Sample records for airs instrument suite

  1. Comparison of air exhausts for surgical body suits (space suits) and the potential for periprosthetic joint infection.

    PubMed

    Ling, F; Halabi, S; Jones, C

    2018-07-01

    Periprosthetic joint infection is a major complication of total joint replacement surgery and is associated with significant morbidity, mortality and financial burden. Surgical body suits (space suits), originally designed to reduce the incidence of infection, have paradoxically been implicated in increased periprosthetic joint infection rates recently. Air exhausted from space suits may contribute to this increased rate of periprosthetic joint infection. To investigate the flow of air exhausted from space suits commonly used in modern operating theatres. The exhaust airflow patterns of four commercially available space suit systems were compared using a fog machine and serial still photographs. The space suit systems tested all air exhausted into the operating room. The single fan systems with a standard surgical gown exhausted air laterally from the posterior gown fold at approximately the level of the surgical field. The single fan system with a dedicated zippered suit exhausted air at a level below the surgical field. The dual fan system exhausted air out of the top of the helmet at a level above the surgical field. Space suit systems currently in use in joint replacement surgery differ significantly from traditional body exhaust systems; rather than removing contaminated air from the operating environment, modern systems exhaust this air into the operating room, in some cases potentially towards the sterile instrument tray and the surgical field. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  2. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  3. AIRS-Light Instrument Concept and Critical Technology Development

    NASA Technical Reports Server (NTRS)

    Maschhoff, Kevin

    2001-01-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.

  4. The FIELDS Instrument Suite for Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  5. The FIELDS Instrument Suite for Solar Probe Plus

    PubMed Central

    Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.

    2018-01-01

    NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144

  6. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.

  7. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  8. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE PAGES

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...

    2018-02-21

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  9. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  10. The Characterization of Biosignatures in Caves Using an Instrument Suite.

    PubMed

    Uckert, Kyle; Chanover, Nancy J; Getty, Stephanie; Voelz, David G; Brinckerhoff, William B; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J; Li, Xiang; McAdam, Amy; Glenar, David A; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.

  11. Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System

    NASA Technical Reports Server (NTRS)

    Herrero, Federico; Jones, Hollis; Finne, Theodore; Nicholas, Andrew

    2012-01-01

    A document describes a suite that provides four simultaneous ion and neutral-atom measurements as a function of altitude, with variable sensitivity for neutral atmospheric species. The variable sensitivity makes it possible to extend the measurements over the altitude range of 100 to more than 700 km. The four instruments in the suite are (1) a neutral wind-temperature spectrometer (WTS), (2) an ion-drift ion-temperature spectrometer (IDTS), (3) a neutral mass spectrometer (NMS), and (4) an ion mass spectrometer (IMS).

  12. The Inelastic Instrument suite at the SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granroth, Garrett E; Abernathy, Douglas L; Ehlers, Georg

    2008-01-01

    Abstract The instruments in the extensive suite of spectrometers at the SNS are in various stages of installation and commissioning. The Back Scattering Spectrometer (BASIS) is installed and is in commissioning. It's near backscattering analyzer crystals provide the 3 eV resolution as expected. BASIS will enter the user program in the fall of 2007. The ARCS wide angular-range thermal to epithermal neutron spectrometer will come on line in the fall of 2007 followed shortly by the Cold Neutron Chopper Spectrometer. These two direct geometry instruments provide moderate resolution and the ability to trade resolution for flux. In addition both instrumentsmore » have detector coverage out to 140o to provide a large Q range. The SEQUOIA spectrometer, complete in 2008, is the direct geometry instrument that will provide fine resolution in the thermal to epithermal range. The Spin-Echo spectrometer, to be completed on a similar time scale, will provide the finest energy resolution worldwide. The HYSPEC spectrometer, available no later than 2011, will provide polarized capabilities and optimized flux in the thermal energy range. Finally, the Vision chemical spectrometer will use crystal analyzers to study energy transfers into the epithermal range« less

  13. 78 FR 2260 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9769-3] Proposed Consent Decree, Clean Air Act Citizen Suit... public comment period. SUMMARY: On December 7, 2012, in accordance with section 113(g) of the Clean Air... promulgate emission standards for hazardous air pollutant emissions from brick and structural clay products...

  14. Instrumentation at Paranal Observatory: maintaining the instrument suite of five large telescopes and its interferometer alive

    NASA Astrophysics Data System (ADS)

    Gillet, Gordon; Alvarez, José Luis; Beltrán, Juan; Bourget, Pierre; Castillo, Roberto; Diaz, Álvaro; Haddad, Nicolás; Leiva, Alfredo; Mardones, Pedro; O'Neal, Jared; Ribes, Mauricio; Riquelme, Miguel; Robert, Pascal; Rojas, Chester; Valenzuela, Javier

    2010-07-01

    This presentation provides interesting miscellaneous information regarding the instrumentation activities at Paranal Observatory. It introduces the suite of 23 instruments and auxiliary systems that are under the responsibility of the Paranal Instrumentation group, information on the type of instruments, their usage and downtime statistics. The data is based on comprehensive data recorded in the Paranal Night Log System and the Paranal Problem Reporting System whose principles are explained as well. The work organization of the 15 team members around the high number of instruments is laid out, which includes: - Maintaining older instruments with obsolete components - Receiving new instruments and supporting their integration and commissioning - Contributing to future instruments in their developing phase. The assignments of the Instrumentation staff to the actual instruments as well as auxiliary equipment (Laser Guide Star Facility, Mask Manufacturing Unit, Cloud Observation Tool) are explained with respect to responsibility and scheduling issues. The essential activities regarding hardware & software are presented, as well as the technical and organizational developments within the group towards its present and future challenges.

  15. 77 FR 48980 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9716-2] Proposed Consent Decree, Clean Air Act Citizen Suit... 16, 2011, Plaintiff filed a deadline suit to compel the Administrator to respond to an administrative..., avoiding the use of special characters and any form of encryption, and may be mailed to the mailing address...

  16. 75 FR 67719 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9220-1] Proposed Consent Decree, Clean Air Act Citizen Suit... suit to compel the Administrator to take final action under section 110(k) of the Act on Imperial... special characters and any form of encryption, and may be mailed to the mailing address above. FOR FURTHER...

  17. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  18. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  19. 77 FR 66978 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9750-5] Proposed Consent Decree, Clean Air Act Citizen Suit... public comment. SUMMARY: In accordance with section 113(g) of the Clean Air Act, as amended (``CAA... 5 Generating Plant, a power plant located in Milam County, Texas. Under the proposed consent decree...

  20. The Characterization of Biosignatures in Caves Using an Instrument Suite

    NASA Astrophysics Data System (ADS)

    Uckert, Kyle; Chanover, Nancy J.; Getty, Stephanie; Voelz, David G.; Brinckerhoff, William B.; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J.; Li, Xiang; McAdam, Amy; Glenar, David A.; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques.

  1. Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) Sensor Suite

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Wright, Henry; Kuhl, Chris; Schoenenberger, Mark; White, Todd; Karlgaard, Chris; Mahzari, Milad; Oishi, Tomo; Pennington, Steve; Trombetta, Nick; hide

    2017-01-01

    The Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite seeks to address the aerodynamic, aerothermodynamic, and thermal protection system (TPS) performance issues during atmospheric entry, descent, and landing of the Mars 2020 mission. Based on the highly successful instrumentation suite that flew on Mars Science Laboratory (MEDLI), the new sensor suite expands on the types of measurements and also seeks to answer questions not fully addressed by the previous mission. Sensor Package: MEDLI2 consists of 7 pressure transducers, 17 thermal plugs, 2 heat flux sensors, and one radiometer. The sensors are distributed across both the heatshield and backshell, unlike MEDLI (the first sensor suite), which was located solely on the heat-shield. The sensors will measure supersonic pressure on the forebody, a pressure measurement on the aftbody, near-surface and in-depth temperatures in the heatshield and backshell TPS materials, direct total heat flux on the aftbody, and direct radiative heating on the aftbody. Instrument Development: The supersonic pressure transducers, the direct heat flux sensors, and the radiometer all were tested during the development phase. The status of these sensors, including the piezo-resistive pressure sensors, will be presented. The current plans for qualification and calibration for all of the sensors will also be discussed. Post-Flight Data Analysis: Similar to MEDLI, the estimated flight trajectory will be reconstructed from the data. The aerodynamic parameters that will be reconstructed will be the axial force coefficient, freestream Mach number, base pressure, atmospheric density, and winds. The aerothermal quantities that will be determined are the heatshield and backshell aero-heating, turbulence transition across the heatshield, and TPS in-depth performance of PICA. By directly measuring the radiative and total heat fluxes on the back-shell, the convective portion of the heat flux will be estimated. The status

  2. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  3. 78 FR 43200 - Proposed Settlement Agreement, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... Social Responsibility--Los Angeles v. EPA, No. 12-56175, upon receipt of written notice from EPA that the... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OGC-2013-0484; FRL-9835-6] Proposed Settlement Agreement, Clean Air Act Citizen Suit AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of proposed...

  4. Evaluation of the operator protection factors offered by positive pressure air suits against airborne microbiological challenge.

    PubMed

    Steward, Jackie A; Lever, Mark S

    2012-08-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories.

  5. MGGPOD: a Monte Carlo Suite for Modeling Instrumental Line and Continuum Backgrounds in Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Weidenspointner, G.; Harris, M. J.; Sturner, S.; Teegarden, B. J.; Ferguson, C.

    2004-01-01

    Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low and intermediate energy gamma-ray astronomy (approximately 50 keV - 10 MeV). Therefore a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition t o continuum backgrounds. The MGGPOD package and documentation are publicly available for download. We demonstrate the capabilities of the MGGPOD suite by modeling high resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data, and provide identifications for the numerous instrumental lines.

  6. 77 FR 59023 - Preoperational Testing of Instrument and Control Air Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0065] Preoperational Testing of Instrument and Control Air..., ``Preoperational Testing of Instrument and Control Air Systems.'' This regulatory guide is being revised to address... instrument and control air systems (ICAS) to meet seismic requirement, ICAS air- dryer testing to meet dew...

  7. NIST gravimetrically prepared atmospheric level methane in dry air standards suite.

    PubMed

    Rhoderick, George C; Carney, Jennifer; Guenther, Franklin R

    2012-04-17

    The Gas Metrology Group at the National Institute of Standards and Technology was tasked, by a congressional climate change act, to support the atmospheric measurement community through standards development of key greenhouse gases. This paper discusses the development of a methane (CH(4)) primary standard gas mixture (PSM) suite to support CH(4) measurement needs over a large amount-of-substance fraction range 0.3-20,000 μmol mol(-1), but with emphasis at the atmospheric level 300-4000 nmol mol(-1). Thirty-six CH(4) in dry air PSMs were prepared in 5.9 L high-pressure aluminum cylinders with use of a time-tested gravimetric technique. Ultimately 14 of these 36 PSMs define a CH(4) standard suite covering the nominal ambient atmospheric range of 300-4000 nmol mol(-1). Starting materials of pure CH(4) and cylinders of dry air were exhaustively analyzed to determine the purity and air composition. Gas chromatography with flame-ionization detection (GC-FID) was used to determine a CH(4) response for each of the 14 PSMs where the reproducibility of average measurement ratios as a standard error was typically (0.04-0.26) %. An ISO 6134-compliant generalized least-squares regression (GenLine) program was used to analyze the consistency of the CH(4) suite. All 14 PSMs passed the u-test with residuals between the gravimetric and the GenLine solution values being between -0.74 and 1.31 nmol mol(-1); (0.00-0.16)% relative absolute. One of the 14 PSMs, FF4288 at 1836.16 ± 0.75 nmol mol(-1) (k = 1) amount-of-substance fraction, was sent to the Korea Research Institute of Standards and Science (KRISS), the Republic of Korea's National Metrology Institute, for comparison. The same PSM was subsequently sent to the National Oceanic and Atmospheric Administration (NOAA) for analysis to their standards. Results show agreement between KRISS-NIST of +0.13% relative (+2.3 nmol mol(-1)) and NOAA-NIST of -0.14% relative (-2.54 nmol mol(-1)).

  8. Performance status of the AIRS instrument thirteen years after launch

    NASA Astrophysics Data System (ADS)

    Elliott, Denis A.; Pagano, Thomas S.; Aumann, Hartmut H.; Broberg, Steven E.

    2015-09-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 μm to 15.4 μm and a 13.5 km footprint at nadir. AIRS is a "facility" instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2 , CO, SO2 , O3 and CH4. AIRS data are used for weather forecasting, climate process studies and validating climate models. The AIRS instrument has far exceeded its required design life of 5 years, with nearly 13 years of routine science operations that began on August 31, 2002. While the instrument has performed exceptionally well, with little sign of wear, the AIRS Project continues to monitor and maintain the health of AIRS, characterize its behavior and improve performance where possible. Radiometric stability has been monitored and trending shows better than 16 mK/year stability. Spectral calibration stability is better than 1 ppm/year. At this time we expect the AIRS to continue to perform well into the next decade. This paper contains updates to previous instrument status reports, with emphasis on the last three years.

  9. Outcrop-Scale Hyperspectral Studies of a Lacustrine-Volcanic Mars Analog: Examination with a Mars 2020-like Instrument Suite

    NASA Astrophysics Data System (ADS)

    Martin, P.; Ehlmann, B. L.; Blaney, D. L.; Bhartia, R.; Allwood, A.

    2015-12-01

    Using the recently developed Ultra Compact Imaging Spectrometer (UCIS) (0.4-2.5 μm) to generate outcrop-scale infrared images and compositional maps, a Mars-relevant field site near China Ranch in the Mojave Desert has been surveyed and sampled to analyze the synergies between instruments in the Mars 2020 rover instrument suite. The site is broadly comprised of large lacustrine gypsum beds with fine-grained gypsiferous mudstones and interbedded volcanic ashes deposited in the Pleistocene, with a carbonate unit atop the outcrop. Alteration products such as clays and iron oxides are pervasive throughout the sequence. Mineralogical mapping of the outcrop was performed using UCIS. As the 2020 rover will have an onboard multispectral camera and IR point spectrometer, Mastcam-Z and SuperCam, this process of spectral analysis leading to the selection of sites for more detailed investigation is similar to the process by which samples will be selected for increased scrutiny during the 2020 mission. The infrared image is resampled (spatially and spectrally) to the resolutions of Mastcam-Z and SuperCam to simulate data from the Mars 2020 rover. Hand samples were gathered in the field (guided by the prior infrared compositional mapping), capturing samples of spectral and mineralogical variance in the scene. After collection, a limited number of specimens were chosen for more detailed analysis. The hand samples are currently being analyzed using JPL prototypes of the Mars 2020 arm-mounted contact instruments, specifically PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman & Luminescence). The geologic story as told by the Mars 2020 instrument data will be analyzed and compared to the full suite of data collected by hyperspectral imaging and terrestrial techniques (e.g. XRD) applied to the collected hand samples. This work will shed light on the potential uses and synergies of the Mars 2020 instrument suite, especially

  10. Cryo-Vacuum Testing of JWST's Integrated Telescope & Scientific Instrument Suite (OTIS)

    NASA Astrophysics Data System (ADS)

    Kimble, Randy; Apollo, Peter; Feinberg, Lee; Glazer, Stuart; Hanley, Jeffrey; Keski-Kuha, Ritva; Kirk, Jeffrey; Knight, J. Scott; Lambros, Scott; Lander, Juli; McGuffey, Douglas; Mehalick, Kimberly; Ohl, Raymond; Ousley, Wes; Reis, Carl; Reynolds, Paul; Begoña Vila, Maria; Waldman, Mark; Whitman, Tony

    2018-01-01

    A year ago we reported on the planning for a major test in the James Webb Space Telescope (JWST) program: cryo-vacuum testing of the combination of the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM). The cryo-vacuum testing of that scientific heart of the JWST observatory, known as OTIS (= OTE + ISIM), has now been completed in historic chamber A at NASA’s Johnson Space Center. From July through October 2017, the flight payload was cooled to its operating temperatures, put through a comprehensive suite of optical, thermal, and operational tests, and then safely warmed back to room temperature. We report here on the execution and top-level results from this milestone event in the JWST program.

  11. Air Quality Instrumentation. Volume 2.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers, the second in a series, from recent ISA symposia dealing with air pollution. Papers range from a discussion of individual pollutant measurements to…

  12. Air Quality Instrumentation. Volume 1.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers from recent ISA symposia dealing with air pollution. Papers range from a discussion of some relatively new applications of proven techniques to discussions…

  13. Air suctioning during colon biopsy forceps removal reduces bacterial air contamination in the endoscopy suite.

    PubMed

    Vavricka, S R; Tutuian, R; Imhof, A; Wildi, S; Gubler, C; Fruehauf, H; Ruef, C; Schoepfer, A M; Fried, M

    2010-09-01

    Bacterial contamination of endoscopy suites is of concern; however studies evaluating bacterial aerosols are lacking. We aimed to determine the effectiveness of air suctioning during removal of biopsy forceps in reducing bacterial air contamination. This was a prospective single-blinded trial involving 50 patients who were undergoing elective nontherapeutic colonoscopy. During colonoscopy, endoscopists removed the biopsy forceps first without and then with suctioning following contact with the sigmoid mucosa. A total of 50 L of air was collected continuously for 30 seconds at 30-cm distance from the biopsy channel valve of the colonoscope, with time starting at forceps removal. Airborne bacteria were collected by an impactor air sampler (MAS-100). Standard Petri dishes with CNA blood agar were used to culture Gram-positive bacteria. Main outcome measure was the bacterial load in endoscopy room air. At the beginning and end of the daily colonoscopy program, the median (and interquartile [IQR] range) bioaerosol burden was 4 colony forming units (CFU)/m (3) (IQR 3 - 6) and 16 CFU/m (3) (IQR 13 - 18), respectively. Air suctioning during removal of the biopsy forceps reduced the bioaerosol burden from a median of 14 CFU/m (3) (IQR 11 - 29) to a median of 7 CFU/m (3) (IQR 4 - 16) ( P = 0.0001). Predominantly enterococci were identified on the agar plates. The bacterial aerosol burden during handling of biopsy forceps can be reduced by applying air suction while removing the forceps. This simple method may reduce transmission of infectious agents during gastrointestinal endoscopies. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  14. Evaporation-Cooled Protective Suits for Firefighters

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard Murray

    2007-01-01

    Suits cooled by evaporation of water have been proposed as improved means of temporary protection against high temperatures near fires. When air temperature exceeds 600 F (316 C) or in the presence of radiative heating from nearby sources at temperatures of 1,200 F (649 C) or more, outer suits now used by firefighters afford protection for only a few seconds. The proposed suits would exploit the high latent heat of vaporization of water to satisfy a need to protect against higher air temperatures and against radiant heating for significantly longer times. These suits would be fabricated and operated in conjunction with breathing and cooling systems like those with which firefighting suits are now equipped

  15. Construction and Resource Utilization Explorer (CRUX): Implementing Instrument Suite Data Fusion to Characterize Regolith Hydrogen Resources

    NASA Technical Reports Server (NTRS)

    Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John

    2006-01-01

    CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.

  16. Comparison of three distinct clean air suits to decrease the bacterial load in the operating room: an observational study.

    PubMed

    Kasina, Piotr; Tammelin, Ann; Blomfeldt, Anne-Marie; Ljungqvist, Bengt; Reinmüller, Berit; Ottosson, Carin

    2016-01-01

    Lowering air-borne bacteria counts in the operating room is essential in prevention of surgical site infections in orthopaedic joint replacement surgery. This is mainly achieved by decreasing bacteria counts through dilution, with appropriate ventilation and by limiting the bacteria carrying skin particles, predominantly shed by the personnel. The aim of this study was to investigate if a single use polypropylene clothing system or a reusable polyester clothing system could offer similar air quality in the operating room as a mobile laminar airflow device-assisted reusable cotton/polyester clothing system. Prospective observational study design, comparing the performance of three Clean Air Suits by measuring Colony Forming Units (CFU)/m(3) of air during elective hip and knee arthroplasties, performed at a large university-affiliated hospital. The amount of CFU/m(3) of air was measured during 37 operations of which 13 were performed with staff dressed in scrub suits made of a reusable mixed material (69 % cotton, 30 % polyester, 1 % carbon fibre) accompanied by two mobile laminar airflow units. During 24 procedures no mobile laminar airflow units were used, 13 with staff using a reusable olefin fabric clothing (woven polypropylene) and 11 with staff dressed in single-use suits (non-woven spunbonded polypropylene). Air from the operating field was sampled through a filter, by a Sartorius MD8, and bacterial colonies were counted after incubation. There were 6-8 measurements from each procedure, in total 244 measurements. Statistical analysis was performed by Mann-Whitney U-test. The single-use polypropylene suit reduced the amount of CFU/m(3) to a significantly lower level than both other clothing systems. Single-use polypropylene clothing systems can replace mobile laminar airflow unit-assisted reusable mixed material-clothing systems. Measurements in standardized laboratory settings can only serve as guidelines as environments in real operation settings present a

  17. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  18. 7. INTERIOR, STEEL BLAST DOORS, INSTRUMENTATION ROOM. Edwards Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR, STEEL BLAST DOORS, INSTRUMENTATION ROOM. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  19. The SAM Suite

    NASA Image and Video Library

    2013-04-08

    This illustration shows the instruments and subsystems of the Sample Analysis at Mars SAM suite on the Curiosity Rover of NASA Mars Science Laboratory Project. SAM analyzes the gases in the Martian atmosphere.

  20. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  1. The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P.-A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Olsson, G.; Khotyaintsev, Y. V.; Eriksson, A.; Kletzing, C. A.; Bounds, S.; Anderson, B.; Baumjohann, W.; Steller, M.; Bromund, K.; Le, Guan; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Porter, J.; Lappalainen, K.

    2016-03-01

    The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re. Six sensors on each of the four MMS spacecraft provide overlapping measurements of these fields with sensitive cross-calibrations both before and after launch. The FIELDS magnetic sensors consist of redundant flux-gate magnetometers (AFG and DFG) over the frequency range from DC to 64 Hz, a search coil magnetometer (SCM) providing AC measurements over the full whistler mode spectrum expected to be seen on MMS, and an Electron Drift Instrument (EDI) that calibrates offsets for the magnetometers. The FIELDS three-axis electric field measurements are provided by two sets of biased double-probe sensors (SDP and ADP) operating in a highly symmetric spacecraft environment to reduce significantly electrostatic errors. These sensors are complemented with the EDI electric measurements that are free from all local spacecraft perturbations. Cross-calibrated vector electric field measurements are thus produced from DC to 100 kHz, well beyond the upper hybrid resonance whose frequency provides an accurate determination of the local electron density. Due to its very large geometric factor, EDI also provides very high time resolution (˜1 ms) ambient electron flux measurements at a few selected energies near 1 keV. This paper provides an overview of the FIELDS suite, its science objectives and measurement requirements, and its performance as verified in calibration and cross-calibration procedures that result in anticipated errors less than 0.1 nT in B and 0.5 mV/m in E. Summaries of data products that result from FIELDS are also described, as well as algorithms for cross-calibration. Details of the design and performance characteristics of AFG/DFG, SCM, ADP, SDP, and EDI

  2. [Antigravity suit used for neurosurgical operations in sitting position].

    PubMed

    Szpiro-Zurkowska, A; Milczarek, Z; Marchel, A; Jagielski, J

    1996-01-01

    The aviator's antigravity suit (G-suit) was used for 40 operations on neurosurgical patients operated on in sitting position. The G-suit was filled with air to 0.2 atmosphere (20 kPa) pressure in 26 cases, and 0.3 atm. (30 kPa) in 14 cases. In all cases G-suit filling was followed by central venous pressure rise and mean arterial pressure rise. Venous air embolism was found in 5 (12.5%) patients. No other complications connected with the use of G-suit were observed.

  3. AIRS-only Product on Giovanni for Exploring Up-to-date AIRS Observation and Comparing with AIRS+AMSU Product

    NASA Astrophysics Data System (ADS)

    Ding, F.; Hearty, T. J., III; Theobald, M.; Vollmer, B.; Wei, J.

    2017-12-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been the home of processing, archiving, and distribution services for the Atmospheric Infrared Sounder (AIRS) mission since its launch in 2002 for the global observations of the atmospheric state. Giovanni, a web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important variables, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases, from version 6 AIRS product are available on Giovanni. The AIRS is an instrument suite comprised of a hyperspectral infrared instrument AIRS and two multichannel microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB). As the HSB ceased operation in very early stage of AIRS mission, the AIRS project operates two parallel retrieval algorithms: one using both IR and MW measurements (AIRS+AMSU) and the other using only IR measurements (AIRS-only) for the most time of the mission. The AIRS+AMSU product is better and the variables on Giovanni are from it. However, the generation of AIRS+AMSU product has been suspended since the AMSU instrument anomaly occurred in late 2016. To continue exploring up-to-date AIRS observations, the same set of variables from the AIRS-only product are added on Giovanni by the GES DSIC. This will also support the comparison of AIRS-only with AIRS+AMSU retrievals. In the presentation, we will demonstrate the visualization of AIRS-only product and the plots/statistics of comparison with AIRS+AMSU product using Giovanni.

  4. AIRS-Only Product in Giovanni for Exploring Up-to-Date AIRS Observation and Comparing with AIRS+AMSU Product

    NASA Technical Reports Server (NTRS)

    Ding, Feng; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Wei, Jennifer

    2017-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been the home of processing, archiving, and distribution services for the Atmospheric Infrared Sounder (AIRS) mission since its launch in 2002 for global observations of the atmospheric state. Giovanni, a Web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important AIRS variables, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases, are available in Giovanni. AIRS is an instrument suite comprised of a hyperspectral infrared instrument (AIRS) and two multichannel microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB). As HSB ceased operation in the very early stages of the AIRS mission, the AIRS project operates two parallel retrieval algorithms: one using both IR and MW measurements (AIRS+AMSU) and the other using only IR measurements (AIRS-only), which covers most of the mission duration. The AIRS+AMSU product is better quality, and the variables in Giovanni are from this product. However, generation of the AIRS+AMSU product has been suspended since the AMSU instrument anomaly occurred in late September 2016. To continue exploring up-to-date AIRS observations, the same set of variables from the AIRS-only product have been added to Giovanni by the GES DSIC. This will also support comparison of AIRS-only with AIRS+AMSU retrievals. In this presentation, we demonstrate the visualization of the AIRS-only product and plots/statistics of comparison with AIRS+AMSU product using Giovanni.

  5. Design and Development of a Miniaturized Double Latching Solenoid Valve for the Sample Analysis at Mars Instrument Suite

    NASA Technical Reports Server (NTRS)

    Smith, James T.

    2008-01-01

    The development of the in-house Miniaturized Double Latching Solenoid Valve, or Microvalve, for the Gas Processing System (GPS) of the Sample Analysis at Mars (SAM) instrument suite is described. The Microvalve is a double latching solenoid valve that actuates a pintle shaft axially to hermetically seal an orifice. The key requirements and the design innovations implemented to meet them are described.

  6. 4. INSTRUMENT ROOM,INTERIOR, MAIN SPACE. Looking northeast. Edwards Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INSTRUMENT ROOM,INTERIOR, MAIN SPACE. Looking northeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  7. Development and evaluation of a suite of isotope reference gases for methane in air

    NASA Astrophysics Data System (ADS)

    Sperlich, Peter; Uitslag, Nelly A. M.; Richter, Jürgen M.; Rothe, Michael; Geilmann, Heike; van der Veen, Carina; Röckmann, Thomas; Blunier, Thomas; Brand, Willi A.

    2016-08-01

    Measurements from multiple laboratories have to be related to unifying and traceable reference material in order to be comparable. However, such fundamental reference materials are not available for isotope ratios in atmospheric methane, which led to misinterpretations of combined data sets in the past. We developed a method to produce a suite of synthetic CH4-in-air standard gases that can be used to unify methane isotope ratio measurements of laboratories in the atmospheric monitoring community. Therefore, we calibrated a suite of pure methane gases of different methanogenic origin against international referencing materials that define the VSMOW (Vienna Standard Mean Ocean Water) and VPDB (Vienna Pee Dee Belemnite) isotope scales. The isotope ratios of our pure methane gases range between -320 and +40 ‰ for δ2H-CH4 and between -70 and -40 ‰ for δ13C-CH4, enveloping the isotope ratios of tropospheric methane (about -85 and -47 ‰ for δ2H-CH4 and δ13C-CH4 respectively). Estimated uncertainties, including the full traceability chain, are < 1.5 ‰ and < 0.2 ‰ for δ2H and δ13C calibrations respectively. Aliquots of the calibrated pure methane gases have been diluted with methane-free air to atmospheric methane levels and filled into 5 L glass flasks. The synthetic CH4-in-air standards comprise atmospheric oxygen/nitrogen ratios as well as argon, krypton and nitrous oxide mole fractions to prevent gas-specific measurement artefacts. The resulting synthetic CH4-in-air standards are referred to as JRAS-M16 (Jena Reference Air Set - Methane 2016) and will be available to the atmospheric monitoring community. JRAS-M16 may be used as unifying isotope scale anchor for isotope ratio measurements in atmospheric methane, so that data sets can be merged into a consistent

  8. AirSWOT: A New Airborne Instrument for Hydrology

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Behar, A.; Carswell, J.; Chu, V.; Farquharson, G.; Gleason, C. J.; Hensley, S.; Minear, J. T.; Moller, D.; Pavelsky, T.; Perkovic-Martin, D.; Pitcher, L. H.; Sanchez-Barmetty, M.; Smith, L. C.; Wu, X.

    2013-12-01

    The proposed NASA/CNES/CSA Surface Water and Ocean Topography (SWOT) Mission would provide the first global inventory of storage change in fresh water bodies and river discharge. The SWOT mission would produce elevation maps and imagery of all surface water bodies using Ka-band SAR interferometry. From these data, estimates of surface water extent, stage and slope could be derived, and, in theory, from their temporal variability, river bathymetry and Manning's roughness coefficient can also be estimated, enabling estimates of river discharge. Although significant modeling work and some empirical measurements have been used to validate the feasibility of turning SWOT observables into hydrologic measurements of storage change and discharge, no data have been collected using SWOT-like measurements. To overcome this limitation, a new airborne interferometric system, called AirSWOT, has been developed by Remote Sensing Solutions and integrated, tested, and deployed on the NASA Dryden King Air B200 by the Jet Propulsion Laboratory. As part of the validation of AirSWOT, four data collections were devoted to hydrology targets. The first hydrology target consisted of a large reach of the Sacramento River north of Sacramento, CA. The reach was imaged on consecutive days, coincident with a 1,000 cubic-feet/second release from a dam. Ground data were obtained from HOBO water level loggers and gauges deployed by the USGS. An innovative GPS drifter capable of providing centimeter-level elevation measurements and river slopes was developed by UCLA/JPL and deployed along a significant fraction of the reach. The second target was the Sacramento-San Joaquin Delta region, imaged at low and high tides during the same day. For both targets, APL-UW deployed an airborne instrument suite consisting of an along-track interferometer to measure water surface velocities, a thermal infrared camera to validate measurements of river width, and an experimental lidar system. Finally, a team from

  9. Space Suit CO2 Washout During Intravehicular Activity

    NASA Technical Reports Server (NTRS)

    Augustine, Phillip M.; Navarro, Moses; Conger, Bruce; Sargusingh, Miriam M.

    2010-01-01

    Space suit carbon dioxide (CO2) washout refers to the removal of CO2 gas from the oral-nasal area of a suited astronaut's (or crewmember's) helmet using the suit's ventilation system. Inadequate washout of gases can result in diminished mental/cognitive abilities as well as headaches and light headedness. In addition to general discomfort, these ailments can impair an astronaut s ability to perform mission-critical tasks ranging from flying the space vehicle to performing lunar extravehicular activities (EVAs). During design development for NASA s Constellation Program (CxP), conflicting requirements arose between the volume of air flow that the new Orion manned space vehicle is allocated to provide to the suited crewmember and the amount of air required to achieve CO2 washout in a space suit. Historically, space suits receive 6.0 actual cubic feet per minute (acfm) of air flow, which has adequately washed out CO2 for EVAs. For CxP, the Orion vehicle will provide 4.5 acfm of air flow to the suit. A group of subject matter experts (SM Es) among the EVA Systems community came to an early consensus that 4.5 acfm may be acceptable for low metabolic rate activities. However, this value appears very risky for high metabolic rates, hence the need for further analysis and testing. An analysis was performed to validate the 4.5 acfm value and to determine if adequate CO2 washout can be achieved with the new suit helmet design concepts. The analysis included computational fluid dynamic (CFD) modeling cases, which modeled the air flow and breathing characteristics of a human wearing suit helmets. Helmet testing was performed at the National Institute of Occupational Safety and Health (NIOSH) in Pittsburgh, Pennsylvania, to provide a gross-level validation of the CFD models. Although there was not a direct data correlation between the helmet testing and the CFD modeling, the testing data showed trends that are very similar to the CFD modeling. Overall, the analysis yielded

  10. Software Suite to Support In-Flight Characterization of Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross

    2014-01-01

    A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of

  11. Argon used as dry suit insulation gas for cold-water diving.

    PubMed

    Vrijdag, Xavier Ce; van Ooij, Pieter-Jan Am; van Hulst, Robert A

    2013-06-03

    Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13 degrees C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1h in water at 13 degrees C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives.

  12. The FIELDS Instrument Suite for Solar Probe Plus Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  13. The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.

    PubMed

    Bale, S D; Goetz, K; Harvey, P R; Turin, P; Bonnell, J W; de Wit, T Dudok; Ergun, R E; MacDowall, R J; Pulupa, M; Andre, M; Bolton, M; Bougeret, J-L; Bowen, T A; Burgess, D; Cattell, C A; Chandran, B D G; Chaston, C C; Chen, C H K; Choi, M K; Connerney, J E; Cranmer, S; Diaz-Aguado, M; Donakowski, W; Drake, J F; Farrell, W M; Fergeau, P; Fermin, J; Fischer, J; Fox, N; Glaser, D; Goldstein, M; Gordon, D; Hanson, E; Harris, S E; Hayes, L M; Hinze, J J; Hollweg, J V; Horbury, T S; Howard, R A; Hoxie, V; Jannet, G; Karlsson, M; Kasper, J C; Kellogg, P J; Kien, M; Klimchuk, J A; Krasnoselskikh, V V; Krucker, S; Lynch, J J; Maksimovic, M; Malaspina, D M; Marker, S; Martin, P; Martinez-Oliveros, J; McCauley, J; McComas, D J; McDonald, T; Meyer-Vernet, N; Moncuquet, M; Monson, S J; Mozer, F S; Murphy, S D; Odom, J; Oliverson, R; Olson, J; Parker, E N; Pankow, D; Phan, T; Quataert, E; Quinn, T; Ruplin, S W; Salem, C; Seitz, D; Sheppard, D A; Siy, A; Stevens, K; Summers, D; Szabo, A; Timofeeva, M; Vaivads, A; Velli, M; Yehle, A; Werthimer, D; Wygant, J R

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  14. The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  15. Design and application of air-conditioning suit based on eddy current cooling principle for distribution network working with power uninterrupted

    NASA Astrophysics Data System (ADS)

    Xu, Li; Liu, Lanlan; Niu, Jie; Tang, Li; Li, Jinliang; Zhou, Zhanfan; Long, Chenhai; Yang, Qi; Yi, Ziqi; Guo, Hao; Long, Yang; Fu, Yanyi

    2017-05-01

    As social requirement of power supply reliability keeps rising, distribution network working with power uninterrupted has been widely carried out, while the high - temperature operating environment in summer can easily lead to physical discomfort for the operators, and then lead to safety incidents. Aiming at above problem, air-conditioning suit for distribution network working with power uninterrupted has been putted forward in this paper, and the structure composition and cooling principle of which has been explained, and it has been ultimately put to on-site application. The results showed that, cooling effect of air-conditioning suits was remarkable, and improved the working environment for the operators effectively, which is of great significance to improve Chinese level of working with power uninterrupted, reduce the probability of accidents and enhance the reliability of power supply.

  16. Evaluation of prototype air carrier instrument approach procedure charts.

    DOT National Transportation Integrated Search

    1995-07-31

    The objective of this study was to evaluate the design features of two prototype Instrument Approach Procedure (IAP) charts. The John A. Volpe National Transportation System's Center in cooperation with the Air Transport Association's Chart and Data ...

  17. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source.

    PubMed

    Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H

    2013-05-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  18. Evaluation of prototype air carrier instrument approach procedure charts

    DOT National Transportation Integrated Search

    1995-07-01

    The objective of this study was to evaluate the design features of two prototype Instrument Approach Procedure (IAP) charts. The John A. Volpe National Transportation Systems Center in cooperation with the Air Transport Association's Chart and Data D...

  19. Protective supplied breathing air garment

    DOEpatents

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  20. Protective supplied breathing air garment

    DOEpatents

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  1. Postural hypotension and the anti-gravity suit.

    PubMed

    Brook, W H

    1994-10-01

    An air force anti-gravity suit, as used by fighter pilots to prevent loss of consciousness, has been successfully employed to treat severe postural hypotension in a patient with Shy-Drager syndrome. The definition of postural hypotension is reviewed, and reference is made to the previous use of the anti-gravity suit in the treatment of this condition.

  2. A new device for the inflation of the antigravity suit.

    PubMed

    Brodrick, P M

    1986-02-01

    The 'Schuco' orthopaedic tourniquet inflator can be simply converted into a suitable device for inflating an antigravity suit (G-suit). The antigravity suit may be used on neurosurgical patients undergoing procedures in the sitting position to help prevent hypotension and air embolism. The availability of this device may encourage the more widespread use of an antigravity suit in neuro-anaesthetic practice.

  3. 15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  4. Protective supplied-breathing-air garment

    DOEpatents

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  5. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments

    NASA Astrophysics Data System (ADS)

    Viana, M.; Rivas, I.; Reche, C.; Fonseca, A. S.; Pérez, N.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Sunyer, J.

    2015-12-01

    The performance of three portable monitors (micro-aethalometer AE51, DiscMini, Dusttrak DRX) was assessed for outdoor air exposure assessment in a representative Southern European urban environment. The parameters evaluated were black carbon, particle number concentration, alveolar lung-deposited surface area, mean particle diameter, PM10, PM2.5 and PM1. The performance was tested by comparison with widely used stationary instruments (MAAP, CPC, SMPS, NSAM, GRIMM aerosol spectrometer). Results evidenced a good agreement between most portable and stationary instruments, with R2 values mostly >0.80. Relative differences between portable and stationary instruments were mostly <20%, and <10% between different units of the same instrument. The only exception was found for the Dusttrak DRX measurements, for which occasional concentration jumps in the time series were detected. Our results validate the performance of the black carbon, particle number concentration, particle surface area and mean particle diameter monitors as indicative instruments (tier 2) for outdoor air exposure assessment studies.

  6. Ozone Mapping and Profiler Suite: using mission performance data to refine predictive contamination modeling

    NASA Astrophysics Data System (ADS)

    Devaud, Genevieve; Jaross, Glen

    2014-09-01

    On October 28, 2011, the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite launched at Vandenberg Air Force base aboard a United Launch Alliance Delta II rocket. Included among the five instruments was the Ozone Mapping and Profiler Suite (OMPS), an advanced suite of three hyperspectral instruments built by Ball Aerospace and Technologies Corporation (BATC) for the NASA Goddard Space Flight Center. Molecular transport modeling is used to predict optical throughput changes due to contaminant accumulation to ensure performance margin to End Of Life. The OMPS Nadir Profiler, operating at the lowest wavelengths of 250 - 310 nm, is most sensitive to contaminant accumulation. Geometry, thermal profile and material properties must be accurately modeled in order to have confidence in the results, yet it is well known that the complex chemistry and process dependent variability of aerospace materials presents a substantial challenge to the modeler. Assumptions about the absorption coefficients, desorption and diffusion kinetics of outgassing species from polymeric materials dramatically affect the model predictions, yet it is rare indeed that on-mission data is analyzed at a later date as a means to compare with modeling results. Optical throughput measurements for the Ozone and Mapping Profiler Suite on the Suomi NPP Satellite indicate that optical throughput degradation between day 145 and day 858 is less than 0.5%. We will show how assumptions about outgassing rates and desorption energies, in particular, dramatically affect the modeled optical throughput and what assumptions represent the on-orbit data.

  7. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  8. Current status of the facility instrumentation suite at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Rothberg, Barry; Kuhn, Olga; Edwards, Michelle L.; Hill, John M.; Thompson, David; Veillet, Christian; Wagner, R. Mark

    2016-07-01

    The current status of the facility instrumentation for the Large Binocular Telescope (LBT) is reviewed. The LBT encompasses two 8.4 meter primary mirrors on a single mount yielding an effective collecting area of 11.8 meters or 23 meters when interferometrically combined. The three facility instruments at LBT include: 1) the Large Binocular Cameras (LBCs), each with a 23'× 25' field of view (FOV). The blue optimized and red optimized optical wavelength LBCs are mounted at the prime focus of the SX (left) and DX (right) primary mirrors, respectively. Combined, the filter suite of the two LBCs cover 0.3-1.1 μm, including the addition of new medium-band filters centered on TiO (0.78 μm) and CN (0.82 μm) 2) the Multi-Object Double Spectrograph (MODS), two identical optical spectrographs each mounted at the straight through f/15 Gregorian focus of the primary mirrors. The capabilities of MODS-1 and -2 include imaging with Sloan filters (u, g, r, i, and z) and medium resolution (R ˜ 2000) spectroscopy, each with 24 interchangeable masks (multi-object or longslit) over a 6'× 6' FOV. Each MODS is capable of blue (0.32-0.6 μm) and red (0.5-1.05 μm) wavelength only spectroscopy coverage or both can employ a dichroic for 0.32-1.05 μm wavelength coverage (with reduced coverage from 0.56- 0.57 μm) and 3) the two LBT Utility Camera in the Infrared instruments (LUCIs), are each mounted at a bent-front Gregorian f/15 focus of a primary mirror. LUCI-1 and 2 are designed for seeing-limited (4'× 4' FOV) and active optics using thin-shell adaptive secondary mirrors (0.5'× 0.5' FOV) imaging and spectroscopy over the wavelength range of 0.95-2.5 μm and spectroscopic resolutions of 400 <= R <= 11000 (depending on the combination of grating, slits, and cameras used). The spectroscopic capabilities also include 32 interchangeable multi-object or longslit masks which are cryogenically cooled. Currently all facility instruments are in-place at the LBT and, for the first time

  9. NASA CONNECT(TradeMark): Space Suit Science in the Classroom

    NASA Technical Reports Server (NTRS)

    Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.

    2003-01-01

    NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.

  10. Lunar Reference Suite to Support Instrument Development and Testing

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sellar, Glenn; Nunez, Jorge I.; Winterhalter, Daniel; Farmer, Jack

    2010-01-01

    Astronauts on long-duration lunar missions will need the capability to "high-grade" their samples - to select the highest value samples for transport to Earth - and to leave others on the Moon. Instruments that may be useful for such high-grading are under development. Instruments are also being developed for possible use on future lunar robotic landers, for lunar field work, and for more sophisticated analyses at a lunar outpost. The Johnson Space Center Astromaterials acquisition and Curation Office (JSC Curation) wll support such instrument testing by providing lunar sample "ground truth".

  11. Scaling functional status within the interRAI suite of assessment instruments

    PubMed Central

    2013-01-01

    Background As one ages, physical, cognitive, and clinical problems accumulate and the pattern of loss follows a distinct progression. The first areas requiring outside support are the Instrumental Activities of Daily Living and over time there is a need for support in performing the Activities of Daily Living. Two new functional hierarchies are presented, an IADL hierarchical capacity scale and a combination scale integrating both IADL and ADL hierarchies. Methods A secondary analyses of data from a cross-national sample of community residing persons was conducted using 762,023 interRAI assessments. The development of the new IADL Hierarchy and a new IADL-ADL combined scale proceeded through a series of interrelated steps first examining individual IADL and ADL item scores among persons receiving home care and those living independently without services. A factor analysis demonstrated the overall continuity across the IADL-ADL continuum. Evidence of the validity of the scales was explored with associative analyses of factors such as a cross-country distributional analysis for persons in home care programs, a count of functional problems across the categories of the hierarchy, an assessment of the hours of informal and formal care received each week by persons in the different categories of the hierarchy, and finally, evaluation of the relationship between cognitive status and the hierarchical IADL-ADL assignments. Results Using items from interRAI’s suite of assessment instruments, two new functional scales were developed, the interRAI IADL Hierarchy Scale and the interRAI IADL-ADL Functional Hierarchy Scale. The IADL Hierarchy Scale consisted of 5 items, meal preparation, housework, shopping, finances and medications. The interRAI IADL-ADL Functional Hierarchy Scale was created through an amalgamation of the ADL Hierarchy (developed previously) and IADL Hierarchy Scales. These scales cover the spectrum of IADL and ADL challenges faced by persons in the community

  12. Air shower detectors in gamma-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro,more » in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.« less

  13. The Atmospheric Infrared Sounder (AIRS) on Aqua: instrument stability and data products for climate observations

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, M.; Aumann, H.; Strow, L.; Broberg, S.; Gaiser, S.

    2003-01-01

    30th International Symposium on Remote Sensing of the Environment (ISRSE) NASA Honolulu, Hawaii, USAThis paper discusses the stability of the AIRS instrument as measured pre-flight and in-orbit. In order differentiate instrument related changes with true changes in climate observations, the instrument stability must be demonstrated.

  14. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures

    PubMed Central

    Janosko, Krisztina; Holbrook, Michael R.; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B.; Kuhn, Jens H.; Lackemeyer, Matthew G.

    2016-01-01

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure (“space”) suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits. PMID:27768063

  15. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures.

    PubMed

    Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G

    2016-10-03

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.

  16. AIR Instrument Array

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Shinn, J. L.

    2003-01-01

    The large number of radiation types composing the atmospheric radiation requires a complicated combination of instrument types to fully characterize the environment. A completely satisfactory combination has not as yet been flown and would require a large capital outlay to develop. In that the funds of the current project were limited to essential integration costs, an international collaboration was formed with partners from six countries and fourteen different institutions with their own financial support for their participation. Instruments were chosen to cover sensitivity to all radiation types with enough differential sensitivity to separate individual components. Some instruments were chosen as important to specify the physical field component and other instruments were chosen on the basis that they could be useful in dosimetric evaluation. In the present paper we will discuss the final experimental flight package for the ER-2 flight campaign.

  17. The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel

    2013-01-01

    This new utility patent is an active design that relies on the lung's role as an organic heat exchanger for providing deep body core heating of air. It is based on the fact that the greatest heat loss mechanism for an insulated human body immersed in a cold water environment is due to heat loss through respiration. This innovation successfully merges two existing technologies (cold immersion suit and existing valve technologies) to produce a new product that helps prevent against the onset of hypothermia at sea. During normal operations, a human maintains an approximate body temperature of [98.6 F (37 C)]. A mechanism was developed to recover the warm temperature from the body and reticulate it in a survival suit. The primary intention is to develop an encompassing systems design that can both easily and cost effectively be integrated in all existing currently manufactured cold water survival suits, and as such, it should be noted that the cold water immersion suit is only used as a framework or tool for laying out the required design elements. At the heart of the suit is the Warm Air Recovery (WAR) system, which relies on a single, large Main Purge Valve (MPV) and secondary Purge Valves (PV) to operate. The main purge valve has a thin membrane, which is normally closed, and acts as a one-way check valve. When warm air is expelled from the lungs, it causes the main purge valve to open. Air forced from the MPV is dumped directly into the suit, thereby providing warmth to the torso, legs, and arms. A slight positive over-pressure in the suit causes warm waste air (or water if the suit is punctured) to be safely vented into the sea through large PVs located at the bottom of each arm and leg. The secondary purge valves act to prevent the buildup of large concentrations of CO2 gas and help guard against asphyxia. It is noted that the MPV causes the inhalation and exhalation cycles to be completely isolated from one another in the current suit design.

  18. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  19. A Look at Hurricane Matthew from NASA AIRS

    NASA Image and Video Library

    2016-10-06

    Hurricane Matthew, currently an extremely dangerous Category 4 storm on the Saffir-Simpson Hurricane Wind Scale, continues to bear down on the southeastern United States. At 11:27 a.m. PDT (2:27 p.m. EDT and 18:23 UT) today, NASA's Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite observed the storm as its eye was passing over the Bahamas. An AIRS false-color infrared image shows that the northeast and southwest quadrants of the storm had the coldest cloud tops, denoting the regions of the storm where the strongest precipitation was occurring at the time. Data from the Advanced Microwave Sounding Unit (AMSU), another of AIRS' suite of instruments, indicate that the northeast quadrant, which appears smaller in the infrared image, likely had the most intense rain bands at the time. The AIRS infrared image shows that at the time of the image the storm had full circulation, with a small eye surrounded by a thick eye wall and can be seen at http://photojournal.jpl.nasa.gov/catalog/PIA21092.

  20. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2015-01-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of approximately 100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SOC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and 'Scientist-in-the-Loop' (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  1. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2016-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  2. The Canadian space agency planetary analogue materials suite

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher

    2015-12-01

    The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the

  3. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  4. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    NASA Astrophysics Data System (ADS)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  5. Evaluation of the response of tritium-in-air instrumentation to HT in dry and humid conditions and to HTO vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, H.; Dean, J.; Privas, E.

    2015-03-15

    Nuclear plant operators (power generation, decommissioning and reprocessing operations) are required to monitor releases of tritium species for regulatory compliance and radiation protection purposes. Tritium monitoring is performed using tritium-in-air gas monitoring instrumentation based either on flow-through ion chambers or proportional counting systems. Tritium-in-air monitors are typically calibrated in dry conditions but in service may operate at elevated levels of relative humidity. The NPL (National Physical Laboratory) radioactive gas-in-air calibration system has been used to study the effect of humidity on the response to tritium of two tritium-in-air ion chamber based monitors and one proportional counting system which uses amore » P10/air gas mixture. The response of these instruments to HTO vapour has also been evaluated. In each case, instrument responses were obtained for HT in dry conditions (relative humidity (RH) about 2%), HT in 45% RH, and finally HTO at 45% RH. Instrumentation response to HT in humid conditions has been found to slightly exceed that in dry conditions. (authors)« less

  6. Self-Evaluation Instrument: Awards Program for Indoor Air Quality Management in Schools.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This self-evaluation instrument is used to nominate and evaluate schools for the Indoor Air Quality Management in Schools award. The evaluation contains three categories: Communications/Training; Design; and Operations/Maintenance. Each principle is detailed along with the required criteria used to meet that principle. Communications/Training…

  7. Using a Multiwavelength Suite of Microwave Instruments to Investigate the Microphysical Structure of Deep Convective Cores

    NASA Technical Reports Server (NTRS)

    Battaglia, A.; Mroz, K.; Lang, Tim; Tridon, F.; Tanelli, S.; Tian, Lin; Heymsfield, Gerald M.

    2016-01-01

    Due to the large natural variability of its microphysical properties, the characterization of solid precipitation is a longstanding problem. Since in situ observations are unavailable in severe convective systems, innovative remote sensing retrievals are needed to extend our understanding of such systems. This study presents a novel technique able to retrieve the density, mass, and effective diameter of graupel and hail in severe convection through the combination of airborne microwave remote sensing instruments. The retrieval is applied to measure solid precipitation properties within two convective cells observed on 2324 May 2014 over North Carolina during the IPHEx campaign by the NASA ER-2 instrument suite. Between 30 and 40 degrees of freedom of signal are associated with the measurements, which is insufficient to provide full microphysics profiling. The measurements have the largest impact on the retrieval of ice particle sizes, followed by ice water contents. Ice densities are mainly driven by a priori assumptions, though low relative errors in ice densities suggest that in extensive regions of the convective system, only particles with densities larger than 0.4 gcm3 are compatible with the observations. This is in agreement with reports of large hail on the ground and with hydrometeor classification derived from ground-based polarimetric radars observations. This work confirms that multiple scattering generated by large ice hydrometeors in deep convection is relevant for airborne radar systems already at Ku band. A fortiori, multiple scattering will play a pivotal role in such conditions also for Ku band spaceborne radars (e.g., the GPM Dual Precipitation Radar).

  8. Evaluation of the Sensor Data Record from the Nadir Instruments of the Ozone Mapping Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Wu, Xiangqian; Liu, Quanhua; Zeng, Jian; Grotenhuis, Michael; Qian, Haifeng; Caponi, Maria; Flynn, Larry; Jaross, Glen; Sen, Bhaswar; Buss, Richard H., Jr.; hide

    2014-01-01

    This paper evaluates the first 15 months of the Ozone Mapping and Profiler Suite (OMPS) Sensor Data Record (SDR) acquired by the nadir sensors and processed by the National Oceanic and Atmospheric Administration Interface Data Processing Segment. The evaluation consists of an inter-comparison with a similar satellite instrument, an analysis using a radiative transfer model, and an assessment of product stability. This is in addition to the evaluation of sensor calibration and the Environment Data Record product that are also reported in this Special Issue. All these are parts of synergetic effort to provide comprehensive assessment at every level of the products to ensure its quality. It is found that the OMPS nadir SDR quality is satisfactory for the current Provisional maturity. Methods used in the evaluation are being further refined, developed, and expanded, in collaboration with international community through the Global Space-based Inter-Calibration System, to support the upcoming long-term monitoring.

  9. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  10. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  11. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    NASA Technical Reports Server (NTRS)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  12. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  13. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2016-01-01

    We present the characterization and application of a new gas chromatography time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δm of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found to be approximately 5 ppm in mean after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits are as low as a few femtograms by means of the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. Detector non-linearity was found to be insignificant up to a mixing ratio of roughly 150 ppt at 0.5 L sampled volume. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straightforward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, quadrupole MS with low mass resolving power and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  14. Bird flight and airplane flight. [instruments to measure air currents and flight characteristics

    NASA Technical Reports Server (NTRS)

    Magnan, A.

    1980-01-01

    Research was based on a series of mechanical, electrical, and cinematographic instruments developed to measure various features of air current behavior as well as bird and airplane flight. Investigation of rising obstruction and thermal currents led to a theory of bird flight, especially of the gliding and soaring types. It was shown how a knowledge of bird flight can be applied to glider and ultimately motorized aircraft construction. The instruments and methods used in studying stress in airplanes and in comparing the lift to drag ratios of airplanes and birds are described.

  15. SOFIA Science Instruments: Commissioning, Upgrades and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.

    2014-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter telescope housed in the aft section of a Boeing 747sp aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 µm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1 micron imager built by Lowell Observatory; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 micron wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-210 micron IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross- Echelle Spectrograph), a 5-28 micron high-resolution spectrometer being completed by UC Davis and NASA Ames. A second generation instrument, HAWC+ (Highresolution Airborne Wideband Camera), is a 50-240 micron imager being upgraded at JPL to add polarimetry and new detectors developed at GSFC. SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details instrument capabilities and status as well as plans for future instrumentation, including the call for proposals for 3rd generation SOFIA science instruments.

  16. Air Layer Drag Reduction

    NASA Astrophysics Data System (ADS)

    Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc

    2008-11-01

    A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.

  17. CO2 Washout Testing of NASA Space Suits

    NASA Technical Reports Server (NTRS)

    Norcross, Jason

    2012-01-01

    During the presentation "CO2 Washout Testing of NASA Spacesuits," Jason Norcross discussed the results of recent carbon dioxide CO2 washout testing of NASA spacesuits including the Rear Entry I-suit (REI), Enhanced Mobility Advanced Crew Escape Suit (EM-ACES), and possibly the ACES and Z-1 EVA prototype. When a spacesuit is used during ground testing, adequate CO2 washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on the partial pressure of CO2 (ppCO2) available to enter the lungs during respiration. The primary factors during ground-based testing that influence the ppCO2 level in the oronasal area include the metabolic rate of the subject and air flow through the suit. These tests were done to characterize inspired oronasal ppCO2 for a range of workloads and flow rates for which ground testing is nominally performed. During this presentation, Norcross provided descriptions of the spacesuits, test hardware, methodology, and results, as well as implications for future ground testing and verification of flight requirements.

  18. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.; Norcross, Jason

    2012-01-01

    When a space suit is used during ground testing, adequate carbon dioxide (CO2) washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on partial pressure of CO2 (ppCO2), metabolic rate of the subject, and other factors. This test was done to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) for a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of about 500 to 3000 BTU/hr. Supply airflow was varied between 6, 5, and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored in real time by gas analyzers with sampling tubes connected to the mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the suit air outlet. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was affected mainly by the metabolic rate of the subject: increased metabolic rate significantly (P < 0.05) increased inspired ppCO2. Decreased air flow caused small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates . 2000 BTU/hr. CO2 washout values of the EM-ACES were slightly but not significantly better than those of the REI suit. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology, and results as well as implications for future

  19. An educational laboratory virtual instrumentation suite assisted experiment for studying fundamentals of series resistance-inductance-capacitance circuit

    NASA Astrophysics Data System (ADS)

    Rana, K. P. S.; Kumar, Vineet; Mendiratta, Jatin

    2017-11-01

    One of the most elementary concepts in freshmen Electrical Engineering subject comprises the Resistance-Inductance-Capacitance (RLC) circuit fundamentals, that is, their time and frequency domain responses. For a beginner, generally, it is difficult to understand and appreciate the step and the frequency responses, particularly the resonance. This paper proposes a student-friendly teaching and learning approach by inculcating the multifaceted versatile software LabVIEWTM along with the educational laboratory virtual instrumentation suite hardware, for studying the RLC circuit time and frequency domain responses. The proposed approach has offered an interactive laboratory experiment where students can model circuits in simulation and hardware circuits on prototype board, and then compare their performances. The theoretical simulations and the obtained experimental data are found to be in very close agreement, thereby enhancing the conviction of students. Finally, the proposed methodology was also subjected to the assessment of learning outcomes based on student feedback, and an average score of 8.05 out of 10 with a standard deviation of 0.471 was received, indicating the overall satisfaction of the students.

  20. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  1. ORION Environmental Control and Life Support Systems Suit Loop and Pressure Control Analysis

    NASA Technical Reports Server (NTRS)

    Eckhardt, Brad; Conger, Bruce; Stambaugh, Imelda C.

    2015-01-01

    Under NASA's ORION Multi-Purpose Crew Vehicle (MPCV) Environmental Control and Life Support System (ECLSS) Project at Johnson Space Center's (JSC), the Crew and Thermal Systems Division has developed performance models of the air system using Thermal Desktop/FloCAD. The Thermal Desktop model includes an Air Revitalization System (ARS Loop), a Suit Loop, a Cabin Loop, and Pressure Control System (PCS) for supplying make-up gas (N2 and O2) to the Cabin and Suit Loop. The ARS and PCS are designed to maintain air quality at acceptable O2, CO2 and humidity levels as well as internal pressures in the vehicle Cabin and during suited operations. This effort required development of a suite of Thermal Desktop Orion ECLSS models to address the need for various simulation capabilities regarding ECLSS performance. An initial highly detailed model of the ARS Loop was developed in order to simulate rapid pressure transients (water hammer effects) within the ARS Loop caused by events such as cycling of the Pressurized Swing Adsorption (PSA) Beds and required high temporal resolution (small time steps) in the model during simulation. A second ECLSS model was developed to simulate events which occur over longer periods of time (over 30 minutes) where O2, CO2 and humidity levels, as well as internal pressures needed to be monitored in the cabin and for suited operations. Stand-alone models of the PCS and the Negative Pressure relief Valve (NPRV) were developed to study thermal effects within the PCS during emergency scenarios (Cabin Leak) and cabin pressurization during vehicle re-entry into Earth's atmosphere. Results from the Orion ECLSS models were used during Orion Delta-PDR (July, 2014) to address Key Design Requirements (KDR's) for Suit Loop operations for multiple mission scenarios.

  2. The instrument development status of hyper-spectral imager suite (HISUI)

    NASA Astrophysics Data System (ADS)

    Itoh, Yoshiyuki; Kawashima, Takahiro; Inada, Hitomi; Tanii, Jun; Iwasaki, Akira

    2012-11-01

    The hyper-multi spectral mission named HISUI (Hyper-spectral Imager SUIte) is the next Japanese earth observation project. This project is the follow up mission of the Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) and Advanced Land Imager (ALDS). HISUI is composed of hyperspectral radiometer with higher spectral resolution and multi-spectral radiometer with higher spatial resolution. The development of functional evaluation model was carried out to confirm the spectral and radiometric performance prior to the flight model manufacture phase. This model contains the VNIR and SWIR spectrograph, the VNIR and SWIR detector assemblies with a mechanical cooler for SWIR, signal processing circuit and on-board calibration source.

  3. Instrumentation and control systems, equipment location; instrumentation and control building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Instrumentation and control systems, equipment location; instrumentation and control building, instrumentation room, bays and console plan. Specifications No. Eng-04-353-55-72; drawing no. 60-09-12; sheet 110 of 148; file no. 1321/61. Stamped: Record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  4. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  5. 77 FR 5518 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... lawsuit filed by WildEarth Guardians in the United States District Court for the District of Colorado: WildEarth Guardians v. Jackson, Case No. 1:11-cv- 02227-WJM-KLM (D. Colo.). Plaintiff filed this suit...

  6. 76 FR 12731 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... lawsuit filed by WildEarth Guardians in the United States District Court for the District of New Mexico: WildEarth Guardians v. Jackson, No. 6:10-;cv- ;00877-MCA-RHS (D. NM). Plaintiff filed a deadline suit...

  7. Joe Walker in pressure suit with X-1E

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading 'Little Joe the II' - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.

  8. Joe Walker in pressure suit with X-1E

    NASA Image and Video Library

    1958-01-27

    Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and "Little Joe" are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading "Little Joe the II" - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.

  9. Air, telescope, and instrument temperature effects on the Gemini Planet Imager’s image quality

    NASA Astrophysics Data System (ADS)

    Tallis, Melisa; Bailey, Vanessa P.; Macintosh, Bruce; Hayward, Thomas L.; Chilcote, Jeffrey K.; Ruffio, Jean-Baptiste; Poyneer, Lisa A.; Savransky, Dmitry; Wang, Jason J.; GPIES Team

    2018-01-01

    We present results from an analysis of air, telescope, and instrument temperature effects on the Gemini Planet Imager’s (GPI) image quality. GPI is a near-infrared, adaptive optics-fed, high-contrast imaging instrument at the Gemini South telescope, designed to directly image and characterize exoplanets and circumstellar disks. One key metric for instrument performance is “contrast,” which quantifies the sensitivity of an image in terms of the flux ratio of the noise floor vs. the primary star. Very high contrast signifies that GPI could succeed at imaging a dim, close companion around the primary star. We examine relationships between multiple temperature sensors placed on the instrument and telescope vs. image contrast. These results show that there is a strong correlation between image contrast and the presence of temperature differentials between the instrument and the temperature outside the dome. We discuss potential causes such as strong induced dome seeing or optical misalignment due to thermal gradients. We then assess the impact of the current temperature control and ventilation strategy and discuss potential modifications.

  10. 20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND TERRY WEST, A SPACE SUIT ASSEMBLY TECHNICIAN LOGGING SUIT PART DATA. PARTS ON THE TABLE ARE A HARD UPPER TORSO (HUT) (REAR LEFT), FULL HELMET (FRONT LEFT), TWO HELMETS WITHOUT PROTECTIVE VISORS, A PAIR OF GLOVES, AND A BACKPACK WITHOUT VOLUMETRIC COVER (REAR RIGHT). THE BACKPACK ATTACHES TO THE HUT TO MAKE-UP THE UPPER TORSO COMPONENTS OF THE SUIT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  11. The vTAS suite: A simulator for classical and multiplexed three-axis neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Boehm, M.; Filhol, A.; Raoul, Y.; Kulda, J.; Schmidt, W.; Schmalzl, K.; Farhi, E.

    2013-01-01

    The vTAS suite provides graphical assistance to prepare and perform inelastic neutron scattering experiments on a TAS instrument, including latest multiplexed instrumental configurations, such as FlatCone, IMPS and UFO. The interactive display allows for flexible translation between instrument positions in real space and neutron scattering conditions represented in reciprocal space. It is a platform independent public domain software tool, available for download from the website of the Institut Laue Langevin (ILL).

  12. L to R; Walter Klein (in tan flight suit), Tim Miller, and David Bushman briefing press in Santiago, Chile, for NASA's AirSAR 2004 mission

    NASA Image and Video Library

    2004-03-10

    L to R; NASA Dryden Mission Manager Walter Klein (in tan flight suit), JPL AirSAR Scientist Tim Miller, and Mission Manager David Bushman briefing press in Santiago, Chile, for NASA's AirSAR 2004 mission. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  13. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  14. 77 FR 67814 - Proposed Settlement Agreement, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Suit AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of proposed settlement agreement..., 2012, Sierra Club (``Intervenor'') filed a timely motion to intervene. The motion was granted March 27, 2012. The proposed settlement agreement establishes a deadline for EPA to take action on a SIP to be...

  15. The New Instrument Suite of the TSU/Fairborn 2m Automatic Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew W.; Maxwell, T.; Williamson, M. W.; Fekel, F. C.; Ge, J.; Kelly, J.; Ghasempour, A.; Powell, S.; Zhao, B.; Varosi, F.; Schofield, S.; Liu, J.; Warner, C.; Jakeman, H.; Avner, L.; Swihart, S.; Harrison, C.; Fishler, D.

    2014-01-01

    Tied with the Liverpool Telescope as the world's largest fully robotic optical research telescope, Tennessee State University's (TSU) 2m Automatic Spectroscopic Telescope (AST) has recently been upgraded to improve performance and increase versatility by supporting multiple instruments. Its second-generation instrument head enables us to rapidly switch between any of up to twelve fibers optics, each of which can supply light to a different instrument. In 2013 construction was completed on a new temperature-controlled guest instrument building, and two new high resolution spectrographs were commissioned. The current set of instrumentation includes (1) the telescope's original R=30,000 echelle spectrograph (0.38--0.83 microns simultaneous), (2) a single order R=7,000 spectrograph centered at Ca H&K features, (3) a single-mode-fiber fed miniature echelle spectrograph (R=100,000; 0.48--0.62 microns simultaneous), (4) the University of Florida's EXPERT-3 spectrograph (R=100,000; 0.38--0.9 microns simultaneous; vacuum and temperature controlled) and (5) the University of Florida's FIRST spectrograph (R=70,000$; 0.8--1.35 or 1.4--1.8 microns simultaneous; vacuum and temperature controlled). Future instruments include the Externally Dispersed Interferometry (EDI) Testbed, a combination low resolution dispersed spectrograph and Fourier Transform Spectrograph. We welcome inquiries from the community in regards to observing access and/or proposals for future guest instruments.

  16. Ultraclean air for prevention of postoperative infection after posterior spinal fusion with instrumentation: a comparison between surgeries performed with and without a vertical exponential filtered air-flow system.

    PubMed

    Gruenberg, Marcelo F; Campaner, Gustavo L; Sola, Carlos A; Ortolan, Eligio G

    2004-10-15

    This study retrospectively compared infection rates between adult patients after posterior spinal instrumentation procedures performed in a conventional versus an ultraclean air operating room. To evaluate if the use of ultraclean air technology could decrease the infection rate after posterior spinal arthrodesis with instrumentation. Postoperative wound infection after posterior arthrodesis remains a feared complication in spinal surgery. Although this frequent complication results in a significant problem, the employment of ultraclean air technology, as it is commonly used for arthroplasty, has not been reported as a possible alternative to reduce the infection rate after complex spine surgery. One hundred seventy-nine patients having posterior spinal fusion with instrumentation were divided into 2 groups: group I included 139 patients operated in a conventional operating room, and group II included 40 patients operated in a vertical laminar flow operating room. Patient selection was performed favoring ultraclean air technology for elective cases in which high infection risk was considered. A statistical analysis of the infection rate and its associated risk factors between both groups was assessed. We observed 18 wound infections in group I and 0 in group II. Comparison of infection rates using the chi-squared test showed a statistically significant difference (P <0.017). The use of ultraclean air technology reduced the infection rate after complex spinal procedures and appears to be an interesting alternative that still needs to be prospectively studied with a randomized protocol.

  17. A comparison of suit dresses and summer clothes in the terms of thermal comfort.

    PubMed

    Ekici, Can; Atilgan, Ibrahim

    2013-12-19

    Fanger's PMV equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, relative air velocity, humidity, activity level and clothing insulation. This paper contains a comparison of suit dresses and summer clothes in terms of thermal comfort, Fanger's PMV equation. Studies were processed in the winter for an office, which locates in Ankara, Turkey. The office was partitioned to fifty square cells. Humidity, relative air velocity, air temperature and mean radiant temperature were measured on the centre points of these cells. Thermal comfort analyses were processed for suit dressing (Icl = 1 clo) and summer clothing (Icl = 0.5 clo). Discomfort/comfort in an environment for different clothing types can be seen in this study. The relationship between indoor thermal comfort distribution and clothing type was discussed. Graphics about thermal comfort were sketched according to cells. Conclusions about the thermal comfort of occupants were given by PMV graphics.

  18. A comparison of suit dresses and summer clothes in the terms of thermal comfort

    PubMed Central

    2013-01-01

    Background Fanger’s PMV equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, relative air velocity, humidity, activity level and clothing insulation. Methods This paper contains a comparison of suit dresses and summer clothes in terms of thermal comfort, Fanger’s PMV equation. Studies were processed in the winter for an office, which locates in Ankara, Turkey. The office was partitioned to fifty square cells. Humidity, relative air velocity, air temperature and mean radiant temperature were measured on the centre points of these cells. Thermal comfort analyses were processed for suit dressing (Icl = 1 clo) and summer clothing (Icl = 0.5 clo). Results Discomfort/comfort in an environment for different clothing types can be seen in this study. The relationship between indoor thermal comfort distribution and clothing type was discussed. Graphics about thermal comfort were sketched according to cells. Conclusions Conclusions about the thermal comfort of occupants were given by PMV graphics. PMID:24355097

  19. Korea-United States Air Quality (KORUS-AQ) Campaign

    NASA Technical Reports Server (NTRS)

    Castellanos, Patricia; Da Silva, Arlindo; Longo-De Freitas, Karla

    2017-01-01

    The Korea-United States Air Quality (KORUS-AQ) campaign was an international cooperative field study based out of Osan Air Base, Songtan, South Korea (about 60 kilometers south of Seoul) in April-June 2016. A comprehensive suite of instruments capable of measuring atmospheric composition was deployed around the Korean peninsula on aircrafts, ships, and at ground sites in order to characterize local and transboundary pollution. The NASA Goddard Earth Observing System, version 5 (GEOS-5) forecast model was used for near real time meteorological and aerosol forecasting and flight planning during the KORUS-AQ campaign. Evaluation of GEOS-5 against observations from the campaign will help to identify inaccuracies in the models physical and chemical processes in this region within East Asia and lead to further developments of the modeling system.

  20. A double Gerdien instrument for simultaneous bipolar air conductivity measurements on balloon platforms.

    PubMed

    Nicoll, K A; Harrison, R G

    2008-08-01

    A bipolar air conductivity instrument is described for use with a standard disposable meteorological radiosonde package. It is intended to provide electrical measurements at cloud boundaries, where the ratio of the bipolar air conductivities is affected by the presence of charged particles. The sensors are two identical Gerdien-type electrodes, which, through a voltage decay method, measure positive and negative air conductivities simultaneously. Voltage decay provides a thermally stable approach and a novel low current leakage electrometer switch is described which initiates the decay sequence. The radiosonde supplies power and telemetry, as well as measuring simultaneous meteorological data. A test flight using a tethered balloon determined positive (sigma(+)) and negative (sigma(-)) conductivities of sigma(+)=2.77+/-0.2 fS m(-1) and sigma(-)=2.82+/-0.2 fS m(-1), respectively, at 400 m aloft, with sigma(+)sigma(-)=0.98+/-0.04.

  1. Processing AIRS Scientific Data Through Level 3

    NASA Technical Reports Server (NTRS)

    Granger, Stephanie; Oliphant, Robert; Manning, Evan

    2010-01-01

    The Atmospheric Infra-Red Sounder (AIRS) Science Processing System (SPS) is a collection of computer programs, known as product generation executives (PGEs). The AIRS SPS PGEs are used for processing measurements received from the AIRS suite of infrared and microwave instruments orbiting the Earth onboard NASA's Aqua spacecraft. Early stages of the AIRS SPS development were described in a prior NASA Tech Briefs article: Initial Processing of Infrared Spectral Data (NPO-35243), Vol. 28, No. 11 (November 2004), page 39. In summary: Starting from Level 0 (representing raw AIRS data), the AIRS SPS PGEs and the data products they produce are identified by alphanumeric labels (1A, 1B, 2, and 3) representing successive stages or levels of processing. The previous NASA Tech Briefs article described processing through Level 2, the output of which comprises geo-located atmospheric data products such as temperature and humidity profiles among others. The AIRS Level 3 PGE samples selected information from the Level 2 standard products to produce a single global gridded product. One Level 3 product is generated for each day s collection of Level 2 data. In addition, daily Level 3 products are aggregated into two multiday products: an eight-day (half the orbital repeat cycle) product and monthly (calendar month) product.

  2. Mars2020 Entry, Descent, and Landing Instrumentation (MEDLI2): Science Objectives and Instrument Requirements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; White, Todd; Schoenenberger, Mark; Karlgaard, Chris; Wright, Henry

    2015-01-01

    NASAs exploration and technology roadmaps call for capability advancements in Mars entry, descent, and landing (EDL) systems to enable increased landed mass, a higher landing precision, and a wider planetary access. It is also recognized that these ambitious EDL performance goals must be met while maintaining a low mission risk in order to pave the way for future human missions. As NASA is engaged in developing new EDL systems and technologies via testing at Earth, instrumentation of existing Mars missions is providing valuable engineering data for performance improvement, risk reduction, and an improved definition of entry loads and environment. The most notable recent example is the Mars Entry, Descent and Landing Instrument (MEDLI) suite hosted by Mars Science Laboratory for its entry in Aug 2012. The MEDLI suite provided a comprehensive dataset for Mars entry aerodynamics, aerothermodynamics and thermal protection system (TPS) performance. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, and transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has demonstrated extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. The presentation will introduce a follow-on MEDLI instrumentation suite (called MEDLI2) that is being developed for Mars-2020 mission. MEDLI2 has an enhanced scope that includes backshell instrumentation, a wider forebody coverage, and instruments that specifically target supersonic aerodynamics. Similar to MEDLI, MEDLI2 uses thermal plugs with embedded thermocouples and ports through the TPS to measure surface pressure. MEDLI2, however, also includes heat flux sensors in the backshell and a low range pressure transducer to measure afterbody pressure.

  3. Comparison of air-driven vs electric torque control motors on canal centering ability by ProTaper NiTi rotary instruments.

    PubMed

    Zarei, Mina; Javidi, Maryam; Erfanian, Mahdi; Lomee, Mahdi; Afkhami, Farzaneh

    2013-01-01

    Cleaning and shaping is one of the most important phases in root canal therapy. Various rotary NiTi systems minimize accidents and facilitate the shaping process. Todays NiTi files are used with air-driven and electric handpieces. This study compared the canal centering after instrumentation using the ProTaper system using Endo IT, electric torque-control motor, and NSK air-driven handpiece. This ex vivo randomized controlled trial study involved 26 mesial mandibular root canals with 10 to 35° curvature. The roots were randomly divided into 2 groups of 13 canals each. The roots were mounted in an endodontic cube with acrylic resin, sectioned horizontally at 2, 6 and 10 mm from the apex and then reassembled. The canals were instrumented according to the manufacturer's instructions using ProTaper rotary files and electric torque-control motors (group 1) or air-driven handpieces (group 2). Photographs of the cross-sections included shots before and after instrumentation, and image analysis was performed using Photoshop software. The centering ability and canal transportation was also evaluated. Repeated measurement and independent t-test provided statistical analysis of canal transportation. The comparison of the rate of transportation toward internal or external walls between the two groups was not statistically significant (p = 0.62). Comparison of the rate of transportation of sections within one group was not significant (p = 0.28). Use of rotary NiTi file with either electric torquecontrol motor or air-driven handpiece had no effect on canal centering. NiTi rotary instruments can be used with air-driven motors without any considerable changes in root canal anatomy, however it needs the clinician to be expert.

  4. Ultraviolet Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  5. Capabilities, performance, and status of the SOFIA science instrument suite

    NASA Astrophysics Data System (ADS)

    Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, E. E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Smith, Erin C.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffery E.; Young, Erick T.; Zell, Peter T.

    2013-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 5-40 μm imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60-240 μm, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.3-1.1 μm imager, developed at Lowell Observatory. FLITECAM is a 1-5 μm wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42-210 μm integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 5-28 μm high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50-240 μm imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011.

  6. The Ozone Monitoring Instrument (OMI): towards a 14 Year Data Record and Applications in the Air Quality and Climate Domain

    NASA Astrophysics Data System (ADS)

    Levelt, P.; Joiner, J.; Tamminen, J.; Veefkind, P.; Bhartia, P. K.; Court, A. J.; Vlemmix, T.

    2017-12-01

    Keywords: emission monitoring, air quality, climate, atmospheric composition The Ozone Monitoring Instrument (OMI), launched on board of NASA's EOS-Aura spacecraft on July 15, 2004, provides unique contributions to the monitoring of the ozone layer, air quality and climate from space. With a data record of 13 years, OMI provides the longest NO2 and SO2 record from space, which is essential to understand the changes to emissions globally. The combination of urban scale resolution (13 x 24 km2 in nadir) and daily global coverage proved to be key features for the air quality community. Due to the operational Very Fast Delivery (VFD / direct readout) and Near Real Time (NRT) availability of the data, OMI also plays an important role in the early developments of operational services in the atmospheric chemistry domain. For example, OMI data is currently used operationally for improving air quality forecasts, for inverting high-resolution emission maps, the UV forecast and for volcanic plume warning systems for aviation. An overview of air quality applications, emission inventory inversions and trend analyses based on the OMI data record will be presented. An outlook will be given on the potentials of augmenting this record with the high resolution air quality measurements of TROPOMI (3,5 x 7 km2) and new satellite instrumentation entering the imaging domain, such as the TROPOLITE instrument ( 1 x 1 km2). Potential of imaging type of NO2 measurements in the the climate and air quality domain will be given, most notably on the use of high resolution NO2 measurements for pin-pointing anthropogenic CO2 emissions.

  7. Aethalometer™ Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, Arthur J.

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and amore » “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.« less

  8. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  9. Air-Microfluidics: Creating Small, Low-cost, Portable Air Quality Sensors

    EPA Science Inventory

    Air-microfluidics shows great promise in dramatically reducing the size, cost, and power requirements of future air quality sensors without compromising their accuracy. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical syste...

  10. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking

  11. Walking a mile in another's shoes: The impact of wearing an Age Suit.

    PubMed

    Lavallière, Martin; D'Ambrosio, Lisa; Gennis, Angelina; Burstein, Arielle; Godfrey, Kathryn M; Waerstad, Hilde; Puleo, Rozanne M; Lauenroth, Andreas; Coughlin, Joseph F

    2017-01-01

    The "Age Suit" described in this article was developed to enable future designers, business leaders, and engineers to experience navigating the world as many older adults must. Tools such as this Age Suit offer the opportunity to "walk a mile" in another's shoes to develop empathy that can result in better design of spaces, goods, and services to meet the needs of a rapidly growing older population. This work first examined, through a series of clinical tests, whether younger adults' physical capacities were reduced in a direction consistent with aging by wearing a suit developed by the MIT AgeLab. An experiential learning task was then completed with the suit to understand its impact on completion of an instrumental activity of daily living. Results showed that younger adults wearing the suit experienced changes in task performance consistent with expected changes associated with aging. Participants' self-reports from the experiential learning task indicated that they were able to empathize with older adults regarding some issues they face while completing a grocery shopping task. Future research with the suit should involve a wider range of individuals from the population and examine what effect participants' levels of fitness have on the experience of wearing the suit.

  12. The VLF Wave and Particle Precipitation Mapper (VPM) Cubesat Payload Suite

    NASA Astrophysics Data System (ADS)

    Inan, U.; Linscott, I.; Marshall, R. A.; Lauben, D.; Starks, M. J.; Doolittle, J. H.

    2012-12-01

    The VLF Wave and Particle Precipitation Mapper (VPM) payload is under development at Stanford University for a Cubesat mission that is planned to fly in low-earth-orbit in 2015. The VPM payload suite includes a 2-meter electric-field dipole antenna; a single-axis magnetic search coil; and a two-channel relativistic electron detector, measuring both trapped and loss-cone electrons. VPM will measure waves and relativistic electrons with the following primary goals: i) develop an improved climatology of plasmaspheric hiss in the L-shell range 1 < L < 3 at all local times; ii) detect VLF waves launched by space-based VLF transmitters, as well as energetic electrons scattered by those in-situ injected waves; iii) develop an improved climatology of lightning-generated whistlers and lightning-induced electron precipitation; iv)measure waves and electron precipitation produced by ground-based VLF transmitters; and v) validate propagation and wave-particle interaction models. In this paper we outline these science objectives of the VPM payload instrument suite, and describe the payload instruments and data products that will meet these science goals.

  13. Music Education Suites.

    ERIC Educational Resources Information Center

    Kemp, Wayne

    This publication describes options for designing and equipping middle and high school music education suites and suggests means of gaining community support for including full service music suites in new and renovated facilities. It covers the basic music suite, practice rooms, small ensemble rehearsal rooms, recording/MIDI (musical instrument…

  14. Processing AIRS Scientific Data Through Level 2

    NASA Technical Reports Server (NTRS)

    Oliphant, Robert; Lee, Sung-Yung; Chahine, Moustafa; Susskind, Joel; arnet, Christopher; McMillin, Larry; Goldberg, Mitchell; Blaisdell, John; Rosenkranz, Philip; Strow, Larrabee

    2007-01-01

    The Atmospheric Infrared Spectrometer (AIRS) Science Processing System (SPS) is a collection of computer programs, denoted product generation executives (PGEs), for processing the readings of the AIRS suite of infrared and microwave instruments orbiting the Earth aboard NASA s Aqua spacecraft. AIRS SPS at an earlier stage of development was described in "Initial Processing of Infrared Spectral Data' (NPO-35243), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 39. To recapitulate: Starting from level 0 (representing raw AIRS data), the PGEs and their data products are denoted by alphanumeric labels (1A, 1B, and 2) that signify the successive stages of processing. The cited prior article described processing through level 1B (the level-2 PGEs were not yet operational). The level-2 PGEs, which are now operational, receive packages of level-1B geolocated radiance data products and produce such geolocated geophysical atmospheric data products such as temperature and humidity profiles. The process of computing these geophysical data products is denoted "retrieval" and is quite complex. The main steps of the process are denoted microwave-only retrieval, cloud detection and cloud clearing, regression, full retrieval, and rapid transmittance algorithm.

  15. SOFIA science instruments: commissioning, upgrades and future opportunities

    NASA Astrophysics Data System (ADS)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  16. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination

  17. Music Education Suites

    ERIC Educational Resources Information Center

    Kemp, Wayne

    2009-01-01

    This publication describes options for designing and equipping middle and high school music education suites, and suggests ways of gaining community support for including full service music suites in new and renovated school facilities. In addition to basic music suites, and practice rooms, other options detailed include: (1) small ensemble…

  18. Astronaut Ronald Evans is suited up for EVA training

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Ronald E. Evans, command module pilot of the Apollo 17 lunar landing mission, is assisted by technicians in suiting up for extravehicular activity (EVA) training in a water tank in bldg 5 at the Manned Spacecraft Center (49970); Evans participates in EVA training in a water tank in bldg 5 at the Manned Spacecraft Center. The structure in the picture simulates the Scientific Instrument Module (SIM) bay of the Apollo 17 Service Module (49971).

  19. Multivariate evaluation of the cutting performance of rotary instruments with electric and air-turbine handpieces.

    PubMed

    Funkenbusch, Paul D; Rotella, Mario; Chochlidakis, Konstantinos; Ercoli, Carlo

    2016-10-01

    Laboratory studies of tooth preparation often involve single values for all variables other than the one being tested. In contrast, in clinical settings, not all variables can be adequately controlled. For example, a new dental rotary cutting instrument may be tested in the laboratory by making a specific cut with a fixed force, but, in clinical practice, the instrument must make different cuts with individual dentists applying different forces. Therefore, the broad applicability of laboratory results to diverse clinical conditions is uncertain and the comparison of effects across studies difficult. The purpose of this in vitro study was to examine the effects of 9 process variables on the dental cutting of rotary cutting instruments used with an electric handpiece and compare them with those of a previous study that used an air-turbine handpiece. The effects of 9 key process variables on the efficiency of a simulated dental cutting operation were measured. A fractional factorial experiment was conducted by using an electric handpiece in a computer-controlled, dedicated testing apparatus to simulate dental cutting procedures with Macor blocks as the cutting substrate. Analysis of variance (ANOVA) was used to assess the statistical significance (α=.05). Four variables (targeted applied load, cut length, diamond grit size, and cut type) consistently produced large, statistically significant effects, whereas 5 variables (rotation per minute, number of cooling ports, rotary cutting instrument diameter, disposability, and water flow rate) produced relatively small, statistically insignificant effects. These results are generally similar to those previously found for an air-turbine handpiece. Regardless of whether an electric or air-turbine handpiece was used, the control exerted by the dentist, simulated in this study by targeting a specific level of applied force, was the single most important factor affecting cutting efficiency. Cutting efficiency was also

  20. airGR: a suite of lumped hydrological models in an R-package

    NASA Astrophysics Data System (ADS)

    Coron, Laurent; Perrin, Charles; Delaigue, Olivier; Andréassian, Vazken; Thirel, Guillaume

    2016-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithms selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. The presentation will detail the main functionalities of the package and present a case

  1. EMU Suit Performance Simulation

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based

  2. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary

    2016-12-01

    The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes

  3. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  4. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Meginnis, Ian M.; Norcross, Jason; Bekdash, Omar; Ploutz-Snyder, Robert

    2016-01-01

    A space suit must provide adequate carbon dioxide (CO2) washout inside the helmet to prevent symptoms of hypercapnia. In the past, an oronasal mask has been used to measure the inspired air of suited subjects to determine a space suit's CO2 washout capability. While sufficient for super-ambient pressure testing of space suits, the oronasal mask fails to meet several human factors and operational criterion needed for future sub-ambient pressure testing (e.g. compatibility with a Valsalva device). This paper describes the evaluation of a nasal cannula as a device for measuring inspired air within a space suit. Eight test subjects were tasked with walking on a treadmill or operating an arm ergometer to achieve target metabolic rates of 1000, 2000, and 3000 British thermal units per hour (BTU/hr), at flow rates of 2, 4, and 6 actual cubic feet per minute (ACFM). Each test configuration was conducted twice, with subjects instructed to breathe either through their nose only, or however they felt comfortable. Test data shows that the nasal cannula provides more statistically consistent data across test subjects than the oronasal mask used in previous tests. The data also shows that inhaling/exhaling through only the nose provides a lower sample variance than a normal breathing style. Nose-only breathing reports better CO2 washout due to several possible reasons, including a decreased respiratory rate, an increased tidal volume, and because nose-only breathing directs all of the exhaled CO2 down and away from the oronasal region. The test subjects in this study provided feedback that the nasal cannula is comfortable and can be used with the Valsalva device.

  5. Effects of an anti-G suit on the hemodynamic and renal responses to positive /+Gz/ acceleration

    NASA Technical Reports Server (NTRS)

    Shubrooks, S. J., Jr.; Epstein, M.; Duncan, D. C.

    1974-01-01

    The effects of the currently used U.S. Air Force (CSU-12/P) anti-G suit on renal function during positive radial acceleration (+Gz) were assessed in seven normal male subjects in balance on a 200 meq sodium diet. Following suit inflation in the seated position, +2.0 Gz for 30 min resulted in a decrease in the rate of sodium excretion from 125 plus or minus 19 to 60 plus or minus 14 microeq/min, which persisted during a 25-min recovery period. Fractional excretion of sodium also decreased significantly during +Gz. The magnitude of the antinatriuresis was indistinguishable from that observed during +Gz without suit inflation. In contrast to the antinatriuresis observed during centrifugation without suit, however, the antinatriuresis with suit was mediated primarily by an enhanced tubular reabsorption of sodium.

  6. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  7. A new innovative instrument for space plasma instrumentation

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1993-01-01

    The Faraday Ring Ammeter was the subject of this grant for a new innovative instrument for space plasma instrumentation. This report summarizes our progress in this work. Briefly, we have conducted an intensive series of experiments and trials over three years, testing some five configurations of the instrument to measure currents, resulting in two Ph.D. theses, supported by this grant, and two flight configurations of the instrument. The first flight would have been on a NASA-Air Force collaborative sounding rocket, but was not flown because of instrumental difficulties. The second has been successfully integrated on the NASA Auroral Turbulence payload which is to be launched in February, 1994.

  8. Mars 2020 Entry, Descent and Landing Instrumentation (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Wright, Henry; White, Todd; Schoenenberger, Mark; Santos, Jose; Karlgaard, Chris; Kuhl, Chris; Oishi, TOmo; Trombetta, Dominic

    2016-01-01

    This paper will introduce Mars Entry Descent and Landing Instrumentation (MEDLI2) on NASA's Mars2020 mission. Mars2020 is a flagship NASA mission with science and technology objectives to help answer questions about possibility of life on Mars as well as to demonstrate technologies for future human expedition. Mars2020 is scheduled for launch in 2020. MEDLI2 is a suite of instruments embedded in the heatshield and backshell thermal protection systems of Mars2020 entry vehicle. The objectives of MEDLI2 are to gather critical aerodynamics, aerothermodynamics and TPS performance data during EDL phase of the mission. MEDLI2 builds up the success of MEDLI flight instrumentation on Mars Science Laboratory mission in 2012. MEDLI instrumentation suite measured surface pressure and TPS temperature on the heatshield during MSL entry into Mars. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has highlighted extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. MEDLI2 expands the scope of instrumentation by focusing on quantities of interest not addressed in MEDLI suite. The type the sensors are expanded and their layout on the TPS modified to meet these new objectives. The paper will provide key motivation and governing requirements that drive the choice and the implementation of the new sensor suite. The implementation considerations of sensor selection, qualification, and demonstration of minimal risk to the host mission will be described. The additional challenges associated with mechanical accommodation, electrical impact, data storage and retrieval for MEDLI2 system, which extends sensors to backshell will also be described.

  9. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  10. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  11. A Preliminary Investigation of a Fluid-Filled ECG-Triggered Anti-G Suit.

    DTIC Science & Technology

    1994-02-01

    the abdomen, anterior thighs, and calves. In Australia, Dr. F.S. Cotton of Sydney developed a pneumatic anti-G suit using the Royal Australian Air...Acceleration Stress: Model Studies and Preliminary Experiments. IEEE Transactions on Biomedical Engineering, Feb 1985, Vol BME -32(2):158-165. 10 13. Lambert

  12. Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

    2004-11-01

    The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

  13. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  14. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  15. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  16. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    USGS Publications Warehouse

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  17. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  18. Instrumentation for Infrared Astronomy in the Collections of the National Air and Space Museum, Smithsonian Institution

    NASA Astrophysics Data System (ADS)

    DeVorkin, David H.

    2017-01-01

    The National Air and Space Museum of the Smithsonian Institution is responsible for preserving the material heritage of modern astronomical history. We place emphasis on American accomplishments, on both airborne and spaceborne instrumentation, and on ground based instrumentation that stimulated and supported spaceborne efforts. At present the astronomical collection includes over 600 objects, of which approximately 40 relate to the history of infrared astronomy. This poster will provide a simple listing of our holdings in infrared and far-infrared astronomy, and will highlight particularly significant early objects, like Cashman and Ektron cells, Leighton and Neugebauer's Caltech 2.2 micron survey telescope, Low's Lear Jet Bolometer, Harwit's first Aerobee IR payload and Fazio's balloon-borne observatory. Elements from more recent missions will also be included, such as instruments from KAO, an IRAS focal plane instrument, FIRAS from COBE, the payload from Boomerang and Woody and Richards' balloonsonde payload. The poster author will invite AAS members to comment on these holdings, provide short stories of their experiences building and using them, and suggest candidates for possible collection.

  19. Planetary Protection Plan for an Antibody based instrument proposed for Mars2020

    NASA Astrophysics Data System (ADS)

    Smith, Heather; Parro, Víctor

    The Signs Of Life Detector (SOLID) instrument is a high TRL level instrument proposed for the Mars 2020 instrument suite. In this presentation we describe the planetary protection instrument plan as if the instrument is classified as a life detection instrument compliant with Category IV(b) planetary protection mission requirements, NASA, ESA, and COSPAR policy. SOLID uses antibodies as a method for detecting organic and biomolecular components in soils. Due to the sensitive detection method, the scientific integrity of the instrument exceeds the planetary protection requirements. The instrument will be assembled and integrated in an ISO level 8 cleanroom or better (ISO 4 for the sample read out and fluidics components). Microbial reduction methods and assays employed are as follows: Wipe the outside and inside of the instrument with a mixture of isopropyl alcohol (70%) and water. Cell cultures will be the standard assay to determine enumeration of “viable” spores and other rapid assays such as LAL and ATP bioluminescence as secondary assays to verify the interior of the instrument is microbe free. SOLID’s design factors for contamination control include the following features: SOLID has the capability to heat the catchment tray to pyrolyze any Earth hitchhikers. There will also be an “air gap” of cm maintained between the sample acquisition device and the funnel inlet. This will prevent forward contamination of the sample collection device and reverse contamination of the detection unit. To mitigate false positives, SOLID will include anti-bodies for potential contaminants from organisms most commonly found in clean rooms. If selected for the Mars 2020 Rover, SOLID would be the first life detection instrument based on biomolecules sent by NASA, as such the planetary protection plan will set a precedence for future life detection instruments carrying biomolecules to other planetary bodies.

  20. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Gamblin, R.; Marrero, E.; Bering, E. A., III; Leffer, B.; Dunbar, B.; Ahmad, H.; Canales, D.; Bias, C.; Cao, J.; Pina, M.; Ehteshami, A.; Hermosillo, D.; Siddiqui, A.; Guala, D.

    2014-12-01

    This project is currently engaging tweleve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological inovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The UH USIP undergraduate team is currently in the process of build ten such payloads for launch using1500 gm latex weather balloons to be deployed in Houston and Fairbanks, AK as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind speed, wind direction, temperature, electrical conductivity, ozone and odd nitrogen. This instrument payload will also profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students will fly payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  1. Low-drag ground vehicle particularly suited for use in safely transporting livestock

    NASA Technical Reports Server (NTRS)

    Saltzman, E. J. (Inventor)

    1982-01-01

    A low-drag truck consisting of a tractor-trailer rig characterized by a rounded forebody and a protective fairing for the gap conventionally found to exist between the tractor and the trailer is described. The fairing particularly suited for establishing an attached flow of ambient air along its surfaces. The truck is also comprised of a forward facing, ram air inlet and duct and a plurality of submerged inlets and outflow ports communicating with the trailer for continuously flushing heated gases from the trailer as the rig is propelled at highway speeds.

  2. Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.; hide

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.

  3. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    PubMed

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.

  4. AIRS First Light Data: Eastern Mediterranean, June 14, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    climate change, determining if the global water cycle is accelerating, and detecting the effects of increased greenhouse gases.

    The AIRS sounding suite is a tightly integrated remote sensing system that will be used to create global three-dimensional maps of temperature, humidity and clouds in the Earth's atmosphere with unprecedented accuracy. This will lead to better weather forecasts as well as a wealth of data that will be used to study and characterize and eventually predict the global climate. The AIRS system is made up of three of the six Aqua instruments - AIRS itself, which is an infrared sounder with an unprecedented 2378 spectral channels, complemented with a 4-channel visible/near-infrared imaging module; AMSU-A, which is a 15-channel microwave temperature sounder; and HSB, which is a 4-channel microwave humidity sounder. These instruments are carefully aligned with each other and scan the atmosphere in a synchronized way, giving us simultaneous multispectral views of a highly variable target.

    The Atmospheric Infrared Sounder is an instrument onboard NASA's Aqua satellite under the space agency's Earth Observing System. The sounding system is making highly accurate measurements of air temperature, humidity, clouds and surface temperature. Data will be used to better understand weather and climate. It will also be used by the National Weather Service and the National Oceanic and Atmospheric Administration to improve the accuracy of their weather and climate models.

    The instrument was designed and built by Lockheed Infrared Imaging Systems (recently acquired by British Aerospace) under contract with JPL. The Aqua satellite mission is managed by NASA's Goddard Space Flight Center.

  5. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Noecker, Charlie; Kendrick, Steve; Woodgate, Bruce; Kilstron, Steve; Cash, Webster

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA s New Worlds Observer program are presented. A four-meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror-anastigmat telescope design. Planet finding and characterization, and a UV instrument would use a separate channel that is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  6. Progress along the E-ELT instrumentation roadmap

    NASA Astrophysics Data System (ADS)

    Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.

    2016-08-01

    A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.

  7. Astronomical Video Suites

    NASA Astrophysics Data System (ADS)

    Francisco Salgado, Jose

    2010-01-01

    Astronomer and visual artist Jose Francisco Salgado has directed two astronomical video suites to accompany live performances of classical music works. The suites feature awe-inspiring images, historical illustrations, and visualizations produced by NASA, ESA, and the Adler Planetarium. By the end of 2009, his video suites Gustav Holst's The Planets and Astronomical Pictures at an Exhibition will have been presented more than 40 times in over 10 countries. Lately Salgado, an avid photographer, has been experimenting with high dynamic range imaging, time-lapse, infrared, and fisheye photography, as well as with stereoscopic photography and video to enhance his multimedia works.

  8. Solar Hot Air Balloons: A Low Cost, Multi-hour Flight System for Lightweight Scientific Instrumentation Packages

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.

    2017-12-01

    Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.

  9. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Norcross, Jason

    2011-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. The objective of this test was to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) across a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice to allow for comparison between tests. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of approximately 500 to 3000 BTU/hr. Supply airflow was varied at 6, 5 and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was primarily affected by the metabolic rate of the subject, with increased metabolic rate resulting in increased inspired ppCO2. Suit flow rate also affected inspired ppCO2, with decreased flow causing small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates greater than or equal to 2000 BTU/hr. Results were consistent between suits, with

  10. Use of Variable Pressure Suits, Intermittent Recompression and Nitrox Breathing Mixtures during Lunar Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Abercromby, Andrew F.

    2009-01-01

    This slide presentation reviews the use of variable pressure suits, intermittent recompression and Nitrox breathing mixtures to allow for multiple short extravehicular activities (EVAs) at different locations in a day. This new operational concept of multiple short EVAs requires short purge times and shorter prebreathes to assure rapid egress with a minimal loss of the vehicular air. Preliminary analysis has begun to evaluate the potential benefits of the intermittent recompression, and Nitrox breathing mixtures when used with variable pressure suits to enable reduce purges and prebreathe durations.

  11. Heat stress and a countermeasure in the Shuttle rescueman's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.; Reed, H.; Convertino, V. A.

    1992-01-01

    Rescue of the astronaut flight crew from a contingency landing may risk exposure of the rescue crew to toxic propellants spilling from potentially ruptured tanks in the crew module area. An Aquala dry diver's suit has been in service by the rescue team to preclude exposure, especially in the water rescue scenario. Heat stress has become a factor of concern in recent years when older and less physically-fit team members work in this suit. Methods: Field testing was initiated using fully instrumented rescue men in a simulated scenario to determine the extent of heat stress. Two tests were accomplished, one in the normal (N) configuration and one with a proposed cooling countermeasure, the Steele vest (S). Results: Heat stress was high as indicated by average rectal temperatures (Tre) of 38.28 degrees C(100.9 degrees F) after the 45 minute protocol. Slopes of the regression equations describing the increase in Tre with time were greater (P less than 0.05) with N (0.073 plus or minus .008) compared to S (0.060 plus or minus .007). Projection of time to the 38.89 degree C (102 degree F) limit was increased by 15.3 percent with the vest. Mean skin temperature (Tsk) was higher (P less than 0.05) in N (38.33 plus or minus .11 degrees C) compared to S (34.33 plus or minus .39 degrees C). Average heart rate was higher (P less than 0.05 in N than S. Sweat loss, as measured by weight loss, was more (P less than 0.05) for N (1.09 plus or minus .09 kg versus 0.77 plus or minus .06 kg). Air usage, while slightly less for S, was not statistically different. Conclusion: The use of the cool vest provided significant relief from thermal stress in spite of the addition of 3.4 kg (7.5 pounds) weight and some loss in mobility.

  12. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  13. Nutrition systems for pressure suits.

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Rapp, R. M.; Smith, M. C., Jr.

    1973-01-01

    Nutrition systems were successfully developed in the Apollo Program for astronauts wearing pressure suits during emergency decompression situations and during lunar surface explorations. These nutrition systems consisted of unique dispensers, water, flavored beverages, nutrient-fortified beverages, and intermediate moisture food bars. The emergency decompression system dispensed the nutrition from outside the pressure suit by interfacing with a suit helmet penetration port. The lunar exploration system utilized dispensers stowed within the interior layers of the pressure suit. These systems could be adapted for provision of nutrients in other situations requiring the use of pressure suits.

  14. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  15. Suited for Space

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.

    2006-01-01

    This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.

  16. Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2007-11-10

    Long-term calibration monitoring of the bidirectional reflectance distribution function (BRDF) of Spectralon diffusers in the air-ultraviolet is presented. Four Spectralon diffusers were monitored in this study. Three of the diffusers, designated as H1, H2, and H3, were used in the prelaunch radiance calibration of the Solar Backscatter Ultraviolet/2 (SBUV/2) satellite instruments on National Oceanic and Atmospheric Administration (NOAA) 14 and 16. A fourth diffuser, designated as the 400 diffuser, was used in the prelaunch calibration of the Ozone Mapping and Profiler Suite (OMPS) instrument scheduled for initial flight in 2009 on the National Polar Orbiting Environmental Satellite System Preparatory Project. The BRDF data of this study were obtained between 1994 and 2005 using the scatterometer located in the National Aeronautics and Space Administration Goddard Space Flight Center Diffuser Calibration Laboratory. The diffusers were measured at 13 wavelengths between 230 and 425 nm at the incident and scatter angles used in the prelaunch calibrations of SBUV/2 and OMPS. Spectral features in the BRDF of Spectralon are also discussed. The comparison shows how the air-ultraviolet BRDF of these Spectralon samples changed over time under clean room deployment conditions.

  17. Social Learning as Approach for Teacher Professional Development; How Well Does It Suit Them?

    ERIC Educational Resources Information Center

    Meijs, Celeste; Prinsen, Fleur R.; de Laat, Maarten F.

    2016-01-01

    Learning from others has been reported as a productive approach for teacher Professional Development (PD) and is seen as a valuable addition to formal PD. Specific insights into whether social learning suits teachers is still lacking. Therefore, the aim of the current study was to develop and apply an instrument to assess social learning…

  18. LBL's Pollution Instrumentation Comparability Program.

    ERIC Educational Resources Information Center

    McLaughlin, R. D.; And Others

    1979-01-01

    Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)

  19. Construction and Resource Utilization Explorer: Regolith Characterization Using a Modular Instrument Suite and Analysis Tools

    NASA Technical Reports Server (NTRS)

    Johnson, Jerome B.; Boynton, William V.; Davis, Keil; Elphic, Richard; Glass, Brian; Haldemann, Albert F. C.; Adams, Frederick W.

    2005-01-01

    The Construction Resource Utilization Explorer (CRUX) is a technology maturation project for the U.S. National Aeronautics and Space Administration to provide enabling technology for lunar and planetary surface operations (LPSO). The CRUX will have 10 instruments, a data handling function (Mapper - with features of data subscription, fusion, interpretation, and publication through geographical information system [GIs] displays), and a decision support system DSS) to provide information needed to plan and conduct LPSO. Six CRUX instruments are associated with an instrumented drill to directly measure regolith properties (thermal, electrical, mechanical, and textural) and to determine the presence of water and other hydrogen sources to a depth of about 2 m (Prospector). CRUX surface and geophysical instruments (Surveyor) are designed to determine the presence of hydrogen, delineate near subsurface properties, stratigraphy, and buried objects over a broad area through the use of neutron and seismic probes, and ground penetrating radar. Techniques to receive data from existing space qualified stereo pair cameras to determine surface topography will also be part of the CRUX. The Mapper will ingest information from CRUX instruments and other lunar and planetary data sources, and provide data handling and display features for DSS output. CRUX operation will be semi-autonomous and near real-time to allow its use for either planning or operations purposes.

  20. Suited crewmember productivity

    NASA Astrophysics Data System (ADS)

    Barer, A. S.; Filipenkov, S. N.

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: —space suit microclimate (gas composition, pressure and temperature); —limitation of motion activity and perception, imposed by the space suit; —good crewmember training in the ground training program; —level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; —individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; —concrete EVA duration and work rate; —EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  1. Suited crewmember productivity.

    PubMed

    Barer, A S; Filipenkov, S N

    1994-01-01

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: -space suit microclimate (gas composition, pressure and temperature); -limitation of motion activity and perception, imposed by the space suit; -good crewmember training in the ground training program; -level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; -individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; -concrete EVA duration and work rate; -EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  2. Final Checks of Aquarius Instrument

    NASA Image and Video Library

    2011-04-29

    Less than two months before launch, team members conduct their final checks of NASA Aquarius instrument at Vandenberg Air Force Base, Calif. Subsequent final instrument tests will be conducted on the launch pad.

  3. AIRS Data Service at NASA Goddard Earth Sciences Data and Information Services (GES DISC) and Its Application to Climate Change Study

    NASA Technical Reports Server (NTRS)

    Won, Young-In; Vollimer, Bruce; Theobald, Mike; Hua, Xin-Min

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) instrument suite is designed to observe and characterize the entire atmospheric column from the surface to the top of the atmosphere in terms of surface emissivity and temperature, atmospheric temperature and humidity profiles, cloud amount and height, and the spectral outgoing infrared radiation on a global scale. The AIRS Data Support Team at the GES DISC provides data support to assist others in understanding, retrieving and extracting information from the AIRS/AMSU/HSB data products. Because a number of years has passed since its operation started, the amount of data has reached a certain level of maturity where we can address the climate change study utilizing AIRS data, In this presentation we will list various service we provide and to demonstrate how to utilize/apply the existing service to long-term and short-term variability study.

  4. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Meginnis, I; Norcross, J.; Bekdash, O.

    2016-01-01

    It is essential to provide adequate carbon dioxide (CO2) washout in a space suit to reduce the risks associated with manned operations in space suits. Symptoms of elevated CO2 levels range from reduced cognitive performance and headache to unconsciousness and death at high levels of CO2. Because of this, NASA imposes limits on inspired CO2 levels for space suits when they are used in space and for ground testing. Testing and/or analysis must be performed to verify that a space suit meets CO2 washout requirements. Testing for developmental space suits has traditionally used an oronasal mask that collects CO2 samples at the left and rights sides of the mouth. Testing with this mask resulted in artificially elevated CO2 concentration measurements, which is most likely due to the dead space volume at the front of the mask. The mask also extends outward and into the supply gas stream, which may disrupt the washout effect of the suit supply gas. To mitigate these problems, a nasal cannula was investigated as a method for measuring inspired CO2 based on the assumptions that it is low profile and would not interfere with the designed suit gas flow path, and it has reduced dead space. This test series compared the performance of a nasal cannula to the oronasal mask in the Mark III space suit. Inspired CO2 levels were measured with subjects at rest and at metabolic workloads of 1000, 2000, and 3000 BTU/hr. Workloads were achieved by use of an arm ergometer or treadmill. Test points were conducted at air flow rates of 2, 4, and 6 actual cubic feet per minute, with a suit pressure of 4.3 psid. Results from this test series will evaluate the accuracy and repeatability across subjects of the nasal cannula collection method, which will provide rationale for using a nasal cannula as the new method for measuring inspired CO2 in a space suit. Proper characterization of sampling methods and of suit CO2 washout capability will better inform requirements definition and verification

  5. Series of Storms Battering California Tracked by NASA AIRS Instrument

    NASA Image and Video Library

    2017-01-13

    A series of atmospheric rivers that brought drought-relieving rains, heavy snowfall and flooding to California this week is highlighted in a new movie created with satellite data from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite. The images of atmospheric water vapor were collected by AIRS between January 7 and 11. They show the amount of moisture present in the atmosphere and its movement across the Pacific Ocean to the United States, where much of it fell as rain or snow. In early January 2017, the Western U.S. experienced rain and flooding from a series of storms flowing to America on multiple streams of moist air, each individually known as an atmospheric river. Atmospheric rivers are typically 250 to 375 miles (400 to 600 kilometers) wide. The term "Pineapple Express" refers to atmospheric rivers that originate near or just east of the Hawaiian Islands and terminate along the West Coast of North America. Other atmospheric rivers originate in the tropical Western Pacific Ocean and take on a more west-to-east orientation near the U.S. West Coast. Several distinct plumes of moisture are apparent in the AIRS imagery. The first of three atmospheric river events occurred on January 7 and 8. This was a classic Pineapple Express, featuring an uninterrupted supply of heavy moisture drawn up from the deep tropics. This was the wettest storm of the series, producing very heavy rainfall, more than 1 foot (0.3 meter), in parts of Central and Northern California, with relatively smaller amounts of snow at the highest elevations of the Sierra Nevada. The second blob of heavy moisture, from January 8 to 10 to the west of California, likely originated thousands of miles to the west, in the tropical Western Pacific. This atmospheric river did not maintain its tropical connection. However, it still produced prodigious rainfall totals in Northern California and much more snow than the first event, since the storm had a more northern and colder

  6. Latest NASA Instrument Cost Model (NICM): Version VI

    NASA Technical Reports Server (NTRS)

    Mrozinski, Joe; Habib-Agahi, Hamid; Fox, George; Ball, Gary

    2014-01-01

    The NASA Instrument Cost Model, NICM, is a suite of tools which allow for probabilistic cost estimation of NASA's space-flight instruments at both the system and subsystem level. NICM also includes the ability to perform cost by analogy as well as joint confidence level (JCL) analysis. The latest version of NICM, Version VI, was released in Spring 2014. This paper will focus on the new features released with NICM VI, which include: 1) The NICM-E cost estimating relationship, which is applicable for instruments flying on Explorer-like class missions; 2) The new cluster analysis ability which, alongside the results of the parametric cost estimation for the user's instrument, also provides a visualization of the user's instrument's similarity to previously flown instruments; and 3) includes new cost estimating relationships for in-situ instruments.

  7. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  8. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  9. Earth remote sensing with NPOESS: instruments and environmental data products

    NASA Astrophysics Data System (ADS)

    Glackin, David L.; Cunningham, John D.; Nelson, Craig S.

    2004-02-01

    The NPOESS (National Polar-orbiting Operational Environmental Satellite System) program represents the merger of the NOAA POES (Polar-orbiting Environmental Satellite) program and the DoD DMSP (Defense Meteorological Satellite Program) satellites. Established by presidential directive in 1994, a tri-agency Integrated Program Office (IPO) in Silver Spring, Maryland, has been managing NPOESS development, and is staffed by representatives of NOAA, DoD, and NASA. NPOESS is being designed to provide 55 atmospheric, oceanographic, terrestrial, and solar-geophysical data products, and will disseminate them to civilian and military users worldwide. The first NPOESS satellite is scheduled to be launched late in this decade, with the other two satellites of the three-satellite constellation due to be launched over the ensuing four years. NPOESS will remain operational for at least ten years. The 55 Environmental Data Records (EDRs) will be provided by a number of instruments, many of which will be briefly described in this paper. The instruments will be hosted in various combinations on three NPOESS platforms in three distinct polar sun-synchronous orbits. The instrument complement represents the combined requirements of the weather, climate, and environmental remote sensing communities. The three critical instruments are VIIRS (Visible/Infrared Imager-Radiometer Suite), CMIS (Conical Microwave Imager/Sounder), and CrIS (Cross-track Infrared Sounder). The other IPO-developed instruments are OMPS (Ozone Mapper/Profiler Suite), GPSOS (Global Positioning System Occultation Sensor), the APS (Aerosol Polarimeter Sensor), and the SESS (Space Environment Sensor Suite). NPOESS will also carry various "leveraged" instruments, i.e., ones that do not require development by the IPO. These include the ATMS (Advanced Technology Microwave Sounder), the TSIS (Total Solar Irradiance Sensor), the ERBS (Earth Radiation Budget Sensor), and the ALT (Radar Altimeter).

  10. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Norcross, J.; Bekdash, O.; Meginnis, I.

    2016-01-01

    Providing adequate carbon dioxide (CO2) washout is essential to the reduction of risk in performing suited operations. Long term CO2 exposure can lead to symptoms such as headache, lethargy, dizziness, and in severe cases can lead to unconsciousness and death. Thus maintaining adequate CO2 washout in both ground testing and during in flight EVAs is a requirement of current and future suit designs. It is necessary to understand the inspired CO2 of suit wearers such that future requirements for space suits appropriately address the risk of inadequate washout. Testing conducted by the EVA Physiology Laboratory at the NASA Johnson Space Center aimed to characterize a method for noninvasively measuring inspired oronasal CO2 under pressurized suited conditions in order to better inform requirements definition and verification techniques for future CO2 washout limits in space suits. Prior work conducted by the EPL examined several different wearable, respirator style, masks that could be used to sample air from the vicinity surround the nose and mouth of a suited test subject. Previously published studies utilized these masks, some being commercial products and some novel designs, to monitor CO2 under various exercise and flow conditions with mixed results for repeatability and/or consistency between subjects. Based on a meta-analysis of those studies it was decided to test a nasal cannula as it is a commercially available device that is placed directly in the flow path of the user as they breathe. A nasal cannula was used to sample air inhaled by the test subjects during both rest and exercise conditions. Eight subjects were tasked with walking on a treadmill or operating an arm ergometer to reach target metabolic rates of 1000, 2000, and 3000 BTU/hr. Suit pressure was maintained at 4.3 psid for all tests, with supply flow rates of 6, 4, and 2 actual cubic feet per minute depending on the test condition. Each test configuration was conducted twice with subjects breathing

  11. The Situational Awareness Sensor Suite for the ISS (SASSI): A Mission Concept to Investigate ISS Charging and Wake Effects

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Minow, J. I.; Coffey, V. N.; Gilchrist, Brian E.; Hoegy, W. R.

    2014-01-01

    The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for real-time monitoring. Space environment data collected in real-time (or near-real time) can be used operationally for both real-time alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for long-term "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for short-term "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wake-induced ion waves in both

  12. Wind-instrument reflection function measurements in the time domain.

    PubMed

    Keefe, D H

    1996-04-01

    Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.

  13. [Effect of loading suit "Penguin" on human metabolism during movements].

    PubMed

    Barer, A S; Kozlovskaia, I B; Tikhomirov, E P; Sinigin, V M; Letkova, L I

    1998-01-01

    Additional energy expenses due to stretching of the elastic elements of anti-loading suit (ALS) "Penguin" as a whole (shoulders-feet) or only its lower part (waist-feet) in the course of cyclic leg movements were measured in five female and five male volunteers. ALS design enabled tensometric monitoring of efforts applied to specific elastic elements, and total efforts applied to the shoulder or pelvic girdles separately. Energy spend were determined with the indirect calorimetric techniques from the data of the expired air analysis. Registered were electromyograms of m. longus spinae, femoral extensor (m. biceps femoris) and femoral flexor (m. rectus femoris), and m. gastrocnemius. On the first stage, bicycle ergometer was pedaled w/o loading with a frequency of 60 cycles/min. The next stage included testing by incremental loading in which pedaling ceased at the pulse rate of 150/min. Results of the experiments that did not require stretching elastic parts of the suit and in which the total strain effort made up 20 to 25 kg and 15 to 16 kg by males and females, respectively, were compared. It was ascertained that ALS enhanced metabolism during motion by 20 to 30%; however, there was no significant difference in energy expenses when loaded by the whole suit or only its lower part.

  14. The sound of oscillating air jets: Physics, modeling and simulation in flute-like instruments

    NASA Astrophysics Data System (ADS)

    de La Cuadra, Patricio

    Flute-like instruments share a common mechanism that consists of blowing across one open end of a resonator to produce an air jet that is directed towards a sharp edge. Analysis of its operation involves various research fields including fluid dynamics, aero-acoustics, and physics. An effort has been made in this study to extend this description from instruments with fixed geometry like recorders and organ pipes to flutes played by the lips. An analysis of the jet's response to a periodic excitation is the focus of this study, as are the parameters under the player's control in forming the jet. The jet is excited with a controlled excitation consisting of two loudspeakers in opposite phase. A Schlieren system is used to visualize the jet, and image detection algorithms are developed to extract quantitative information from the images. In order to study the behavior of jets observed in different flute-like instruments, several geometries of the excitation and jet shapes are studied. The obtained data is used to propose analytical models that correctly fit the observed measurements and can be used for simulations. The control exerted by the performer on the instrument is of crucial importance in the quality of the sound produced for a number of flute-like instruments. The case of the transverse flute is experimentally studied. An ensemble of control parameters are measured and visualized in order to describe some aspects of the subtle control attained by an experienced flautist. Contrasting data from a novice flautist are compared. As a result, typical values for several non-dimensional parameters that characterize the normal operation of the instrument have been measured, and data to feed simulations has been collected. The information obtained through experimentation is combined with research developed over the last decades to put together a time-domain simulation. The model proposed is one-dimensional and driven by a single physical input. All the variables in the

  15. Performance assessment of future thermal infrared geostationary instruments to monitor air quality

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Dauphin, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Coman, A.; Forêt, G.; Beekmann, M.; Gaubert, B.; Flaud, J.-M.

    2012-04-01

    Air quality (AQ) has a recognized onerous impact on human health and the environment, and then on society. It is more and more clear that constantly and efficiently monitoring AQ from space is a valuable step forward towards a more thorough comprehension of pollution processes that can have a relevant impact on the biosphere. In recent years, important progresses in this field have been made, e.g., reliable observations of several pollutants have been obtained, proving the feasibility of monitoring atmospheric composition from space. In this sense, low Earth orbit (LEO) thermal infrared (TIR) space-borne instruments are widely regarded as a useful tool to observe targeted AQ parameters like tropospheric ozone concentrations [1]. However, limitations remain with the current observation systems in particular to observe ozone in the lowermost troposphere (LmT) with a spatial and temporal resolution relevant for monitoring pollution processes at the regional scale. Indeed, LEO instruments are not well adapted to monitor small scale and short term phenomena, owing to their unsatisfactory revisit time. From this point of view, a more satisfactory concept might be based on geostationary (GEO) platforms. Current and planned GEO missions are mainly tailored on meteorological parameters retrieval and do not have sufficient spectral resolutions and signal to noise ratios (SNR) to infer information on trace gases in the LmT. New satellite missions are currently proposed that can partly overcome these limitations. Here we present a group of simulation exercises and sensitivity analyses to set-up future TIR GEO missions adapted to monitor and forecast AQ over Europe, and to evaluate their technical requirements. At this aim, we have developed a general simulator to produce pseudo-observations for different platform/instrument configurations. The core of this simulator is the KOPRA radiative transfer model, including the KOPRAfit inversion module [2]. Note that to assess the

  16. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; hide

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  17. Space suit

    NASA Technical Reports Server (NTRS)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  18. Setup of an interface for operation of IAGOS (In-service Aircraft Global Observing System) CORE instruments onboard the IAGOS CARIBIC platform.

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Franke, Harald; Zahn, Andreas; Boenisch, Harald; Perim de Faria, Julia; Berkes, Florian; Petzold, Andreas

    2017-04-01

    The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in-situ observational data by using commercial passenger aircraft as measurement platforms. The infrastructure is built from two complementary approaches: The "CORE" component comprises the implementation and operation of autonomous instruments installed on up to 20 long-range aircraft of international airlines for continuous measurements of important reactive gases and greenhouse gases, as well as aerosol particles, dust and cloud particles. The fully automated instruments are designed for operation aboard the aircraft in unattended mode for several months and the data are transmitted automatically. The complementary "CARIBIC" component consists of the monthly deployment of a cargo container equipped with instrumentation for a larger suite of components. The CARIBIC container has equipment for measuring ozone, carbon monoxide, nitrogen oxides, water vapor and airborne particles. Furthermore the container is equipped with a system for collecting air samples. These air samples are analyzed in the laboratory. For each sample measurements for more than 40 trace gases including CFC's prohibited by the Montreal protocol, and all greenhouse gases are performed. The Interface described in this work is designed to host one of IAGOS CORE (Package2) instruments. Available are: P2a, P2b, measuring { NO_y} and {NO_x} em P2c, measuring the aerosol size-distribution (0.25

  19. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  20. Sample Analysis at Mars Instrument, Side Panels Off

    NASA Image and Video Library

    2012-08-27

    An instrument suite that will analyze the chemical ingredients in samples of Martian atmosphere, rocks and soil during the mission of NASA Mars rover Curiosity, is shown here during assembly at NASA Goddard Space Flight Center, Greenbelt, Md., in 2010.

  1. Medical instrument data exchange.

    PubMed

    Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M

    2008-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.

  2. Instrumentation design and installation for monitoring air injection ground water remediation technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, B.L.; Baldwin, C.K.; Lachmar, T.E.

    2000-03-31

    An in situ instrumentation bundle was designed for inclusion in monitoring wells that were installed at the Wasatch Trailer Sales site in Layton, Utah, to evaluate in situ air sparging (IAS) and in-well aeration (IWA). Sensors for the bundle were selected based on laboratory evaluation of accuracy and precision, as well as consideration of size and cost. SenSym pressure transducers, Campbell Scientific, Inc. (CSI) T-type thermocouples, and dissolved oxygen (DO) probes manufactured by Technalithics Inc. (Waco, Texas), were selected for each of the 27 saturated zone bundles. Each saturated zone bundle also included a stirring blade to mix water nearmore » the DO probe. A Figaro oxygen sensor was included in the vadose zone bundle. The monitoring wells were installed by direct push technique to minimize soil disruption and to ensure intimate contact between the 18 inch (46 cm) long screens and the soil. A data acquisition system, comprised of a CSI 21X data logger and four CSI AM416 multiplexers, was used to control the stirring blades and record signals from more than 70 in situ sensors. The instrumentation performed well during evaluation of IAS and IWA at the site. However, the SenSym pressure transducers were not adequately temperature compensated and will need to be replaced.« less

  3. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  4. Paired tree and soil instrumentation: what can we learn from two instrumented sites across various gradients in a forested catchment

    NASA Astrophysics Data System (ADS)

    Hartsough, P. C.; Roudneva, E.; Malazian, A. I.; Meadows, M. W.; Bales, R. C.; Hopmans, J. W.

    2012-12-01

    Extensive instrumentation both below and above ground across a forested catchment in the Southern Sierra Critical Zone Observatory (SSCZO) within the Kings River Experimental Watershed (KREW) begins to untangle the complex relationship between precipitation, water storage and transpiration as it relates to water availability from deeper sources. The first instrumented site (CZT-1) includes a White Fir (Abies concolor) situated on a flat ridge with access to deep soil moisture. Monitoring and modeling of shallow and deep soil regions confirm that there is significant soil water available from 100-400cm as the tree exhausts water from shallower depths. A root excavation and limited drilling show roots distributed from 30-150cm with limited roots available to access deeper soil water and water stored in the saprolite. At a second instrumented site, CZT-2, a Ponderosa Pine (Pinus ponderosa) was instrumented with a similar suite of sap flow and soil sensors. The CZT-2 site is on a slight slope and is characterized by shallow soils (<90cm) with extensive cobbles and bedrock outcrops with limited access to deeper soil or saprolite water. The second site also sits in the open while the first site is more protected in a closed forest. The two sites show different responses to changes in rain and snow loading from above as well as soil drainage and water depletion from below across a wet to dry transition. They also have different thresholds for transpiration shut down both due to late season water deficit and also during winter periods where air temperatures are high enough to permit photosynthesis. Sap flux and extensive soil water content and water potential measurements around both trees as well as evapotranspiration measurements from a 50m flux tower located adjacent to the two instrumented trees, show little water limitation during wet years and only moderate water limitation during a drought year. Access to deeper water storage pools is confirmed by modeling results

  5. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Kilston, Steve; Kendrick, Steve

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA's New Worlds Observer program are presented. First order parameters are derived from the science requirements, and estimated performance metrics are shown using optical models. A four meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror anastigmat telescope design. Planet finding and characterization would use a separate channel which is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  6. Characterization of an Electroanalytical Instrument Suite Searching for Water and Life on Mars

    NASA Technical Reports Server (NTRS)

    Bostic, Heidi E.

    2005-01-01

    Seeking the existence of life on other planets is an essential part of NASA's research. Our terrestrial experience suggests that water is a mandatory resource for life to exist and thrive. However, instruments capable of detecting water at the levels likely to be present on Mars are lacking. This project tests the possibility of using electrical measurements of soils, at variable frequencies, as a water detector. Generally, the electrical resistance of soils can be described as a combination of resistance and capacitance, which can be described by a vector including a magnitude and (phase) angle. By specifically studying the impedance measurements and phase angles of different types of soil, spiked with varying concentrations of dissolved ions, measurements can be taken to provide an idea of the behavior of dry Martian soils. The presentation will describe the experimental technique, apparatus and procedures, as well as results conducted to calibrate the instrument and to establish sample preparation protocols.

  7. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2012-01-01

    The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.

  8. Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments

    NASA Astrophysics Data System (ADS)

    Hagan, David H.; Isaacman-VanWertz, Gabriel; Franklin, Jonathan P.; Wallace, Lisa M. M.; Kocar, Benjamin D.; Heald, Colette L.; Kroll, Jesse H.

    2018-01-01

    The use of low-cost air quality sensors for air pollution research has outpaced our understanding of their capabilities and limitations under real-world conditions, and there is thus a critical need for understanding and optimizing the performance of such sensors in the field. Here we describe the deployment, calibration, and evaluation of electrochemical sensors on the island of Hawai`i, which is an ideal test bed for characterizing such sensors due to its large and variable sulfur dioxide (SO2) levels and lack of other co-pollutants. Nine custom-built SO2 sensors were co-located with two Hawaii Department of Health Air Quality stations over the course of 5 months, enabling comparison of sensor output with regulatory-grade instruments under a range of realistic environmental conditions. Calibration using a nonparametric algorithm (k nearest neighbors) was found to have excellent performance (RMSE < 7 ppb, MAE < 4 ppb, r2 > 0.997) across a wide dynamic range in SO2 (< 1 ppb, > 2 ppm). However, since nonparametric algorithms generally cannot extrapolate to conditions beyond those outside the training set, we introduce a new hybrid linear-nonparametric algorithm, enabling accurate measurements even when pollutant levels are higher than encountered during calibration. We find no significant change in instrument sensitivity toward SO2 after 18 weeks and demonstrate that calibration accuracy remains high when a sensor is calibrated at one location and then moved to another. The performance of electrochemical SO2 sensors is also strong at lower SO2 mixing ratios (< 25 ppb), for which they exhibit an error of less than 2.5 ppb. While some specific results of this study (calibration accuracy, performance of the various algorithms, etc.) may differ for measurements of other pollutant species in other areas (e.g., polluted urban regions), the calibration and validation approaches described here should be widely applicable to a range of pollutants, sensors, and environments.

  9. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas other than methane in air or n-hexane in air may be used if the instrument does not respond to methane or n-hexane or if the instrument does not meet the performance criteria specified in paragraph (b... air at a concentration of approximately, but less than, 10,000 parts per million; or a mixture of n...

  10. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas other than methane in air or n-hexane in air may be used if the instrument does not respond to methane or n-hexane or if the instrument does not meet the performance criteria specified in paragraph (b... air at a concentration of approximately, but less than, 10,000 parts per million; or a mixture of n...

  11. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas other than methane in air or n-hexane in air may be used if the instrument does not respond to methane or n-hexane or if the instrument does not meet the performance criteria specified in paragraph (b... air at a concentration of approximately, but less than, 10,000 parts per million; or a mixture of n...

  12. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas other than methane in air or n-hexane in air may be used if the instrument does not respond to methane or n-hexane or if the instrument does not meet the performance criteria specified in paragraph (b... air at a concentration of approximately, but less than, 10,000 parts per million; or a mixture of n...

  13. EVA Suits Arrival

    NASA Image and Video Library

    2002-01-01

    Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station.

  14. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  15. 77 FR 43074 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Valley Authority's Fossil Plant issued by the Commonwealth of Kentucky (``Shawnee Permit''). Under the... by the Kentucky Department for Air Quality for the Tennessee Valley Authority's Shawnee Fossil Plant...

  16. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    PubMed

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-07

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  17. Aeronautic Instruments. Section V : Power Plant Instruments

    NASA Technical Reports Server (NTRS)

    Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C

    1923-01-01

    Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.

  18. Reach Envelope and Field of Vision Quantification in Mark III Space Suit Using Delaunay Triangulation

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Thaxton, Sherry S.; Onady, Elizabeth A.; Rajulu, Sudhakar L.

    2006-01-01

    The Science Crew Operations and Utility Testbed (SCOUT) project is focused on the development of a rover vehicle that can be utilized by two crewmembers during extra vehicular activities (EVAs) on the moon and Mars. The current SCOUT vehicle can transport two suited astronauts riding in open cockpit seats. Among the aspects currently being developed is the cockpit design and layout. This process includes the identification of possible locations for a socket to which a crewmember could connect a portable life support system (PLSS) for recharging power, air, and cooling while seated in the vehicle. The spaces in which controls and connectors may be situated within the vehicle are constrained by the reach and vision capabilities of the suited crewmembers. Accordingly, quantification of the volumes within which suited crewmembers can both see and reach relative to the vehicle represents important information during the design process.

  19. Integration of biomonitoring and instrumental techniques to assess the air quality in an industrial area located in the coastal of central Asturias, Spain.

    PubMed

    Almeida, Susana Marta; Lage, Joana; Freitas, Maria do Carmo; Pedro, Ana Isabel; Ribeiro, Tiago; Silva, Alexandra Viana; Canha, Nuno; Almeida-Silva, Marina; Sitoe, Timóteo; Dionisio, Isabel; Garcia, Sílvia; Domingues, Gonçalo; de Faria, Julia Perim; Fernández, Beatriz González; Ciaparra, Diane; Wolterbeek, Hubert T

    2012-01-01

    Throughout the world, epidemiological studies were established to examine the relationship between air pollution and mortality rates and adverse respiratory health effects. However, despite the years of discussion the correlation between adverse health effects and atmospheric pollution remains controversial, partly because these studies are frequently restricted to small and well-monitored areas. Monitoring air pollution is complex due to the large spatial and temporal variations of pollution phenomena, the high costs of recording instruments, and the low sampling density of a purely instrumental approach. Therefore, together with the traditional instrumental monitoring, bioindication techniques allow for the mapping of pollution effects over wide areas with a high sampling density. In this study, instrumental and biomonitoring techniques were integrated to support an epidemiological study that will be developed in an industrial area located in Gijon in the coastal of central Asturias, Spain. Three main objectives were proposed to (i) analyze temporal patterns of PM₁₀ concentrations in order to apportion emissions sources, (ii) investigate spatial patterns of lichen conductivity to identify the impact of the studied industrial area in air quality, and (iii) establish relationships amongst lichen conductivity with some site-specific characteristics. Samples of the epiphytic lichen Parmelia sulcata were transplanted in a grid of 18 by 20 km with an industrial area in the center. Lichens were exposed for a 5-mo period starting in April 2010. After exposure, lichen samples were soaked in 18-MΩ water aimed at determination of water electrical conductivity and, consequently, lichen vitality and cell damage. A marked decreasing gradient of lichens conductivity relative to distance from the emitting sources was observed. Transplants from a sampling site proximal to the industrial area reached values 10-fold higher than levels far from it. This finding showed that

  20. Heat exchanges in wet suits.

    PubMed

    Wolff, A H; Coleshaw, S R; Newstead, C G; Keatinge, W R

    1985-03-01

    Flow of water under foam neoprene wet suits could halve insulation that the suits provided, even at rest in cold water. On the trunk conductance of this flow was approximately 6.6 at rest and 11.4 W . m-2 . C-1 exercising; on the limbs, it was only 3.4 at rest and 5.8 W . m-2 . degrees C-1 exercising; but during vasoconstriction in the cold, skin temperatures on distal parts of limbs were lower than were those of the trunk, allowing adequate metabolic responses. In warm water, minor postural changes and movement made flow under suits much higher, approximately 60 on trunk and 30 W . m-2 . degrees C-1 on limbs, both at rest and at work. These changes in flow allowed for a wide range of water temperatures at which people could stabilize body temperature in any given suit, neither overheating when exercising nor cooling below 35 degrees C when still. Even thin people with 4- or 7- mm suits covering the whole body could stabilize their body temperatures in water near 10 degrees C in spite of cold vasodilatation. Equations to predict limits of water temperature for stability with various suits and fat thicknesses are given.

  1. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  2. Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-01-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  3. 75 FR 22787 - Proposed Settlement Agreement, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... for the Woodside Landfill in Walker, Livingston Parish Louisiana (the ``Woodside Petition'') within... to object to issuance of air permit No. 1740-00025V1 to Waste Management for the Woodside Landfill in...

  4. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2011-01-01

    The Mark III suit has multiple sizes of suit components (arm, leg, and gloves) as well as sizing inserts to tailor the fit of the suit to an individual. This study sought to determine a way to identify the point an ideal suit fit transforms into a bad fit and how to quantify this breakdown using mobility-based physical performance data. This study examined the changes in human physical performance via degradation of the elbow and wrist range of motion of the planetary suit prototype (Mark III) with respect to changes in sizing and as well as how to apply that knowledge to suit sizing options and improvements in suit fit. The methods implemented in this study focused on changes in elbow and wrist mobility due to incremental suit sizing modifications. This incremental sizing was within a range that included both optimum and poor fit. Suited range of motion data was collected using a motion analysis system for nine isolated and functional tasks encompassing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm only. The results were then compared across sizing configurations. The results of this study indicate that range of motion may be used as a viable parameter to quantify at what stage suit sizing causes a detriment in performance; however the human performance decrement appeared to be based on the interaction of multiple joints along a limb, not a single joint angle. The study was able to identify a preliminary method to quantify the impact of size on performance and to develop a means to gauge tolerances around optimal size. More work is needed to improve the assessment of optimal fit and to compensate for multiple joint interactions.

  5. Community Air Sensor Network CAIRSENSE Project: Lower ...

    EPA Pesticide Factsheets

    Presentation slides on the CAIRSENSE project, Atlanta field study testing low cost air sensors against FEM instruments. To be presented at the Air and Waste Management Association conference. Presentation slides on the CAIRSENSE project, Atlanta field study testing low cost air sensors against FEM instruments. To be presented at the Air and Waste Management Association conference.

  6. The Aouda.X space suit simulator and its applications to astrobiology.

    PubMed

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.

  7. Field protection effectiveness of chemical protective suits and gloves evaluated by biomonitoring

    PubMed Central

    Chang, F K; Chen, M L; Cheng, S F; Shih, T S; Mao, I F

    2007-01-01

    Objectives To determine the effectiveness of protective suits and gloves by biomonitoring. Methods Fifteen male spray painters at a ship coating factory were studied for two weeks. Workers wore no protective clothing during the first week and wore protective suits and gloves during the second week. Sampling was conducted on four consecutive working days each week. Ethyl benzene and xylene in the air were collected by using 3M 3500 organic vapour monitors. Urine was collected before and after each work shift. Results Urinary mandelic acid (MA) and methyl hippuric acid (MHA) levels were divided by the personal exposure concentrations of ethyl benzene and xylene, respectively. Mean (SE) corrected MA and MHA concentrations in the first week were 1.07 (0.18) and 2.66 (0.68) (mg/g creatinine)/(mg/m3), and concentrations in the second week were 0.50 (0.12) and 1.76 (0.35) (mg/g creatinine)/(mg/m3) in the second week, respectively. Both MA and MHA concentrations in the second week (when spray painters wore protective suits and gloves) were lower than in the first week, respectively (p<0.001, p = 0.011). Mean decrease in MA and MHA biomarkers were 69% and 49%, respectively. Conclusion This study successfully evaluated the effectiveness of chemical protective suits and gloves by using biomarkers as urinary MA and MHA. This method is feasible for determining the performance of workers wearing personal protective equipment. Moreover, the experimental results suggest that dermal exposure may be the major contributor to total body burden of solvents in spray painters without protective suits and gloves. PMID:17522137

  8. Pressure drop in tubing in aircraft instrument installations

    NASA Technical Reports Server (NTRS)

    Wildhack, W A

    1937-01-01

    The theoretical basis of calculation of pressure drop in tubing is reviewed briefly. The effect of pressure drop in connecting tubing upon the operation and indication of aircraft instruments is discussed. Approximate equations are developed, and charts and tables based upon them are presented for use in designing installations of altimeters, air-speed indicators, rate-of-climb indicators, and air-driven gyroscopic instruments.

  9. Extravehicular activity space suit interoperability.

    PubMed

    Skoog, A I; McBarron JW 2nd; Severin, G I

    1995-10-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.

  10. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Realtime metabolic rate measurements were

  11. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  12. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements were

  13. The Spin-Plane Double Probe Electric Field Instrument for MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.

    2016-03-01

    The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.

  14. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  15. Constellation Space Suit System Development Status

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Daniel, Brian

    2007-01-01

    The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.

  16. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  17. Experimenting with woodwind instruments

    NASA Astrophysics Data System (ADS)

    Lo Presto, Michael C.

    2007-05-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects of holes in the tubing and other factors that make simple tubes useful as musical instruments.

  18. Development of an advanced rocket propellant handler's suit.

    PubMed

    Doerr, D F

    2001-01-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or approximately 1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comparable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an

  19. Development of an advanced rocket propellant handler's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    2001-01-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or approximately 1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comparable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an

  20. Development of an advanced rocket propellant handler's suit

    NASA Astrophysics Data System (ADS)

    Doerr, DonaldF.

    2001-08-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or ˜1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comprobable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in

  1. The Role of the Institutional Researcher in a Sex Discrimination Suit. AIR Forum 1981 Paper.

    ERIC Educational Resources Information Center

    Simpson, William A.; Rosenthal, William H.

    Steps in a class action suit charging prejudicial treatment of a minority group by a college or university are summarized, and attention is directed to how the plaintiffs can use the institution's own data to establish a prima facie case for disparate treatment. The key legal issues are indicated, and typical data and statistical exhibits that an…

  2. Photocopy of drawing (original drawing of Armament & Instrument Inspection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Armament & Instrument Inspection and Adjustment Bldg. in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Construction Division, Office of the Quartermaster General) FIRST FLOOR PLAN, SECTIONS, AND DETAILS - MacDill Air Force Base, Armament & Instrument Inspection & Adjustment Building, 7807 Hanger Loop Drive, Tampa, Hillsborough County, FL

  3. Photocopy of drawing (original drawing of Armament & Instrument Inspection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Armament & Instrument Inspection and Adjustment Bldg. in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS AND DETAILS - MacDill Air Force Base, Armament & Instrument Inspection & Adjustment Building, 7807 Hanger Loop Drive, Tampa, Hillsborough County, FL

  4. Photocopy of drawing (original drawing of Armament & Instrument Inspection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Armament & Instrument Inspection and Adjustment Bldg. in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1941 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS AND SECTIONS - MacDill Air Force Base, Armament & Instrument Inspection & Adjustment Building, 7807 Hanger Loop Drive, Tampa, Hillsborough County, FL

  5. Nickel release from surgical instruments and operating room equipment.

    PubMed

    Boyd, Anne H; Hylwa, Sara A

    2018-04-15

    Background There has been no systematic study assessing nickel release from surgical instruments and equipment used within the operating suite. This equipment represents important potential sources of exposure for nickel-sensitive patients and hospital staff. To investigate nickel release from commonly used surgical instruments and operating room equipment. Using the dimethylglyoxime nickel spot test, a variety of surgical instruments and operating room equipment were tested for nickel release at our institution. Of the 128 surgical instruments tested, only 1 was positive for nickel release. Of the 43 operating room items tested, 19 were positive for nickel release, 7 of which have the potential for direct contact with patients and/or hospital staff. Hospital systems should be aware of surgical instruments and operating room equipment as potential sources of nickel exposure.

  6. Engineering Test and Evaluation During High G. Volume III, Anti-G Suits.

    DTIC Science & Technology

    1978-06-01

    items are: 3 inservice units from USAF and IJSN; an RAF unit; and 2 experimental units (lower body full pressure, and capstan). The study of the capstan...inspections are performed by life-support techni- cians whose training and expertise best enable them to evaluate the anti-G suit condition. The TEHG...of testing in one minute." At some installations this test has been waived by USAF Air Training Command (ATC) to "l psig drop from 5 psig in 20 sec

  7. Development of the DL/H-1 full pressure suit for private spaceflight

    NASA Astrophysics Data System (ADS)

    León, Pablo de; Harris, Gary L.

    2010-06-01

    The objective of this paper is to detail the need for full pressure suits to protect spaceflight participants during the experimental phases of flight testing of new space vehicles. It also details the objectives, historical background, basis for design, problems encountered by the designers and final development of the DL/H-1 full pressure suit. It will include justification for its use and results of the initial tests in the high altitude chamber and spacecraft simulator at the J.D. Odegard School of Aerospace Sciences at the University of North Dakota. For the test flights of early commercial space vehicles and tourist suborbital spacecrafts, emergency protection from the rarified air of the upper atmosphere and the vacuum of low Earth orbit almost certainly will be a requirement. Suborbital vehicles could be operating in "space equivalent conditions" for as long as 30 min to as much as several hours. In the case of cabin pressure loss, without personal protection, catastrophic loss of crew and vehicle could result. This paper explains the different steps taken by the authors who designed and built a preflight hardware pressure suit that can meet the physiological and comfort requirements of the tourist suborbital industry and the early commercial private spaceflight community. The suborbital tourist and commercial spaceflight industry have unique problems confronting the pressure suit builder such as unpressurized comfort, reasonable expense, unique sizing of the general population, decompression complications of persons not fitting a past military physiology profile and equipment weight issues. In addition, the lack of a certifying agency or guidance from international or national aviation authorities has created the opportunity for the emerging civilian pressure suit industry to create a new safety standard by which it can regulate itself in the same way the recreational SCUBA diving industry has since the late 1950s.

  8. 77 FR 45962 - Approval and Promulgation of State Implementation Plans: Idaho; Boise-Northern Ada County Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Ada County Air Quality Maintenance Area will maintain air quality standards for carbon monoxide (CO... Avenue, Suite 900, Seattle, WA 98101. Hand Delivery/Courier: U.S. EPA Region 10, 1200 Sixth Avenue, Suite... deliveries are only accepted during normal hours of operation, and special arrangements should be made for...

  9. Influence of musical instruments on tooth positions.

    PubMed

    Herman, E

    1981-08-01

    A 2-year longitudinal investigation was conducted at five New York City junior high schools on 11- to 13-year-old children starting instrumental music education to determine what tooth movement, if any, resulted from the playing of certain musical instruments. Questionnaires, interviews, oral examinations, and dental casts were used at the start of instrumental study, after one year, and then after a second year. Statistically significant anterior tooth movements occurred in an overwhelming majority of the instrumentalists, while negligible movements were recorded for the controls over this period. As a result of this study, certain recommendations can be made by dentists when they are asked to suggest instruments which are dentally suited for children. In most cases they can suggest more than one instrument which would be of benefit dentally to the individual child, especially in the increase or reduction of overjet and overbite. The playing of the correct musical instrument can serve as an adjunct to the dentist or orthodontist in trying to accomplish certain tooth movements.

  10. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    NASA Astrophysics Data System (ADS)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  11. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  12. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  13. Anthropometric Accommodation in Space Suit Design

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Thaxton, Sherry

    2007-01-01

    Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.

  14. 75 FR 80809 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Department of Air Quality to the Tennessee Valley Authority's Paradise Fossil Plant in Drakesboro, Kentucky... and any form of encryption, and may be mailed to the mailing address above. FOR FURTHER INFORMATION... Fossil Plant in Drakesboro, Kentucky. Under the terms of the proposed consent decree, EPA has agreed to...

  15. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  16. Accounting for observational uncertainties in the evaluation of low latitude turbulent air-sea fluxes simulated in a suite of IPSL model versions

    NASA Astrophysics Data System (ADS)

    Servonnat, Jerome; Braconnot, Pascale; Gainusa-Bogdan, Alina

    2015-04-01

    Turbulent momentum and heat (sensible and latent) fluxes at the air-sea interface are key components of the whole energetic of the Earth's climate and their good representation in climate models is of prime importance. In this work, we use the methodology developed by Braconnot & Frankignoul (1993) to perform a Hotelling T2 test on spatio-temporal fields (annual cycles). This statistic provides a quantitative measure accounting for an estimate of the observational uncertainty for the evaluation of low-latitude turbulent air-sea fluxes in a suite of IPSL model versions. The spread within the observational ensemble of turbulent flux data products assembled by Gainusa-Bogdan et al (submitted) is used as an estimate of the observational uncertainty for the different turbulent fluxes. The methodology holds on a selection of a small number of dominating variability patterns (EOFs) that are common to both the model and the observations for the comparison. Consequently it focuses on the large-scale variability patterns and avoids the possibly noisy smaller scales. The results show that different versions of the IPSL couple model share common large scale model biases, but also that there the skill on sea surface temperature is not necessarily directly related to the skill in the representation of the different turbulent fluxes. Despite the large error bars on the observations the test clearly distinguish the different merits of the different model version. The analyses of the common EOF patterns and related time series provide guidance on the major differences with the observations. This work is a first attempt to use such statistic on the evaluation of the spatio-temporal variability of the turbulent fluxes, accounting for an observational uncertainty, and represents an efficient tool for systematic evaluation of simulated air-seafluxes, considering both the fluxes and the related atmospheric variables. References Braconnot, P., and C. Frankignoul (1993), Testing Model

  17. Clinical utility of an automated instrument for gram staining single slides.

    PubMed

    Baron, Ellen Jo; Mix, Samantha; Moradi, Wais

    2010-06-01

    Gram stains of 87 different clinical samples were prepared by the laboratory's conventional methods (automated or manual) and by a new single-slide-type automated staining instrument, GG&B AGS-1000. Gram stains from either heat- or methanol-fixed slides stained with the new instrument were easy to interpret, and results were essentially the same as those from the methanol-fixed slides prepared as a part of the routine workflow. This instrument is well suited to a rapid-response laboratory where Gram stain requests are commonly received on a stat basis.

  18. 40 CFR 1066.130 - Measurement instrument calibrations and verifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Measurement instrument calibrations... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Equipment, Measurement Instruments, Fuel, and Analytical Gas Specifications § 1066.130 Measurement instrument calibrations and verifications. The...

  19. The Calar Alto Observatory: current status and future instrumentation

    NASA Astrophysics Data System (ADS)

    Barrado, D.; Thiele, U.; Aceituno, J.; Pedraz, S.; Sánchez, S. F.; Aguirre, A.; Alises, M.; Bergond, G.; Galadí, D.; Guijarro, A.; Hoyo, F.; Mast, D.; Montoya, L.; Sengupta, Ch.; de Guindos, E.; Solano, E.

    2011-11-01

    The Calar Alto Observatory, located at 2168 m height above the sea level in continental Europe, holds a significant number of astronomical telescopes and experiments, covering a large range of the electromagnetic domain, from gamma-ray to near-infrared. It is a very well characterized site, with excellent logistics. Its main telescopes includes a large suite of instruments. At the present time, new instruments, namely CAFE, PANIC and Carmenes, are under development. We are also planning a new operational scheme in order to optimize the observatory resources.

  20. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes.

  1. 75 FR 75672 - Proposed Settlement Agreement, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ...: Jan Tierney, Air and Radiation Law Office (2344A), Office of General Counsel, U.S. Environmental... with the Court in LEAN v. Jackson (civil action no. 1:09-01333) a motion pursuant to Fed. R. Civ. P. 41... available for public viewing at the Office of Environmental Information (OEI) Docket in the EPA Docket...

  2. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  3. Miniaturized Plasma and Neutral Diagnostics for JIMO

    NASA Technical Reports Server (NTRS)

    McHarg, M. G.; Enloe, C. L.; Krause, L. A.; Herrero, F. A.

    2003-01-01

    We describe a miniaturized suite of instruments which provides both bulk energy resolved plasma properties and coarse neutral mass spectroscopy suitable for measurements on the Jupiter Icy Moons Orbiter (JIMO). The suite is comprised of two instruments; the Miniaturized Electro-Static Analyzer (MESA), and the Flat Plasma Spectrometer (FLAPS), designed to measure the near earth environment on the Air Force Academy small satellite missions Falconsat-2 and 3.

  4. Navigation/Prop Software Suite

    NASA Technical Reports Server (NTRS)

    Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn

    2012-01-01

    Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.

  5. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. The validity of the air permeability determinations was repeatedly confirmed by rigorous tests of Darcy's law. During initial drying from complete water saturation, supplementary measurements were made to assess the magnitude of gas slip. The extended Darcy equation accurately described the measured flux gradient relations for each condition of absolute gas pressure tested. Air permeability functions exhibited zero-permeability regions at high water contents as well as an abruptly appearing hysteresis at low water contents. Measurements in the zero-permeability regions revealed that the total amount of air in general exceeded the amount of trapped air. This indicates that the medium' s air space is partitioned into three measurable domains: through-flowing air, locally accessible air (i.e., air accessible from only one flow boundary), and trapped air. During repeated wetting and drying, the disappearance and reappearance of air permeability coincided closely with the reappearance and disappearance, respectively, of trapped air. The observed relation between critical features of the air permeability functions and those of the air-trapping functions suggest that water-based blockages play a significant role in the

  6. CAPs-IDD: Characteristics of Assessment Instruments for Psychiatric Disorders in Persons with Intellectual Developmental Disorders

    ERIC Educational Resources Information Center

    Zeilinger, E. L.; Nader, I. W.; Brehmer-Rinderer, B.; Koller, I.; Weber, G.

    2013-01-01

    Background: Assessment of psychiatric disorders in persons with an intellectual developmental disorder (IDD) can be performed with a variety of greatly differing instruments. This makes the choice of an instrument best suited for the intended purpose challenging. In this study, we developed a comprehensive set of characteristics for the evaluation…

  7. US Navy Submarine Sea Trial of the NASA Air Quality Monitor

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Mudgett, Paul D.

    2017-01-01

    For the past four years, the Air Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Most importantly, the AQM operates at atmospheric pressure and uses air as the GC carrier gas, which translates into a small reliable instrument. Onboard ISS there are two AQMs, with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of air quality aboard ISS for each crew increment. The U.S. Navy is looking to update its submarine air monitoring suite of instruments, and the success of the AQM on ISS has led to a jointly planned submarine sea trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which was successfully flown on ISS as a technology demonstration to measure major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM sea trial results. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the sea trial. Only one AQM will be deployed during the sea trial, but it is sufficient to detect the compounds of interest to the Navy for the purposes of this trial. A significant benefit of the AQM is that runs can be scripted for pre-determined intervals and no crew intervention is required. The data from the sea trial will be compared to archival samples collected prior to and during the trial period. This paper will give a brief overview of the AQM technology and protocols for the submarine trial. After a quick review of the AQM preparation, the main focus of the paper will be on the results of the submarine trial. Of particular interest will be the comparison of the contaminants found in the ISS and submarine atmospheres, as both represent

  8. LANDSAT D instrument module study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft instrument module configurations which support an earth resource data gathering mission using a thematic mapper sensor were examined. The differences in size of these two experiments necessitated the development of two different spacecraft configurations. Following the selection of the best-suited configurations, a validation phase of design, analysis and modelling was conducted to verify feasibility. The chosen designs were then used to formulate definition for a systems weight, a cost range for fabrication and interface requirements for the thematic mapper (TM).

  9. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  10. Mars EVA Suit Airlock (MESA)

    NASA Astrophysics Data System (ADS)

    Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank

    The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation

  11. 75 FR 71125 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... public comment. SUMMARY: In accordance with section 113(g) of the Clean Air Act, as amended (``CAA'' or the ``Act''), 42 U.S.C. 7413(g), notice is hereby given of a proposed consent decree to address a... section 110(k)(2) of the CAA, 42 U.S.C. 7410(k)(2), to take timely final action on a submission entitled...

  12. Space Suit Spins

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Space is a hostile environment where astronauts combat extreme temperatures, dangerous radiation, and a near-breathless vacuum. Life support in these unforgiving circumstances is crucial and complex, and failure is not an option for the devices meant to keep astronauts safe in an environment that presents constant opposition. A space suit must meet stringent requirements for life support. The suit has to be made of durable material to withstand the impact of space debris and protect against radiation. It must provide essential oxygen, pressure, heating, and cooling while retaining mobility and dexterity. It is not a simple article of clothing but rather a complex modern armor that the space explorers must don if they are to continue exploring the heavens

  13. Enabling interoperability in Geoscience with GI-suite

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico; Papeschi, Fabrizio; Santoro, Mattia; Nativi, Stefano

    2015-04-01

    GI-suite is a brokering framework targeting interoperability of heterogeneous systems in the Geoscience domain. The framework is composed by different brokers each one focusing on a specific functionality: discovery, access and semantics (i.e. GI-cat, GI-axe, GI-sem). The brokering takes place between a set of heterogeneous publishing services and a set of heterogeneous consumer applications: the brokering target is represented by resources (e.g. coverages, features, or metadata information) required to seamlessly flow from the providers to the consumers. Different international and community standards are now supported by GI-suite, making possible the successful deployment of GI-suite in many international projects and initiatives (such as GEOSS, NSF BCube and several EU funded projects). As for the publisher side more than 40 standards and implementations are supported (e.g. Dublin Core, OAI-PMH, OGC W*S, Geonetwork, THREDDS Data Server, Hyrax Server, etc.). The support for each individual standard is provided by means of specific GI-suite components, called accessors. As for the consumer applications side more than 15 standards and implementations are supported (e.g. ESRI ArcGIS, Openlayers, OGC W*S, OAI-PMH clients, etc.). The support for each individual standard is provided by means of specific profiler components. The GI-suite can be used in different scenarios by different actors: - A data provider having a pre-existent data repository can deploy and configure GI-suite to broker it and making thus available its data resources through different protocols to many different users (e.g. for data discovery and/or data access) - A data consumer can use GI-suite to discover and/or access resources from a variety of publishing services that are already publishing data according to well-known standards. - A community can deploy and configure GI-suite to build a community (or project-specific) broker: GI-suite can broker a set of community related repositories and

  14. NACA Flight-Path Angle and Air-Speed Recorder

    NASA Technical Reports Server (NTRS)

    Coleman, Donald G

    1926-01-01

    A new trailing bomb-type instrument for photographically recording the flight-path angle and air speed of aircraft in unaccelerated flight is described. The instrument consists essentially of an inclinometer, air-speed meter and a film-drum case. The inclinometer carries an oil-damped pendulum which records optically the flight-path angle upon a rotating motor-driven film drum. The air-speed meter consists of a taut metal diaphragm of high natural frequency which is acted upon by the pressure difference of a Prandtl type Pitot-static tube. The inclinometer record and air-speed record are made optically on the same sensitive film. Two records taken by this instrument are shown.

  15. Survival suit volume reduction associated with immersion: implications for buoyancy estimation in offshore workers of different size.

    PubMed

    Stewart, Arthur; Ledingham, Robert; Furnace, Graham; Williams, Hector; Coleshaw, Susan

    2017-06-01

    It is currently unknown how body size affects buoyancy in submerged helicopter escape. Eight healthy males aged 39.6 ± 12.6 year (mean ± SD) with BMI 22.0-40.0 kg m -2 wearing a standard survival ('dry') suit undertook a normal venting manoeuvre and underwent 3D scanning to assess body volume (wearing the suit) before and after immersion in a swimming pool. Immersion-induced volume loss averaged 14.4 ± 5.4 l, decreased with increasing dry density (mass volume -1 ) and theoretical buoyant force in 588 UK offshore workers was found to be 264 ± 46 and 232 ± 60 N using linear and power functions, respectively. Both approaches revealed heavier workers to have greater buoyant force. While a larger sample may yield a more accurate buoyancy prediction, this study shows heavier workers are likely to have greater buoyancy. Without free-swimming capability to overcome such buoyancy, some individuals may possibly exceed the safe limit to enable escape from a submerged helicopter. Practitioner Summary: Air expulsion reduced total body volume of survival-suited volunteers following immersion by an amount inversely proportional to body size. When applied to 588 offshore workers, the predicted air loss suggested buoyant force to be greatest in the heaviest individuals, which may impede their ability to exit a submerged helicopter.

  16. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    breathe freely. Oronasal ppCO2 will be monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate will be calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements will be used to adjust the treadmill workload to meet target metabolic rates. This paper provides detailed descriptions of the test hardware, methodology and results, as well as implications for future inlet vent design and ground testing in the Mark-III.

  17. Clinical Utility of an Automated Instrument for Gram Staining Single Slides ▿

    PubMed Central

    Baron, Ellen Jo; Mix, Samantha; Moradi, Wais

    2010-01-01

    Gram stains of 87 different clinical samples were prepared by the laboratory's conventional methods (automated or manual) and by a new single-slide-type automated staining instrument, GG&B AGS-1000. Gram stains from either heat- or methanol-fixed slides stained with the new instrument were easy to interpret, and results were essentially the same as those from the methanol-fixed slides prepared as a part of the routine workflow. This instrument is well suited to a rapid-response laboratory where Gram stain requests are commonly received on a stat basis. PMID:20410348

  18. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  19. Methodology for Air Quality Forecast Downscaling from Regional- to Street-Scale

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Nuterman, Roman; Mahura, Alexander; Amstrup, Bjarne; Hansen Saas, Bent; Havskov Sørensen, Jens; Lorenzen, Thomas; Weismann, Jakob

    2010-05-01

    The most serious air pollution events occur in cities where there is a combination of high population density and air pollution, e.g. from vehicles. The pollutants can lead to serious human health problems, including asthma, irritation of the lungs, bronchitis, pneumonia, decreased resistance to respiratory infections, and premature death. In particular air pollution is associated with increase in cardiovascular disease and lung cancer. In 2000 WHO estimated that between 2.5 % and 11 % of total annual deaths are caused by exposure to air pollution. However, European-scale air quality models are not suited for local forecasts, as their grid-cell is typically of the order of 5 to 10km and they generally lack detailed representation of urban effects. Two suites are used in the framework of the EC FP7 project MACC (Monitoring of Atmosphere Composition and Climate) to demonstrate how downscaling from the European MACC ensemble to local-scale air quality forecast will be carried out: one will illustrate capabilities for the city of Copenhagen (Denmark); the second will focus on the city of Bucharest (Romania). This work is devoted to the first suite, where methodological aspects of downscaling from regional (European/ Denmark) to urban scale (Copenhagen), and from the urban down to street scale. The first results of downscaling according to the proposed methodology are presented. The potential for downscaling of European air quality forecasts by operating urban and street-level forecast models is evaluated. This will bring a strong support for continuous improvement of the regional forecast modelling systems for air quality in Europe, and underline clear perspectives for the future regional air quality core and downstream services for end-users. At the end of the MACC project, requirements on "how-to-do" downscaling of European air-quality forecasts to the city and street levels with different approaches will be formulated.

  20. 5. INTERIOR, INSTRUMENTATION AND CONTROL BUILDING ADDITION. Looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR, INSTRUMENTATION AND CONTROL BUILDING ADDITION. Looking north. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA

  1. 40+ Years of Instrumentation for the La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    2018-03-01

    As ESO Period 100 comes to a close, I look back at the development of ESO's instrumentation programme over more than 40 years. Instrumentation and detector activities were initially started by a small group of designers, engineers, technicians and astronomers while ESO was still at CERN in Geneva in the late 1970s. They have since led to the development of a successful suite of optical and infrared instruments for the La Silla Paranal Observatory, as testified by the continuous growth in the number of proposals for observing time and in the publications based on data from ESO telescopes. The instrumentation programme evolved significantly with the VLT and most instruments were developed by national institutes in close cooperation with ESO. This policy was a cornerstone of the VLT programme from the beginning and a key to its success.

  2. ASDA - Advanced Suit Design Analyzer computer program

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min

    1992-01-01

    An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.

  3. Extravehicular Space Suit Bearing Technology Development Research

    NASA Astrophysics Data System (ADS)

    Pang, Yan; Liu, Xiangyang; Guanghui, Xie

    2017-03-01

    Pressure bearing has been acting an important role in the EVA (extravehicular activity) suit as a main mobility component. EVA suit bearing has its unique traits on the material, dustproof design, seal, interface, lubrication, load and performance. This paper states the peculiarity and development of the pressure bearing on the construction design element, load and failure mode, and performance and test from the point view of structure design. The status and effect of EVA suit pressure bearing is introduced in the paper. This analysis method can provide reference value for our country’s EVA suit pressure bearing design and development.

  4. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.

  5. 76 FR 21682 - Approval and Promulgation of Air Quality Implementation Plans; Louisiana; Section 110(a)(2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ..., Air Planning Section (6PD- L), Environmental Protection Agency, 1445 Ross Avenue, Suite 1200, Dallas...), Environmental Protection Agency, 1445 Ross Avenue, Suite 1200, Dallas, Texas 75202-2733. Such deliveries are... Agency, 1445 Ross Avenue, Suite 700, Dallas, Texas 75202-2733. The file will be made available by...

  6. 97. VIEW OF NORTH SIDE OF LANDLINE INSTRUMENTATION ROOM (106), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. VIEW OF NORTH SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770). EAST ROW OF CABINETS INCLUDES, LEFT TO RIGHT: CABLE DISTRIBUTION UNITS, AUTOPILOT CHECKOUT CONTROLS, AND POWER DISTRIBUTION UNITS. NOTE OVERHEAD DUCTS FOR INSTRUMENT AIR CONDITIONING AND CABLE TRAYS ON EAST, WEST, AND SOUTH WALLS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. The NPOESS Crosstrack Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) as a Companion to the New Generation AIRS/AMSU and IASI/AMSU Sounder Suites

    NASA Astrophysics Data System (ADS)

    Bingham, G. E.; Pougatchev, N. S.; Zavyalov, V.; Esplin, M.; Blackwell, W. J.; Barnet, C.

    2009-12-01

    The NPOESS Preparatory Project is serving the operations and research community as the bridge mission between the Earth Observing System and the National Polar-orbiting Operational Environmental Satellite System. The Cross-track Infrared Sounder (CrIS), combined with the Advanced Technology Microwave Sounder (ATMS) are the core instruments to provide the key performance temperature and humidity profiles (along with some other atmospheric constituent information). Both the high spectral resolution CrIS and the upgraded microwave sounder (ATMS) will be working in parallel with already orbiting Advanced Atmospheric Infrared Sounder (AIRS/AMSU) on EOS AQUA platform and Infrared Atmospheric Sounding Interferometer (IASI/AMSU) on METOP-A satellite. This presentation will review the CrIS/ATMS capabilities in the context of continuity with the excellent performance records established by AIRS and IASI. The CrIS sensor is in the process of its final calibration and characterization testing and the results and Sensor Data Record process are being validated against this excellent dataset. The comparison between CrIS, AIRS, and IASI will include spectral, spatial, radiometric performance and sounding capability comparisons.

  8. Trace analysis of muramic acid in indoor air using an automated derivatization instrument and GC-MS(2) or GC-MS(3).

    PubMed

    Harley, William M; Kozar, Michael P; Fox, Alvin

    2002-09-01

    An automated derivatization instrument has been developed for the preparation of alditol acetates from bacterial hydrolysates for analysis by gas chromatography-mass spectrometry (GC-MS). The current report demonstrates the utility of the automated instrument for the more demanding task of trace analysis of muramic acid (Mur) in airborne dust using gas chromatography-tandem mass spectrometry (GC-MS(2)). Conditions for efficient derivatization of Mur, vital for trace analysis, are rigorous including lactam and imido group formation under anhydrous conditions. Furthermore, as the detection limit is lowered, possible contamination or carry-over of samples becomes an increasingly greater consideration and must not occur. The instrument meets these criteria and was successfully used for assaying the levels of Mur in laboratory air, which were found to be much lower than in the previous studies of heavily occupied schools and agricultural environments. The potential for GC-MS(3) in further lowering the detection limit was also demonstrated.

  9. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  10. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    A Russian Sokol suit technician prepares to help American spaceflight participant Richard Garriott don his flight suit prior to the Soyuz TMA-13 launch with Expedition 18 Commander Michael Fincke and Flight Engineer Yuri V. Lonchakov, Sunday, Oct. 12, 2008 in Baikonur, Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  11. The matter in extreme conditions instrument at the Linac Coherent Light Source

    DOE PAGES

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...

    2015-04-21

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  12. Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine

    2016-01-01

    Human missions to Mars may require radical changes in our approach to EVA suit design. A major challenge is the balance of building a suit robust enough to complete 50 EVAs in the dirt under intense UV exposure without losing mechanical strength or compromising its mobility. We conducted ground testing on both current and new space suit materials to determine performance degradation after exposure to 2500 hours of Mars mission equivalent UV. This testing will help mature the material technologies and provide performance data that can be used by not only the space suit development teams but for all Mars inflatable and soft goods derived structures from airlocks to habitats.

  13. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration.

    PubMed

    Duda, Kevin R; Vasquez, Rebecca A; Middleton, Akil J; Hansberry, Mitchell L; Newman, Dava J; Jacobs, Shane E; West, John J

    2015-01-01

    The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a "viscous resistance" during movements against a specified direction of "down"-initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from "down" initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  14. OFFICE AND INSTRUMENT ROOM SOUTH OF THE WEST TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OFFICE AND INSTRUMENT ROOM SOUTH OF THE WEST TANK - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  15. Analytical Tools for Space Suit Design

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  16. Suited Contingency Ops Food - 2

    NASA Technical Reports Server (NTRS)

    Glass, J. W.; Leong, M. L.; Douglas, G. L.

    2014-01-01

    The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.

  17. Space Suit (Mobil Biological Isolation)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Houston five-year-old known as David is getting a "space suit," a vitally important gift that will give him mobility he has never known. David suffers from a rare malady called severe combined immune deficiency, which means that be was born without natural body defenses against disease; germs that would have little or no effect on most people could cause his death. As a result, he has spent his entire life in germ-free isolation rooms, one at Houston's Texas Children's hospital, another at his home. The "space suit" David is getting will allow him to spend four hours ata a time in a mobile sterile environment outside his isolation rooms. Built by NASA's Johnson Space Center, it is a specially-designed by product of Space Suit technology known as the mobile biological isolation system.

  18. Solar Probe ANalyzer Ion Instrument - Demonstrated Laboratory Performance

    NASA Astrophysics Data System (ADS)

    Livi, R.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.

    2016-12-01

    The Solar Probe Plus (SPP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 9.86 RS. SPP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. The SPAN-Ai instrument, the ion analyzer, is composed of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. The electronics consist of (1) an anode board, (2) a TDC digital board, (3) a low voltage power supply, and (4) two high voltage boards. The onboard FPGA will control electronics and event signals while sending variable digitial packets of said information to the SWEAP Electronics Module (SWEM). The majority of the components are built, assembled, and tested primarily at the University of California, Berkeley (UCB). SPAN-Ai's main objective is to measure ions with an energy range of 5 eV - 20 keV, a mass/q between 1-100 [amu/q] and a field of view of 240 x 120 degrees . This presentation will show preliminary calibration results over the past 6 months of these features performed at UCB.

  19. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    DOE PAGES

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; ...

    2015-05-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  20. UAVSAR Program: Initial Results from New Instrument Capabilities

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Hensley, Scott; Moghaddam, Mahta; Moller, Delwyn; Chapin, Elaine; Chau, Alexandra; Clark, Duane; Hawkins, Brian; Jones, Cathleen; Marks, Phillip; hide

    2013-01-01

    UAVSAR is an imaging radar instrument suite that serves as NASA's airborne facility instrument to acquire scientific data for Principal Investigators as well as a radar test-bed for new radar observation techniques and radar technology demonstration. Since commencing operational science observations in January 2009, the compact, reconfigurable, pod-based radar has been acquiring L-band fully polarimetric SAR (POLSAR) data with repeat-pass interferometric (RPI) observations underneath NASA Dryden's Gulfstream-III jet to provide measurements for science investigations in solid earth and cryospheric studies, vegetation mapping and land use classification, archaeological research, soil moisture mapping, geology and cold land processes. In the past year, we have made significant upgrades to add new instrument capabilities and new platform options to accommodate the increasing demand for UAVSAR to support scientific campaigns to measure subsurface soil moisture, acquire data in the polar regions, and for algorithm development, verification, and cross-calibration with other airborne/spaceborne instruments.

  1. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  2. Assessment of Suited Reach Envelope in an Underwater Environment

    NASA Technical Reports Server (NTRS)

    Kim, Han; Benson, Elizabeth; Bernal, Yaritza; Jarvis, Sarah; Meginnis, Ian; Rajulu, Sudhakar

    2017-01-01

    Predicting the performance of a crewmember in an extravehicular activity (EVA) space suit presents unique challenges. The kinematic patterns of suited motions are difficult to reproduce in gravity. Additionally, 3-D suited kinematics have been practically and technically difficult to quantify in an underwater environment, in which crewmembers are commonly trained and assessed for performance. The goal of this study is to develop a hardware and software system to predictively evaluate the kinematic mobility of suited crewmembers, by measuring the 3-D reach envelope of the suit in an underwater environment. This work is ultimately aimed at developing quantitative metrics to compare the mobility of the existing Extravehicular Mobility Unit (EMU) to newly developed space suit, such as the Z-2. The EMU has been extensively used at NASA since 1981 for EVA outside the Space Shuttle and International Space Station. The Z-2 suit is NASA's newest prototype space suit. The suit is comprised of new upper torso and lower torso architectures, which were designed to improve test subject mobility.

  3. Interoperative efficiency in minimally invasive surgery suites.

    PubMed

    van Det, M J; Meijerink, W J H J; Hoff, C; Pierie, J P E N

    2009-10-01

    Performing minimally invasive surgery (MIS) in a conventional operating room (OR) requires additional specialized equipment otherwise stored outside the OR. Before the procedure, the OR team must collect, prepare, and connect the equipment, then take it away afterward. These extra tasks pose a thread to OR efficiency and may lengthen turnover times. The dedicated MIS suite has permanently installed laparoscopic equipment that is operational on demand. This study presents two experiments that quantify the superior efficiency of the MIS suite in the interoperative period. Preoperative setup and postoperative breakdown times in the conventional OR and the MIS suite in an experimental setting and in daily practice were analyzed. In the experimental setting, randomly chosen OR teams simulated the setup and breakdown for a standard laparoscopic cholecystectomy (LC) and a complex laparoscopic sigmoid resection (LS). In the clinical setting, the interoperative period for 66 LCs randomly assigned to the conventional OR or the MIS suite were analyzed. In the experimental setting, the setup and breakdown times were significantly shorter in the MIS suite. The difference between the two types of OR increased for the complex procedure: 2:41 min for the LC (p < 0.001) and 10:47 min for the LS (p < 0.001). In the clinical setting, the setup and breakdown times as a whole were not reduced in the MIS suite. Laparoscopic setup and breakdown times were significantly shorter in the MIS suite (mean difference, 5:39 min; p < 0.001). Efficiency during the interoperative period is significantly improved in the MIS suite. The OR nurses' tasks are relieved, which may reduce mental and physical workload and improve job satisfaction and patient safety. Due to simultaneous tasks of other disciplines, an overall turnover time reduction could not be achieved.

  4. AIRS/AMSU/HSB Data at Goddard Earth Science DISC DAAC

    NASA Astrophysics Data System (ADS)

    Cho, S.; Qin, J.; Li, J.; Lu, L.

    2003-12-01

    The Atmospheric Infrared Sounder (AIRS) data product suite is now available at the NASA/GSFC Distributed Active Archive Center (GDAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) in Greenbelt, Maryland, USA. AIRS data products are a combination of AIRS, Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder for Brazil (HSB) measurements. Global coverage by the instruments is obtained twice daily (day and night) and the data along the orbit is processed into 6-minute granules. AIRS alone has 2,378 channels measuring in the infrared range 3.74-15.4 mm and four channels measuring in the visible/near-infrared range 0.4-1.1mm. A day's worth of AIRS data is divided into 240 scenes each of 6 minute duration. The data is produced in HDF-EOS format and generally become available 30-36 hours after satellite measurement from the GDAAC. Level1B data (calibrated, geo-located radiances) contains radiances from 2378 AIRS infrared channels in the 3.74 to 15.4 μm and 4 visible/near infrared channels in the 0.4 to 1.0 μm, and brightness temperature from 15 AMSU-A channels in the 50 - 90 GHz and 23 - 32 GHz and 4 HSB in the 150 - 190 GHz. The brightness temperature from two microwave instruments is used to initialize the surface temperature and atmospheric temperature profile required for the retrieval of the final AIRS geophysical products. Level2 data (geophysical parameters) is grouped into three products - Cloud-Cleared Infrared Radiance, Standard Retrieval, and Support Retrieval. The retrieval products contain atmospheric parameters such as temperatures, humidity, cloud, water vapor, and ozone in 28 pressure levels and 100 pressure levels respectively. Support Retrieval product is intended for the knowledgeable, experienced user of AIRS/AMSU-A/HSB products. It contains high resolution profiles intended to be used for computation of radiances, as-yet unimplemented research products and various parameters and intermediate

  5. The James Webb Telescope Instrument Suite Layout: Optical System Engineering Considerations for a Large, Deployable Space Telescope

    NASA Technical Reports Server (NTRS)

    Bos, Brent; Davila, Pam; Jurotich, Matthew; Hobbs, Gurnie; Lightsey, Paul; Contreras, Jim; Whitman, Tony

    2003-01-01

    The James Webb Space Telescope (JWST) is a space-based, infrared observatory designed to study the early stages of galaxy formation in the Universe. The telescope will be launched into an elliptical orbit about the second Lagrange point and passively cooled to 30-50 K to enable astronomical observations from 0.6 to 28 microns. A group from the NASA Goddard Space Flight Center and the Northrop Grumman Space Technology prime contractor team has developed an optical and mechanical layout for the science instruments within the JWST field of view that satisfies the telescope s high-level performance requirements. Four instruments required accommodation within the telescope's field of view: a Near-Infrared Camera (NIRCam) provided by the University of Arizona; a Near-Mared Spectrometer (NIRSpec) provided by the European Space Agency; a Mid-Infrared Instrument (MIRI) provided by the Jet Propulsion Laboratory and a European consortium; and a Fine Guidance Sensor (FGS) with a tunable filter module provided by the Canadian Space Agency. The size and position of each instrument's field of view allocation were developed through an iterative, concurrent engineering process involving the key observatory stakeholders. While some of the system design considerations were those typically encountered during the development of an infrared observatory, others were unique to the deployable and controllable nature of JWST. This paper describes the optical and mechanical issues considered during the field of view layout development, as well as the supporting modeling and analysis activities.

  6. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

    PubMed Central

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja

    2015-01-01

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063

  7. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration

    PubMed Central

    Duda, Kevin R.; Vasquez, Rebecca A.; Middleton, Akil J.; Hansberry, Mitchell L.; Newman, Dava J.; Jacobs, Shane E.; West, John J.

    2015-01-01

    The “Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration” is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a “viscous resistance” during movements against a specified direction of “down”—initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from “down” initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation. PMID:25914631

  8. FRACTAL Systems & Project suite: engineering tools for improving development and operation of the systems

    NASA Astrophysics Data System (ADS)

    Pérez-Calpena, A.; Mujica-Alvarez, E.; Osinde-Lopez, J.; García-Vargas, M.

    2008-07-01

    This paper describes the FRACTAL Systems & Projects suite. This suite is composed by several tools (GECO, DOCMA and SUMO) that provide the capabilities that all organizations need to store and manage the system information generated along the project's lifetime, from the design phase to the operation phase. The amount of information that is generated in a project keeps growing in size and complexity along the project's lifetime, to an extent that it becomes impossible to manage it without the aid of specific computer-based tools. The suite described in this paper is the solution developed by FRACTAL to assist the execution of different scientific projects, mainly related with telescopes and instruments, for astronomical research centres. These tools help the system and project engineers to maintain the technical control of the systems and to ensure an optimal use of the resources. GECO eases the control of the system configuration data; DOCMA provides the means to organise and manage the documents generated in the project; SUMO allows managing and scheduling the operation, the maintenance activities and the resources during the operational phase of a system. These tools improve the project communication making the information available to the authorized users (project team, customers, Consortium's members, etc). Finally and depending on the project needs, these three tools can be used integrated or in an independent manner.

  9. Mobile measurements of air pollutants with an instrumented car in populated areas

    NASA Astrophysics Data System (ADS)

    Weber, Konradin; Scharifi, Emad; Fischer, Christian; Pohl, Tobias; Lange, Martin; Boehlke, Christoph

    2017-04-01

    Detailed mobile measurement of gases and fine particulate matter has been reported in the literature to be suitable to exhibit the air pollutants concentration in populated areas. This concentration is linked to the increase of number of cars, construction areas, industries and other emission sources. However, fixed measurement stations, mostly operated by environmental agencies, are limited in numbers and cannot cover a large area in monitoring. For this reason, to overcome this drawback, mobile measurements of the variability of gases (such as O3, NO, NO2) and particulate matter concentration were carried out during this study using an instrumented car. This car was able to deliver measurement results of all these compounds in a large area. The experimental results in this work demonstrate a large spatial variability of gases and fine particulate matters mainly depended on the traffic density and the location. These effects are especially obvious in the city core and the high traffic roads. In terms of fine particulate matter, this becomes evident for PM 10 and PM 2.5, where the mass and number concentration increases with arriving these zones.

  10. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system

  11. Titan Saturn System Mission Instrumentation

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J.; Reh, K.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.; Matson, D.

    2012-10-01

    The Titan Saturn System Mission (TSSM), another future mission proposed for Titan's exploration, includes an orbiter and two in situ elements: a hot-air balloon and a lake lander. The instrumentation of those two elements will be presented.

  12. MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization.

    PubMed

    Guner, Huseyin; Close, Patrick L; Cai, Wenxuan; Zhang, Han; Peng, Ying; Gregorich, Zachery R; Ge, Ying

    2014-03-01

    The rapid advancements in mass spectrometry (MS) instrumentation, particularly in Fourier transform (FT) MS, have made the acquisition of high-resolution and high-accuracy mass measurements routine. However, the software tools for the interpretation of high-resolution MS data are underdeveloped. Although several algorithms for the automatic processing of high-resolution MS data are available, there is still an urgent need for a user-friendly interface with functions that allow users to visualize and validate the computational output. Therefore, we have developed MASH Suite, a user-friendly and versatile software interface for processing high-resolution MS data. MASH Suite contains a wide range of features that allow users to easily navigate through data analysis, visualize complex high-resolution MS data, and manually validate automatically processed results. Furthermore, it provides easy, fast, and reliable interpretation of top-down, middle-down, and bottom-up MS data. MASH Suite is convenient, easily operated, and freely available. It can greatly facilitate the comprehensive interpretation and validation of high-resolution MS data with high accuracy and reliability.

  13. Preparation of the NASA Air Quality Monitor for a U.S. Navy Submarine Sea Trial

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Smith, Matthew J.; O'Connor, Sara Jane; Mudgett, Paul D.

    2017-01-01

    For the past 4 years, the Air Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Onboard the ISS are two AQMs with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of air quality aboard ISS for each crew increment. The US Navy is looking to update its submarine air monitoring suite of instruments and the success of the AQM on ISS has led to a jointly planned submarine sea trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which measures major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM sea trial preparation and the analysis of most recent ISS data. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the sea trial. Only one AQM will be deployed during the sea trial, but this is sufficient for NASA purposes and to detect the compounds of interest to the US Navy for this trial. The data from the sea trial will be compared to data from archival samples collected before, during, and after the trial period. This paper will start with a brief history of past collaborations between NASA and the U.S. and U.K. navies for trials of air monitoring equipment. An overview of the AQM technology and protocols for the submarine trial will be presented. The majority of the presentation will focus on the AQM preparation and a summary of available data from the trial.

  14. Class Action Suits against Public Schools.

    ERIC Educational Resources Information Center

    Mesibov, Laurie

    1984-01-01

    If a suit is brought as a class action, either plaintiff or defendant may move to uphold or challenge class certification. If neither does so, the court decides whether the action may be maintained as a class suit. Prerequisites for class certification from Rule 23 (Federal Rules of Civil Procedure) are explained. (TE)

  15. Advanced Instrumentation for Ultrafast Science at the LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrah, Nora

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture themore » ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.« less

  16. The ZPIC educational code suite

    NASA Astrophysics Data System (ADS)

    Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.

    2017-10-01

    Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.

  17. Performance analysis of a proposed tightly-coupled medical instrument network based on CAN protocol.

    PubMed

    Mujumdar, Shantanu; Thongpithoonrat, Pongnarin; Gurkan, D; McKneely, Paul K; Chapman, Frank M; Merchant, Fatima

    2010-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN™ technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. The instruments are in turn becoming more sophisticated; however, the operation of an instrument is still expected to be locally done by authorized medical personnel. Unfortunately, each medical instrument has its unique proprietary API (application programming interface - if any) to provide automated and electronic access to monitoring data. Integration of these APIs requires an agreement with the manufacturers towards realization of interoperable health care networking. As long as the interoperability of instruments with a network is not possible, ubiquitous access to patient status is limited only to manual entry based systems. This paper demonstrates an attempt to realize an interoperable medical instrument interface for networking using MediCAN technology suite as an open

  18. Experimenting with Woodwind Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2007-01-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects…

  19. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance...

  20. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance...

  1. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance...

  2. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance...

  3. Emergency Medical Considerations in a Space-Suited Patient.

    PubMed

    Garbino, Alejandro; Nusbaum, Derek M; Buckland, Daniel M; Menon, Anil S; Clark, Jonathan B; Antonsen, Erik L

    The Stratex Project is a high altitude balloon flight that culminated in a freefall from 41,422 m (135,890 ft), breaking the record for the highest freefall to date. Crew recovery operations required an innovative approach due to the unique nature of the event as well as the equipment involved. The parachutist donned a custom space suit similar to a NASA Extravehicular Mobility Unit (EMU), with life support system mounted to the front and a parachute on the back. This space suit had a metal structure around the torso, which, in conjunction with the parachute and life support assembly, created a significant barrier to extraction from the suit in the event of a medical emergency. For this reason the Medical Support Team coordinated with the pressure suit assembly engineer team for integration, training in suit removal, definition of a priori contingency leadership on site, creation of color-coded extraction scenarios, and extraction drills with a suit mock-up that provided insight into limitations to immediate access. This paper discusses novel extraction processes and contrasts the required medical preparation for this type of equipment with the needs of the prior record-holding jump that used a different space suit with easier immediate access. Garbino A, Nusbaum DM, Buckland DM, Menon AS, Clark JB, Antonsen EL. Emergency medical considerations in a space-suited patient. Aerosp Med Hum Perform. 2016; 87(11):958-962.

  4. TANK VAPOR CHEMICALS OF POTENTIAL CONCERN & EXISTING DIRECT READING INSTRUMENTION & PERSONAL PROTECTIVE EQUIPMENT CONSIDERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUTLER, N.K.

    2004-11-01

    This document takes the newly released Industrial Hygiene Chemical Vapor Technical Basis (RPP-22491) and evaluates the chemicals of potential concern (COPC) identified for selected implementation actions by the industrial hygiene organization. This document is not intended as a hazard analysis with recommended controls for all tank farm activities. Not all of the chemicals listed are present in all tanks; therefore, hazard analyses can and should be tailored as appropriate. Detection of each chemical by current industrial hygiene non-specific instrumentation in use at the tank farms is evaluated. Information gaps are identified and recommendations are made to resolve these needs. Ofmore » the 52 COPC, 34 can be detected with existing instrumentation. Three additional chemicals could be detected with a photoionization detector (PID) equipped with a different lamp. Discussion with specific instrument manufacturers is warranted. Consideration should be given to having the SapphIRe XL customized for tank farm applications. Other instruments, sampling or modeling techniques should be evaluated to estimate concentrations of chemicals not detected by direct reading instruments. In addition, relative instrument response needs to be factored in to action levels used for direct reading instruments. These action levels should be correlated to exposures to the COPC and corresponding occupational exposure limits (OELs). The minimum respiratory protection for each of the COPC is evaluated against current options. Recommendations are made for respiratory protection based on each chemical. Until exposures are sufficiently quantified and analyzed, the current use of supplied air respiratory protection is appropriate and protective for the COPC. Use of supplied air respiratory protection should be evaluated once a detailed exposure assessment for the COPC is completed. The established tank farm OELs should be documented in the TFC-PLN-34. For chemicals without an established tank

  5. Suitport Feasibility: Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a space suit prototype on the second generation MMSEV cabin, and testing is planned using the pressure differentials of the spacecraft. Pressurized testing will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, a suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents

  6. Different Ways to Apply a Measurement Instrument of E-Nose Type to Evaluate Ambient Air Quality with Respect to Odour Nuisance in a Vicinity of Municipal Processing Plants.

    PubMed

    Szulczyński, Bartosz; Wasilewski, Tomasz; Wojnowski, Wojciech; Majchrzak, Tomasz; Dymerski, Tomasz; Namieśnik, Jacek; Gębicki, Jacek

    2017-11-19

    This review paper presents different ways to apply a measurement instrument of e-nose type to evaluate ambient air with respect to detection of the odorants characterized by unpleasant odour in a vicinity of municipal processing plants. An emphasis was put on the following applications of the electronic nose instruments: monitoring networks, remote controlled robots and drones as well as portable devices. Moreover, this paper presents commercially available sensors utilized in the electronic noses and characterized by the limit of quantification below 1 ppm v / v , which is close to the odour threshold of some odorants. Additionally, information about bioelectronic noses being a possible alternative to electronic noses and their principle of operation and application potential in the field of air evaluation with respect to detection of the odorants characterized by unpleasant odour was provided.

  7. Fatigue and nanomechanical properties of K3XF nickel-titanium instruments.

    PubMed

    Shen, Y; Zhou, H; Campbell, L; Wang, Z; Wang, R; Du, T; Haapasalo, M

    2014-12-01

    To examine the fatigue behaviour of heat-treated NiTi instruments when immersed in aqueous media and to determine the effect of cyclic fatigue on the hardness and elastic modulus of NiTi instruments using a nanoindentation technique. K3XF and K3 NiTi instruments, both in sizes 25, 0.04 taper and 40, 0.04 taper, were subjected to rotational bending at a curvature of 42° either in air or under deionized water, and the number of revolutions to fracture (Nf ) was recorded. The fracture surface of all fragments was examined with a scanning electron microscope. The hardness and elastic modulus of the fracture surface of instruments sized 25, 0.04 taper were then measured using a nanoindentation test. The K3XF instruments had a fatigue resistance superior to K3 instruments under dry and aqueous environments (P < 0.05). The fatigue life of K3 instruments was similar under both conditions, whereas the Nf of K3XF was greater under water than in air, especially at the size 40, 0.04 taper (P < 0.05). The values for the fraction of the area occupied by the dimple region were significantly smaller in K3XF instruments than in K3 instruments, especially under water (P < 0.05). There was no difference in hardness on K3XF instruments between new files and instruments subjected to the fatigue process. The hardness of instruments subjected to the fatigue process was significantly lower in K3XF than in K3 instruments (P < 0.05). The fatigue life of K3XF instruments under water is longer than it is for K3XF instruments in air. There was no work-hardening effect on K3XF instruments subjected to the fatigue process. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Further bacteriological evaluation of the TOUL mobile system delivering ultra-clean air over surgical patients and instruments.

    PubMed

    Thore, M; Burman, L G

    2006-06-01

    Two mobile TOUL-400 units (types 1 and 2) that produce an exponential ultra-clean air flow (EUA) via a mobile screen were evaluated (maximum height from floor to centre of screen: type 1, 1.4m; type 2, 1.6m). Bacterial deposition rates were lowered by >60% (P=0.001) over a table area of 1.7 m (length)x1.0m (width) with the TOUL-400 type 1 unit, and the mean air count at 1.0m from the screen was reduced from 23 to 1.6 colony-forming units (CFU)/m3 in experiments in a room with six air changes/h (ACH). The corresponding reductions were two- to three-fold greater in an operating room (OR) with 16 ACH due to higher bacterial contamination levels in the control experiments. The dramatic but localized reduction of the deposition rate recorded on one 14-cm settle plate (>2376-fold at 0.8m from the screen in the OR) apparently reflected the focus of the EUA. The impact of the TOUL-400 unit was underestimated by almost 100-fold by the air counts of bacteria recorded in parallel at the same sampling point (26.5-fold reduction). During sham coronary angiography and sham hip arthroplasty performed in a room with six ACH, ultra-clean air (<10 CFU/m3) was obtained over the incision area with the TOUL-400 type 2 unit when the EUA was undisturbed (maximum screen-wound distance 1.7 m). In actual coronary angiography (room with six ACH, screen-wound distance 2.0-2.3m) and various surgical procedures in the OR (screen-wound distance 1.4-1.8m), ultra-clean air was obtained at the wound in three of 18 instances, characterized by undisturbed air flow and a maximum distance of 1.8 m. The newly developed TOUL-300 surgical instrument table (1.3-1.7 x 0.6m), equipped at one end with the same EUA unit as the TOUL-400 unit, was evaluated for a room with six ACH and an OR with 16 ACH. It yielded ultra-clean air at 0.8m (1.9 CFU/m3, 96% reduction, P=0.01) and reduced the deposition rate by >60% over most of the table surface. Simplified positioning of the screen or a longer reach, plus a

  9. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  10. Air-to-air radar flight testing

    NASA Astrophysics Data System (ADS)

    Scott, Randall E.

    1988-06-01

    This volume in the AGARD Flight Test Techniques Series describes flight test techniques, flight test instrumentation, ground simulation, data reduction and analysis methods used to determine the performance characteristics of a modern air-to-air (a/a) radar system. Following a general coverage of specification requirements, test plans, support requirements, development and operational testing, and management information systems, the report goes into more detailed flight test techniques covering a/a radar capabilities of: detection, manual acquisition, automatic acquisition, tracking a single target, and detection and tracking of multiple targets. There follows a section on additional flight test considerations such as electromagnetic compatibility, electronic countermeasures, displays and controls, degraded and backup modes, radome effects, environmental considerations, and use of testbeds. Other sections cover ground simulation, flight test instrumentation, and data reduction and analysis. The final sections deal with reporting and a discussion of considerations for the future and how they may affect radar flight testing.

  11. SUITS/SWUSV: a small-size mission to address solar spectral variability, space weather and solar-climate relations

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Keckhut, Philippe; Hauchecorne, Alain; Meftah, Mustapha; Bekki, Slimane

    2016-07-01

    We present the SUITS/SWUSV microsatellite mission investigation: "Solar Ultraviolet Influence on Troposphere/Stratosphere, a Space Weather & Ultraviolet Solar Variability" mission. SUITS/SWUSV was developed to determine the origins of the Sun's activity, understand the flaring process (high energy flare characterization) and onset of CMEs (forecasting). Another major objective is to determine the dynamics and coupling of Earth's atmosphere and its response to solar variability (in particular UV) and terrestrial inputs. It therefore includes the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging) the solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance measures from 170 to 400 nm). The mission is proposed on a sun-synchronous polar orbit 18h-6h (for almost constant observing) and proposes a 7 instruments model payload of 65 kg - 65 W with: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); SOLSIM (Solar Spectral Irradiance Monitor), a spectrometer with 0.65 nm spectral resolution from 170 to 340 nm; SUPR (Solar Ultraviolet Passband Radiometers), with UV filter radiometers at Lyman-Alpha, Herzberg, MgII index, CN bandhead and UV bands coverage up to 400 nm; HEBS (High Energy Burst Spectrometers), a large energy coverage (a few tens of keV to a few hundreds of MeV) instrument to characterize large flares; EPT-HET (Electron-Proton Telescope - High Energy Telescope), measuring electrons, protons, and heavy ions over a large energy range; ERBO (Earth Radiative Budget and Ozone) NADIR oriented; and a vector magnetometer. Complete accommodation of the payload has been performed on a PROBA type platform very nicely. Heritage is important both for instruments (SODISM and PREMOS on PICARD, LYRA on PROBA-2, SOLSPEC on ISS

  12. Integrating Nephelometer Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uin, J.

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as wellmore » as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).« less

  13. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  14. MOEMs devices designed and tested for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Waldis, Severin; Noell, Wilfried; Conedera, Veronique; Fabre, Norbert; Viard, Thierry; Buisset, Christophe

    2017-11-01

    Next generation of astronomical instrumentation for space telescopes requires Micro-Opto-Electro- Mechanical Systems (MOEMS) with remote control capability and cryogenic operation. MOEMS devices have the capability to tailor the incoming light in terms of intensity and object selection with programmable slit masks, in terms of phase and wavefront control with micro-deformable mirrors, and finally in terms of spectrum with programmable diffraction gratings. Applications are multi-object spectroscopy (MOS), wavefront correction and programmable spectrographs. We are engaged since several years in the design, realization and characterization of MOEMS devices suited for astronomical instrumentation.

  15. Sample Analysis at Mars Instrument Simulator

    NASA Technical Reports Server (NTRS)

    Benna, Mehdi; Nolan, Tom

    2013-01-01

    The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes

  16. A comparative assessment of economic-incentive and command-and-control instruments for air pollution and CO2 control in China's iron and steel sector.

    PubMed

    Liu, Zhaoyang; Mao, Xianqiang; Tu, Jianjun; Jaccard, Mark

    2014-11-01

    China's iron and steel sector is faced with increasing pressure to control both local air pollutants and CO2 simultaneously. Additional policy instruments are needed to co-control these emissions in this sector. This study quantitatively evaluates and compares two categories of emission reduction instruments, namely the economic-incentive (EI) instrument of a carbon tax, and the command-and-control (CAC) instrument of mandatory application of end-of-pipe emission control measures for CO2, SO2 and NOx. The comparative evaluation tool is an integrated assessment model, which combines a top-down computable general equilibrium sub-model and a bottom-up technology-based sub-model through a soft-linkage. The simulation results indicate that the carbon tax can co-control multiple pollutants, but the emission reduction rates are limited under the tax rates examined in this study. In comparison, the CAC instruments are found to have excellent effects on controlling different pollutants separately, but not jointly. Such results indicate that no single EI or CAC instrument is overwhelmingly superior. The environmental and economic effectiveness of an instrument highly depends on its specific attributes, and cannot be predicted by the general policy category. These findings highlight the necessity of clearer identification of policy target priorities, and detail-oriented and integrated policy-making among different governmental departments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. 104. SIGNAL CONDITIONERS FOR BOOSTER INSTRUMENTATION, SOUTHWEST SIDE OF LANDLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. SIGNAL CONDITIONERS FOR BOOSTER INSTRUMENTATION, SOUTHWEST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Suites of dwarfs around Nearby giant galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I., E-mail: ikar@sao.ru, E-mail: kei@sao.ru, E-mail: dim@sao.ru

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ{sub 1}, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ{sub 1}. Allmore » suite members with positive Θ{sub 1} are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n {sup –2}. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M{sub B} = –18{sup m}. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting

  19. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  20. Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    Dub, Mark O.; McFarland, Shane M.

    2010-01-01

    In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.

  1. Aerosol Optical Depth Value-Added Product for the SAS-He Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermold, B; Flynn, CJ; Barnard, J

    2013-11-27

    The Shortwave Array Spectroradiometer – Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures the direct and diffuse solar irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) – an instrument that has been in the ARM suite of instruments for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm width from 415 to 940 nm. The SAS-He, in contrast, incorporates two fiber-coupled grating spectrometers: a Si CCD spectrometer with overmore » 2000 pixels covering the range from 325-1040 nm with ~ 2.5 nm resolution ,and an InGaAs array spectrometer with 256 pixels covering the wavelength range from 960-1700 nm with ~ 6 nm resolution.« less

  2. Complexity of Sizing for Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    The `fit? of a garment is often considered to be a subjective measure of garment quality. However, some experts attest that a complaint of poor garment fit is a symptom of inadequate or excessive ease, the space between the garment and the wearer. Fit has traditionally been hard to quantify, and space suits are an extreme example, where fit is difficult to measure but crucial for safety and operability. A proper space suit fit is particularly challenging because of NASA?s need to fit an incredibly diverse population (males and females from the 1st to 99th percentile) while developing a minimum number of space suit sizes. Because so few sizes are available, the available space suits must be optimized so that each fits a large segment of the population without compromising the fit of any one wearer.

  3. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  4. Increased Science Instrumentation Funding Strengthens Mars Program

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  5. Software Framework for Controlling Unsupervised Scientific Instruments.

    PubMed

    Schmid, Benjamin; Jahr, Wiebke; Weber, Michael; Huisken, Jan

    2016-01-01

    Science outreach and communication are gaining more and more importance for conveying the meaning of today's research to the general public. Public exhibitions of scientific instruments can provide hands-on experience with technical advances and their applications in the life sciences. The software of such devices, however, is oftentimes not appropriate for this purpose. In this study, we describe a software framework and the necessary computer configuration that is well suited for exposing a complex self-built and software-controlled instrument such as a microscope to laymen under limited supervision, e.g. in museums or schools. We identify several aspects that must be met by such software, and we describe a design that can simultaneously be used to control either (i) a fully functional instrument in a robust and fail-safe manner, (ii) an instrument that has low-cost or only partially working hardware attached for illustration purposes or (iii) a completely virtual instrument without hardware attached. We describe how to assess the educational success of such a device, how to monitor its operation and how to facilitate its maintenance. The introduced concepts are illustrated using our software to control eduSPIM, a fluorescent light sheet microscope that we are currently exhibiting in a technical museum.

  6. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  7. Physiological responses to wearing the space shuttle launch and entry suit and the prototype advanced crew escape suit compared to the unsuited condition

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.

    1993-01-01

    The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.

  8. Open architecture of smart sensor suites

    NASA Astrophysics Data System (ADS)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  9. EVA Suit R and D for Performance Optimization

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations

  10. New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-01-01

    coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO2 data record well into the future using current and future hyperspectral UV satellite instruments.

  11. Advanced Sensor Platform to Evaluate Manloads For Exploration Suit Architectures

    NASA Technical Reports Server (NTRS)

    McFarland, Shane; Pierce, Gregory

    2016-01-01

    Space suit manloads are defined as the outer bounds of force that the human occupant of a suit is able to exert onto the suit during motion. They are defined on a suit-component basis as a unit of maximum force that the suit component in question must withstand without failure. Existing legacy manloads requirements are specific to the suit architecture of the EMU and were developed in an iterative fashion; however, future exploration needs dictate a new suit architecture with bearings, load paths, and entry capability not previously used in any flight suit. No capability currently exists to easily evaluate manloads imparted by a suited occupant, which would be required to develop requirements for a flight-rated design. However, sensor technology has now progressed to the point where an easily-deployable, repeatable and flexible manloads measuring technique could be developed leveraging recent advances in sensor technology. INNOVATION: This development positively impacts schedule, cost and safety risk associated with new suit exploration architectures. For a final flight design, a comprehensive and accurate man loads requirements set must be communicated to the contractor; failing that, a suit design which does not meet necessary manloads limits is prone to failure during testing or worse, during an EVA, which could cause catastrophic failure of the pressure garment posing risk to the crew. This work facilitates a viable means of developing manloads requirements using a range of human sizes & strengths. OUTCOME / RESULTS: Performed sensor market research. Highlighted three viable options (primary, secondary, and flexible packaging option). Designed/fabricated custom bracket to evaluate primary option on a single suit axial. Manned suited manload testing completed and general approach verified.

  12. Unique Capabilities of the Situational Awareness Sensor Suite for the ISS (SASSI) Mission Concept to Study the Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.

    2014-12-01

    We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on

  13. NASA Instrument Cost/Schedule Model

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, Hamid; Mrozinski, Joe; Fox, George

    2011-01-01

    NASA's Office of Independent Program and Cost Evaluation (IPCE) has established a number of initiatives to improve its cost and schedule estimating capabilities. 12One of these initiatives has resulted in the JPL developed NASA Instrument Cost Model. NICM is a cost and schedule estimator that contains: A system level cost estimation tool; a subsystem level cost estimation tool; a database of cost and technical parameters of over 140 previously flown remote sensing and in-situ instruments; a schedule estimator; a set of rules to estimate cost and schedule by life cycle phases (B/C/D); and a novel tool for developing joint probability distributions for cost and schedule risk (Joint Confidence Level (JCL)). This paper describes the development and use of NICM, including the data normalization processes, data mining methods (cluster analysis, principal components analysis, regression analysis and bootstrap cross validation), the estimating equations themselves and a demonstration of the NICM tool suite.

  14. Air Pollution Instrumentation: A Trend toward Physical Methods

    ERIC Educational Resources Information Center

    Maugh, Thomas H., II

    1972-01-01

    Reviews reasons for the trend from wet chemical'' analytic techniques for measuring air pollutants toward physical methods based upon chemiluminescence, electrochemical transduction, flame ionization coupled with gas chromotography, and spectroscopy. (AL)

  15. Different Ways to Apply a Measurement Instrument of E-Nose Type to Evaluate Ambient Air Quality with Respect to Odour Nuisance in a Vicinity of Municipal Processing Plants

    PubMed Central

    Szulczyński, Bartosz; Wasilewski, Tomasz; Wojnowski, Wojciech; Majchrzak, Tomasz; Dymerski, Tomasz; Namieśnik, Jacek; Gębicki, Jacek

    2017-01-01

    This review paper presents different ways to apply a measurement instrument of e-nose type to evaluate ambient air with respect to detection of the odorants characterized by unpleasant odour in a vicinity of municipal processing plants. An emphasis was put on the following applications of the electronic nose instruments: monitoring networks, remote controlled robots and drones as well as portable devices. Moreover, this paper presents commercially available sensors utilized in the electronic noses and characterized by the limit of quantification below 1 ppm v/v, which is close to the odour threshold of some odorants. Additionally, information about bioelectronic noses being a possible alternative to electronic noses and their principle of operation and application potential in the field of air evaluation with respect to detection of the odorants characterized by unpleasant odour was provided. PMID:29156597

  16. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    NASA Astrophysics Data System (ADS)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall

  17. 6. DETAIL, WEST SIDE, SOUTH BAY, SHOWING ENTRANCE TO INSTRUMENTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL, WEST SIDE, SOUTH BAY, SHOWING ENTRANCE TO INSTRUMENTATION ROOM. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  18. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  19. Electric-Field Instrument With Ac-Biased Corona Point

    NASA Technical Reports Server (NTRS)

    Markson, R.; Anderson, B.; Govaert, J.

    1993-01-01

    Measurements indicative of incipient lightning yield additional information. New instrument gives reliable readings. High-voltage ac bias applied to needle point through high-resistance capacitance network provides corona discharge at all times, enabling more-slowly-varying component of electrostatic potential of needle to come to equilibrium with surrounding air. High resistance of high-voltage coupling makes instrument insensitive to wind. Improved corona-point instrument expected to yield additional information assisting in safety-oriented forecasting of lighting.

  20. MEMS-Based Micro Instruments for In-Situ Planetary Exploration

    NASA Technical Reports Server (NTRS)

    George, Thomas; Urgiles, Eduardo R; Toda, Risaku; Wilcox, Jaroslava Z.; Douglas, Susanne; Lee, C-S.; Son, Kyung-Ah; Miller, D.; Myung, N.; Madsen, L.; hide

    2005-01-01

    NASA's planetary exploration strategy is primarily targeted to the detection of extant or extinct signs of life. Thus, the agency is moving towards more in-situ landed missions as evidenced by the recent, successful demonstration of twin Mars Exploration Rovers. Also, future robotic exploration platforms are expected to evolve towards sophisticated analytical laboratories composed of multi-instrument suites. MEMS technology is very attractive for in-situ planetary exploration because of the promise of a diverse and capable set of advanced, low mass and low-power devices and instruments. At JPL, we are exploiting this diversity of MEMS for the development of a new class of miniaturized instruments for planetary exploration. In particular, two examples of this approach are the development of an Electron Luminescence X-ray Spectrometer (ELXS), and a Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer.

  1. Instrument to collect fogwater for chemical analysis

    NASA Astrophysics Data System (ADS)

    Jacob, Daniel J.; Waldman, Jed M.; Haghi, Mehrdad; Hoffmann, Michael R.; Flagan, Richard C.

    1985-06-01

    An instrument is presented which collects large samples of ambient fogwater by impaction of droplets on a screen. The collection efficiency of the instrument is determined as a function of droplet size, and it is shown that fog droplets in the range 3-100-μm diameter are efficiently collected. No significant evaporation or condensation occurs at any stage of the collection process. Field testing indicates that samples collected are representative of the ambient fogwater. The instrument may easily be automated, and is suitable for use in routine air quality monitoring programs.

  2. APMS: An Integrated Suite of Tools for Measuring Performance and Safety

    NASA Technical Reports Server (NTRS)

    Statler, Irving C.; Lynch, Robert E.; Connors, Mary M. (Technical Monitor)

    1997-01-01

    statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.

  3. APMS: An Integrated Suite of Tools for Measuring Performance and Safety

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Technical Monitor)

    1997-01-01

    statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.

  4. Fresh air indoors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  5. Instruments for measuring the amount of moisture in the air

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1978-01-01

    A summarization and discussion of the many systems available for measuring moisture in the atmosphere is presented. Conventional methods used in the field of meteorology and methods used in the laboratory are discussed. Performance accuracies, and response of the instruments were reviewed as well as the advantages and disadvantages of each. Methods of measuring humidity aloft by instrumentation onboard aircraft and balloons are given, in addition to the methods used to measure moisture at the Earth's surface.

  6. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  7. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  8. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  9. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  10. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  11. Geostationary Coastal and Air Pollution Events (GEO CAPE) Instrument Performance Study

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Hartman, Kathy R.

    2014-01-01

    The Ultimate objective of the GEO-CAPE 2014 study: Quantify the cost impact of very specific changes in instrument performance! The customer has defined 4 instrument types they are notionally interested in:! FR: Filter Radiometer! WAS: Wide Angle Spectrometer! MSS: Multi Slit Spectrometer! SSS: Single Slit Spectrometer.

  12. 7. SOUTH REAR. Looking northwest from corner of the Instrumentation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SOUTH REAR. Looking northwest from corner of the Instrumentation and Control Building (Building 8762). - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  13. A Review of Instrumented Equipment to Investigate Head Impacts in Sport

    PubMed Central

    2016-01-01

    Contact, collision, and combat sports have more head impacts as compared to noncontact sports; therefore, such sports are uniquely suited to the investigation of head impact biomechanics. Recent advances in technology have enabled the development of instrumented equipment, which can estimate the head impact kinematics of human subjects in vivo. Literature pertaining to head impact measurement devices was reviewed and usage, in terms of validation and field studies, of such devices was discussed. Over the past decade, instrumented equipment has recorded millions of impacts in the laboratory, on the field, in the ring, and on the ice. Instrumented equipment is not without limitations; however, in vivo head impact data is crucial to investigate head injury mechanisms and further the understanding of concussion. PMID:27594780

  14. EPO for the NASA SDO Extreme Ultraviolet Variability Experiment (EVE) Learning Suite for Educators

    NASA Astrophysics Data System (ADS)

    Kellagher, Emily; Scherrer, D. K.

    2013-07-01

    EVE Education and Public Outreach (EPO) promotes an understanding of the process of science and concepts within solar science and sun-earth connections. EVE EPO also features working scientists, current research and career awareness. One of the highlights for of this years projects is the digitization of solar lessons and the collaboration with the other instrument teams to develop new resources for students and educators. Digital lesson suite: EVE EPO has taken the best solar lessons and reworked then to make then more engaging, to reflect SDO data and made them SMARTboard compatible. We are creating a website that Students and teachers can access these lesson and use them online or download them. Project team collaboration: The SDO instruments (EVE, AIA and HMI) teams have created a comic book series for upper elementary and middle school students with the SDO mascot Camilla. These comics may be printed or read on mobile devices. Many teachers are looking for resources to use with their students via the Ipad so our collaboration helps supply teachers with a great resource that teachers about solar concepts and helps dispel solar misconceptions.Abstract (2,250 Maximum Characters): EVE Education and Public Outreach (EPO) promotes an understanding of the process of science and concepts within solar science and sun-earth connections. EVE EPO also features working scientists, current research and career awareness. One of the highlights for of this years projects is the digitization of solar lessons and the collaboration with the other instrument teams to develop new resources for students and educators. Digital lesson suite: EVE EPO has taken the best solar lessons and reworked then to make then more engaging, to reflect SDO data and made them SMARTboard compatible. We are creating a website that Students and teachers can access these lesson and use them online or download them. Project team collaboration: The SDO instruments (EVE, AIA and HMI) teams have created a

  15. A Deterministic Electron, Photon, Proton and Heavy Ion Radiation Transport Suite for the Study of the Jovian System

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William

    2011-01-01

    A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute

  16. A Software Suite for Testing SpaceWire Devices and Networks

    NASA Astrophysics Data System (ADS)

    Mills, Stuart; Parkes, Steve

    2015-09-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. STAR-Dundee’s STAR-System software stack has been designed to meet the needs of engineers designing and developing SpaceWire networks and devices. This paper describes the aims of the software and how those needs were met.

  17. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew

    2016-09-01

    Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.

  18. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  19. Suited and Unsuited Hybrid III Impact Testing and Finite Element Model Characterization

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Somers, J. T.; Baldwin, M. A.; Wells, J. A.; Newby, N.; Currie, N. J.

    2016-01-01

    NASA spacecraft design requirements for occupant protection are a combination of the Brinkley Dynamic Response Criteria and injury assessment reference values (IARV) extracted from anthropomorphic test devices (ATD). For the ATD IARVs, the requirements specify the use of the 5th percentile female Hybrid III and the 95th percentile male Hybrid III. Each of these ATDs is required to be fitted with an articulating pelvis (also known as the aerospace pelvis) and a straight spine. The articulating pelvis is necessary for the ATD to fit into spacecraft seats, while the straight spine is required as injury metrics for vertical accelerations are better defined for this configuration. Sled testing of the Hybrid III 5th Percentile Female Anthropomorphic Test Device (ATD) was performed at Wright-Patterson Air Force Base (WAPFB). Two 5th Percentile ATDs were tested, the Air Force Research Lab (AFRL) and NASA owned Hybrid III ATDs with aerospace pelvises. Testing was also conducted with a NASA-owned 95th Percentile Male Hybrid III with aerospace pelvis at WPAFB. Testing was performed using an Orion seat prototype provided by Johnson Space Center (JSC). A 5-point harness comprised of 2 inch webbing was also provided by JSC. For suited runs, a small and extra-large Advanced Crew Escape System (ACES) suit and helmet were also provided by JSC. Impact vectors were combined frontal/spinal and rear/lateral. Some pure spinal and rear axis testing was also performed for model validation. Peak accelerations ranged between 15 and 20-g. This range was targeted because the ATD responses fell close to the IARV defined in the Human-Systems Integration Requirements (HSIR) document. Rise times varied between 70 and 110 ms to assess differences in ATD responses and model correlation for different impact energies. The purpose of the test series was to evaluate the Hybrid III ATD models in Orion-specific landing orientations both with and without a spacesuit. The results of these tests were used

  20. FHR Process Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt ismore » a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  1. 33 CFR 144.20-5 - Exposure suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... readily accessible location in or near the berthing area of the person for whom the exposure suit is... stowed in that location) is readily accessible to the station. (c) Each exposure suit on a MODU must be... type or multi-tone type, of corrosion resistant construction, and in good working order. The whistle...

  2. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' humanrated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  3. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  4. Wireless Wearable Multisensory Suite and Real-Time Prediction of Obstructive Sleep Apnea Episodes.

    PubMed

    Le, Trung Q; Cheng, Changqing; Sangasoongsong, Akkarapol; Wongdhamma, Woranat; Bukkapatnam, Satish T S

    2013-01-01

    Obstructive sleep apnea (OSA) is a common sleep disorder found in 24% of adult men and 9% of adult women. Although continuous positive airway pressure (CPAP) has emerged as a standard therapy for OSA, a majority of patients are not tolerant to this treatment, largely because of the uncomfortable nasal air delivery during their sleep. Recent advances in wireless communication and advanced ("bigdata") preditive analytics technologies offer radically new point-of-care treatment approaches for OSA episodes with unprecedented comfort and afforadability. We introduce a Dirichlet process-based mixture Gaussian process (DPMG) model to predict the onset of sleep apnea episodes based on analyzing complex cardiorespiratory signals gathered from a custom-designed wireless wearable multisensory suite. Extensive testing with signals from the multisensory suite as well as PhysioNet's OSA database suggests that the accuracy of offline OSA classification is 88%, and accuracy for predicting an OSA episode 1-min ahead is 83% and 3-min ahead is 77%. Such accurate prediction of an impending OSA episode can be used to adaptively adjust CPAP airflow (toward improving the patient's adherence) or the torso posture (e.g., minor chin adjustments to maintain steady levels of the airflow).

  5. The vertical accelerometer, a new instrument for air navigation

    NASA Technical Reports Server (NTRS)

    Laboccetta, Letterio

    1923-01-01

    This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.

  6. The OMPS Limb Profiler instrument

    NASA Astrophysics Data System (ADS)

    Rault, D. F.; Xu, P.

    2011-12-01

    The Ozone Mapping and Profiler Suite (OMPS) will continue the monitoring of the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. OMPS is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in October 2011. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance, from which ozone profile will be retrieved from the upper tropopause uo to 60km. End-to-end studies of the sensor and retrieval algorithm indicate the following expected performance for ozone: accuracy of 5% or better from the tropopause up to 50 km, precision of about 3-5% from 18 to 50 km, and vertical resolution of 1.5-2 km with vertical sampling of 1 km and along-track horizontal sampling of 1 deg latitude. The paper will describe the mission, discuss the retrieval algorithm, and summarize the expected performance. If available, the paper will also present early on-orbit data.

  7. Detection and Quantification of Nitrogen Compounds in Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, Paul Douglas; Buch, Arnaud; Eigenbrode, Jennifer L.; Franz, Heather; Glavin, Daniel Patrick; Ming, Douglas W/; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-Nmethyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (delta N-15 approx +100per mille) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify

  8. Air-clad fibres for astronomical instrumentation: focal-ratio degradation

    NASA Astrophysics Data System (ADS)

    Åslund, Mattias L.; Canning, John

    2009-05-01

    Focal-ratio degradation (FRD) of light launched into high-numerical aperture (NA) single-annulus all-silica undoped air-clad fibres at an NA of 0.54 is reported. The measured annular light distribution remained Gaussian after 30 m of propagation, but the angular FWHM of the output annulus doubled from 4° after 1 m propagation to 8.5° after 30 m, which is significantly larger than that reported of standard doped-silica fibres (NA < 0.22). No significant diffractive effects were observed. The design of air-clad fibres for broad-band, high-NA astrophotonics applications is discussed.

  9. TROPOMI, the Sentinel 5 precursor instrument for air quality and climate observations: status of the current design

    NASA Astrophysics Data System (ADS)

    Voors, Robert; de Vries, Johan; Bhatti, Ianjit S.; Lobb, Dan; Wood, Trevor; van der Valk, Nick; Aben, Ilse; Veefkind, Pepijn

    2017-11-01

    TROPOMI, the Tropospheric Monitoring Instrument, is a passive UV-VIS-NIR-SWIR trace gas spectrograph in the line of SCIAMACHY (2002) and OMI (2004), instruments with the Netherlands in a leading role. Both instruments are very successful and remained operational long after their nominal life time. TROPOMI is the next step, scheduled for launch in 2015. It combines the broad wavelength range from SCIAMACHY from UV to SWIR and the broad viewing angle push-broom concept from OMI, which makes daily global coverage in combination with good spatial resolution possible. Using spectral bands from 270-500nm (UV-VIS) 675-775nm (NIR) and 2305-2385nm (SWIR) at moderate resolution (0.25 to 0.6nm) TROPOMI will measure O3, NO2, SO2, BrO, HCHO and H2O tropospheric columns from the UV-VIS-NIR wavelength range and CO and CH4 tropospheric columns from the SWIR wavelength range. Cloud information will be derived primarily from the O2A band in the NIR. This will help, together with the aerosol information, in constraining the light path of backscattered solar radiation. Methane (CH4), CO2 and Carbon monoxide (CO) are the key gases of the global carbon cycle. Of these, Methane is by far the least understood in terms of its sources and is most difficult to predict its future trend. Global space observations are needed to inform atmospheric models. The SWIR channel of TROPOMI is designed to achieve the spectral, spatial and SNR resolution required for this task. TROPOMI will yield an improved accuracy of the tropospheric products compared to the instruments currently in orbit. TROPOMI will take a major step forward in spatial resolution and sensitivity. The nominal observations are at 7 x 7 km2 at nadir and the signal-to-noises are sufficient for trace gas retrieval even at very low albedos (down to 2%). This spatial resolution allows observation of air quality at sub-city level and the high signal-to-noises means that the instrument can perform useful measurements in the darkest

  10. The physician's reaction to a malpractice suit.

    PubMed

    Lavery, J P

    1988-01-01

    A malpractice suit can have a devastating impact on a practitioner's professional and personal life. The physician's reaction to this event is profound, affecting his own life-style and that of family, colleagues, and patients. This commentary presents an analogy between the physician's reaction to a malpractice suit and the stages of grief described by Elisabeth Kübler-Ross: the sequence of denial, anger, bargaining, depression, and acceptance. Understanding the psychodynamics of this reaction can help physicians to cope with the problems inherent in a malpractice suit and to maintain a greater stability in their personal lives. Adverse effects on medical practice and private life-style, and on the legal proceedings, can be minimized.

  11. Performance of the Magnetospheric Multiscale central instrument data handling

    NASA Astrophysics Data System (ADS)

    Klar, Robert A.; Miller, Scott A.; Brysch, Michael L.; Bertrand, Allison R.

    In order to study the fundamental physical processes of magnetic reconnection, particle acceleration and turbulence, the Magnetospheric Multiscale (MMS) mission employs a constellation of four identically configured observatories, each with a suite of complementary science instruments. Southwest Research Institute® (SwRI® ) developed the Central Instrument Data Processor (CIDP) to handle the large data volume associated with these instruments. The CIDP is an integrated access point between the instruments and the spacecraft. It provides synchronization pulses, relays telecommands, and gathers instrument housekeeping telemetry. It collects science data from the instruments and stores it to a mass memory for later playback to a ground station. This paper retrospectively examines the data handling performance realized by the CIDP implementation. It elaborates on some of the constraints on the hardware and software designs and the resulting effects on performance. For the hardware, it discusses the limitations of the front-end electronics input/output (I/O) architecture and associated mass memory buffering. For the software, it discusses the limitations of the Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP) implementation and the data structure choices for file management. It also describes design changes that improve data handling performance in newer designs.

  12. SCASim: A Flexible and Reusable Detector Simulator for the MIRI instrument of the JWST

    NASA Astrophysics Data System (ADS)

    Beard, S.; Morin, J.; Gastaud, R.; Azzollini, R.; Bouchet, P.; Chaintreuil, S.; Lahuis, F.; Littlejohns, O.; Nehme, C.; Pye, J.

    2012-09-01

    The JWST Mid Infrared Instrument (MIRI) operates in the 5-28μm wavelength range and can be configured for imaging, coronographic imaging, long-slit, low-resolution spectroscopy or medium resolution spectroscopy with an integral field unit. SCASim is one of a suite of simulators which operate together to simulate all the different modes of the instrument. These simulators are essential for the efficient operation of MIRI; allowing more accurate planning of MIRI observations on sky or during the pre-launch testing of the instrument. The data generated by the simulators are essential for testing the data pipeline software. The simulators not only need to reproduce the behaviour of the instrument faithfully, they also need to be adaptable so that information learned about the instrument during the pre-launch testing and in-orbit commissioning can be fed back into the simulation. SCASim simulates the behaviour of the MIRI detectors, taking into account cosmetic effects, quantum efficiency, shot noise, dark current, read noise, amplifier layout, cosmic ray hits, etc... The software has benefited from three major design choices. First, the development of a suite of MIRI simulators, rather than single simulator, has allowed MIRI simulators to be developed in parallel by different teams, with each simulator able to concentrate on one particular area. SCASim provides a facility common to all the other simulators and saves duplication of effort. Second, SCASim has a Python-based object-oriented design which makes it easier to adapt as new information about the instrument is learned during testing. Third, all simulator parameters are maintained in external files, rather than being hard coded in the software. These design choices have made SCASim highly reusable. In its present form it can be used to simulate any JWST detector, and it can be adapted for future instruments with similar, photon-counting detectors.

  13. 5. INSTRUMENT ROOM INTERIOR, SHOWING BACKS OF CONSOLE LOCKERS. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INSTRUMENT ROOM INTERIOR, SHOWING BACKS OF CONSOLE LOCKERS. Looking northeast to firing control room passageway. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  14. Water Vapor Permeability of the Advanced Crew Escape Suit

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Kuznetz, Larry; Gillis, David; Jones, Jeffery; Daniel, Brian; Gernhardt, Michael; Hamilton, Douglas

    2009-01-01

    Crew Exploration Vehicle (CEV) crewmembers are expected to return to earth wearing a suit similar to the current Advanced Crew Escape Suit (ACES). To ensure optimum cognitive performance, suited crewmembers must maintain their core body temperature within acceptable limits. There are currently several options for thermal maintenance in the post-landing phase. These include the current baseline, which uses an ammonia boiler, purge flow using oxygen in the suit, accessing sea water for liquid cooling garment (LCG) cooling and/or relying on the evaporative cooling capacity of the suit. These options vary significantly in mass, power, engineering and safety factors, with relying on the evaporative cooling capacity of the suit being the least difficult to implement. Data from previous studies indicates that the evaporative cooling capacity of the ACES was much higher than previously expected, but subsequent tests were performed for longer duration and higher metabolic rates to better define the water vapor permeability of the ACES. In these tests five subjects completed a series of tests performing low to moderate level exercise in order to control for a target metabolic rate while wearing the ACES in an environmentally controlled thermal chamber. Four different metabolic profiles at a constant temperature of 95 F and relative humidity of 50% were evaluated. These tests showed subjects were able to reject about twice as much heat in the permeable ACES as they were in an impermeable suit that had less thermal insulation. All of the heat rejection differential is attributed to the increased evaporation capability through the Gortex bladder of the suit.

  15. Highly accurate FTIR observations from the scanning HIS aircraft instrument

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Tobin, David C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L., Sr.; van Delst, Paul F. W.; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark W.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Olson, Erik R.; Dutcher, Steven B.; Taylor, Joseph K.

    2005-01-01

    Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) instrument for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS(2002), CrIS(2006), IASI(2006), GIFTS(200?), HES(2013)]. Follow-on developments at the University of Wisconsin that employ Fourier Transform Infrared (FTIR) for Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the new Scanning HIS aircraft instrument. The Scanning HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. Scanning HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST), are being used for satellite instrument validation and for atmospheric research. A novel detector configuration on Scanning HIS allows the incorporation of a single focal plane and cooler with three or four spectral bands that view the same spot on the ground. The calibration accuracy of the S-HIS and results from recent field campaigns are presented, including validation comparisons with the NASA EOS infrared observations (AIRS and MODIS). Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecrafts (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. It is expected that aircraft flights of the S-HIS and the NAST will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the mission.

  16. Comparison of sap flux data from two instrumented tree species in a forested catchment with different levels of water stress

    NASA Astrophysics Data System (ADS)

    Hartsough, P. C.; Roudneva, E.; Malazian, A. I.; Meadows, M. W.; Kelly, A. E.; Bales, R. C.; Goulden, M.; Hopmans, J. W.

    2011-12-01

    Two trees were instrumented with heat pulse sapflux sensors in the Southern Sierra Critical Zone Observatory (SSCZO) within the Kings River Experimental Watershed (KREW) to better understand transpiration as it relates to water availability from deeper sources. At the first instrumented site, CZT-1, a White Fir (Abies concolor) was instrumented on a flat ridge with access to deep soil moisture. Extensive monitoring of shallow and deep soil regions confirm that there is significant soil water available from 100-400cm as the tree exhausts water from shallower depths. A root excavation of an adjacent tree shows the roots distributed from 30-150cm with limited roots available to access deeper soil water and water stored in the saprolite. At the second instrumented site, CZT-2, a Ponderosa Pine (Pinus Ponderosa) was instrumented with a similar suite of sap flow and soil sensors. The CZT-2 site is on a slight slope and is characterized by shallow soils (<90cm) with extensive cobbles and bedrock outcrops with limited access to deeper soil or saprolite water. The second site also sits in the open while the first site is more protected in a closed forest. The two sites show different responses to changes in rain and snow loading from above as well as soil drainage and water depletion from below. They also have different thresholds for transpiration shut down both due to late season water deficit and also during winter periods where air temperatures are high enough to permit photosynthesis. Sap flux data are supplemented by extensive soil water content and potential measurements around both trees as well as evapotranspiration measurements from a 50m flux tower located between the two instrumented trees.

  17. Shuttle Space Suit: Fabric/LCVG Model Validation. Chapter 8

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tweed, J.; Zeitlin, C.; Kim, M.-H. Y.; Anderson, B. M.; Cucinotta, F. A.; Ware, J.; Persans, A. E.

    2003-01-01

    A detailed space suit computational model is being developed at the Langley Research Center for radiation exposure evaluation studies. The details of the construction of the space suit are critical to estimation of exposures and assessing the risk to the astronaut on EVA. Past evaluations of space suit shielding properties assumed the basic fabric layup (Thermal Micrometeoroid Garment, fabric restraints, and pressure envelope) and LCVG could be homogenized as a single layer overestimating the protective properties over 60 percent of the fabric area. The present space suit model represents the inhomogeneous distributions of LCVG materials (mainly the water filled cooling tubes). An experimental test is performed using a 34-MeV proton beam and high-resolution detectors to compare with model-predicted transmission factors. Some suggestions are made on possible improved construction methods to improve the space suit s protection properties.

  18. Spinoff From a Moon Suit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Al Gross transferred expertise obtained as an ILC engineer for NASA's Apollo program to the manufacture of athletic shoes. Gross substituted DuPont's Hytrel plastic for foam materials in the shoe's midsole, eliminating cushioning loss caused by body weight. An external pressurized shell applied from space suit technology was incorporated into the shoe. Stiffness and cushioning properties of the midsole were "tuned" by varying material thickness and styling lines. A stress free "blow molding" process adapted from NASA space suit design was also utilized. The resulting compression chamber midsole performed well in tests. It allows AVIA to re-configure for specific sports and is a "first step" toward a durable, foamless, non-fatiguing midsole.

  19. Elastic-Tether Suits for Artificial Gravity and Exercise

    NASA Technical Reports Server (NTRS)

    Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.

    2005-01-01

    Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.

  20. Web-based Tool Suite for Plasmasphere Information Discovery

    NASA Astrophysics Data System (ADS)

    Newman, T. S.; Wang, C.; Gallagher, D. L.

    2005-12-01

    A suite of tools that enable discovery of terrestrial plasmasphere characteristics from NASA IMAGE Extreme Ultra Violet (EUV) images is described. The tool suite is web-accessible, allowing easy remote access without the need for any software installation on the user's computer. The features supported by the tool include reconstruction of the plasmasphere plasma density distribution from a short sequence of EUV images, semi-automated selection of the plasmapause boundary in an EUV image, and mapping of the selected boundary to the geomagnetic equatorial plane. EUV image upload and result download is also supported. The tool suite's plasmapause mapping feature is achieved via the Roelof and Skinner (2000) Edge Algorithm. The plasma density reconstruction is achieved through a tomographic technique that exploits physical constraints to allow for a moderate resolution result. The tool suite's software architecture uses Java Server Pages (JSP) and Java Applets on the front side for user-software interaction and Java Servlets on the server side for task execution. The compute-intensive components of the tool suite are implemented in C++ and invoked by the server via Java Native Interface (JNI).

  1. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet; Cencer, Daniel

    2015-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for long-duration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  2. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet

    2014-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for longduration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  3. Preliminary Shuttle Space Suit Shielding Model. Chapter 9

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, J. E.; Qualls, G. D.; Staritz, P. J.; Wilson, J. W.; Kim, M.-H. Y.; Cucinotta, F. A.; Atwell, W.; DeAngelis, G.; Ware, J.; hide

    2003-01-01

    There are two space suits in current usage within the space program: EMU [2] and Orlan-M Space Suit . The Shuttle space suit components are discussed elsewhere [2,5,6] and serve as a guide to development of the current model. The present model is somewhat simplified in details which are considered to be second order in their effects on exposures. A more systematic approach is ongoing on a part-by-part basis with the most important ones in terms of exposure contributions being addressed first with detailed studies of the relatively thin space suit fabric as the first example . Additional studies to validate the model of the head coverings (bubble, helmet, visors.. .) will be undertaken in the near future. The purpose of this paper is to present the details of the model as it is now and to examine its impact on estimates of astronaut health risks. In this respect, the nonuniform distribution of mass of the space suit provides increased shielding in some directions and some organs. These effects can be most important in terms of health risks and especially critical to evaluation of potential early radiation effects .

  4. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... leaks. 65.104 Section 65.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.104 Instrument and sensory monitoring for leaks. (a) Monitoring for leaks. The owner or operator of a regulated source subject to this...

  5. Immersion Suit Usage Within the RAAF

    DTIC Science & Technology

    1992-01-01

    IMMERSION SUIT USED UVIC QDIS HOLDINGS 202. in 12 Sizes, held by ALSS 492SQN REQUIREMENTS No comment USAGE POLICY REFERENCE DIRAF) AAP 7215.004-1 (P3C...held by ALSS 492SQN. REQUIREMENTS No comment ISACE POLICY REFERENCE DIIAF) AAP 7215.004-1 (P3C Flight Manual) RAAF Supplement No 92 USAGE POUICY UVIC...TYPE P3C REFERENCE Telecon FLTLT Toft I I SQNfRESO AVMED Dated 22 Mar 91 IMMERSION SUIT USED UVIC QDIS HOLDINGS No comment REQUIREMENTS No comment USAGE

  6. Geostationary Operational Environmental Satellites (GOES): R series hyperspectral environmental suite (HES) overview

    NASA Astrophysics Data System (ADS)

    Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.

    2004-11-01

    The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during

  7. Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Johansson, Erik M.; Goodrich, Bret

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) is a 4-meter solar observatory under construction at Haleakala, Hawaii. The simultaneous use of multiple instruments is one of the unique capabilities that makes the ATST a premier ground based solar observatory. Control of the instrument suite is accomplished by the Instrument Control System (ICS), a layer of software between the Observatory Control System (OCS) and the instruments. The ICS presents a single narrow interface to the OCS and provides a standard interface for the instruments to be controlled. It is built upon the ATST Common Services Framework (CSF), an infrastructure for the implementation of a distributed control system. The ICS responds to OCS commands and events, coordinating and distributing them to the various instruments while monitoring their progress and reporting the status back to the OCS. The ICS requires no specific knowledge about the instruments. All information about the instruments used in an experiment is passed by the OCS to the ICS, which extracts and forwards the parameters to the appropriate instrument controllers. The instruments participating in an experiment define the active instrument set. A subset of those instruments must complete their observing activities in order for the experiment to be considered complete and are referred to as the must-complete instrument set. In addition, instruments may participate in eavesdrop mode, outside of the control of the ICS. All instrument controllers use the same standard narrow interface, which allows new instruments to be added without having to modify the interface or any existing instrument controllers.

  8. Air Quality Research and Applications Using AURA OMi Data

    NASA Technical Reports Server (NTRS)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  9. Simulation of the Impact of New Air-Based Ocean Surface Wind Measurements on H*Wind Analyses

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Black, Peter; Case, Jonathan; Chen, Shuyi; Hood, Robbie; Jones, Linwood; Ruff, Chris; Uhlhorn, Eric

    2008-01-01

    The H'Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRad) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRad is being designed to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRad will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The instrument is described in a paper presented to the Hurricanes and Tropical Meteorology Symposium. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami and those results are used to construct H*Wind analyses. Evaluations will be presented on the impact of the HIRad instrument on H'Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future tame the HIRad instrument is implemented.

  10. Model for Predicting the Performance of Planetary Suit Hip Bearing Designs

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar

    2012-01-01

    Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance

  11. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective

  12. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  13. Application of AirCell Cellular AMPS Network and Iridium Satellite System Dual Mode Service to Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The AirCell/Iridium dual mode service is evaluated for potential applications to Air Traffic Management (ATM) communication needs. The AirCell system which is largely based on the Advanced Mobile Phone System (AMPS) technology, and the Iridium FDMA/TDMA system largely based on the Global System for Mobile Communications(GSM) technology, can both provide communication relief for existing or future aeronautical communication links. Both have a potential to serve as experimental platforms for future technologies via a cost effective approach. The two systems are well established in the entire CONUS and globally hence making it feasible to utilize in all regions, for all altitudes, and all classes of aircraft. Both systems have been certified for air usage. The paper summarizes the specifications of the AirCell/Iridium system, as well as the ATM current and future links, and application specifications. the paper highlights the scenarios, applications, and conditions under which the AirCell/Iridium technology can be suited for ATM Communication.

  14. Simulation of the brightness temperatures observed by the visible infrared imaging radiometer suite instrument

    NASA Astrophysics Data System (ADS)

    Evrard, Rebecca L.; Ding, Yifeng

    2018-01-01

    Clouds play a large role in the Earth's global energy budget, but the impact of cirrus clouds is still widely questioned and researched. Cirrus clouds reside high in the atmosphere and due to cold temperatures are comprised of ice crystals. Gaining a better understanding of ice cloud optical properties and the distribution of cirrus clouds provides an explanation for the contribution of cirrus clouds to the global energy budget. Using radiative transfer models (RTMs), accurate simulations of cirrus clouds can enhance the understanding of the global energy budget as well as improve the use of global climate models. A newer, faster RTM such as the visible infrared imaging radiometer suite (VIIRS) fast radiative transfer model (VFRTM) is compared to a rigorous RTM such as the line-by-line radiative transfer model plus the discrete ordinates radiative transfer program. By comparing brightness temperature (BT) simulations from both models, the accuracy of the VFRTM can be obtained. This study shows root-mean-square error <0.2 K for BT difference using reanalysis data for atmospheric profiles and updated ice particle habit information from the moderate-resolution imaging spectroradiometer collection 6. At a higher resolution, the simulated results of the VFRTM are compared to the observations of VIIRS resulting in a <1.5 % error from the VFRTM for all cases. The VFRTM is validated and is an appropriate RTM to use for global cloud retrievals.

  15. [A dynamic model of the extravehicular (correction of extravehicuar) activity space suit].

    PubMed

    Yang, Feng; Yuan, Xiu-gan

    2002-12-01

    Objective. To establish a dynamic model of the space suit base on the particular configuration of the space suit. Method. The mass of the space suit components, moment of inertia, mobility of the joints of space suit, as well as the suit-generated torques, were considered in this model. The expressions to calculate the moment of inertia were developed by simplifying the geometry of the space suit. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and it was implemented numerically basing on the observed suit parameters. Result. A dynamic model considering mass, moment of inertia and suit-generated torques was established. Conclusion. This dynamic model provides some elements for the dynamic simulation of the astronaut extravehicular activity.

  16. Astronaut Anna Fisher Suiting Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  17. Astronaut Anna Fisher Suited Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  18. Astronaut Anna Fisher Suited Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall SPace Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  19. Astronaut Anna Fisher Suits Up for NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  20. Astronaut Anna Fisher Suiting Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. MSFC's Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  1. Astronaut Anna Fisher Suits Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  2. Product Guide/1972 [Air Pollution Control Association].

    ERIC Educational Resources Information Center

    Journal of the Air Pollution Control Association, 1971

    1971-01-01

    Reprinted in this pamphlet is the fifth annual directory of air pollution control products as compiled in the "Journal of the Air Pollution Control Association" for December, 1971. The 16-page guide lists manufacturers of emission control equipment and air pollution instrumentation under product classifications as derived from McGraw-Hill's "Air…

  3. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  4. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  5. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  6. NASA AIRS Instrument Tracks Transport of Sulfur Dioxide from Chilean Volcanic Eruption Animation

    NASA Image and Video Library

    2015-05-07

    For the first time in 40 years, the Calbuco volcano in southern Chile erupted on April 22, 2015. The eruption caused airline flight cancellations in Chile, Argentina and Uruguay and the evacuation of approximately 4,000 people. This movie shows alternating day and nighttime views of the plume of sulfur dioxide gas emitted by Calbuco, as observed by NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua spacecraft, from April 22 to May 5, 2015. Significant amounts of sulfur dioxide are shown in bright red. The largest plume is apparent over South America during the initial eruption on April 22. The plume is then carried by winds across the south Atlantic Ocean and southern Africa. A second large eruption on April 29 produced a smaller plume. Volcanic sulfur dioxide can be an important factor in climate. Some of it is carried into Earth's stratosphere, where it is transformed into highly reflective droplets of sulfuric acid. By reflecting sunlight, these droplets can cool Earth. Large eruptions, like Mt. Pinatubo in 1991, cool our planet and disrupt rainfall patterns. Though an impressive eruption, Calbuco is expected to have only a small impact on Earth's climate. http://photojournal.jpl.nasa.gov/catalog/PIA19385

  7. Development of a low-cost mini environment chamber for precision instruments

    NASA Astrophysics Data System (ADS)

    Feng, Jian; Li, Rui-Jun; He, Ya-Xiong; Fan, Kuang-Chao

    2016-01-01

    The wavelength of laser interferometer used widely in precision measurement instrument is affected by the refractive index of surrounding air, which depends on the temperature, relative humidity (RH) and air pressure. A low-cost mini chamber based on the natural convection principle with high-precision temperature-controlled and humidity-suppressed is proposed in this paper. The main chamber is built up by acrylic walls supported by aluminum beam column and are tailored according to the required space. A thin layer of vacuum insulation panel (VIP) with an ultralow thermal conductivity coefficient is adhered around the walls so as to prevent heat exchange with room air. A high-precision temperature sensor measuring the temperature near the instrument's measuring point provides a feedback signal to a proportional-integral-derivative (PID) controller. Several thermoelectric coolers uniformly arranged on the ceiling of the chamber to cool the air inside the chamber directly without any air supply system, yielding a vibration-free cooling system. A programmable power supply is used as the driver for the coolers to generate different cooling capacities. The down-flowing cool air and the up-flowing hot air form a natural convection, and the air temperature in the chamber gradually becomes stable and finally reaches the temperature set by the PID controller. Recycled desiccant contained silica gels that have high affinity for water is used as a drying agent. Experimental results show that in about two hours the system's steady state error is 0.003°C on average, and the variation range is less than ± 0.02°C when the set temperature is 20°C, the RH is reduced from 66% to about 48%. This innovative mini chamber has the advantages of low-cost, vibration-free, and low energy-consumption. It can be used for any micro/nanomeasurement instrument and its volume can be customer-designed.

  8. Reduction of skin bacteria in theatre air with comfortable, non-woven disposable clothing for operating-theatre staff.

    PubMed Central

    Mitchell, N J; Evans, D S; Kerr, A

    1978-01-01

    Conventional loose-weave cotton operating garments were compared with clothing of a non-woven fabric to test their efficacy in reducing the dispersal of skin bacteria into theatre air. When men wore operating suits made of the non-woven fabric dispersal of skin bacteria was reduced by 72%. When all the operating-theatre staff wore suits and dresses of this fabric air bacterial counts during operating sessions were reduced by 55%; no reduction occurred when the fabric was worn by only the scrubbed team. The lowest levels of microbial contamination of the air in the operating theatre occurred when both the unscrubbed and scrubbed theatre staff wore clothes of non-woven fabric. PMID:630302

  9. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  10. 28 CFR 51.31 - Communications concerning voting suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Communications concerning voting suits... Groups § 51.31 Communications concerning voting suits. Individuals and groups are urged to notify the Chief, Voting Section, Civil Rights Division, of litigation concerning voting in jurisdictions subject...

  11. A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.

    2011-02-01

    extended mission. For the upcoming EJSM mission with an expected launch date of 2020, the transport suite is used to compute the depth dose profile for the traditional aluminum silicon as a standard shield target combination, as well as simulating the shielding response of a high charge number (Z) material such as tantalum (Ta). Finally, a shield optimization algorithm is discussed which can guide the instrument designers and fabrication personnel with the choice of graded-Z shield selection and analysis.

  12. Clean Air Markets - Allowances Query Wizard

    EPA Pesticide Factsheets

    The Allowances Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Allowances module allows the user to view allowance data associated with EPA's emissions trading programs. Allowance data can be specified and organized using the Allowance Query Wizard to find allowances information associated with specific accounts, companies, transactions, programs, facilities, representatives, allowance type, or by date. Quick Reports and Prepackaged Datasets are also available for data that are commonly requested.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  13. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  14. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  15. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  16. 5. WEST SIDE, ALSO SHOWING INSTRUMENTATION AND CONTROL BUILDING (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. WEST SIDE, ALSO SHOWING INSTRUMENTATION AND CONTROL BUILDING (BLDG. 8668) IN MIDDLE DISTANCE AT LEFT, AND TEST AREAS 1-120 AND 1-125 BEYOND. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  17. Air Force Technical Objective Document, FY89.

    DTIC Science & Technology

    1988-04-01

    threat warning; multimegawatt stand-off jammers; a family of new, broadband , active decoy expendables; E4? subsystems and EW suites for Military...and monolithic integrated circuits. (3) Microwave TWTs Develop microwave tube technology and selected thermionic power sources and amplifiers for ECM...Improved design reliability and multiple application of tube technology are stressed. Improve Traveling Wave Tube ( TWT ) reliability by instrumenting a TWT

  18. 14 CFR 1300.10 - General standards for Board issuance of Federal credit instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Federal credit instruments. 1300.10 Section 1300.10 Aeronautics and Space AIR TRANSPORTATION SYSTEM STABILIZATION OFFICE OF MANAGEMENT AND BUDGET AVIATION DISASTER RELIEF-AIR CARRIER GUARANTEE LOAN PROGRAM... borrower is an air carrier for which credit is not reasonably available at the time of the transaction; (2...

  19. IMPACTS OF CLIMATE-INDUCED CHANGES IN EXTREME EVENTS ON OZONE AND PARTICULATE MATTER AIR QUALITY

    EPA Science Inventory

    Historical data records of air pollution meteorology from multiple datasets will be compiled and analyzed to identify possible trends in extreme events. Changes in climate and air quality between 2010 and 2050 will be simulated with a suite of models. The consequential effe...

  20. Quantitative Comparison of Tandem Mass Spectra Obtained on Various Instruments

    NASA Astrophysics Data System (ADS)

    Bazsó, Fanni Laura; Ozohanics, Oliver; Schlosser, Gitta; Ludányi, Krisztina; Vékey, Károly; Drahos, László

    2016-08-01

    The similarity between two tandem mass spectra, which were measured on different instruments, was compared quantitatively using the similarity index (SI), defined as the dot product of the square root of peak intensities in the respective spectra. This function was found to be useful for comparing energy-dependent tandem mass spectra obtained on various instruments. Spectral comparisons show the similarity index in a 2D "heat map", indicating which collision energy combinations result in similar spectra, and how good this agreement is. The results and methodology can be used in the pharma industry to design experiments and equipment well suited for good reproducibility. We suggest that to get good long-term reproducibility, it is best to adjust the collision energy to yield a spectrum very similar to a reference spectrum. It is likely to yield better results than using the same tuning file, which, for example, does not take into account that contamination of the ion source due to extended use may influence instrument tuning. The methodology may be used to characterize energy dependence on various instrument types, to optimize instrumentation, and to study the influence or correlation between various experimental parameters.

  1. 77 FR 46008 - Approval and Promulgation of State Implementation Plans: Idaho; Boise-Northern Ada County Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... (CO) through the year 2022. DATES: Comments must be received on or before September 4, 2012. ADDRESSES... Avenue, Suite 900, Seattle WA, 98101. Hand Delivery/Courier: U.S. EPA Region 10, 1200 Sixth Avenue, Suite 900, Seattle WA, 98101. Attention: John Chi, Office of Air, Waste and Toxics, AWT-107. Such deliveries...

  2. Opto-mechanical design for transmission optics in cryogenic space instrumentation

    NASA Astrophysics Data System (ADS)

    Kroes, Gabby; Venema, Lars; Navarro, Ramón

    2017-11-01

    NOVA is involved in the development and realization of various optical astronomical instruments for groundbased as well as space telescopes, with a focus on nearand mid-infrared instrumentation. NOVA has developed a suite of scientific instruments with cryogenic optics for the ESO VLT and VLTI instruments: VISIR, MIDI, the SPIFFI 2Kcamera for SINFONI, X-shooter and MATISSE. Other projects include the cryogenic optics for MIRI for the James Webb Space Telescope and several E-ELT instruments. Mounting optics is always a compromise between firmly fixing the optics and preventing stresses within the optics. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations, temperature ranges, during launch, transport or earthquake. On the other hand, the fixings can induce deformations and sometimes birefringence in the optics and thus cause optical errors. Even cracking or breaking of the optics is a risk, especially when using brittle infrared optical materials at the cryogenic temperatures required in instruments for infrared astronomy, where differential expansion of various materials amounts easily to several millimeters per meter. Special kinematic mounts are therefore needed to ensure both accurate positioning and low stress. This paper concentrates on the opto-mechanical design of optics mountings, especially for large transmission optics in cryogenic circumstances in space instruments. It describes the development of temperature-invariant ("a-thermal") kinematic designs, their implementation in ground based instrumentation and ways to make them suitable for space instruments.

  3. Integrated Suit Test 1 - A Study to Evaluate Effects of Suit Weight, Pressure, and Kinematics on Human Performance during Lunar Ambulation

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Norcross, Jason; Vos, Jessica R.

    2008-01-01

    In an effort to design the next generation Lunar suit, NASA has initiated a series of tests aimed at understanding the human physiological and biomechanical affects of space suits under a variety of conditions. The first of these tests was the EVA Walkback Test (ICES 2007-01-3133). NASA-JSC assembled a multi-disciplinary team to conduct the second test of the series, titled Integrated Suit Test 1 (IST-1), from March 6 through July 24, 2007. Similar to the Walkback Test, this study was performed with the Mark III (MKIII) EVA Technology Demonstrator suit, a treadmill, and the Partial Gravity Simulator in the Space Vehicle Mock-Up Facility at Johnson Space Center. The data collected for IST-1 included metabolic rates, ground reaction forces, biomechanics, and subjective workload and controllability feedback on both suited and unsuited (shirt-sleeve) astronaut subjects. For IST-1 the center of gravity was controlled to a nearly perfect position while the weight, pressure and biomechanics (waist locked vs. unlocked) were varied individually to evaluate the effects of each on the ability to perform level (0 degree incline) ambulation in simulated Lunar gravity. The detailed test methodology and preliminary key findings of IST-1 are summarized in this report.

  4. Development of a space activity suit

    NASA Technical Reports Server (NTRS)

    Annis, J. F.; Webb, P.

    1971-01-01

    The development of a series of prototype space activity suit (SAS) assemblies is discussed. The SAS is a new type of pressure suit designed especially for extravehicular activity. It consists of a set of carefully tailored elastic fabric garments which have been engineered to supply sufficient counterpressure to the body to permit subjects to breath O2 at pressures up to 200 mm Hg without circulatory difficulty. A closed, positive pressure breathing system (PPBS) and a full bubble helmet were also developed to complete the system. The ultimate goal of the SAS is to improve the range of activity and decrease the energy cost of work associated with wearing conventional gas filled pressure suits. Results are presented from both laboratory (1 atmosphere) and altitude chamber tests with subjects wearing various SAS assemblies. In laboratory tests lasting up to three hours, the SAS was worn while subjects breathed O2 at pressures up to 170 mm Hg without developing physiological problems. The only physiological symptoms apparent were a moderate tachycardia related to breathing pressures above 130 mm Hg, and a small collection of edema fluid in the hands. Both problems were considered to be related to areas of under-pressurization by the garments. These problems, it is suggested, can ultimately be corrected by the development of new elastic fabrics and tailoring techniques. Energy cost of activity, and mobility and dexterity of subjects in the SAS, were found to be superior to those in comparable tests on subjects in full pressure suits.

  5. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2010-01-01

    In support of the Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses o detailed results of the testing that has ben conducted under this test series thus far.

  6. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2011-01-01

    In support of the NASA Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on detailed results of the testing that has been conducted under this test series thus far.

  7. Don/doff support stand for use with rear entry space suits

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Tri, Terry O. (Inventor); Spenny, William E. (Inventor); West, Philip R. (Inventor)

    1988-01-01

    A don/doff support stand for use with rear entry space suits is disclosed. The support stand is designed for use in one-g environments; however, certain features of the stand can be used on future spacecraft, lunar, or planetary bases. The present invention has a retainer which receives a protrucing lug fixed on the torso section of the space suit. When the lug is locked in the retainer, the space suit is held in a generally upright position. In a one-g environment a portable ladder is positioned adjacent to the rear entry of the space suit supported by the stand. The astronaut climbs up the ladder and grasps a hand bar assembly positioned above the rear entry. The astronaut then slips his legs through the open rear entry and down into the abdominal portion of the suite. The astronaut then lowers himself fully into the suit. The portable ladder is then removed and the astronaut can close the rear entry door. The lug is then disengaged from the retainer and the astronaut is free to engage in training exercises in the suit. When suit use is over, the astronaut returns to the stand and inserts the lug into the retainer. A technician repositions the ladder. The astronaut opens the rear entry door, grasps the hand bar assembly and does a chin-up to extricate himself from the suit. The astronaut climbs down the movable ladder while the suit is supported by the stand.

  8. Don/Doff support stand for use with rear entry space suits

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Tri, Terry O. (Inventor); Spenny, William E. (Inventor); West, Philip R. (Inventor)

    1989-01-01

    A don/doff support stand for use with rear entry space suits is disclosed. The support stand is designed for use in one-g environments; however, certain features of the stand can be used on future space-craft, lunar or planetary bases. The present invention has a retainer which receives a protruding lug fixed on the torso section of the space suit. When the lug is locked in the retainer, the space suit is held in a generally upright position. In a one-g environment a portable ladder is positioned adjacent to the rear entry of the space suit supported by the stand. The astronaut climbs up the ladder and grasps a hand bar assembly positioned above the rear entry. The astronaut then slips his legs through the open rear entry and down into the abdominal portion of the suit. The astronaut then lowers himself fully into the suit. The portable ladder is then removed and the astronaut can close the rear entry door. The lug is then disengaged from the retainer and the astronaut is free to engage in training exercises in the suit. When suit use is over, the astronaut returns to the stand and inserts the lug into the retainer. A technician repositions the ladder. The astronaut opens the rear entry door, grasps the hand bar assembly and does a chin-up to extricate himself from the suit. The astronaut climbs down the movable ladder while the suit is supported by the stand.

  9. EVA Suit Microbial Leakage

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2016-01-01

    NASA has a strategic knowledge gap (B5-3) about what life signatures leak/vent from our Extravehicular Activity (EVA) systems. This will impact how we search for evidence of life on Mars. Characterizing contamination leaks from our suits will help us comply with planetary protection guidelines, and better plan human exploration missions.

  10. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    USGS Publications Warehouse

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  11. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  12. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  13. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  14. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  15. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  16. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, Mark; Talarek, Ted R.; Zollinger, W. Thor; Heckendorn, II, Frank M.; Park, Larry R.

    1994-01-01

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.

  17. The EVA space suit development in Europe.

    PubMed

    Skoog, A I

    1994-01-01

    The progress of the European EVA space suit predevelopment activities has resulted in an improved technical reference concept, which will form the basis for a start of the Phase C/D development work in 1992. Technology development work over the last 2 years has resulted in a considerable amount of test data and a better understanding of the characteristics and behaviour of individual parts of the space suit system, in particular in the areas of suits' mobility and life support functions. This information has enabled a consolidation of certain design features on the one hand, but also led to the challenging of some of the design solutions on the other hand. While working towards an improved situation with respect to the main design drivers mass and cost, the technical concept has been improved with respect to functional safety and ease of handling, taking the evolving Hermes spaceplane requirements into consideration. Necessary hardware and functional redundancies have been implemented taking the operational scenario with Hermes and Columbus servicing into consideration. This paper presents the latest design status of the European EVA space suit concept, with particular emphasis on crew safety, comfort and productivity, in the frame of the predevelopment work for the European Space Agency.

  18. CASS—CFEL-ASG software suite

    NASA Astrophysics Data System (ADS)

    Foucar, Lutz; Barty, Anton; Coppola, Nicola; Hartmann, Robert; Holl, Peter; Hoppe, Uwe; Kassemeyer, Stephan; Kimmel, Nils; Küpper, Jochen; Scholz, Mirko; Techert, Simone; White, Thomas A.; Strüder, Lothar; Ullrich, Joachim

    2012-10-01

    The Max Planck Advanced Study Group (ASG) at the Center for Free Electron Laser Science (CFEL) has created the CFEL-ASG Software Suite CASS to view, process and analyse multi-parameter experimental data acquired at Free Electron Lasers (FELs) using the CFEL-ASG Multi Purpose (CAMP) instrument Strüder et al. (2010) [6]. The software is based on a modular design so that it can be adjusted to accommodate the needs of all the various experiments that are conducted with the CAMP instrument. In fact, this allows the use of the software in all experiments where multiple detectors are involved. One of the key aspects of CASS is that it can be used either 'on-line', using a live data stream from the free-electron laser facility's data acquisition system to guide the experiment, and 'off-line', on data acquired from a previous experiment which has been saved to file. Program summary Program title: CASS Catalogue identifier: AEMP_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence, version 3 No. of lines in distributed program, including test data, etc.: 167073 No. of bytes in distributed program, including test data, etc.: 1065056 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-64. Operating system: GNU/Linux (for information about restrictions see outlook). RAM: >8 GB Classification: 2.3, 3, 15, 16.4. External routines: Qt-Framework[1], SOAP[2], (optional HDF5[3], VIGRA[4], ROOT[5], QWT[6]) Nature of problem: Analysis and visualisation of scientific data acquired at Free-Electron-Lasers Solution method: Generalise data access and storage so that a variety of small programming pieces can be linked to form a complex analysis chain. Unusual features: Complex analysis chains can be built without recompiling the program Additional comments: An updated extensive documentation of CASS is available

  19. An evaluation of three anti-G suit concepts for shuttle reentry

    NASA Technical Reports Server (NTRS)

    Krutz, R. W., Jr.; Burton, R. R.; Sawin, C. F.

    1992-01-01

    A study was conducted to compare the standard anti-G launch-entry suit (LES) with a reentry full-coverage anti-G suit (REAGS) and a REAGS without an abdominal bladder (AB). (The inflated AB is the most uncomfortable G-suit component). Intravenous Lasix, a diuretic, was used to induce the fluid loss seen during space flight. Using the Armstrong Laboratory Centrifuge, data collected from seven subjects have shown that less anti-G suit pressure is required to maintain eye-level systolic blood pressure above 70 mmHg when the REAGS or REAGS without AB is worn during simulated shuttle reentry G-profiles when compared to the current LES G-suit. The REAGS without AB was significantly more comfortable than the standard anti-G suit.

  20. Large unexplained suite of chemically reactive compounds present in ambient air due to biomass fires.

    PubMed

    Kumar, V; Chandra, B P; Sinha, V

    2018-01-12

    Biomass fires impact global atmospheric chemistry. The reactive compounds emitted and formed due to biomass fires drive ozone and organic aerosol formation, affecting both air quality and climate. Direct hydroxyl (OH) Reactivity measurements quantify total gaseous reactive pollutant loadings and comparison with measured compounds yields the fraction of unmeasured compounds. Here, we quantified the magnitude and composition of total OH reactivity in the north-west Indo-Gangetic Plain. More than 120% increase occurred in total OH reactivity (28 s -1 to 64 s -1 ) and from no missing OH reactivity in the normal summertime air, the missing OH reactivity fraction increased to ~40 % in the post-harvest summertime period influenced by large scale biomass fires highlighting presence of unmeasured compounds. Increased missing OH reactivity between the two summertime periods was associated with increased concentrations of compounds with strong photochemical source such as acetaldehyde, acetone, hydroxyacetone, nitromethane, amides, isocyanic acid and primary emissions of acetonitrile and aromatic compounds. Currently even the most detailed state-of-the art atmospheric chemistry models exclude formamide, acetamide, nitromethane and isocyanic acid and their highly reactive precursor alkylamines (e.g. methylamine, ethylamine, dimethylamine, trimethylamine). For improved understanding of atmospheric chemistry-air quality-climate feedbacks in biomass-fire impacted atmospheric environments, future studies should include these compounds.

  1. The experience in operation and improving the Orlan-type space suits.

    PubMed

    Abramov, I P

    1995-07-01

    Nowadays significant experience has been gained in Russia concerning extravehicular activity (EVA) with cosmonauts wearing a semi-rigid space suit of the "Orlan" type. The conditions for the cosmonauts' vital activities, the operational and ergonomic features of the space suit and its reliability are the most critical factors defining the efficiency of the scheduled operation to be performed by the astronaut and his safety. As the missions performed by the cosmonauts during EVA become more and more elaborate, the requirements for EVA space suits and their systems become more and more demanding, resulting in their consistent advancement. This paper provides certain results of the space suit's operation and analysis of its major problems as applied to the Salyut and MIR orbiting stations. The modification steps of the space suit in the course of operation (Orlan-D, Orlan-DM, Orlan-DMA) and its specific features are presented. The concept of the suited cosmonauts' safety is described as well as trends for future space suit improvements.

  2. Inter-comparison between AIRS and IASI through Retrieved Parameters

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve

    2008-01-01

    A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.

  3. Calibration of a Computer Based Instrumentation for Flight Research

    NASA Technical Reports Server (NTRS)

    Forsyth, T. J.; Reynolds, R. S. (Technical Monitor)

    1997-01-01

    NASA Ames Research Center has been investigating a Differential Global Positioning System (DGPS) for future use as a Category II/III landing system. The DGPS navigation system was developed and installed on a B200 King Air aircraft. Instrumentation that is not calibrated and verified as a total operating system can have errors or not work correctly. Systems need to be checked for cross talk and that they work together accurately. It is imperative that the instrumentation and computer do not affect aircraft avionics and instrumentation needed for aircraft operation. This paper discusses calibration and verification principles of a computer based instrumentation airborne system.

  4. Avionics Instrument Systems Specialist (AFSC 32551).

    ERIC Educational Resources Information Center

    Miller, Lawrence B.; Crowcroft, Robert A.

    This six-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for avionics instrument systems specialists. Covered in the individual volumes are career field familiarization (career field progression and training, security, occupational safety and health, and career field reference material);…

  5. Thoron, radon and air ions spatial distribution in indoor air.

    PubMed

    Kolarž, Predrag; Vaupotič, Janja; Kobal, Ivan; Ujić, Predrag; Stojanovska, Zdenka; Žunić, Zora S

    2017-07-01

    Spatial distribution of radioactive gasses thoron (Tn) and radon (Rn) in indoor air of 9 houses mostly during winter period of 2013 has been studied. According to properties of alpha decay of both elements, air ionization was also measured. Simultaneous continual measurements using three Rn/Tn and three air-ion active instruments deployed on to three different distances from the wall surface have shown various outcomes. It has turned out that Tn and air ions concentrations decrease with the distance increase, while Rn remained uniformly distributed. Exponential fittings function for Tn variation with distance was used for the diffusion length and constant as well as the exhalation rate determination. The obtained values were similar with experimental data reported in the literature. Concentrations of air ions were found to be in relation with Rn and obvious, but to a lesser extent, with Tn. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Shoulder Joint For Protective Suit

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Smallcombe, Richard D.

    1994-01-01

    Shoulder joint allows full range of natural motion: wearer senses little or no resisting force or torque. Developed for space suit, joint offers advantages in protective garments for underwater work, firefighting, or cleanup of hazardous materials.

  7. Multichannel temperature controller for hot air solar house

    NASA Technical Reports Server (NTRS)

    Currie, J. R.

    1979-01-01

    This paper describes an electronic controller that is optimized to operate a hot air solar system. Thermal information is obtained from copper constantan thermocouples and a wall-type thermostat. The signals from the thermocouples are processed through a single amplifier using a multiplexing scheme. The multiplexing reduces the component count and automatically calibrates the thermocouple amplifier. The processed signals connect to some simple logic that selects one of the four operating modes. This simple, inexpensive, and reliable scheme is well suited to control hot air solar systems.

  8. Metabolic and Subjective Results Review of the Integrated Suit Test Series

    NASA Technical Reports Server (NTRS)

    Norcross, J.R.; Stroud, L.C.; Klein, J.; Desantis, L.; Gernhardt, M.L.

    2009-01-01

    Crewmembers will perform a variety of exploration and construction activities on the lunar surface. These activities will be performed while inside an extravehicular activity (EVA) spacesuit. In most cases, human performance is compromised while inside an EVA suit as compared to a crewmember s unsuited performance baseline. Subjects completed different EVA type tasks, ranging from ambulation to geology and construction activities, in different lunar analog environments including overhead suspension, underwater and 1-g lunar-like terrain, in both suited and unsuited conditions. In the suited condition, the Mark III (MKIII) EVA technology demonstrator suit was used and suit pressure and suit weight were parameters tested. In the unsuited conditions, weight, mass, center of gravity (CG), terrain type and navigation were the parameters. To the extent possible, one parameter was varied while all others were held constant. Tests were not fully crossed, but rather one parameter was varied while all others were left in the most nominal setting. Oxygen consumption (VO2), modified Cooper-Harper (CH) ratings of operator compensation and ratings of perceived exertion (RPE) were measured for each trial. For each variable, a lower value correlates to more efficient task performance. Due to a low sample size, statistical significance was not attainable. Initial findings indicate that suit weight, CG and the operational environment can have a large impact on human performance during EVA. Systematic, prospective testing series such as those performed to date will enable a better understanding of the crucial interactions of the human and the EVA suit system and their environment. However, work remains to be done to confirm these findings. These data have been collected using only unsuited subjects and one EVA suit prototype that is known to fit poorly on a large demographic of the astronaut population. Key findings need to be retested using an EVA suit prototype better suited to a

  9. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  10. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    NASA Astrophysics Data System (ADS)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor

  11. Siberian lidar station: instruments and results

    NASA Astrophysics Data System (ADS)

    Matvienko, Gennadii G.; Balin, Yurii S.; Bobrovnikov, Sergey M.; Romanovskii, Oleg A.; Kokhanenko, Grigirii P.; Samoilova, Svetlana V.; Penner, Ioganes E.; Gorlov, Evgenii V.; Zharkov, Victir I.; Sadovnikov, Sergey A.; Yakovlev, Semen V.; Bazhenov, Oleg E.; Dolgii, Sergey I.; Makeev, Andrey P.; Nevzorov, Alexey A.; Nevzorov, Alexey V.; Kharchenko, Olga V.

    2018-04-01

    The Siberian Lidar Station created at V.E. Zuev Institute of Atmospheric Optics and operating in Tomsk (56.5° N, 85.0° E) is a unique atmospheric observatory. It combines up-to-date instruments for remote laser and passive sounding for the study of aerosol and cloud fields, air temperature and humidity, and ozone and gaseous components of the ozone cycles. In addition to controlling a wide range of atmospheric parameters, the observatory allows simultaneous monitoring of the atmosphere throughout the valuable altitude range 0-75 km. In this paper, the instruments and results received at the Station are described.

  12. Astronaut Fred Haise - Suiting Room - Prelaunch - KSC

    NASA Image and Video Library

    1970-04-11

    S70-34851 (11 April 1970) --- A space suit technician talks with astronaut Fred W. Haise Jr., lunar module pilot for NASA's Apollo 13 mission, during suiting up procedures at Kennedy Space Center (KSC). Other members of the crew are astronauts James A. Lovell Jr., commander, and John L. Swigert Jr., command module pilot. Swigert replaced astronaut Thomas K. Mattingly II as a member of the crew when it was learned he had been exposed to measles.

  13. Pilot Fullerton dons EES anti-gravity suit lower torso on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton dons ejection escape suit (EES) anti-gravity (anti-g) suit lower torso on forward port side middeck above potable water tank. Anti-g suit is an olive drab inner garment that complements EES.

  14. Development and Evaluation of Titanium Space Suit Bearings

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Battisti, Brian; Ytuarte, Ray, Jr.; Schultz, Bradley

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits, designed with the intent of meeting a wide variety of exploration mission objectives, including human exploration of the Martian surface. Incorporating titanium bearings into the Z series space suit architecture allows us to reduce mass by an estimated 23 pounds per suit system compared to the previously used stainless steel bearing designs without compromising suit functionality. There are two obstacles to overcome when using titanium for a bearing race: 1) titanium is flammable when exposed to the oxygen wetted environment inside the space suit and 2) titanium's poor wear properties are often challenging to overcome in tribology applications. In order to evaluate the ignitability of a titanium space suit bearing, a series of tests were conducted at White Sands Test Facility that introduced the bearings to an extreme test profile, with multiple failures imbedded into the test bearings. The testing showed no signs of ignition in the most extreme test cases; however, substantial wear of the bearing races was observed. In order to design a bearing that can last an entire exploration mission (approximately 2 years), bearing test rigs were developed that allow for the quick evaluation of various bearing ball loads, ball diameters, lubricants, and surface treatments. This test data will allow designers to minimize the titanium bearing mass for a specific material and lubricant combination around a maximum contact stress that will allow the bearing to survive the life of an exploration mission. This paper reviews the current research and testing that has been performed on titanium bearing races to evaluate the use of such materials in an enriched oxygen environment and to optimize the bearing assembly mass and tribological properties to accommodate for the high bearing cycle life for an exploration mission.

  15. The Walkback Test: A Study to Evaluate Suit and Life Support System Performance Requirements for a 10 Kilometer Traverse in a Planetary Suit

    NASA Technical Reports Server (NTRS)

    Vos, Jessica R.; Gernhardt, Michael L.; Lee, Lesley

    2007-01-01

    As planetary suit and planetary life support systems develop, specific design inputs for each system relate to a presently unanswered question concerning operational concepts: What distance can be considered a safe walking distance for a suited EVA crew member exploring the surface of the Moon to "walk-back" to the habitat in the event of a rover breakdown, taking into consideration the planned EVA tasks as well as the possible traverse back to the habitat? It has been assumed, based on Apollo program experience, that 10 kilometers (6.2 mi) will be the maximum EVA excursion distance from the lander or habitat to ensure the crew member s safe return to the habitat in the event of a rover failure. To investigate the feasibility of performing a suited 10 km Walkback, NASA-JSC assembled a multi-disciplinary team to design and implement the Lunar Walkback Test . The test was designed not only to determine the feasibility of a 10 km excursion, but also to collect human performance, biomedical, and biomechanical data relevant to optimizing space suit design and life support system sizing. These data will also be used to develop follow-on studies to understand interrelationships of such key parameters as suit mass, inertia, suit pressure, and center of gravity (CG), and the respective influences of each on human performance.

  16. Comparison of Extravehicular Mobility Unit (EMU) suited and unsuited isolated joint strength measurements

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Demel, Kenneth J.; Morgan, David A.; Wilmington, Robert P.; Pandya, Abhilash K.

    1996-01-01

    In this study the strength of subjects suited in extravehicular mobility units (EMU's) - or Space Shuttle suits - was compared to the strength of unsuited subjects. The authors devised a systematic and complete data set that characterizes isolated joint torques for all major joints of EMU-suited subjects. Six joint motions were included in the data set. The joint conditions of six subjects were compared to increase our understanding of the strength capabilities of suited subjects. Data were gathered on suited and unsuited subjects. Suited subjects wore Class 3 or Class 1 suits, with and without thermal micrometeoroid garments (TMG's). Suited and unsuited conditions for each joint motion were compared. From this the authors found, for example, that shoulder abduction suited conditions differ from each other and from the unsuited condition. A second-order polynomial regression model was also provided. This model, which allows the prediction of suited strength when given unsuited strength information, relates the torques of unsuited conditions to the torques of all suited conditions. Data obtained will enable computer modeling of EMU strength, conversion from unsuited to suited data, and isolated joint strength comparisons between suited and unsuited conditions at any measured angle. From these data mission planners and human factors engineers may gain a better understanding of crew posture, and mobility and strength capabilities. This study also may help suit designers optimize suit strength, and provide a foundation for EMU strength modeling systems.

  17. Tactile Instrument for Aviation

    DTIC Science & Technology

    2000-07-30

    response times using 8 tactor locations was repeated with a dual memory /tracking task or an air combat simulation to evaluate the effectiveness of the...Global Positioning/Inertial Navigation System technologies into a single system for evaluation in an UH-60 Helicopter. A 10-event test operation was... evaluation of the following technology areas need to be pursued: • Integration of tactile instruments with helmet mounted displays and 3D audio displays

  18. The Soviet-Russian space suits a historical overview of the 1960's.

    PubMed

    Skoog, A Ingemar; Abramov, Isaac P; Stoklitsky, Anatoly Y; Doodnik, Michail N

    2002-01-01

    The development of protective suits for space use started with the Vostok-suit SK-1, first used by Yu. Gagarin on April 12, 1961, and then used on all subsequent Vostok-flights. The technical background for the design of these suits was the work on full pressure protective suits for military pilots and stratospheric flights in the 1930's through 50's. The Soviet-Russian space programme contains a large number of 'firsts', and one of the most well known is the first EVA by Leonov in 1965. This event is also the starting point for a long series of space suit development for Extravehicular Activities over the last 35 years. The next step to come was the transfer in void space of crew members between the two spacecraft Soyuz 4 and 5 in 1969. As has later become known this was an essential element in the planned Soviet lunar exploration programme, which in itself required a new space suit. After the termination of the lunar programme in 1972, the space suit development concentrated on suits applicable to zero-gravity work around the manned space stations Salyut 6, Salyut 7 and MIR. These suits have become known as the ORLAN-family of suits, and an advanced version of this suit (ORLAN-M) will be used on the International Space Station together with the American EMU. This paper covers the space suit development in the Soviet Union in the 1960's and the experience used from the pre-space era. c2002 Published by Elsevier Science Ltd.

  19. Integrating Satellite Measurements from Polar-orbiting instruments into Smoke Disperson Forecasts

    NASA Astrophysics Data System (ADS)

    Smith, N.; Pierce, R. B.; Barnet, C.; Gambacorta, A.; Davies, J. E.; Strabala, K.

    2015-12-01

    The IDEA-I (Infusion of Satellite Data into Environmental Applications-International) is a real-time system that currently generates trajectory-based forecasts of aerosol dispersion and stratospheric intrusions. Here we demonstrate new capabilities that use satellite measurements from the Joint Polar Satellite System (JPSS) Suomi-NPP (S-NPP) instruments (operational since 2012) in the generation of trajectory-based predictions of smoke dispersion from North American wildfires. Two such data products are used, namely the Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and the combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals. The latter is a new data product made possible by the release of full spectral-resolution CrIS measurements since December 2014. Once NUCAPS CO becomes operationally available it will be used in real-time applications such as IDEA-I along with VIIRS AOD and meteorological forecast fields to support National Weather Service (NWS) Incident Meteorologist (IMET) and air quality management decision making. By combining different measurements, the information content of the IDEA-I transport and dispersion forecast is improved within the complex terrain features that dominate the Western US and Alaska. The primary user community of smoke forecasts is the Western regions of the National Weather Service (NWS) and US Environmental Protection Agency (EPA) due to the significant impacts of wildfires in these regions. With this we demonstrate the quality of the smoke dispersion forecasts that can be achieved by integrating polar-orbiting satellite measurements with forecast models to enable on-site decision support services for fire incident management teams and other real-time air quality agencies.

  20. 28 CFR 51.11 - Right to bring suit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.11 Right to bring suit. Submission to the Attorney General does not affect the right of the submitting authority to bring an action in... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Right to bring suit. 51.11 Section 51.11...

  1. 28 CFR 51.11 - Right to bring suit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.11 Right to bring suit. Submission... affecting voting neither has the purpose nor will have the effect of denying or abridging the right to vote... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Right to bring suit. 51.11 Section 51.11...

  2. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

    1994-02-15

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.

  3. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    NASA Technical Reports Server (NTRS)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  4. 'The Grange', Tasmania: survival of a unique suite of 1874 transit of Venus relics

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Buchanan, Alex

    2004-06-01

    One of the two US expeditions in Australia for the 1874 transit of Venus was based in Campbell Town, Tasmania. While the transit was observed from this site and some of the photographs were used in the subsequent investigation of the solar parallax, its main claim to fame is the physical vestiges of the transit programme that have survived there through to the present day. These comprise foundations for instruments, two piers associated with the photographic telescope, and one of the prefabricated observatory buildings. In addition, a copy of a photograph of the transit is preserved in the Queen Victoria Museum and Art Gallery in nearby Launceston. Collectively these form a unique suite of 1874 transit of Venus relics, and are of international importance.

  5. Teaching contact metamorphism, isograds, and mixed-volatile reactions: A suite-based approach

    NASA Astrophysics Data System (ADS)

    Peck, W. H.

    2003-12-01

    An important goal of teaching Introductory Petrology is to demonstrate how different kinds of approaches are integrated in studying petrologic problems. Depending on the goals of the study data used can be from the field, hand-sample, microscope, electron beam instrument, or mass spectrometer. A suite of samples with a known geographical and geological context can help students in drawing connections between different petrologic approaches, as the `geologic story' of the samples becomes a unifying theme. For teaching a unit on calc-silicates I use a suite of siliceous dolomite samples collected from the Ubehebe contact aureole (Death Valley, NV) as well as published data (Roselle et al., 1997; 1999) in a linked series of laboratory exercises and problem sets. The geology of the contact aureole is introduced in a three-hour laboratory exercise, where students identify the appearance of tremolite, forsterite, and periclase/brucite and the disappearance of quartz as the intrusion is approached. A concurrent problem set uses simplified mineral assemblage maps from the aureole. In the problem set students delineate isograds and determine the balanced metamorphic reactions by which the metamorphic minerals formed. Lecture material during this unit focuses on the physical properties of fluids in the crust and the mineralogical evidence for fluid-flow (with an emphasis on mixed-volatile reactions and T-XCO2 diagrams). A concrete field example helps focus student attention on the interrelation of disparate approaches by which petrologic problems addressed. The Ubehebe suite then becomes a unifying theme throughout the course: the specimens or regional geology are used in subsequent laboratories and lectures when introducing concepts such as grain nucleation and growth, reaction overstepping, and replacement textures. A virtual field trip of the Alta aureole, UT (using field photographs, maps, and photomicrographs) concludes the unit. The geology of the Alta aureole is

  6. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    PubMed Central

    Dini, Gianluca; Duca, Angelica Lo

    2012-01-01

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead. PMID:23202204

  7. Skin blood flow with elastic compressive extravehicular activity space suit.

    PubMed

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  8. 78 FR 5292 - Approval and Promulgation of Air Quality Implementation Plans; Massachusetts and New Hampshire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... and New Hampshire. The revised programs in Massachusetts and New Hampshire include a test and repair..., EPA New England Regional Office, Office of Ecosystem Protection, Air Quality Planning Unit, 5 Post... Protection, Air Quality Planning Unit, 5 Post Office Square--Suite 100, (Mail code OEP05-2), Boston, MA 02109...

  9. Clean Air Markets - Quick Facts and Trends

    EPA Pesticide Factsheets

    The Quick Facts and Trends module is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Quick Facts and Trends module provides charts and graphs depicting national trends in emissions and heat input. The user can view, for example, data pertaining to the top annual and ozone season emitters of a selected pollutant, the number of units and facilities in a particular state, and trends in sulfur dioxide, nitrogen oxide and carbon dioxide emissions.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  10. Consensus Conference Findings on Supragingival and Subgingival Air Polishing.

    PubMed

    Cobb, Charles M; Daubert, Diane M; Davis, Karen; Deming, Jodi; Flemmig, Thomas F; Pattison, Anna; Roulet, Jean-François; Stambaugh, Roger V

    2017-02-01

    A consensus conference was convened to evaluate and address issues of safety and efficacy when using glycine powder in an air-powder jet device for supra- and subgingival applications during dental prophylaxis and periodontal maintenance. The conference reported the following conclusions: 1) Supra- and subgingival air polishing using glycine powder is safe and effective for removal of biofilms from natural tooth structure and restorative materials; 2) there is no evidence of soft-tissue abrasion when using glycine powder in an air-polishing device; 3) in periodontal probing depths of 1 mm to 4 mm, glycine-powder air polishing, using a standard air-polishing nozzle, is more effective at removing subgingival biofilm than manual or ultrasonic instruments; and 4) at probing depths of 5 mm to 9 mm, using a subgingival nozzle, glycine powder air polishing is more effective at removing subgingival biofilm than manual or ultrasonic instrumentation. This conference statement, supported by an industry grant, was drafted by a panel of distinguished dental professionals.

  11. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  12. Inertial motion capture system for biomechanical analysis in pressure suits

    NASA Astrophysics Data System (ADS)

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced

  13. STS-77 MS Andrew Thomas suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 Mission Specialist Andrew S. W. Thomas finishes donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. A native of South Australia, the rookie astronaut joins a crew of five veterans on the fourth Shuttle flight of 1996. They will depart shortly for Launch Pad 39B, where the Space Shuttle Endeavour is undergoing final preparations for liftoff during a two-and-a-half hour launch window opening at 6:30 a.m. EDT, May 19.

  14. Clean Air Markets - Compliance Query Wizard

    EPA Pesticide Factsheets

    The Compliance Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://ampd.epa.gov/ampd/. The Compliance module provides final compliance results. Using the Compliance Query Wizard, the user can find compliance information associated with specific programs, facilities, states or time frames. Quick Reports and Prepackaged Datasets are also available for data that are commonly requested. Final compliance results are available for all years since 1995 for the Acid Rain Program and for the various NOx trading programs EPA has operated since 1999.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  15. How Small Can We Go: Exploring the Limitations and Scaling laws of Air-Microfluidic Particulate Matter Sensors

    EPA Science Inventory

    Air-microfluidics is a field that has the potential to dramatically reduce the size, cost, and power requirements of future air quality sensors. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical systems (MEMS) that can be ap...

  16. Introduction to AIRS and CrIS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2004-01-01

    "Introduction to AIRS and CrIS" is a chapter in a book dealing with various aspects of remote sensing. AIRS and CrIS are both high spectral resolution IR sounding instruments, which were recently launched (AIRS) or will soon be launched (CrIS). The chapter explains the general principles of infra-red remote sensing, and explains the significance and information content of high spectral resolution IR measurements. The chapter shows results obtained using AIRS observations, and explains why similar quality results should be obtainable from CrIS data.

  17. Meteorological and operational aspects of 46 clear air turbulence sampling missions with an instrument B-57B aircraft. Volume 1: Program summary

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Champine, R. A.; Ehernberger, L. J.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.

  18. Extravehicular Mobility Unit Training Suit Symptom Study Report

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel

    2004-01-01

    The purpose of this study was to characterize the symptoms and injuries experienced by NASA astronauts during extravehicular activity (space walk) spacesuit training at the Neutral Buoyancy Laboratory at Ellington Field, Houston, Texas. We identified the frequency and incidence rates of symptoms by each general body location and characterized mechanisms of injury and effective countermeasures. Based on these findings a comprehensive list of recommendations was made to improve training, test preparation, and current spacesuit components, and to design the next -generation spacesuit. At completion of each test event a comprehensive questionnaire was produced that documented suit symptom comments, identified mechanisms of injury, and recommended countermeasures. As we completed our study we found that most extravehicular mobility unit suit symptoms were mild, self-limited, and controlled by available countermeasures. Some symptoms represented the potential for significant injury with short- and long-term consequences regarding astronaut health and interference with mission objectives. The location of symptoms and injuries that were most clinically significant was in the hands, shoulders, and feet. Correction of suit symptoms issues will require a multidisciplinary approach to improve prevention, early medical intervention, astronaut training, test planning, and suit engineering.

  19. Newly designed launch and entry suit (LES) modeled by technician

    NASA Image and Video Library

    1988-11-14

    Space shuttle orange launch and entry suit (LES), a partial pressure suit, is modeled by a technician. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life raft, life preserver unit (LPU), LES gloves, suit oxygen manifold and valves, boots, and survival gear.

  20. 46 CFR 160.171-17 - Approval testing for adult size immersion suit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... equivalent synthetic socks; (v) Work shoes, if the suit is designed for shoes to be worn inside. (2) Test... Approval testing for adult size immersion suit. Caution: During each of the in-water tests prescribed in... if the oversize adult suit is of the same design as the adult suit except for extra material to...