapsulation, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  4. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket (background) is framed by the solid rocket boosters (foreground) suspended in the mobile service tower. The SRBs will be added to those already attached to the rocket. The Delta II Heavy will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket (background) is framed by the solid rocket boosters (foreground) suspended in the mobile service tower. The SRBs will be added to those already attached to the rocket. The Delta II Heavy will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  5. KENNEDY SPACE CENTER, FLA. - Before dawn, the Space Infrared Telescope Facility (SIRTF) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be lifted into the mobile service tower and prepared for launch. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Before dawn, the Space Infrared Telescope Facility (SIRTF) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be lifted into the mobile service tower and prepared for launch. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  6. An optimization model for infrared image enhancement method based on p-q norm constrained by saliency value

    NASA Astrophysics Data System (ADS)

    Fan, Fan; Ma, Yong; Dai, Xiaobing; Mei, Xiaoguang

    2018-04-01

    Infrared image enhancement is an important and necessary task in the infrared imaging system. In this paper, by defining the contrast in terms of the area between adjacent non-zero histogram, a novel analytical model is proposed to enlarge the areas so that the contrast can be increased. In addition, the analytical model is regularized by a penalty term based on the saliency value to enhance the salient regions as well. Thus, both of the whole images and salient regions can be enhanced, and the rank consistency can be preserved. The comparisons on 8-bit images show that the proposed method can enhance the infrared images with more details.

  7. Processing Infrared Images For Fire Management Applications

    NASA Astrophysics Data System (ADS)

    Warren, John R.; Pratt, William K.

    1981-12-01

    The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.

  8. Objective assessment of biomagnetic devices and alternative clinical therapies using infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Rockley, Graham J.

    2001-03-01

    The overwhelming introduction of magnetic devices and other alternative therapies into the health care market prompts the need for objective evaluation of these techniques through the use of infrared thermal imaging. Many of these therapies are reported to promote the stimulation of blood flow or the relief of pain conditions. Infrared imaging is an efficient tool to assess such changes in the physiological state. Therefore, a thermal imager can help document and substantiate whether these therapies are in fact providing an effective change to the local circulation. Thermal images may also indicate whether the change is temporary or sustained. As a specific case example, preliminary findings will be presented concerning the use of magnets and the effect they have on peripheral circulation. This will include a discussion of the recommended protocols for this type of infrared testing. This test model can be applied to the evaluation of other devices and therapeutic procedures which are reputed to affect circulation such as electro acupuncture, orthopedic footwear and topical ointments designed to relieve pain or inflammation.

  9. Detecting defective electrical components in heterogeneous infra-red images by spatial control charts

    NASA Astrophysics Data System (ADS)

    Jamshidieini, Bahman; Fazaee, Reza

    2016-05-01

    Distribution network components connect machines and other loads to electrical sources. If resistance or current of any component is more than specified range, its temperature may exceed the operational limit which can cause major problems. Therefore, these defects should be found and eliminated according to their severity. Although infra-red cameras have been used for inspection of electrical components, maintenance prioritization of distribution cubicles is mostly based on personal perception and lack of training data prevents engineers from developing image processing methods. New research on the spatial control chart encouraged us to use statistical approaches instead of the pattern recognition for the image processing. In the present study, a new scanning pattern which can tolerate heavy autocorrelation among adjacent pixels within infra-red image was developed and for the first time combination of kernel smoothing, spatial control charts and local robust regression were used for finding defects within heterogeneous infra-red images of old distribution cubicles. This method does not need training data and this advantage is crucially important when the training data is not available.

  10. Thermographic imaging of the space shuttle during re-entry using a near-infrared sensor

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; Tack, Steve; Bush, Brett C.; Dantowitz, Ronald F.; Kozubal, Marek J.

    2012-06-01

    High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter's hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA's next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness.

  11. An infrared modular panoramic imaging objective

    NASA Astrophysics Data System (ADS)

    Palmer, Troy A.; Alexay, Christopher C.

    2004-08-01

    We describe the optical and mechanical design of an athermal infrared objective lens with an afocal anamorphic adapter. The lens presented consists of two modules: an athermal 25mm F/2.3 mid-wave IR objective lens and an optional panoramic adapter. The adapter utilizes anamorphic lenses to create unique image control. The result of which enables an independent horizontal wide field of view, while preserving the original narrow vertical field. We have designed, fabricated and tested two such lenses. A summary of the assembly and testing process is also presented.

  12. Martian Moon Phobos in Thermal Infrared Image

    NASA Image and Video Library

    2017-10-04

    Colors in this image of the Martian moon Phobos indicate a range of surface temperatures detected by observing the moon on Sept. 29, 2017, with the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter. The left edge of the small moon was in darkness, and the right edge in morning sunlight. Phobos has an oblong shape with average diameter of about 14 miles (22 kilometers). Temperature information was derived from thermal-infrared imaging such as the grayscale image shown smaller at lower left with the moon in the same orientation. The color-coding merges information from THEMIS observations made in four thermal-infrared wavelength bands, centered from 11.04 microns to 14.88 microns. The scale bar correlates color-coding to the temperature range on the Kelvin scale, from 130 K (minus 226 degrees Fahrenheit) for dark purple to 270 K (26 degrees F) for red. Researchers will analyze the surface-temperature information from this observation and possible future THEMIS observations to learn how quickly the surface warms after sunup or cools after sundown. That could provide information about surface materials, because larger rocks heat or cool more slowly than smaller particles do. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. Odyssey orbits Mars at an altitude of about 250 miles (400 kilometers), much closer to the planet than to Phobos, which orbits about 3,700 miles (6,000 kilometers) above the surface of Mars. The distance to Phobos from Odyssey during the observation was about 3,424 miles (5,511 kilometers). https://photojournal.jpl.nasa.gov/catalog/PIA21858

  13. Near-infrared imaging spectroscopy for counterfeit drug detection

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  14. Field Tests of a Gas-Filter Imaging Radiometer for Methane, CH4,: A Prototype for Geostationary Remote Infrared Pollution Sounder, GRIPS

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Fish, C. S.; Brent, L. C.; Burrows, J. P.; Fuentes, J. D.; Gordley, L. L.; Jacob, D. J.; Schoeberl, M. R.; Salawitch, R. J.; Ren, X.; Thompson, A. M.

    2013-12-01

    Gas filter radiometry is a powerful tool for measuring infrared active trace gases. Methane (CH4) is the second most important greenhouse gas and is more potent molecule for molecule than carbon dioxide (CO2). Unconventional natural gas recovery has the potential to show great environmental benefits relative to coal, but only if fugitive leakage is held below 3% and leak rates remain highly uncertain. We present design specifications and initial field/aircraft test results for an imaging remote sensing device to measure column content of methane. The instrument is compared to in situ altitude profiles measured with cavity ring-down. This device is an airborne prototype for the Geostationary Remote Infrared Pollution Sounder, GRIPS, a satellite instrument designed to monitor CH4, CO2, CO, N2O and AOD from geostationary orbit, with capabilities for great advances in air quality and climate research. GRIPS: The Geostationary Remote Infrared Pollution Sounder

  15. Thermal Physical Property-Based Fusion of Geostationary Meteorological Satellite Visible and Infrared Channel Images

    PubMed Central

    Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei

    2014-01-01

    Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017

  16. Thermal physical property-based fusion of geostationary meteorological satellite visible and infrared channel images.

    PubMed

    Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei

    2014-06-10

    Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties.

  17. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging.

    PubMed

    Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C

    2018-03-01

    Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

  18. Infrared Technology Trends and Implications to Home and Building Energy Use Efficiency

    NASA Astrophysics Data System (ADS)

    Woolaway, James T.

    2008-09-01

    It has long been realized that infrared technology would have applicability in improving the energy efficiency of homes and buildings. Walls that are missing or are poorly insulated can be quickly evaluated by looking at the thermal images of these surfaces. Similarly, air infiltration leaks under doors and around windows leave a telltale thermal signature easily seen in the infrared. The ability to view, evaluate and quickly respond to these images has immediate benefits in addressing and correcting situations where these types of losses are occurring. The principle issue that has been limiting the use of infrared technology in these applications has been the lack of availability and accessibility of infrared technology at a cost point suited to this market. The emergence of low cost microbolometer based infrared cameras, not needing sensor cooling, will greatly increase the accessibility and use of infrared technology for House Doctor inspections. The technology cost for this use is projected to be less than 1 per inspection.

  19. Images in the air

    NASA Astrophysics Data System (ADS)

    Riveros, H. G.; Rosenberger, Franz

    2012-05-01

    This article discusses two 'magic tricks' in terms of underlying optical principles. The first trick is new and produces a 'ghost' in the air, and the second is the classical real image produced with two parabolic mirrors.

  20. Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer.

    PubMed

    El-Mesery, Hany S; Mwithiga, Gikuru

    2015-05-01

    A conveyor-belt dryer was developed using a combined infrared and hot air heating system that can be used in the drying of fruits and vegetables. The drying system having two chambers was fitted with infrared radiation heaters and through-flow hot air was provided from a convective heating system. The system was designed to operate under either infrared radiation and cold air (IR-CA) settings of 2000 W/m(2) with forced ambient air at 30 °C and air flow of 0.6 m/s or combined infrared and hot air convection (IR-HA) dryer setting with infrared intensity set at 2000 W/m(2) and hot at 60 °C being blown through the dryer at a velocity of 0.6 m/s or hot air convection (HA) at an air temperature of 60 °C and air flow velocity 0.6 m/s but without infrared heating. Apple slices dried under the different dryer settings were evaluated for quality and energy requirements. It was found that drying of apple (Golden Delicious) slices took place in the falling rate drying period and no constant rate period of drying was observed under any of the test conditions. The IR-HA setting was 57.5 and 39.1 % faster than IR-CA and HA setting, respectively. Specific energy consumption was lower and thermal efficiency was higher for the IR-HA setting when compared to both IR-CA and HA settings. The rehydration ratio, shrinkage and colour properties of apples dried under IR-HA conditions were better than for either IR-CA or HA.

  1. Infrared Imaging Tools for Diagnostic Applications in Dermatology.

    PubMed

    Gurjarpadhye, Abhijit Achyut; Parekh, Mansi Bharat; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    Infrared (IR) imaging is a collection of non-invasive imaging techniques that utilize the IR domain of the electromagnetic spectrum for tissue assessment. A subset of these techniques construct images using back-reflected light, while other techniques rely on detection of IR radiation emitted by the tissue as a result of its temperature. Modern IR detectors sense thermal emissions and produce a heat map of surface temperature distribution in tissues. Thus, the IR spectrum offers a variety of imaging applications particularly useful in clinical diagnostic area, ranging from high-resolution, depth-resolved visualization of tissue to temperature variation assessment. These techniques have been helpful in the diagnosis of many medical conditions including skin/breast cancer, arthritis, allergy, burns, and others. In this review, we discuss current roles of IR-imaging techniques for diagnostic applications in dermatology with an emphasis on skin cancer, allergies, blisters, burns and wounds.

  2. Infrared Imaging of Carbon and Ceramic Composites: Data Reproducibility

    NASA Astrophysics Data System (ADS)

    Knight, B.; Howard, D. R.; Ringermacher, H. I.; Hudson, L. D.

    2010-02-01

    Infrared NDE techniques have proven to be superior for imaging of flaws in ceramic matrix composites (CMC) and carbon silicon carbide composites (C/SiC). Not only can one obtain accurate depth gauging of flaws such as delaminations and layered porosity in complex-shaped components such as airfoils and other aeronautical components, but also excellent reproducibility of image data is obtainable using the STTOF (Synthetic Thermal Time-of-Flight) methodology. The imaging of large complex shapes is fast and reliable. This methodology as applied to large C/SiC flight components at the NASA Dryden Flight Research Center will be described.

  3. Air-coupled acoustic thermography for in-situ evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)

    2010-01-01

    Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.

  4. InSb charge coupled infrared imaging device: The 20 element linear imager

    NASA Technical Reports Server (NTRS)

    Thom, R. D.; Koch, T. L.; Parrish, W. J.; Langan, J. D.; Chase, S. C.

    1980-01-01

    The design and fabrication of the 8585 InSb charge coupled infrared imaging device (CCIRID) chip are reported. The InSb material characteristics are described along with mask and process modifications. Test results for the 2- and 20-element CCIRID's are discussed, including gate oxide characteristics, charge transfer efficiency, optical mode of operation, and development of the surface potential diagram.

  5. Infrared thermography quantitative image processing

    NASA Astrophysics Data System (ADS)

    Skouroliakou, A.; Kalatzis, I.; Kalyvas, N.; Grivas, TB

    2017-11-01

    Infrared thermography is an imaging technique that has the ability to provide a map of temperature distribution of an object’s surface. It is considered for a wide range of applications in medicine as well as in non-destructive testing procedures. One of its promising medical applications is in orthopaedics and diseases of the musculoskeletal system where temperature distribution of the body’s surface can contribute to the diagnosis and follow up of certain disorders. Although the thermographic image can give a fairly good visual estimation of distribution homogeneity and temperature pattern differences between two symmetric body parts, it is important to extract a quantitative measurement characterising temperature. Certain approaches use temperature of enantiomorphic anatomical points, or parameters extracted from a Region of Interest (ROI). A number of indices have been developed by researchers to that end. In this study a quantitative approach in thermographic image processing is attempted based on extracting different indices for symmetric ROIs on thermograms of the lower back area of scoliotic patients. The indices are based on first order statistical parameters describing temperature distribution. Analysis and comparison of these indices result in evaluating the temperature distribution pattern of the back trunk expected in healthy, regarding spinal problems, subjects.

  6. Infrared imaging: a potential powerful tool for neuroimaging and neurodiagnostics

    PubMed Central

    Khoshakhlagh, Arezou; Gunapala, Sarath D.

    2017-01-01

    Abstract. Infrared (IR) imaging is used to detect the subtle changes in temperature needed to accurately detect and monitor disease. Technological advances have made IR a highly sensitive and reliable detection tool with strong potential in medical and neurophotonics applications. An overview of IR imaging specifically investigating quantum well IR detectors developed at Jet Propulsion Laboratory for a noninvasive, nonradiating imaging tool is provided, which could be applied for neuroscience and neurosurgery where it involves sensitive cellular temperature change. PMID:28382311

  7. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; hide

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  8. Recent advances in high-throughput QCL-based infrared microspectral imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rowlette, Jeremy A.; Fotheringham, Edeline; Nichols, David; Weida, Miles J.; Kane, Justin; Priest, Allen; Arnone, David B.; Bird, Benjamin; Chapman, William B.; Caffey, David B.; Larson, Paul; Day, Timothy

    2017-02-01

    The field of infrared spectral imaging and microscopy is advancing rapidly due in large measure to the recent commercialization of the first high-throughput, high-spatial-definition quantum cascade laser (QCL) microscope. Having speed, resolution and noise performance advantages while also eliminating the need for cryogenic cooling, its introduction has established a clear path to translating the well-established diagnostic capability of infrared spectroscopy into clinical and pre-clinical histology, cytology and hematology workflows. Demand for even higher throughput while maintaining high-spectral fidelity and low-noise performance continues to drive innovation in QCL-based spectral imaging instrumentation. In this talk, we will present for the first time, recent technological advances in tunable QCL photonics which have led to an additional 10X enhancement in spectral image data collection speed while preserving the high spectral fidelity and SNR exhibited by the first generation of QCL microscopes. This new approach continues to leverage the benefits of uncooled microbolometer focal plane array cameras, which we find to be essential for ensuring both reproducibility of data across instruments and achieving the high-reliability needed in clinical applications. We will discuss the physics underlying these technological advancements as well as the new biomedical applications these advancements are enabling, including automated whole-slide infrared chemical imaging on clinically relevant timescales.

  9. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Lagueux, P.; Farley, V.; Marcotte, F.; Chamberland, M.

    2009-09-01

    Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in

  10. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Farley, V.; Lagueux, P.; Marcotte, F.; Chamberland, M.

    2009-05-01

    Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in

  11. Infrared and visible image fusion method based on saliency detection in sparse domain

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Qi, Y.; Ding, W. R.

    2017-06-01

    Infrared and visible image fusion is a key problem in the field of multi-sensor image fusion. To better preserve the significant information of the infrared and visible images in the final fused image, the saliency maps of the source images is introduced into the fusion procedure. Firstly, under the framework of the joint sparse representation (JSR) model, the global and local saliency maps of the source images are obtained based on sparse coefficients. Then, a saliency detection model is proposed, which combines the global and local saliency maps to generate an integrated saliency map. Finally, a weighted fusion algorithm based on the integrated saliency map is developed to achieve the fusion progress. The experimental results show that our method is superior to the state-of-the-art methods in terms of several universal quality evaluation indexes, as well as in the visual quality.

  12. Correction of aeroheating-induced intensity nonuniformity in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Li; Yan, Luxin; Zhao, Hui; Dai, Xiaobing; Zhang, Tianxu

    2016-05-01

    Aeroheating-induced intensity nonuniformity effects severely influence the effective performance of an infrared (IR) imaging system in high-speed flight. In this paper, we propose a new approach to the correction of intensity nonuniformity in IR images. The basic assumption is that the low-frequency intensity bias is additive and smoothly varying so that it can be modeled as a bivariate polynomial and estimated by using an isotropic total variation (TV) model. A half quadratic penalty method is applied to the isotropic form of TV discretization. And an alternating minimization algorithm is adopted for solving the optimization model. The experimental results of simulated and real aerothermal images show that the proposed correction method can effectively improve IR image quality.

  13. Near-infrared autofluorescence imaging to detect parathyroid glands in thyroid surgery.

    PubMed

    Ladurner, R; Al Arabi, N; Guendogar, U; Hallfeldt, Kkj; Stepp, H; Gallwas, Jks

    2018-01-01

    Objective To identify and save parathyroid glands during thyroidectomy by displaying their autofluorescence. Methods Autofluorescence imaging was carried out during thyroidectomy with and without central lymph node dissection. After visual recognition by the surgeon, the parathyroid glands and the surrounding tissue were exposed to near-infrared light with a wavelength of 690-770 nm using a modified Karl Storz near infrared/indocyanine green endoscopic system. Parathyroid tissue was expected to show near infrared autofluorescence at 820 nm, captured in the blue channel of the camera. Results We investigated 41 parathyroid glands from 20 patients; 37 glands were identified correctly based on near-infrared autofluorescence. Neither lymph nodes nor thyroid revealed substantial autofluorescence and nor did adipose tissue. Conclusions Parathyroid tissue is characterised by showing autofluorescence in the near-infrared spectrum. This effect can be used to identify and preserve parathyroid glands during thyroidectomy.

  14. A study of thermographic diagnosis system and imaging algorithm by distributed thermal data using single infrared sensor.

    PubMed

    Yoon, Se Jin; Noh, Si Cheol; Choi, Heung Ho

    2007-01-01

    The infrared diagnosis device provides two-dimensional images and patient-oriented results that can be easily understood by the inspection target by using infrared cameras; however, it has disadvantages such as large size, high price, and inconvenient maintenance. In this regard, this study has proposed small-sized diagnosis device for body heat using a single infrared sensor and implemented an infrared detection system using a single infrared sensor and an algorithm that represents thermography using the obtained data on the temperature of the point source. The developed systems had the temperature resolution of 0.1 degree and the reproducibility of +/-0.1 degree. The accuracy was 90.39% at the error bound of +/-0 degree and 99.98% at that of +/-0.1 degree. In order to evaluate the proposed algorithm and system, the infrared images of camera method was compared. The thermal images that have clinical meaning were obtained from a patient who has lesion to verify its clinical applicability.

  15. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation

    PubMed Central

    Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit

    2017-01-01

    The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928

  16. Near-infrared hyperspectral imaging of water evaporation dynamics for early detection of incipient caries.

    PubMed

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2014-10-01

    Incipient caries is characterized as demineralization of the tooth enamel reflecting in increased porosity of enamel structure. As a result, the demineralized enamel may contain increased amount of water, and exhibit different water evaporation dynamics than the sound enamel. The objective of this paper is to assess the applicability of water evaporation dynamics of sound and demineralized enamel for detection and quantification of incipient caries using near-infrared hyperspectral imaging. The time lapse of water evaporation from enamel samples with artificial and natural caries lesions of different stages was imaged by a near-infrared hyperspectral imaging system. Partial least squares regression was used to predict the water content from the acquired spectra. The water evaporation dynamics was characterized by a first order logarithmic drying model. The calculated time constants of the logarithmic drying model were used as the discriminative feature. The conducted measurements showed that demineralized enamel contains more water and exhibits significantly faster water evaporation than the sound enamel. By appropriate modelling of the water evaporation process from the enamel surface, the contrast between the sound and demineralized enamel observed in the individual near infrared spectral images can be substantially enhanced. The presented results indicate that near-infrared based prediction of water content combined with an appropriate drying model presents a strong foundation for development of novel diagnostic tools for incipient caries detection. The results of the study enhance the understanding of the water evaporation process from the sound and demineralized enamel and have significant implications for the detection of incipient caries by near-infrared hyperspectral imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The Radiative Consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-01-01

    The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  18. Hurricane Isabel, AIRS Infrared and SeaWinds Scatterometer Data Combined

    NASA Image and Video Library

    2003-09-20

    These two images show Hurricane Isabel as viewed by AIRS and SeaWinds scatterometers on NASA ADEOS-2 and QuikScat satellites in September, 2003. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction. http://photojournal.jpl.nasa.gov/catalog/PIA00429

  19. New far infrared images of bright, nearby, star-forming regions

    NASA Technical Reports Server (NTRS)

    Harper, D. AL, Jr.; Cole, David M.; Dowell, C. Darren; Lees, Joanna F.; Lowenstein, Robert F.

    1995-01-01

    Broadband imaging in the far infrared is a vital tool for understanding how young stars form, evolve, and interact with their environment. As the sensitivity and size of detector arrays has increased, a richer and more detailed picture has emerged of the nearest and brightest regions of active star formation. We present data on M 17, M 42, and S 106 taken recently on the Kuiper Airborne Observatory with the Yerkes Observatory 60-channel far infrared camera, which has pixel sizes of 17 in. at 60 microns, 27 in. at 100 microns, and 45 in. at 160 and 200 microns. In addition to providing a clearer view of the complex central cores of the regions, the images reveal new details of the structure and heating of ionization fronts and photodissociation zones where radiation form luminous stars interacts with adjacent molecular clouds.

  20. Fourier Transform Infrared Imaging analysis of dental pulp inflammatory diseases.

    PubMed

    Giorgini, E; Sabbatini, S; Conti, C; Rubini, C; Rocchetti, R; Fioroni, M; Memè, L; Orilisi, G

    2017-05-01

    Fourier Transform Infrared microspectroscopy let characterize the macromolecular composition and distribution of tissues and cells, by studying the interaction between infrared radiation and matter. Therefore, we hypothesize to exploit this analytical tool in the analysis of inflamed pulps, to detect the different biochemical features related to various degrees of inflammation. IR maps of 13 irreversible and 12 hyperplastic pulpitis, together with 10 normal pulps, were acquired, compared with histological findings and submitted to multivariate (HCA, PCA, SIMCA) and statistical (one-way ANOVA) analysis. The fit of convoluted bands let calculate meaningful band area ratios (means ± s.d., P < 0.05). The infrared imaging analysis pin-pointed higher amounts of water and lower quantities of type I collagen in all inflamed pulps. Specific vibrational markers were defined for irreversible pulpitis (Lipids/Total Biomass, PhII/Total Biomass, CH 2 /CH 3 , and Ty/AII) and hyperplastic ones (OH/Total Biomass, Collagen/Total Biomass, and CH 3 Collagen/Total Biomass). The study confirmed that FTIR microspectroscopy let discriminate tissues' biological features. The infrared imaging analysis evidenced, in inflamed pulps, alterations in tissues' structure and composition. Changes in lipid metabolism, increasing amounts of tyrosine, and the occurrence of phosphorylative processes were highlighted in irreversible pulpitis, while high amounts of water and low quantities of type I collagen were detected in hyperplastic samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Tietjen, Alan B.; Horvath, Thomas J.; Tomek, Deborah M.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Bush, Brett C.; Mercer, C. David; Shea, Edward J.

    2010-01-01

    High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle s reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle s hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA s next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal

  2. Images in the Air

    ERIC Educational Resources Information Center

    Riveros, H. G.; Rosenberger, Franz

    2012-01-01

    This article discusses two "magic tricks" in terms of underlying optical principles. The first trick is new and produces a "ghost" in the air, and the second is the classical real image produced with two parabolic mirrors. (Contains 2 figure and 6 photos.)

  3. Infrared Image of Low Clouds on Venus

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This false-color image is a near-infrared map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft as it approached the planet's night side on February 10, 1990. Bright slivers of sunlit high clouds are visible above and below the dark, glowing hemisphere. The spacecraft is about 100,000 kilometers (60,000 miles) above the planet. An infrared wavelength of 2.3 microns (about three times the longest wavelength visible to the human eye) was used. The map shows the turbulent, cloudy middle atmosphere some 50-55 kilometers (30- 33 miles) above the surface, 10-16 kilometers or 6-10 miles below the visible cloudtops. The red color represents the radiant heat from the lower atmosphere (about 400 degrees Fahrenheit) shining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about -30 degrees Fahrenheit, at a pressure about 1/2 Earth's surface atmospheric pressure. Near the equator, the clouds appear fluffy and blocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude.

  4. Penetration depth measurement of near-infrared hyperspectral imaging light for milk powder

    USDA-ARS?s Scientific Manuscript database

    The increasingly common application of near-infrared (NIR) hyperspectral imaging technique to the analysis of food powders has led to the need for optical characterization of samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR hyperspectral imaging ligh...

  5. Characterizing the vibration behavior in crack vicinity in sonic infrared imaging NDE

    NASA Astrophysics Data System (ADS)

    Yu, Qiuye; Obeidat, Omar; Han, Xiaoyan

    2018-04-01

    Sonic Infrared Imaging uses ultrasound excitation and infrared imaging to detect defects in different materials, including metals, metal alloys, and composites. In this NDE technology, the ultrasound excitation applied is typically a short pulse, usually a fraction of a second. The ultrasound causes the opposing surfaces of a crack or a defect to rub each other and result in temperature change with noticeable infrared radiation increase. This thermal signal can be captured by IR camera and used to locate the defect within the target. Probability of detection of defects can be significantly improved when chaotic sound is introduced to the materials. This nonlinearity between the ultrasound transducer and the target materials is an important phenomenon, and the understanding is critical to improve the repeatability and reliability of this technology. In this paper, we will present our study on this topic with emphasis of characterizing vibration in the crack vicinity.

  6. First tomographic observations of gravity waves by the infrared limb imager GLORIA

    NASA Astrophysics Data System (ADS)

    Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Dörnbrack, Andreas; Eckermann, Stephen D.; Ern, Manfred; Friedl-Vallon, Felix; Kaufmann, Martin; Oelhaf, Hermann; Rapp, Markus; Strube, Cornelia; Riese, Martin

    2017-12-01

    Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills.

  7. Visible-Near Infrared Imaging Spectrometer Data of Explosion Craters

    NASA Technical Reports Server (NTRS)

    Farr, T. G.

    2005-01-01

    In a continuing study to capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained new high resolution visible-near infrared images of several explosion craters at the Nevada Test Site. We used the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to obtain images in 224 spectral bands from 0.4-2.5 microns [1]. The main craters that were imaged were Sedan, Scooter, Schooner, Buggy, and Danny Boy [2]. The 390 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of the detonation of a 104 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a "simple" crater [2]. Sedan was formed in alluvium of mixed lithology [3] and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also imaged by AVIRIS. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m, Fig. 1) craters were also important targets for AVIRIS as they were excavated in hard welded tuff and basaltic andesite, respectively [3, 4]. This variation in targets will allow the study of ejecta patterns, compositional modifications due to the explosions, and the role of craters as subsurface probes.

  8. Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging

    PubMed Central

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru

    2008-01-01

    Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788

  9. Automatic Marker-free Longitudinal Infrared Image Registration by Shape Context Based Matching and Competitive Winner-guided Optimal Corresponding

    PubMed Central

    Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng

    2017-01-01

    Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images. PMID:28145474

  10. Multispectral open-air intraoperative fluorescence imaging.

    PubMed

    Behrooz, Ali; Waterman, Peter; Vasquez, Kristine O; Meganck, Jeff; Peterson, Jeffrey D; Faqir, Ilias; Kempner, Joshua

    2017-08-01

    Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.

  11. Modeling an Optical and Infrared Search for Extraterrestrial Intelligence Survey with Exoplanet Direct Imaging

    NASA Astrophysics Data System (ADS)

    Vides, Christina; Macintosh, Bruce; Ruffio, Jean-Baptiste; Nielsen, Eric; Povich, Matthew Samuel

    2018-01-01

    Gemini Planet Imager (GPI) is a direct high contrast imaging instrument coupled to the Gemini South Telescope. Its purpose is to image extrasolar planets around young (~<100Myr) and relatively close (=< 100 pc) stars in the near infrared. Using a combination of adaptive optics (AO) and image processing techniques, the signal of a planet can be differentiated from diffraction in the images. A coronagraph is vital to achieving high contrast images at small angular separations (=<0.2 arcseconds).With the emergence of OIRSETI (Optical and Infrared Search for Extraterrestrial Intelligence), we modeled GPI’s capabilities to detect an extraterrestrial continuous wave (CW) laser broadcasted within the H-band have been modeled. By using sensitivity evaluated for actual GPI observations of young target stars, we produced models of the CW laser power as a function of distance from the star that could be detected if GPI were to observe nearby (~ 3-5 pc) planet-hosting G-type stars. We took a variety of transmitters into consideration in producing these modeled values. GPI is known to be sensitive to both pulsed and CW coherent electromagnetic radiation. The results were compared to similar studies and it was found that these values are competitive to other optical and infrared observations.

  12. New solutions and technologies for uncooled infrared imaging

    NASA Astrophysics Data System (ADS)

    Rollin, Joël.; Diaz, Frédéric; Fontaine, Christophe; Loiseaux, Brigitte; Lee, Mane-Si Laure; Clienti, Christophe; Lemonnier, Fabrice; Zhang, Xianghua; Calvez, Laurent

    2013-06-01

    The military uncooled infrared market is driven by the continued cost reduction of the focal plane arrays whilst maintaining high standards of sensitivity and steering towards smaller pixel sizes. As a consequence, new optical solutions are called for. Two approaches can come into play: the bottom up option consists in allocating improvements to each contributor and the top down process rather relies on an overall optimization of the complete image channel. The University of Rennes I with Thales Angénieux alongside has been working over the past decade through French MOD funding's, on low cost alternatives of infrared materials based upon chalcogenide glasses. A special care has been laid on the enhancement of their mechanical properties and their ability to be moulded according to complex shapes. New manufacturing means developments capable of better yields for the raw materials will be addressed, too. Beyond the mere lenses budget cuts, a wave front coding process can ease a global optimization. This technic gives a way of relaxing optical constraints or upgrading thermal device performances through an increase of the focus depths and desensitization against temperature drifts: it combines image processing and the use of smart optical components. Thales achievements in such topics will be enlightened and the trade-off between image quality correction levels and low consumption/ real time processing, as might be required in hand-free night vision devices, will be emphasized. It is worth mentioning that both approaches are deeply leaning on each other.

  13. Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum

    NASA Astrophysics Data System (ADS)

    Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.

    2017-06-01

    Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.

  14. Automatic recognition of ship types from infrared images using superstructure moment invariants

    NASA Astrophysics Data System (ADS)

    Li, Heng; Wang, Xinyu

    2007-11-01

    Automatic object recognition is an active area of interest for military and commercial applications. In this paper, a system addressing autonomous recognition of ship types in infrared images is proposed. Firstly, an approach of segmentation based on detection of salient features of the target with subsequent shadow removing is proposed, as is the base of the subsequent object recognition. Considering the differences between the shapes of various ships mainly lie in their superstructures, we then use superstructure moment functions invariant to translation, rotation and scale differences in input patterns and develop a robust algorithm of obtaining ship superstructure. Subsequently a back-propagation neural network is used as a classifier in the recognition stage and projection images of simulated three-dimensional ship models are used as the training sets. Our recognition model was implemented and experimentally validated using both simulated three-dimensional ship model images and real images derived from video of an AN/AAS-44V Forward Looking Infrared(FLIR) sensor.

  15. AIRS First Light Data: Eastern Mediterranean, June 14, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Four images of the Mediterranean obtained concurrently on June 14, 2002 from the three instruments that make up the Atmospheric Infrared Sounder experiment system aboard NASA's Aqua spacecraft. The system features thousands of individual channels that observe Earth in the visible, infrared and microwave spectral regions. Each channel has a unique sensitivity to temperature, moisture, surface conditions and clouds.

    This visible light image from the AIRS instrument shows a band of white clouds extending from the Adriatic Sea over Greece to the Black Sea.

    The AIRS image (figure 1) at 900 cm-1 (11 micrometers) measures actual surface or cloud top temperatures. In it, land and ocean boundaries are well defined, with land appearing as warmer (darker red) than the ocean. The band of cold high cumulus clouds appears blue, with the darkest blue most likely a large thunderstorm.

    The 150 gigahertz channel from the Humidity Sounder for Brazil instrument (figure 2) is sensitive to moisture, ice particles and precipitation. The dry land temperature is comparable to the 11 micrometer temperatures, but over ocean this channel measures the temperature of moisture in the mid troposphere. The cold, blue areas off Sicily and in the Aegean Sea represent unusually dry areas over the ocean. There, clouds appear as green filaments--likely areas of precipitation.

    The 31.4 gigahertz channel from the Advanced Microwave Sounding Unit instrument (figure 3) is not affected by clouds.

    NASA's Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua spacecraft, began sending high quality data on June 12, 2002. This 'first light' data is exceeding the expectations of scientists, confirming that the AIRS experiment is well on its way to meeting its goals of improving weather forecasting, establishing the connection between severe weather and

  16. An airborne thematic thermal infrared and electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  17. Infrared image enhancement using H(infinity) bounds for surveillance applications.

    PubMed

    Qidwai, Uvais

    2008-08-01

    In this paper, two algorithms have been presented to enhance the infrared (IR) images. Using the autoregressive moving average model structure and H(infinity) optimal bounds, the image pixels are mapped from the IR pixel space into normal optical image space, thus enhancing the IR image for improved visual quality. Although H(infinity)-based system identification algorithms are very common now, they are not quite suitable for real-time applications owing to their complexity. However, many variants of such algorithms are possible that can overcome this constraint. Two such algorithms have been developed and implemented in this paper. Theoretical and algorithmic results show remarkable enhancement in the acquired images. This will help in enhancing the visual quality of IR images for surveillance applications.

  18. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    PubMed

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-11-27

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  19. Application of DIRI dynamic infrared imaging in reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marek; Wang, Chengpu; Jin, Feng; Salvitti, Matthew; Tenorio, Xavier

    2006-04-01

    We have developed the BioScanIR System based on QWIP (Quantum Well Infrared Photodetector). Data collected by this sensor are processed using the DIRI (Dynamic Infrared Imaging) algorithms. The combination of DIRI data processing methods with the unique characteristics of the QWIP sensor permit the creation of a new imaging modality capable of detecting minute changes in temperature at the surface of the tissue and organs associated with blood perfusion due to certain diseases such as cancer, vascular disease and diabetes. The BioScanIR System has been successfully applied in reconstructive surgery to localize donor flap feeding vessels (perforators) during the pre-surgical planning stage. The device is also used in post-surgical monitoring of skin flap perfusion. Since the BioScanIR is mobile; it can be moved to the bedside for such monitoring. In comparison to other modalities, the BioScanIR can localize perforators in a single, 20 seconds scan with definitive results available in minutes. The algorithms used include (FFT) Fast Fourier Transformation, motion artifact correction, spectral analysis and thermal image scaling. The BioScanIR is completely non-invasive and non-toxic, requires no exogenous contrast agents and is free of ionizing radiation. In addition to reconstructive surgery applications, the BioScanIR has shown promise as a useful functional imaging modality in neurosurgery, drug discovery in pre-clinical animal models, wound healing and peripheral vascular disease management.

  20. First light observations with TIFR Near Infrared Imaging Camera (TIRCAM-II)

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Ghosh, S. K.; D'Costa, S. L. A.; Naik, M. B.; Sandimani, P. R.; Poojary, S. S.; Bhagat, S. B.; Jadhav, R. B.; Meshram, G. S.; Bakalkar, C. B.; Ramaprakash, A. N.; Mohan, V.; Joshi, J.

    TIFR near infrared imaging camera (TIRCAM-II) is based on the Aladdin III Quadrant InSb focal plane array (512×512 pixels; 27.6 μm pixel size; sensitive between 1 - 5.5 μm). TIRCAM-II had its first engineering run with the 2 m IUCAA telescope at Girawali during February - March 2011. The first light observations with TIRCAM-II were quite successful. Several infrared standard with TIRCAM-II were quite successful. Several infrared standard stars, the Trapezium Cluster in Orion region, McNeil's nebula, etc., were observed in the J, K and in a narrow-band at 3.6 μm (nbL). In the nbL band, some bright stars could be detected from the Girawali site. The performance of TIRCAM-II is discussed in the light of preliminary observations in near infrared bands.

  1. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera.

    PubMed

    Cao, Yanpeng; Tisse, Christel-Loic

    2014-02-01

    In this Letter, we propose an efficient and accurate solution to remove temperature-dependent nonuniformity effects introduced by the imaging optics. This single-image-based approach computes optics-related fixed pattern noise (FPN) by fitting the derivatives of correction model to the gradient components, locally computed on an infrared image. A modified bilateral filtering algorithm is applied to local pixel output variations, so that the refined gradients are most likely caused by the nonuniformity associated with optics. The estimated bias field is subtracted from the raw infrared imagery to compensate the intensity variations caused by optics. The proposed method is fundamentally different from the existing nonuniformity correction (NUC) techniques developed for focal plane arrays (FPAs) and provides an essential image processing functionality to achieve completely shutterless NUC for uncooled long-wave infrared (LWIR) imaging systems.

  2. The Python pit organ: imaging and immunocytochemical analysis of an extremely sensitive natural infrared detector.

    PubMed

    Grace, M S; Church, D R; Kelly, C T; Lynn, W F; Cooper, T M

    1999-01-01

    The Python infrared-sensitive pit organ is a natural infrared imager that combines high sensitivity, ambient temperature function, microscopic dimensions, and self-repair. We are investigating the spectral sensitivity and signal transduction process in snake infrared-sensitive neurons, neither of which is understood. For example, it is unknown whether infrared receptor neurons function on a thermal or a photic mechanism. We imaged pit organs in living Python molurus and Python regius using infrared-sensitive digital video cameras. Pit organs were significantly more absorptive and/or emissive than surrounding tissues in both 3-5 microns and 8-12 microns wavelength ranges. Pit organs exhibited greater absorption/emissivity in the 8-12 microns range than in the 3-5 microns range. To directly test the relationship between photoreceptors and pit organ infrared-sensitive neurons, we performed immunocytochemistry using antisera directed against retinal photoreceptor opsins. Retinal photoreceptors were labeled with antisera specific for retinal opsins, but these antisera failed to label terminals of infrared-sensitive neurons in the pit organ. Infrared-receptive neurons were also distinguished from retinal photoreceptors on the basis of their calcium-binding protein content. These results indicate that the pit organ absorbs infrared radiation in two major atmospheric transmission windows, one of which (8-12 microns) matches emission of targeted prey, and that infrared receptors are biochemically distinct from retinal photoreceptors. These results also provide the first identification of prospective biochemical components of infrared signal transduction in pit organ receptor neurons.

  3. Infrared spectroscopic imaging: Label-free biochemical analysis of stroma and tissue fibrosis.

    PubMed

    Nazeer, Shaiju S; Sreedhar, Hari; Varma, Vishal K; Martinez-Marin, David; Massie, Christine; Walsh, Michael J

    2017-11-01

    Infrared spectroscopic tissue imaging is a potentially powerful adjunct tool to current histopathology techniques. By coupling the biochemical signature obtained through infrared spectroscopy to the spatial information offered by microscopy, this technique can selectively analyze the chemical composition of different features of unlabeled, unstained tissue sections. In the past, the tissue features that have received the most interest were parenchymal and epithelial cells, chiefly due to their involvement in dysplasia and progression to carcinoma; however, the field has recently turned its focus toward stroma and areas of fibrotic change. These components of tissue present an untapped source of biochemical information that can shed light on many diverse disease processes, and potentially hold useful predictive markers for these same pathologies. Here we review the recent applications of infrared spectroscopic imaging to stromal and fibrotic regions of diseased tissue, and explore the potential of this technique to advance current capabilities for tissue analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    NASA Technical Reports Server (NTRS)

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  5. Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors.

    PubMed

    Malinowski, Pawel E; Georgitzikis, Epimitheas; Maes, Jorick; Vamvaka, Ioanna; Frazzica, Fortunato; Van Olmen, Jan; De Moor, Piet; Heremans, Paul; Hens, Zeger; Cheyns, David

    2017-12-10

    Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10 -6 A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.

  6. ASTER's First Views of Red Sea, Ethiopia - Thermal-Infrared (TIR) Image (monochrome)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history.

    The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately.

    The ASTER instrument was built in Japan for the Ministry of International Trade and Industry. A joint United States/Japan Science Team is responsible for instrument design, calibration, and data validation. ASTER is flying on the Terra satellite, which is managed by NASA's Goddard Space Flight Center, Greenbelt, MD.

  7. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying.

    PubMed

    Venkitasamy, Chandrasekar; Brandl, Maria T; Wang, Bini; McHugh, Tara H; Zhang, Ruihong; Pan, Zhongli

    2017-04-04

    Pistachio nuts have been associated with outbreaks of foodborne disease and the industry has been impacted by numerous product recalls due to contamination with Salmonella enterica. The current hot air drying of pistachios has low energy efficiency and drying rates, and also does not guarantee the microbial safety of products. In the study described herein, dehulled and water-sorted pistachios with a moisture content (MC) of 38.14% (wet basis) were dried in a sequential infrared and hot air (SIRHA) drier to <9% MC. The decontamination efficacy was assessed by inoculating pistachios with Enterococcus faecium, a surrogate of Salmonella enterica used for quality control in the almond industry. Drying with IR alone saved 105min (34.4%) of drying time compared with hot air drying. SIRHA drying of pistachios for 2h with infrared (IR) heat followed by tempering at a product temperature of 70°C for 2h and then by hot air drying shortened the drying time by 40min (9.1%) compared with drying by hot air only. This SIRHA method also reduced the E. faecium cell population by 6.1-logCFU/g kernel and 5.41-logCFU/g shell of pistachios. The free fatty acid contents of SIRHA dried pistachios were on par with that of hot air dried samples. Despite significant differences in peroxide values (PV) of pistachio kernels dried with the SIRHA method compared with hot air drying at 70°C, the PV were within the permissible limit of 5Meq/kg for edible oils. Our findings demonstrate the efficacy of SIRHA drying in achieving simultaneous drying and decontamination of pistachios. Published by Elsevier B.V.

  8. Two Long-Wave Infrared Spectral Polarimeters for Use in Understanding Polarization Phenomenology

    DTIC Science & Technology

    2002-05-01

    3550 Aberdeen SE Kirtland Air Force Base, New Mexico 87117 Abstract. Spectrally varying long-wave infrared ( LWIR ) polarization measurements can be used...to identify materials and to discriminate samples from a cluttered background. Two LWIR instruments have been built and fielded by the Air Force...Research Laboratory: a multispectral LWIR imaging polarimeter (LIP) and a full-Stokes Fourier transform in- frared (FTIR) spectral polarimeter (FSP

  9. Multiscale infrared and visible image fusion using gradient domain guided image filtering

    NASA Astrophysics Data System (ADS)

    Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia

    2018-03-01

    For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.

  10. High resolution and deep tissue imaging using a near infrared acoustic resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Moothanchery, Mohesh; Sharma, Arunima; Periyasamy, Vijitha; Pramanik, Manojit

    2018-02-01

    It is always a great challenge for pure optical techniques to maintain good resolution and imaging depth at the same time. Photoacoustic imaging is an emerging technique which can overcome the limitation by pulsed light illumination and acoustic detection. Here, we report a Near Infrared Acoustic-Resolution Photoacoustic Microscopy (NIR-AR-PAM) systm with 30 MHz transducer and 1064 nm illumination which can achieve a lateral resolution of around 88 μm and imaging depth of 9.2 mm. Compared to visible light NIR beam can penetrate deeper in biological tissue due to weaker optical attenuation. In this work, we also demonstrated the in vivo imaging capabilty of NIRARPAM by near infrared detection of SLN with black ink as exogenous photoacoustic contrast agent in a rodent model.

  11. Fusion of infrared and visible images based on BEMD and NSDFB

    NASA Astrophysics Data System (ADS)

    Zhu, Pan; Huang, Zhanhua; Lei, Hai

    2016-07-01

    This paper presents a new fusion method based on the adaptive multi-scale decomposition of bidimensional empirical mode decomposition (BEMD) and the flexible directional expansion of nonsubsampled directional filter banks (NSDFB) for visible-infrared images. Compared with conventional multi-scale fusion methods, BEMD is non-parametric and completely data-driven, which is relatively more suitable for non-linear signals decomposition and fusion. NSDFB can provide direction filtering on the decomposition levels to capture more geometrical structure of the source images effectively. In our fusion framework, the entropies of the two patterns of source images are firstly calculated and the residue of the image whose entropy is larger is extracted to make it highly relevant with the other source image. Then, the residue and the other source image are decomposed into low-frequency sub-bands and a sequence of high-frequency directional sub-bands in different scales by using BEMD and NSDFB. In this fusion scheme, two relevant fusion rules are used in low-frequency sub-bands and high-frequency directional sub-bands, respectively. Finally, the fused image is obtained by applying corresponding inverse transform. Experimental results indicate that the proposed fusion algorithm can obtain state-of-the-art performance for visible-infrared images fusion in both aspects of objective assessment and subjective visual quality even for the source images obtained in different conditions. Furthermore, the fused results have high contrast, remarkable target information and rich details information that are more suitable for human visual characteristics or machine perception.

  12. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    NASA Astrophysics Data System (ADS)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  13. Characterization of human breast cancer tissues by infrared imaging.

    PubMed

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.

  14. Exploring infrared neural stimulation with multimodal nonlinear imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, Wilson R.; Mahadevan-Jansen, Anita

    2017-02-01

    Infrared neural stimulation (INS) provides optical control of neural excitability using near to mid-infrared (mid-IR) light, which allows for spatially selective, artifact-free excitation without the introduction of exogenous agents or genetic modification. Although neural excitability is mediated by a transient temperature increase due to water absorption of IR energy, the molecular nature of IR excitability in neural tissue remains unknown. Current research suggests that transient changes in local tissue temperature give rise to a myriad of cellular responses that have been individually attributed to IR mediated excitability. To further elucidate the underlying biophysical mechanisms, we have begun work towards employing a novel multimodal nonlinear imaging platform to probe the molecular underpinnings of INS. Our imaging system performs coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS), two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG) and thermal imaging into a single platform that allows for unprecedented co-registration of thermal and biochemical information in real-time. Here, we present our work leveraging CARS and SRS in acute thalamocortical brain slice preparations. We observe the evolution of lipid and protein-specific Raman bands during INS and electrically evoked activity in real-time. Combined with two-photon fluorescence and second harmonic generation, we offer insight to cellular metabolism and membrane dynamics during INS. Thermal imaging allows for the coregistration of acquired biochemical information with temperature information. Our work previews the versatility and capabilities of coherent Raman imaging combined with multiphoton imaging to observe biophysical phenomena for neuroscience applications.

  15. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror.

    PubMed

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-06-10

    Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.

  16. An infrared upconverter for astronomical imaging

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An imaging upconverter has been constructed which is suitable for use in the study of the thermal 10-micron radiation from astronomical sources. The infrared radiation is converted to visible radiation by mixing in a 1-cm-long proustite crystal. The phase-matched 2-kayser bandpass is tunable from 9 to 11 microns. The conversion efficiency is 2 by 10 to the -7th power and the field of view of 40 arc seconds on the sky contains several hundred picture elements, approximately diffraction-limited resolution in a large telescope. The instrument has been used in studies of the sun, moon, Mercury, and VY Canis Majoris.

  17. The utilization of infrared imaging for occupational disease study in industrial work.

    PubMed

    Brioschi, Marcos Leal; Okimoto, Maria Lúcia Leite Ribeiro; Vargas, José Viriato Coelho

    2012-01-01

    Infrared imaging has been used to visualize superficial temperatures in industrial employers standing and working in an indoor environment at 22°C. Temperature distributions and changes have been recorded digitally and analyzed. Mean skin temperatures determined by this method have been compared with superficial temperatures obtained with a probe thermocouple. During working hours, surface temperatures were higher over extensor muscles than over other structures and their spatial distributions differed dramatically from those observed before working hours. The authors also analyzed the cold water immersion of the hands during work. This paper showed that working generates different thermal effects on human skin that reflect physiological and pathological occupational conditions and can be monitored by infrared imaging.

  18. High-definition Fourier transform infrared spectroscopic imaging of prostate tissue

    NASA Astrophysics Data System (ADS)

    Wrobel, Tomasz P.; Kwak, Jin Tae; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    Histopathology forms the gold standard for cancer diagnosis and therapy, and generally relies on manual examination of microscopic structural morphology within tissue. Fourier-Transform Infrared (FT-IR) imaging is an emerging vibrational spectroscopic imaging technique, especially in a High-Definition (HD) format, that provides the spatial specificity of microscopy at magnifications used in diagnostic surgical pathology. While it has been shown for standard imaging that IR absorption by tissue creates a strong signal where the spectrum at each pixel is a quantitative "fingerprint" of the molecular composition of the sample, here we show that this fingerprint also enables direct digital pathology without the need for stains or dyes for HD imaging. An assessment of the potential of HD imaging to improve diagnostic pathology accuracy is presented.

  19. Salient man-made structure detection in infrared images

    NASA Astrophysics Data System (ADS)

    Li, Dong-jie; Zhou, Fu-gen; Jin, Ting

    2013-09-01

    Target detection, segmentation and recognition is a hot research topic in the field of image processing and pattern recognition nowadays, among which salient area or object detection is one of core technologies of precision guided weapon. Many theories have been raised in this paper; we detect salient objects in a series of input infrared images by using the classical feature integration theory and Itti's visual attention system. In order to find the salient object in an image accurately, we present a new method to solve the edge blur problem by calculating and using the edge mask. We also greatly improve the computing speed by improving the center-surround differences method. Unlike the traditional algorithm, we calculate the center-surround differences through rows and columns separately. Experimental results show that our method is effective in detecting salient object accurately and rapidly.

  20. [Perceptual sharpness metric for visible and infrared color fusion images].

    PubMed

    Gao, Shao-Shu; Jin, Wei-Qi; Wang, Xia; Wang, Ling-Xue; Luo, Yuan

    2012-12-01

    For visible and infrared color fusion images, objective sharpness assessment model is proposed to measure the clarity of detail and edge definition of the fusion image. Firstly, the contrast sensitivity functions (CSF) of the human visual system is used to reduce insensitive frequency components under certain viewing conditions. Secondly, perceptual contrast model, which takes human luminance masking effect into account, is proposed based on local band-limited contrast model. Finally, the perceptual contrast is calculated in the region of interest (contains image details and edges) in the fusion image to evaluate image perceptual sharpness. Experimental results show that the proposed perceptual sharpness metrics provides better predictions, which are more closely matched to human perceptual evaluations, than five existing sharpness (blur) metrics for color images. The proposed perceptual sharpness metrics can evaluate the perceptual sharpness for color fusion images effectively.

  1. The effect of perineural anesthesia on infrared thermographic images of the forelimb digits of normal horses

    PubMed Central

    Holmes, Layne C.; Gaughan, Earl M.; Gorondy, Denise A.; Hogge, Steve; Spire, Mark F.

    2003-01-01

    Infrared thermography is an imaging modality gaining popularity as a diagnostic aid in the evaluation of equine lameness. Anecdotal reports of skin hyperthermia induced by local anesthesia, detected by thermography, have been made; however, no controlled studies have been reported. The purpose of this study was to examine the effects of perineural anesthesia on infrared thermographic images of the forelimb digits in normal horses. After environmental acclimation, infrared thermographs were made at intervals of 0, 5, 10, 15, 30, and 45 min from administration of mepivacaine hydrochloride or phosphate buffered saline in 6 adult horses with no clinical evidence of abnormality of the forelimb digits. The mean limb surface temperatures were compared by 2-factor ANOVA. Results indicated no significant difference between treatments, time after injection, or an interaction of time and treatment. Infrared thermographic imaging apparently can be performed within 45 min of perineural mepivacaine hydrochloride anesthesia without risk of artifactual changes in limb surface temperature. PMID:12757130

  2. Non-invasive characterization of normal and pathological tissues through dynamic infrared imaging in the hamster cheek pouch oral cancer model

    NASA Astrophysics Data System (ADS)

    Herrera, María. S.; Monti Hughes, Andrea; Salva, Natalia; Padra, Claudio; Schwint, Amanda; Santa Cruz, Gustavo A.

    2017-05-01

    Biomedical infrared thermography, a non-invasive and functional imaging method, provides information on the normal and abnormal status and response of tissues in terms of spatial and temporal variations in body infrared radiance. It is especially attractive in cancer research due to the hypervascular and hypermetabolic activity of solid tumors. Moreover, healthy tissues like skin or mucosa exposed to radiation can be examined since inflammation, changes in water content, exudation, desquamation, erosion and necrosis, between others, are factors that modify their thermal properties. In this work we performed Dynamic Infrared Imaging (DIRI) to contribute to the understanding and evaluation of normal tissue, tumor and precancerous tissue response and radiotoxicity in an in vivo model, the hamster cheek pouch, exposed to Boron Neutron Capture Therapy. In this study, we particularly focused on the observation of temperature changes under forced transient conditions associated with mass moisture transfer in the tissue-air interface, in each tissue with or without treatment. We proposed a simple mathematical procedure that considerers the heat transfer from tissue to ambient through convection and evaporation to model the transient (exponential decay o recover) thermal study. The data was fitted to determined the characteristic decay and recovery time constants of the temperature as a function of time. Also this model allowed to explore the mass flux of moisture, as a degree of evaporation occurring on the tissue surface. Tissue thermal responses under provocation tests could be used as a non-invasive method to characterize tissue physiology.

  3. A dual-channel fusion system of visual and infrared images based on color transfer

    NASA Astrophysics Data System (ADS)

    Pei, Chuang; Jiang, Xiao-yu; Zhang, Peng-wei; Liang, Hao-cong

    2013-09-01

    A dual-channel fusion system of visual and infrared images based on color transfer The increasing availability and deployment of imaging sensors operating in multiple spectrums has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, most of these algorithms have gray or false color fusion results which are not adapt to human vision. Transfer color from a day-time reference image to get natural color fusion result is an effective way to solve this problem, but the computation cost of color transfer is expensive and can't meet the request of real-time image processing. We developed a dual-channel infrared and visual images fusion system based on TMS320DM642 digital signal processing chip. The system is divided into image acquisition and registration unit, image fusion processing unit, system control unit and image fusion result out-put unit. The image registration of dual-channel images is realized by combining hardware and software methods in the system. False color image fusion algorithm in RGB color space is used to get R-G fused image, then the system chooses a reference image to transfer color to the fusion result. A color lookup table based on statistical properties of images is proposed to solve the complexity computation problem in color transfer. The mapping calculation between the standard lookup table and the improved color lookup table is simple and only once for a fixed scene. The real-time fusion and natural colorization of infrared and visual images are realized by this system. The experimental result shows that the color-transferred images have a natural color perception to human eyes, and can highlight the targets effectively with clear background details. Human observers with this system will be able to interpret the image better and faster, thereby improving situational awareness and reducing target detection time.

  4. AIRS Ozone Burden During Antarctic Winter: Time Series from 8/1/2005 to 9/30/2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of AIRS Ozone Burden During Antarctic Winter

    AIRS provides a daily global 3-dimensional view of Earth's ozone layer. Since AIRS observes in the thermal infrared spectral range, it also allows scientists to view from space the Antarctic ozone hole for the first time continuously during polar winter. This image sequence captures the intensification of the annual ozone hole in the Antarctic Polar Vortex.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  5. Infrared imaging spectrometry by the use of bundled chalcogenide glass fibers and a PtSi CCD camera

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Kikuchi, Katsuhiro; Tanaka, Chinari; Sone, Hiroshi; Morimoto, Shozo; Yamashita, Toshiharu T.; Nishii, Junji

    1999-10-01

    A coherent fiber bundle for infrared image transmission was prepared by arranging 8400 chalcogenide (AsS) glass fibers. The fiber bundle, 1 m in length, is transmissive in the infrared spectral region of 1 - 6 micrometer. A remote spectroscopic imaging system was constructed with the fiber bundle and an infrared PtSi CCD camera. The system was used for the real-time observation (frame time: 1/60 s) of gas distribution. Infrared light from a SiC heater was delivered to a gas cell through a chalcogenide fiber, and transmitted light was observed through the fiber bundle. A band-pass filter was used for the selection of gas species. A He-Ne laser of 3.4 micrometer wavelength was also used for the observation of hydrocarbon gases. Gases bursting from a nozzle were observed successfully by a remote imaging system.

  6. Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.

    2010-01-01

    High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next

  7. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges

    PubMed Central

    He, Xiaoxiao; Gao, Jinhao; Gambhir, Sanjiv Sam; Cheng, Zhen

    2010-01-01

    Near-infrared fluorescence (NIRF) imaging promises to improve cancer imaging and management; advances in nanomaterials allow scientists to combine new nanoparticles with NIRF imaging techniques, thereby fulfilling this promise. Here, we present a synopsis of current developments in NIRF nanoprobes, their use in imaging small living subjects, their pharmacokinetics and toxicity and finally their integration into multimodal imaging strategies. We also discuss challenges impeding the clinical translation of NIRF nanoprobes for molecular imaging of cancer. Whereas utilization of most NIRF nanoprobes remains at a proof-of-principle stage, optimizing the impact of nanomedicine in cancer patient diagnosis and management will likely be realized through persistent interdisciplinary amalgamation of diverse research fields. PMID:20870460

  8. Affordable, Accessible, Immediate: Capture Stunning Images with Digital Infrared Photography

    ERIC Educational Resources Information Center

    Snyder, Mark

    2011-01-01

    Technology educators who teach digital photography should consider incorporating an infrared (IR) photography component into their program. This is an area where digital photography offers significant benefits. Either type of IR imaging is very interesting to explore, but traditional film-based IR photography is difficult and expensive. In…

  9. Infrared Thermal Imaging as a Tool in University Physics Education

    ERIC Educational Resources Information Center

    Mollmann, Klaus-Peter; Vollmer, Michael

    2007-01-01

    Infrared thermal imaging is a valuable tool in physics education at the university level. It can help to visualize and thereby enhance understanding of physical phenomena from mechanics, thermal physics, electromagnetism, optics and radiation physics, qualitatively as well as quantitatively. We report on its use as lecture demonstrations, student…

  10. Hyperspectral near-infrared reflectance imaging for detection of defect tomatoes

    USDA-ARS?s Scientific Manuscript database

    Cuticle cracks on tomatoes are potential sites of pathogenic infection that may cause deleterious consequences both to consumer health and to fresh and fresh-cut produce markets. The feasibility of a hyperspectral near-infrared imaging technique in the spectral range of 1000 nm to 1700 nm was inves...

  11. An infrared image based methodology for breast lesions screening

    NASA Astrophysics Data System (ADS)

    Morais, K. C. C.; Vargas, J. V. C.; Reisemberger, G. G.; Freitas, F. N. P.; Oliari, S. H.; Brioschi, M. L.; Louveira, M. H.; Spautz, C.; Dias, F. G.; Gasperin, P.; Budel, V. M.; Cordeiro, R. A. G.; Schittini, A. P. P.; Neto, C. D.

    2016-05-01

    The objective of this paper is to evaluate the potential of utilizing a structured methodology for breast lesions screening, based on infrared imaging temperature measurements of a healthy control group to establish expected normality ranges, and of breast cancer patients, previously diagnosed through biopsies of the affected regions. An analysis of the systematic error of the infrared camera skin temperature measurements was conducted in several different regions of the body, by direct comparison to high precision thermistor temperature measurements, showing that infrared camera temperatures are consistently around 2 °C above the thermistor temperatures. Therefore, a method of conjugated gradients is proposed to eliminate the infrared camera direct temperature measurement imprecision, by calculating the temperature difference between two points to cancel out the error. The method takes into account the human body approximate bilateral symmetry, and compares measured dimensionless temperature difference values (Δ θ bar) between two symmetric regions of the patient's breast, that takes into account the breast region, the surrounding ambient and the individual core temperatures, and doing so, the results interpretation for different individuals become simple and non subjective. The range of normal whole breast average dimensionless temperature differences for 101 healthy individuals was determined, and admitting that the breasts temperatures exhibit a unimodal normal distribution, the healthy normal range for each region was considered to be the dimensionless temperature difference plus/minus twice the standard deviation of the measurements, Δ θ bar ‾ + 2σ Δ θ bar ‾ , in order to represent 95% of the population. Forty-seven patients with previously diagnosed breast cancer through biopsies were examined with the method, which was capable of detecting breast abnormalities in 45 cases (96%). Therefore, the conjugated gradients method was considered effective

  12. Next-generation in vivo optical imaging with short-wave infrared quantum dots

    PubMed Central

    Bruns, Oliver T.; Bischof, Thomas S.; Harris, Daniel K.; Franke, Daniel; Shi, Yanxiang; Riedemann, Lars; Bartelt, Alexander; Jaworski, Frank B.; Carr, Jessica A.; Rowlands, Christopher J.; Wilson, Mark W.B.; Chen, Ou; Wei, He; Hwang, Gyu Weon; Montana, Daniel M.; Coropceanu, Igor; Achorn, Odin B.; Kloepper, Jonas; Heeren, Joerg; So, Peter T.C.; Fukumura, Dai; Jensen, Klavs F.; Jain, Rakesh K.; Bawendi, Moungi G.

    2017-01-01

    For in vivo imaging, the short-wavelength infrared region (SWIR; 1000–2000 nm) provides several advantages over the visible and near-infrared regions: general lack of autofluorescence, low light absorption by blood and tissue, and reduced scattering. However, the lack of versatile and functional SWIR emitters has prevented the general adoption of SWIR imaging by the biomedical research community. Here, we introduce a class of high-quality SWIR-emissive indium-arsenide-based quantum dots (QDs) that are readily modifiable for various functional imaging applications, and that exhibit narrow and size-tunable emission and a dramatically higher emission quantum yield than previously described SWIR probes. To demonstrate the unprecedented combination of deep penetration, high spatial resolution, multicolor imaging and fast-acquisition-speed afforded by the SWIR QDs, we quantified, in mice, the metabolic turnover rates of lipoproteins in several organs simultaneously and in real time as well as heartbeat and breathing rates in awake and unrestrained animals, and generated detailed three-dimensional quantitative flow maps of the mouse brain vasculature. PMID:29119058

  13. Next-generation in vivo optical imaging with short-wave infrared quantum dots.

    PubMed

    Bruns, Oliver T; Bischof, Thomas S; Harris, Daniel K; Franke, Daniel; Shi, Yanxiang; Riedemann, Lars; Bartelt, Alexander; Jaworski, Frank B; Carr, Jessica A; Rowlands, Christopher J; Wilson, Mark W B; Chen, Ou; Wei, He; Hwang, Gyu Weon; Montana, Daniel M; Coropceanu, Igor; Achorn, Odin B; Kloepper, Jonas; Heeren, Joerg; So, Peter T C; Fukumura, Dai; Jensen, Klavs F; Jain, Rakesh K; Bawendi, Moungi G

    2017-01-01

    For in vivo imaging, the short-wavelength infrared region (SWIR; 1000-2000 nm) provides several advantages over the visible and near-infrared regions: general lack of autofluorescence, low light absorption by blood and tissue, and reduced scattering. However, the lack of versatile and functional SWIR emitters has prevented the general adoption of SWIR imaging by the biomedical research community. Here, we introduce a class of high-quality SWIR-emissive indium-arsenide-based quantum dots (QDs) that are readily modifiable for various functional imaging applications, and that exhibit narrow and size-tunable emission and a dramatically higher emission quantum yield than previously described SWIR probes. To demonstrate the unprecedented combination of deep penetration, high spatial resolution, multicolor imaging and fast-acquisition-speed afforded by the SWIR QDs, we quantified, in mice, the metabolic turnover rates of lipoproteins in several organs simultaneously and in real time as well as heartbeat and breathing rates in awake and unrestrained animals, and generated detailed three-dimensional quantitative flow maps of the mouse brain vasculature.

  14. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) is lifted off its transporter on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be added to the launch vehicle in the background. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. SIRTF, consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) is lifted off its transporter on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be added to the launch vehicle in the background. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. SIRTF, consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  15. KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, wait for the Space Infrared Telescope Facility (SIRTF) to reach their level. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, wait for the Space Infrared Telescope Facility (SIRTF) to reach their level. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  16. KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, watch as the Space Infrared Telescope Facility (SIRTF) clears the platform. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, watch as the Space Infrared Telescope Facility (SIRTF) clears the platform. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  17. KENNEDY SPACE CENTER, FLA. - After dawn, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - After dawn, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  18. KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) is lowered into the opening of the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) is lowered into the opening of the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  19. KENNEDY SPACE CENTER, FLA. - Viewed from below, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Viewed from below, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts

    PubMed Central

    Siciliano, Ilenia; Dal Bello, Barbara; Zeppa, Giuseppe; Spadaro, Davide; Gullino, Maria Lodovica

    2017-01-01

    Aflatoxins are a group of secondary metabolites produced by members of Aspergillus Section Flavi that are dangerous to humans and animals. Nuts can be potentially contaminated with aflatoxins, often over the legal threshold. Food processes, including roasting, may have different effects on mycotoxins, and high temperatures have proven to be very effective in the reduction of mycotoxins. In this work, two different roasting methods—traditional static hot air roasting and infra-red rays roasting—were applied and compared for the detoxification of hazelnuts from Italy and Turkey. At the temperature of 140 °C for 40 min of exposure, detoxification was effective for both roasting techniques. Residual aflatoxins after infra-red rays treatments were lower compared to static hot air roasting. On Italian hazelnuts, residual aflatoxins were lower than 5%, while for Turkish hazelnuts they were lower than 15% after 40 min of exposure to an infra-red rays roaster. After roasting, the perisperm was detached from the nuts and analyzed for aflatoxin contents. Residual aflatoxins in the perisperm ranged from 80% up to 100%. After roasting, the lipid profile and the nutritional quality of hazelnuts were not affected. Fatty acid methyl esters analyses showed a similar composition for Italian and Turkish hazelnuts. PMID:28230792

  1. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts.

    PubMed

    Siciliano, Ilenia; Dal Bello, Barbara; Zeppa, Giuseppe; Spadaro, Davide; Gullino, Maria Lodovica

    2017-02-21

    Aflatoxins are a group of secondary metabolites produced by members of Aspergillus Section Flavi that are dangerous to humans and animals. Nuts can be potentially contaminated with aflatoxins, often over the legal threshold. Food processes, including roasting, may have different effects on mycotoxins, and high temperatures have proven to be very effective in the reduction of mycotoxins. In this work, two different roasting methods-traditional static hot air roasting and infra-red rays roasting-were applied and compared for the detoxification of hazelnuts from Italy and Turkey. At the temperature of 140 °C for 40 min of exposure, detoxification was effective for both roasting techniques. Residual aflatoxins after infra-red rays treatments were lower compared to static hot air roasting. On Italian hazelnuts, residual aflatoxins were lower than 5%, while for Turkish hazelnuts they were lower than 15% after 40 min of exposure to an infra-red rays roaster. After roasting, the perisperm was detached from the nuts and analyzed for aflatoxin contents. Residual aflatoxins in the perisperm ranged from 80% up to 100%. After roasting, the lipid profile and the nutritional quality of hazelnuts were not affected. Fatty acid methyl esters analyses showed a similar composition for Italian and Turkish hazelnuts.

  2. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    NASA Astrophysics Data System (ADS)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  3. Evaluation of multispectral middle infrared aircraft images for lithologic mapping the East Tintic Mountains, Utah( USA).

    USGS Publications Warehouse

    Kahle, A.B.; Rowan, L.C.

    1980-01-01

    Six channels of moultispectral middle infrared (8 to 14 micrometres) aircraft scanner data were acquired over the East Tintic mining district, Utah. The digital image data were computer processed to create a color-composite image based on principal component transformations. When combined with a visible and near infrared color-composite image from a previous flight, with limited field checking, it is possible to discriminate quartzite, carbonate rocks, quartz latitic and quartz monzonitic rocks, latitic and monzonitic rocks, silicified altered rocks, argillized altered rocks, and vegetation. -from Authors

  4. Small animal imaging platform for quantitative assessment of short-wave infrared-emitting contrast agents

    NASA Astrophysics Data System (ADS)

    Hu, Philip; Mingozzi, Marco; Higgins, Laura M.; Ganapathy, Vidya; Zevon, Margot; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-03-01

    We report the design, calibration, and testing of a pre-clinical small animal imaging platform for use with short-wave infrared (SWIR) emitting contrast agents. Unlike materials emitting at visible or near-infrared wavelengths, SWIR-emitting agents require detection systems with sensitivity in the 1-2 μm wavelength region, beyond the range of commercially available small animal imagers. We used a collimated 980 nm laser beam to excite rare-earth-doped NaYF4:Er,Yb nanocomposites, as an example of a SWIR emitting material under development for biomedical imaging applications. This beam was raster scanned across the animal, with fluorescence in the 1550 nm wavelength region detected by an InGaAs area camera. Background adjustment and intensity non-uniformity corrections were applied in software. The final SWIR fluorescence image was overlaid onto a standard white-light image for registration of contrast agent uptake with respect to anatomical features.

  5. High speed Infrared imaging method for observation of the fast varying temperature phenomena

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Alavi, Kambiz; Yuan, Baohong

    With new improvements in high-end commercial R&D camera technologies many challenges have been overcome for exploring the high-speed IR camera imaging. The core benefits of this technology is the ability to capture fast varying phenomena without image blur, acquire enough data to properly characterize dynamic energy, and increase the dynamic range without compromising the number of frames per second. This study presents a noninvasive method for determining the intensity field of a High Intensity Focused Ultrasound Device (HIFU) beam using Infrared imaging. High speed Infrared camera was placed above the tissue-mimicking material that was heated by HIFU with no other sensors present in the HIFU axial beam. A MATLAB simulation code used to perform a finite-element solution to the pressure wave propagation and heat equations within the phantom and temperature rise to the phantom was computed. Three different power levels of HIFU transducers were tested and the predicted temperature increase values were within about 25% of IR measurements. The fundamental theory and methods developed in this research can be used to detect fast varying temperature phenomena in combination with the infrared filters.

  6. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  7. Suppression of fixed pattern noise for infrared image system

    NASA Astrophysics Data System (ADS)

    Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon

    2008-04-01

    In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.

  8. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Russell, R. W.; Lynch, D. K.; Tessensohn, T. K.; Warren, D.; Jenniskens, P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report broadband 3-5.5 micrometer detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-infrared light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave infrared detection.

  9. NOVEL OBSERVATIONS AND POTENTIAL APPLICATIONS USING DIGITAL INFRARED IRIS IMAGING

    PubMed Central

    Roberts, Daniel K.; Lukic, Ana; Yang, Yongyi; Moroi, Sayoko E.; Wilensky, Jacob T.; Wernick, Miles N.

    2017-01-01

    Digital infrared (IR) iris photography using a modified digital camera system was carried out on about 300 subjects seen during routine clinical care and research at one facility. Since this image database offered opportunity to gain new insight into the potential utility of IR iris imaging, it was surveyed for unique image patterns. Then, a selection of photos was compiled that would illustrate the spectrum of this imaging experience. Potentially informative image patterns were observed in subjects with cataracts, diabetic retinopathy, Posner-Schlossman syndrome, iridociliary cysts, long anterior lens zonules, nevi, oculocutaneous albinism, pigment dispersion syndrome, pseudophakia, suspected vascular anomaly, and trauma. Image patterns were often unanticipated regardless of pre-existing information and suggest that IR iris imaging may have numerous potential clinical and research applications, some of which may still not be recognized. These observations suggest further development and study of this technology. PMID:19320317

  10. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  11. NASA/IPAC Infrared Archive's General Image Cutouts Service

    NASA Astrophysics Data System (ADS)

    Alexov, A.; Good, J. C.

    2006-07-01

    The NASA/IPAC Infrared Archive (IRSA) ``Cutouts" Service (http://irsa.ipac.caltech.edu/applications/Cutouts) is a general tool for creating small ``cutout" FITS images and JPEGs from collections of data archived at IRSA. This service is a companion to IRSA's Atlas tool (http://irsa.ipac.caltech.edu/applications/Atlas/), which currently serves over 25 different data collections of various sizes and complexity and returns entire images for a user-defined region of the sky. The Cutouts Services sits on top of Atlas and extends the Atlas functionality by generating subimages at locations and sizes requested by the user from images already identified by Atlas. These results can be downloaded individually, in batch mode (using the program wget), or as a tar file. Cutouts re-uses IRSA's software architecture along with the publicly available Montage mosaicking tools. The advantages and disadvantages of this approach to generic cutout serving will be discussed.

  12. Imaging and Modeling Nearby Stellar Systems through Infrared Interferometers

    NASA Astrophysics Data System (ADS)

    Che, Xiao; Monnier, J. D.; Ten Brummelaar, T.; Sturmann, L.; Millan-Gabet, R.; Baron, F.; Kraus, S.; Zhao, M.; CHARA

    2014-01-01

    Long-baseline infrared interferometers with sub-milliarcsecond angular resolution can now resolve photospheric features and the circumstellar environments of nearby massive stars. Closure phase measurements have made model-independent imaging possible. During the thesis, I have expanded Michigan Infrared Combiner (MIRC) from a 4-beam combiner to a 6-beam combiner to improve the (u,v) coverage, and installed Photometric Channels system to reduce the RMS of data by a factor of 3. I am also in charge of the Wavefront Sensor of the CHARA Adaptive Optics project to increase the sensitivity of the telescope array to enlarge the observable Young Stellar Objects (YSOs). My scientific research has focused on using mainly MIRC at CHARA to model and image rapidly rotating stars. The results are crucial for testing the next generation of stellar models that incorporate evolution of internal angular momentum. Observations of Be stars with MIRC have resolved the innermost parts of the disks, allowing us to study the evolution of the disks and star-disk interactions. I have also adopted a semi-analytical disk model to constrain Mid-InfraRed (MIR) disks of YSOs using interferometric and spectroscopic data.

  13. High-performance mushroom plasmonic metamaterial absorbers for infrared polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Kuboyama, Takafumi; Kimata, Masafumi

    2017-02-01

    Infrared (IR) polarimetric imaging is a promising approach to enhance object recognition with conventional IR imaging for applications such as artificial object recognition from the natural environment and facial recognition. However, typical infrared polarimetric imaging requires the attachment of polarizers to an IR camera or sensor, which leads to high cost and lower performance caused by their own IR radiation. We have developed asymmetric mushroom plasmonic metamaterial absorbers (A-MPMAs) to address this challenge. The A-MPMAs have an all-Al construction that consists of micropatches and a reflector layer connected with hollow rectangular posts. The asymmetric-shaped micropatches lead to strong polarization-selective IR absorption due to localized surface plasmon resonance at the micropatches. The operating wavelength region can be controlled mainly by the micropatch and the hollow rectangular post size. AMPMAs are complicated three-dimensional structures, the fabrication of which is challenging. Hollow rectangular post structures are introduced to enable simple fabrication using conventional surface micromachining techniques, such as sacrificial layer etching, with no degradation of the optical properties. The A-MPMAs have a smaller thermal mass than metal-insulator-metal based metamaterials and no influence of the strong non-linear dispersion relation of the insulator materials constant, which produces a gap in the wavelength region and additional absorption insensitive to polarization. A-MPMAs are therefore promising candidates for uncooled IR polarimetric image sensors in terms of both their optical properties and ease of fabrication. The results presented here are expected to contribute to the development of highperformance polarimetric uncooled IR image sensors that do not require polarizers.

  14. An Efficient Algorithm for Server Thermal Fault Diagnosis Based on Infrared Image

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Xie, Ting; Ran, Jian; Gao, Shan

    2017-10-01

    It is essential for a data center to maintain server security and stability. Long-time overload operation or high room temperature may cause service disruption even a server crash, which would result in great economic loss for business. Currently, the methods to avoid server outages are monitoring and forecasting. Thermal camera can provide fine texture information for monitoring and intelligent thermal management in large data center. This paper presents an efficient method for server thermal fault monitoring and diagnosis based on infrared image. Initially thermal distribution of server is standardized and the interest regions of the image are segmented manually. Then the texture feature, Hu moments feature as well as modified entropy feature are extracted from the segmented regions. These characteristics are applied to analyze and classify thermal faults, and then make efficient energy-saving thermal management decisions such as job migration. For the larger feature space, the principal component analysis is employed to reduce the feature dimensions, and guarantee high processing speed without losing the fault feature information. Finally, different feature vectors are taken as input for SVM training, and do the thermal fault diagnosis after getting the optimized SVM classifier. This method supports suggestions for optimizing data center management, it can improve air conditioning efficiency and reduce the energy consumption of the data center. The experimental results show that the maximum detection accuracy is 81.5%.

  15. Zwitterion functionalized gold nanoclusters for multimodal near infrared fluorescence and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Shen, Danjin; Henry, Maxime; Trouillet, Vanessa; Comby-Zerbino, Clothilde; Bertorelle, Franck; Sancey, Lucie; Antoine, Rodolphe; Coll, Jean-Luc; Josserand, Véronique; Le Guével, Xavier

    2017-05-01

    Gold nanoclusters (Au NCs) are an emerging type of theranostic agents combining therapeutic and imaging features with reduced toxicity. Au NCs stabilized by a zwitterion ligand with a fine control of the metal core size and the ligand coverage were synthesized by wet chemistry. Intense fluorescence signal is reported for the highest ligand coverage, whereas photoacoustic signal is stronger for the largest metal core. The best Au NC candidate with an average molecular weight of 17 kDa could be detected with high sensitivity on a 2D-near-infrared imaging instrument (limit of detection (LOD) = 2.3 μ M ) and by photoacoustic imaging. In vitro and in vivo experiments demonstrate an efficient cell uptake in U87 cell lines, a fast renal clearance (t1 /2 α = 6.5 ± 1.3 min), and a good correlation between near infrared fluorescence and photoacoustic measurements to follow the early uptake of Au NCs in liver.

  16. Research on acupuncture points and cortical functional activation position in cats by infrared imaging detection

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Sha, Zhanyou; Wang, Shuhai; Wen, Huanming

    2007-12-01

    The research of the brain cognition is mainly to find out the activation position in brain according to the stimulation at present in the world. The research regards the animals as the experimental objects and explores the stimulation response on the cerebral cortex of acupuncture. It provides a new method, which can detect the activation position on the creatural cerebral cortex directly by middle-far infrared imaging. According to the theory of local temperature situation, the difference of cortical temperature maybe associate with the excitement of cortical nerve cells, the metabolism of local tissue and the local hemal circulation. Direct naked detection of temperature variety on cerebral cortex is applied by middle and far infrared imaging technology. So the activation position is ascertained. The effect of stimulation response is superior to other indirect methods. After removing the skulls on the head, full of cerebral cortex of a cat are exposed. By observing the infrared images and measuring the temperatures of the visual cerebral cortex during the process of acupuncturing, the points are used to judge the activation position. The variety in the cortical functional sections is corresponding to the result of the acupuncture points in terms of infrared images and temperatures. According to experimental results, we know that the variety of a cortical functional section is corresponding to a special acupuncture point exactly.

  17. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) waits for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) waits for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  18. Investigations of high-speed digital imaging of low-light-level events using pulsed near-infrared laser light sources

    NASA Astrophysics Data System (ADS)

    Jantzen, Connie; Slagle, Rick

    1997-05-01

    The distinction between exposure time and sample rate is often the first point raised in any discussion of high speed imaging. Many high speed events require exposure times considerably shorter than those that can be achieved solely by the sample rate of the camera, where exposure time equals 1/sample rate. Gating, a method of achieving short exposure times in digital cameras, is often difficult to achieve for exposure time requirements shorter than 100 microseconds. This paper discusses the advantages and limitations of using the short duration light pulse of a near infrared laser with high speed digital imaging systems. By closely matching the output wavelength of the pulsed laser to the peak near infrared response of current sensors, high speed image capture can be accomplished at very low (visible) light levels of illumination. By virtue of the short duration light pulse, adjustable to as short as two microseconds, image capture of very high speed events can be achieved at relatively low sample rates of less than 100 pictures per second, without image blur. For our initial investigations, we chose a ballistic subject. The results of early experimentation revealed the limitations of applying traditional ballistic imaging methods when using a pulsed infrared lightsource with a digital imaging system. These early disappointing results clarified the need to further identify the unique system characteristics of the digital imager and pulsed infrared combination. It was also necessary to investigate how the infrared reflectance and transmittance of common materials affects the imaging process. This experimental work yielded a surprising, successful methodology which will prove useful in imaging ballistic and weapons tests, as well as forensics, flow visualizations, spray pattern analyses, and nocturnal animal behavioral studies.

  19. Mathematical models and qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying

    NASA Astrophysics Data System (ADS)

    Nachaisin, Mali; Teeta, Suminya; Deejing, Konlayut; Pharanat, Wanida

    2017-09-01

    Instant food is a product produced for convenience for consumer. Qualities are an important attribute of food materials reflecting consumer acceptance. The most problem of instant rice is casehardening during drying process resulted in the longer rehydration time. The objective of this research was to study the qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying. Additionally, the mathematical models for gas-fired infrared assisted thin-layer drying of shredded Thai-style rice for traditional was investigated. The thin-layer drying of shredded Thai-style rice was carried out under gas-fired infrared intensities of 1000W/m2, air temperatures of 70°C and air velocities of 1 m/s. The drying occurred in the falling rate of drying period. The Page model was found to satisfactorily describe the drying behavior of shredded Thai-style rice, providing the highest R2 (0.997) and the lowest MBE and RMSE (0.01 and 0.18) respectively. A 9 point hedonic test showed in softness and color, but odor and overall acceptance were very similar.

  20. Intraoperative Near-Infrared Fluorescence Imaging using indocyanine green in colorectal carcinomatosis surgery: Proof of concept.

    PubMed

    Barabino, G; Klein, J P; Porcheron, J; Grichine, A; Coll, J-L; Cottier, M

    2016-12-01

    This study assesses the value of using Intraoperative Near Infrared Fluorescence Imaging and Indocyanine green to detect colorectal carcinomatosis during oncological surgery. In colorectal carcinomatosis cancer, two of the most important prognostic factors are completeness of staging and completeness of cytoreductive surgery. Presently, intraoperative assessment of tumoral margins relies on palpation and visual inspection. The recent introduction of Near Infrared fluorescence image guidance provides new opportunities for surgical roles, particularly in cancer surgery. The study was a non-randomized, monocentric, pilot "ex vivo" blinded clinical trial validated by the ethical committee of University Hospital of Saint Etienne. Ten patients with colorectal carcinomatosis cancer scheduled for cytoreductive surgery were included. Patients received 0.25 mg/kg of Indocyanine green intravenously 24 h before surgery. A Near Infrared camera was used to detect "ex-vivo" fluorescent lesions. There was no surgical mortality. Each analysis was done blindly. In a total of 88 lesions analyzed, 58 were classified by a pathologist as cancerous and 30 as non-cancerous. Among the 58 cancerous lesions, 42 were correctly classified by the Intraoperative Near-Infrared camera (sensitivity of 72.4%). Among the 30 non-cancerous lesions, 18 were correctly classified by the Intraoperative Near-Infrared camera (specificity of 60.0%). Near Infrared fluorescence imaging is a promising technique for intraoperative tumor identification. It could help the surgeon to determine resection margins and reduce the risk of locoregional recurrence. Copyright © 2016 Elsevier Ltd, BASO ~ the Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  1. An infrared-visible image fusion scheme based on NSCT and compressed sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Maldague, Xavier

    2015-05-01

    Image fusion, as a research hot point nowadays in the field of infrared computer vision, has been developed utilizing different varieties of methods. Traditional image fusion algorithms are inclined to bring problems, such as data storage shortage and computational complexity increase, etc. Compressed sensing (CS) uses sparse sampling without knowing the priori knowledge and greatly reconstructs the image, which reduces the cost and complexity of image processing. In this paper, an advanced compressed sensing image fusion algorithm based on non-subsampled contourlet transform (NSCT) is proposed. NSCT provides better sparsity than the wavelet transform in image representation. Throughout the NSCT decomposition, the low-frequency and high-frequency coefficients can be obtained respectively. For the fusion processing of low-frequency coefficients of infrared and visible images , the adaptive regional energy weighting rule is utilized. Thus only the high-frequency coefficients are specially measured. Here we use sparse representation and random projection to obtain the required values of high-frequency coefficients, afterwards, the coefficients of each image block can be fused via the absolute maximum selection rule and/or the regional standard deviation rule. In the reconstruction of the compressive sampling results, a gradient-based iterative algorithm and the total variation (TV) method are employed to recover the high-frequency coefficients. Eventually, the fused image is recovered by inverse NSCT. Both the visual effects and the numerical computation results after experiments indicate that the presented approach achieves much higher quality of image fusion, accelerates the calculations, enhances various targets and extracts more useful information.

  2. Dynamic infrared imaging for skin cancer screening

    NASA Astrophysics Data System (ADS)

    Godoy, Sebastián E.; Ramirez, David A.; Myers, Stephen A.; von Winckel, Greg; Krishna, Sanchita; Berwick, Marianne; Padilla, R. Steven; Sen, Pradeep; Krishna, Sanjay

    2015-05-01

    Dynamic thermal imaging (DTI) with infrared cameras is a non-invasive technique with the ability to detect the most common types of skin cancer. We discuss and propose a standardized analysis method for DTI of actual patient data, which achieves high levels of sensitivity and specificity by judiciously selecting pixels with the same initial temperature. This process compensates the intrinsic limitations of the cooling unit and is the key enabling tool in the DTI data analysis. We have extensively tested the methodology on human subjects using thermal infrared image sequences from a pilot study conducted jointly with the University of New Mexico Dermatology Clinic in Albuquerque, New Mexico (ClinicalTrials ID number NCT02154451). All individuals were adult subjects who were scheduled for biopsy or adult volunteers with clinically diagnosed benign condition. The sample size was 102 subjects for the present study. Statistically significant results were obtained that allowed us to distinguish between benign and malignant skin conditions. The sensitivity and specificity was 95% (with a 95% confidence interval of [87.8% 100.0%]) and 83% (with a 95% confidence interval of [73.4% 92.5%]), respectively, and with an area under the curve of 95%. Our results lead us to conclude that the DTI approach in conjunction with the judicious selection of pixels has the potential to provide a fast, accurate, non-contact, and non-invasive way to screen for common types of skin cancer. As such, it has the potential to significantly reduce the number of biopsies performed on suspicious lesions.

  3. Advances in photo-thermal infrared imaging microspectroscopy

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, Chris; Papantonakis, Michael; Nguyen, Viet; McGill, Andrew

    2013-05-01

    There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-situ study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.

  4. Pain related inflammation analysis using infrared images

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Bardhan, Shawli; Das, Kakali; Bhattacharjee, Debotosh; Nath, Satyabrata

    2016-05-01

    Medical Infrared Thermography (MIT) offers a potential non-invasive, non-contact and radiation free imaging modality for assessment of abnormal inflammation having pain in the human body. The assessment of inflammation mainly depends on the emission of heat from the skin surface. Arthritis is a disease of joint damage that generates inflammation in one or more anatomical joints of the body. Osteoarthritis (OA) is the most frequent appearing form of arthritis, and rheumatoid arthritis (RA) is the most threatening form of them. In this study, the inflammatory analysis has been performed on the infrared images of patients suffering from RA and OA. For the analysis, a dataset of 30 bilateral knee thermograms has been captured from the patient of RA and OA by following a thermogram acquisition standard. The thermograms are pre-processed, and areas of interest are extracted for further processing. The investigation of the spread of inflammation is performed along with the statistical analysis of the pre-processed thermograms. The objectives of the study include: i) Generation of a novel thermogram acquisition standard for inflammatory pain disease ii) Analysis of the spread of the inflammation related to RA and OA using K-means clustering. iii) First and second order statistical analysis of pre-processed thermograms. The conclusion reflects that, in most of the cases, RA oriented inflammation affects bilateral knees whereas inflammation related to OA present in the unilateral knee. Also due to the spread of inflammation in OA, contralateral asymmetries are detected through the statistical analysis.

  5. Visible-Infrared Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew

    2013-01-01

    The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.

  6. Near-infrared images of MG 1131+0456 with the W. M. Keck telescope: Another dusty gravitational lens?

    NASA Technical Reports Server (NTRS)

    Larkin, J. E.; Matthews, K.; Lawrence, C. R.; Graham, J. R.; Harrison, W.; Jernigan, G.; Lin, S.; Nelson, J.; Neugebauer, G.; Smith, G.

    1994-01-01

    Images of the gravitational lens system MG 1131+0456 taken with the near-infrared camera on the W. M. Keck telescope in the J and K(sub s) bands show that the infrared counterparts of the compact radio structure are exceedingly red, with J - K greater than 4.2 mag. The J image reveals only the lensing galaxy, while the K(sub s) image shows both the lens and the infrared counterparts of the compact radio components. After subtracting the lensing galaxy from the K(sub s) image, the position and orientation of the compact components agree with their radio counterparts. The broad-band spectrum and observed brightness of the lens suggest a giant galaxy at a redshift of approximately 0.75, while the color of the quasar images suggests significant extinction by dust in the lens. There is a significant excess of faint objects within 20 sec of MG 1131+0456. Depending on their mass and redshifts, these objects could complicate the lensing potential considerably.

  7. Validation of the Atmospheric Infrared Sounder (AIRS) over the Antarctic Plateau: Low Radiance, Low Humidity, and Thin Clouds

    NASA Technical Reports Server (NTRS)

    Tobin, David C.

    2005-01-01

    The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.

  8. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    PubMed Central

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  9. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2017-07-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  10. Shelf-life of infrared dry-roasted almonds

    USDA-ARS?s Scientific Manuscript database

    Infrared heating was recently used to develop a more efficient roasting technology than traditional hot air roasting. Therefore, in this study, we evaluated the shelf-life of almonds roasted with three different approaches, namely infrared [IR], sequential infrared and hot air [SIRHA], and regular h...

  11. A survey of infrared and visual image fusion methods

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Hai, Jinjin; He, Kangjian

    2017-09-01

    Infrared (IR) and visual (VI) image fusion is designed to fuse multiple source images into a comprehensive image to boost imaging quality and reduce redundancy information, which is widely used in various imaging equipment to improve the visual ability of human and robot. The accurate, reliable and complementary descriptions of the scene in fused images make these techniques be widely used in various fields. In recent years, a large number of fusion methods for IR and VI images have been proposed due to the ever-growing demands and the progress of image representation methods; however, there has not been published an integrated survey paper about this field in last several years. Therefore, we make a survey to report the algorithmic developments of IR and VI image fusion. In this paper, we first characterize the IR and VI image fusion based applications to represent an overview of the research status. Then we present a synthesize survey of the state of the art. Thirdly, the frequently-used image fusion quality measures are introduced. Fourthly, we perform some experiments of typical methods and make corresponding analysis. At last, we summarize the corresponding tendencies and challenges in IR and VI image fusion. This survey concludes that although various IR and VI image fusion methods have been proposed, there still exist further improvements or potential research directions in different applications of IR and VI image fusion.

  12. A novel technique to monitor thermal discharges using thermal infrared imaging.

    PubMed

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  13. Unsupervised background-constrained tank segmentation of infrared images in complex background based on the Otsu method.

    PubMed

    Zhou, Yulong; Gao, Min; Fang, Dan; Zhang, Baoquan

    2016-01-01

    In an effort to implement fast and effective tank segmentation from infrared images in complex background, the threshold of the maximum between-class variance method (i.e., the Otsu method) is analyzed and the working mechanism of the Otsu method is discussed. Subsequently, a fast and effective method for tank segmentation from infrared images in complex background is proposed based on the Otsu method via constraining the complex background of the image. Considering the complexity of background, the original image is firstly divided into three classes of target region, middle background and lower background via maximizing the sum of their between-class variances. Then, the unsupervised background constraint is implemented based on the within-class variance of target region and hence the original image can be simplified. Finally, the Otsu method is applied to simplified image for threshold selection. Experimental results on a variety of tank infrared images (880 × 480 pixels) in complex background demonstrate that the proposed method enjoys better segmentation performance and even could be comparative with the manual segmentation in segmented results. In addition, its average running time is only 9.22 ms, implying the new method with good performance in real time processing.

  14. Galileo infrared imaging spectroscopy measurements at venus

    USGS Publications Warehouse

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  15. AIRS Ozone Burden During Antarctic Winter: Time Series from 8/1/2005 to 9/30/2005

    NASA Image and Video Library

    2007-07-24

    The Atmospheric Infrared Sounder (AIRS) provides a daily global 3-dimensional view of Earth's ozone layer. Since AIRS observes in the thermal infrared spectral range, it also allows scientists to view from space the Antarctic ozone hole for the first time continuously during polar winter. This image sequence captures the intensification of the annual ozone hole in the Antarctic Polar Vortex. http://photojournal.jpl.nasa.gov/catalog/PIA09938

  16. ESO imaging survey: infrared observations of CDF-S and HDF-S

    NASA Astrophysics Data System (ADS)

    Olsen, L. F.; Miralles, J.-M.; da Costa, L.; Benoist, C.; Vandame, B.; Rengelink, R.; Rité, C.; Scodeggio, M.; Slijkhuis, R.; Wicenec, A.; Zaggia, S.

    2006-06-01

    This paper presents infrared data obtained from observations carried out at the ESO 3.5 m New Technology Telescope (NTT) of the Hubble Deep Field South (HDF-S) and the Chandra Deep Field South (CDF-S). These data were taken as part of the ESO Imaging Survey (EIS) program, a public survey conducted by ESO to promote follow-up observations with the VLT. In the HDF-S field the infrared observations cover an area of ~53 square arcmin, encompassing the HST WFPC2 and STIS fields, in the JHKs passbands. The seeing measured in the final stacked images ranges from 0.79 arcsec to 1.22 arcsec and the median limiting magnitudes (AB system, 2'' aperture, 5σ detection limit) are J_AB˜23.0, H_AB˜22.8 and K_AB˜23.0 mag. Less complete data are also available in JKs for the adjacent HST NICMOS field. For CDF-S, the infrared observations cover a total area of ~100 square arcmin, reaching median limiting magnitudes (as defined above) of J_AB˜23.6 and K_AB˜22.7 mag. For one CDF-S field H band data are also available. This paper describes the observations and presents the results of new reductions carried out entirely through the un-supervised, high-throughput EIS Data Reduction System and its associated EIS/MVM C++-based image processing library developed, over the past 5 years, by the EIS project and now publicly available. The paper also presents source catalogs extracted from the final co-added images which are used to evaluate the scientific quality of the survey products, and hence the performance of the software. This is done comparing the results obtained in the present work with those obtained by other authors from independent data and/or reductions carried out with different software packages and techniques. The final science-grade catalogs together with the astrometrically and photometrically calibrated co-added images are available at CDS.

  17. Infrared microscopic imaging of cutaneous wound healing: lipid conformation in the migrating epithelial tongue

    NASA Astrophysics Data System (ADS)

    Yu, Guo; Stojadinovic, Olivera; Tomic-Canic, Marjana; Flach, Carol R.; Mendelsohn, Richard

    2012-09-01

    Infrared microscopic imaging has been utilized to analyze for the first time the spatial distribution of lipid structure in an ex vivo human organ culture skin wound healing model. Infrared images were collected at zero, two, four, and six days following wounding. Analysis of lipid infrared spectral properties revealed the presence of a lipid class with disordered chains within and in the vicinity of the migrating epithelial tongue. The presence of lipid ester C=O bands colocalized with the disordered chains provided evidence for the presence of carbonyl-containing lipid species. Gene array data complemented the biophysical studies and provided a biological rationale for the generation of the disordered chain species. This is the first clear observation, to our knowledge, of disordered lipid involvement in cutaneous wound healing. Several possibilities are discussed for the biological relevance of these observations.

  18. Results from the Two-Year Infrared Cloud Imager Deployment at ARM's NSA Observatory in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Shaw, J. A.; Nugent, P. W.

    2016-12-01

    Ground-based longwave-infrared (LWIR) cloud imaging can provide continuous cloud measurements in the Arctic. This is of particular importance during the Arctic winter when visible wavelength cloud imaging systems cannot operate. This method uses a thermal infrared camera to observe clouds and produce measurements of cloud amount and cloud optical depth. The Montana State University Optical Remote Sensor Laboratory deployed an infrared cloud imager (ICI) at the Atmospheric Radiation Monitoring North Slope of Alaska site at Barrow, AK from July 2012 through July 2014. This study was used to both understand the long-term operation of an ICI in the Arctic and to study the consistency of the ICI data products in relation to co-located active and passive sensors. The ICI was found to have a high correlation (> 0.92) with collocated cloud instruments and to produce an unbiased data product. However, the ICI also detects thin clouds that are not detected by most operational cloud sensors. Comparisons with high-sensitivity actively sensed cloud products confirm the existence of these thin clouds. Infrared cloud imaging systems can serve a critical role in developing our understanding of cloud cover in the Arctic by provided a continuous annual measurement of clouds at sites of interest.

  19. Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors †

    PubMed Central

    Georgitzikis, Epimitheas; Vamvaka, Ioanna; Frazzica, Fortunato; Van Olmen, Jan; De Moor, Piet; Heremans, Paul; Hens, Zeger; Cheyns, David

    2017-01-01

    Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III–V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10−6 A/cm2 at −2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors. PMID:29232871

  20. Exploring the use of thermal infrared imaging in human stress research.

    PubMed

    Engert, Veronika; Merla, Arcangelo; Grant, Joshua A; Cardone, Daniela; Tusche, Anita; Singer, Tania

    2014-01-01

    High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints). Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol) in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers) did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  1. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  2. Color Infrared, Terra Sirenum

    NASA Image and Video Library

    2002-03-01

    This is the first high-resolution color infrared image taken of Mars. The image was constructed using three of the ten infrared filters on the thermal emission imaging system of NASA Mars Odyssey spacecraft.

  3. [Development of a near-infrared fluorescence imaging system based on fluorescence properties of methylene blue].

    PubMed

    Huang, Lu-Mao; DU, Pei-Yan; Chen, Lan; Zhang, Sa; Zhou, Di-Fu; Chen, Chun-Lin; Xin, Xue-Gang

    2018-04-20

    To develop a near-infrared fluorescence imaging system based on the fluorescence properties of methylene blue. According to the optical properties of methylene blue, we used a custom-made specific LED light source and an interference filter, a CCD camera and other relevant components to construct the near-infrared fluorescence imaging system. We tested the signal-to-background ratio (SBR) of this imaging system for detecting methylene blue under different experimental conditions and analyzed the SBR in urine samples collected from 15 Wistar rats with intravenous injection of methylene blue at the doses of 0, 1.4, 1.6, 1.8, or 2.0 0 mg/kg methylene blue. The SBR of this imaging system for detecting methylene blue was affected by the concentration of methylene blue and the distance from the sample (P<0.05). In the urine samples from Wistar rats, the SBR varied with the the injection dose, and the rats injected with 1.6 mg/kg methylene blue showed the highest SBR (8.71∓0.20) in the urine (P<0.05). This near-infrared fluorescence imaging system is useful for fluorescence detection of methylene blue and can be used for real-time recognition of ureters during abdominal surgery.

  4. A Resolved Near-Infrared Image of the Inner Cavity in the GM Aur Transitional Disk

    NASA Technical Reports Server (NTRS)

    Oh, Daehyeon; Hashimoto, Jun; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; Nakagawa, Takao; Mayama, Satoshi; Uyama, Taichi; Grady, Carol A.; McElwain, Michael W.

    2016-01-01

    We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0 07 and radius approximately 0 05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18+/ 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 34M(sub Jup) planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HSTNICMOS, and this difference may indicate the grain growth process in the disk.

  5. Optimal Estimation Retrieval of Mid-Tropospheric Carbon Dioxide and Methane Using the Atmospheric Infrared Sounder (AIRS) Radiances.

    NASA Astrophysics Data System (ADS)

    Imbiriba, B.

    2017-12-01

    Carbon dioxide and methane are the most important anthropogenic greenhouse contributions to climate change. Space-based remote sensing measurements of carbon dioxide and methane would help to understand the generation, absorption and transport mechanisms and characterization of such gases. Space-based hyperspectral thermal infrared remote sensing measurements using NASA's Atmospheric Infrared Sounder (AIRS) instrument can provide 14 years of observations of radiances at the top of the atmosphere.Here we present a Optimal Estimation based retrieval system for surface temperature, water vapor, carbon dioxide, methane, and other trace gases, based on selected AIRS channels that allow for CO2 sensitivity down to the lower part of the middle troposphere. We use the SARTA fast forward model developed at University of Maryland Baltimore County, and use the ERA product for prior state atmospheric profiles.We retrieve CO2 and CH4 column concentrations across 14 years of AIRS measurements, for clear only field-of-views, using the AIRS L1B Calibration Subset. We then compare these to the standard AIRS L2 CO2 retrievals, as well TES, and OCO2 data, and the GlobalView/CarbonTracker CO2/CH4 model data from NOAA. We evaluate the hemispheric seasonal cycles, growth rates, and possible interhemispheric transport. We also evaluate the use of atmospheric nitrous oxide concentration to correct for the errors in the temperature profile.

  6. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    PubMed

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  7. The Munich Near-Infrared Cluster Survey - IV. Biases in the completeness of near-infrared imaging data

    NASA Astrophysics Data System (ADS)

    Snigula, J.; Drory, N.; Bender, R.; Botzler, C. S.; Feulner, G.; Hopp, U.

    2002-11-01

    We present the results of completeness simulations for the detection of point sources as well as redshifted elliptical and spiral galaxies in the K'-band images of the Munich Near-Infrared Cluster Survey (MUNICS). The main focus of this work is to quantify the selection effects introduced by threshold-based object detection algorithms used in deep imaging surveys. Therefore, we simulate objects obeying the well-known scaling relations between effective radius and central surface brightness, for both de Vaucouleurs and exponential profiles. The results of these simulations, while presented for the MUNICS project, are applicable in a much wider context to deep optical and near-infrared selected samples. We investigate the detection probability as well as the reliability for recovering the true total magnitude with Kron-like (adaptive) aperture photometry. The results are compared with the predictions of the visibility theory of Disney and Phillipps in terms of the detection rate and the lost-light fraction. Additionally, the effects attributable to seeing are explored. The results show a bias against detecting high-redshifted massive elliptical galaxies in comparison to disc galaxies with exponential profiles, and that the measurements of the total magnitudes for intrinsically bright elliptical galaxies are systematically too faint. Disc galaxies, in contrast, show no significant offset in the magnitude measurement of luminous objects. Finally, we present an analytic formula to predict the completeness of point sources using only basic image parameters.

  8. Light-leaking region segmentation of FOG fiber based on quality evaluation of infrared image

    NASA Astrophysics Data System (ADS)

    Liu, Haoting; Wang, Wei; Gao, Feng; Shan, Lianjie; Ma, Yuzhou; Ge, Wenqian

    2014-07-01

    To improve the assembly reliability of Fiber Optic Gyroscope (FOG), a light leakage detection system and method is developed. First, an agile movement control platform is designed to implement the pose control of FOG optical path component in 6 Degrees of Freedom (DOF). Second, an infrared camera is employed to capture the working state images of corresponding fibers in optical path component after the manual assembly of FOG; therefore the entire light transmission process of key sections in light-path can be recorded. Third, an image quality evaluation based region segmentation method is developed for the light leakage images. In contrast to the traditional methods, the image quality metrics, including the region contrast, the edge blur, and the image noise level, are firstly considered to distinguish the image characters of infrared image; then the robust segmentation algorithms, including graph cut and flood fill, are all developed for region segmentation according to the specific image quality. Finally, after the image segmentation of light leakage region, the typical light-leaking type, such as the point defect, the wedge defect, and the surface defect can be identified. By using the image quality based method, the applicability of our proposed system can be improved dramatically. Many experiment results have proved the validity and effectiveness of this method.

  9. Stripe nonuniformity correction for infrared imaging system based on single image optimization

    NASA Astrophysics Data System (ADS)

    Hua, Weiping; Zhao, Jufeng; Cui, Guangmang; Gong, Xiaoli; Ge, Peng; Zhang, Jiang; Xu, Zhihai

    2018-06-01

    Infrared imaging is often disturbed by stripe nonuniformity noise. Scene-based correction method can effectively reduce the impact of stripe noise. In this paper, a stripe nonuniformity correction method based on differential constraint is proposed. Firstly, the gray distribution of stripe nonuniformity is analyzed and the penalty function is constructed by the difference of horizontal gradient and vertical gradient. With the weight function, the penalty function is optimized to obtain the corrected image. Comparing with other single-frame approaches, experiments show that the proposed method performs better in both subjective and objective analysis, and does less damage to edge and detail. Meanwhile, the proposed method runs faster. We have also discussed the differences between the proposed idea and multi-frame methods. Our method is finally well applied in hardware system.

  10. Concurrent application of TMS and near-infrared optical imaging: methodological considerations and potential artifacts

    PubMed Central

    Parks, Nathan A.

    2013-01-01

    The simultaneous application of transcranial magnetic stimulation (TMS) with non-invasive neuroimaging provides a powerful method for investigating functional connectivity in the human brain and the causal relationships between areas in distributed brain networks. TMS has been combined with numerous neuroimaging techniques including, electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). Recent work has also demonstrated the feasibility and utility of combining TMS with non-invasive near-infrared optical imaging techniques, functional near-infrared spectroscopy (fNIRS) and the event-related optical signal (EROS). Simultaneous TMS and optical imaging affords a number of advantages over other neuroimaging methods but also involves a unique set of methodological challenges and considerations. This paper describes the methodology of concurrently performing optical imaging during the administration of TMS, focusing on experimental design, potential artifacts, and approaches to controlling for these artifacts. PMID:24065911

  11. Near-infrared fluorescence image-guidance in plastic surgery: A systematic review.

    PubMed

    Cornelissen, Anouk J M; van Mulken, Tom J M; Graupner, Caitlin; Qiu, Shan S; Keuter, Xavier H A; van der Hulst, René R W J; Schols, Rutger M

    2018-01-01

    Near-infrared fluorescence (NIRF) imaging technique, after administration of contrast agents with fluorescent characteristics in the near-infrared (700-900 nm) range, is considered to possess great potential for the future of plastic surgery, given its capacity for perioperative, real-time anatomical guidance and identification. This study aimed to provide a comprehensive literature review concerning current and potential future applications of NIRF imaging in plastic surgery, thereby guiding future research. A systematic literature search was performed in databases of Cochrane Library CENTRAL, MEDLINE, and EMBASE (last search Oct 2017) regarding NIRF imaging in plastic surgery. Identified articles were screened and checked for eligibility by two authors independently. Forty-eight selected studies included 1166 animal/human subjects in total. NIRF imaging was described for a variety of (pre)clinical applications in plastic surgery. Thirty-two articles used NIRF angiography, i.e., vascular imaging after intravenous dye administration. Ten articles reported on NIRF lymphography after subcutaneous dye administration. Although currently most applied, general protocols for dosage and timing of dye administration for NIRF angiography and lymphography are still lacking. Three articles applied NIRF to detect nerve injury, and another three studies described other novel applications in plastic surgery. Future standard implementation of novel intraoperative optical techniques, such as NIRF imaging, could significantly contribute to perioperative anatomy guidance and facilitate critical decision-making in plastic surgical procedures. Further investigation (i.e., large multicenter randomized controlled trials) is mandatory to establish the true value of this innovative surgical imaging technique in standard clinical practice and to aid in forming consensus on protocols for general use.Level of Evidence: Not ratable.

  12. Confusion-limited galaxy fields. I - Simulated optical and near-infrared images

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1988-01-01

    Techniques for simulating images of galaxy fields are presented that extend to high redshifts and a surface density of galaxies high enough to produce overlapping images. The observed properties of galaxies and galaxy-ensembles in the 'local' universe are extrapolated to high redshifts using reasonable scenarios for the evolution of galaxies and their spatial distribution. This theoretical framework is then employed with Monte Carlo techniques to create fairly realistic two-dimensional distributions of galaxies plus optical and near-infrared sky images in a variety of model universes, using the appropriate density, luminosity, and angular size versus redshift relations.

  13. Optimization of air gap for two-dimensional imaging system using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, Tsutomu; Takeda, Tohoru; Yu, Quanwen; Hyodo, Kazuyuki; Yuasa, Tetsuya; Aiyoshi, Yuji; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao

    2000-11-01

    Since synchrotron radiation (SR) has several excellent properties such as high brilliance, broad continuous energy spectrum and small divergence, we can obtain x-ray images with high contrast and high spatial resolution by using of SR. In 2D imaging using SR, air gap method is very effective to reduce the scatter contamination. However, to use air gap method, the geometrical effect of finite source size of SR must be considered because spatial resolution of image is degraded by air gap. For 2D x-ray imaging with SR, x-ray mammography was chosen to examine the effect of air gap method. We theoretically discussed the optimization of air gap distance suing effective scatter point source model proposed by Muntz, and executed experiment with a newly manufactured monochromator with asymmetrical reflection and an imaging plate.

  14. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  15. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy

    PubMed Central

    Wang, Le; Wang, Haomin; Wagner, Martin; Yan, Yong; Jakob, Devon S.; Xu, Xiaoji G.

    2017-01-01

    Nondestructive chemical and mechanical measurements of materials with ~10-nm spatial resolution together with topography provide rich information on the compositions and organizations of heterogeneous materials and nanoscale objects. However, multimodal nanoscale correlations are difficult to achieve because of the limitation on spatial resolution of optical microscopy and constraints from instrumental complexities. We report a novel noninvasive spectroscopic scanning probe microscopy method—peak force infrared (PFIR) microscopy—that allows chemical imaging, collection of broadband infrared spectra, and mechanical mapping at a spatial resolution of 10 nm. In our technique, chemical absorption information is directly encoded in the withdraw curve of the peak force tapping cycle after illumination with synchronized infrared laser pulses in a simple apparatus. Nanoscale phase separation in block copolymers and inhomogeneity in CH3NH3PbBr3 perovskite crystals are studied with correlative infrared/mechanical nanoimaging. Furthermore, we show that the PFIR method is sensitive to the presence of surface phonon polaritons in boron nitride nanotubes. PFIR microscopy will provide a powerful analytical tool for explorations at the nanoscale across wide disciplines. PMID:28691096

  16. Detection of rheumatoid arthritis using infrared imaging

    NASA Astrophysics Data System (ADS)

    Frize, Monique; Adéa, Cynthia; Payeur, Pierre; Di Primio, Gina; Karsh, Jacob; Ogungbemile, Abiola

    2011-03-01

    Rheumatoid arthritis (RA) is an inflammatory disease causing pain, swelling, stiffness, and loss of function in joints; it is difficult to diagnose in early stages. An early diagnosis and treatment can delay the onset of severe disability. Infrared (IR) imaging offers a potential approach to detect changes in degree of inflammation. In 18 normal subjects and 13 patients diagnosed with Rheumatoid Arthritis (RA), thermal images were collected from joints of hands, wrists, palms, and knees. Regions of interest (ROIs) were manually selected from all subjects and all parts imaged. For each subject, values were calculated from the temperature measurements: Mode/Max, Median/Max, Min/Max, Variance, Max-Min, (Mode-Mean), and Mean/Min. The data sets did not have a normal distribution, therefore non parametric tests (Kruskal-Wallis and Ranksum) were applied to assess if the data from the control group and the patient group were significantly different. Results indicate that: (i) thermal images can be detected on patients with the disease; (ii) the best joints to image are the metacarpophalangeal joints of the 2nd and 3rd fingers and the knees; the difference between the two groups was significant at the 0.05 level; (iii) the best calculations to differentiate between normal subjects and patients with RA are the Mode/Max, Variance, and Max-Min. We concluded that it is possible to reliably detect RA in patients using IR imaging. Future work will include a prospective study of normal subjects and patients that will compare IR results with Magnetic Resonance (MR) analysis.

  17. Microwave Imaging with Infrared 2-D Lock-in Amplifier

    NASA Astrophysics Data System (ADS)

    Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi

    We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.

  18. Detection of leaks in buried rural water pipelines using thermal infrared images

    USGS Publications Warehouse

    Eidenshink, Jeffery C.

    1985-01-01

    Leakage is a major problem in many pipelines. Minor leaks called 'seeper leaks', which generally range from 2 to 10 m3 per day, are common and are difficult to detect using conventional ground surveys. The objective of this research was to determine whether airborne thermal-infrared remote sensing could be used in detecting leaks and monitoring rural water pipelines. This study indicates that such leaks can be detected using low-altitude 8.7- to 11.5. micrometer wavelength, thermal infrared images collected under proper conditions.

  19. AIRS/AMSU/HSB Data at Goddard Earth Science DISC DAAC

    NASA Astrophysics Data System (ADS)

    Cho, S.; Qin, J.; Li, J.; Lu, L.

    2003-12-01

    The Atmospheric Infrared Sounder (AIRS) data product suite is now available at the NASA/GSFC Distributed Active Archive Center (GDAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) in Greenbelt, Maryland, USA. AIRS data products are a combination of AIRS, Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder for Brazil (HSB) measurements. Global coverage by the instruments is obtained twice daily (day and night) and the data along the orbit is processed into 6-minute granules. AIRS alone has 2,378 channels measuring in the infrared range 3.74-15.4 mm and four channels measuring in the visible/near-infrared range 0.4-1.1mm. A day's worth of AIRS data is divided into 240 scenes each of 6 minute duration. The data is produced in HDF-EOS format and generally become available 30-36 hours after satellite measurement from the GDAAC. Level1B data (calibrated, geo-located radiances) contains radiances from 2378 AIRS infrared channels in the 3.74 to 15.4 μm and 4 visible/near infrared channels in the 0.4 to 1.0 μm, and brightness temperature from 15 AMSU-A channels in the 50 - 90 GHz and 23 - 32 GHz and 4 HSB in the 150 - 190 GHz. The brightness temperature from two microwave instruments is used to initialize the surface temperature and atmospheric temperature profile required for the retrieval of the final AIRS geophysical products. Level2 data (geophysical parameters) is grouped into three products - Cloud-Cleared Infrared Radiance, Standard Retrieval, and Support Retrieval. The retrieval products contain atmospheric parameters such as temperatures, humidity, cloud, water vapor, and ozone in 28 pressure levels and 100 pressure levels respectively. Support Retrieval product is intended for the knowledgeable, experienced user of AIRS/AMSU-A/HSB products. It contains high resolution profiles intended to be used for computation of radiances, as-yet unimplemented research products and various parameters and intermediate

  20. Infrared hyperspectral imaging for chemical vapour detection

    NASA Astrophysics Data System (ADS)

    Ruxton, K.; Robertson, G.; Miller, W.; Malcolm, G. P. A.; Maker, G. T.; Howle, C. R.

    2012-10-01

    Active hyperspectral imaging is a valuable tool in a wide range of applications. One such area is the detection and identification of chemicals, especially toxic chemical warfare agents, through analysis of the resulting absorption spectrum. This work presents a selection of results from a prototype midwave infrared (MWIR) hyperspectral imaging instrument that has successfully been used for compound detection at a range of standoff distances. Active hyperspectral imaging utilises a broadly tunable laser source to illuminate the scene with light at a range of wavelengths. While there are a number of illumination methods, the chosen configuration illuminates the scene by raster scanning the laser beam using a pair of galvanometric mirrors. The resulting backscattered light from the scene is collected by the same mirrors and focussed onto a suitable single-point detector, where the image is constructed pixel by pixel. The imaging instrument that was developed in this work is based around an IR optical parametric oscillator (OPO) source with broad tunability, operating in the 2.6 to 3.7 μm (MWIR) and 1.5 to 1.8 μm (shortwave IR, SWIR) spectral regions. The MWIR beam was primarily used as it addressed the fundamental absorption features of the target compounds compared to the overtone and combination bands in the SWIR region, which can be less intense by more than an order of magnitude. We show that a prototype NCI instrument was able to locate hydrocarbon materials at distances up to 15 metres.

  1. Infrared and Visible Image Fusion Based on Different Constraints in the Non-Subsampled Shearlet Transform Domain.

    PubMed

    Huang, Yan; Bi, Duyan; Wu, Dongpeng

    2018-04-11

    There are many artificial parameters when fuse infrared and visible images, to overcome the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and visible images that is based on different constraints in non-subsampled shearlet transform (NSST) domain is proposed. There are high bands and low bands of images that are decomposed by the NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient constraint, the fused image can obtain more details; fusing the low bands by the constraint of saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is used to update the coefficient. The fused images and the quantitative results demonstrate that our method is more effective in reserving details and highlighting the targets when compared with other state-of-the-art methods.

  2. Infrared and Visible Image Fusion Based on Different Constraints in the Non-Subsampled Shearlet Transform Domain

    PubMed Central

    Huang, Yan; Bi, Duyan; Wu, Dongpeng

    2018-01-01

    There are many artificial parameters when fuse infrared and visible images, to overcome the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and visible images that is based on different constraints in non-subsampled shearlet transform (NSST) domain is proposed. There are high bands and low bands of images that are decomposed by the NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient constraint, the fused image can obtain more details; fusing the low bands by the constraint of saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is used to update the coefficient. The fused images and the quantitative results demonstrate that our method is more effective in reserving details and highlighting the targets when compared with other state-of-the-art methods. PMID:29641505

  3. Pedestrian detection in infrared image using HOG and Autoencoder

    NASA Astrophysics Data System (ADS)

    Chen, Tianbiao; Zhang, Hao; Shi, Wenjie; Zhang, Yu

    2017-11-01

    In order to guarantee the safety of driving at night, vehicle-mounted night vision system was used to detect pedestrian in front of cars and send alarm to prevent the potential dangerous. To decrease the false positive rate (FPR) and increase the true positive rate (TPR), a pedestrian detection method based on HOG and Autoencoder (HOG+Autoencoder) was presented. Firstly, the HOG features of input images were computed and encoded by Autoencoder. Then the encoded features were classified by Softmax. In the process of training, Autoencoder was trained unsupervised. Softmax was trained with supervision. Autoencoder and Softmax were stacked into a model and fine-tuned by labeled images. Experiment was conducted to compare the detection performance between HOG and HOG+Autoencoder, using images collected by vehicle-mounted infrared camera. There were 80000 images for training set and 20000 for the testing set, with a rate of 1:3 between positive and negative images. The result shows that when TPR is 95%, FPR of HOG+Autoencoder is 0.4%, while the FPR of HOG is 5% with the same TPR.

  4. Infrared imaging based hyperventilation monitoring through respiration rate estimation

    NASA Astrophysics Data System (ADS)

    Basu, Anushree; Routray, Aurobinda; Mukherjee, Rashmi; Shit, Suprosanna

    2016-07-01

    A change in the skin temperature is used as an indicator of physical illness which can be detected through infrared thermography. Thermograms or thermal images can be used as an effective diagnostic tool for monitoring and diagnosis of various diseases. This paper describes an infrared thermography based approach for detecting hyperventilation caused due to stress and anxiety in human beings by computing their respiration rates. The work employs computer vision techniques for tracking the region of interest from thermal video to compute the breath rate. Experiments have been performed on 30 subjects. Corner feature extraction using Minimum Eigenvalue (Shi-Tomasi) algorithm and registration using Kanade Lucas-Tomasi algorithm has been used here. Thermal signature around the extracted region is detected and subsequently filtered through a band pass filter to compute the respiration profile of an individual. If the respiration profile shows unusual pattern and exceeds the threshold we conclude that the person is stressed and tending to hyperventilate. Results obtained are compared with standard contact based methods which have shown significant correlations. It is envisaged that the thermal image based approach not only will help in detecting hyperventilation but can assist in regular stress monitoring as it is non-invasive method.

  5. Phosphonated Near-Infrared Fluorophores for Biomedical Imaging of Bone**

    PubMed Central

    Hyun, Hoon; Wada, Hideyuki; Bao, Kai; Gravier, Julien; Yadav, Yogesh; Laramie, Matt; Henary, Maged; Frangioni, John V.

    2014-01-01

    The conventional method for creating targeted contrast agents is to conjugate separate targeting and fluorophore domains. In this study we report a new strategy based on incorporation of targeting moieties into the non-resonant structure of pentamethine and heptamethine indocyanines. Using the known affinity of phosphonates for bone minerals as a model system, we have synthesized two families of bifunctional molecules that target bone without the need for a traditional bisphosphonate. With peak fluorescence emission at ≈ 700 nm or ≈ 800 nm, these molecules can be used for FLARE dual-channel imaging. Longitudinal FLARE studies in mice demonstrate that phosphonated near-infrared fluorophores remain stable in bone for over 5 weeks, and histological analysis demonstrates incorporation into bone matrix. Taken together, we describe a new strategy for creating ultracompact, targeted, near-infrared fluorophores for various bioimaging applications. PMID:25139079

  6. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    PubMed

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  7. The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations

    NASA Astrophysics Data System (ADS)

    Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai

    2016-07-01

    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.

  8. Biliary tract visualization using near-infrared imaging with indocyanine green during laparoscopic cholecystectomy: results of a systematic review.

    PubMed

    Vlek, S L; van Dam, D A; Rubinstein, S M; de Lange-de Klerk, E S M; Schoonmade, L J; Tuynman, J B; Meijerink, W J H J; Ankersmit, M

    2017-07-01

    Near-infrared imaging with indocyanine green (ICG) has been extensively investigated during laparoscopic cholecystectomy (LC). However, methods vary between studies, especially regarding patient selection, dosage and timing. The aim of this systematic review was to evaluate the potential of the near-infrared imaging technique with ICG to identify biliary structures during LC. A comprehensive systematic literature search was performed. Prospective trials examining the use of ICG during LC were included. Primary outcome was biliary tract visualization. Risk of bias was assessed using ROBINS-I. Secondly, a meta-analysis was performed comparing ICG to intraoperative cholangiography (IOC) for identification of biliary structures. GRADE was used to assess the quality of the evidence. Nineteen studies were included. Based upon the pooled data from 13 studies, cystic duct (Lusch et al. in J Endourol 28:261-266, 2014) visualization was 86.5% (95% CI 71.2-96.6%) prior to dissection of Calot's triangle with a 2.5-mg dosage of ICG and 96.5% (95% CI 93.9-98.4%) after dissection. The results were not appreciably different when the dosage was based upon bodyweight. There is moderate quality evidence that the CD is more frequently visualized using ICG than IOC (RR 1.16; 95% CI 1.00-1.35); however, this difference was not statistically significant. This systematic review provides equal results for biliary tract visualization with near-infrared imaging with ICG during LC compared to IOC. Near-infrared imaging with ICG has the potential to replace IOC for biliary mapping. However, methods of near-infrared imaging with ICG vary. Future research is necessary for optimization and standardization of the near-infrared ICG technique.

  9. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  10. Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.

  11. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  12. The use of near-infrared fluorescence imaging in endocrine surgical procedures.

    PubMed

    Kahramangil, Bora; Berber, Eren

    2017-06-01

    Near-infrared fluorescence imaging in endocrine surgery is a new, yet highly investigated area. It involves indocyanine green use as well as parathyroid autofluorescence. Several groups have described their technique and reported on the observed utility. However, there is no consensus on technical details. Furthermore, the correlation between intraoperative findings and postoperative outcomes is unclear. With this study, we aim to review the current literature on fluorescence imaging and share our insights on technical details. © 2017 Wiley Periodicals, Inc.

  13. Exploring the Use of Thermal Infrared Imaging in Human Stress Research

    PubMed Central

    Grant, Joshua A.; Cardone, Daniela; Tusche, Anita; Singer, Tania

    2014-01-01

    High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints). Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol) in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers) did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle. PMID:24675709

  14. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform

    DOE PAGES

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...

    2016-02-18

    This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.

  15. WISPIR: A Wide-Field Imaging SPectrograph for the InfraRed for the SPICA Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Mundy, Lee G.

    2010-01-01

    We have undertaken a study of a far infrared imaging spectrometer based on a Fourier transform spectrometer that uses well-understood, high maturity optics, cryogenics, and detectors to further our knowledge of the chemical and astrophysical evolution of the Universe as it formed planets, stars, and the variety of galaxy morphologies that we observe today. The instrument, Wide-field Imaging Spectrometer for the InfraRed (WISPIR), would operate on the SPICA observatory, and will feature a spectral range from 35 - 210 microns and a spectral resolving power of R=1,000 to 6,000, depending on wavelength. WISPIR provides a choice of full-field spectral imaging over a 2'x2' field or long-slit spectral imaging along a 2' slit for studies of astrophysical structures in the local and high-redshift Universe. WISPIR in long-slit mode will attain a sensitivity two orders of magnitude better than what is currently available.

  16. Infrared and visible images registration with adaptable local-global feature integration for rail inspection

    NASA Astrophysics Data System (ADS)

    Tang, Chaoqing; Tian, Gui Yun; Chen, Xiaotian; Wu, Jianbo; Li, Kongjing; Meng, Hongying

    2017-12-01

    Active thermography provides infrared images that contain sub-surface defect information, while visible images only reveal surface information. Mapping infrared information to visible images offers more comprehensive visualization for decision-making in rail inspection. However, the common information for registration is limited due to different modalities in both local and global level. For example, rail track which has low temperature contrast reveals rich details in visible images, but turns blurry in the infrared counterparts. This paper proposes a registration algorithm called Edge-Guided Speeded-Up-Robust-Features (EG-SURF) to address this issue. Rather than sequentially integrating local and global information in matching stage which suffered from buckets effect, this algorithm adaptively integrates local and global information into a descriptor to gather more common information before matching. This adaptability consists of two facets, an adaptable weighting factor between local and global information, and an adaptable main direction accuracy. The local information is extracted using SURF while the global information is represented by shape context from edges. Meanwhile, in shape context generation process, edges are weighted according to local scale and decomposed into bins using a vector decomposition manner to provide more accurate descriptor. The proposed algorithm is qualitatively and quantitatively validated using eddy current pulsed thermography scene in the experiments. In comparison with other algorithms, better performance has been achieved.

  17. Research on the shortwave infrared hyperspectral imaging technology based on Integrated Stepwise filter

    NASA Astrophysics Data System (ADS)

    Wei, Liqing; Xiao, Xizhong; Wang, Yueming; Zhuang, Xiaoqiong; Wang, Jianyu

    2017-11-01

    Space-borne hyperspectral imagery is an important tool for earth sciences and industrial applications. Higher spatial and spectral resolutions have been sought persistently, although this results in more power, larger volume and weight during a space-borne spectral imager design. For miniaturization of hyperspectral imager and optimization of spectral splitting methods, several methods are compared in this paper. Spectral time delay integration (TDI) method with high transmittance Integrated Stepwise Filter (ISF) is proposed.With the method, an ISF imaging spectrometer with TDI could achieve higher system sensitivity than the traditional prism/grating imaging spectrometer. In addition, the ISF imaging spectrometer performs well in suppressing infrared background radiation produced by instrument. A compact shortwave infrared (SWIR) hyperspectral imager prototype based on HgCdTe covering the spectral range of 2.0-2.5 μm with 6 TDI stages was designed and integrated. To investigate the performance of ISF spectrometer, a method to derive the optimal blocking band curve of the ISF is introduced, along with known error characteristics. To assess spectral performance of the ISF system, a new spectral calibration based on blackbody radiation with temperature scanning is proposed. The results of the imaging experiment showed the merits of ISF. ISF has great application prospects in the field of high sensitivity and high resolution space-borne hyperspectral imagery.

  18. Development of InSb charge-coupled infrared imaging devices: Linear imager

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.

    1976-01-01

    The following results were accomplished in the development of charge coupled infrared imaging devices: (1) a four-phase overlapping gate with 9 transfers (2-bits) and 1.0-mil gate lengths was successfully operated, (2) the measured transfer efficiency of 0.975 for this device is in excellent agreement with predictions for the reduced gate length device, (3) mask revisions of the channel stop metal on the 8582 mask have been carried out with the result being a large increase in the dc yield of the tested devices, (4) partial optical sensitivity to chopped blackbody radiation was observed for an 8582 9-bit imager, (5) analytical consideration of the modulation transfer function degradation caused by transfer inefficiency in the CCD registers was presented, and (6) for larger array lengths or for the insertion of isolated bits between sensors, improvements in InSb fabrication technology with corresponding decrease in the interface state density are required.

  19. Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser

    PubMed Central

    Kole, Matthew R.; Reddy, Rohith K.; Schulmerich, Matthew V.; Gelber, Matthew K.; Bhargava, Rohit

    2012-01-01

    Fourier-transform infrared imaging (FT-IR) is a well-established modality but requires the acquisition of a spectrum over a large bandwidth, even in cases where only a few spectral features may be of interest. Discrete frequency infrared (DF-IR) methods are now emerging in which a small number of measurements may provide all the analytical information needed. The DF-IR approach is enabled by the development of new sources integrating frequency selection, in particular of tunable, narrow-bandwidth sources with enough power at each wavelength to successfully make absorption measurements. Here, we describe a DF-IR imaging microscope that uses an external cavity quantum cascade laser (QCL) as a source. We present two configurations, one with an uncooled bolometer as a detector and another with a liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the consequences of the coherent properties of the beam with respect to imaging and compare these observations to simulations. Additionally, we demonstrate that the use of a tunable laser source represents a distinct advantage over broadband sources when using a small aperture (narrower than the wavelength of light) to perform high-quality point mapping. The two advances highlight the potential application areas for these emerging sources in IR microscopy and imaging. PMID:23113653

  20. A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Daehyeon; Yang, Yi; Hashimoto, Jun

    We present high-contrast H -band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0.″07 and r ∼ 0.″05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 ± 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be causedmore » by a 3–4 M {sub Jup} planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST /NICMOS, and this difference may indicate the grain growth process in the disk.« less