Science.gov

Sample records for airway cells role

  1. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-01-01

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma. PMID:26517982

  2. The role of mast cells in citric acid-induced airway constriction and cough.

    PubMed

    Lai, Yih-Loong; Wu, Li-Ling; Lin, Tai-Yin; Lin, Chien-He

    2009-11-30

    Inhalation of citric acid (CA) causes airway constriction and coughing. To investigate the role of mast cells in CA-induced airway constriction and cough, three experiments using guinea pigs were carried out. In the first experiment, we used compound 48/80 to deplete mast cells, cromolyn sodium to stabilize mast cells, MK-886 to inhibit synthesis of leukotrienes, pyrilamine to antagonize histamine H1 receptor, methysergide to antagonize serotonin receptor, and indomethacin to inhibit cyclooxygenase. In the second experiment, compound 48/80-pretreated animals were divided into 2 parts; the first one was used to test the role of exogenous leukotriene (LT) C4, while the second one to test the role of exogenous histamine. Decreases in respiratory compliance (Crs) and forced expiratory volume in 0.1 sec (FEV0.1) were used as indicators for airway constriction in anesthetized guinea pigs. CA-induced cough was recorded for 12 min using a barometric body plethysmograph in conscious animals. In the third experiment, the activation of mast cells upon CA inhalation was investigated by determining lung tissue or arterial plasma histamine concentration in animals. Exposure to CA induced marked airway constriction and increase in cough number. Compound 48/80, cromolyn sodium, MK-886 and pyrilamine, but not indomethacin or methysergide, significantly attenuated CA-induced airway constriction and cough. Injection of LTC4 or histamine caused a significant increase in CA-induced airway constriction and cough in compound 48/80-pretreated animals. In addition, CA inhalation caused significant increase in lung tissue and plasma histamine concentrations, which were blocked by compound 48/80 pretreatment. These results suggest that mast cells play an important role in CA aerosol inhalation-induced airway constriction and cough via perhaps mediators including LTs and histamine. PMID:20359123

  3. Contrasting roles for the receptor for advanced glycation end-products on structural cells in allergic airway inflammation vs. airway hyperresponsiveness.

    PubMed

    Taniguchi, Akihiko; Miyahara, Nobuaki; Waseda, Koichi; Kurimoto, Etsuko; Fujii, Utako; Tanimoto, Yasushi; Kataoka, Mikio; Yamamoto, Yasuhiko; Gelfand, Erwin W; Yamamoto, Hiroshi; Tanimoto, Mitsune; Kanehiro, Arihiko

    2015-10-15

    The receptor for advanced glycation end-products (RAGE) is a multiligand receptor that belongs to the immunoglobulin superfamily. RAGE is reported to be involved in various inflammatory disorders; however, studies that address the role of RAGE in allergic airway disease are inconclusive. RAGE-sufficient (RAGE+/+) and RAGE-deficient (RAGE-/-) mice were sensitized to ovalbumin, and airway responses were monitored after ovalbumin challenge. RAGE-/- mice showed reduced eosinophilic inflammation and goblet cell metaplasia, lower T helper type 2 (Th2) cytokine production from spleen and peribronchial lymph node mononuclear cells, and lower numbers of group 2 innate lymphoid cells in the lung compared with RAGE+/+ mice following sensitization and challenge. Experiments using irradiated, chimeric mice showed that the mice expressing RAGE on radio-resistant structural cells but not hematopoietic cells developed allergic airway inflammation; however, the mice expressing RAGE on hematopoietic cells but not structural cells showed reduced airway inflammation. In contrast, absence of RAGE expression on structural cells enhanced innate airway hyperresponsiveness (AHR). In the absence of RAGE, increased interleukin (IL)-33 levels in the lung were detected, and blockade of IL-33 receptor ST2 suppressed innate AHR in RAGE-/- mice. These data identify the importance of RAGE expressed on lung structural cells in the development of allergic airway inflammation, T helper type 2 cell activation, and group 2 innate lymphoid cell accumulation in the airways. RAGE on lung structural cells also regulated innate AHR, likely through the IL-33-ST2 pathway. Thus manipulating RAGE represents a novel therapeutic target in controlling allergic airway responses. PMID:26472810

  4. The role of airway epithelial cells and innate immune cells in chronic respiratory disease

    PubMed Central

    Holtzman, Michael J.; Byers, Derek E.; Alexander-Brett, Jennifer; Wang, Xinyu

    2016-01-01

    An abnormal immune response to environmental agents is generally thought to be responsible for causing chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Based on studies of experimental models and human subjects, there is increasing evidence that the response of the innate immune system is crucial for the development of this type of airway disease. Airway epithelial cells and innate immune cells represent key components of the pathogenesis of chronic airway disease and are emerging targets for new therapies. In this Review, we summarize the innate immune mechanisms by which airway epithelial cells and innate immune cells regulate the development of chronic respiratory diseases. We also explain how these pathways are being targeted in the clinic to treat patients with these diseases. PMID:25234144

  5. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling.

    PubMed

    Rock, Jason R; Randell, Scott H; Hogan, Brigid L M

    2010-01-01

    The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease. PMID:20699479

  6. Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells

    PubMed Central

    Matsumura, Yasuhiro

    2012-01-01

    Protease activity is a characteristic common to many allergens. Allergen source-derived proteases interact with lung epithelial cells, which are now thought to play vital roles in both innate and adaptive immune responses. Allergen source-derived proteases act on airway epithelial cells to induce disruption of the tight junctions between epithelial cells, activation of protease-activated receptor-2, and the production of thymic stromal lymphopoietin. These facilitate allergen delivery across epithelial layers and enhance allergenicity or directly activate the immune system through a nonallergic mechanism. Furthermore, they cleave regulatory cell surface molecules involved in allergic reactions. Thus, allergen source-derived proteases are a potentially critical factor in the development of allergic sensitization and appear to be strongly associated with heightened allergenicity. PMID:22523502

  7. Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor

    PubMed Central

    Malmhäll, Carina; Rådinger, Madeleine; Ramos-Ramirez, Patricia; Lu, You; Deák, Tünde; Semitekolou, Maria; Gaga, Mina; Sjöstrand, Margareta; Lötvall, Jan; Bossios, Apostolos

    2016-01-01

    Background B cells, key cells in allergic inflammation, differentiate in the bone marrow and their precursors include pro-B, pre-B and immature B cells. Eosinophil progenitor cells increase in the lung after allergen exposure. However, the existence and possible role of B cell precursors in the lung during allergic inflammation remains elusive. Methods A BALB/c mouse model of allergic airway inflammation was utilized to perform phenotypic and quantification analyses of pro-B and pre-B cells in the lung by flow cytometry. B cell maturation factors IL-7 and B cell-activating factor (BAFF) and their receptors (CD127 and BAFFR, BCMA, TACI, respectively) were also evaluated in the lung and serum. The effect of anti-BAFF treatment was investigated both in vivo (i.p. administration of BAFF-R-Ig fusion protein) and in vitro (colony forming cell assay). Finally, BAFF levels were examined in the bronchoalveolar lavage (BAL) of asthmatic patients and healthy controls. Results Precursor pro and pre-B cells increase in the lung after allergen exposure, proliferate in the lung tissue in vivo, express markers of chemotaxis (CCR10 and CXCR4) and co-stimulation (CD40, CD86) and are resistant to apoptosis (Bax). Precursor B cells express receptors for BAFF at baseline, while after allergen challenge both their ligand BAFF and the BCMA receptor expression increases in B cell precursors. Blocking BAFFR in the lung in vivo decreases eosinophils and proliferating precursor B cells. Blocking BAFFR in bone marrow cultures in vitro reduces pre-B colony formation units. BAFF is increased in the BAL of severe asthmatics. Conclusion Our data support the concept of a BAFF-mediated role for B cell precursors in allergic airway inflammation. PMID:27513955

  8. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma. PMID:16014803

  9. The Role of Lysophosphatidic Acid on Airway Epithelial Cell Denudation in a Murine Heterotopic Tracheal Transplant Model

    PubMed Central

    Tando, Yukiko; Ota, Chiharu; Yamada, Mitsuhiro; Kamata, Satoshi; Yamaya, Mutsuo; Kano, Kuniyuki; Okudaira, Shinichi; Aoki, Junken; Kubo, Hiroshi

    2015-01-01

    Background Chronic rejection is the major leading cause of morbidity and mortality after lung transplantation. Obliterative bronchiolitis (OB), a fibroproliferative disorder of the small airways, is the main manifestation of chronic lung allograft rejection. However, there is currently no treatment for the disease. We hypothesized that lysophosphatidic acid (LPA) participates in the progression of OB. The aim of this study was to reveal the involvement of LPA on the lesion of OB. Methods Ki16198, an antagonist specifically for LPA1 and LPA3, was daily administered into the heterotopic tracheal transplant model mice at the day of transplantation. At days 10 and 28, the allografts were isolated and evaluated histologically. The messenger RNA levels of LPAR in microdissected mouse airway regions were assessed to reveal localization of lysophosphatidic acid receptors. The human airway epithelial cell was used to evaluate the mechanism of LPA-induced suppression of cell adhesion to the extracellular matrix (ECM). Results The administration of Ki16198 attenuated airway epithelial cell loss in the allograft at day 10. Messenger RNAs of LPA1 and LPA3 were detected in the airway epithelial cells of the mice. Lysophosphatidic acid inhibited the attachment of human airway epithelial cells to the ECM and induced cell detachment from the ECM, which was mediated by LPA1 and Rho-kinase pathway. However, Ki16198 did not prevent obliteration of allograft at day 28. Conclusions The LPA signaling is involved in the status of epithelial cells by distinct contribution in 2 different phases of the OB lesion. This finding suggests a role of LPA in the pathogenesis of OB. PMID:27500235

  10. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation.

    PubMed

    Grabiec, Aleksander M; Hussell, Tracy

    2016-07-01

    Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called 'efferocytosis'. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released 'damage associated molecular patterns' (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections. PMID:26957481

  11. A critical role for dendritic cells in the evolution of IL-1β-mediated murine airway disease

    PubMed Central

    Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke; Sen, Debasish; Goodsell, Amanda; Ma, Royce; Moermans, Catherine; McKnelly, Kate J.; Baron, Jody L.; Krummel, Matthew F.; Nishimura, Stephen L.

    2015-01-01

    Chronic airway inflammation and fibrosis, known as airway remodeling, are defining features of chronic obstructive pulmonary disease (COPD) and are refractory to current treatments. How and if chronic inflammation contributes to airway fibrosis remains controversial. Here, we use a model of COPD airway disease utilizing adenoviral (Ad) delivery of IL-1β to determine that adaptive T-cell immunity is required for airway remodeling since mice deficient in α/β T-cells (tcra −/−) are protected. Dendritic cells (DCs) accumulate around COPD airways and are critical to prime adaptive immunity, but have not been shown to directly influence airway remodeling. We show that DC depletion or deficiency in the crucial DC chemokine receptor, ccr6, both protect from Ad-IL-1β-induced airway adaptive T-cell immune responses, and fibrosis in mice. These results provide evidence that chronic airway inflammation, mediated by accumulation of α/β T-cells and driven by DCs, is critical to airway fibrosis. PMID:25786688

  12. CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18.

    PubMed

    Chu, H W; Rios, C; Huang, C; Wesolowska-Andersen, A; Burchard, E G; O'Connor, B P; Fingerlin, T E; Nichols, D; Reynolds, S D; Seibold, M A

    2015-10-01

    Targeted knockout of genes in primary human cells using CRISPR-Cas9-mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a proinflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9-mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a proinflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli. PMID:26043872

  13. Innate lymphoid cells in the airways.

    PubMed

    Walker, Jennifer A; McKenzie, Andrew

    2012-06-01

    The airways, similar to other mucosal surfaces, are continuously exposed to the outside environment and a barrage of antigens, allergens, and microorganisms. Of critical importance therefore is the ability to mount rapid and effective immune responses to control commensal and pathogenic microbes, while simultaneously limiting the extent of these responses to prevent immune pathology and chronic inflammation. The function of the adaptive immune response in controlling these processes at mucosal surfaces has been well documented but the important role of the innate immune system, particularly the recently identified family of innate lymphoid cells, has only lately become apparent. In this review, we give an overview of the innate lymphoid cells that exist in the airways and examine the evidence pertaining to their emerging roles in airways immunity, inflammation, and homeostasis. PMID:22678892

  14. Applications of mouse airway epithelial cell culture for asthma research.

    PubMed

    Horani, Amjad; Dickinson, John D; Brody, Steven L

    2013-01-01

    Primary airway epithelial cell culture provides a valuable tool for studying cell differentiation, cell-cell interactions, and the role of immune system factors in asthma pathogenesis. In this chapter, we discuss the application of mouse tracheal epithelial cell cultures for the study of asthma biology. A major advantage of this system is the ability to use airway epithelial cells from mice with defined genetic backgrounds. The in vitro proliferation and differentiation of mouse airway epithelial cells uses the air-liquid interface condition to generate well-differentiated epithelia with characteristics of native airways. Protocols are provided for manipulation of differentiation, induction of mucous cell metaplasia, genetic modification, and cell and pathogen coculture. Assays for the assessment of gene expression, responses of cells, and analysis of specific cell subpopulations within the airway epithelium are included. PMID:23943446

  15. Airway epithelial cell responses to ozone injury

    SciTech Connect

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  16. Association of Lung Inflammatory Cells with Small Airways Function and Exhaled Breath Markers in Smokers – Is There a Specific Role for Mast Cells?

    PubMed Central

    Nussbaumer-Ochsner, Yvonne; Stolk, Jan; Ferraz da Silva, Luiz F.; van Schadewijk, Annemarie; de Jeu, Ronald C.; Prins, Frans A.; Mauad, Thais; Rabe, Klaus F.; Hiemstra, Pieter S.

    2015-01-01

    Background Smoking is associated with a mixed inflammatory infiltrate in the airways. We evaluated whether airway inflammation in smokers is related to lung function parameters and inflammatory markers in exhaled breath. Methods Thirty-seven smokers undergoing lung resection for primary lung cancer were assessed pre-operatively by lung function testing including single-breath-nitrogen washout test (sb-N2-test), measurement of fractional exhaled nitric oxide (FeNO) and pH/8-isoprostane in exhaled breath condensate (EBC). Lung tissue sections containing cancer-free large (LA) and small airways (SA) were stained for inflammatory cells. Mucosal (MCT) respectively connective tissue mast cells (MCTC) and interleukin-17A (IL-17A) expression by mast cells was analysed using a double-staining protocol. Results The median number of neutrophils, macrophages and mast cells infiltrating the lamina propria and adventitia of SA was higher than in LA. Both MCTC and MCT were higher in the lamina propria of SA compared to LA (MCTC: 49 vs. 27.4 cells/mm2; MCT: 162.5 vs. 35.4 cells/mm2; P<0.005 for both instances). IL-17A expression was predominantly detected in MCTC of LA. Significant correlations were found for the slope of phase III % pred. of the sb-N2-test (rs= -0.39), for the FEV1% pred. (rs= 0.37) and for FEV1/FVC ratio (rs=0.38) with MCT in SA (P<0.05 for all instances). 8-isoprostane concentration correlated with the mast cells in the SA (rs=0.44), there was no correlation for pH or FeNO with cellular distribution in SA. Conclusions Neutrophils, macrophages and mast cells are more prominent in the SA indicating that these cells are involved in the development of small airway dysfunction in smokers. Among these cell types, the best correlation was found for mast cells with lung function parameters and inflammatory markers in exhaled breath. Furthermore, the observed predominant expression of IL-17A in mast cells warrants further investigation to elucidate their role in smoking

  17. Adalimumab ameliorates OVA-induced airway inflammation in mice: Role of CD4(+) CD25(+) FOXP3(+) regulatory T-cells.

    PubMed

    Elsakkar, Mohamed G; Sharaki, Olla A; Abdallah, Dina M; Mostafa, Dalia K; Shekondali, Fadia T

    2016-09-01

    Asthma is a chronic inflammatory heterogeneous disorder initiated by a dysregulated immune response which drives disease development in susceptible individuals. Though T helper 2 (TH2) biased responses are usually linked to eosinophilic asthma, other Th cell subsets induce neutrophilic airway inflammation which provokes the most severe asthmatic phenotypes. A growing evidence highlights the role of T regulatory (Treg) cells in damping abnormal Th responses and thus inhibiting allergy and asthma. Therefore, strategies to induce or augment Treg cells hold promise for treatment and prevention of allergic airway inflammation. Recently, the link between Tumor necrosis factor-α (TNF-α) and Treg has been uncovered, and TNF-α antagonists are increasingly used in many autoimmune diseases. Yet, their benefits in allergic airway inflammation is not clarified. We investigated the effect of Adalimumab, a TNF-α antagonist, on Ovalbumin (OVA)-induced allergic airway inflammation in CD1 mice and explored its impact on Treg cells. Our results showed that Adalimumab treatment attenuated the OVA-induced increase in serum IgE, TH2 and TH1 derived inflammatory cytokines (IL-4 and IFN-γ, respectively) in bronchoalveolar lavage (BAL) fluid, suppressed recruitment of inflammatory cells in BAL fluid and lung, and inhibited BAL fluid neutrophilia. It also ameliorated goblet cell metaplasia and bronchial fibrosis. Splenocytes flow cytometry revealed increased percentage of CD4(+) CD25(+) FOXP3(+) Treg cells by Adalimumab that was associated with increase in their suppressive activity as shown by elevated BAL fluid IL-10. We conclude that the beneficial effects of Adalimumab in this CD1 neutrophilic model of allergic airway inflammation are attributed to augmentation of Treg cell number and activity. PMID:27262379

  18. IgE induces proliferation in human airway smooth muscle cells: role of MAPK and STAT3 pathways.

    PubMed

    Redhu, Naresh Singh; Shan, Lianyu; Al-Subait, Duaa; Ashdown, Heather L; Movassagh, Hesam; Lamkhioued, Bouchaib; Gounni, Abdelilah S

    2013-01-01

    Airway remodeling is not specifically targeted by current asthma medications, partly owing to the lack of understanding of remodeling mechanisms, altogether posing great challenges in asthma treatment. Increased airway smooth muscle (ASM) mass due to hyperplasia/hypertrophy contributes significantly to overall airway remodeling and correlates with decline in lung function. Recent evidence suggests that IgE sensitization can enhance the survival and mediator release in inflammatory cells. Human ASM (HASM) cells express both low affinity (FcεRII/CD23) and high affinity IgE Fc receptors (FcεRI), and IgE can modulate the contractile and synthetic function of HASM cells. IgE was recently shown to induce HASM cell proliferation but the detailed mechanisms remain unknown. We report here that IgE sensitization induces HASM cell proliferation, as measured by 3H-thymidine, EdU incorporation, and manual cell counting. As an upstream signature component of FcεRI signaling, inhibition of spleen tyrosine kinase (Syk) abrogated the IgE-induced HASM proliferation. Further analysis of IgE-induced signaling depicted an IgE-mediated activation of Erk 1/2, p38, JNK MAPK, and Akt kinases. Lastly, lentiviral-shRNA-mediated STAT3 silencing completely abolished the IgE-mediated HASM cell proliferation. Collectively, our data provide mechanisms of a novel function of IgE which may contribute, at least in part, to airway remodeling observed in allergic asthma by directly inducing HASM cell proliferation. PMID:24499258

  19. Role of platelets in allergic airway inflammation.

    PubMed

    Idzko, Marco; Pitchford, Simon; Page, Clive

    2015-06-01

    Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases. PMID:26051948

  20. Role of size and composition of traffic and agricultural aerosols in the molecular responses triggered in airway epithelial cells.

    PubMed

    Val, Stéphanie; Stéphanie, Val; Martinon, Laurent; Laurent, Martinon; Cachier, Hélène; Hélène, Cachier; Yahyaoui, Abderrazak; Abderrazak, Yahyaoui; Marfaing, Hélène; Hélène, Marfaing; Baeza-Squiban, Armelle; Armelle, Baeza-Squiban

    2011-09-01

    The increased levels of fine particles in the atmosphere are suspected of aggravating cardiopulmonary diseases, but the determinants of particle toxicity are poorly understood. This work aims at studying the role of composition and size in the toxicity of size-segregated particulate matter (PM) collected at different sites on human bronchial epithelial cells. PM were sampled at a traffic urban site (Urb S) and a rural site (Rur S) during the pesticide-spreading period. Ultrafine (UF), fine (F), and coarse (C) PM were characterized by their shape and chemical composition. Whatever the site, the finest PM (UF and F) induced the mRNA expression of CYP1A1, a biomarker of polyaromatic hydrocarbons (PAH) exposure, NQO-1 and heme HO-1, two antioxidant responsive element-driven genes; and two effect biomarkers, GM-CSF, a proinflammatory cytokine and amphiregulin (AR), a growth factor. C PM have a low or no effect. Interestingly, AR is more strongly induced by rural PM at the same mass exposure. These discrepancies suggest involvement of PM chemical composition: rural PM bearing the characteristics of aged aerosols with a high content of water-soluble components, and PM at urban kerbside sites containing mainly water-insoluble components. To conclude, we provide evidence that the finest PM fractions, whatever their origin, are more prone to induce exposure and effect biomarkers. The AR differential expression suggests a source-dependent effect requiring further investigation because of the role of this growth factor in airway remodeling, a characteristic feature of chronic lung respiratory diseases exacerbated by particulate pollution. PMID:21879948

  1. Responses of well-differentiated nasal epithelial cells exposed to particles: Role of the epithelium in airway inflammation

    SciTech Connect

    Auger, Floriane; Gendron, Marie-Claude; Chamot, Christophe; Marano, Francelyne; Dazy, Anne-Catherine . E-mail: dazy@paris7.jussieu.fr

    2006-09-15

    Numerous epidemiological studies support the contention that ambient air pollution particles can adversely affect human health. To explain the acute inflammatory process in airways exposed to particles, a number of in vitro studies have been performed on cells grown submerged on plastic and poorly differentiated, and on cell lines, the physiology of which is somewhat different from that of well-differentiated cells. In order to obtain results using a model system in which epithelial cells are similar to those of the human airway in vivo, apical membranes of well-differentiated human nasal epithelial (HNE) cells cultured in an air-liquid interface (ALI) were exposed for 24 h to diesel exhaust particles (DEP) and Paris urban air particles (PM{sub 2.5}). DEP and PM{sub 2.5} (10-80 {mu}g/cm{sup 2}) stimulated both IL-8 and amphiregulin (ligand of EGFR) secretion exclusively towards the basal compartment. In contrast, there was no IL-1{beta} secretion and only weak non-reproducible secretion of TNF-{alpha}. IL-6 and GM-CSF were consistently stimulated towards the apical compartment and only when cells were exposed to PM{sub 2.5}. ICAM-1 protein expression on cell surfaces remained low after particle exposure, although it increased after TNF-{alpha} treatment. Internalization of particles, which is believed to initiate oxidative stress and proinflammatory cytokine expression, was restricted to small nanoparticles ({<=} 40 nm). Production of reactive oxygen species (ROS) was detected, and DEP were more efficient than PM{sub 2.5}. Collectively, our results suggest that airway epithelial cells exposed to particles augment the local inflammatory response in the lung but cannot alone initiate a systemic inflammatory response.

  2. Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells.

    PubMed

    Wages, Phillip A; Silbajoris, Robert; Speen, Adam; Brighton, Luisa; Henriquez, Andres; Tong, Haiyan; Bromberg, Philip A; Simmons, Steven O; Samet, James M

    2014-01-01

    Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn(2+)) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn(2+) toxicity is not fully understood. H2O2 and Zn(2+) have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn(2+) to cause cellular H2O2 production. To determine the role of Zn(2+)-induced H2O2 production in the human airway epithelial cell response to Zn(2+) exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2) or roGFP2 (EGSH) in the cytosol or mitochondria were exposed to 50µM Zn(2+) for 5min in the presence of 1µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn(2+) exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn(2+)-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn(2+)-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn(2+) leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms. PMID:25462065

  3. The Role of the Extracellular Matrix Protein Mindin in Airway Response to Environmental Airways Injury

    PubMed Central

    Frush, Sarah; Li, Zhuowei; Potts, Erin N.; Du, Wanglei; Eu, Jerry P.; Garantziotis, Stavros; He, You-Wen; Foster, W. Michael

    2011-01-01

    Background: Our previous work demonstrated that the extracellular matrix protein mindin contributes to allergic airways disease. However, the role of mindin in nonallergic airways disease has not previously been explored. Objectives: We hypothesized that mindin would contribute to airways disease after inhalation of either lipopolysaccharide (LPS) or ozone. Methods: We exposed C57BL/6J and mindin-deficient (–/–) mice to aerosolized LPS (0.9 μg/m3 for 2.5 hr), saline, ozone (1 ppm for 3 hr), or filtered air (FA). All mice were evaluated 4 hr after LPS/saline 
exposure or 24 hr after ozone/FA exposure. We characterized the physiological and biological responses by analysis of airway hyperresponsiveness (AHR) with a computer-controlled small-animal ventilator (FlexiVent), inflammatory cellular recruitment, total protein in bronchoalveolar lavage fluid (BALF), proinflammatory cytokine profiling, and ex vivo bronchial ring studies. Results: After inhalation of LPS, mindin–/– mice demonstrated significantly reduced total cell and neutrophil recruitment into the airspace compared with their wild-type counterparts. Mindin–/– mice also exhibited reduced proinflammatory cytokine production and lower AHR to methacholine challenge by FlexiVent. After inhalation of ozone, mice had no detectible differences in cellular inflammation or total BALF protein dependent on mindin. However, mindin–/– mice were protected from increased proinflammatory cytokine production and AHR compared with their C57BL/6J counterparts. After ozone exposure, bronchial rings derived from mindin–/– mice demonstrated reduced constriction in response to carbachol. Conclusions: These data demonstrate that the extracellular matrix protein mindin modifies the airway response to both LPS and ozone. Our data support a conserved role of mindin in production of proinflammatory cytokines and the development of AHR in two divergent models of reactive airways disease, as well as a role of

  4. The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology

    PubMed Central

    Ozier, Annaïg; Allard, Benoit; Bara, Imane; Girodet, Pierre-Olivier; Trian, Thomas; Marthan, Roger; Berger, Patrick

    2011-01-01

    Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function. PMID:22220184

  5. Role of upper airway ultrasound in airway management.

    PubMed

    Osman, Adi; Sum, Kok Meng

    2016-01-01

    Upper airway ultrasound is a valuable, non-invasive, simple, and portable point of care ultrasound (POCUS) for evaluation of airway management even in anatomy distorted by pathology or trauma. Ultrasound enables us to identify important sonoanatomy of the upper airway such as thyroid cartilage, epiglottis, cricoid cartilage, cricothyroid membrane, tracheal cartilages, and esophagus. Understanding this applied sonoanatomy facilitates clinician to use ultrasound in assessment of airway anatomy for difficult intubation, ETT and LMA placement and depth, assessment of airway size, ultrasound-guided invasive procedures such as percutaneous needle cricothyroidotomy and tracheostomy, prediction of postextubation stridor and left double-lumen bronchial tube size, and detecting upper airway pathologies. Widespread POCUS awareness, better technological advancements, portability, and availability of ultrasound in most critical areas facilitate upper airway ultrasound to become the potential first-line non-invasive airway assessment tool in the future. PMID:27529028

  6. Role of Aspergillus fumigatus in Triggering Protease-Activated Receptor-2 in Airway Epithelial Cells and Skewing the Cells toward a T-helper 2 Bias.

    PubMed

    Homma, Tetsuya; Kato, Atsushi; Bhushan, Bharat; Norton, James E; Suh, Lydia A; Carter, Roderick G; Gupta, Dave S; Schleimer, Robert P

    2016-01-01

    Aspergillus fumigatus (AF) infection and sensitization are common and promote Th2 disease in individuals with asthma. Innate immune responses of bronchial epithelial cells are now known to play a key role in determination of T cell responses upon encounter with inhaled pathogens. We have recently shown that extracts of AF suppress JAK-STAT signaling in epithelial cells and thus may promote Th2 bias. To elucidate the impact of AF on human bronchial epithelial cells, we tested the hypothesis that AF can modulate the response of airway epithelial cells to favor a Th2 response and explored the molecular mechanism of the effect. Primary normal human bronchial epithelial (NHBE) cells were treated with AF extract or fractionated AF extract before stimulation with poly I:C or infection with human rhinovirus serotype 16 (HRV16). Expression of CXCL10 mRNA (real-time RT-PCR) and protein (ELISA) were measured as markers of IFN-mediated epithelial Th1-biased responses. Western blot was performed to evaluate expression of IFN regulatory factor-3 (IRF-3), NF-κB, and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11), which are other markers of Th1 skewing. Knockdown experiments for protease-activated receptor-2 (PAR-2) and PTPN11 were performed to analyze the role of PAR-2 in the mechanism of suppression by AF. AF and a high-molecular-weight fraction of AF extract (HMW-AF; > 50 kD) profoundly suppressed poly I:C- and HRV16-induced expression of both CXCL10 mRNA and protein from NHBE cells via a mechanism that relied upon PAR-2 activation. Both AF extract and a specific PAR-2 activator (AC-55541) suppressed the poly I:C activation of phospho-IRF-3 without affecting activation of NF-κB. Furthermore, HMW-AF extract enhanced the expression of PTPN11, a phosphatase known to inhibit IFN signaling, and concurrently suppressed poly I:C-induced expression of both CXCL10 mRNA and protein from NHBE cells. These results show that exposure of bronchial epithelial cells to AF extract

  7. Lysophosphatidylcholine plays critical role in allergic airway disease manifestation

    PubMed Central

    Bansal, Preeti; Gaur, Shailendera Nath; Arora, Naveen

    2016-01-01

    Phospholipase A2 (sPLA2), pivotal for allergic and inflammatory response, hydrolyses phosphatidylcholine (PC) to lysophosphatidylcholine (LPC). In present study, the role of LPC in allergic airway disease manifestation was studied using mouse model. Balb/c mice were immunized using cockroach extract (CE) and LPC release was blocked by sPLA2 inhibitor. Airway hyperresponse (AHR), lung-histology, total and differential leukocyte count (TLC&DLC), Th2 type cytokines, sPLA2 activity and LPC levels in bronchoalveolar lavage fluid (BALF) were measured. Exogenous LPC was given to the mice with or without CE sensitization, to demonstrate its role in allergic airway disease manifestation. Anti-CD1d antibody was given to study the involvement of natural killer T (NKT) cells in LPC induced response. AHR, lung-inflammation, TLC, DLC, Th2 type cytokines, sPLA2 activity and LPC levels were increased on CE challenge. sPLA2 activity and LPC release was blocked by sPLA2-inhibitor, which decreased AHR, and inflammatory parameters. Exogenous LPC with or without CE sensitization increased above parameters. CE challenge or LPC exposure increased LY49C+TCRβ+ NKT cells in BALF and spleen, which was reduced by anti-CD1d antibody, accompanied with reduction in AHR and allergic airway inflammation parameters. Conclusively, LPC induces allergic airway disease manifestation and it does so probably via CD1d-restricted LY49C+TCRβ+ NKT cells. PMID:27282246

  8. Lysophosphatidylcholine plays critical role in allergic airway disease manifestation.

    PubMed

    Bansal, Preeti; Gaur, Shailendera Nath; Arora, Naveen

    2016-01-01

    Phospholipase A2 (sPLA2), pivotal for allergic and inflammatory response, hydrolyses phosphatidylcholine (PC) to lysophosphatidylcholine (LPC). In present study, the role of LPC in allergic airway disease manifestation was studied using mouse model. Balb/c mice were immunized using cockroach extract (CE) and LPC release was blocked by sPLA2 inhibitor. Airway hyperresponse (AHR), lung-histology, total and differential leukocyte count (TLC&DLC), Th2 type cytokines, sPLA2 activity and LPC levels in bronchoalveolar lavage fluid (BALF) were measured. Exogenous LPC was given to the mice with or without CE sensitization, to demonstrate its role in allergic airway disease manifestation. Anti-CD1d antibody was given to study the involvement of natural killer T (NKT) cells in LPC induced response. AHR, lung-inflammation, TLC, DLC, Th2 type cytokines, sPLA2 activity and LPC levels were increased on CE challenge. sPLA2 activity and LPC release was blocked by sPLA2-inhibitor, which decreased AHR, and inflammatory parameters. Exogenous LPC with or without CE sensitization increased above parameters. CE challenge or LPC exposure increased LY49C(+)TCRβ(+) NKT cells in BALF and spleen, which was reduced by anti-CD1d antibody, accompanied with reduction in AHR and allergic airway inflammation parameters. Conclusively, LPC induces allergic airway disease manifestation and it does so probably via CD1d-restricted LY49C(+)TCRβ(+) NKT cells. PMID:27282246

  9. The Role of CLCA Proteins in Inflammatory Airway Disease

    PubMed Central

    Patel, Anand C.; Brett, Tom J.; Holtzman, Michael J.

    2014-01-01

    Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. Based on this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function, but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions. PMID:18954282

  10. Induction of cyclo-oxygenase-2 by cytokines in human cultured airway smooth muscle cells: novel inflammatory role of this cell type

    PubMed Central

    Belvisi, Maria G; Saunders, Michael A; Haddad, El-Bdaoui; Hirst, Stuart J; Yacoub, Magdi H; Barnes, Peter J; Mitchell, Jane A

    1997-01-01

    the three cytokines were given in combination.In other experiments designed to measure COX-2 activity directly, cells were treated with cytokines for 24 h before fresh culture medium was added containing exogenous arachidonic acid (30 μM for 15 min) after which PGE2 was measured. IL-1β and TNFα increased COX-2 activity and an additional small increase was produced by the three cytokines in combination.These findings suggest that the increased expression of COX-2 is intimately involved in the exaggerated release of prostanoids from HASM cells exposed to pro-inflammatory cytokines. These data indicate a role for airway smooth muscle cells, in addition to their contractile function, as inflammatory cells involved in the production of mediators which may contribute to the inflammatory response seen in diseases such as asthma. PMID:9138698

  11. Human airway xenograft models of epithelial cell regeneration.

    PubMed

    Puchelle, E; Peault, B

    2000-01-01

    Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID) and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa. PMID:11667974

  12. CRISPR-Cas9 mediated gene knockout in primary human airway epithelial cells reveals a pro-inflammatory role for MUC18

    PubMed Central

    Chu, Hong Wei; Rios, Cydney; Huang, Chunjian; Wesolowska-Andersen, Agata; Burchard, Esteban G.; O'Connor, Brian P.; Fingerlin, Tasha E.; Nichols, David; Reynolds, Susan D.; Seibold, Max A.

    2015-01-01

    Targeted knockout of genes in primary human cells using CRISPR-Cas9 mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a pro-inflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9 mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a pro-inflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli. PMID:26043872

  13. Role of Rho kinase isoforms in murine allergic airway responses.

    PubMed

    Zhu, M; Liu, P-Y; Kasahara, D I; Williams, A S; Verbout, N G; Halayko, A J; Fedulov, A; Shoji, T; Williams, E S; Noma, K; Shore, S A; Liao, J K

    2011-10-01

    Inhibition of Rho-associated coiled-coil forming kinases (ROCKs) reduces allergic airway responses in mice. The purpose of this study was to determine the roles of the two ROCK isoforms, ROCK1 and ROCK2, in these responses. Wildtype (WT) mice and heterozygous ROCK1 and ROCK2 knockout mice (ROCK1(+/-) and ROCK2(+/-), respectively) were sensitised and challenged with ovalbumin. ROCK expression and activation were assessed by western blotting. Airway responsiveness was measured by forced oscillation. Bronchoalveolar lavage was performed and the lungs were fixed for histological assessment. Compared with WT mice, ROCK1 and ROCK2 expression were 50% lower in lungs of ROCK1(+/-) and ROCK2(+/-) mice, respectively, without changes in the other isoform. In WT lungs, ROCK activation increased after ovalbumin challenge and was sustained for several hours. This activation was reduced in ROCK1(+/-) and ROCK2(+/-) lungs. Airway responsiveness was comparable in WT, ROCK1(+/-), and ROCK2(+/-) mice challenged with PBS. Ovalbumin challenge caused airway hyperresponsiveness in WT, but not ROCK1(+/-) or ROCK2(+/-) mice. Lavage eosinophils and goblet cell hyperplasia were significantly reduced in ovalbumin-challenged ROCK1(+/-) and ROCK2(+/-) versus WT mice. Ovalbumin-induced changes in lavage interleukin-13, interleukin-5 and lymphocytes were also reduced in ROCK1(+/-) mice. In conclusion, both ROCK1 and ROCK2 are important in regulating allergic airway responses. PMID:21565918

  14. Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Huang, Junwei; Shan, Jiajie; Kim, Dusik; Liao, Jie; Evagelidis, Alexandra; Alper, Seth L; Hanrahan, John W

    2012-01-01

    Anion exchanger type 2 (AE2 or SLC4A2) is an electroneutral Cl−/HCO3− exchanger expressed at the basolateral membrane of many epithelia. It is thought to participate in fluid secretion by airway epithelia. However, the role of AE2 in fluid secretion remains uncertain, due to the lack of specific pharmacological inhibitors, and because it is electrically silent and therefore does not contribute directly to short-circuit current (Isc). We have studied the role of AE2 in Cl− and fluid secretion by the airway epithelial cell line Calu-3. After confirming expression of its mRNA and protein, a knock-down cell line called AE2-KD was generated by lentivirus-mediated RNA interference in which AE2 mRNA and protein levels were reduced ≥90%. Suppressing AE2 increased the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) by ∼70% without affecting the levels of NKCC1 (Na+–K+–2Cl− cotransporter) or NBCe1 (Na+–nHCO3− cotransporter). cAMP agonists stimulated fluid secretion by parental Calu-3 and scrambled shRNA cells >6.5-fold. In AE2-KD cells this response was reduced by ∼70%, and the secreted fluid exhibited elevated pH and [HCO3−] as compared with the control lines. Unstimulated equivalent short-circuit current (Ieq) was elevated in AE2-KD cells, but the incremental response to forskolin was unaffected. The modest bumetanide-induced reductions in both Ieq and fluid secretion were more pronounced in AE2-KD cells. Basolateral Cl−/HCO3− exchange measured by basolateral pH-stat in cells with permeabilized apical membranes was abolished in AE2-KD monolayers, and the intracellular alkalinization resulting from basolateral Cl− removal was reduced by ∼80% in AE2-KD cells. These results identify AE2 as a major pathway for basolateral Cl− loading during cAMP-stimulated secretion of Cl− and fluid by Calu-3 cells, and help explain the large bumetanide-insensitive component of fluid secretion reported previously in airway

  15. Heme oxygenase-1 exerts a protective role in ovalbumin-induced neutrophilic airway inflammation by inhibiting Th17 cell-mediated immune response.

    PubMed

    Zhang, Yanjie; Zhang, Liya; Wu, Jinhong; Di, Caixia; Xia, Zhenwei

    2013-11-29

    Allergic asthma is conventionally considered as a Th2 immune response characterized by eosinophilic inflammation. Recent investigations revealed that Th17 cells play an important role in the pathogenesis of non-eosinophilic asthma (NEA), resulting in steroid-resistant neutrophilic airway inflammation. Heme oxygenase-1 (HO-1) has anti-inflammation, anti-oxidation, and anti-apoptosis functions. However, its role in NEA is still unclear. Here, we explore the role of HO-1 in a mouse model of NEA. HO-1 inducer hemin or HO-1 inhibitor tin protoporphyrin IX was injected intraperitoneally into ovalbumin-challenged DO11.10 mice. Small interfering RNA (siRNA) was delivered into mice to knock down HO-1 expression. The results show that induction of HO-1 by hemin attenuated airway inflammation and decreased neutrophil infiltration in bronchial alveolar lavage fluid and was accompanied by a lower proportion of Th17 cells in mediastinal lymph nodes and spleen. More importantly, induction of HO-1 down-regulated Th17-related transcription factor retinoic acid-related orphan receptor γt (RORγt) expression and decreased IL-17A levels, all of which correlated with a decrease in phosphorylated STAT3 (p-STAT3) level and inhibition of Th17 cell differentiation. Consistently, the above events could be reversed by tin protoporphyrin IX. Also, HO-1 siRNA transfection abolished the effect of hemin induced HO-1 in vivo. Meanwhile, the hemin treatment promoted the level of Foxp3 expression and enhanced the proportion of regulatory T cells (Tregs). Collectively, our findings indicate that HO-1 exhibits anti-inflammatory activity in the mouse model of NEA via inhibition of the p-STAT3-RORγt pathway, regulating kinetics of RORγt and Foxp3 expression, thus providing a possible novel therapeutic target in asthmatic patients. PMID:24097973

  16. Role of Small Airways in Asthma.

    PubMed

    Finkas, Lindsay K; Martin, Richard

    2016-08-01

    Asthma is an inflammatory condition of both the small and large airways. Recently the small airways have gained attention as studies have shown significant inflammation in the small airways in all severities of asthma. This inflammation has correlated with peripheral airway resistance and as a result, noninvasive methods to reliably measure small airways have been pursued. In addition, recent changes in asthma inhalers have led to alterations in drug formulations and the development of extrafine particle inhalers that improve delivery to the distal airways. PMID:27401620

  17. Mast cells in airway diseases and interstitial lung disease.

    PubMed

    Cruse, Glenn; Bradding, Peter

    2016-05-01

    Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease. PMID:25959386

  18. Cell Jamming in the Airway Epithelium.

    PubMed

    Park, Jin-Ah; Fredberg, Jeffrey J

    2016-03-01

    Hallmarks of asthma include chronic airway inflammation, progressive airway remodeling, and airway hyperresponsiveness. The initiation and perpetuation of these processes are attributable at least in part to critical events within the airway epithelium, but the underlying mechanisms remain poorly understood. New evidence now suggests that epithelial cells derived from donors without asthma versus donors with asthma, even in the absence of inflammatory cells or mediators, express modes of collective migration that innately differ not only in the amount of migration but also in the kind of migration. The maturing cell layer tends to undergo a transition from a hypermobile, fluid-like, unjammed phase in which cells readily rearrange, exchange places, and flow, to a quiescent, solid-like, jammed phase in which cells become virtually frozen in place. Moreover, the unjammed phase defines a phenotype that can be perpetuated by the compressive stresses caused by bronchospasm. Importantly, in cells derived from donors with asthma versus donors without asthma, this jamming transition becomes substantially delayed, thus suggesting an immature or dysmature epithelial phenotype in asthma. PMID:27027955

  19. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  20. Differential Roles of Hydrogen Peroxide in Adaptive and Inflammatory Gene Expression Induced by Exposure of Human Airway Epithelial Cells to Zn2+

    EPA Science Inventory

    Oxidant stress is believed to play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of PM that has been shown to induce adverse responses such as inflammatory and adaptive gene expression in airway epit...

  1. Characterization of side population cells from human airway epithelium.

    PubMed

    Hackett, Tillie-Louise; Shaheen, Furquan; Johnson, Andrew; Wadsworth, Samuel; Pechkovsky, Dmitri V; Jacoby, David B; Kicic, Anthony; Stick, Stephen M; Knight, Darryl A

    2008-10-01

    The airway epithelium is the first line of contact with the inhaled external environment and is continuously exposed to and injured by pollutants, allergens, and viruses. However, little is known about epithelial repair and in particular the identity and role of tissue resident stem/progenitor cells that may contribute to epithelial regeneration. The aims of the present study were to identify, isolate, and characterize side population (SP) cells in human tracheobronchial epithelium. Epithelial cells were obtained from seven nontransplantable healthy lungs and four asthmatic lungs by pronase digestion. SP cells were identified by verapamil-sensitive efflux of the DNA-binding dye Hoechst 33342. Using flow cytometry, CD45(-) SP, CD45(+) SP, and non-SP cells were isolated and sorted. CD45(-) SP cells made up 0.12% +/- 0.01% of the total epithelial cell population in normal airway but 4.1% +/- 0.06% of the epithelium in asthmatic airways. All CD45(-) SP cells showed positive staining for epithelial-specific markers cytokeratin-5, E-cadherin, ZO-1, and p63. CD45(-) SP cells exhibited stable telomere length and increased colony-forming and proliferative potential, undergoing population expansion for at least 16 consecutive passages. In contrast with non-SP cells, fewer than 100 CD45(-) SP cells were able to generate a multilayered and differentiated epithelium in air-liquid interface culture. SP cells are present in human tracheobronchial epithelium, exhibit both short- and long-term proliferative potential, and are capable of generation of differentiated epithelium in vitro. The number of SP cells is significantly greater in asthmatic airways, providing evidence of dysregulated resident SP cells in the asthmatic epithelium. Disclosure of potential conflicts of interest is found at the end of this article. PMID:18653771

  2. Fungal glycan interactions with epithelial cells in allergic airway disease

    PubMed Central

    Roy, René M.; Klein, Bruce S.

    2014-01-01

    Human exposure to fungi results in a wide range of health outcomes, from invasive disease or allergy to immune tolerance. Inhaled fungi contact airway epithelial cells as an early event, and this host:fungal interaction can shape the eventual immunological outcome. Emerging evidence points to exposure to fungal cell wall carbohydrates in the development of allergic airway disease. Herein, we describe determinants of fungal allergenicity, and review the responses of airway epithelial cells to fungal carbohydrates. A greater understanding of the recognition of and response to fungal carbohydrates by airway epithelial cells may lead to the development of targeted therapies that ameliorate allergic airway disease. PMID:23602359

  3. B Cell-Activating Transcription Factor Plays a Critical Role in the Pathogenesis of Anti-Major Histocompatibility Complex-Induced Obliterative Airway Disease.

    PubMed

    Xu, Z; Ramachandran, S; Gunasekaran, M; Nayak, D; Benshoff, N; Hachem, R; Gelman, A; Mohanakumar, T

    2016-04-01

    Antibodies (Abs) against major histocompatibility complex (MHC) results in T helper-17 (Th17)-mediated immunity against lung self-antigens (SAgs), K-α1 tubulin and collagen V and obliterative airway disease (OAD). Because B cell-activating transcription factor (BATF) controls Th17 and autoimmunity, we proposed that BATF may play a critical role in OAD. Anti-H2K(b) was administered intrabronchially into Batf (-/-) and C57BL/6 mice. Histopathology of the lungs on days 30 and 45 after Ab administration to Batf (-/-) mice resulted in decreased cellular infiltration, epithelial metaplasia, fibrosis, and obstruction. There was lack of Abs to SAgs, reduction of Sag-specific interleukin (IL)-17 T cells, IL-6, IL-23, IL-17, IL-1β, fibroblast growth factor-6, and CXCL12 and decreased Janus kinase 2, signal transducer and activator of transcription 3 (STAT3), and retinoid-related orphan receptor γT. Further, micro-RNA (miR)-301a, a regulator of Th17, was reduced in Batf (-/-) mice in contrast to upregulation of miR-301a and downregulation of protein inhibitor of activated STAT3 (PIAS3) in anti-MHC-induced OAD animals. We also demonstrate an increase in miR-301a in the bronchoalveolar lavage cells from lung transplant recipients with Abs to human leukocyte antigen. This was accompanied by reduction in PIAS3 mRNA. Therefore, we conclude that BATF plays a critical role in the immune responses to SAgs and pathogenesis of anti-MHC-induced rejection. Targeting BATF should be considered for preventing chronic rejection after human lung transplantation. PMID:26844425

  4. Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells.

    PubMed

    Duan, Wei; Croft, Michael

    2014-12-01

    Airway tolerance, a state of immunological surveillance, suppresses the development of lung inflammatory disorders that are driven by various pathological effector cells of the immune system. Tolerance in the lung to inhaled antigens is primarily mediated by regulatory T cells (Treg cells) that can inhibit effector T cells via a myriad of mechanisms. Accumulating evidence suggests that regulatory antigen-presenting cells are critical for generating Treg cells and/or maintaining the suppressive environment in the lung. This review focuses on the control of airway tolerance by Treg cells and the role of regulatory lung tissue and alveolar macrophages, and lung and lymph node dendritic cells, in contributing to airway tolerance that is associated with suppression of allergic asthmatic disease. PMID:25525738

  5. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype.

    PubMed

    Shaykhiev, Renat; Zuo, Wu-Lin; Chao, Ionwa; Fukui, Tomoya; Witover, Bradley; Brekman, Angelika; Crystal, Ronald G

    2013-07-16

    The airway epithelium of smokers acquires pathological phenotypes, including basal cell (BC) and/or goblet cell hyperplasia, squamous metaplasia, structural and functional abnormalities of ciliated cells, decreased number of secretoglobin (SCGB1A1)-expressing secretory cells, and a disordered junctional barrier. In this study, we hypothesized that smoking alters airway epithelial structure through modification of BC function via an EGF receptor (EGFR)-mediated mechanism. Analysis of the airway epithelium revealed that EGFR is enriched in airway BCs, whereas its ligand EGF is induced by smoking in ciliated cells. Exposure of BCs to EGF shifted the BC differentiation program toward the squamous and epithelial-mesenchymal transition-like phenotypes with down-regulation of genes related to ciliogenesis, secretory differentiation, and markedly reduced junctional barrier integrity, mimicking the abnormalities present in the airways of smokers in vivo. These data suggest that activation of EGFR in airway BCs by smoking-induced EGF represents a unique mechanism whereby smoking can alter airway epithelial differentiation and barrier function. PMID:23818594

  6. ATP7B detoxifies silver in ciliated airway epithelial cells

    SciTech Connect

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-03-15

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  7. CD38 and Airway hyperresponsiveness: Studies on human airway smooth muscle cells and mouse models

    PubMed Central

    Guedes, Alonso GP; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-01-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility and airway smooth muscle (ASM) proliferation contribute to airway hyperresponsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g. TNF-α) that requires activation of MAP kinases and the transcription factors, NF-ƙB and AP-1 and post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3’ Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in CD38 exhibit reduced airway responsiveness to inhaled methacholine relative to response in wild-type mice. Intranasal challenge of CD38 deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared to wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyperresponsiveness to inhaled methacholine in the Cd38 deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyperresponsiveness, a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and/or activity are warranted. PMID:25594684

  8. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration

    PubMed Central

    Toba, Hiroaki; Wang, Yingchun; Bai, Xiaohui; Zamel, Ricardo; Cho, Hae-Ra; Liu, Hongmei; Lira, Alonso; Keshavjee, Shaf; Liu, Mingyao

    2015-01-01

    Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway. PMID:26360608

  9. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  10. Observing planar cell polarity in multiciliated mouse airway epithelial cells

    PubMed Central

    Vladar, Eszter K.; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D.

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. PMID:25837385

  11. Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening.

    PubMed

    Hild, Marc; Jaffe, Aron B

    2016-01-01

    The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates. The system provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the human airway epithelium in high-throughput assays. © 2016 by John Wiley & Sons, Inc. PMID:27171795

  12. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells

    PubMed Central

    Jia, Yi; Yu, Huifeng; Fernandes, Steve M.; Wei, Yadong; Gonzalez-Gil, Anabel; Motari, Mary G.; Vajn, Katarina; Stevens, Whitney W.; Peters, Anju T.; Bochner, Bruce S.; Kern, Robert C.; Schleimer, Robert P.; Schnaar, Ronald L.

    2015-01-01

    Background Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown. Objective The histological distribution, expression and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation. Methods Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by siglec blotting and isolation by siglec capture. Results Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, connective tissue); both were significantly upregulated in chronic rhinosinusitis patients. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B under inflammatory control via the NF-κB pathway, and mucin 5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue. Conclusion Inflammation results in upregulation of immune inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands were upregulated via the NF-κB pathway resulting in their enhanced expression on mucin 5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation. PMID:25747723

  13. Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma.

    PubMed

    Ge, Xiahui; Bai, Chong; Yang, Jianming; Lou, Guoliang; Li, Qiang; Chen, Ruohua

    2013-07-01

    Previous studies proved that bone marrow-derived mesenchymal stem cells (BMSCs) could improve a variety of immune-mediated disease by its immunomodulatory properties. In this study, we investigated the effect on airway remodeling and airway inflammation by administrating BMSCs in chronic asthmatic mice. Forty-eight female BALB/c mice were randomly distributed into PBS group, BMSCs treatment group, BMSCs control group, and asthmatic group. The levels of cytokine and immunoglobulin in serum and bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. The number of CD4(+) CD25(+) regulatory T cells and morphometric analysis was determined by flow cytometry, hematoxylin-eosin, immunofluorescence staining, periodic-acid Schiff, and masson staining, respectively. We found that airway remodeling and airway inflammation were evident in asthmatic mice. Moreover, low level of IL-12 and high levels of IL-13, IL-4, OVA-specific IgG1, IgE, and IgG2a and the fewer number of CD4(+) CD25(+) regulatory T cells were present in asthmatic group. However, transplantation of BMSCs significantly decreased airway inflammation and airway remodeling and level of IL-4, OVA-specific IgE, and OVA-specific IgG1, but elevated level of IL-12 and the number of CD4 + CD25 + regulatory T cells in asthma (P < 0.05). However, BMSCs did not contribute to lung regeneration and had no significant effect on levels of IL-10, IFN-Y, and IL-13. In our study, BMSCs engraftment prohibited airway inflammation and airway remodeling in chronic asthmatic group. The beneficial effect of BMSCs might involved the modulation imbalance cytokine toward a new balance Th1-Th2 profiles and up-regulation of protective CD4 + CD25 + regulatory T cells in asthma, but not contribution to lung regeneration. PMID:23334934

  14. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells

    PubMed Central

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2015-01-01

    Summary Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1+-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM+ VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a “9 + 2” microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  15. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells.

    PubMed

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2016-01-12

    Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1(+)-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM(+) VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a "9 + 2" microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  16. Control of local immunity by airway epithelial cells.

    PubMed

    Weitnauer, M; Mijošek, V; Dalpke, A H

    2016-03-01

    The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans. PMID:26627458

  17. Biofilm-dependent airway infections: a role for ambroxol?

    PubMed

    Cataldi, M; Sblendorio, V; Leo, A; Piazza, O

    2014-08-01

    Biofilms are a key factor in the development of both acute and chronic airway infections. Their relevance is well established in ventilator associated pneumonia, one of the most severe complications in critically ill patients, and in cystic fibrosis, the most common lethal genetic disease in Caucasians. Accumulating evidence suggests that biofilms could have also a role in chronic obstructive pulmonary disease and their involvement in bronchiectasis has been proposed as well. When they grow in biofilms, microorganisms become multidrug-resistant. Therefore the treatment of biofilm-dependent airway infections is problematic. Indeed, it still largely based on measures aiming to prevent the formation of biofilms or remove them once that they are formed. Here we review recent evidence suggesting that the mucokinetic drug ambroxol has specific anti-biofilm properties. We also discuss how additional pharmacological properties of this drug could be beneficial in biofilm-dependent airway infections. Specifically, we review the evidence showing that: 1-ambroxol exerts anti-inflammatory effects by inhibiting at multiple levels the activity of neutrophils, and 2-it improves mucociliary clearance by interfering with the activity of airway epithelium ion channels and transporters including sodium/bicarbonate and sodium/potassium/chloride cotransporters, cystic fibrosis transmembrane conductance regulator and aquaporins. As a whole, the data that we review here suggest that ambroxol could be helpful in biofilm-dependent airway infections. However, considering the limited clinical evidence available up to date, further clinical studies are required to support the use of ambroxol in these diseases. PMID:24252805

  18. Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells

    NASA Astrophysics Data System (ADS)

    Marsland, Benjamin J.; Harris, Nicola L.; Camberis, Mali; Kopf, Manfred; Hook, Sarah M.; Le Gros, Graham

    2004-04-01

    CD8+ memory T cells have recently been recognized as playing a key role in natural immunity against unrelated viral infections, a phenomenon referred to as "heterologous antiviral immunity." We now provide data that the cellular immunological interactions that underlie such heterologous immunity can play an equally important role in regulating T helper 2 immune responses and protecting mucosal surfaces from allergen-induced inflammation. Our data show that CD8+ T cells, either retained in the lung after infection with influenza virus, or adoptively transferred via the intranasal route can suppress allergic airway inflammation. The suppression is mediated by IFN-, which acts to reduce the activation level, T helper 2 cytokine production, airways hyperresponsiveness, and migration of allergen-specific CD4+ T cells into the lung, whereas the systemic and draining lymph node responses remain unchanged. Of note, adoptive transfer of previously activated transgenic CD8+ T cells conferred protection against allergic airway inflammation, even in the absence of specific-antigen. Airway resident CD8+ T cells produced IFN- when directly exposed to conditioned media from activated dendritic cells or the proinflammatory cytokines IL-12 and IL-18. Taken together these data indicate that effector/memory CD8+ T cells present in the airways produce IFN- after inflammatory stimuli, independent of specific-antigen, and as a consequence play a key role in modifying the degree and frequency of allergic responses in the lung.

  19. PAF mediates cigarette smoke-induced goblet cell metaplasia in guinea pig airways.

    PubMed

    Komori, M; Inoue, H; Matsumoto, K; Koto, H; Fukuyama, S; Aizawa, H; Hara, N

    2001-03-01

    Goblet cell metaplasia is an important morphological feature in the airways of patients with chronic airway diseases; however, the precise mechanisms that cause this feature are unknown. We investigated the role of endogenous platelet-activating factor (PAF) in airway goblet cell metaplasia induced by cigarette smoke in vivo. Guinea pigs were exposed repeatedly to cigarette smoke for 14 consecutive days. The number of goblet cells in each trachea was determined with Alcian blue-periodic acid-Schiff staining. Differential cell counts and PAF levels in bronchoalveolar lavage fluid were also evaluated. Cigarette smoke exposure significantly increased the number of goblet cells. Eosinophils, neutrophils, and PAF levels in bronchoalveolar lavage fluid were also significantly increased after cigarette smoke. Treatment with a specific PAF receptor antagonist, E-6123, significantly attenuated the increases in the number of airway goblet cells, eosinophils, and neutrophils observed after cigarette smoke exposure. These results suggest that endogenous PAF may play a key role in goblet cell metaplasia induced by cigarette smoke and that potential roles exist for inhibitors of PAF receptor in the treatment of hypersecretory airway diseases. PMID:11159026

  20. Regulated Mucin Secretion from Airway Epithelial Cells

    PubMed Central

    Adler, Kenneth B.; Tuvim, Michael J.; Dickey, Burton F.

    2013-01-01

    Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3 × 106 Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ∼1 μm in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to

  1. Pluripotent Allospecific CD8+ Effector T Cells Traffic to Lung in Murine Obliterative Airway Disease

    PubMed Central

    West, Erin E.; Lavoie, Tera L.; Orens, Jonathan B.; Chen, Edward S.; Ye, Shui Q.; Finkelman, Fred D.; Garcia, Joe G. N.; McDyer, John F.

    2006-01-01

    Long-term success in lung transplantation is limited by obliterative bronchiolitis, whereas T cell effector mechanisms in this process remain incompletely understood. Using the mouse heterotopic allogeneic airway transplant model, we studied T cell effector responses during obliterative airways disease (OAD). Allospecific CD8+IFN-γ+ T cells were detected in airway allografts, with significant coexpression of TNF-α and granzyme B. Therefore, using IFN-γ as a surrogate marker, we assessed the distribution and kinetics of extragraft allo-specific T cells during OAD. Robust allospecific IFN-γ was produced by draining the lymph nodes, spleen, and lung mononuclear cells from allograft, but not isograft recipients by Day 14, and significantly decreased by Day 28. Although the majority of allospecific T cells were CD8+, allospecific CD4+ T cells were also detected in these compartments, with each employing distinct allorecognition pathways. An influx of pluripotent CD8+ effector cells with a memory phenotype were detected in the lung during OAD similar to those seen in the allografts and secondary lymphoid tissue. Antibody depletion of CD8+ T cells markedly reduced airway lumen obliteration and fibrosis at Day 28. Together, these data demonstrate that allospecific CD8+ effector T cells play an important role in OAD and traffic to the lung after heterotopic airway transplant, suggesting that the lung is an important immunologic site, and perhaps a reservoir, for effector cells during the rejection process. PMID:16195540

  2. Rho-associated protein kinase inhibition enhances airway epithelial Basal-cell proliferation and lentivirus transduction.

    PubMed

    Horani, Amjad; Nath, Aditya; Wasserman, Mollie G; Huang, Tao; Brody, Steven L

    2013-09-01

    The identification of factors that regulate airway epithelial cell proliferation and differentiation are essential for understanding the pathophysiology of airway diseases. Rho-associated protein kinases (ROCKs) are downstream effector proteins of RhoA GTPase that direct the functions of cell cytoskeletal proteins. ROCK inhibition with Y27632 has been shown to enhance the survival and cloning of human embryonic stem cells and pluripotent cells in other tissues. We hypothesized that Y27632 treatment exerts a similar effect on airway epithelial basal cells, which function as airway epithelial progenitor cells. Treatment with Y27632 enhanced basal-cell proliferation in cultured human tracheobronchial and mouse tracheal epithelial cells. ROCK inhibition accelerated the maturation of basal cells, characterized by a diminution of the cell size associated with cell compaction and the expression of E-cadherin at cell-cell junctions. Transient treatment of cultured basal cells with Y27632 did not affect subsequent ciliated or mucous cell differentiation under air-liquid interface conditions, and allowed for the initial use of lower numbers of human or mouse primary airway epithelial cells than otherwise possible. Moreover, the use of Y27632 during lentivirus-mediated transduction significantly improved posttransduction efficiency and the selection of a transduced cell population, as determined by reporter gene expression. These findings suggest an important role for ROCKs in the regulation of proliferation and maturation of epithelial basal cells, and demonstrate that the inhibition of ROCK pathways using Y27632 provides an adjunctive tool for the in vitro genetic manipulation of airway epithelial cells by lentivirus vectors. PMID:23713995

  3. Dendritic cell-derived tumor necrosis factor α modifies airway epithelial cell responses.

    PubMed

    Lutfi, R; Ledford, J R; Zhou, P; Lewkowich, I P; Page, K

    2012-01-01

    Mucosal dendritic cells (DC) are intimately associated with the airway epithelium and thus are ideally situated to be first responders to pathogens. We hypothesize that DC drive innate immune responses through early release of tumor necrosis factor (TNF) α, which drives airway epithelial cell responses. In a mouse model, TNFα release was significantly increased following a single exposure to German cockroach (GC) frass, an event independent of neutrophil recruitment into the airways. While lung epithelial cells and alveolar macrophages failed to release TNFα following GC frass exposure, bone marrow-derived DC (BMDC) produced substantial amounts of TNFα suggesting their importance as early responding cells. This was confirmed by flow cytometry of pulmonary myeloid DC. Addition of GC frass-pulsed BMDC or conditioned media from GC frass-pulsed BMDC to primary mouse tracheal epithelial cells (MTEC) or MLE-15 cells induced chemokine (C-C) motif ligand (CCL) 20 and granulocyte macrophage (GM) colony-stimulating factor (CSF), both of which are important for DC recruitment, survival and differentiation. Importantly, DC do not produce CCL20 or GM-CSF following allergen exposure. Blocking TNFα receptor 1 (TNFR1) completely abolished chemokine production, suggesting that BMDC-derived TNFα induced airway epithelial cell activation and enhancement of the innate immune response. Lastly, blocking TNFR1 in vivo resulted in significantly decreased CCL20 and GM-CSF production in the lungs of mice. Together, our data strongly suggest that DC-derived TNFα plays a crucial role in the initiation of innate immune responses through the modification of airway epithelial cell responses. PMID:22517116

  4. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  5. Oxidant-mediated ciliary dysfunction. Possible role in airway disease

    SciTech Connect

    Burman, W.J.; Martin, W.J. 2d.

    1986-03-01

    The effects of reactive species of oxygen on the airway are not well known. This study examined the effects of hydrogen peroxide (H2O2) on the structure and function of the airway epithelium. Tracheal rings were prepared from 200 g male rats. Damage to the airway epithelium was assayed by monitoring the ciliary beat frequency, the release of 51Cr, and histology. H2O2 at concentrations of 1.0 mM and above caused a very rapid decrease in ciliary beat frequency. After ten minutes' exposure to 1.0 mM, the ciliary beat frequency was 72 +/- 20 percent of control. Release of 51Cr was a less sensitive measure with significant release occurring after four hours of exposure to ciliotoxic concentrations of H2O2. Histologic changes were not evident within the experimental time period. All toxic effects of H2O2 were completely blocked by catalase. This study shows that H2O2 causes a rapid decline in ciliary activity and suggests that oxidant-mediated ciliary dysfunction could play a role in the pathogenesis of airway disease. The ciliary beat frequency provides a sensitive, physiologically relevant parameter for the in vitro study of these diseases.

  6. Transient receptor potential (TRP) channels in the airway: role in airway disease

    PubMed Central

    Grace, M S; Baxter, M; Dubuis, E; Birrell, M A; Belvisi, M G

    2014-01-01

    Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease. PMID:24286227

  7. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening.

    PubMed

    Dailey, H L; Ricles, L M; Yalcin, H C; Ghadiali, S N

    2009-01-01

    The acute respiratory distress syndrome (ARDS) is characterized by fluid accumulation in small pulmonary airways. The reopening of these fluid-filled airways involves the propagation of an air-liquid interface that exerts injurious hydrodynamic stresses on the epithelial cells (EpC) lining the airway walls. Previous experimental studies have demonstrated that these hydrodynamic stresses may cause rupture of the plasma membrane (i.e., cell necrosis) and have postulated that cell morphology plays a role in cell death. However, direct experimental measurement of stress and strain within the cell is intractable, and limited data are available on the mechanical response (i.e., deformation) of the epithelium during airway reopening. The goal of this study is to use image-based finite element models of cell deformation during airway reopening to investigate how cell morphology and mechanics influence the risk of cell injury/necrosis. Confocal microscopy images of EpC in subconfluent and confluent monolayers were used to generate morphologically accurate three-dimensional finite element models. Hydrodynamic stresses on the cells were calculated from boundary element solutions of bubble propagation in a fluid-filled parallel-plate flow channel. Results indicate that for equivalent cell mechanical properties and hydrodynamic load conditions, subconfluent cells develop higher membrane strains than confluent cells. Strain magnitudes were also found to decrease with increasing stiffness of the cell and membrane/cortex region but were most sensitive to changes in the cell's interior stiffness. These models may be useful in identifying pharmacological treatments that mitigate cell injury during airway reopening by altering specific biomechanical properties of the EpC. PMID:19008489

  8. Theophylline Represses IL-8 Secretion from Airway Smooth Muscle Cells Independently of Phosphodiesterase Inhibition. Novel Role as a Protein Phosphatase 2A Activator.

    PubMed

    Patel, Brijeshkumar S; Rahman, Md Mostafizur; Rumzhum, Nowshin N; Oliver, Brian G; Verrills, Nicole M; Ammit, Alaina J

    2016-06-01

    Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation. PMID:26574643

  9. Exacerbated Th2-mediated airway inflammation and hyperresponsiveness in autoimmune diabetes-prone NOD mice: a critical role for CD1d-dependent NKT cells.

    PubMed

    Araujo, Luiza M; Lefort, Jean; Nahori, Marie-Anne; Diem, Séverine; Zhu, Ren; Dy, Michel; Leite-de-Moraes, Maria C; Bach, J F; Vargaftig, B Boris; Herbelin, André

    2004-02-01

    The NOD mouse has proved to be a relevant model of insulin-dependent diabetes mellitus, closely resembling the human disease. However, it is unknown whether this strain presents a general biastoward Th1-mediated autoimmunity or remains capable of mounting complete Th2-mediated responses. Here, we show that NOD mice have the capacity to develop a typical Th2-mediated disease, namely experimental allergic asthma. In contrast to what might have been expected, they even developed a stronger Th2-mediated pulmonary inflammatory response than BALB/c mice, a strain that shows a typical Th2 bias in this model. Thus, after allergen sensitization and intra-nasal challenge, the typical features of experimental asthma were exacerbated in NOD mice, including enhanced bronchopulmonary responsiveness, mucus production and eosinophilic inflammation in the lungs as well as specific IgE titers in serum. These hallmarks of allergic asthma were associated with increased IL-4, IL-5, IL-13 and eotaxin production in the lungs, as compared with BALB/c mice. Notwithstanding their quantitative and functional defect in NOD mice, CD1d-dependent NKT cells contribute to aggravate the disease, since in OVA-immunized CD1d(-/-) NOD mice, which are deficient in this particular T cell subset, airway eosinophilia was clearly diminished relative to NOD littermates. This is the first evidence that autoimmune diabetes-prone NOD mice can also give rise to enhanced Th2-mediated responses and might thus provide a useful model for the study of common genetic and cellular components, including NKT cells that contribute to both asthma and type 1 diabetes. PMID:14768037

  10. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    SciTech Connect

    Lin, C.-H.; Lai, Y.-L. . E-mail: tiger@ha.mc.ntu.edu.tw

    2005-08-15

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H{sub 1} receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C{sub 4} (LTC{sub 4}) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV{sub 0.1}) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV{sub 0.1}, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC{sub 4} and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.

  11. Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation.

    PubMed

    Burke, Michael C; Li, Feng-Qian; Cyge, Benjamin; Arashiro, Takeshi; Brechbuhl, Heather M; Chen, Xingwang; Siller, Saul S; Weiss, Matthew A; O'Connell, Christopher B; Love, Damon; Westlake, Christopher J; Reynolds, Susan D; Kuriyama, Ryoko; Takemaru, Ken-Ichi

    2014-10-13

    Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicle formation and basal body docking during the differentiation of airway ciliated cells. PMID:25313408

  12. Role of mitochondrial hydrogen peroxide induced by intermittent hypoxia in airway epithelial wound repair in vitro.

    PubMed

    Hamada, Satoshi; Sato, Atsuyasu; Hara-Chikuma, Mariko; Satooka, Hiroki; Hasegawa, Koichi; Tanimura, Kazuya; Tanizawa, Kiminobu; Inouchi, Morito; Handa, Tomohiro; Oga, Toru; Muro, Shigeo; Mishima, Michiaki; Chin, Kazuo

    2016-05-15

    The airway epithelium acts as a frontline barrier against various environmental insults and its repair process after airway injury is critical for the lung homeostasis restoration. Recently, the role of intracellular reactive oxygen species (ROS) as transcription-independent damage signaling has been highlighted in the wound repair process. Both conditions of continuous hypoxia and intermittent hypoxia (IH) induce ROS. Although IH is important in clinical settings, the roles of IH-induced ROS in the airway repair process have not been investigated. In this study, we firstly showed that IH induced mitochondrial hydrogen peroxide (H2O2) production and significantly decreased bronchial epithelial cell migration, prevented by catalase treatment in a wound scratch assay. RhoA activity was higher during repair process in the IH condition compared to in the normoxic condition, resulting in the cellular morphological changes shown by immunofluorescence staining: round cells, reduced central stress fiber numbers, pronounced cortical actin filament distributions, and punctate focal adhesions. These phenotypes were replicated by exogenous H2O2 treatment under the normoxic condition. Our findings confirmed the transcription-independent role of IH-induced intracellular ROS in the bronchial epithelial cell repair process and might have significant implications for impaired bronchial epithelial cell regeneration. PMID:27093911

  13. Insights into Group 2 Innate Lymphoid Cells in Human Airway Disease.

    PubMed

    Karta, Maya R; Broide, David H; Doherty, Taylor A

    2016-01-01

    Recent discoveries have led to the identification of a novel group of immune cells, the innate lymphoid cells (ILCs). The members of this group are divided into three subpopulations: ILC1s, ILC2s, and ILC3s. ILC2s produce Th2 cytokines, IL-4, IL-5, and IL-13, upon activation by epithelial cell-derived cytokines, lipid mediators (cysteinyl leukotrienes and prostaglandin D2), and TNF family member TL1A and promote structural and immune cell responses in the airways after antigen exposure. In addition, ILC2 function is also influenced by inducible T cell costimulator (ICOS)/ICOS-ligand (ICOS-L) interactions via direct contact between immune cells. The most common airway antigens are allergens and viruses which are highly linked to the induction of airway diseases with underlying type 2 inflammation including asthma and allergic rhinitis. Based on recent findings linking ILC2s and airway Th2 responses, there is intensive investigation into the role of ILC2s in human disease with the hope of a better understanding of the pathophysiology and the discovery of novel potential therapeutic targets. This review summarizes the recent advances made in elucidating ILC2 involvement in human Th2 airway disease. PMID:26746844

  14. Mast cell-derived neurotrophin 4 mediates allergen-induced airway hyperinnervation in early life

    PubMed Central

    Patel, Kruti R.; Aven, Linh; Shao, Fengzhi; Krishnamoorthy, Nandini; Duvall, Melody G.; Levy, Bruce D.; Ai, Xingbin

    2016-01-01

    Asthma often progresses from early episodes of insults. How early life events connect to long-term airway dysfunction remains poorly understood. We demonstrated previously that increased neurotrophin 4 (NT4) levels following early life allergen exposure cause persistent changes in airway smooth muscle (ASM) innervation and airway hyper-reactivity (AHR) in mice. Herein, we identify pulmonary mast cells as a key source of aberrant NT4 expression following early insults. NT4 is selectively expressed by ASM and mast cells in mice, nonhuman primates and humans. We show in mice that mast cell-derived NT4 is dispensable for ASM innervation during development. However, upon insults, mast cells expand in number and degranulate to release NT4 and thus become the major source of NT4 under pathological condition. Adoptive transfer of wild type mast cells, but not NT4−/− mast cells restores ASM hyperinnervation and AHR in KitW-sh/W-sh mice following early life insults. Notably, an infant nonhuman primate model of asthma also exhibits ASM hyperinnervation associated with the expansion and degranulation of mast cells. Together, these findings identify an essential role of mast cells in mediating ASM hyperinnervation following early life insults by producing NT4. This role may be evolutionarily conserved in linking early insults to long-term airway dysfunction. PMID:26860818

  15. Continuity of airway goblet cells and intraluminal mucus in the airways of patients with bronchial asthma.

    PubMed

    Shimura, S; Andoh, Y; Haraguchi, M; Shirato, K

    1996-07-01

    The aim of this study was to elucidate the mechanism of the formation of the widespread mucous-plugging observed in autopsied lungs from patients with bronchial asthma. We performed morphometric analysis of airways of autopsied lungs from eight patients with bronchial asthma (Group BA), and compared it with those of six chronic bronchitics (Group CB) and four control patients (Control). The following parameters were measured in paraffin sections: volume proportion of bronchial glands to bronchial wall (Gland%); goblet cell granules to total epithelial layer (Goblet %); intraluminal mucus expressed as the mucus occupying ratio (MOR); volume ratio of intraluminal mucus continuous with goblet cells to total intraluminal mucus (Vc/Vtol %); and surface ratio of the contact surface of intraluminal mucus continuous with goblet cells to the total luminal surface (Sc/Stot %). Gland%, Goblet %, and MOR or inflammatory cell numbers in the airway walls both from Group BA and CB were larger than those from the Control group. However, no significant differences were observed between Group BA and CB in Gland%, Goblet %, MOR or inflammatory cell numbers, except for the eosinophil number: i.e. 23 +/- 3, 22 +/- 3 and 6 +/- 2% in Gland%; 22 +/- 9, 5 +/- 4 and 2 +/- 2% in Goblet%; 10 +/- 3, 18 +/- 3 and 0.3 +/- 0.5% in MOR; 199 +/- 68, 10 +/- 3 and 2 +/- 2 cells. mm-2 in eosinophil number of the peripheral airways from Groups BA, CB and Control, respectively. In contrast, marked and significant increases were observed both in Vc/Vtot% and Sc/Stot% in Group BA compared to Groups CB and Control both in central and peripheral airways: i.e. Vc/Vtot% in the peripheral airways was 53 +/- 5, 4 +/- 3 and 0.8 +/- 0.8% from Groups BA, CB and Control, respectively (BA vs CB or BA vs Control, p < 0.01 each). These findings suggest that the continuity of goblet cells and intraluminal mucus or lack of full release of mucus, from goblet cells, is peculiar to asthmatic airways, and may contribute to

  16. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics

    PubMed Central

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M.; Collins, Jane E.; Davies, Donna E.; Morgan, Hywel; Swindle, Emily J.

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  17. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics.

    PubMed

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M; Collins, Jane E; Davies, Donna E; Morgan, Hywel; Swindle, Emily J

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL-8 release is detectable within the first 2h and peaks at 4-6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  18. Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants

    PubMed Central

    Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.

    2016-01-01

    Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805

  19. Putting the Squeeze on Airway Epithelia.

    PubMed

    Park, Jin-Ah; Fredberg, Jeffrey J; Drazen, Jeffrey M

    2015-07-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  20. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  1. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    SciTech Connect

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham; Boyaka, Prosper N.; Cormet-Boyaka, Estelle

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  2. Epithelial Cell Proliferation Contributes to Airway Remodeling in Severe Asthma

    PubMed Central

    Cohen, Lance; E, Xueping; Tarsi, Jaime; Ramkumar, Thiruvamoor; Horiuchi, Todd K.; Cochran, Rebecca; DeMartino, Steve; Schechtman, Kenneth B.; Hussain, Iftikhar; Holtzman, Michael J.; Castro, Mario

    2007-01-01

    Rationale: Despite long-term therapy with corticosteroids, patients with severe asthma develop irreversible airway obstruction. Objectives: To evaluate if there are structural and functional differences in the airway epithelium in severe asthma associated with airway remodeling. Methods: In bronchial biopsies from 21 normal subjects, 11 subjects with chronic bronchitis, 9 subjects with mild asthma, and 31 subjects with severe asthma, we evaluated epithelial cell morphology: epithelial thickness, lamina reticularis (LR) thickness, and epithelial desquamation. Levels of retinoblastoma protein (Rb), Ki67, and Bcl-2 were measured, reflecting cellular proliferation and death. Terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL) was used to study cellular apoptosis. Measurements and Main Results: Airway epithelial and LR thickness was greater in subjects with severe asthma compared with those with mild asthma, normal subjects, and diseased control subjects (p = 0.009 and 0.033, respectively). There was no significant difference in epithelial desquamation between groups. Active, hypophosphorylated Rb expression was decreased (p = 0.002) and Ki67 was increased (p < 0.01) in the epithelium of subjects with severe asthma as compared with normal subjects, indicating increased cellular proliferation. Bcl-2 expression was decreased (p < 0.001), indicating decreased cell death suppression. There was a greater level of apoptotic activity in the airway biopsy in subjects with severe asthma as compared with the normal subjects using the TUNEL assay (p = 0.002), suggesting increased cell death. Conclusions: In subjects with severe asthma, as compared with subjects with mild asthma, normal subjects, and diseased control subjects, we found novel evidence of increased cellular proliferation in the airway contributing to a thickened epithelium and LR. These changes may contribute to the progressive decline in lung function and airway remodeling in patients with severe

  3. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  4. AIRWAY CELL AND NUCLEAR DEPTH DISTRIBUTION IN HUMAN RAT LUNGS

    EPA Science Inventory

    To predict the critical cells that are subject to injury from inhaled radon and other alpha particle sources it is necessary to calculate the dose absorbed by the different cells in the lungs. n order to provide information necessary to make these dose determinations, the airway ...

  5. Essential role of T lymphocytes in the development of allergen-driven airway hyperresponsiveness.

    PubMed

    Gelfand, E W

    1998-01-01

    Asthma now affects more than 15 million Americans and results in significant expenditure of resources. Despite intensive investigation into the pathogenesis of asthma, debate continues over which cells or which mediators are the primary contributors to the disease. Increasingly, asthma is recognized as a chronic, inflammatory disease. T lymphocytes, T-cell derived cytokines, and eosinophils play major roles in the initiation and perpetuation of the inflammatory response. Animal models have enabled us to link directly T cells with eosinophilic inflammation of the airways, providing new insights into pathogenesis and novel opportunities for therapeutic interventions. PMID:9876776

  6. Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma.

    PubMed

    Samanta, Krishna; Parekh, Anant B

    2016-08-01

    The epithelial cells of the lung are at the interface of a host and its environment and are therefore directly exposed to the inhaled air-borne particles. Rather than serving as a simple physical barrier, airway epithelia detect allergens and other irritants and then help organize the subsequent immune response through release of a plethora of secreted signals. Many of these signals are generated in response to opening of store-operated Ca(2+) channels in the plasma membrane. In this review, we describe the properties of airway store-operated channels and their role in regulating airway epithelial cell function.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377718

  7. Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma

    PubMed Central

    Samanta, Krishna; Parekh, Anant B.

    2016-01-01

    The epithelial cells of the lung are at the interface of a host and its environment and are therefore directly exposed to the inhaled air-borne particles. Rather than serving as a simple physical barrier, airway epithelia detect allergens and other irritants and then help organize the subsequent immune response through release of a plethora of secreted signals. Many of these signals are generated in response to opening of store-operated Ca2+ channels in the plasma membrane. In this review, we describe the properties of airway store-operated channels and their role in regulating airway epithelial cell function. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377718

  8. Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity.

    PubMed

    Gandhi, Vivek D; Vliagoftis, Harissios

    2015-01-01

    Airway epithelial cells are the first line of defense against the constituents of the inhaled air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium not only prevents the penetration of these foreign substances into the interstitium, but also senses their presence and informs the organism's immune system of the impending assault. The epithelium accomplishes the latter through the release of inflammatory cytokines and chemokines that recruit and activate innate immune cells at the site of assault. These epithelial responses aim to eliminate the inhaled foreign substances and minimize their detrimental effects to the organism. Quite frequently, however, the innate immune responses of the epithelium to inhaled substances lead to chronic and high level release of pro-inflammatory mediators that may mediate the lung pathology seen in asthma. The interactions of airway epithelial cells with allergens will be discussed with particular focus on interactions-mediated epithelial release of cytokines and chemokines and their role in the immune response. As pollutants are other major constituents of inhaled air, we will also discuss how pollutants may alter the responses of airway epithelial cells to allergens. PMID:25883597

  9. Airway Epithelium Interactions with Aeroallergens: Role of Secreted Cytokines and Chemokines in Innate Immunity

    PubMed Central

    Gandhi, Vivek D.; Vliagoftis, Harissios

    2015-01-01

    Airway epithelial cells are the first line of defense against the constituents of the inhaled air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium not only prevents the penetration of these foreign substances into the interstitium, but also senses their presence and informs the organism’s immune system of the impending assault. The epithelium accomplishes the latter through the release of inflammatory cytokines and chemokines that recruit and activate innate immune cells at the site of assault. These epithelial responses aim to eliminate the inhaled foreign substances and minimize their detrimental effects to the organism. Quite frequently, however, the innate immune responses of the epithelium to inhaled substances lead to chronic and high level release of pro-inflammatory mediators that may mediate the lung pathology seen in asthma. The interactions of airway epithelial cells with allergens will be discussed with particular focus on interactions-mediated epithelial release of cytokines and chemokines and their role in the immune response. As pollutants are other major constituents of inhaled air, we will also discuss how pollutants may alter the responses of airway epithelial cells to allergens. PMID:25883597

  10. The role of the epithelium in airway remodeling in asthma.

    PubMed

    Davies, Donna E

    2009-12-01

    The bronchial epithelium is the barrier to the external environment and plays a vital role in protection of the internal milieu of the lung. It functions within the epithelial-mesenchymal trophic unit to control the local microenvironment and help maintain tissue homeostasis. However, in asthma, chronic perturbation of these homeostatic mechanisms leads to alterations in the structure of the airways, termed remodeling. Damage to the epithelium is now recognized to play a key role in driving airway remodeling. We have postulated that epithelial susceptibility to environmental stress and injury together with impaired repair responses results in generation of signals that act on the underlying mesenchyme to propagate and amplify inflammatory and remodeling responses in the submucosa. Many types of challenges to the epithelium, including pathogens, allergens, environmental pollutants, cigarette smoke, and even mechanical forces, can elicit production of mediators by the epithelium, which can be translated into remodeling responses by the mesenchyme. Several important mediators of remodeling have been identified, most notably transforming growth factor-beta, which is released from damaged/repairing epithelium or in response to inflammatory mediators, such as IL-13. The cross talk between the epithelium and the underlying mesenchyme to drive remodeling responses is considered in the context of subepithelial fibrosis and potential pathogenetic mechanisms linked to the asthma susceptibility gene, a disintegrin and metalloprotease (ADAM)33. PMID:20008875

  11. The Role of Capital Productivity in British Airways' Financial Recovery

    NASA Technical Reports Server (NTRS)

    Morrell, Peter

    1999-01-01

    British Airways (BA) was privatized in 1987, but its financial recovery occurred a number of years earlier, This recovery was sustained throughout the early 1990s economic recession, a period when few major airlines were operating profitably. This paper examines the role of productivity developments at British Airways from the early 1980s through 1996. The emphasis is on capital productivity and investment, but changes in capital intensity and labour productivity are also evaluated. Various measures are considered for both capital and labour productivity: outputs are measured in available tonne-kms (ATKs) and revenue tonne-kms (RTKs), with the former preferred over the latter two measures, after adjustment for work performed by BA for others. Capital inputs are measured in equivalent lease costs adjusted to constant prices with a different treatment of flight and ground equipment or assets. Labour inputs are derived from total payroll costs deflated by a UK wage price index. The airline made considerable capital investments over the period and at the same time went through two major processes of labour restructuring. This resulted in a gradual increase in capital intensity, relative high labour productivity growth, but poor capital productivity performance, However, capital investment played an important role in the airline's sustained labour and total factor productivity over the whole period.

  12. The Role of Capital Productivity in British Airways' Financial Recovery

    NASA Technical Reports Server (NTRS)

    Morrell, Peter

    1999-01-01

    British Airways (BA) was privatised in 1987, but its financial recovery occurred a number of years earlier. This recovery was sustained throughout the early 1990s economic recession, a period when few major airlines were operating profitably. This paper examines the role of productivity developments at British Airways from the early 1980s through 1996. The emphasis is on capital productivity and investment, but changes in capital intensity and labour productivity are also evaluated. Various measures are considered for both capital and labour productivity: outputs are measured in available tonne-kms (ATKS) and revenue tonne-kms (RTKs), with the former preferred over the latter two measures, after adjustment for work performed by BA for others. Capital inputs are measured in equivalent lease costs adjusted to constant prices with a different treatment of flight and ground equipment or assets. Labour inputs are derived from total payroll costs deflated by a UK wage price index. The airline made considerable capital investments over the period and at the same time went through two major processes of labour restructuring. This resulted in a gradual increase in capital intensity, relative high labour productivity growth, but poor capital productivity performance. However, capital investment played an important role in the airline's sustained labour and total factor productivity over the whole period.

  13. Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells.

    PubMed

    Denning, G M; Railsback, M A; Rasmussen, G T; Cox, C D; Britigan, B E

    1998-06-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes both acute and chronic lung disease. P. aeruginosa exerts many of its pathophysiological effects by secreting virulence factors, including pyocyanine, a redox-active compound that increases intracellular oxidant stress. Because oxidant stress has been shown to affect cytosolic Ca2+ concentration ([Ca2+]c) in other cell types, we studied the effect of pyocyanine on [Ca2+]c in human airway epithelial cells (A549 and HBE). At lower concentrations, pyocyanine inhibits inositol 1,4,5-trisphosphate formation and [Ca2+]c increases in response to G protein-coupled receptor agonists. Conversely, at higher concentrations, pyocyanine itself increases [Ca2+]c. The pyocyanine-dependent [Ca2+]c increase appears to be oxidant dependent and to result from increased inositol trisphosphate and release of Ca2+ from intracellular stores. Ca2+ plays a central role in epithelial cell function, including regulation of ion transport, mucus secretion, and ciliary beat frequency. By disrupting Ca2+ homeostasis, pyocyanine could interfere with these critical functions and contribute to the pathophysiological effects observed in Pseudomonas-associated lung disease. PMID:9609727

  14. Bronchial Epithelial Cells Produce IL-5: Implications for Local Immune Responses in the Airways

    PubMed Central

    Wu, Carol A.; Peluso, John J.; Zhu, Li; Lingenheld, Elizabeth G.; Walker, Sharale T.; Puddington, Lynn

    2010-01-01

    IL-5 is a pleiotropic cytokine that promotes eosinophil differentiation and survival. While naïve bronchial epithelial cells (BEC) produce low levels of IL-5, the role of BEC-derived IL-5 in allergic airway inflammation is unknown. We now show that BEC, isolated from mice with OVA-induced allergic airway disease (AAD), produced elevated levels of IL-5 mRNA and protein as compared to BEC from naïve mice. To determine the contribution of BEC-derived IL-5 to effector responses in the airways, IL-5 deficient bone marrow chimeric mice were generated in which IL-5 expression was restricted to stromal (e.g. BEC) or hematopoietic cells. When subjected to AAD, IL-5 produced by BECs contributed to mucous metaplasia, airway eosinophilia, and OVA-specific IgA levels. Thus, IL-5 production by BEC can impact the microenvironment of the lung, modifying pathologic and protective immune responses in the airways. PMID:20494340

  15. The role of p21 Waf1/Cip1 in large airway epithelium in smokers with and without COPD.

    PubMed

    Chiappara, Giuseppina; Gjomarkaj, Mark; Virzì, Alessia; Sciarrino, Serafina; Ferraro, Maria; Bruno, Andreina; Montalbano, Angela Marina; Vitulo, Patrizio; Minervini, Marta Ida; Pipitone, Loredana; Pace, Elisabetta

    2013-10-01

    Airway epithelium alterations, including squamous cell metaplasia, characterize smokers with and without chronic obstructive pulmonary disease (COPD). The p21 regulates cell apoptosis and differentiation and its role in COPD is largely unknown. Molecules regulating apoptosis (cytoplasmic p21, caspase-3), cell cycle (nuclear p21), proliferation (Ki67/PCNA), and metaplasia (survivin) in central airways from smokers (S), smokers-COPD (s-COPD) and non-smokers (Controls) were studied. The role of cigarette smoke extracts (CSE) in p21, survivin, apoptosis (caspase-3 and annexin-V binding) and proliferation was assessed in a bronchial epithelial cell line (16HBE). Immunohistochemistry, image analysis in surgical samples and flow-cytometry and carboxyfluorescein succinimidyl ester proliferative assay in 16HBE with/without CSE were applied. Cytoplasmic and nuclear p21, survivin, and Ki67 expression significantly increased in large airway epithelium in S and in s-COPD in comparison to Controls. Caspase-3 was similar in all the studied groups. p21 correlated with epithelial metaplasia, PCNA, and Ki67 expression. CSE increased cytoplasmic p21 and survivin expression but not apoptosis and inhibited the cell proliferation in 16HBE. In large airway epithelium of smokers with and without COPD, the cytoplasmic p21 inhibits cell apoptosis, promotes cell proliferation and correlates with squamous cell metaplasia thus representing a potential pre-oncogenic hallmark. PMID:23639631

  16. NITROTYROSINE ATTENUATES RSV-INDUCED INFLAMMATION IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Nitrotyrosine attenuates RSV-induced inflammation in airway epithelial cells. Joleen Soukup, Zuowei Li, Susanne Becker and Yuh-Chin Huang. NHEERL, ORD, USEPA, RTP, North Carolina, CEMALB, University of North Carolina, Chapel Hill, North Carolina

    Nitrotyrosine (NO2Tyr) is a...

  17. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells.

    PubMed

    Yoshie, Susumu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Ikeda, Masakazu; Nomoto, Yukio; Wada, Ikuo; Omori, Koichi

    2016-05-01

    Airway epithelial cells derived from induced pluripotent stem (iPS) cells are expected to be a useful source for the regeneration of airway epithelium. Our preliminary study of embryoid body (EB) formation and the air-liquid interface (ALI) method suggested that mouse iPS cells can differentiate into airway epithelial cells. However, whether the cells generated from mouse iPS cells had the character and phenotype of native airway epithelial cells remained uninvestigated. In this study, we generated airway epithelial cells from EBs by culturing them under serum-free conditions supplemented with Activin and bFGF and by the ALI method and characterized the iPS cell-derived airway epithelial cells in terms of their gene expression, immunoreactivity, morphology, and function. Analysis by quantitative real-time reverse transcription-polymerase chain reaction(RT-PCR) revealed that the expression of the undifferentiated cell marker Nanog decreased time-dependently after the induction of differentiation, whereas definitive endoderm markers Foxa2 and Cxcr4 were transiently up-regulated. Thereafter, the expression of airway epithelium markers such as Tubb4a, Muc5ac, and Krt5 was detected by RT-PCR and immunostaining. The formation of tight junctions was also confirmed by immunostaining and permeability assay. Analysis by hematoxylin and eosin staining and scanning electron microscopy indicated that the cells generated from mouse iPS cells formed airway-epithelium-like tissue and had cilia, the movement of which was visualized and observed to be synchronized. These results demonstrate that the airway epithelial cells generated by our method have native characteristics and open new perspectives for the regeneration of injured airway epithelium. PMID:26590823

  18. Autophagy plays an essential role in cigarette smoke-induced expression of MUC5AC in airway epithelium.

    PubMed

    Zhou, Jie-Sen; Zhao, Yun; Zhou, Hong-Bin; Wang, Yong; Wu, Yin-Fang; Li, Zhou-Yang; Xuan, Nan-Xia; Zhang, Chao; Hua, Wen; Ying, Song-Min; Li, Wen; Shen, Hua-Hao; Chen, Zhi-Hua

    2016-06-01

    Mucus hypersecretion is a common pathological feature of chronic airway inflammatory diseases including chronic obstructive pulmonary disease (COPD). However, the molecular basis for this condition remains incompletely understood. We have previously demonstrated a critical role of autophagy in COPD pathogenesis through mediating apoptosis of lung epithelial cells. In this study, we aimed to investigate the function of autophagy as well as its upstream and downstream signals in cigarette smoke-induced mucus production in human bronchial epithelial (HBE) cells and in mouse airways. Cigarette smoke extract (CSE), as well as the classical autophagy inducers starvation or Torin-1, significantly triggered MUC5AC expression, and inhibition of autophagy markedly attenuated CSE-induced mucus production. The CSE-induced autophagy was mediated by mitochondrial reactive oxygen species (mitoROS), which regulated mucin expression through the JNK and activator protein-1 pathway. Epidermal growth factor receptor (EGFR) was also required for CSE-induced MUC5AC in HBE cells, but it exerted inconsiderable effects on the autophagy-JNK signaling cascade. Airways of mice with dysfunctional autophagy-related genes displayed a markedly reduced number of goblet cells and attenuated levels of Muc5ac in response to cigarette smoke exposure. These results altogether suggest that mitoROS-dependent autophagy is essential for cigarette smoke-induced mucus hyperproduction in airway epithelial cells, and reemphasize autophagy inhibition as a novel therapeutic strategy for chronic airway diseases. PMID:27036871

  19. Early events in the pathogenesis of chronic obstructive pulmonary disease. Smoking-induced reprogramming of airway epithelial basal progenitor cells.

    PubMed

    Shaykhiev, Renat; Crystal, Ronald G

    2014-12-01

    The airway epithelium is the primary site of the earliest pathologic changes induced by smoking, contributing to the development of chronic obstructive pulmonary disease (COPD). The normal human airway epithelium is composed of several major cell types, including differentiated ciliated and secretory cells, intermediate undifferentiated cells, and basal cells (BC). BC contain the stem/progenitor cell population responsible for maintenance of the normally differentiated airway epithelium. Although inflammatory and immune processes play a significant role in the pathogenesis of COPD, the earliest lesions include hyperplasia of the BC population, suggesting that the disease may start with this cell type. Apart from BC hyperplasia, smoking induces a number of COPD-relevant airway epithelial remodeling phenotypes that are likely initiated in the BC population, including mucous cell hyperplasia, squamous cell metaplasia, epithelial-mesenchymal transition, altered ciliated and nonmucous secretory cell differentiation, and suppression of junctional barrier integrity. Significant progress has been recently made in understanding the biology of human airway BC, including gene expression features, stem/progenitor, and other functions, including interaction with other airway cell types. Accumulating evidence suggests that human airway BC function as both sensors and cellular sources of various cytokines and growth factors relevant to smoking-associated airway injury, as well as the origin of various molecular and histological phenotypes relevant to the pathogenesis of COPD. In the context of these considerations, we suggest that early BC-specific smoking-induced molecular changes are critical to the pathogenesis of COPD, and these represent a candidate target for novel therapeutic approaches to prevent COPD progression in susceptible individuals. PMID:25525728

  20. Evaluation of the Upper Airway Morphology: The Role of Cone Beam Computed Tomography.

    PubMed

    White, Susan M; Huang, Chien-Jung; Huang, Shao-Ching; Sun, Zhengzheng; Eldredge, Jeff D; Mallya, Sanjay M

    2015-09-01

    Cone beam computed tomography (CBCT) has several applications in dentomaxillofacial diagnosis. Frequently, the imaged volume encompasses the upper airway. This article provides a systematic approach to airway analysis and the implications of the anatomic and pathologic alterations. It discusses the role of CBCT in management of obstructive sleep apnea (OSA) patients. This paper also highlights technological advances that combine CBCT imaging with computational modeling of the airway and the potential clinical applications of such technologies. PMID:26820010

  1. Acute ozone-induced change in airway permeability: role of infiltrating leukocytes

    SciTech Connect

    Kleeberger, S.R.; Hudak, B.B. )

    1992-02-01

    The role of infiltrating polymorphonuclear leukocytes (PMNs) in acute lung injury and inflammation is still controversial. In inbred mice, acute ozone (O3) exposure induces airway inflammation that is characterized by a maximal influx of lavageable PMNs 6 h after exposure and a maximal increase in lung permeability 24 h after O3. We tested the hypothesis that O3-induced change in airway epithelial permeability of O3-susceptible C57BL/6J mice is due to infiltrating PMNs. Male mice (6-8 wk) were treated with a nonsteroidal anti-inflammatory drug (indomethacin), a chemotactic inhibitor (colchicine), or an immunosuppressant (cyclophosphamide) to deplete or inhibit PMNs from infiltrating the airways. After drug or vehicle treatment, mice were exposed for 3 h to 2 ppm O3 or filtered air, and pulmonary inflammation was assessed by inflammatory cell counts and total protein content (a marker of airway permeability) in bronchoalveolar lavage (BAL) fluid. Filtered air exposure did not affect the parameters of pulmonary inflammation at any time after exposure. Compared with vehicle controls, each of the drug treatments resulted in significant reduction of PMN influx 6 and 24 h after O3. However, total BAL protein content was not attenuated significantly by the three treatments at either 6 or 24 h postexposure. Results of these experiments suggest that the influx of PMNs and the change in total BAL protein are not mutually dependent events in this model and suggest that infiltrating PMNs do not play a major role in acute O3-induced changes in permeability of the murine lung.

  2. Role of Insulin-like Growth Factor Binding Protein-3 in Allergic Airway Remodeling

    PubMed Central

    Veraldi, Kristen L.; Gibson, Bethany T.; Yasuoka, Hidekata; Myerburg, Michael M.; Kelly, Elizabeth A.; Balzar, Silvana; Jarjour, Nizar N.; Pilewski, Joseph M.; Wenzel, Sally E.; Feghali-Bostwick, Carol A.

    2009-01-01

    Rationale: The hallmarks of allergic asthma are airway inflammation, obstruction, and remodeling. Airway remodeling may lead to irreversible airflow obstruction with increased morbidity and mortality. Despite advances in the treatment of asthma, the mechanisms underlying airway remodeling are still poorly understood. We reported that insulin-like growth factor (IGF) binding proteins (IGFBPs) contribute to extracellular matrix deposition in idiopathic pulmonary fibrosis; however, their contribution to airway remodeling in asthma has not been established. Objectives: We hypothesized that IGFBP-3 is overexpressed in asthma and contributes to airway remodeling. Methods: We evaluated levels of IGFBP-3 in tissues and bronchoalveolar lavage fluid from patients with asthma at baseline and 48 hours after allergen challenge, in reparative epithelium in an in vitro wounding assay, and in conditioned media from cytokine- and growth factor–stimulated primary epithelial cells. Measurements and Main Results: IGFBP-3 levels and distribution were evaluated by Western blot, ELISA, and immunofluorescence. IGFBP-3 is increased in vivo in the airway epithelium of patients with asthma compared with normal control subjects. The concentration of IGFBP-3 is increased in the bronchoalveolar lavage fluid of patients with asthma after allergen challenge, its levels are increased in reparative epithelium in an in vitro wounding assay and in the conditioned medium of primary airway epithelial cell cultures stimulated with IGF-I. Conclusions: Our results suggest that one mechanism of allergic airway remodeling is through the secretion of the profibrotic IGFBP-3 from IGF-I–stimulated airway epithelial cells during allergic inflammation. PMID:19608721

  3. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection. PMID:27329138

  4. Novel Roles for Chloride Channels, Exchangers, and Regulators in Chronic Inflammatory Airway Diseases

    PubMed Central

    Sala-Rabanal, Monica; Yurtsever, Zeynep; Berry, Kayla N.; Brett, Tom J.

    2015-01-01

    Chloride transport proteins play critical roles in inflammatory airway diseases, contributing to the detrimental aspects of mucus overproduction, mucus secretion, and airway constriction. However, they also play crucial roles in contributing to the innate immune properties of mucus and mucociliary clearance. In this review, we focus on the emerging novel roles for a chloride channel regulator (CLCA1), a calcium-activated chloride channel (TMEM16A), and two chloride exchangers (SLC26A4/pendrin and SLC26A9) in chronic inflammatory airway diseases. PMID:26612971

  5. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells

    PubMed Central

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  6. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells.

    PubMed

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  7. Dendritic Cell-Nerve Clusters Are Sites of T Cell Proliferation in Allergic Airway Inflammation

    PubMed Central

    Veres, Tibor Z.; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-01-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell–T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2′-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell–cell contacts in a semi-automated fashion. Dendritic cell–T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa. PMID:19179611

  8. Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice.

    PubMed

    Duong, Khang M; Arikkatt, Jaisy; Ullah, M Ashik; Lynch, Jason P; Zhang, Vivian; Atkinson, Kerry; Sly, Peter D; Phipps, Simon

    2015-11-01

    Allergic asthma is underpinned by T helper 2 (Th2) inflammation. Redundancy in Th2 cytokine function and production by innate and adaptive immune cells suggests that strategies aimed at immunomodulation may prove more beneficial. Hence, we sought to determine whether administration of mesenchymal stromal cells (MSCs) to house dust mite (HDM) (Dermatophagoides pteronyssinus)-sensitized mice would suppress the development of Th2 inflammation and airway hyperresponsiveness (AHR) after HDM challenge. We report that the intravenous administration of allogeneic donor MSCs 1 hour before allergen challenge significantly attenuated the features of allergic asthma, including tissue eosinophilia, Th2 cytokine (IL-5 and IL-13) levels in bronchoalveolar lavage fluid, and AHR. The number of infiltrating type 2 innate lymphoid cells was not affected by MSC transfer, suggesting that MSCs may modulate the adaptive arm of Th2 immunity. The effect of MSC administration was long lasting; all features of allergic airway disease were significantly suppressed in response to a second round of HDM challenge 4 weeks after MSC administration. Further, we observed that MSCs decreased the release of epithelial cell-derived alarmins IL-1α and high mobility group box-1 in an IL-1 receptor antagonist-dependent manner. This significantly decreased the expression of the pro-Th2 cytokine IL-25 and reduced the number of activated and antigen-acquiring CD11c(+)CD11b(+) dendritic cells in the lung and mediastinal lymph nodes. Our findings suggest that MSC administration can ameliorate allergic airway inflammation by blunting the amplification of epithelial-derived inflammatory cytokines induced by HDM exposure and may offer long-term protection against Th2-mediated allergic airway inflammation and AHR. PMID:25789608

  9. Nuclear matrix binding protein SMAR1 regulates T-cell differentiation and allergic airway disease.

    PubMed

    Chemmannur, S V; Badhwar, A J; Mirlekar, B; Malonia, S K; Gupta, M; Wadhwa, N; Bopanna, R; Mabalirajan, U; Majumdar, S; Ghosh, B; Chattopadhyay, S

    2015-11-01

    Asthma is a complex airway allergic disease involving the interplay of various cell types, cytokines, and transcriptional factors. Though many factors contribute to disease etiology, the molecular control of disease phenotype and responsiveness is not well understood. Here we report an essential role of the matrix attachment region (MAR)-binding protein SMAR1 in regulating immune response during allergic airway disease. Conditional knockout of SMAR1 in T cells rendered the mice resistant to eosinophilic airway inflammation against ovalbumin (OVA) allergen with low immunoglobulin E (IgE) and interleukin-5 (IL-5) levels. Moreover, a lower IgE/IgG2a ratio and higher interferon-γ (IFN-γ) response suggested aberrant skewing of T-cell differentiation toward type 1 helper T cell (Th1) response. We show that SMAR1 functions as a negative regulator of Th1 and Th17 differentiation by interacting with two potential and similar MAR regions present on the promoters of T-bet and IL-17. Thus, we present SMAR1 as a regulator of T-cell differentiation that favors the establishment of Th2 cells by modulating Th1 and Th17 responses. PMID:25736456

  10. Distal Airway Stem Cells Render Alveoli in Vitro and During Lung Regeneration Following H1N1 Influenza Infection

    PubMed Central

    Kumar, Pooja A.; Hu, Yuanyu; Yamamoto, Yusuke; Hoe, Neo Boon; Wei, Tay Seok; Mu, Dakai; Sun, Yan; Joo, Lim Siew; Dagher, Rania; Zielonka, Elisabeth; Wang, De Yun; Chow, Vincent T.; Crum, Christopher P.; Xian, Wa; McKeon, Frank

    2011-01-01

    SUMMARY The extent of lung regeneration following catastrophic damage and the potential role of adult stem cells in such a process remains obscure. Sublethal infection of mice with an H1N1 influenza virus related to that of the 1918 pandemic triggers massive airway damage followed by apparent regeneration. We show here that p63-expressing stem cells in the bronchiolar epithelium undergo rapid proliferation after infection and radiate to interbronchiolar regions of alveolar ablation. Once there, these cells assemble into discrete, Krt5+ pods and initiate expression of markers typical of alveoli. Gene expression profiles of these pods suggest that they are intermediates in the reconstitution of the alveolar-capillary network eradicated by viral infection. The dynamics of this p63-expressing stem cell in lung regeneration mirrors our parallel finding that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease. PMID:22036562

  11. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease.

    PubMed

    Royce, Simon G; Shen, Matthew; Patel, Krupesh P; Huuskes, Brooke M; Ricardo, Sharon D; Samuel, Chrishan S

    2015-11-01

    This study determined if the anti-fibrotic drug, serelaxin (RLN), could augment human bone marrow-derived mesenchymal stem cell (MSC)-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR) associated with chronic allergic airways disease (AAD/asthma). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9-11. Changes in airway inflammation (AI), epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF)-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP) expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p<0.05 vs OVA group). RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p<0.05 vs OVA group). Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p<0.05 vs either treatment alone), and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs. PMID:26426509

  12. Phosphodiesterase 4B is essential for TH2-cell function and development of airway hyperresponsiveness in allergic asthma

    PubMed Central

    Catherine Jin, S.-L.; Goya, Sho; Nakae, Susumu; Wang, Dan; Bruss, Matthew; Hou, Chiaoyin; Umetsu, Dale; Conti, Marco

    2010-01-01

    Background Cyclic AMP (cAMP) signaling modulates functions of inflammatory cells involved in the pathogenesis of asthma, and type 4 cAMP-specific phosphodiesterases (PDE4s) are essential components of this pathway. Induction of the PDE4 isoform PDE4B is necessary for Toll-like receptor signaling in monocytes and macrophages and is associated with T cell receptor/CD3 in T cells; however, its exact physiological function in the development of allergic asthma remains undefined. Objectives We investigated the role of PDE4B in the development of allergen-induced airway hyperresponsiveness (AHR) and TH2-driven inflammatory responses. Methods Wild-type and PDE4B−/− mice were sensitized and challenged with ovalbumin and AHR measured in response to inhaled methacholine. Airway inflammation was characterized by analyzing leukocyte infiltration and cytokine accumulation in the airways. Ovalbumin-stimulated cell proliferation and TH2 cytokine production were determined in cultured bronchial lymph node cells. Results Mice deficient in PDE4B do not develop AHR. This protective effect was associated with a significant decrease in eosinophils recruitment to the lungs and decreased TH2 cytokine levels in the bronchoalveolar lavage fluid. Defects in T-cell replication, TH2 cytokine production, and dendritic cell migration were evident in cells from the airway-draining lymph nodes. Conversely, accumulation of the TH1 cytokine IFN-γ was not affected in PDE4B−/− mice. Ablation of the orthologous PDE4 gene PDE4A has no impact on airway inflammation. Conclusion By relieving a cAMP-negative constraint, PDE4B plays an essential role in TH2-cell activation and dendritic cell recruitment during airway inflammation. These findings provide proof of concept that PDE4 inhibitors with PDE4B selectivity may have efficacy in asthma treatment. PMID:21047676

  13. Baicalin inhibits PDGF-induced proliferation and migration of airway smooth muscle cells

    PubMed Central

    Yang, Guang; Li, Jian-Qiang; Bo, Jian-Ping; Wang, Bei; Tian, Xin-Rui; Liu, Tan-Zhen; Liu, Zhuo-La

    2015-01-01

    Airway smooth muscle (ASM) cell proliferation and migration play important roles in airway remodeling in asthma. In vitro platelet-derived growth factor (PDGF) induced ASM cell proliferation and migration. Baicalin is one of flavonoid extracts from Scutellaria baicalensis, which has an anti-asthma effect. However, little is known about its role in PDGF-induced proliferation and migration in rat ASM (RASM) cells. In this study, we aimed to investigate the effects of baicalin on PDGF-induced RASM cell proliferation and migration. We also identified the signaling pathway by which baicalin influences RASM cell proliferation and migration. In the current study, we demonstrated that baicalin suppressed PDGF-induced RASM cell proliferation, arrested PDGF-induced cell-cycle progression. It also suppressed PDGF-induced RASM cell migration. Furthermore, baicalin suppressed PDGF-induced expression of phosphorylated p38, ERK1/2 and JNK in RASM cells. In summary, our study is the first to show that baicalin pretreatment can significantly inhibit PDGF-induced RASM cell proliferation and migration by suppressing the MAPK signaling pathway, and baicalin may be a useful chemotherapeutic agent for asthma. PMID:26884970

  14. Upper Airway Genioglossal Activity in Children with Sickle Cell Disease

    PubMed Central

    Huang, Jingtao; Pinto, Swaroop J.; Allen, Julian L.; Arens, Raanan; Bowdre, Cheryl Y.; Jawad, Abbas F.; Mason, Thornton B.A.; Ohene-Frempong, Kwaku; Smith-Whitley, Kim; Marcus, Carole L.

    2011-01-01

    Study Objectives: The prevalence of obstructive sleep apnea syndrome (OSAS) in sickle cell disease (SCD) has been reported to be higher than that in the general pediatric population. However, not all subjects with SCD develop OSAS. We hypothesized that SCD patients with OSAS have a blunted neuromuscular response to subatmospheric pressure loads during sleep, making them more likely to develop upper airway collapse. Design: Subjects with SCD with and without OSAS underwent pressure-flow measurements during sleep using intraoral surface electrodes to measure genioglossal EMG (EMGgg). Two techniques were applied to decrease the nasal pressure (PN) to subatmospheric levels, resulting in an activated and relatively hypotonic upper airway. The area under the curve of the inspiratory EMGgg moving time average was analyzed. EMGgg activity was expressed as a percentage of baseline. Changes in EMGgg in response to decrements in nasal pressure were expressed as the slope of the EMGgg vs. nasal pressure (slope of EMGgg-PN). Setting: Sleep laboratory. Participants: 4 children with SCD and OSAS and 18 children with SCD but without OSAS. Results: The major findings of this study were: (1) using the activated but not the hypotonic technique, the slope of EMGgg-PN was more negative in SCD controls than SCD OSAS; (2) the slope of EMGgg-PN was significantly lower using the activated technique compared to the hypotonic technique in SCD controls only; (3) similarly, the critical closing pressure, Pcrit, was more negative using the activated technique than the hypotonic technique in SCD controls but not in SCD OSAS. Conclusion: This preliminary study has shown that children with SCD but without OSAS have more prominent upper airway reflexes than children with SCD and OSAS. Citation: Huang J; Pinto SJ; Allen JL; Arens R; Bowdre CY; Jawad AF; Mason TBA; Ohene-Frempong K; Smith-Whitely K; Marcus CL. Upper airway genioglossal activity in children with sickle cell disease. SLEEP 2011

  15. Airway epithelial cells activate Th2 cytokine production in mast cells via IL-1 and thymic stromal lymphopoietin

    PubMed Central

    Nagarkar, Deepti R.; Poposki, Julie A.; Comeau, Michael R.; Biyasheva, Assel; Avila, Pedro C.; Schleimer, Robert P.; Kato, Atsushi

    2012-01-01

    Background Airway epithelial cells are important regulators of innate and adaptive immunity. Although mast cells are known to play a central role in manifestations of allergic inflammation and are found in the epithelium in Th2-related diseases, their role is incompletely understood. Objectives The objective of this study was to investigate the role of airway epithelial cells in production of Th2 cytokines in mast cells. Methods Normal human bronchial epithelial cells (NHBE) were stimulated with TNF, IL-4, IFN-γ, IL -17A and dsRNA alone or in combination. Human mast cells were stimulated with epithelial cell-derived supernatants, or co-cultured with NHBE. Th2 cytokine responses were blocked with neutralizing antibodies. Results Supernatants from IL-4 and dsRNA stimulated NHBE significantly enhanced Th2 cytokine production from mast cells. The combination of IL-4 and dsRNA itself or supernatants from NHBE stimulated with other cytokines did not activate mast cells, suggesting that mast cell responses were induced by epithelial cell factors that were only induced by IL-4 and dsRNA. Epithelial supernatant-dependent Th2 cytokine production in mast cells was suppressed by anti-IL-1 and anti-TSLP, and was enhanced by anti-IL-1Ra. Similar results were observed in co-culture experiments. Finally, we found dsRNA-dependent production of IL-1, TSLP, and IL-1Ra in NHBE was regulated by Th cytokines, and their ratio in NHBE correlated with Th2 cytokine production in mast cells. Conclusions Pathogens producing dsRNA, such as respiratory viral infections, may amplify local Th2 inflammation in asthmatics via the production of TSLP and IL-1 by epithelial cells and subsequent activation of Th2 cytokine production by mast cells in the airways. PMID:22633328

  16. Bat airway epithelial cells: a novel tool for the study of zoonotic viruses.

    PubMed

    Eckerle, Isabella; Ehlen, Lukas; Kallies, René; Wollny, Robert; Corman, Victor M; Cottontail, Veronika M; Tschapka, Marco; Oppong, Samuel; Drosten, Christian; Müller, Marcel A

    2014-01-01

    Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat) and Eidolon helvum (Straw-colored fruit bat), were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells. PMID:24454736

  17. Bat Airway Epithelial Cells: A Novel Tool for the Study of Zoonotic Viruses

    PubMed Central

    Eckerle, Isabella; Ehlen, Lukas; Kallies, René; Wollny, Robert; Corman, Victor M.; Cottontail, Veronika M.; Tschapka, Marco; Oppong, Samuel; Drosten, Christian; Müller, Marcel A.

    2014-01-01

    Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat) and Eidolon helvum (Straw-colored fruit bat), were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells. PMID:24454736

  18. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  19. Role of Central Neurotransmission and Chemoreception on Airway Control

    PubMed Central

    Kc, Prabha; Martin, Richard J.

    2010-01-01

    This review summarizes work on central neurotransmission, chemoreception and CNS control of cholinergic outflow to the airways. First, we describe the neural transmission of bronchoconstrictive signals from airway afferents to the airway-related vagal preganglionic neurons (AVPNs) via the nucleus of the solitary tract (nTS) and, second, we characterize evidence for a modulatory effect of excitatory glutamatergic, and inhibitory GABAergic, noradrenergic and serotonergic pathways on AVPN output. Excitatory signals arising from bronchopulmonary afferents and/or the peripheral chemosensory system activate second order neurons within the nTS, via a glutamate-AMPA (alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid) receptor signaling pathway. These nTS neurons, using the same neurotransmitter-receptor unit, transmit information to the AVPNs, which in turn convey the central command through descending fibers and airway intramural ganglia to airway smooth muscle, submucosal secretory glands, and the vasculature. The strength and duration of this reflex-induced bronchoconstriction is modulated by GABAergic-inhibitory inputs. In addition, central noradrenergic and serotonergic inhibitory pathways appear to participate in the regulation of cholinergic drive to the tracheobronchial system. Down-regulation of these inhibitory influences results in a shift from inhibitory to excitatory drive, which may lead to increased excitability of AVPNs, heightened airway responsiveness, greater cholinergic outflow to the airways and consequently bronchoconstriction. In summary, centrally coordinated control of airway tone and respiratory drive serve to optimize gas exchange and work of breathing under normal homeostatic conditions. Greater understanding of this process should enhance our understanding of its disruption under pathophysiologic states. PMID:20359553

  20. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  1. AIRWAY EPITHELIAL CELL RESPONSE TO HUMAN METAPNEUMOVIRUS INFECTION

    PubMed Central

    X, Bao; T, Liu; L, Spetch; D, Kolli; R.P, Garofalo; A, Casola

    2007-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-κB, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immuno-modulatory mediators. PMID:17655903

  2. Role of laryngeal mask airway in laparoscopic cholecystectomy.

    PubMed

    Beleña, José M; Ochoa, Ernesto Josué; Núñez, Mónica; Gilsanz, Carlos; Vidal, Alfonso

    2015-11-27

    Laparoscopic cholecystectomy is one of the most commonly performed surgical procedures and the laryngeal mask airway (LMA) is the most common supraglottic airway device used by the anesthesiologists to manage airway during general anesthesia. Use of LMA has some advantages when compared to endotracheal intubation, such as quick and ease of placement, a lesser requirement for neuromuscular blockade and a lower incidence of postoperative morbididy. However, the use of the LMA in laparoscopy is controversial, based on a concern about increased risk of regurgitation and pulmonary aspiration. The ability of these devices to provide optimal ventilation during laparoscopic procedures has been also questioned. The most important parameter to secure an adequate ventilation and oxygenation for the LMA under pneumoperitoneum condition is its seal pressure of airway. A good sealing pressure, not only state correct patient ventilation, but it reduces the potential risk of aspiration due to the better seal of airway. In addition, the LMAs incorporating a gastric access, permitting a safe anesthesia based on these commented points. We did a literature search to clarify if the use of LMA in preference to intubation provides inadequate ventilation or increase the risk of aspiration in patients undergoing laparoscopic cholecystectomy. We found evidence stating that LMA with drain channel achieves adequate ventilation for these procedures. Limited evidence was found to consider these devices completely safe against aspiration. However, we observed that the incidence of regurgitation and aspiration associated with the use of the LMA in laparoscopic surgery is very low. PMID:26649155

  3. Host cell autophagy modulates early stages of adenovirus infections in airway epithelial cells.

    PubMed

    Zeng, Xuehuo; Carlin, Cathleen R

    2013-02-01

    Human adenoviruses typically cause mild infections in the upper or lower respiratory tract, gastrointestinal tract, or ocular epithelium. However, adenoviruses may be life-threatening in patients with impaired immunity and some serotypes cause epidemic outbreaks. Attachment to host cell receptors activates cell signaling and virus uptake by endocytosis. At present, it is unclear how vital cellular homeostatic mechanisms affect these early steps in the adenovirus life cycle. Autophagy is a lysosomal degradation pathway for recycling intracellular components that is upregulated during periods of cell stress. Autophagic cargo is sequestered in double-membrane structures called autophagosomes that fuse with endosomes to form amphisomes which then deliver their content to lysosomes. Autophagy is an important adaptive response in airway epithelial cells targeted by many common adenovirus serotypes. Using two established tissue culture models, we demonstrate here that adaptive autophagy enhances expression of the early region 1 adenovirus protein, induction of mitogen-activated protein kinase signaling, and production of new viral progeny in airway epithelial cells infected with adenovirus type 2. We have also discovered that adenovirus infections are tightly regulated by endosome maturation, a process characterized by abrupt exchange of Rab5 and Rab7 GTPases, associated with early and late endosomes, respectively. Moreover, endosome maturation appears to control a pool of early endosomes capable of fusing with autophagosomes which enhance adenovirus infection. Many viruses have evolved mechanisms to induce autophagy in order to aid their own replication. Our studies reveal a novel role for host cell autophagy that could have a significant impact on the outcome of respiratory infections. PMID:23236070

  4. OZONE-INDUCED RELEASE OF CYTOKINES AND FIBRONECTIN BY ALVEOLAR MACROPHAGES AND AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Although airway epithelial cells appear damaged following exposure of humans and animals to ozone, the contribution of these cells to inflammation observed after ozone exposure is unclear. ince human airway cells are infrequently available for in vitro studies, we have investigat...

  5. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells.

    PubMed

    Crother, Timothy R; Schröder, Nicolas W J; Karlin, Justin; Chen, Shuang; Shimada, Kenichi; Slepenkin, Anatoly; Alsabeh, Randa; Peterson, Ellena; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate), but not a high dose (severe) CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2-/-, and TLR4-/- mice were infected intranasally (i.n.) with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA) and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2-/- mice, but not in TLR4-/- mice, due to differential Treg responses in these genotypes. TLR2-/- mice had reduced numbers of Tregs in the lung during CP infection while TLR4-/- mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs. PMID:21695198

  6. Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding

    PubMed Central

    Nita-Lazar, Mihai; Banerjee, Aditi; Feng, Chiguang; Amin, Mohammed N.; Frieman, Matthew B.; Chen, Wilbur H.; Cross, Alan S.; Wang, Lai-Xi; Vasta, Gerardo R.

    2015-01-01

    The continued threat of worldwide influenza pandemics, together with the yearly emergence of antigenically drifted influenza A virus (IAV) strains, underscore the urgent need to elucidate not only the mechanisms of influenza virulence, but also those mechanisms that predispose influenza patients to increased susceptibility to subsequent infection with Streptococcus pneumoniae. Glycans displayed on the surface of epithelia that are exposed to the external environment play important roles in microbial recognition, adhesion, and invasion. It is well established that the IAV hemagglutinin and pneumococcal adhesins enable their attachment to the host epithelia. Reciprocally, the recognition of microbial glycans by host carbohydrate-binding proteins (lectins) can initiate innate immune responses, but their relevance in influenza or pneumococcal infections is poorly understood. Galectins are evolutionarily conserved lectins characterized by affinity for β-galactosides and a unique sequence motif, with critical regulatory roles in development and immune homeostasis. In this study, we examined the possibility that galectins expressed in the airway epithelial cells might play a significant role in viral or pneumococcal adhesion to airway epithelial cells. Our results in a mouse model for influenza and pneumococcal infection revealed that the murine lung expresses a diverse galectin repertoire, from which selected galectins, including galectin 1 (Gal1) and galectin 3 (Gal3), are released to the bronchoalveolar space. Further, the results showed that influenza and subsequent S. pneumoniae infections significantly alter the glycosylation patterns of the airway epithelial surface and modulate galectin expression. In vitro studies on the human airway epithelial cell line A549 were consistent with the observations made in the mouse model, and further revealed that both Gal1 and Gal3 bind strongly to IAV and S. pneumoniae, and that exposure of the cells to viral neuraminidase or

  7. HB-EGF-Promoted Airway Smooth Muscle Cells and Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse.

    PubMed

    Wang, Qing; Li, Hequan; Yao, Yinan; Lu, Guohua; Wang, Yuehong; Xia, Dajing; Zhou, Jianying

    2016-03-01

    The airway smooth muscle (ASM) cells' proliferation, migration, and their progenitor's migration are currently regarded as causative factors for ASM remodeling in asthma. Heparin-binding epidermal growth factor (HB-EGF), a potent mitogen and chemotactic factor, could promote ASM cell proliferation through MAPK pathways. In this study, we obtained primary ASM cells and their progenitors from C57BL/6 mice and went on to explore the role of HB-EGF in these cells migration and the underlying mechanisms. We found that recombinant HB-EGF (rHB-EGF) intratracheal instillation accelerated ASM layer thickening in an OVA-induced asthmatic mouse. Modified Boyden chamber assay revealed that rHB-EGF facilitate ASM cell migration in a dose-dependent manner and ASM cells from asthmatic mice had a greater migration ability than that from normal counterparts. rHB-EGF could stimulate the phosphorylation of ERK1/2 and p38 in ASM cells but further migration assay showed that only epidermal growth factor receptor inhibitor (AG1478) or p38 inhibitor (SB203580), but not ERK1/2 inhibitor (PD98059), could inhibit rHB-EGF-mediated ASM cells migration. Actin cytoskeleton experiments exhibited that rHB-EGF could cause actin stress fibers disassembly and focal adhesions formation of ASM cells through the activation of p38. Finally, airway instillation of rHB-EGF promoted the recruitment of bone marrow-derived smooth muscle progenitor cells, which were transferred via caudal vein, migrating into the airway from the circulation. These observations demonstrated that ASM remodeling in asthma might have resulted from HB-EGF-mediated ASM cells and their progenitor cells migration, via p38 MAPK-dependent actin cytoskeleton remodeling. PMID:26826248

  8. Chronic inflammatory airway diseases: the central role of the epithelium revisited.

    PubMed

    Gohy, S T; Hupin, C; Pilette, C; Ladjemi, M Z

    2016-04-01

    The respiratory epithelium plays a critical role for the maintenance of airway integrity and defense against inhaled particles. Physical barrier provided by apical junctions and mucociliary clearance clears inhaled pathogens, allergens or toxics, to prevent continuous stimulation of adaptive immune responses. The "chemical barrier", consisting of several anti-microbial factors such as lysozyme and lactoferrin, constitutes another protective mechanism of the mucosae against external aggressions before adaptive immune response starts. The reconstruction of damaged respiratory epithelium is crucial to restore this barrier. This review examines the role of the airway epithelium through recent advances in health and chronic inflammatory diseases in the lower conducting airways (in asthma and chronic obstructive pulmonary disease). Better understanding of normal and altered epithelial functions continuously provides new insights into the physiopathology of chronic airway diseases and should help to identify new epithelial-targeted therapies. PMID:27021118

  9. The innate immune function of airway epithelial cells in inflammatory lung disease.

    PubMed

    Hiemstra, Pieter S; McCray, Paul B; Bals, Robert

    2015-04-01

    The airway epithelium is now considered to be central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as the first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. Herein, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, chronic obstructive pulmonary fibrosis and cystic fibrosis will be discussed. PMID:25700381

  10. The innate immune function of airway epithelial cells in inflammatory lung disease

    PubMed Central

    Hiemstra, Pieter S.; McCray, Paul B.; Bals, Robert

    2016-01-01

    The airway epithelium is now considered central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as a first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. In the review, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, COPD and cystic fibrosis, are discussed. PMID:25700381

  11. Natural killer T cells are dispensable in the development of allergen-induced airway hyperresponsiveness, inflammation and remodelling in a mouse model of chronic asthma.

    PubMed

    Koh, Y-I; Shim, J-U; Lee, J-H; Chung, I-J; Min, J-J; Rhee, J H; Lee, H C; Chung, D H; Wi, J-O

    2010-07-01

    Natural killer T (NK T) cells have been shown to play an essential role in the development of allergen-induced airway hyperresponsiveness (AHR) and/or airway inflammation in mouse models of acute asthma. Recently, NK T cells have been reported to be required for the development of AHR in a virus induced chronic asthma model. We investigated whether NK T cells were required for the development of allergen-induced AHR, airway inflammation and airway remodelling in a mouse model of chronic asthma. CD1d-/- mice that lack NK T cells were used for the experiments. In the chronic model, AHR, eosinophilic inflammation, remodelling characteristics including mucus metaplasia, subepithelial fibrosis and increased mass of the airway smooth muscle, T helper type 2 (Th2) immune response and immunoglobulin (Ig)E production were equally increased in both CD1d-/- mice and wild-type mice. However, in the acute model, AHR, eosinophilic inflammation, Th2 immune response and IgE production were significantly decreased in the CD1d-/- mice compared to wild-type. CD1d-dependent NK T cells may not be required for the development of allergen-induced AHR, eosinophilic airway inflammation and airway remodelling in chronic asthma model, although they play a role in the development of AHR and eosinophilic inflammation in acute asthma model. PMID:20456411

  12. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease.

    PubMed

    Bonini, Matteo; Usmani, Omar S

    2015-12-01

    Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), represent a major social and economic burden for worldwide health systems. During recent years, increasing attention has been directed to the role of small airways in respiratory diseases, and their exact contribution to the pathophysiology of asthma and COPD continues to be clarified. Indeed, it has been suggested that small airways play a distinct role in specific disease phenotypes. Besides providing information on small airways structure and diagnostic procedures, this review therefore aims to present updated and evidence-based findings on the role of small airways in the pathophysiology of asthma and COPD. Most of the available information derives from either pathological studies or review articles and there are few data on the natural history of small airways disease in the onset or progression of asthma and COPD. Comparisons between studies on the role of small airways are hard to draw because both asthma and COPD are highly heterogeneous conditions. Most studies have been performed in small population samples, and different techniques to characterize aspects of small airways function have been employed in order to assess inflammation and remodelling. Most methods of assessing small airways dysfunction have been largely confined to research purposes, but some data are encouraging, supporting the utilization of certain techniques into daily clinical practice, particularly for early-stage diseases, when subjects are often asymptomatic and routine pulmonary function tests may be within normal ranges. In this context further clinical trials and real-life feedback on large populations are desirable. PMID:26037949

  13. Acellular Lung Scaffolds Direct Differentiation of Endoderm to Functional Airway Epithelial Cells: Requirement of Matrix-Bound HS Proteoglycans

    PubMed Central

    Shojaie, Sharareh; Ermini, Leonardo; Ackerley, Cameron; Wang, Jinxia; Chin, Stephanie; Yeganeh, Behzad; Bilodeau, Mélanie; Sambi, Manpreet; Rogers, Ian; Rossant, Janet; Bear, Christine E.; Post, Martin

    2015-01-01

    Summary Efficient differentiation of pluripotent cells to proximal and distal lung epithelial cell populations remains a challenging task. The 3D extracellular matrix (ECM) scaffold is a key component that regulates the interaction of secreted factors with cells during development by often binding to and limiting their diffusion within local gradients. Here we examined the role of the lung ECM in differentiation of pluripotent cells in vitro and demonstrate the robust inductive capacity of the native lung matrix alone. Extended culture of stem cell-derived definitive endoderm on decellularized lung scaffolds in defined, serum-free medium resulted in differentiation into mature airway epithelia, complete with ciliated cells, club cells, and basal cells with morphological and functional similarities to native airways. Heparitinase I, but not chondroitinase ABC, treatment of scaffolds revealed that the differentiation achieved is dependent on heparan sulfate proteoglycans and its bound factors remaining on decellularized scaffolds. PMID:25660407

  14. Role of Dystrophin in Airway Smooth Muscle Phenotype, Contraction and Lung Function

    PubMed Central

    Sharma, Pawan; Basu, Sujata; Mitchell, Richard W.; Stelmack, Gerald L.; Anderson, Judy E.; Halayko, Andrew J.

    2014-01-01

    Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD) and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC) and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh) when compared to genetic control BL10ScSnJ mice (wild-type). In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM. PMID:25054970

  15. A crucial role of Flagellin in the induction of airway mucus production by Pseudomonas aeruginosa.

    PubMed

    Ben Mohamed, Fatima; Mohamed, Fatima Ben; Garcia-Verdugo, Ignacio; Medina, Mathieu; Balloy, Viviane; Chignard, Michel; Ramphal, Reuben; Touqui, Lhousseine

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen involved in nosocomial infections. Flagellin is a P. aeruginosa virulence factor involved in host response to this pathogen. We examined the role of flagellin in P. aeruginosa-induced mucus secretion. Using a mouse model of pulmonary infection we showed that PAK, a wild type strain of P. aeruginosa, induced airway mucus secretion and mucin muc5ac expression at higher levels than its flagellin-deficient mutant (ΔFliC). PAK induced expression of MUC5AC and MUC2 in both human airway epithelial NCI-H292 cell line and in primary epithelial cells. In contrast, ΔFliC infection had lower to no effect on MUC5AC and MUC2 expressions. A purified P. aeruginosa flagellin induced MUC5AC expression in parallel to IL-8 secretion in NCI-H292 cells. Accordingly, ΔFliC mutant stimulated IL-8 secretion at significantly lower levels compared to PAK. Incubation of NCI-H292 cells with exogenous IL-8 induced MUC5AC expression and pre-incubation of these cells with an anti-IL-8 antibody abrogated flagellin-mediated MUC5AC expression. Silencing of TLR5 and Naip, siRNA inhibited both flagellin-induced MUC5AC expression and IL-8 secretion. Finally, inhibition of ERK abolished the expression of both PAK- and flagellin-induced MUC5AC. We conclude that: (i) flagellin is crucial in P. aeruginosa-induced mucus hyper-secretion through TLR5 and Naip pathways; (ii) this process is mediated by ERK and amplified by IL-8. Our findings help understand the mechanisms involved in mucus secretion during pulmonary infectious disease induced by P. aeruginosa, such as in cystic fibrosis. PMID:22768318

  16. T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice.

    PubMed

    Li, Bobby W S; de Bruijn, Marjolein J W; Tindemans, Irma; Lukkes, Melanie; KleinJan, Alex; Hoogsteden, Henk C; Hendriks, Rudi W

    2016-06-01

    Allergic asthma is a chronic inflammation of the airways mediated by an adaptive type 2 immune response. Upon allergen exposure, group 2 innate lymphoid cells (ILC2s) can be rapidly activated and represent an early innate source of IL-5 and IL-13. Here, we used a house dust mite (HDM)-driven asthma mouse model to study the induction of ILC2s in allergic airway inflammation. In BALF, lungs, and lymph nodes, ILC2 activation is critically dependent on prior sensitization with HDM. Importantly, T cells are required for ILC2 induction, whereby T-cell activation precedes ILC2 induction. During HDM-driven allergic airway inflammation the accumulation of ILC2s in BALF is IL-33 independent, although infiltrating ILC2s produce less cytokines in Il33(-/-) mice. Transfer of in vitro polarized OVA-specific OT-II Th2 cells alone or in combination with Th17 cells followed by OVA and HDM challenge is not sufficient to induce ILC2, despite significant eosinophilic inflammation and T-cell activation. In this asthma model, ILC2s are therefore not an early source of Th2 cytokines, but rather contribute to type 2 inflammation in which Th2 cells play a key role. Taken together, ILC2 induction in HDM-mediated allergic airway inflammation in mice critically depends on activation of T cells. PMID:27062360

  17. Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells

    PubMed Central

    Jairaman, Amit; Maguire, Chelsea H.; Schleimer, Robert P.; Prakriya, Murali

    2016-01-01

    Aberrant immune responses to environmental allergens including insect allergens from house dust mites and cockroaches contribute to allergic inflammatory diseases such as asthma in susceptible individuals. Airway epithelial cells (AECs) play a critical role in this process by sensing the proteolytic activity of allergens via protease-activated receptors (PAR2) to initiate inflammatory and immune responses in the airway. Elevation of cytosolic Ca2+ is an important signaling event in this process, yet the fundamental mechanism by which allergens induce Ca2+ elevations in AECs remains poorly understood. Here we find that extracts from dust mite and cockroach induce sustained Ca2+ elevations in AECs through the activation of Ca2+ release-activated Ca2+ (CRAC) channels encoded by Orai1 and STIM1. CRAC channel activation occurs, at least in part, through allergen mediated stimulation of PAR2 receptors. The ensuing Ca2+ entry then activates NFAT/calcineurin signaling to induce transcriptional production of the proinflammatory cytokines IL-6 and IL-8. These findings highlight a key role for CRAC channels as regulators of allergen induced inflammatory responses in the airway. PMID:27604412

  18. Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells.

    PubMed

    Jairaman, Amit; Maguire, Chelsea H; Schleimer, Robert P; Prakriya, Murali

    2016-01-01

    Aberrant immune responses to environmental allergens including insect allergens from house dust mites and cockroaches contribute to allergic inflammatory diseases such as asthma in susceptible individuals. Airway epithelial cells (AECs) play a critical role in this process by sensing the proteolytic activity of allergens via protease-activated receptors (PAR2) to initiate inflammatory and immune responses in the airway. Elevation of cytosolic Ca(2+) is an important signaling event in this process, yet the fundamental mechanism by which allergens induce Ca(2+) elevations in AECs remains poorly understood. Here we find that extracts from dust mite and cockroach induce sustained Ca(2+) elevations in AECs through the activation of Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by Orai1 and STIM1. CRAC channel activation occurs, at least in part, through allergen mediated stimulation of PAR2 receptors. The ensuing Ca(2+) entry then activates NFAT/calcineurin signaling to induce transcriptional production of the proinflammatory cytokines IL-6 and IL-8. These findings highlight a key role for CRAC channels as regulators of allergen induced inflammatory responses in the airway. PMID:27604412

  19. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    PubMed Central

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.

    2016-01-01

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease. PMID:27570836

  20. Atopy and Inhaled Corticosteroid Use Associate with Fewer IL-17+ Cells in Asthmatic Airways

    PubMed Central

    Fattahi, Fatemeh; Brandsma, Corry-Anke; Lodewijk, Monique; Reinders-Luinge, Marjan; Postma, Dirkje S.; Timens, Wim; Hylkema, Machteld N.; ten Hacken, Nick H. T.

    2016-01-01

    Background Interleukin (IL)-17 plays a critical role in numerous immune and inflammatory responses and was recently suggested to contribute to the pathogenesis of nonatopic (non-eosinophil/neutrophil-dominant) asthma. We aimed to compare expression of IL-17 in bronchial airways between atopic and nonatopic asthmatics, with/without inhaled corticosteroid (ICS) use and to identify its major cellular source. Methods Bronchial biopsies from 114 patients with mild-to-moderate asthma were investigated: 33 nonatopic, 63 non-corticosteroid users, 90 nonsmokers. IL-17 expression was correlated with atopy and inflammatory cell counts (EPX, NP57, CD3, CD4, CD8, CD20, CD68), taking ICS use and smoking into account. Multiple linear regression analyses were used to determine the independent factors as well as the most relevant inflammatory cells contributing to IL-17 expression. Double immunostainings were performed to confirm the major cellular source of IL-17. Results In non-ICS users, nonatopic asthmatics had more IL-17+ cells in the airway wall than atopic asthmatics. In both atopic and nonatopic asthmatics, ICS use was associated with lower numbers of IL-17+ cells, independent of smoking. The number of IL-17+ cells was associated with the number of neutrophils (B: 0.26, 95% CI: 0.17–0.35) and eosinophils (B: 0.18, 95% CI: 0.07–0.29). The majority of IL-17+ cells were neutrophils, as confirmed by double immunostaining. Conclusions We show for the first time that atopy and ICS use are associated with lower numbers of IL-17+ cells in asthmatic airways. Importantly, IL-17+ cells were mostly neutrophils which conflicts with the paradigm that lymphocytes (Th17) are the main source of IL-17. PMID:27552197

  1. Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.

    PubMed

    Naire, Shailesh; Jensen, Oliver E

    2005-08-01

    A theoretical model is presented describing the reopening by an advancing air bubble of an initially liquid-filled collapsed airway lined with deformable epithelial cells. The model integrates descriptions of flow-structure interaction (accounting for nonlinear deformation of the airway wall and viscous resistance of the airway liquid flow), surfactant transport around the bubble tip (incorporating physicochemical parameters appropriate for Infasurf), and cell deformation (due to stretching of the airway wall and airway liquid flows). It is shown how the pressure required to drive a bubble into a flooded airway, peeling apart the wet airway walls, can be reduced substantially by surfactant, although the effectiveness of Infasurf is limited by slow adsorption at high concentrations. The model demonstrates how the addition of surfactant can lead to the spontaneous reopening of a collapsed airway, depending on the degree of initial airway collapse. The effective elastic modulus of the epithelial layer is shown to be a key determinant of the relative magnitude of strains generated by flow-induced shear stresses and by airway wall stretch. The model also shows how epithelial-layer compressibility can mediate strains arising from flow-induced normal stresses and stress gradients. PMID:15802368

  2. Lipidome and Transcriptome Profiling of Pneumolysin Intoxication Identifies Networks Involved in Statin-Conferred Protection of Airway Epithelial Cells

    PubMed Central

    Statt, Sarah; Ruan, Jhen-Wei; Huang, Chih-Ting; Wu, Reen; Kao, Cheng-Yuan

    2015-01-01

    Pneumonia remains one of the leading causes of death in both adults and children worldwide. Despite the adoption of a wide variety of therapeutics, the mortality from community-acquired pneumonia has remained relatively constant. Although viral and fungal acute airway infections can result in pneumonia, bacteria are the most common cause of community-acquired pneumonia, with Streptococcus pneumoniae isolated in nearly 50% of cases. Pneumolysin is a cholesterol-dependent cytolysin or pore-forming toxin produced by Streptococcus pneumonia and has been shown to play a critical role in bacterial pathogenesis. Airway epithelium is the initial site of many bacterial contacts and its barrier and mucosal immunity functions are central to infectious lung diseases. In our studies, we have shown that the prior exposure to statins confers significant resistance of airway epithelial cells to the cytotoxicity of pneumolysin. We decided to take this study one step further, assessing changes in both the transcriptome and lipidome of human airway epithelial cells exposed to toxin, statin or both. Our current work provides the first global view in human airway epithelial cells of both the transcriptome and the lipid interactions that result in cellular protection from pneumolysin. PMID:26023727

  3. Chronic effects of mechanical force on airways.

    PubMed

    Tschumperlin, Daniel J; Drazen, Jeffrey M

    2006-01-01

    Airways are embedded in the mechanically dynamic environment of the lung. In utero, this mechanical environment is defined largely by fluid secretion into the developing airway lumen. Clinical, whole lung, and cellular studies demonstrate pivotal roles for mechanical distention in airway morphogenesis and cellular behavior during lung development. In the adult lung, the mechanical environment is defined by a dynamic balance of surface, tissue, and muscle forces. Diseases of the airways modulate both the mechanical stresses to which the airways are exposed as well as the structure and mechanical behavior of the airways. For instance, in asthma, activation of airway smooth muscle abruptly changes the airway size and stress state within the airway wall; asthma also results in profound remodeling of the airway wall. Data now demonstrate that airway epithelial cells, smooth muscle cells, and fibroblasts respond to their mechanical environment. A prominent role has been identified for the epithelium in transducing mechanical stresses, and in both the fetal and mature airways, epithelial cells interact with mesenchymal cells to coordinate remodeling of tissue architecture in response to the mechanical environment. PMID:16460284

  4. Functional Invariant NKT Cells in Pig Lungs Regulate the Airway Hyperreactivity: A Potential Animal Model

    PubMed Central

    Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun

    2015-01-01

    Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929

  5. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis

    PubMed Central

    DUHAIME, MICHAEL J.; PAGE, KHALIPH O.; VARELA, FAUSTO A.; MURRAY, ANDREW S.; SILVERMAN, MICHAEL E.; ZORATTI, GINA L.; LIST, KARIN

    2016-01-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  6. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis.

    PubMed

    Duhaime, Michael J; Page, Khaliph O; Varela, Fausto A; Murray, Andrew S; Silverman, Michael E; Zoratti, Gina L; List, Karin

    2016-07-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  7. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows

    PubMed Central

    Higuita-Castro, Natalia; Mihai, Cosmin; Hansford, Derek J.

    2014-01-01

    Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation. PMID:25213636

  8. Oxidative Stress Regulates CFTR Gene Expression in Human Airway Epithelial Cells through a Distal Antioxidant Response Element

    PubMed Central

    Zhang, Zhaolin; Leir, Shih-Hsing

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator gene (CFTR) expression in human airway epithelial cells involves the recruitment of distal cis-regulatory elements, which are associated with airway-selective DNase hypersensitive sites at −44 kb and −35 kb from the gene. The −35-kb site encompasses an enhancer that is regulated by the immune mediators interferon regulatory factor 1 and 2 and by nuclear factor Y. Here we investigate the −44-kb element, which also has enhancer activity in vitro in airway epithelial cells but is inactive in intestinal epithelial cells. This site contains an antioxidant response element (ARE) that plays a critical role in its function in airway cell lines and primary human bronchial epithelial cells. The natural antioxidant sulforaphane (SFN) induces nuclear translocation of nuclear factor, erythroid 2-like 2 (Nrf2), a transcription factor that regulates genes with AREs in their promoters, many of which are involved in response to injury. Under normal conditions, the −44-kb ARE is occupied by the repressor BTB and CNC homology 1, basic leucine zipper transcription factor (Bach1), and v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) heterodimers. After 2 hours of SFN treatment, Nrf2 displaces these repressive factors and activates CFTR expression. Site-directed mutagenesis shows that both the ARE and an adjacent NF-κB binding site are required for activation of the –44-kb element in airway epithelial cells. Moreover, this element is functionally linked to the −35-kb enhancer in modulating CFTR expression in response to environmental stresses in the airway. PMID:25259561

  9. miR-125b inhibits goblet cell differentiation in allergic airway inflammation by targeting SPDEF.

    PubMed

    Liu, Zhaoe; Chen, Xing; Wu, Qiaoling; Song, Jia; Wang, Lijun; Li, Gang

    2016-07-01

    Asthma is a disease characterized by goblet cell differentiation, mucus hypersecretion, airway inflammation, and airway hyperresponsiveness. miR-125b was downregulated as normal human bronchial epithelial cells differentiation to pseudostratified epithelium. However, its role in asthma remains unknown especially in regulating goblet cell differentiation. miR-125b expression in the sputum of 50 asthmatic children and 50 age- and sex-matched healthy controls were assessed by quantitative RT-PCR (qRT-PCR). Meanwhile, expressions of miR-125b and SAM pointed domain-containing ETS transcription factor (SPDEF) in normal human tracheal epithelial (HTEpC) and A549 cells stimulated with lipopolysaccharide (LPS) for 2h were detected by qRT-PCR and western blot. Furthermore, the predicted miR-125b target was determined in silico and confirmed with dual-luciferase reporter assay. Additionally, intranasal delivery of miR-125b mimic in mice was performed to study its effects on house dust mite-induced allergic airway inflammation mouse models. We found that miR-125b expression was decreased in the sputum of the asthmatic patients especially in eosinophilic asthma. After stimulation with LPS, miR-125b expression was downregulated, accompanied by the upregulation of SPDEF in HTEpC and A549 cells. Moreover, SPDEF is a target of miR-125b, which regulates SPDEF at the posttranscriptional level. Additionally, intranasal delivery of miR-125b decreased SPDEF protein levels, goblet cell differentiation, mucus hypersecretion, and altered relevant gene expressions. Taken together, these results suggest that miR-125b inhibits SPDEF expression modulating goblet cell differentiation and mucus secretion in asthma. PMID:27112664

  10. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling

    PubMed Central

    Paul, MK; Bisht, B; Darmawan, DO; Chiou, R; Ha, VL; Wallace, WD; Chon, AC; Hegab, AE; Grogan, T; Elashoff, DA; Alva-Ornelas, JA; Gomperts, BN

    2014-01-01

    SUMMARY Airways are exposed to myriad environmental and damaging agents such as reactive oxygen species (ROS), which also have physiological roles as signaling molecules that regulate stem cell function. However, the functional significance of both steady and dynamically changing ROS levels in different stem cell populations, as well as downstream mechanisms that integrate ROS sensing into decisions regarding stem cell homeostasis, are unclear. Here, we show in mouse and human airway basal stem cells (ABSCs) that intracellular flux from low to moderate ROS levels is required for stem cell self-renewal and proliferation. Changing ROS levels activate Nrf2, which activates the Notch pathway to stimulate ABSC self-renewal as well an antioxidant program that scavenges intracellular ROS, returning overall ROS levels to a low state to maintain homeostatic balance. This redox-mediated regulation of lung stem cell function has significant implications for stem cell biology, repair of lung injuries, and diseases such as cancer. PMID:24953182

  11. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model

    PubMed Central

    Spaziano, Giuseppe; Piegari, Elena; Matteis, Maria; Cappetta, Donato; Esposito, Grazia; Russo, Rosa; Tartaglione, Gioia; De Palma, Raffaele; Rossi, Francesco; D’Agostino, Bruno

    2016-01-01

    Background The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs) can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce. Objectives To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model. Methods GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro. Results Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties. Conclusion Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide

  12. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury.

    PubMed

    Gomperts, Brigitte N; Belperio, John A; Rao, P Nagesh; Randell, Scott H; Fishbein, Michael C; Burdick, Marie D; Strieter, Robert M

    2006-02-01

    Recipient airway epithelial cells are found in human sex-mismatched lung transplants, implying that circulating progenitor epithelial cells contribute to the repair of the airway epithelium. Markers of circulating progenitor epithelial cells and mechanisms for their trafficking remain to be elucidated. We demonstrate that a population of progenitor epithelial cells exists in the bone marrow and the circulation of mice that is positive for the early epithelial marker cytokeratin 5 (CK5) and the chemokine receptor CXCR4. We used a mouse model of sex-mismatched tracheal transplantation and found that CK5+ circulating progenitor epithelial cells contribute to re-epithelialization of the airway and re-establishment of the pseudostratified epithelium. The presence of CXCL12 in tracheal transplants provided a mechanism for CXCR4+ circulating progenitor epithelial cell recruitment to the airway. Depletion of CXCL12 resulted in the epithelium defaulting to squamous metaplasia, which was derived solely from the resident tissue progenitor epithelial cells. Our findings demonstrate that CK5+CXCR4+ cells are markers of circulating progenitor epithelial cells in the bone marrow and circulation and that CXCR4/CXCL12-mediated recruitment of circulating progenitor epithelial cells is necessary for the re-establishment of a normal pseudostratified epithelium after airway injury. These findings support a novel paradigm for the development of squamous metaplasia of the airway epithelium and for developing therapeutic strategies for circulating progenitor epithelial cells in airway diseases. PMID:16424223

  13. The role of airway mucus in pulmonary toxicology.

    PubMed Central

    Samet, J M; Cheng, P W

    1994-01-01

    Airway mucus is a complex airway secretion whose primary function as part of the mucociliary transport mechanism is to to serve as renewable and transportable barrier against inhaled particulates and toxic agents. The rheologic properties necessary for this function are imparted by glycoproteins, or mucins. Some respiratory disease states, e.g., asthma, cystic fibrosis, and bronchitis, are characterized by quantitative and qualitative changes in mucus biosynthesis that contribute to pulmonary pathology. Similar alterations in various aspects of mucin biochemistry and biophysics, leading to mucus hypersecretion and altered mucus rheology, result from inhalation of certain air pollutants, such as ozone, sulfur dioxide, nitrogen dioxide, and cigarette smoke. The consequences of these pollutant-induced alterations in mucus biology are discussed in the context of pulmonary pathophysiology and toxicology. PMID:7925190

  14. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  15. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease.

    PubMed

    Hinks, Timothy S C

    2016-05-01

    Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers. PMID:26778581

  16. Dendritic cells and alveolar macrophages mediate IL-13–induced airway inflammation and chemokine production

    PubMed Central

    Crapster-Pregont, Margaret; Yeo, Janice; Sanchez, Raquel L.; Kuperman, Douglas A.

    2013-01-01

    Background IL-13 in the airway induces pathologies that are highly characteristic of asthma, including mucus metaplasia, airway hyperreactivity (AHR), and airway inflammation. As such, it is important to identify the IL-13–responding cell types that mediate each of the above pathologies. For example, IL-13’s effects on epithelium contribute to mucus metaplasia and AHR. IL-13’s effects on smooth muscle also contribute to AHR. However, it has been difficult to identify the cell types that mediate IL-13–induced airway inflammation. Objective We sought to determine which cell types mediate IL-13–induced airway inflammation. Methods We treated the airways of mice with IL-13 alone or in combination with IFN-γ. We associated the inhibitory effect of IFN-γ on IL-13–induced airway inflammation and chemokine production with cell types in the lung that coexpress IL-13 and IFN-γ receptors. We then evaluated IL-13–induced responses in CD11c promoter–directed diphtheria toxin receptor–expressing mice that were depleted of both dendritic cells and alveolar macrophages and in CD11b promoter–directed diphtheria toxin receptor– expressing mice that were depleted of dendritic cells. Results Dendritic cell and alveolar macrophage depletion protected mice from IL-13–induced airway inflammation and CCL11, CCL24, CCL22, and CCL17 chemokine production. Preferential depletion of dendritic cells protected mice from IL-13–induced airway inflammation and CCL22 and CCL17 chemokine production but not from IL-13–induced CCL11 and CCL24 chemokine production. In either case mice were not protected from IL-13–induced AHR and mucus metaplasia. Conclusions Pulmonary dendritic cells and alveolar macrophages mediate IL-13–induced airway inflammation and chemokine production. (J Allergy Clin Immunol 2012;129:1621-7.) PMID:22365581

  17. Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control.

    PubMed

    Strickland, D H; Judd, S; Thomas, J A; Larcombe, A N; Sly, P D; Holt, P G

    2011-01-01

    The hallmark of atopic asthma is transient airways hyperresponsiveness (AHR) preceded by aeroallergen-induced Th-cell activation. This is preceded by upregulation of CD86 on resident airway dendritic cells (DCs) that normally lack competence in T-cell triggering. Moreover, AHR duration is controlled via T-regulatory (Treg) cells, which can attenuate CD86 upregulation on DC. We show that airway mucosal Treg/DC interaction represents an accessible therapeutic target for asthma control. Notably, baseline airway Treg activity in sensitized rats can be boosted by microbe-derived stimulation of the gut, resulting in enhanced capacity to control CD86 expression on airway DC triggered by aeroallergen and accelerated resolution of AHR. PMID:20668438

  18. Development of cystic fibrosis and noncystic fibrosis airway cell lines.

    PubMed

    Zabner, Joseph; Karp, Phil; Seiler, Michael; Phillips, Stacia L; Mitchell, Calista J; Saavedra, Mimi; Welsh, Michael; Klingelhutz, Aloysius J

    2003-05-01

    In this study, we utilized the reverse transcriptase component of telomerase, hTERT, and human papillomavirus type 16 (HPV-16) E6 and E7 genes to transform normal and cystic fibrosis (CF) human airway epithelial (HAE) cells. One cell line, designated NuLi-1 (normal lung, University of Iowa), was derived from HAE of normal genotype; three cell lines, designated CuFi (cystic fibrosis, University of Iowa)-1, CuFi-3, and CuFi-4, were derived from HAE of various CF genotypes. When grown at the air-liquid interface, the cell lines were capable of forming polarized differentiated epithelia that exhibited transepithelial resistance and maintained the ion channel physiology expected for the genotypes. The CF transmembrane conductance regulator defect in the CuFi cell lines could be corrected by infecting from the basolateral surface using adenoviral vectors. Using nuclear factor-kappaB promoter reporter constructs, we also demonstrated that the NuLi and CuFi cell lines retained nuclear factor-kappaB responses to lipopolysaccharide. These cell lines should therefore be useful as models for studying ion physiology, therapeutic intervention for CF, and innate immunity. PMID:12676769

  19. NEUTROPHILS PLAY A CRITICAL ROLE IN THE DEVELOPMENT OF LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    ETD-02-045 (GAVETT) GPRA # 10108

    Neutrophils Play a Critical Role in the Development of LPS-Induced Airway Disease.
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, and David A. Schwartz

    ABSTRACT
    We investigated the role of neutrophils...

  20. Regulation of high glucose-mediated mucin expression by matrix metalloproteinase-9 in human airway epithelial cells.

    PubMed

    Yu, Hongmei; Yang, Juan; Xiao, Qian; Lü, Yang; Zhou, Xiangdong; Xia, Li; Nie, Daijing

    2015-04-10

    Mucus hypersecretion is the key manifestation in patients with chronic inflammatory airway diseases and mucin 5AC (MUC5AC) is a major component of airway mucus. Matrix metalloproteinases (MMP)-9, have been found to be involved in the pathogenesis of inflammatory airway diseases. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that high glucose (HG)-regulates MMP-9 production and MMP-9 activity through nicotinamide adenine dinucleotide phosphate (NADPH)/reactive oxygen species (ROS) cascades pathways, leading to mucin production in human airway epithelial cells (16HBE). We show that HG increases MMP-9 production, MMP-9 activity and MUC5AC expression. These effects are prevented by small interfering RNA (siRNA) for MMP-9, indicating that HG-induced mucin production is MMP-9-dependent. HG activates MMP-9 production, MMP-9 activity and MUC5AC overproduction, which is inhibited by nPG, DMSO and DPI (inhibitors of ROS and NADPH), suggesting that HG-activated mucin synthesis is mediated by NADPH/ROS in 16HBE cells. These observations demonstrate an important role for MMP-9 activated by NADPH/ROS signaling pathways in regulating HG-induced MUC5AC expression. These findings may bring new insights into the molecular pathogenesis of the infections related to diabetes mellitus and lead to novel therapeutic intervention for mucin overproduction in chronic inflammatory airway diseases. PMID:25704757

  1. A rhesus monkey model to characterize the role of gastrin-releasing peptide (GRP) in lung development. Evidence for stimulation of airway growth.

    PubMed Central

    Li, K; Nagalla, S R; Spindel, E R

    1994-01-01

    Gastrin-releasing peptide (GRP) is developmentally expressed in human fetal lung and is a growth factor for normal and neoplastic lung but its role in normal lung development has yet to be clearly defined. In this study we have characterized the expression of GRP and its receptor in fetal rhesus monkey lung and determined the effects of bombesin on fetal lung development in vitro. By RNA blot analysis, GRP mRNA was first detectable in fetal monkey lung at 63 days gestation, reached highest levels at 80 days gestation, and then declined to near adult levels by 120 days gestation; a pattern closely paralleling GRP expression in human fetal lung. As in human lung, in situ hybridization localized GRP mRNA to neuroendocrine cells though during the canalicular phase of development (between 63-80 days gestation) GRP mRNA was present not only in classic pulmonary neuroendocrine cells, but also in cells of budding airways. Immunohistochemistry showed that bombesin-like immunoreactivity was present in neuroendocrine cells, but not in budding airways, suggesting that in budding airways either the GRP mRNA is not translated, is rapidly secreted, or a related, but different RNA is present. RNase protection analysis using a probe to the monkey GRP receptor demonstrated that the time course of receptor RNA expression closely paralleled the time course of GRP RNA expression. In situ hybridization showed that GRP receptors were primarily expressed in epithelial cells of the developing airways. Thus GRP would appear to be secreted from neuroendocrine cells to act on target cells in developing airways. This hypothesis was confirmed by organ culture of fetal monkey lung in the presence of bombesin and bombesin antagonists. Bombesin treatment at 1 and 10 nM significantly increased DNA synthesis in airway epithelial cells and significantly increased the number and size of airways in cultured fetal lung. In fact, culturing 60 d fetal lung for 5 d with 10 nM bombesin increased airway size

  2. Role of Eosinophil Granulocytes in Allergic Airway Inflammation Endotypes.

    PubMed

    Amin, K; Janson, C; Bystrom, J

    2016-08-01

    Eosinophil granulocytes are intriguing members of the innate immunity system that have been considered important defenders during parasitic diseases as well as culprits during allergy-associated inflammatory diseases. Novel studies have, however, found new homoeostasis-maintaining roles for the cell. Recent clinical trials blocking different Th2 cytokines have uncovered that asthma is heterogeneous entity and forms different characteristic endotypes. Although eosinophils are present in allergic asthma with early onset, the cells may not be essential for the pathology. The cells are, however, likely disease causing in asthma with a late onset, which is often associated with chronic rhinosinusitis. Assessment of eosinophilia, fraction exhaled nitric oxide (FeNO) and periostin are markers that have emerged useful in assessing and monitoring asthma severity and endotype. Current scientific knowledge suggests that eosinophils are recruited by the inflammatory environment, activated by the innate interleukin (IL)-33 and prevented from apoptosis by both lymphocytes and innate immune cells such as type two innate immune cells. Eosinophils contain four specific granule proteins that exhibit an array of toxic and immune-modulatory activates. The granule proteins can be released by different mechanisms. Additionally, eosinophils contain a number of inflammatory cytokines and lipid mediators as well as radical oxygen species that might contribute to the disease both by the recruitment of other cells and the direct damage to supporting cells, leading to exacerbations and tissue fibrosis. This review aimed to outline current knowledge how eosinophils are recruited, activated and mediate damage to tissues and therapies used to control the cells. PMID:27167590

  3. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    PubMed

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway. PMID:24885163

  4. A computational prediction for the effective drug and stem cell treatment of human airway burns.

    PubMed

    Park, Seungman

    2016-08-01

    Burns in the airway from inhaling hot gases lead to one of the most common causes of death in the United States. In order to navigate tissues with large burn areas, the velocity, temperature, and heat flux distributions throughout the human airway system are computed for the inhalation of hot air using the finite-element method. From there, the depth of burned tissue is estimated for a range of exposure times. Additionally, the effectiveness of drug or stem cell delivery to the burned airway tissue is considered for a range of drug or cell sizes. Results showed that the highest temperature and lowest heat flux regions are observed near the pharynx and just upstream of the glottis. It was found that large particles such as stem cells (>20 μm) are effective for treatment of the upper airways, whereas small particles (<10 μm) such as drug nanoparticles are effective in the lower airways. PMID:26513000

  5. Lipopolysaccharide stimulation of dendritic cells induces interleukin-10 producing allergen-specific T cells in vitro but fails to prevent allergic airway disease.

    PubMed

    Ahrens, Birgit; Freund, Tobias; Rha, Ro-Dug; Dittrich, Anna-Maria; Quarcoo, David; Hutloff, Andreas; Hamelmann, Eckard

    2009-05-01

    Dendritic cells (DCs) play an important role in directing naive T cells towards a Th1/Th2 or regulatory T cells (Treg) cell phenotype. In this context, interleukin (IL)-10 has been shown to exhibit immune regulatory capacities. The aim of this study was to delineate the influence of high-IL-10-producing DCs on DC-T-cell interactions in inhibiting allergen-induced airway inflammation and hyperreactivity in a murine model of allergic airway disease. Bone marrow-derived dendritic cells (BMDCs) were generated from hemopoietic progenitors by culture with granulocyte-macrophage colony-stimulating factor (GM-CSF), and stimulated with ovalbumin (OVA) +/- lipopolysaccharide (LPS). The effects of ovalbumin-pulsed BMDCs on cytokine production by allergen-specific naive T cells were studied in vitro. The development of airway inflammation in Balb/c mice was determined after intranasal administration of BMDCs in vivo. LPS stimulation of BMDCs strongly enhanced IL-10 production. Coculture of LPS-modulated DCs exhibiting increased IL-10 production with allergen-specific naive T cells reduced the production of interferon (IFN)-gamma and IL-5, but enhanced the production of IL-10. After blockade with anti-IL-10 plus anti-IL-10-receptor antibodies, the level of IFN-gamma and IL-5 production by cocultured T cells was restored, underlining the regulatory function of IL-10. Intranasal administration of high-IL-10-producing LPS-stimulated, OVA-primed BMDCs prior to repetitive airway allergen challenges resulted in an even enhanced airway inflammation. These data demonstrate that increased IL-10 production by DCs may be a critical element for T-cell activation and differentiation in the context of allergen-induced immune responses in vitro. However, this DC modulation did not translate into suppression of allergic airway disease in vivo. PMID:19415548

  6. Interactions of Aspergillus fumigatus Conidia with Airway Epithelial Cells: A Critical Review

    PubMed Central

    Croft, Carys A.; Culibrk, Luka; Moore, Margo M.; Tebbutt, Scott J.

    2016-01-01

    Aspergillus fumigatus is an environmental filamentous fungus that also acts as an opportunistic pathogen able to cause a variety of symptoms, from an allergic response to a life-threatening disseminated fungal infection. The infectious agents are inhaled conidia whose first point of contact is most likely to be an airway epithelial cell (AEC). The interaction between epithelial cells and conidia is multifaceted and complex, and has implications for later steps in pathogenesis. Increasing evidence has demonstrated a key role for the airway epithelium in the response to respiratory pathogens, particularly at early stages of infection; therefore, elucidating the early stages of interaction of conidia with AECs is essential to understand the establishment of infection in cohorts of at-risk patients. Here, we present a comprehensive review of the early interactions between A. fumigatus and AECs, including bronchial and alveolar epithelial cells. We describe mechanisms of adhesion, internalization of conidia by AECs, the immune response of AECs, as well as the role of fungal virulence factors, and patterns of fungal gene expression characteristic of early infection. A clear understanding of the mechanisms involved in the early establishment of infection by A. fumigatus could point to novel targets for therapy and prophylaxis. PMID:27092126

  7. Mast cell-cholinergic nerve interaction in mouse airways.

    PubMed

    Weigand, Letitia A; Myers, Allen C; Meeker, Sonya; Undem, Bradley J

    2009-07-01

    We addressed the mechanism by which antigen contracts trachea isolated from actively sensitized mice. Trachea were isolated from mice (C57BL/6J) that had been actively sensitized to ovalbumin (OVA). OVA (10 microg ml(-1)) caused histamine release (approximately total tissue content), and smooth muscle contraction that was rapid in onset and short-lived (t(1/2) < 1 min), reaching approximately 25% of the maximum tissue response. OVA contraction was mimicked by 5-HT, and responses to both OVA and 5-HT were sensitive to 10 microm-ketanserin (5-HT(2) receptor antagonist) and strongly inhibited by atropine (1microm). Epithelial denudation had no effect on the OVA-induced contraction. Histological assessment revealed about five mast cells/tracheal section the vast majority of which contained 5-HT. There were virtually no mast cells in the mast cell-deficient (sash -/-) mouse trachea. OVA failed to elicit histamine release or contractile responses in trachea isolated from sensitized mast cell-deficient (sash -/-) mice. Intracellular recordings of the membrane potential of parasympathetic neurons in mouse tracheal ganglia revealed a ketanserin-sensitive 5-HT-induced depolarization and similar depolarization in response to OVA challenge. These data support the hypothesis that antigen-induced contraction of mouse trachea is epithelium-independent, and requires mast cell-derived 5-HT to activate 5-HT(2) receptors on parasympathetic cholinergic neurons. This leads to acetylcholine release from nerve terminals, and airway smooth muscle contraction. PMID:19403609

  8. Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations.

    PubMed

    Pardo-Saganta, Ana; Law, Brandon M; Tata, Purushothama Rao; Villoria, Jorge; Saez, Borja; Mou, Hongmei; Zhao, Rui; Rajagopal, Jayaraj

    2015-02-01

    Following injury, stem cells restore normal tissue architecture by producing the proper number and proportions of differentiated cells. Current models of airway epithelial regeneration propose that distinct cytokeratin 8-expressing progenitor cells, arising from p63(+) basal stem cells, subsequently differentiate into secretory and ciliated cell lineages. We now show that immediately following injury, discrete subpopulations of p63(+) airway basal stem/progenitor cells themselves express Notch pathway components associated with either secretory or ciliated cell fate commitment. One basal cell population displays intracellular Notch2 activation and directly generates secretory cells; the other expresses c-myb and directly yields ciliated cells. Furthermore, disrupting Notch ligand activity within the basal cell population at large disrupts the normal pattern of lineage segregation. These non-cell-autonomous effects demonstrate that effective airway epithelial regeneration requires intercellular communication within the broader basal stem/progenitor cell population. These findings have broad implications for understanding epithelial regeneration and stem cell heterogeneity. PMID:25658372

  9. The Role of Airway and Endobronchial Ultrasound in Perioperative Medicine.

    PubMed

    Votruba, Jiri; Zemanová, Petra; Lambert, Lukas; Vesela, Michaela Michalkova

    2015-01-01

    Recent years have witnessed an increased use of ultrasound in evaluation of the airway and the lower parts of the respiratory system. Ultrasound examination is fast and reliable and can be performed at the bedside and does not carry the risk of exposure to ionizing radiation. Apart from use in diagnostics it may also provide safe guidance for invasive and semi-invasive procedures. Ultrasound examination of the oral cavity structures, epiglottis, vocal cords, and subglottic space may help in the prediction of difficult intubation. Preoperative ultrasound may diagnose vocal cord palsy or deviation or stenosis of the trachea. Ultrasonography can also be used for confirmation of endotracheal tube, double-lumen tube, or laryngeal mask placement. This can be achieved by direct examination of the tube inside the trachea or by indirect methods evaluating lung movements. Postoperative airway ultrasound may reveal laryngeal pathology or subglottic oedema. Conventional ultrasound is a reliable real-time navigational tool for emergency cricothyrotomy or percutaneous dilational tracheostomy. Endobronchial ultrasound is a combination of bronchoscopy and ultrasonography and is used for preoperative examination of lung cancer and solitary pulmonary nodules. The method is also useful for real-time navigated biopsies of such pathological structures. PMID:26788507

  10. The Role of Airway and Endobronchial Ultrasound in Perioperative Medicine

    PubMed Central

    Votruba, Jiri; Zemanová, Petra; Lambert, Lukas; Vesela, Michaela Michalkova

    2015-01-01

    Recent years have witnessed an increased use of ultrasound in evaluation of the airway and the lower parts of the respiratory system. Ultrasound examination is fast and reliable and can be performed at the bedside and does not carry the risk of exposure to ionizing radiation. Apart from use in diagnostics it may also provide safe guidance for invasive and semi-invasive procedures. Ultrasound examination of the oral cavity structures, epiglottis, vocal cords, and subglottic space may help in the prediction of difficult intubation. Preoperative ultrasound may diagnose vocal cord palsy or deviation or stenosis of the trachea. Ultrasonography can also be used for confirmation of endotracheal tube, double-lumen tube, or laryngeal mask placement. This can be achieved by direct examination of the tube inside the trachea or by indirect methods evaluating lung movements. Postoperative airway ultrasound may reveal laryngeal pathology or subglottic oedema. Conventional ultrasound is a reliable real-time navigational tool for emergency cricothyrotomy or percutaneous dilational tracheostomy. Endobronchial ultrasound is a combination of bronchoscopy and ultrasonography and is used for preoperative examination of lung cancer and solitary pulmonary nodules. The method is also useful for real-time navigated biopsies of such pathological structures. PMID:26788507

  11. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. PMID:26826245

  12. Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds

    PubMed Central

    Morris, G. E.; Bridge, J. C.; Eltboli, O. M. I.; Lewis, M. P.; Knox, A. J.; Aylott, J. W.; Brightling, C. E.; Ghaemmaghami, A. M.

    2014-01-01

    Human airway smooth muscle (HASM) contraction plays a central role in regulating airway resistance in both healthy and asthmatic bronchioles. In vitro studies that investigate the intricate mechanisms that regulate this contractile process are predominantly conducted on tissue culture plastic, a rigid, 2D geometry, unlike the 3D microenvironment smooth muscle cells are exposed to in situ. It is increasingly apparent that cellular characteristics and responses are altered between cells cultured on 2D substrates compared with 3D topographies. Electrospinning is an attractive method to produce 3D topographies for cell culturing as the fibers produced have dimensions within the nanometer range, similar to cells' natural environment. We have developed an electrospun scaffold using the nondegradable, nontoxic, polymer polyethylene terephthalate (PET) composed of uniaxially orientated nanofibers and have evaluated this topography's effect on HASM cell adhesion, alignment, and morphology. The fibers orientation provided contact guidance enabling the formation of fully aligned sheets of smooth muscle. Moreover, smooth muscle cells cultured on the scaffold present an elongated cell phenotype with altered contractile protein levels and distribution. HASM cells cultured on this scaffold responded to the bronchoconstrictor bradykinin. The platform presented provides a novel in vitro model that promotes airway smooth muscle cell development toward a more in vivo-like phenotype while providing topological cues to ensure full cell alignment. PMID:24793171

  13. MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis

    PubMed Central

    Perdomo, Catalina; Campbell, Joshua D.; Gerrein, Joseph; Tellez, Carmen S.; Garrison, Carly B.; Walser, Tonya C.; Drizik, Eduard; Si, Huiqing; Gower, Adam C.; Vick, Jessica; Anderlind, Christina; Jackson, George R.; Mankus, Courtney; Schembri, Frank; O’Hara, Carl; Gomperts, Brigitte N.; Dubinett, Steven M.; Hayden, Patrick; Belinsky, Steven A.; Lenburg, Marc E.; Spira, Avrum

    2013-01-01

    Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis. PMID:24158479

  14. MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis.

    PubMed

    Perdomo, Catalina; Campbell, Joshua D; Gerrein, Joseph; Tellez, Carmen S; Garrison, Carly B; Walser, Tonya C; Drizik, Eduard; Si, Huiqing; Gower, Adam C; Vick, Jessica; Anderlind, Christina; Jackson, George R; Mankus, Courtney; Schembri, Frank; O'Hara, Carl; Gomperts, Brigitte N; Dubinett, Steven M; Hayden, Patrick; Belinsky, Steven A; Lenburg, Marc E; Spira, Avrum

    2013-11-19

    Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis. PMID:24158479

  15. MyD88 in lung resident cells governs airway inflammatory and pulmonary function responses to organic dust treatment.

    PubMed

    Poole, Jill A; Wyatt, Todd A; Romberger, Debra J; Staab, Elizabeth; Simet, Samantha; Reynolds, Stephen J; Sisson, Joseph H; Kielian, Tammy

    2015-01-01

    Inhalation of organic dusts within agriculture environments contributes to the development and/or severity of airway diseases, including asthma and chronic bronchitis. MyD88 KO (knockout) mice are nearly completely protected against the inflammatory and bronchoconstriction effects induced by acute organic dust extract (ODE) treatments. However, the contribution of MyD88 in lung epithelial cell responses remains unclear. In the present study, we first addressed whether ODE-induced changes in epithelial cell responses were MyD88-dependent by quantitating ciliary beat frequency and cell migration following wounding by electric cell-substrate impedance sensing. We demonstrate that the normative ciliary beat slowing response to ODE is delayed in MyD88 KO tracheal epithelial cells as compared to wild type (WT) control. Similarly, the normative ODE-induced slowing of cell migration in response to wound repair was aberrant in MyD88 KO cells. Next, we created MyD88 bone marrow chimera mice to investigate the relative contribution of MyD88-dependent signaling in lung resident (predominately epithelial cells) versus hematopoietic cells. Importantly, we demonstrate that ODE-induced airway hyperresponsiveness is MyD88-dependent in lung resident cells, whereas MyD88 action in hematopoietic cells is mainly responsible for ODE-induced TNF-α release. MyD88 signaling in lung resident and hematopoietic cells are necessary for ODE-induced IL-6 and neutrophil chemoattractant (CXCL1 and CXCL2) release and neutrophil influx. Collectively, these findings underscore an important role for MyD88 in lung resident cells for regulating ciliary motility, wound repair and inflammatory responses to ODE, and moreover, show that airway hyperresponsiveness appears uncoupled from airway inflammatory consequences to organic dust challenge in terms of MyD88 involvement. PMID:26376975

  16. Role of interleukin-8 (IL-8) and an inhibitory effect of erythromycin on IL-8 release in the airways of patients with chronic airway diseases.

    PubMed Central

    Oishi, K; Sonoda, F; Kobayashi, S; Iwagaki, A; Nagatake, T; Matsushima, K; Matsumoto, K

    1994-01-01

    To evaluate of the role of interleukin-8 (IL-8), a chemotactic cytokine, in the continuous neutrophil accumulation in the airways of patients with chronic airway disease (CAD) and persistent Pseudomonas aeruginosa infection, we investigated the cell population, IL-8 levels, IL-1 beta levels, tumor necrosis factor (TNF) activities, and neutrophil elastase (NE) activities of bronchoalveolar lavage (BAL) fluids in 17 CAD patients (with P. aeruginosa infections [CAD+PA], n = 9; without any bacterial infections [CAD-PA], n = 8) and 8 normal volunteers. We found significant elevations of neutrophil numbers, IL-8/albumin ratios, and NE/albumin ratios in BAL fluids from CAD patients, in the following rank order: CAD+PA > CAD-PA > normal volunteers. IL-1 beta/albumin ratios were elevated only in CAD+PA, while no TNF bioactivity was detected in BAL fluids. The neutrophil numbers correlated significantly with the IL-8/albumin ratios and NE/albumin ratios in the BAL fluids of CAD patients. When anti-human IL-8 immunoglobulin G was used for neutralizing neutrophil chemotactic factor (NCF) activities in BAL fluids, the mean reduction rate of NCF activities in CAD+PA patients was significantly higher than that in CAD-PA patients. We also evaluated the effects of low-dose, long-term erythromycin therapy in BAL fluids from three CAD+PA and two CAD-PA patients. Treatment with erythromycin caused significant reductions of neutrophil numbers, IL-8/albumin ratios, and NE/albumin ratios in BAL fluids from these patients. To elucidate the mechanism of erythromycin therapy, we also examined whether erythromycin suppressed IL-8 production by human alveolar macrophages and neutrophils in vitro. We demonstrated a moderate inhibitory effect of erythromycin on IL-8 production in Pseudomonas-stimulated neutrophils but not in alveolar macrophages. Our data support the view that persistent P. aeruginosa infection enhances IL-8 production and IL-8-derived NCF activity, causing neutrophil

  17. Generation of ESC-derived Mouse Airway Epithelial Cells Using Decellularized Lung Scaffolds.

    PubMed

    Shojaie, Sharareh; Lee, Joyce; Wang, Jinxia; Ackerley, Cameron; Post, Martin

    2016-01-01

    Lung lineage differentiation requires integration of complex environmental cues that include growth factor signaling, cell-cell interactions and cell-matrix interactions. Due to this complexity, recapitulation of lung development in vitro to promote differentiation of stem cells to lung epithelial cells has been challenging. In this protocol, decellularized lung scaffolds are used to mimic the 3-dimensional environment of the lung and generate stem cell-derived airway epithelial cells. Mouse embryonic stem cell are first differentiated to the endoderm lineage using an embryoid body (EB) culture method with activin A. Endoderm cells are then seeded onto decellularized scaffolds and cultured at air-liquid interface for up to 21 days. This technique promotes differentiation of seeded cells to functional airway epithelial cells (ciliated cells, club cells, and basal cells) without additional growth factor supplementation. This culture setup is defined, serum-free, inexpensive, and reproducible. Although there is limited contamination from non-lung endoderm lineages in culture, this protocol only generates airway epithelial populations and does not give rise to alveolar epithelial cells. Airway epithelia generated with this protocol can be used to study cell-matrix interactions during lung organogenesis and for disease modeling or drug-discovery platforms of airway-related pathologies such as cystic fibrosis. PMID:27214388

  18. Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes

    PubMed Central

    Sun, Xiaoru; Zheng, Minghuan; Zhang, Miaomiao; Qian, Mengjia; Zheng, Yonghua; Li, Meiyi; Cretoiu, Dragos; Chen, Chengshui; Chen, Luonan; Popescu, Laurentiu M; Wang, Xiangdong

    2014-01-01

    Telocytes (TCs) are a unique type of interstitial cells with specific, extremely long prolongations named telopodes (Tps). Our previous study showed that TCs are distinct from fibroblasts (Fbs) and mesenchymal stem cells (MSCs) as concerns gene expression and proteomics. The present study explores patterns of mouse TC-specific gene profiles on chromosome 1. We investigated the network of main genes and the potential functional correlations. We compared gene expression profiles of mouse pulmonary TCs, MSCs, Fbs, alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T-BL) and CD8+ T cells from lungs (T-LL). The functional and feature networks were identified and compared by bioinformatics tools. Our data showed that on TC chromosome 1, there are about 25% up-regulated and 70% down-regulated genes (more than onefold) as compared with the other cells respectively. Capn2, Fhl2 and Qsox1 were over-expressed in TCs compared to the other cells, indicating that biological functions of TCs are mainly associated with morphogenesis and local tissue homoeostasis. TCs seem to have important roles in the prevention of tissue inflammation and fibrogenesis development in lung inflammatory diseases and as modulators of immune cell response. In conclusion, TCs are distinct from the other cell types. PMID:24826900

  19. VAMP8 is a vesicle SNARE that regulates mucin secretion in airway goblet cells.

    PubMed

    Jones, Lisa C; Moussa, Lama; Fulcher, M Leslie; Zhu, Yunxiang; Hudson, Elizabeth J; O'Neal, Wanda K; Randell, Scott H; Lazarowski, Eduardo R; Boucher, Richard C; Kreda, Silvia M

    2012-02-01

    Mucin secretion is an innate defence mechanism, which is noxiously upregulated in obstructive lung diseases (e.g. chronic obstructive pulmonary disease (COPD), cystic fibrosis and asthma). Mucin granule exocytosis is regulated by specific protein complexes, but the SNARE exocytotic core has not been defined in airway goblet cells. In this study, we identify VAMP8 as one of the SNAREs regulating mucin granule exocytosis. VAMP8 mRNA was present in human airway and lung epithelial cells, and deep-sequencing and expression analyses of airway epithelial cells revealed that VAMP8 transcripts were expressed at 10 times higher levels than other VAMP mRNAs. In human airway epithelial cell cultures and freshly excised tissues, VAMP8 immunolocalised mainly to goblet cell mucin granules. The function of VAMP8 in airway mucin secretion was tested by RNA interference techniques. Both VAMP8 short interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) reduced mucin secretion induced by PAR agonists, neutrophil elastase and ATP in two airway epithelial cell culture models. Notably, basal (non-agonist elicited) mucin secretion was also reduced in these experiments. VAMP8 knockdown was also effective in decreasing mucin secretion in airway epithelial cell cultures with induced mucous metaplasia/mucin hypersecretion. Unlike VAMP8 silencing, knockdown of VAMP2 or VAMP3 did not affect mucin secretion. Importantly, in VAMP8 knock-out (KO) mice with IL-13-induced mucous metaplasia, mucin content in the bronchoalveolar lavage (BAL) and ATP-stimulated mucin secretion in the trachea were reduced compared to WT-matched littermates. Our data indicate that VAMP8 is an essential SNARE in airway mucin granule exocytosis. Reduction of VAMP8 activity/expression may provide a novel therapeutic target to ameliorate airway mucus obstruction in lung diseases. PMID:22144578

  20. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells

    PubMed Central

    Huang, Sarah X L; Green, Michael D; de Carvalho, Ana Toste; Mumau, Melanie; Chen, Ya-Wen; D’Souza, Sunita L.; Snoeck, Hans-Willem

    2015-01-01

    Lung and airway epithelial cells generated in vitro from human pluripotent stem cells have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of human pluripotent stem cells into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development and takes approximately 50 days. First, definitive endoderm is induced in the presence of high concentrations of Activin A. Subsequently, lung-biased anterior foregut endoderm is specified by sequential inhibition of BMP, TGF-β and Wnt signaling. Anterior foregut endoderm is then ventralized by applying Wnt, BMP, FGF and RA signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, c-AMP and glucocorticoid agonism. This protocol is conducted in defined conditions, does not involve genetic manipulation of the cells, and results in cultures where the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells. PMID:25654758

  1. Alternaria extract activates autophagy that induces IL-18 release from airway epithelial cells.

    PubMed

    Murai, Hiroki; Okazaki, Shintaro; Hayashi, Hisako; Kawakita, Akiko; Hosoki, Koa; Yasutomi, Motoko; Sur, Sanjiv; Ohshima, Yusei

    2015-09-01

    Alternaria alternata is a major outdoor allergen that causes allergic airway diseases. Alternaria extract (ALT-E) has been shown to induce airway epithelial cells to release IL-18 and thereby initiate Th2-type responses. We investigated the underlying mechanisms involved in IL-18 release from ALT-E-stimulated airway epithelial cells. Normal human bronchial epithelial cells and A549 human lung adenocarcinoma cells were stimulated with ALT-E in the presence of different inhibitors of autophagy or caspases. IL-18 levels in culture supernatants were measured by ELISA. The numbers of autophagosomes, an LC3-I to LC3-II conversion, and p62 degradation were determined by immunofluorescence staining and immunoblotting. 3-methyladenine and bafilomycin, which inhibit the formation of preautophagosomal structures and autolysosomes, respectively, suppressed ALT-E-induced IL-18 release by cells, whereas caspase 1 and 8 inhibitors did not. ALT-E-stimulation increased autophagosome formation, LC-3 conversion, and p62 degradation in airway epithelial cells. LPS-stimulation induced the LC3 conversion in A549 cells, but did not induce IL-18 release or p62 degradation. Unlike LPS, ALT-E induced airway epithelial cells to release IL-18 via an autophagy dependent, caspase 1 and 8 independent pathway. Although autophagy has been shown to negatively regulate canonical inflammasome activity in TLR-stimulated macrophages, our data indicates that this process is an unconventional mechanism of IL-18 secretion by airway epithelial cells. PMID:26032499

  2. Collaborative interactions between type 2 innate lymphoid cells and antigen-specific CD4+ Th2 cells exacerbate murine allergic airway diseases with prominent eosinophilia.

    PubMed

    Liu, Bo; Lee, Jee-Boong; Chen, Chun-Yu; Hershey, Gurjit K Khurana; Wang, Yui-Hsi

    2015-04-15

    Type-2 innate lymphoid cells (ILC2s) and the acquired CD4(+) Th2 and Th17 cells contribute to the pathogenesis of experimental asthma; however, their roles in Ag-driven exacerbation of chronic murine allergic airway diseases remain elusive. In this study, we report that repeated intranasal rechallenges with only OVA Ag were sufficient to trigger airway hyperresponsiveness, prominent eosinophilic inflammation, and significantly increased serum OVA-specific IgG1 and IgE in rested mice that previously developed murine allergic airway diseases. The recall response to repeated OVA inoculation preferentially triggered a further increase of lung OVA-specific CD4(+) Th2 cells, whereas CD4(+) Th17 and ILC2 cell numbers remained constant. Furthermore, the acquired CD4(+) Th17 cells in Stat6(-/-)/IL-17-GFP mice, or innate ILC2s in CD4(+) T cell-ablated mice, failed to mount an allergic recall response to OVA Ag. After repeated OVA rechallenge or CD4(+) T cell ablation, the increase or loss of CD4(+) Th2 cells resulted in an enhanced or reduced IL-13 production by lung ILC2s in response to IL-25 and IL-33 stimulation, respectively. In return, ILC2s enhanced Ag-mediated proliferation of cocultured CD4(+) Th2 cells and their cytokine production, and promoted eosinophilic airway inflammation and goblet cell hyperplasia driven by adoptively transferred Ag-specific CD4(+) Th2 cells. Thus, these results suggest that an allergic recall response to recurring Ag exposures preferentially triggers an increase of Ag-specific CD4(+) Th2 cells, which facilitates the collaborative interactions between acquired CD4(+) Th2 cells and innate ILC2s to drive the exacerbation of a murine allergic airway diseases with an eosinophilic phenotype. PMID:25780046

  3. IL-9-mediated induction of eotaxin1/CCL11 in human airway smooth muscle cells.

    PubMed

    Gounni, Abdelilah Soussi; Hamid, Qutayba; Rahman, Sahidur M; Hoeck, Jutta; Yang, Jie; Shan, Lianyu

    2004-08-15

    Recent work has shown the potential importance of IL-9 in allergic diseases. The development of transgenic mice overexpressing IL-9 has suggested a key role for this cytokine in the development of the asthmatic phenotype including airway eosinophilia. In this study, we evaluated the expression of the IL-9R and the effects of IL-9 on human ASM cells by examining the release of Th2-associated chemokines (eotaxin1/CCL11 and thymus- and activation-regulated chemokine (TARC)/CCL17). IL-9R alpha-chain mRNA and surface expression were detected in cultured human airway smooth muscle (ASM) cells. In addition, primary cultured ASM cells, as well as bronchial smooth muscle cells within biopsies of asthmatics and not control subjects, revealed IL-9R protein expression. IL-9 stimulation of human ASM cells resulted in release of eotaxin1/CCL11, but had no effect on the release of TARC/CCL17, in time- and dose-dependent manner. Moreover, in vitro chemotaxis assay demonstrated that conditioned medium from IL-9-stimulated ASM cells attracted human eosinophils. Neutralizing Abs to IL-9, but not to IL-4 or IL-13, reduced significantly IL-9-induced production of eotaxin1/CCL11 from ASM cells. Interestingly, real-time RT-PCR showed that IL-9 up-regulated eotaxin1/CCL11 mRNA expression, but had no effect on TARC/CCL17. Treatment with Act D abrogates IL-9-induced eotaxin1/CCL11 mRNA and protein release by ASM cells. Finally, transfection study using eotaxin1/CCL11 promoter luciferase construct confirmed that IL-9 induced eotaxin1/CCL11 at the transcriptional level. Taken together, these data provide new evidence demonstrating that IL-9-dependent activation of ASM cells contributes to eosinophilic inflammation observed in asthma. PMID:15294996

  4. Control of T helper 2 cell function and allergic airway inflammation by PKCζ

    PubMed Central

    Martin, Pilar; Villares, Ricardo; Rodriguez-Mascarenhas, Sandra; Zaballos, Angel; Leitges, Michael; Kovac, Judit; Sizing, Irene; Rennert, Paul; Márquez, Gabriel; Martínez-A, Carlos; Diaz-Meco, María T.; Moscat, Jorge

    2005-01-01

    Asthma is a disease of chronic airway inflammation in which T helper (Th) 2 cells play a critical role. The molecular mechanisms controlling Th2 differentiation and function are of paramount importance in biology and immunology. PKCζ has been implicated in the regulation of apoptosis and NF-κB, as well as in the control of T-dependent responses, although no defects were detected in naïve T cells from PKCζ–/– mice. Here, we report that PKCζ is critical for IL-4 signaling and Th2 differentiation. Thus, PKCζ levels are increased during Th2 differentiation, but not Th1 differentiation, of CD4+ T cells, and the loss of PKCζ impairs the secretion of Th2 cytokines in vitro and in vivo, as well as the nuclear translocation and tyrosine phosphorylation of Stat6 and Jak1 activation, essential downstream targets of IL-4 signaling. Moreover, PKCζ–/– mice display dramatic inhibition of ovalbumin-induced allergic airway disease, strongly suggesting that PKCζ can be a therapeutic target in asthma. PMID:15987782

  5. Reduction of DNA mismatch repair protein expression in airway epithelial cells of premenopausal women chronically exposed to biomass smoke.

    PubMed

    Mukherjee, Bidisha; Dutta, Anindita; Chowdhury, Saswati; Roychoudhury, Sanghita; Ray, Manas Ranjan

    2014-02-01

    Biomass burning is a major source of indoor air pollution in rural India. This study examined whether chronic inhalation of biomass smoke causes change in the DNA mismatch repair (MMR) pathway in the airway cells. For this, airway cells exfoliated in sputum were collected from 72 premenopausal nonsmoking rural women (median age 34 years) who cooked with biomass (wood, dung, crop residues) and 68 control women who cooked with cleaner fuel liquefied petroleum gas (LPG) for the past 5 years or more. The levels of particulate matters with diameters less than 10 and 2.5 μm (PM10 and PM2.5) in indoor air were measured by real-time aerosol monitor. Benzene exposure was monitored by measuring trans,trans-muconic acid (t,t-MA) in urine by high-performance liquid chromatography with ultraviolet detector. Generation of reactive oxygen species (ROS) and level of superoxide dismutase (SOD) in airway cells were measured by flow cytometry and spectrophotometry, respectively. Immunocytochemical assay revealed lower percentage of airway epithelial cells expressing MMR proteins mutL homolog 1 (MLH1) and mutS homolog 2 (MSH2) in biomass-using women compared to LPG-using controls. Women who cooked with biomass had 6.7 times higher level of urinary t,t-MA, twofold increase in ROS generation, and 31 % depletion of SOD. Indoor air of biomass-using households had three times more particulate matters than that of controls. ROS, urinary t,t-MA, and particulate pollution in biomass-using kitchen had negative correlation, while SOD showed positive correlation with MSH2 and MLH1 expression. It appears that chronic exposure to biomass smoke reduces MMR response in airway epithelial cells, and oxidative stress plays an important role in the process. PMID:24146321

  6. Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway.

    PubMed

    Lathrop, Melissa J; Brooks, Elice M; Bonenfant, Nick R; Sokocevic, Dino; Borg, Zachary D; Goodwin, Meagan; Loi, Roberto; Cruz, Fernanda; Dunaway, Chad W; Steele, Chad; Weiss, Daniel J

    2014-02-01

    Systemic administration of mesenchymal stromal cells (MSCs) suppresses airway inflammation and methacholine-induced airway hyper-responsiveness (AHR) in mouse models of T helper cell (Th) type 2-mediated eosinophilic allergic airway inflammation (AAI); however, the efficacy of MSCs in mouse models of severe Th17-mediated neutrophilic AAI has not yet been demonstrated. We assessed MSC effects in a mouse model of mixed Th2/Th17 AAI produced by mucosal exposure to Aspergillus fumigatus hyphal extract (AHE). Following sensitization produced by oropharyngeal AHE administration, systemic (tail vein) administration of syngeneic MSCs on the first day of challenge significantly reduced acute AHR predominantly through reduction of Th17-mediated airway inflammation. In parallel experiments, MSCs also mitigated AHR when administered during recurrent challenge 10 weeks after initial sensitization and challenge through reduction in systemic Th17-mediated inflammation. Investigation into potential mechanistic actions of MSCs in this model demonstrated that although T regulatory cells were increased in all AHE-treated mice, MSC administration did not alter T regulatory cell numbers in either the acute or recurrent model. Differential induction of interleukin-17a secretion was observed in ex vivo restimulation of mediastinal lymph node mixed-cell cytokine analyses. Although the mechanisms by which MSCs act to decrease inflammation and AHR in this model are not yet fully elucidated, decrease in Th17-mediated airway inflammation appears to play a significant role. These results provide a basis for further investigations of MSC administration as a potential therapeutic approach for severe refractory neutrophilic asthma. PMID:24436442

  7. Role of Neprilysin in Airway Inflammation Induced by Diesel Exhaust Emissions

    PubMed Central

    Wong, Simon S.; Sun, Nina N.; Fastje, Cynthia D.; Witten, Mark L.; Lantz, R. Clark; Lu, Bao; Sherrill, Duane L.; Gerard, Craig J.; Burgess, Jefferey L.

    2016-01-01

    In this study, we examined the role of neprilysin (NEP*), a key membrane-bound endopeptidase, in the inflammatory response induced by diesel exhaust emissions (DEE) in the airways through a number of approaches: in vitro, animal, and controlled human exposure. Our specific aims were (1) to examine the role of NEP in inflammatory injury induced by diesel exhaust particles (DEP) using Nep-intact (wild-type) and Nep-null mice; (2) to examine which components of DEP are associated with NEP downregulation in vitro; (3) to determine the molecular impact of DEP exposure and decreased NEP expression on airway epithelial cells’ gene expression in vitro, using a combination of RNA interference (RNAi) and microarray approaches; and (4) to evaluate the effects on NEP activity of human exposure to DEE. We report four main results: First, we found that exposure of normal mice to DEP consisting of standard reference material (SRM) 2975 via intratracheal installation can downregulate NEP expression in a concentration-dependent manner. The changes were accompanied by increases in the number of macrophages and epithelial cells, as well as proinflammatory cytokines, examined in bronchoalveolar lavage (BAL) fluid and cells. Nep-null mice displayed increased and/or additional inflammatory responses when compared with wild-type mice, especially in response to exposure to the higher dose of DEP that we used. These in vivo findings suggest that loss of NEP in mice could cause increased susceptibility to injury or exacerbate inflammatory responses after DEP exposure via release of specific cytokines from the lungs. Second, we found evidence, using in vitro studies, that downregulation of NEP by DEP in cultured human epithelial BEAS-2B cells was mostly attributable to DEP-adsorbed organic compounds, whereas the carbonaceous core and transition metal components of DEP had little or no effect on NEP messenger RNA (mRNA) expression. This NEP downregulation was not a specific response to DEP

  8. Plasticity of Airway Epithelial Cell Transcriptome in Response to Flagellin

    PubMed Central

    Clark, Joan G.; Kim, Kyoung-Hee; Basom, Ryan S.; Gharib, Sina A.

    2015-01-01

    Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

  9. Plasticity of airway epithelial cell transcriptome in response to flagellin.

    PubMed

    Clark, Joan G; Kim, Kyoung-Hee; Basom, Ryan S; Gharib, Sina A

    2015-01-01

    Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

  10. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  11. IL-13-producing BLT1-positive CD8 cells are increased in asthma and are associated with airway obstruction

    PubMed Central

    Dakhama, Azzeddine; Collins, Maureen L.; Ohnishi, Hiroshi; Goleva, Elena; Leung, Donald Y. M.; Alam, Rafeul; Sutherland, E. Rand; Martin, Richard J.; Gelfand, Erwin W.

    2013-01-01

    Background The role of CD8 T lymphocytes in the pathogenesis of asthma is not well understood. We investigated whether a subset of IL-13-producing BLT1-positive CD8 T lymphocytes is present in asthmatic airways and is associated with impaired lung function. Methods Bronchoalveolar lavage (BAL) cells were obtained from asthmatic (n=39) and healthy control (n=28) subjects. Cells were stimulated with phorbol ester and ionomycin in the presence of brefeldin A and stained for CD8, BLT1 and intracellular IL-13. The frequency of IL-13-producing BLT1-positive CD8 T lymphocytes was compared between the two groups and related to lung function, serum IgE levels and reticular basement membrane (RBM) thickness. Results A subset of CD8 T lymphocytes expressing BLT1 and producing IL-13 was detected in the airways of all asthmatic subjects. The frequency of this subset among recovered lymphocytes was significantly higher in the airways of asthmatic subjects compared to controls (mean ± SEM: 16.2 ± 1.4 vs. 5.3 ± 0.5, respectively, p < 0.001), and correlated positively with serum IgE levels and RBM thickness. More importantly, the frequency of CD8 T lymphocytes co-expressing BLT1 and IL-13 was inversely related to FEV1 and FEF[25-75] percent predicted values (p<0.001). Conclusions A subset of CD8 T lymphocytes expressing BLT1 and producing IL-13 is present in the airways of asthmatics. The accumulation of these cells is associated with airway obstruction, suggesting that they may play a significant pathogenic role in bronchial asthma. PMID:23573812

  12. Relationship of small airway chymase-positive mast cells and lung function in severe asthma.

    PubMed

    Balzar, Silvana; Chu, Hong Wei; Strand, Matthew; Wenzel, Sally

    2005-03-01

    Distal lung inflammation may be important in asthma pathophysiology. The goal of this study was to measure cellular inflammation in the large airway and four distal lung regions (small airway inner and outer wall, alveolar attachments, and peripheral alveolar tissue) and to correlate the specific inflammatory cells with several lung function parameters. Sections of concurrently obtained endobronchial and transbronchial/surgical biopsy tissue from 20 individuals with severe asthma were immunostained for T-lymphocyte, eosinophil, monocyte/macrophage, neutrophil, and two mast cell markers (tryptase and chymase). Specific cell distributions were determined and correlated with lung function measures. The number of inflammatory cells generally increased toward the periphery, but the percentage of T-lymphocytes, eosinophils, monocytes/macrophages, and neutrophils remained similar or decreased from large to small airways. In contrast, mast cell number, percentage, and the chymase-positive phenotype increased in small airway regions. After the analysis was adjusted for multiple comparisons, only chymase-positive mast cells significantly and positively correlated with lung function. Such a relationship was seen only in the small airway/alveolar attachments lung region (r(s) = 0.61-0.89; p cells, particularly in the small airway outer wall/alveolar attachments region, may be protective for lung function in severe asthma. PMID:15563633

  13. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    SciTech Connect

    Svensson Holm, Ann-Charlotte B.; Bengtsson, Torbjoern; Grenegard, Magnus; Lindstroem, Eva G.

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  14. Anti-inflammatory effects of methoxyphenolic compounds on human airway cells

    PubMed Central

    2012-01-01

    Background The respiratory epithelium plays a central role in the inflammatory response in asthma and other diseases. Methoxyphenolic compounds are purported to be effective anti-inflammatory agents, but their effects on the airway epithelium have not been well characterized. Methods Human airway cells were stimulated with TNF-α in the presence or absence of 4-substituted methoxyphenols and resveratrol. The expression of various cytokines was measured by qPCR, ELISAs, and protein arrays. Reactive oxygen species (ROS) production was measured with a reactive fluorescent probe (3',6'-diacetate-2',7'-dichlorofluorescein). Activation of NF-κB was measured by nuclear translocation and phosphorylation. Ribonuclear protein association with mRNA was assessed with a biotin-RNA affinity isolation assay. Results Multiple inflammatory mediators were inhibited by methoxyphenols, including: CCL2, CCL5, IL-6, IL-8, ICAM-1, MIF, CXCL1, CXCL10, and Serpin E1. IC50 values were obtained for each compound that showed significant anti-inflammatory activity: diapocynin (20.3 μM), resveratrol (42.7 μM), 2-methoxyhydroquinone (64.3 μM), apocynin (146.6 μM), and 4-amino-2-methoxyphenol (410 μM). The anti-inflammatory activity did not correlate with inhibition of reactive oxygen species production or NF-κB activation. However, methoxyphenols inhibited binding of the RNA-binding protein HuR to mRNA, indicating that they may act post-transcriptionally. Conclusions Methoxyphenols demonstrate anti-inflammatory activity in human airway cells. More potent compounds that act via similar mechanisms may have therapeutic potential as novel anti-inflammatory agents. PMID:22414048

  15. Restoration of Chloride Efflux by Azithromycin in Airway Epithelial Cells of Cystic Fibrosis Patients▿

    PubMed Central

    Saint-Criq, Vinciane; Rebeyrol, Carine; Ruffin, Manon; Roque, Telma; Guillot, Loïc; Jacquot, Jacky; Clement, Annick; Tabary, Olivier

    2011-01-01

    Azithromycin (AZM) has shown promising anti-inflammatory properties in chronic obstructive pulmonary diseases, and clinical studies have presented an improvement in the respiratory condition of cystic fibrosis (CF) patients. The aim of this study was to investigate, in human airway cells, the mechanism by which AZM has beneficial effects in CF. We demonstrated that AZM did not have any anti-inflammatory effect on CF airway cells but restored Cl− efflux. PMID:21220528

  16. House dust mite allergen induces asthma via TLR4 triggering of airway structural cells

    PubMed Central

    HAMMAD, Hamida; CHIEPPA, Marcello; PERROS, Frederic; WILLART, Monique A.; GERMAIN, Ronald N.; LAMBRECHT, Bart N.

    2009-01-01

    Barrier epithelial cells and airway dendritic cells (DC) make up the first line of defence against inhaled substances like house dust mite (HDM) allergen and endotoxin. We hypothesized that these cells need to communicate to cause allergic disease. Using irradiated chimeric mice, we demonstrate that TLR4 expression on radioresistant lung structural cells is required and sufficient for DC activation in the lung and for priming of effector T helper responses to HDM. TLR4 triggering on structural cells caused production of the innate proallergic cytokines thymic stromal lymphopoietin, granulocyte-macrophage colony stimulating factor, interleukin-25 and IL-33. The absence of TLR4 on structural cells, but not on hematopoietic cells, abolished HDM driven allergic airway inflammation. Finally, inhalation of a TLR4 antagonist to target exposed epithelial cells suppressed the salient features of asthma including bronchial hyperreactivity. Our data identify an innate immune function of airway epithelial cells that drives allergic inflammation via activation of mucosal DCs. PMID:19330007

  17. IL-17A induces signal transducers and activators of transcription-6-independent airway mucous cell metaplasia.

    PubMed

    Newcomb, Dawn C; Boswell, Madison G; Sherrill, Taylor P; Polosukhin, Vasiliy V; Boyd, Kelli L; Goleniewska, Kasia; Brody, Steven L; Kolls, Jay K; Adler, Kenneth B; Peebles, R Stokes

    2013-06-01

    Mucous cell metaplasia is a hallmark of asthma, and may be mediated by signal transducers and activators of transcription (STAT)-6 signaling. IL-17A is increased in the bronchoalveolar lavage fluid of patients with severe asthma, and IL-17A also increases mucus production in airway epithelial cells. Asthma therapeutics are being developed that inhibit STAT6 signaling, but the role of IL-17A in inducing mucus production in the absence of STAT6 remains unknown. We hypothesized that IL-17A induces mucous cell metaplasia independent of STAT6, and we tested this hypothesis in two murine models in which increased IL-17A protein expression is evident. In the first model, ovalbumin (OVA)-specific D011.10 Th17 cells were adoptively transferred into wild-type (WT) or STAT6 knockout (KO) mice, and the mice were challenged with OVA or PBS. WT-OVA and STAT6 KO-OVA mice demonstrated increased airway IL-17A and IL-13 protein expression and mucous cell metaplasia, compared with WT-PBS or STAT6 KO-PBS mice. In the second model, WT, STAT1 KO, STAT1/STAT6 double KO (DKO), or STAT1/STAT6/IL-17 receptor A (RA) triple KO (TKO) mice were challenged with respiratory syncytial virus (RSV) or mock viral preparation, and the mucous cells were assessed. STAT1 KO-RSV mice demonstrated increased airway mucous cell metaplasia compared with WT-RSV mice. STAT1 KO-RSV and STAT1/STAT6 DKO-RSV mice also demonstrated increased mucous cell metaplasia, compared with STAT1/STAT6/IL17RA TKO-RSV mice. We also treated primary murine tracheal epithelial cells (mTECs) from WT and STAT6 KO mice. STAT6 KO mTECs showed increased periodic acid-Schiff staining with IL-17A but not with IL-13. Thus, asthma therapies targeting STAT6 may increase IL-17A protein expression, without preventing IL-17A-induced mucus production. PMID:23392574

  18. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells

    PubMed Central

    Dileepan, Mythili; Sarver, Anne E.; Rao, Savita P.; Panettieri, Reynold A.; Subramanian, Subbaya; Kannan, Mathur S.

    2016-01-01

    Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM) cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR)-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma. PMID:26998837

  19. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells.

    PubMed

    Dileepan, Mythili; Sarver, Anne E; Rao, Savita P; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2016-01-01

    Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM) cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR)-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma. PMID:26998837

  20. Clara Cell 10-kDa Protein Gene Transfection Inhibits NF-κB Activity in Airway Epithelial Cells

    PubMed Central

    Long, Xiao-Bo; Hu, Shuang; Wang, Nan; Zhen, Hong-Tao; Cui, Yong-Hua; Liu, Zheng

    2012-01-01

    Background Clara cell 10-kDa protein (CC10) is a multifunctional protein with anti-inflammatory and immunomodulatory effects. Induction of CC10 expression by gene transfection may possess potential therapeutic effect. Nuclear factor κB (NF-κB) plays a key role in the inflammatory processes of airway diseases. Method/Results To investigate potential therapeutic effect of CC10 gene transfection in controlling airway inflammation and the underlying intracellular mechanisms, in this study, we constructed CC10 plasmid and transfected it into bronchial epithelial cell line BEAS-2B cells and CC10 knockout mice. In BEAS-2B cells, CC10's effect on interleukin (IL)-1β induced IL-8 expression was explored by means of RT-PCR and ELISA and its effect on NF-κB classical signaling pathway was studied by luciferase reporter, western blot, and immunoprecipitation assay. The effect of endogenous CC10 on IL-1β evoked IL-8 expression was studied by means of nasal explant culture. In mice, CC10's effect on IL-1β induced IL-8 and nuclear p65 expression was examined by immunohistochemistry. First, we found that the CC10 gene transfer could inhibit IL-1β induced IL-8 expression in BEAS-2B cells. Furthermore, we found that CC10 repressed IL-1β induced NF-κB activation by inhibiting the phosphorylation of IκB-α but not IκB kinase-α/β in BEAS-2B cells. Nevertheless, we did not observe a direct interaction between CC10 and p65 subunit in BEAS-2B cells. In nasal explant culture, we found that IL-1β induced IL-8 expression was inversely correlated with CC10 levels in human sinonasal mucosa. In vivo study revealed that CC10 gene transfer could attenuate the increase of IL-8 and nuclear p65 staining in nasal epithelial cells in CC10 knockout mice evoked by IL-1β administration. Conclusion These results indicate that CC10 gene transfer may inhibit airway inflammation through suppressing the activation of NF-κB, which may provide us a new consideration in the therapy of airway

  1. ΔF508 CFTR processing correction and activity in polarized airway and non-airway cell monolayers

    PubMed Central

    Rowe, SM; Pyle, LC; Jurkevante, A; Varga, K; Collawn, J; Sloane, PA; Woodworth, B; Mazur, M; Fulton, J; Fan, L; Li, Y; Fortenberry, J; Sorscher, EJ; Clancy, JP

    2010-01-01

    We examined the activity of ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) stably expressed in polarized cystic fibrosis bronchial epithelial cells (CFBE41o−) human airway cells and Fisher Rat Thyroid (FRT) cells following treatment with low temperature and a panel of small molecule correctors of ΔF508 CFTR misprocessing. Corr-4a increased ΔF508 CFTR-dependent Cl− conductance in both cell types, whereas treatment with VRT-325 or VRT-640 increased activity only in FRT cells. Total currents stimulated by forskolin and genistein demonstrated similar dose/response effects to Corr-4a treatment in each cell type. When examining the relative contribution of forskolin and genistein to total stimulated current, CFBE41o− cells had smaller forskolin-stimulated Isc following either low temperature or corr-4a treatment (10–30% of the total Isc produced by the combination of both CFTR agonists). In contrast, forskolin consistently contributed greater than 40% of total Isc in ΔF508 CFTR expressing FRT cells corrected with low temperature, and corr-4a treatment preferentially enhanced forskolin dependent currents only in FRT cells (60% of total Isc). ΔF508 CFTR cDNA transcript levels, ΔF508 CFTR C band levels, or cAMP signaling did not account for the reduced forskolin response in CFBE41o− cells. Treatment with non-specific inhibitors of phosphodiesterases (papaverine) or phosphatases (endothall) did not restore ΔF508 CFTR activation by forskolin in CFBE41o− cells, indicating that the Cl− transport defect in airway cells is distal to cAMP or its metabolism. The results identify important differences in ΔF508 CFTR activation in polarizing epithelial models of CF, and have important implications regarding detection of rescued of ΔF508 CFTR in vivo. PMID:20226262

  2. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease.

    PubMed

    Cruz, E A; Reuter, S; Martin, H; Dehzad, N; Muzitano, M F; Costa, S S; Rossi-Bergmann, B; Buhl, R; Stassen, M; Taube, C

    2012-01-15

    Aqueous extract of Kalanchoe pinnata (Kp) have been found effective in models to reduce acute anaphylactic reactions. In the present study, we investigate the effect of Kp and the flavonoid quercetin (QE) and quercitrin (QI) on mast cell activation in vitro and in a model of allergic airway disease in vivo. Treatment with Kp and QE in vitro inhibited degranulation and cytokine production of bone marrow-derived mast cells following IgE/FcɛRI crosslinking, whereas treatment with QI had no effect. Similarly, in vivo treatment with Kp and QE decreased development of airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and production of IL-5, IL-13 and TNF. In contrast, treatment with QI had no effect on these parameters. These findings demonstrate that treatment with Kp or QE is effective in treatment of allergic airway disease, providing new insights to the immunomodulatory functions of this plant. PMID:21802918

  3. Role of the dorsal medulla in the neurogenesis of airway protection.

    PubMed

    Bolser, Donald C; Pitts, Teresa E; Davenport, Paul W; Morris, Kendall F

    2015-12-01

    The dorsal medulla encompassing the nucleus of the tractus solitarius (NTS) and surrounding reticular formation (RF) has an important role in processing sensory information from the upper and lower airways for the generation and control of airway protective behaviors. These behaviors, such as cough and swallow, historically have been studied in isolation. However, recent information indicates that these and other airway protective behaviors are coordinated to minimize risk of aspiration. The dorsal medullary neural circuits that include the NTS are responsible for rhythmogenesis for repetitive swallowing, but previous models have assigned a role for this portion of the network for coughing that is restricted to monosynaptic sensory processing. We propose a more complex NTS/RF circuit that controls expression of swallowing and coughing and the coordination of these behaviors. The proposed circuit is supported by recordings of activity patterns of selected neural elements in vivo and simulations of a computational model of the brainstem circuit for breathing, coughing, and swallowing. This circuit includes separate rhythmic sub-circuits for all three behaviors. The revised NTS/RF circuit can account for the mode of action of antitussive drugs on the cough motor pattern, as well as the unique coordination of cough and swallow by a meta-behavioral control system for airway protection. PMID:26549786

  4. Basolateral K+ channels in airway epithelia. II. Role in Cl- secretion and evidence for two types of K+ channel

    SciTech Connect

    McCann, J.D.; Welsh, M.J. )

    1990-06-01

    We previously described a Ca2(+)-activated K+ channel (KCLIC) in airway epithelial cells. To determine whether the KCLIC channel is a basolateral membrane channel and to understand its role in Cl- secretion, we studied airway epithelial cells grown on permeable supports. When cells were stimulated with A23187, charybdotoxin (ChTX) inhibited Cl- secretion and 86Rb efflux at the same concentrations, indicating that the KCLIC channel is required for Ca2(+)-stimulated Cl- secretion. We also investigated the function of K+ channels in adenosine 3',5'-cyclic monophosphate-stimulated secretion. Addition of isoproterenol caused a biphasic increase in Cl- secretion; the time course of the transient component correlated with the time course of the isoproterenol-induced increase in Ca2+ concentration (( Ca2+)c). ChTX inhibited the transient component, but not the prolonged component of secretion; Ba2+ inhibited the sustained component. These results suggest that when cells are grown on permeable supports isoproterenol-induced secretion depends on activation of two types of K+ channel: the KCLIC channel that is stimulated initially and a ChTX-insensitive K+ channel that is stimulated during sustained secretion. This conclusion was supported by measurement of 86Rb efflux from cell monolayers.

  5. Distinct Tlr4-expressing cell compartments control neutrophilic and eosinophilic airway inflammation.

    PubMed

    McAlees, J W; Whitehead, G S; Harley, I T W; Cappelletti, M; Rewerts, C L; Holdcroft, A M; Divanovic, S; Wills-Karp, M; Finkelman, F D; Karp, C L; Cook, D N

    2015-07-01

    Allergic asthma is a chronic, inflammatory lung disease. Some forms of allergic asthma are characterized by T helper type 2 (Th2)-driven eosinophilia, whereas others are distinguished by Th17-driven neutrophilia. Stimulation of Toll-like receptor 4 (TLR4) on hematopoietic and airway epithelial cells (AECs) contributes to the inflammatory response to lipopolysaccharide (LPS) and allergens, but the specific contribution of TLR4 in these cell compartments to airway inflammatory responses remains poorly understood. We used novel, conditionally mutant Tlr4(fl/fl) mice to define the relative contributions of AEC and hematopoietic cell Tlr4 expression to LPS- and allergen-induced airway inflammation. We found that Tlr4 expression by hematopoietic cells is critical for neutrophilic airway inflammation following LPS exposure and for Th17-driven neutrophilic responses to the house dust mite (HDM) lysates and ovalbumin (OVA). Conversely, Tlr4 expression by AECs was found to be important for robust eosinophilic airway inflammation following sensitization and challenge with these same allergens. Thus, Tlr4 expression by hematopoietic and airway epithelial cells controls distinct arms of the immune response to inhaled allergens. PMID:25465099

  6. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells.

    PubMed

    White, Steven R; Martin, Linda D; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A

    2010-11-01

    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  7. S-nitrosothiols regulate cell-surface pH buffering by airway epithelial cells during the human immune response to rhinovirus.

    PubMed

    Carraro, Silvia; Doherty, Joseph; Zaman, Khalequz; Gainov, Iain; Turner, Ronald; Vaughan, John; Hunt, John F; Márquez, Javier; Gaston, Benjamin

    2006-05-01

    Human rhinovirus infection is a common trigger for asthma exacerbations. Asthma exacerbations and rhinovirus infections are both associated with markedly decreased pH and ammonium levels in exhaled breath condensates. This observation is thought to be related, in part, to decreased activity of airway epithelial glutaminase. We studied whether direct rhinovirus infection and/or the host immune response to the infection decreased airway epithelial cell surface pH in vitro. Interferon-gamma and tumor necrosis factor-alpha, but not direct rhinovirus infection, decreased pH, an effect partly associated with decreased ammonium concentrations. This effect was 1) prevented by nitric oxide synthase inhibition; 2) independent of cyclic GMP; 3) associated with an increase in endogenous airway epithelial cell S-nitrosothiol concentration; 4) mimicked by the exogenous S-nitrosothiol, S-nitroso-N-acetyl cysteine; and 5) independent of glutaminase expression and activity. We then confirmed that decreased epithelial pH inhibits human rhinovirus replication in airway epithelial cells. These data suggest that a nitric oxide synthase-dependent host response to viral infection mediated by S-nitrosothiols, rather than direct infection itself, plays a role in decreased airway surface pH during human rhinovirus infection. This host immune response may serve to protect the lower airways from direct infection in the normal host. In patients with asthma, however, this fall in pH could be associated with the increased mucus production, augmented inflammatory cell degranulation, bronchoconstriction, and cough characteristic of an asthma exacerbation. PMID:16603595

  8. Nuclear factor-κB mediates the phenotype switching of airway smooth muscle cells in a murine asthma model

    PubMed Central

    Qiu, Chen; Zhang, Jian; Su, Meiping; Fan, Xiujun

    2015-01-01

    Airway smooth muscle cells (ASMCs) phenotype modulation, characterized by reversible switching between contractile and proliferative phenotypes, is considered to contribute to airway proliferative diseases such as allergic asthma. Nuclear Factor-κB (NF-κB) has been reported as a key regulator for the occurrence and development of asthma. However, little is known regarding its role in ASM cell phenotypic modulation. To elucidate the role of NF-κB in regulating ASM cells phenotypic modulation, we investigated the effects of NF-κB on ASM cells contractile marker protein expression, and its impact on proliferation and apoptosis. We found that chronic asthma increased the activation of NF-κB in the primary murine ASM cells with a concomitant marked decrease in the expression of contractile phenotypic marker protein including smooth muscle alpha-actin (α-SMA). Additionally, we used the normal ASM cells under different processing to build the phenotype switching when we found the activation of NF-κB. Meanwhile, the expression of α-SMA in asthma was significantly increased by the NF-κB blocker. NF-κB blocker also suppressed asthma mouse ASM cell proliferation and promoted apoptosis. These findings highlight a novel role for the NF-κB in murine ASM cell phenotypic modulation and provide a potential target for therapeutic intervention for asthma. PMID:26722396

  9. Unjamming and cell shape in the asthmatic airway epithelium

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ah; Kim, Jae Hun; Bi, Dapeng; Mitchel, Jennifer A.; Qazvini, Nader Taheri; Tantisira, Kelan; Park, Chan Young; McGill, Maureen; Kim, Sae-Hoon; Gweon, Bomi; Notbohm, Jacob; Steward, Robert, Jr.; Burger, Stephanie; Randell, Scott H.; Kho, Alvin T.; Tambe, Dhananjay T.; Hardin, Corey; Shore, Stephanie A.; Israel, Elliot; Weitz, David A.; Tschumperlin, Daniel J.; Henske, Elizabeth P.; Weiss, Scott T.; Manning, M. Lisa; Butler, James P.; Drazen, Jeffrey M.; Fredberg, Jeffrey J.

    2015-10-01

    From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems--both inert and living--have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell-cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role.

  10. Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation.

    PubMed

    Abram, Melanie; Wegmann, Michael; Fokuhl, Verena; Sonar, Sanchaita; Luger, Elke Olga; Kerzel, Sebastian; Radbruch, Andreas; Renz, Harald; Zemlin, Michael

    2009-04-15

    Allergen-specific Abs play a pivotal role in the induction and maintenance of allergic airway inflammation. During secondary immune responses, plasma cell survival and Ab production is mediated by extrinsic factors provided by the local environment (survival niches). It is unknown whether neurotrophins, a characteristic marker of allergic airway inflammation, influence plasma cell survival in the lung. Using a mouse model of allergic asthma, we found that plasma cells from the lung and spleen are distinct subpopulations exhibiting differential expression patterns of neurotrophins and their receptors (Trks). In vitro, the nerve growth factor (NGF) and neurotrophin-3 (NT3) led to a dose-dependent increase in viability of isolated pulmonary plasma cells due to up-regulation of the antiapoptotic Bcl2 pathway. In parallel, the expression of transcription factors that stimulate the production of immunoglobulins (X-box binding protein 1 and NF-kappaB subunit RelA) was enhanced in plasma cells treated with NGF and NT3. These findings were supported in vivo. When the NGF pathway was blocked by intranasal application of a selective TrkA inhibitor, sensitized mice showed reduced numbers of pulmonary plasma cells and developed lower levels of allergen-specific and total serum IgE in response to OVA inhalation. This suggests that in the allergic airway inflammation, NGF/TrkA-mediated pulmonary IgE production contributes significantly to serum-IgE levels. We conclude that the neurotrophins NGF and NT3 act as survival factors for pulmonary plasma cells and thus are important regulators of the local Ab production in the allergic airway disease. PMID:19342646

  11. T cell-derived Act1 is necessary for IL-25-mediated Th2 responses and allergic airway inflammation.

    PubMed

    Swaidani, Shadi; Bulek, Katarzyna; Kang, Zizhen; Gulen, Muhammet Fatih; Liu, Caini; Yin, Weiguo; Abbadi, Amina; Aronica, Mark; Li, Xiaoxia

    2011-09-15

    The cellular and molecular mechanisms driven by IL-25 and its cognate receptor IL-17RB necessary for the promotion of Th2-mediating pathogenic pulmonary inflammation remains to be defined. We have previously reported the critical role of the U-box-type E3 ubiquitin ligase Act1 (1) for the downstream signaling of the IL-17 cytokine family including the Th2-promoting cytokine IL-25 (IL-17E) (2). In this study, we report that IL-25-driven but not conventional IL-4-driven Th2 polarization and cytokine production is impaired in Act1-deficient T cells. Also, Act1 deficiency in the T cell compartment results in the abrogation of eosinophilic airway infiltration as well as airway hyperresponsiveness in mouse models of Ag-induced airway inflammation. The in vivo generation of Ag-specific Th2 cytokine-producing cells is defective in the absence of Act1 expression in T cells after OVA/aluminum hydroxide immunization. Notably, the production of OVA-specific IgG(1) but not IgG(2a) or IgE is also impaired. At the molecular level, we report that IL-25-mediated induction of Th2 master regulator GATA-3 and the transcription factor GFI-1 is attenuated in Act1-deficient T cells. Taken together, our findings indicate that Act1 expression in T cells is required for cellular and humoral Th2-mediated allergic responses and the development of airway hyperresponsiveness, in part, through Act1's function in IL-25-induced development of Th2 T cells. PMID:21856933

  12. Role of the parasympathetic nervous system in airway hyperresponsiveness after ozone inhalation

    SciTech Connect

    Jones, G.L.; Lane, C.G.; Manning, P.J.; O'Byrne, P.M.

    1987-09-01

    Airway hyperresponsiveness develops in dogs after ozone inhalation. This study examined the role of the parasympathetic nervous system in ozone-induced airway hyperresponsiveness in dogs. Dose-response curves to acetylcholine (n = 8) and histamine (n = 4) were measured before and after exposure to ozone (3 ppm for 30 min). The provocative concentration of each agonist was measured on two randomly assigned days separated by at least 1 wk. On one day a control experiment was performed, and on the other day the dogs were pretreated with the ganglionic blocker hexamethonium bromide in doses that block ganglionic transmission. The acetylcholine provocative concentration decreased on the control day from 5.5 mg/ml (%SE 1.8) before ozone to 0.5 mg/ml (%SE 2.0) after ozone (P less than 0.0001). After pretreatment with hexamethonium the acetylcholine provocative concentration decreased from 9.0 mg/ml (%SE 1.8) before ozone to 1.0 mg/ml (%SE 2.0) after ozone (P = 0.002). The results were similar when histamine was used as the agonist. Therefore, ganglionic blockade does not prevent airway hyperresponsiveness after ozone inhalation, and a parasympathetic reflex mechanism is not responsible for airway hyperresponsiveness after ozone inhalation in dogs.

  13. Ambient particulate matter induces an exacerbation of airway inflammation in experimental asthma: role of interleukin-33

    PubMed Central

    Shadie, A M; Herbert, C; Kumar, R K

    2014-01-01

    High levels of ambient environmental particulate matter (PM10 i.e. < 10 μm median aerodynamic diameter) have been linked to acute exacerbations of asthma. We examined the effects of delivering a single dose of Sydney PM10 by intranasal instillation to BALB/c mice that had been sensitized to ovalbumin and challenged repeatedly with a low (≈3 mg/m3) mass concentration of aerosolized ovalbumin for 4 weeks. Responses were compared to animals administered carbon black as a negative control, or a moderate (≈30 mg/m3) concentration of ovalbumin to simulate an allergen-induced acute exacerbation of airway inflammation. Delivery of PM10 to mice, in which experimental mild chronic asthma had previously been established, elicited characteristic features of enhanced allergic inflammation of the airways, including eosinophil and neutrophil recruitment, similar to that in the allergen-induced exacerbation. In parallel, there was increased expression of mRNA for interleukin (IL)-33 in airway tissues and an increased concentration of IL-33 in bronchoalveolar lavage fluid. Administration of a monoclonal neutralizing anti-mouse IL-33 antibody prior to delivery of particulates significantly suppressed the inflammatory response induced by Sydney PM10, as well as the levels of associated proinflammatory cytokines in lavage fluid. We conclude that IL-33 plays a key role in driving airway inflammation in this novel experimental model of an acute exacerbation of chronic allergic asthma induced by exposure to PM10. PMID:24730559

  14. Gefitinib, an EGFR Tyrosine Kinase inhibitor, Prevents Smoke-Mediated Ciliated Airway Epithelial Cell Loss and Promotes Their Recovery.

    PubMed

    Valencia-Gattas, Monica; Conner, Gregory E; Fregien, Nevis L

    2016-01-01

    Cigarette smoke exposure is a major health hazard. Ciliated cells in the epithelium of the airway play a critical role in protection against the noxious effects of inhaled cigarette smoke. Ciliated cell numbers are reduced in smokers which weakens host defense and leads to disease. The mechanisms for the loss of ciliated cells are not well understood. The effects of whole cigarette smoke exposure on human airway ciliated ciliated cells were examined using in vitro cultures of normal human bronchial epithelial cells and a Vitrocell® VC 10® Smoking Robot. These experiments showed that whole cigarette smoke causes the loss of differentiated ciliated cells and inhibits differentiation of ciliated cells from undifferentiated basal cells. Furthermore, treatment with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, Gefitinib, during smoke exposure prevents ciliated cell loss and promotes ciliated cell differentiation from basal cells. Finally, restoration of ciliated cells was inhibited after smoke exposure was ceased but was enhanced by Gefitinib treatment. These data suggest that inhibition of EGFR activity may provide therapeutic benefit for treating smoke related diseases. PMID:27532261

  15. Gefitinib, an EGFR Tyrosine Kinase inhibitor, Prevents Smoke-Mediated Ciliated Airway Epithelial Cell Loss and Promotes Their Recovery

    PubMed Central

    Valencia-Gattas, Monica; Conner, Gregory E.; Fregien, Nevis L.

    2016-01-01

    Cigarette smoke exposure is a major health hazard. Ciliated cells in the epithelium of the airway play a critical role in protection against the noxious effects of inhaled cigarette smoke. Ciliated cell numbers are reduced in smokers which weakens host defense and leads to disease. The mechanisms for the loss of ciliated cells are not well understood. The effects of whole cigarette smoke exposure on human airway ciliated ciliated cells were examined using in vitro cultures of normal human bronchial epithelial cells and a Vitrocell® VC 10® Smoking Robot. These experiments showed that whole cigarette smoke causes the loss of differentiated ciliated cells and inhibits differentiation of ciliated cells from undifferentiated basal cells. Furthermore, treatment with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, Gefitinib, during smoke exposure prevents ciliated cell loss and promotes ciliated cell differentiation from basal cells. Finally, restoration of ciliated cells was inhibited after smoke exposure was ceased but was enhanced by Gefitinib treatment. These data suggest that inhibition of EGFR activity may provide therapeutic benefit for treating smoke related diseases. PMID:27532261

  16. Cells and Culture Systems Used to Model the Small Airway Epithelium.

    PubMed

    Bhowmick, Rudra; Gappa-Fahlenkamp, Heather

    2016-06-01

    The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air-liquid interface. However, these 2-dimensional cultures lack a three dimension-a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems. PMID:27071933

  17. Intracellular insulin-like growth factor-1 induces Bcl-2 expression in airway epithelial cells.

    PubMed

    Chand, Hitendra S; Harris, Jennifer Foster; Mebratu, Yohannes; Chen, Yangde; Wright, Paul S; Randell, Scott H; Tesfaigzi, Yohannes

    2012-05-01

    Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and it can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and insulin-like growth factor-1 (IGF-1) coincided with induced Bcl-2 expression compared with controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using short hairpin RNA showed that intracellular IGF-1 (IC-IGF-1) was increasing Bcl-2 expression. Blocking epidermal growth factor receptor or IGF-1R activation also suppressed IC-IGF-1 and abolished the Bcl-2 induction. Induced expression and colocalization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and epidermal growth factor receptor pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases. PMID:22461702

  18. Allergic airways disease develops after an increase in allergen capture and processing in the airway mucosa.

    PubMed

    von Garnier, Christophe; Wikstrom, Matthew E; Zosky, Graeme; Turner, Debra J; Sly, Peter D; Smith, Miranda; Thomas, Jennifer A; Judd, Samantha R; Strickland, Deborah H; Holt, Patrick G; Stumbles, Philip A

    2007-11-01

    Airway mucosal dendritic cells (AMDC) and other airway APCs continuously sample inhaled Ags and regulate the nature of any resulting T cell-mediated immune response. Although immunity develops to harmful pathogens, tolerance arises to nonpathogenic Ags in healthy individuals. This homeostasis is thought to be disrupted in allergic respiratory disorders such as allergic asthma, such that a potentially damaging Th2-biased, CD4(+) T cell-mediated inflammatory response develops against intrinsically nonpathogenic allergens. Using a mouse model of experimental allergic airways disease (EAAD), we have investigated the functional changes occurring in AMDC and other airway APC populations during disease onset. Onset of EAAD was characterized by early and transient activation of airway CD4(+) T cells coinciding with up-regulation of CD40 expression exclusively on CD11b(-) AMDC. Concurrent enhanced allergen uptake and processing occurred within all airway APC populations, including B cells, macrophages, and both CD11b(+) and CD11b(-) AMDC subsets. Immune serum transfer into naive animals recapitulated the enhanced allergen uptake observed in airway APC populations and mediated activation of naive allergen-specific, airway CD4(+) T cells following inhaled allergen challenge. These data suggest that the onset of EAAD is initiated by enhanced allergen capture and processing by a number of airway APC populations and that allergen-specific Igs play a role in the conversion of normally quiescent AMDC subsets into those capable of inducing airway CD4(+) T cell activation. PMID:17947647

  19. Reaginic antibodies from horses with recurrent airway obstruction produce mast cell stimulation.

    PubMed

    Moran, G; Folch, H; Henriquez, C; Ortloff, A; Barria, M

    2012-12-01

    Reaginic antibodies (IgE and some IgG subclasses) and mast cells play important roles in the induction of type I immediate hypersensitivity reactions. These antibodies bind through their Fc fragment to high affinity receptors (FcεRI) present in the membrane of mast cells and basophils. The cross-linking of the receptor initiates a coordinated sequence of biochemical and morphological events that results in exocytosis of secretory granules containing pre-formed inflammatory mediators, secretion of newly formed lipid mediators, and secretion of cytokines. Previously, several studies have investigated the role of reaginic antibodies in the pathogenesis of Recurrent Airway Obstruction (RAO). However, whereas the immunological aspects of RAO have been extensively studied, the precise sequence of events involved in the pathogenesis remains not completely understood, and the role of IgE in this disease remains controversial. Therefore, in this study, several bioassays were conducted to determine whether reaginic antibodies from RAO-affected horses have the ability to activate mast cells. These bioassays involved measuring degranulation of rat peritoneal mast cells, activation of NF-κB and morphological changes in basophilic leukemia cells (RBL-2H3) following incubation with horse serum from RAO-affected horses that were sensitive and insensitive to Aspergillus fumigatus (A. fumigatus) or from unaffected horses. Our results show that reaginic antibodies from horses sensitive to A. fumigatus were able to degranulate rat peritoneal mast cells. In additon, there was an increase in the activity of the transcription factor NF-κB in RBL-2H3 cells, and morphological changes were observed in these cells once cross-linking was produced. These findings were not found in horses not sensitive to A. fumigatus and healthy horses. These bioassays demonstrate the ability of reaginic antibodies to stimulate mast cells and indicate that these antibodies could be involved in the

  20. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung

    PubMed Central

    Thornton, Emily E.; Looney, Mark R.; Bose, Oishee; Sen, Debasish; Sheppard, Dean; Locksley, Richard; Huang, Xiaozhu

    2012-01-01

    Asthma pathogenesis is focused around conducting airways. The reasons for this focus have been unclear because it has not been possible to track the sites and timing of antigen uptake or subsequent antigen presentation to effector T cells. In this study, we use two-photon microscopy of the lung parenchyma and note accumulation of CD11b+ dendritic cells (DCs) around the airway after allergen challenge but very limited access of these airway-adjacent DCs to the contents of the airspace. In contrast, we observed prevalent transepithelial uptake of particulate antigens by alveolar DCs. These distinct sites are temporally linked, as early antigen uptake in alveoli gives rise to DC and antigen retention in the airway-adjacent region. Antigen-specific T cells also accumulate in the airway-adjacent region after allergen challenge and are activated by the accumulated DCs. Thus, we propose that later airway hyperreactivity results from selective retention of allergen-presenting DCs and antigen-specific T cells in airway-adjacent interaction zones, not from variation in the abilities of individual DCs to survey the lung. PMID:22585735

  1. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity.

    PubMed

    Davis, A Sally; Chertow, Daniel S; Kindrachuk, Jason; Qi, Li; Schwartzman, Louis M; Suzich, Jon; Alsaaty, Sara; Logun, Carolea; Shelhamer, James H; Taubenberger, Jeffery K

    2016-06-01

    The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model. PMID:27062579

  2. Arylhydrocarbon receptor (AhR) activation in airway epithelial cells induces MUC5AC via reactive oxygen species (ROS) production.

    PubMed

    Chiba, Takahito; Uchi, Hiroshi; Tsuji, Gaku; Gondo, Hisaki; Moroi, Yoichi; Furue, Masutaka

    2011-02-01

    The dioxins and dioxin-like compounds in cigarette smoke regulate various immunological responses via the arylhydrocarbon receptor (AhR). These environmental toxicants are known to cause bronchitis, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Recent studies have demonstrated that AhR activation upregulates the expression of mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) in the airway epithelial cell line. However, the mechanism for the production of mucin has not been clarified. In this study, we investigated the role and pathway of AhR in airway epithelial cells by using selective agonists and antagonists. After stimulation with or without benzopyrene (B[a]P), an AhR agonist, MUC5AC expression was measured by real-time RT-PCR. The mechanism of AhR-induced MUC5AC expression in airway epithelial cells was studied in terms of the production of cytokine and reactive oxygen species (ROS). Treatment with B[a]P increased ROS generation in NCI-H₂₉₂ cells. Furthermore, B[a]P-induced MUC5AC upregulation and mucin production were inhibited by AhR siRNA or the use of an antioxidative agent. These results suggest that the AhR-induced increase of mucin production is partially mediated by ROS generation. An antioxidant therapy approach may help to cure AhR-induced mucus hypersecretory diseases. PMID:20709182

  3. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells.

    PubMed

    Emura, M; Aufderheide, M

    2016-05-01

    Lung cancer is still one of the major intractable diseases and we urgently need more efficient preventive and curative measures. Recent molecular studies have provided strong evidence that allows us to believe that classically well-known early airway lesions such as hyperplasia, metaplasia, dysplasia and carcinoma in situ are really precancerous lesions progressing toward cancer but not necessarily transient and reversible alteration. This suggests that adequate early control of the precancerous lesions may lead to improved prevention of lung cancer. This knowledge is encouraging in view of the imminent necessity for additional experimental systems to investigate the causal mechanisms of cancers directly in human cells and tissues. There are many questions with regard to various precancerous lesions of the airways. For example, should cells, before reaching a stage of invasive carcinoma, undergo all precancerous stages such as hyperplasia or metaplasia and dysplasia, or is there any shortcut to bypass one or more of the precancerous stages? For the study of such questions, the emerging 3-dimensional (3D) cell culture technology appears to provide an effective and valuable tool. Though a great challenge, it is expected that this in vitro technology will be rapidly and reliably improved to enable the cultures to be maintained in an in vivo-mimicking state of differentiation for much longer than a period of at best a few months, as is currently the case. With the help of a "causes recombination-Lox" (Cre-lox) technology, it has been possible to trace cells giving rise to specific lung tumor types. In this short review we have attempted to assess the future role of 3D technology in the study of lung carcinogenesis. PMID:26951634

  4. Suppression of allergic airway inflammation in a mouse model of asthma by exogenous mesenchymal stem cells.

    PubMed

    Ou-Yang, Hai-Feng; Huang, Yun; Hu, Xing-Bin; Wu, Chang-Gui

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant immunomodulatory effects in the development of acute lung inflammation and fibrosis. However, it is still unclear as to whether MSCs could attenuate allergic airway inflammation in a mouse model of asthma. We firstly investigated whether exogenous MSCs can relocate to lung tissues in asthmatic mice and analyzed the chemotactic mechanism. Then, we evaluated the in vivo immunomodulatory effect of exogenous MSCs in asthma. MSCs (2 × 10(6)) were administered through the tail vein to mice one day before the first airway challenge. Migration of MSCs was evaluated by flow cytometry. The immunomodulatory effect of MSCs was evaluated by cell counting in bronchoalveolar lavage fluid (BALF), histology, mast cell degranulation, airway hyperreactivity and cytokine profile in BALF. Exogenous MSCs can migrate to sites of inflammation in asthmatic mice through a stromal cell-derived factor-1α/CXCR4-dependent mechanism. MSCs can protect mice against a range of allergic airway inflammatory pathologies, including the infiltration of inflammatory cells, mast cell degranulation and airway hyperreactivity partly via shifting to a T-helper 1 (Th1) from a Th2 immune response to allergens. So, immunotherapy based on MSCs may be a feasible, efficient therapy for asthma. PMID:22114062

  5. Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease

    PubMed Central

    Flynn, Jeffrey M.; Niccum, David; Dunitz, Jordan M.

    2016-01-01

    Chronic lung infections in cystic fibrosis (CF) patients are composed of complex microbial communities that incite persistent inflammation and airway damage. Despite the high density of bacteria that colonize the lower airways, nutrient sources that sustain bacterial growth in vivo, and how those nutrients are derived, are not well characterized. In this study, we examined the possibility that mucins serve as an important carbon reservoir for the CF lung microbiota. While Pseudomonas aeruginosa was unable to efficiently utilize mucins in isolation, we found that anaerobic, mucin-fermenting bacteria could stimulate the robust growth of CF pathogens when provided intact mucins as a sole carbon source. 16S rRNA sequencing and enrichment culturing of sputum also identified that mucin-degrading anaerobes are ubiquitous in the airways of CF patients. The collective fermentative metabolism of these mucin-degrading communities in vitro generated amino acids and short chain fatty acids (propionate and acetate) during growth on mucin, and the same metabolites were also found in abundance within expectorated sputum. The significance of these findings was supported by in vivo P. aeruginosa gene expression, which revealed a heightened expression of genes required for the catabolism of propionate. Given that propionate is exclusively derived from bacterial fermentation, these data provide evidence for an important role of mucin fermenting bacteria in the carbon flux of the lower airways. More specifically, microorganisms typically defined as commensals may contribute to airway disease by degrading mucins, in turn providing nutrients for pathogens otherwise unable to efficiently obtain carbon in the lung. PMID:27548479

  6. Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease.

    PubMed

    Flynn, Jeffrey M; Niccum, David; Dunitz, Jordan M; Hunter, Ryan C

    2016-08-01

    Chronic lung infections in cystic fibrosis (CF) patients are composed of complex microbial communities that incite persistent inflammation and airway damage. Despite the high density of bacteria that colonize the lower airways, nutrient sources that sustain bacterial growth in vivo, and how those nutrients are derived, are not well characterized. In this study, we examined the possibility that mucins serve as an important carbon reservoir for the CF lung microbiota. While Pseudomonas aeruginosa was unable to efficiently utilize mucins in isolation, we found that anaerobic, mucin-fermenting bacteria could stimulate the robust growth of CF pathogens when provided intact mucins as a sole carbon source. 16S rRNA sequencing and enrichment culturing of sputum also identified that mucin-degrading anaerobes are ubiquitous in the airways of CF patients. The collective fermentative metabolism of these mucin-degrading communities in vitro generated amino acids and short chain fatty acids (propionate and acetate) during growth on mucin, and the same metabolites were also found in abundance within expectorated sputum. The significance of these findings was supported by in vivo P. aeruginosa gene expression, which revealed a heightened expression of genes required for the catabolism of propionate. Given that propionate is exclusively derived from bacterial fermentation, these data provide evidence for an important role of mucin fermenting bacteria in the carbon flux of the lower airways. More specifically, microorganisms typically defined as commensals may contribute to airway disease by degrading mucins, in turn providing nutrients for pathogens otherwise unable to efficiently obtain carbon in the lung. PMID:27548479

  7. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    SciTech Connect

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie; Zhang, Wei; Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun; Jiang, Shanping

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  8. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  9. Biological characteristics of tracheal smooth muscle cells regulated by NK-1R in asthmatic rat with airway remodeling

    PubMed Central

    Wei, Bing; Liu, Yali; Yue, Xiaozhe; Li, Yinping; Shang, Yunxiao

    2015-01-01

    This study aims to investigate the biological characteristic changes of infant rat tracheal smooth muscle cells in asthma airway remodeling and the impact of NK-1R on the mechanism. Ovalbumin (OVA) was used to excited juvenile SD rats by 8 w. Immunofluorescence, MTT assay, transwell chambers, real time quantitative PCR, Western blot and other methods were used to observe the proliferation, migration, synthesis and secretion changes of infant airway remodeling in rat tracheal smooth muscle cell and the Neurokinin 1 receptor (NK-1R) expression. 1. NK-1R mRNA, protein expression of airway smooth muscle cell (ASMC) of each asthma group were higher than that of the control group, especially the asthma 8 w group had highest expression (P<0.01). 2. The average A value of 8 w asthma group measured by MTT method were significantly higher than that of the control group (P<0.05), WIN62577 10-8 mol/L group had the strongest inhibition of ASMC proliferation (P<0.01). 3. The number of cell migration in the asthma group significantly increased than that in the control group. The number of migrating cells in the NK-1R antagonist group significantly reduced compared with the asthma 8 w group (P<0.05). 4. The average gray value of type III collagen in each asthma group were higher than that of the control group, and the asthma 8 w group had the highest (P<0.01). After NK-1R blocking, the average gray value of type III collagen was significantly lower (P<0.05). ASMC proliferation, migration, synthesis and secretion function increased in the airway remodeling group, and NK-1R played an important role. PMID:26628953

  10. KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms

    PubMed Central

    Coles, Garry L.; Baglia, Laurel A.; Ackerman, Kate G.

    2015-01-01

    The cell cycle must be tightly coordinated for proper control of embryonic development and for the long-term maintenance of organs such as the lung. There is emerging evidence that Kinesin family member 7 (Kif7) promotes Hedgehog (Hh) signaling during embryonic development, and its misregulation contributes to diseases such as ciliopathies and cancer. Kif7 encodes a microtubule interacting protein that controls Hh signaling through regulation of microtubule dynamics within the primary cilium. However, whether Kif7 has a function in nonciliated cells remains largely unknown. The role Kif7 plays in basic cell biological processes like cell proliferation or cell cycle progression also remains to be elucidated. Here, we show that Kif7 is required for coordination of the cell cycle, and inactivation of this gene leads to increased cell proliferation in vivo and in vitro. Immunostaining and transmission electron microscopy experiments show that Kif7 dda/dda mutant lungs are hyperproliferative and exhibit reduced alveolar epithelial cell differentiation. KIF7 depleted C3H10T1/2 fibroblasts and Kif7 dda/dda mutant mouse embryonic fibroblasts have increased growth rates at high cellular densities, suggesting that Kif7 may function as a general regulator of cellular proliferation. We ascertained that in G1, Kif7 and microtubule dynamics regulate the expression and activity of several components of the cell cycle machinery known to control entry into S phase. Our data suggest that Kif7 may function to regulate the maintenance of the respiratory airway architecture by controlling cellular density, cell proliferation, and cycle exit through its role as a microtubule associated protein. PMID:26439735

  11. Dendritic cells inversely regulate airway inflammation in cigarette smoke-exposed mice.

    PubMed

    Givi, Masoumeh Ezzati; Akbari, Peyman; Boon, Louis; Puzovic, Vladimir S; Bezemer, Gillina F G; Ricciardolo, Fabio L M; Folkerts, Gert; Redegeld, Frank A; Mortaz, Esmaeil

    2016-01-01

    The recruitment and activation of inflammatory cells into the respiratory system is considered a crucial feature in the pathophysiology of chronic obstructive pulmonary disease (COPD). Because dendritic cells (DCs) have a pivotal role in the onset and regulation of immune responses, we investigated the effect of modulating DC subsets on airway inflammation by acute cigarette smoke (CS) exposure. CS-exposed mice (5 days) were treated with fms-like tyrosine kinase 3 ligand (Flt3L) and 120g8 antibody to increase total DC numbers and deplete plasmacytoid DCs (pDCs), respectively. Flt3L treatment decreased the number of inflammatory cells in the bronchoalveolar lavage (BALF) of the smoke-exposed mice and increased these in lung tissue. DC modulation reduced IL-17 and increased IL-10 levels, which may be responsible for the suppression of the BALF cells. Furthermore, depletion of pDCs led to increased infiltration of alveolar macrophages while restricting the presence of CD103(+) DCs. This study suggests that DC subsets may differentially and compartment-dependent influence the inflammation induced by CS. pDC may play a role in preventing the pathogenesis of CS by inhibiting the alveolar macrophage migration to lung and increasing CD103(+) DCs at inflammatory sites to avoid extensive lung tissue damage. PMID:26475733

  12. Expansive Generation of Functional Airway Epithelium From Human Embryonic Stem Cells

    PubMed Central

    McIntyre, Brendan A.S.; Alev, Cantas; Mechael, Rami; Salci, Kyle R.; Lee, Jung Bok; Fiebig-Comyn, Aline; Guezguez, Borhane; Wu, Yuping; Sheng, Guojun

    2014-01-01

    Production of human embryonic stem cell (hESC)-derived lung progenitors has broad applicability for drug screening and cell therapy; however, this is complicated by limitations in demarcating phenotypic changes with functional validation of airway cell types. In this paper, we reveal the potential of hESCs to produce multipotent lung progenitors using a combined growth factor and physical culture approach, guided by the use of novel markers LIFRα and NRP1. Lung specification of hESCs was achieved by priming differentiation via matrix-specific support, followed by air-liquid interface to allow generation of lung progenitors capable of in vitro maturation into airway epithelial cell types, resulting in functional characteristics such as secretion of pulmonary surfactant, ciliation, polarization, and acquisition of innate immune activity. This approach provided a robust expansion of lung progenitors, allowing in vivo assessment, which demonstrated that only fully differentiated hESC-derived airway cells were retained in the distal airway, where they aided in physiological recovery in immunocompromised mice receiving airway injury. Our study provides a basis for translational applications of hESCs for lung diseases. PMID:24300555

  13. Airway CD8(+) T Cells Are Associated with Lung Injury during Infant Viral Respiratory Tract Infection.

    PubMed

    Connors, Thomas J; Ravindranath, Thyyar M; Bickham, Kara L; Gordon, Claire L; Zhang, Feifan; Levin, Bruce; Baird, John S; Farber, Donna L

    2016-06-01

    Infants and young children are disproportionately susceptible to severe complications from respiratory viruses, although the underlying mechanisms remain unknown. Recent studies show that the T cell response in the lung is important for protective responses to respiratory infections, although details on the infant/pediatric respiratory immune response remain sparse. The objectives of the present study were to characterize the local versus systemic immune response in infants and young children with respiratory failure from viral respiratory tract infections and its association to disease severity. Daily airway secretions were sampled from infants and children 4 years of age and younger receiving mechanical ventilation owing to respiratory failure from viral infection or noninfectious causes. Samples were examined for immune cell composition and markers of T cell activation. These parameters were then correlated with clinical disease severity. Innate immune cells and total CD3(+) T cells were present in similar proportions in airway aspirates derived from infected and uninfected groups; however, the CD8:CD4 T cell ratio was markedly increased in the airways of patients with viral infection compared with uninfected patients, and specifically in infected infants with acute lung injury. T cells in the airways were phenotypically and functionally distinct from those in blood with activated/memory phenotypes and increased cytotoxic capacity. We identified a significant increase in airway cytotoxic CD8(+) T cells in infants with lung injury from viral respiratory tract infection that was distinct from the T cell profile in circulation and associated with increasing disease severity. Airway sampling could therefore be diagnostically informative for assessing immune responses and lung damage. PMID:26618559

  14. Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB

    PubMed Central

    Hartenstein, Bettina; Teurich, Sibylle; Hess, Jochen; Schenkel, Johannes; Schorpp-Kistner, Marina; Angel, Peter

    2002-01-01

    Naïve CD4+ T cells differentiate into effector T helper 1 (Th1) or Th2 cells, which are classified by their specific set of cytokines. Here we demonstrate that loss of JunB in in vitro polarized Th2 cells led to a dysregulated expression of the Th2-specific cytokines IL-4 and IL-5. These cells produce IFN-γ and express T-bet, the key regulator of Th1 cells. In line with the essential role of Th2 cells in the pathogenesis of allergic asthma, mice with JunB-deficient CD4+ T cells exhibited an impaired allergen-induced airway inflammation. This study demonstrates novel functions of JunB in the development of Th2 effector cells, for a normal Th2 cytokine expression pattern and for a complete Th2-dependent immune response in mice. PMID:12456639

  15. Identification of human metapneumovirus-induced gene networks in airway epithelial cells by microarray analysis

    SciTech Connect

    Bao, X.; Sinha, M. |; Liu, T.; Hong, C.; Luxon, B.A. |; Garofalo, R.P. ||; Casola, A. ||

    2008-04-25

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections in infants, elderly and immunocompromised patients. Little is known about the response to hMPV infection of airway epithelial cells, which play a pivotal role in initiating and shaping innate and adaptive immune responses. In this study, we analyzed the transcriptional profiles of airway epithelial cells infected with hMPV using high-density oligonucleotide microarrays. Of the 47,400 transcripts and variants represented on the Affimetrix GeneChip Human Genome HG-U133 plus 2 array, 1601 genes were significantly altered following hMPV infection. Altered genes were then assigned to functional categories and mapped to signaling pathways. Many up-regulated genes are involved in the initiation of pro-inflammatory and antiviral immune responses, including chemokines, cytokines, type I interferon and interferon-inducible proteins. Other important functional classes up-regulated by hMPV infection include cellular signaling, gene transcription and apoptosis. Notably, genes associated with antioxidant and membrane transport activity, several metabolic pathways and cell proliferation were down-regulated in response to hMPV infection. Real-time PCR and Western blot assays were used to confirm the expression of genes related to several of these functional groups. The overall result of this study provides novel information on host gene expression upon infection with hMPV and also serves as a foundation for future investigations of genes and pathways involved in the pathogenesis of this important viral infection. Furthermore, it can facilitate a comparative analysis of other paramyxoviral infections to determine the transcriptional changes that are conserved versus the one that are specific to individual pathogens.

  16. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells.

    PubMed

    Faksh, Arij; Britt, Rodney D; Vogel, Elizabeth R; Thompson, Michael A; Pandya, Hitesh C; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2016-01-15

    Viral infections, such as respiratory syncytial virus and rhinovirus, adversely affect neonatal and pediatric populations, resulting in significant lung morbidity, including acute asthma exacerbation. Studies in adults have demonstrated that human airway smooth muscle (ASM) cells modulate inflammation through their ability to secrete inflammatory cytokines and chemokines. The role of ASM in the developing airway during infection remains undefined. In our study, we used human fetal ASM cells as an in vitro model to examine the effect of Toll-like receptor (TLR) agonists on chemokine secretion. We found that fetal ASM express multiple TLRs, including TLR3 and TLR4, which are implicated in the pathogenesis of respiratory syncytial virus and rhinovirus infection. Cells were treated with TLR agonists, polyinosinic-polycytidylic acid [poly(I:C)] (TLR3 agonist), lipopolysaccharide (TLR4 agonist), or R848 (TLR7/8 agonist), and IL-8 and chemokine (C-C motif) ligand 5 (CCL5) secretion were evaluated. Interestingly, poly(I:C), but neither lipopolysaccharide nor R848, increased IL-8 and chemokine (C-C motif) ligand 5 secretion. Examination of signaling pathways suggested that the poly(I:C) effects in fetal ASM involve TLR and ERK signaling, in addition to another major inflammatory pathway, NF-κB. Moreover, there are variations between fetal and adult ASM with respect to poly(I:C) effects on signaling pathways. Pharmacological inhibition suggested that ERK pathways mediate poly(I:C) effects. Overall, our data show that poly(I:C) initiates activation of proinflammatory pathways in developing ASM, which may contribute to immune responses to infection and exacerbation of asthma. PMID:26589477

  17. Strain-dependent activation of NF-kappaB in the airway epithelium and its role in allergic airway inflammation.

    PubMed

    Alcorn, John F; Ckless, Karina; Brown, Amy L; Guala, Amy S; Kolls, Jay K; Poynter, Matthew E; Irvin, Charles G; van der Vliet, Albert; Janssen-Heininger, Yvonne M W

    2010-01-01

    NF-kappaB activation in the airway epithelium has been established as a critical pathway in ovalbumin (Ova)-induced airway inflammation in BALB/c mice (Poynter ME, Cloots R, van Woerkom T, Butnor KJ, Vacek P, Taatjes DJ, Irvin CG, Janssen-Heininger YM. J Immunol 173: 7003-7009, 2004). BALB/c mice are susceptible to the development of allergic airway disease, whereas other strains of mice, such as C57BL/6, are considered more resistant. The goal of the present study was to determine the proximal signals required for NF-kappaB activation in the airway epithelium in allergic airway disease and to unravel whether these signals are strain-dependent. Our previous studies, conducted in the BALB/c mouse background, demonstrated that transgenic mice expressing a dominant-negative version of IkappaBalpha in the airway epithelium (CC10-IkappaBalpha(SR)) were protected from Ova-induced inflammation. In contrast to these earlier observations, we demonstrate here that CC10-IkappaBalpha(SR) transgenic mice on the C57BL/6 background were not protected from Ova-induced allergic airway inflammation. Consistent with this finding, Ova-induced nuclear localization of the RelA subunit of NF-kappaB was not observed in C57BL/6 mice, in contrast to the marked nuclear presence of RelA in BALB/c mice. Evaluation of cytokine profiles in bronchoalveolar lavage demonstrated elevated expression of TNF-alpha in BALB/c mice compared with C57BL/6 mice after an acute challenge with Ova. Finally, neutralization of TNF-alpha by a blocking antibody prevented nuclear localization of RelA in BALB/c mice after Ova challenge. These data suggest that the mechanism of response of the airway epithelium of immunized C57BL/6 mice to antigen challenge is fundamentally different from that of immunized BALB/c mice and highlight the potential importance of TNF-alpha in regulating epithelial NF-kappaB activation in allergic airway disease. PMID:19897746

  18. Role of Mechanical Stress in Regulating Airway Surface Hydration and Mucus Clearance Rates

    PubMed Central

    Button, Brian; Boucher, Richard C.

    2008-01-01

    Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically-relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). PMID:18585484

  19. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy.

    PubMed

    Brueggemann, Lioubov I; Kakad, Priyanka P; Love, Robert B; Solway, Julian; Dowell, Maria L; Cribbs, Leanne L; Byron, Kenneth L

    2012-01-01

    Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 μM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 μM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2-7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists. PMID:21964407

  20. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy

    PubMed Central

    Brueggemann, Lioubov I.; Kakad, Priyanka P.; Love, Robert B.; Solway, Julian; Dowell, Maria L.; Cribbs, Leanne L.

    2012-01-01

    Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 μM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 μM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2–7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists. PMID:21964407

  1. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.

    PubMed

    Bilek, Anastacia M; Dee, Kay C; Gaver, Donald P

    2003-02-01

    Airway collapse and reopening due to mechanical ventilation exerts mechanical stress on airway walls and injures surfactant-compromised lungs. The reopening of a collapsed airway was modeled experimentally and computationally by the progression of a semi-infinite bubble in a narrow fluid-occluded channel. The extent of injury caused by bubble progression to pulmonary epithelial cells lining the channel was evaluated. Counterintuitively, cell damage increased with decreasing opening velocity. The presence of pulmonary surfactant, Infasurf, completely abated the injury. These results support the hypotheses that mechanical stresses associated with airway reopening injure pulmonary epithelial cells and that pulmonary surfactant protects the epithelium from this injury. Computational simulations identified the magnitudes of components of the stress cycle associated with airway reopening (shear stress, pressure, shear stress gradient, or pressure gradient) that may be injurious to the epithelial cells. By comparing these magnitudes to the observed damage, we conclude that the steep pressure gradient near the bubble front was the most likely cause of the observed cellular damage. PMID:12433851

  2. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation.

    PubMed

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A; Korfhagen, Thomas R; Whitsett, Jeffrey A

    2015-05-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef(-/-) mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  3. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    SciTech Connect

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn; Sohn, Myung Hyun

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  4. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling

    PubMed Central

    Aguilera-Aguirre, Leopoldo; Hosoki, Koa; Bacsi, Attila; Radák, Zsolt; Sur, Sanjiv; Hegde, Muralidhar L.; Tian, Bing; Saavedra-Molina, Alfredo; Brasier, Allan R.; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER byproduct 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, Z3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling. PMID:26187872

  5. The Pseudomonas toxin pyocyanin inhibits the Dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells1

    PubMed Central

    Rada, Balázs; Lekstrom, Kristen; Damian, Sorin; Dupuy, Corinne; Leto, Thomas L.

    2009-01-01

    The dual oxidase-thiocyanate-lactoperoxidase (Duox/SCN−/LPO) system generates the microbicidal oxidant hypothiocyanite in the airway surface liquid by using LPO, thiocyanate, and Duox-derived hydrogen peroxide released from the apical surface of the airway epithelium. This system is effective against several microorganisms that infect airways of cystic fibrosis and other immunocompromised patients. We show here that exposure of airway epithelial cells to Pseudomonas aeruginosa obtained from long-term cultures inhibits Duox1-dependent hydrogen peroxide release, suggesting some microbial factor suppresses Duox activity. These inhibitory effects were not seen with the pyocyanin-deficient P. aeruginosa strain, PA14 Phz1/2. We showed that purified pyocyanin, a redox-active virulence factor produced by P. aeruginosa, inhibits human airway cell Duox activity by depleting intracellular stores of NADPH, as it generates intracellular superoxide. Long-term exposure of human airway (primary normal human bronchial and NCI-H292) cells to pyocyanin also blocks induction of Duox1 by Th2 cytokines (IL-4, IL-13), which was prevented by the anti-oxidants glutathione and N-acetylcysteine. Furthermore, we showed that low concentrations of pyocyanin blocked killing of wild-type P. aeruginosa by the Duox/SCN-/LPO system on primary normal human bronchial epithelial cells. Thus, pyocyanin can subvert Pseudomonas killing by the Duox-based system as it imposes oxidative stress on the host. We also show that lactoperoxidase can oxidize pyocyanin, thereby diminishing its cytotoxicity. These data establish a novel role for pyocyanin in the survival of Pseudomonas aeruginosa in human airways through competitive redox-based reactions between the pathogen and host. PMID:18802092

  6. TGF-β-dependent dendritic cell chemokinesis in murine models of airway disease

    PubMed Central

    Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke; Sen, Debasish; Ma, Royce; Murray, Lynne A.; Tsui, Ping; Lou, Jianlong; Marks, James D.; Baron, Jody L.; Krummel, Matthew F.; Nishimura, Stephen L.

    2015-01-01

    Small airway chronic inflammation is a major pathologic feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Dendritic cells (DCs) accumulate around small airways in COPD. DCs are critical mediators of antigen surveillance and antigen presentation and amplify adaptive immune responses. How DCs accumulate around airways remains largely unknown. We use 2-photon DC imaging of living murine lung sections to directly visualize the dynamic movement of living DCs around airways in response to either soluble mediators (IL-1β) or environmental stimuli (cigarette smoke or TLR3 ligands) implicated in COPD pathogenesis. We find that DCs accumulate around murine airways primarily by increasing velocity (chemokinesis) rather than directional migration (chemotaxis) in response to all three stimuli. DC accumulation maximally occurs in a specific zone located 26-50 μm from small airways, which overlaps with zones of maximal DC velocity. Our data suggest that increased accumulation of DCs around airways results from increased numbers of highly chemokinetic DCs entering the lung from the circulation with balanced rates of immigration and emigration. Increases in DC accumulation and chemokinesis are partially dependent on ccr6, a crucial DC chemokine receptor, and fibroblast expression of the integrin αvβ8, a critical activator of TGF-β αvβ8-mediated TGF-β activation is known to enhance IL-1β-dependent fibroblast expression of the only known endogenous ccr6 chemokine ligand, ccl20. Taken together, these data suggest a mechanism by which αvβ8, ccl20 and ccr6 interact to lead to DC accumulation around airways in response to COPD-relevant stimuli. PMID:26109638

  7. Role of EP2 and EP4 receptors in airway microvascular leak induced by prostaglandin E2

    PubMed Central

    Jones, Victoria C; Birrell, Mark A; Maher, Sarah A; Griffiths, Mark; Grace, Megan; O'Donnell, Valerie B; Clark, Stephen R

    2016-01-01

    Background and Purpose Airway microvascular leak (MVL) involves the extravasation of proteins from post‐capillary venules into surrounding tissue. MVL is a cardinal sign of inflammation and an important feature of airway inflammatory diseases such as asthma. PGE2, a product of COX‐mediated metabolism of arachidonic acid, binds to four receptors, termed EP1–4. PGE2 has a wide variety of effects within the airway, including modulation of inflammation, sensory nerve activation and airway tone. However, the effect of PGE2 on airway MVL and the receptor/s that mediate this have not been described. Experimental Approach Evans Blue dye was used as a marker of airway MVL, and selective EP receptor agonists and antagonists were used alongside EP receptor‐deficient mice to define the receptor subtype involved. Key Results PGE2 induced significant airway MVL in mice and guinea pigs. A significant reduction in PGE2‐induced MVL was demonstrated in Ptger2 −/− and Ptger4 −/− mice and in wild‐type mice pretreated simultaneously with EP2 (PF‐04418948) and EP4 (ER‐819762) receptor antagonists. In a model of allergic asthma, an increase in airway levels of PGE2 was associated with a rise in MVL; this change was absent in Ptger2 −/− and Ptger4 −/− mice. Conclusions and Implications PGE2 is a key mediator produced by the lung and has widespread effects according to the EP receptor activated. Airway MVL represents a response to injury and under ‘disease’ conditions is a prominent feature of airway inflammation. The data presented highlight a key role for EP2 and EP4 receptors in MVL induced by PGE2. PMID:26639895

  8. Unjamming and cell shape in the asthmatic airway epithelium

    PubMed Central

    Park, Jin-Ah; Kim, Jae Hun; Bi, Dapeng; Mitchel, Jennifer A.; Qazvini, Nader Taheri; Tantisira, Kelan; Park, Chan Young; McGill, Maureen; Kim, Sae-Hoon; Gweon, Bomi; Notbohm, Jacob; Steward, Robert; Burger, Stephanie; Randell, Scott H.; Kho, Alvin T.; Tambe, Dhananjay T.; Hardin, Corey; Shore, Stephanie A.; Israel, Elliot; Weitz, David A.; Tschumperlin, Daniel J.; Henske, Elizabeth P.; Weiss, Scott T.; Lisa Manning, M.; Butler, James P.; Drazen, Jeffrey M.; Fredberg, Jeffrey J.

    2015-01-01

    From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems— both inert and living—have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell–cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role. PMID:26237129

  9. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells.

    PubMed

    Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J; Prakash, Y S; Kong, Hyunjoon

    2015-06-01

    Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs. PMID:25724668

  10. Wound repair and anti-oxidative capacity is regulated by ITGB4 in airway epithelial cells.

    PubMed

    Liu, Chi; Liu, Hui-jun; Xiang, Yang; Tan, Yu-rong; Zhu, Xiao-lin; Qin, Xiao-qun

    2010-08-01

    Integrin beta 4 (ITGB4) is a structural adhesion molecule which engages in maintaining the integrity of airway epithelial cells. Its specific cytomembrane structural feature strongly indicates that ITGB4 may engage in many signaling pathways and physiologic processes. However, in addition to adhesion, the specific biologic significance of ITGB4 in airway epithelial cells is almost unknown. In this article, we investigated the expression and functional properties of ITGB4 in airway epithelial cells in vivo and in vitro. Human bronchial epithelial cell line (16HBE14O-cells) and primary rat tracheal epithelial cells (RTE cells) were used to determine ITGB4 expression under ozone tress or mechanical damage, respectively. An ovalbumin (OVA)-challenged asthma model was used to investigate ITGB4 expression after antigen exposure in vivo. In addition, an ITGB4 overexpression vector and ITGB4 silence virus vector were constructed and transfected into RTE cells. Then, wound repair ability and anti-oxidation capacity was evaluated. Our results demonstrated that, on the edge of mechanically wounded cell areas, ITGB4 expression was increased after mechanical injury. After ozone stress, upregulation expression of ITGB4 was also detected. In the OVA-challenged asthma model, ITGB4 expression was decreased on airway epithelial cells accompanying with structural disruption and damage of anti-oxidation capacity. Besides, our study revealed that upregulation of ITGB4 promotes wound repair ability and anti-oxidative ability, while such abilities were blocked when ITGB4 was silenced. Taken together, these results showed that ITGB4 was a new interesting molecule involved in the regulation of wound repair and anti-oxidation processes for airway epithelial cells. PMID:20364299

  11. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease

    PubMed Central

    George, Leena; Brightling, Christopher E.

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10–40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  12. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease.

    PubMed

    George, Leena; Brightling, Christopher E

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10-40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  13. THE EFFECTS OF COMBINATORIAL EXPOSURE OF PRO-INFLAMMATORY AND ANTI-INFLAMMATORY CYTOKINES ON AIRWAY EPITHELIAL CELL RELEASE OF CHEMOTACTIC MEDIATORS

    EPA Science Inventory

    Asthma is a chronic inflammatory disorder of the airways affecting nearly 15 million individuals nationally. Within the inflamed asthmatic airway there exist complex interactions between many cells and the cytokines they release, in particular mast cells, eosinophils, T-lymphocy...

  14. IL-13 Augments Compressive Stress-Induced Tissue Factor Expression in Human Airway Epithelial Cells.

    PubMed

    Mitchel, Jennifer A; Antoniak, Silvio; Lee, Joo-Hyeon; Kim, Sae-Hoon; McGill, Maureen; Kasahara, David I; Randell, Scott H; Israel, Elliot; Shore, Stephanie A; Mackman, Nigel; Park, Jin-Ah

    2016-04-01

    Tissue factor (TF) is best known as a cellular initiator of coagulation, but it is also a multifunctional protein that has been implicated in multiple pathophysiologic conditions, including asthma. In the lung, airway epithelial cells express TF, but it is unknown how TF expression is regulated by asthma-associated mediators. We investigated the role of IL-13, a type 2 cytokine, alone and in combination with compressive stress, which mimics asthmatic bronchoconstriction, on TF expression and release of TF-positive extracellular vesicles from primary normal human bronchial epithelial cells. Well-differentiated normal human bronchial epithelial cells were treated with IL-13 and compressive stress, alone and in combination. TF mRNA, protein and activity were measured in the cells and conditioned media. TF was also measured in the bronchoalveolar lavage (BAL) fluid of allergen-challenged mice and patients with asthma. IL-13 and compressive stress increased TF expression, but only compressive stress induced TF-positive extracellular vesicle release. Pretreatment with IL-13 augmented compressive stress-induced TF expression and release. TF protein and activity in BAL fluid were increased in allergen-sensitized and -challenged mice. TF was elevated in the BAL fluid of patients with mild asthma after an allergen challenge. Our in vitro and in vivo data indicate close cooperation between mechanical and inflammatory stimuli on TF expression and release of TF-positive extracellular vesicles in the lungs, which may contribute to pathophysiology of asthma. PMID:26407210

  15. Using Optical Tweezers to Study Cell Mechanics during Airway Reopening

    NASA Astrophysics Data System (ADS)

    Yalcin, Huseyin; Wang, Jing; Ghadiali, Samir; Ou-Yang, H. Daniel

    2006-03-01

    Patients suffering from the acute respiratory distress syndrome (ARDS) must be mechanically ventilated in order to survive. However, these ventilation protocols may generate injurious hydrodynamic stresses especially during low tidal volume (VT) ventilation when the flow of micron-sized air bubbles displace the surrounding liquid. In-vitro studies in our lab revealed that microbubble flows can severally damage lung epithelial cells (EC). The degree of injury was elevated for sub-confluent monolayers in small channel heights. Under these conditions, the micromechanics of individual EC may influence the degree of cellular injury. To investigate the role of cell mechanics, we used an oscillating Optical Tweezers (OT) technique to measure the intrinsic mechanical properties of EC before and after the flow of microbubbles. Knowledge of how the EC's micromechanical properties influence cell viability may lead to the development of novel treatment therapies that enhance the EC's ability to withstand injurious hydrodynamic stresses during ventilation treatment.

  16. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma. PMID:22652198

  17. The TLR7 agonist imiquimod induces bronchodilation via a nonneuronal TLR7-independent mechanism: a possible role for quinoline in airway dilation.

    PubMed

    Larsson, Olivia J; Manson, Martijn L; Starkhammar, Magnus; Fuchs, Barbara; Adner, Mikael; Kumlien Georén, Susanna; Cardell, Lars-Olaf

    2016-06-01

    Toll-like receptor (TLR) 7 agonists are known to reduce allergic airway inflammation. Their recently reported ability to rapidly relax airways has further increased their interest in the treatment of pulmonary disease. However, the mechanisms behind this effect are not fully understood. The present study, therefore, aimed to determine whether airway smooth muscle (ASM)-dependent mechanisms could be identified. TLR7 agonists were added to guinea pig airways following precontraction with carbachol in vitro or histamine in vivo. Pharmacological inhibitors were used to dissect conventional pathways of bronchodilation; tetrodotoxin was used or bilateral vagotomy was performed to assess neuronal involvement. Human ASM cells (HASMCs) were employed to determine the effect of TLR7 agonists on intracellular Ca(2+) ([Ca(2+)]i) mobilization. The well-established TLR7 agonist imiquimod rapidly relaxed precontracted airways in vitro and in vivo. This relaxation was demonstrated to be independent of nitric oxide, carbon monoxide, and cAMP signaling, as well as neuronal activity. A limited role for prostanoids could be detected. Imiquimod induced [Ca(2+)]i release from endoplasmic reticulum stores in HASMCs, inhibiting histamine-induced [Ca(2+)]i The TLR7 antagonist IRS661 failed to inhibit relaxation, and the structurally dissimilar agonist CL264 did not relax airways or inhibit [Ca(2+)]i This study shows that imiquimod acts directly on ASM to induce bronchorelaxation, via a TLR7-independent release of [Ca(2+)]i The effect is paralleled by other bronchorelaxant compounds, like chloroquine, which, like imiquimod, but unlike CL264, contains the chemical structure quinoline. Compounds with quinoline moieties may be of interest in the development of multifunctional drugs to treat pulmonary disease. PMID:27084847

  18. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    PubMed Central

    2011-01-01

    Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens. PMID:21232137

  19. Altered Regulation of Airway Epithelial Cell Chloride Channels in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Frizzell, Raymond A.; Rechkemmer, Gerhard; Shoemaker, Richard L.

    1986-08-01

    In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that β -adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis (CF). However, when membrane patches were excised from CF cells into media containing sufficient free calcium (approximately 180 nanomolar), chloride channels were activated. The chloride channels of CF cells were similar to those of normal cells as judged by their current-voltage relations, ion selectivity, and kinetic behavior. These findings demonstrate the presence of chloride channels in the apical membranes of CF airway cells. Their regulation by calcium appears to be intact, but cyclic adenosine monophosphate (cAMP)-dependent control of their activity is defective.

  20. Extracellular nucleotides regulate CCL20 release from human primary airway epithelial cells, monocytes and monocyte-derived dendritic cells.

    PubMed

    Marcet, Brice; Horckmans, Michael; Libert, Frédérick; Hassid, Sergio; Boeynaems, Jean-Marie; Communi, Didier

    2007-06-01

    Extracellular nucleotides regulate ion transport and mucociliary clearance in human airway epithelial cells (HAECs) via the activation of P2 receptors, especially P2Y(2). Therefore, P2Y(2) receptor agonists represent potential pharmacotherapeutic agents to treat cystic fibrosis (CF). Nucleotides also modulate inflammatory properties of immune cells like dendritic cells (DCs), which play an important role in mucosal immunity. Using DNA-microarray experiments, quantitative RT-PCR and cytokine measurements, we show here that UTP up-regulated approximately 2- to 3-fold the antimicrobial chemokine CCL20 expression and release in primary HAECs cultured on permeable supports at an air-liquid interface (ALI). Both P2Y(2) (ATPgammaS, UTP, INS365) and P2Y(6) (UDP, INS48823) agonists increased CCL20 release. UTP-induced CCL20 release was insensitive to NF-kappaB pathway inhibitors but sensitive to inhibitors of ERK1/2 and p38/MAPK pathways. Furthermore, UTP had no effect on interleukin-(IL)-8 release and reduced the release of both CCL20 and IL-8 induced by TNF-alpha and LPS. Accordingly, UTP reduced the capacity of basolateral supernatants of HAECs treated with TNF-alpha or LPS to induce the chemoattraction of both CD4(+) T lymphocytes and neutrophils. In addition, we show that, in monocyte-derived DCs, ATPgammaS, and UDP but not UTP/INS365-stimulated CCL20 release. Likewise, UDP but not ATPgammaS was also able to increase CCL20 release from monocytes. Pharmacological experiments suggested an involvement of P2Y(11) or P2Y(6) receptors through NF-kappaB, ERK1/2, and p38/MAPK pathways. Altogether, our data demonstrate that nucleotides may modulate chemokine release and leukocyte recruitment in inflamed airways by acting on both epithelial and immune cells. Our results could be relevant for further clinical investigations in CF. PMID:17295217

  1. BLUNTING AIRWAYS EOSINOPHILIC INFLAMMATION RESULTS IN A DECREASED AIRWAY NEUTROPHIL RESPONSE TO INHALED LPS IN ATOPIC ASTHMATICS A ROLE FOR CD-14

    EPA Science Inventory

    Recent data demonstrate that atopic inflammation might enhance airway responses to inhaled LPS in individuals with atopic asthma by increasing CD14 expression on airway macrophages. We sought to determine whether blunting airway eosinophilic inflammation decreases CD14 expressio...

  2. Role of Orexin in Respiratory and Sleep Homeostasis during Upper Airway Obstruction in Rats

    PubMed Central

    Tarasiuk, Ariel; Levi, Avishag; Berdugo-Boura, Nilly; Yahalom, Ari; Segev, Yael

    2014-01-01

    Study Objectives: Chronic upper airway obstruction (UAO) elicits a cascade of complex endocrine derangements that affect growth, sleep, and energy metabolism. We hypothesized that elevated hypothalamic orexin has a role in maintaining ventilation during UAO, while at the same time altering sleep-wake activity and energy metabolism. Here, we sought to explore the UAO-induced changes in hypothalamic orexin and their role in sleep-wake balance, respiratory activity, and energy metabolism. Interventions: The tracheae of 22-day-old Sprague-Dawley rats were surgically narrowed; UAO and sham-operated control animals were monitored for 7 weeks. We measured food intake, body weight, temperature, locomotion, and sleep-wake activity. Magnetic resonance imaging was used to quantify subcutaneous and visceral fat tissue volumes. In week 7, the rats were sacrificed and levels of hypothalamic orexin, serum leptin, and corticosterone were determined. The effect of dual orexin receptor antagonist (almorexant 300 mg/kg) on sleep and respiration was also explored. Measurements and Results: UAO increased hypothalamic orexin mRNA and protein content by 64% and 65%, respectively. UAO led to 30% chronic sleep loss, excessive active phase sleepiness, decreased body temperature, increased food intake, reduction of abdominal and subcutaneous fat tissue volume, and growth retardation. Administration of almorexant normalized sleep but induced severe breathing difficulties in UAO rats, while it had no effect on sleep or on breathing of control animals. Conclusions: In upper airway obstruction animals, enhanced orexin secretion, while crucially important for respiratory homeostasis maintenance, is also responsible for chronic partial sleep loss, as well as considerable impairment of energy metabolism and growth. Citation: Tarasiuk A, Levi A, Berdugo-Boura N, Yahalom A, Segev Y. Role of orexin in respiratory and sleep homeostasis during upper airway obstruction in rats. SLEEP 2014

  3. Long-term cultures of polarized airway epithelial cells from patients with cystic fibrosis.

    PubMed

    Wiszniewski, Ludovic; Jornot, Lan; Dudez, Tecla; Pagano, Alessandra; Rochat, Thierry; Lacroix, Jean Silvain; Suter, Susanne; Chanson, Marc

    2006-01-01

    The poor ability of respiratory epithelial cells to proliferate and differentiate in vitro into a pseudostratified mucociliated epithelium limits the general use of primary airway epithelial cell (AEC) cultures generated from patients with rare diseases, such as cystic fibrosis (CF). Here, we describe a procedure to amplify AEC isolated from nasal polyps and generate long-term cultures of the respiratory epithelium. AEC were seeded onto microporous permeable supports that carried on their undersurface a preformed feeder layer of primary human airway fibroblasts. The use of fibroblast feeder layers strongly stimulated the proliferation of epithelial cells, allowing the expansion of the cell pool with successive passages. AEC at increasing passage were seeded onto supports undercoated with airway fibroblasts and exposed to air. Either freshly isolated or amplified AEC could differentiate into a pseudostratified mucociliated epithelium for at least 10 mo. Thus, CF epithelia cultures showed elevated Na+ transport, drastic hyperabsorption of surface liquid, and absence of cAMP-induced Cl- secretion as compared with non-CF cultures. They were also characterized by thick apical secretion that hampered the movement of cell surface debris by cilia. However, CF respiratory epithelia did not show increased production of mucins or IL-8. The method described here is now routinely used in our laboratory to establish long-term cultures of well differentiated respiratory epithelia from human airway biopsies. PMID:16179582

  4. Pulmonary dendritic cell distribution and prevalence in guinea pig airways: effect of ovalbumin sensitization and challenge.

    PubMed

    Lawrence, T E; Millecchia, L L; Frazer, D G; Fedan, J S

    1997-08-01

    We characterized the localization and prevalence of dendritic cells (DC) in guinea pig airways before and after s.c. sensitization and aerosol challenge with ovalbumin (OVA). DC, eosinophils, macrophages, T cells and B cells in lung and trachea were identified and quantified in frozen sections using monoclonal antibodies and computer-assisted image analysis. Airway reactivity of conscious animals to inhaled methacholine was examined. In unsensitized animals, DC were localized primarily within the lamina propria of the trachea and bronchi, in the submucosa of the trachea and in the adventitia of the bronchi. In contrast to reported studies on rats, few DC were noted in the epithelium. After OVA challenge, sensitized animals demonstrated an early obstructive response and a late-phase response that was well developed by 18 hr. Challenge with OVA increased DC prevalence in the lamina propria and submucosa of the trachea and in the lamina propria and adventitia of the bronchi. There was widespread eosinophilia throughout the airways, but no changes in B cells or T cells were evident. Macrophages were increased in the epithelium of both OVA-treated and saline-treated animals. At 18 hr after challenge, sensitized guinea pigs but not saline-treated controls were hyperreactive to inhaled methacholine. Except for macrophages, none of these effects were observed after saline treatment. Our findings indicate that inflammation in the airways of OVA-sensitized guinea pigs involves infiltration of DC, which is seen at the time animals are hyperreactive to inhaled methacholine. PMID:9262368

  5. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  6. The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases

    PubMed Central

    Rokicki, Marek; Wojtacha, Jacek; Dżeljijli, Agata

    2016-01-01

    The report presents the cellular structure of the respiratory system as well as the history of club cells (Clara cells), their ultrastructure, and location in the airways and human organs. The authors discuss the biochemical structure of proteins secreted by these cells and their importance for the integrity and regeneration of the airway epithelium. Their role as progenitor cells for the airway epithelium and their involvement in the biotransformation of toxic xenobiotics introduced into the lungs during breathing is emphasized. This is followed by a discussion of the clinical aspects associated with club cells, demonstrating that tracking the serum concentration of club cell-secreted proteins is helpful in the diagnosis of a number of lung tissue diseases. Finally, suggestions are provided regarding the possible use of proteins secreted by club cells in the treatment of serious respiratory conditions. PMID:27212975

  7. The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases.

    PubMed

    Rokicki, Wojciech; Rokicki, Marek; Wojtacha, Jacek; Dżeljijli, Agata

    2016-03-01

    The report presents the cellular structure of the respiratory system as well as the history of club cells (Clara cells), their ultrastructure, and location in the airways and human organs. The authors discuss the biochemical structure of proteins secreted by these cells and their importance for the integrity and regeneration of the airway epithelium. Their role as progenitor cells for the airway epithelium and their involvement in the biotransformation of toxic xenobiotics introduced into the lungs during breathing is emphasized. This is followed by a discussion of the clinical aspects associated with club cells, demonstrating that tracking the serum concentration of club cell-secreted proteins is helpful in the diagnosis of a number of lung tissue diseases. Finally, suggestions are provided regarding the possible use of proteins secreted by club cells in the treatment of serious respiratory conditions. PMID:27212975

  8. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    NASA Astrophysics Data System (ADS)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  9. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury

    PubMed Central

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H.; Barnes, Peter J.; Adcock, Ian M.; Huang, Mao

    2015-01-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  10. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    PubMed

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  11. A Protective Role For Club Cell Secretory Protein-16 (CC16) In The Development of Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    Laucho-Contreras, Maria E.; Polverino, Francesca; Gupta, Kushagra; Taylor, Katherine L.; Kelly, Emer; Pinto-Plata, Victor; Divo, Miguel; Afshaq, Naveed; Petersen, Hans; Stripp, Barry; Pilon, Aprile L.; Tesfaigzi, Yohannes; Celli, Bartolome R.; Owen, Caroline A.

    2015-01-01

    Rationale Club cell secretory protein-16 (CC16) is the major secreted product of airway Club cells, but its role in the pathogenesis of COPD is unclear. We measured CC16 airway expression in humans with and without COPD and CC16 function in a cigarette smoke (CS)-induced COPD mice model. Methods Airway CC16 expression was measured in COPD patients, smokers without COPD, and non-smokers. We exposed wild-type (WT) and CC16-/- mice to CS or air for up to 6 months, and measured airway CC16 expression, pulmonary inflammation, alveolar septal cell apoptosis, airspace enlargement, airway MUC5AC expression, small airway remodeling, and pulmonary function. Results Smokers and COPD patients had reduced airway CC16 immunostaining that decreased with increasing COPD severity. Exposing mice to CS reduced airway CC16 expression. CC16-/- mice had greater CS-induced emphysema, airway remodeling, pulmonary inflammation, alveolar cell apoptosis, airway MUC5AC expression, and more compliant lungs than WT mice. These changes were associated with increased nuclear factor-κB (NFκB) activation in CC16-/- lungs. CS-induced acute pulmonary changes were reversed by adenoviral-mediated over-expression of CC16. Conclusions CC16 protects lungs from CS-induced injury by reducing lung NFκB activation. CS-induced airway CC16 deficiency increases CS-induced pulmonary inflammation and injury and likely contributes to the pathogenesis of COPD. PMID:25700379

  12. Bidirectional counter-regulation of human lung mast cell and airway smooth muscle β2-adrenoceptors

    PubMed Central

    Newby, Chris; Amrani, Yassine; Bradding, Peter

    2015-01-01

    Human lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesised that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs. Cells were cultured in the presence of the short-acting β2-agonist albuterol, and the long-acting β2-agonists formoterol and olodaterol. Constitutive and FcεRI-dependent HLMC histamine release, HASMC contraction, and β2-AR phosphorylation at tyrosine 350 (Tyr350) were assessed. Constitutive HLMC histamine release was increased in HLMC-HASMC co-culture and this was enhanced by β2-AR agonists. Inhibition of FcεRI-dependent HLMC mediator release by β2-agonists was greatly reduced in HLMC-HASMC co-culture. These effects were reversed by neutralisation of stem cell factor (SCF) or cell adhesion molecule 1 (CADM1). β2-AR agonists did not prevent HASMC contraction when HLMCs were present, but this was reversed by fluticasone. β2-AR phosphorylation at Tyr350 occurred within 5 minutes in both HLMCs and HASMCs when the cells were co-cultured, and was inhibited by neutralising SCF or CADM1. HLMC interactions with HASMCs via CADM1 and Kit inhibit the potentially beneficial effects of β2-AR agonists on these cells via phosphorylation of the β2-AR. These results may explain the potentially adverse effects of β2-ARs agonists when used for asthma therapy. Targeting SCF and CADM1 may enhance β2-AR efficacy, particularly in corticosteroid-resistant patients. PMID:26608913

  13. Bidirectional Counterregulation of Human Lung Mast Cell and Airway Smooth Muscle β2 Adrenoceptors.

    PubMed

    Lewis, Rebecca J; Chachi, Latifa; Newby, Chris; Amrani, Yassine; Bradding, Peter

    2016-01-01

    Human lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesized that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs. Cells were cultured in the presence of the short-acting β2-agonist albuterol, and the long-acting β2-agonists formoterol and olodaterol. Constitutive and FcεRI-dependent HLMC histamine release, HASMC contraction, and β2-AR phosphorylation at Tyr(350) were assessed. Constitutive HLMC histamine release was increased in HLMC-HASMC coculture and this was enhanced by β2-AR agonists. Inhibition of FcεRI-dependent HLMC mediator release by β2-agonists was greatly reduced in HLMC-HASMC coculture. These effects were reversed by neutralization of stem cell factor (SCF) or cell adhesion molecule 1 (CADM1). β2-AR agonists did not prevent HASMC contraction when HLMCs were present, but this was reversed by fluticasone. β2-AR phosphorylation at Tyr(350) occurred within 5 min in both HLMCs and HASMCs when the cells were cocultured, and was inhibited by neutralizing SCF or CADM1. HLMC interactions with HASMCs via CADM1 and Kit inhibit the potentially beneficial effects of β2-AR agonists on these cells via phosphorylation of the β2-AR. These results may explain the potentially adverse effects of β2-ARs agonists when used for asthma therapy. Targeting SCF and CADM1 may enhance β2-AR efficacy, particularly in corticosteroid-resistant patients. PMID:26608913

  14. TLR-2 IS INVOLVED IN AIRWAY EPITHELIAL CELL RESPONE TO AIR POLLUTION PARTICLES

    EPA Science Inventory

    Primary cultures of normal human airway epithelial cells (NHBE) respond to ambient air pollution particulate matter (PM) by increased production of the cytokine IL-8, and the induction of a number of oxidant stress response genes. Components of ambient air PM responsible for stim...

  15. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  16. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  17. Continuous mucociliary transport by primary human airway epithelial cells in vitro

    PubMed Central

    Sears, Patrick R.; Yin, Wei-Ning

    2015-01-01

    Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated. PMID:25979076

  18. Airway Epithelial Cells are the Site of Expression of a Mammalian Antimicrobial Peptide Gene

    NASA Astrophysics Data System (ADS)

    Diamond, Gill; Jones, Douglas E.; Bevins, Charles L.

    1993-05-01

    We previously reported the isolation and characterization of a broad-spectrum antimicrobial peptide from the bovine tracheal mucosa, which we called tracheal antimicrobial peptide (TAP). We now show the TAP gene is expressed throughout the adult conducting airway, from nasal to bronchiolar tissue, but not in tissues other than airway mucosa, as determined by Northern blot analysis. In situ hybridization of airway sections localizes TAP mRNA to columnar cells of the pseudostratified epithelium. We report the structural organization of the TAP gene and show that TAP is a member of a large family of related sequences with high nucleotide identity in the 5'exon. The data support the hypothesis that antimicrobial peptides contribute to host defense of the respiratory tract.

  19. Foxm1 Transcription Factor Is Critical for Proliferation and Differentiation of Clara Cells during Development of Conducting Airways

    PubMed Central

    Ustiyan, Vladimir; Wert, Susan E.; Ikegami, Machiko; Wang, I-Ching; Kalin, Tanya V.; Whitsett, Jeffrey A.; Kalinichenko, Kalinichenko

    2012-01-01

    SUMMARY Respiratory epithelial cells are derived from cell progenitors in the foregut endoderm that subsequently differentiate into the distinct cell types lining the conducting and alveolar regions of the lung. To identify transcriptional mechanisms regulating differentiation and maintenance of respiratory epithelial cells, we conditionally deleted Foxm1 transcription factor from the conducting airways of the developing mouse lung. Conditional deletion of Foxm1 from Clara cells, controlled by the Scgb1a1 promoter, dramatically altered airway structure and caused peribronchial fibrosis, resulting in airway hyperreactivity in adult mice. Deletion of Foxm1 inhibited proliferation of Clara cells and disrupted the normal patterning of epithelial cell differentiation in the bronchioles, causing squamous and goblet cell metaplasia, and the loss of Clara and ciliated cells. Surprisingly, conducting airways of Foxm1-deficient mice contained highly differentiated cuboidal type II epithelial cells that are normally restricted to the alveoli. Lineage tracing studies showed that the ectopic alveolar type II cells in Foxm1-deficient airways were derived from Clara cells. Deletion of Foxm1 inhibited Sox2 and Scgb1a1, both of which are critical for differentiation and function of Clara cells. In co-transfection experiments, Foxm1 directly bound to and induced transcriptional activity of Scgb1a1 and Sox2 promoters. Foxm1 is required for differentiation and maintenance of epithelial cells lining conducting airways. PMID:22885335

  20. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice.

    PubMed

    Goodwin, Meagan; Sueblinvong, Viranuj; Eisenhauer, Philip; Ziats, Nicholas P; LeClair, Laurie; Poynter, Matthew E; Steele, Chad; Rincon, Mercedes; Weiss, Daniel J

    2011-07-01

    Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate or worsen Th2-mediated diseases such as allergic asthma is unknown. To ascertain the effects of systemic administration of BMSCs in a mouse model of Th2-mediated allergic airways inflammation, ovalbumin (OVA)-induced allergic airways inflammation was induced in wild-type C57BL/6 and BALB/c mice as well as in interferon-γ (IFNγ) receptor null mice. Effects of systemic administration during antigen sensitization of either syngeneic or allogeneic BMSC on airways hyperreactivity, lung inflammation, antigen-specific CD4 T lymphocytes, and serum immunoglobulins were assessed. Both syngeneic and allogeneic BMSCs inhibited airways hyperreactivity and lung inflammation through a mechanism partly dependent on IFNγ. However, contrary to existing data, BMSCs did not affect antigen-specific CD4 T lymphocyte proliferation but rather promoted Th1 phenotype in vivo as assessed by both OVA-specific CD4 T lymphocyte cytokine production and OVA-specific circulating immunoglobulins. BMSCs treated to prevent release of soluble mediators and a control cell population of primary dermal skin fibroblasts only partly mimicked the BMSC effects and in some cases worsened inflammation. In conclusion, BMSCs inhibit Th2-mediated allergic airways inflammation by influencing antigen-specific CD4 T lymphocyte differentiation. Promotion of a Th1 phenotype in antigen-specific CD4 T lymphocytes by BMSCs is sufficient to inhibit Th2-mediated allergic airways inflammation through an IFNγ-dependent process. PMID:21544902

  1. Airway basal cells of healthy smokers express an embryonic stem cell signature relevant to lung cancer.

    PubMed

    Shaykhiev, Renat; Wang, Rui; Zwick, Rachel K; Hackett, Neil R; Leung, Roland; Moore, Malcolm A S; Sima, Camelia S; Chao, Ion Wa; Downey, Robert J; Strulovici-Barel, Yael; Salit, Jacqueline; Crystal, Ronald G

    2013-09-01

    Activation of the human embryonic stem cell (hESC) signature genes has been observed in various epithelial cancers. In this study, we found that the hESC signature is selectively induced in the airway basal stem/progenitor cell population of healthy smokers (BC-S), with a pattern similar to that activated in all major types of human lung cancer. We further identified a subset of 6 BC-S hESC genes, whose coherent overexpression in lung adenocarcinoma (AdCa) was associated with reduced lung function, poorer differentiation grade, more advanced tumor stage, remarkably shorter survival, and higher frequency of TP53 mutations. BC-S shared with hESC and a considerable subset of lung carcinomas a common TP53 inactivation molecular pattern which strongly correlated with the BC-S hESC gene expression. These data provide transcriptome-based evidence that smoking-induced reprogramming of airway BC toward the hESC-like phenotype might represent a common early molecular event in the development of aggressive lung carcinomas in humans. PMID:23857717

  2. T-cell-intrinsic Tif1α/Trim24 regulates IL-1R expression on TH2 cells and TH2 cell-mediated airway allergy.

    PubMed

    Perez-Lloret, Jimena; Okoye, Isobel S; Guidi, Riccardo; Kannan, Yashaswini; Coomes, Stephanie M; Czieso, Stephanie; Mengus, Gabrielle; Davidson, Irwin; Wilson, Mark S

    2016-02-01

    There is a paucity of new therapeutic targets to control allergic reactions and forestall the rising trend of allergic diseases. Although a variety of immune cells contribute to allergy, cytokine-secreting αβ(+)CD4(+) T-helper 2 (TH2) cells orchestrate the type-2-driven immune response in a large proportion of atopic asthmatics. To identify previously unidentified putative targets in pathogenic TH2 cells, we performed in silico analyses of recently published transcriptional data from a wide variety of pathogenic TH cells [Okoye IS, et al. (2014) Proc Natl Acad Sci USA 111(30):E3081-E3090] and identified that transcription intermediary factor 1 regulator-alpha (Tif1α)/tripartite motif-containing 24 (Trim24) was predicted to be active in house dust mite (HDM)- and helminth-elicited Il4(gfp+)αβ(+)CD4(+) TH2 cells but not in TH1, TH17, or Treg cells. Testing this prediction, we restricted Trim24 deficiency to T cells by using a mixed bone marrow chimera system and found that T-cell-intrinsic Trim24 is essential for HDM-mediated airway allergy and antihelminth immunity. Mechanistically, HDM-elicited Trim24(-/-) T cells have reduced expression of many TH2 cytokines and chemokines and were predicted to have compromised IL-1-regulated signaling. Following this prediction, we found that Trim24(-/-) T cells have reduced IL-1 receptor (IL-1R) expression, are refractory to IL-1β-mediated activation in vitro and in vivo, and fail to respond to IL-1β-exacerbated airway allergy. Collectively, these data identify a previously unappreciated Trim24-dependent requirement for IL-1R expression on TH2 cells and an important nonredundant role for T-cell-intrinsic Trim24 in TH2-mediated allergy and antihelminth immunity. PMID:26787865

  3. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR

    PubMed Central

    Stauffer, Brandon; Moriarty, Hannah K.; Kim, Agnes H.; McCarty, Nael A.; Koval, Michael

    2015-01-01

    Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTRwt/wt) and CuFi-5 (CFTRΔF508/ΔF508) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na+ channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells. PMID:26115671

  4. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR.

    PubMed

    Molina, Samuel A; Stauffer, Brandon; Moriarty, Hannah K; Kim, Agnes H; McCarty, Nael A; Koval, Michael

    2015-09-01

    Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTR(wt/wt)) and CuFi-5 (CFTR(ΔF508/ΔF508)) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na(+) channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells. PMID:26115671

  5. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  6. Involvement of Syk kinase in TNF-induced nitric oxide production by airway epithelial cells

    SciTech Connect

    Ulanova, Marina . E-mail: marina.ulanova@normed.ca; Marcet-Palacios, Marcelo; Munoz, Samira; Asfaha, Samuel; Kim, Moo-Kyung; Schreiber, Alan D.; Befus, A. Dean

    2006-12-15

    We have recently found that Syk is widely expressed in lung epithelial cells (EC) and participates in {beta}1 integrin signaling. In this study, we assessed the role of Syk in regulation of NO production. Stimulation of human bronchial EC line HS-24 by TNF caused an increased expression of inducible nitric oxide synthase (iNOS). Inhibition of Syk using siRNA or piceatannol down-regulated the iNOS expression and reduced NO production. This effect occurred in EC simultaneously stimulated via {beta}1 integrins, suggesting that TNF and {beta}1 integrins provide co-stimulatory signals. Inhibition of Syk down-regulated TNF-induced p38 and p44/42 MAPK phosphorylation and nuclear translocation of p65 NF-{kappa}B. Thus, TNF-induced activation of pro-inflammatory signaling in EC leading to enhanced expression of iNOS and NO production was dependent on Syk. Syk-mediated signaling regulates NO production at least partly via activating the MAPK cascade. Understanding the role of Syk in airway EC may help in developing new therapeutic tools for inflammatory lung disorders.

  7. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone

    PubMed Central

    Pearson, Helen; Britt, Rodney D.; Pabelick, Christine M.; Prakash, Y.S.; Amrani, Yassine; Pandya, Hitesh C.

    2016-01-01

    Background Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Methods Cultured fetal human ASM cells stimulated with TNF-α (0–20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. Results CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Conclusion Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases. PMID:26331770

  8. Current Perspectives in Mesenchymal Stromal Cell Therapies for Airway Tissue Defects

    PubMed Central

    Petrella, Francesco; Rizzo, Stefania; Borri, Alessandro; Casiraghi, Monica; Spaggiari, Lorenzo

    2015-01-01

    Lung cancer is the leading cause of cancer death and respiratory diseases are the third cause of death in industrialized countries; for this reason the airways and cardiopulmonary system have been the focus of extensive investigation, in particular of the new emerging branch of regenerative medicine. Mesenchymal stromal cells (MSCs) are a population of undifferentiated multipotent adult cells that naturally reside within the human body, which can differentiate into osteogenic, chondrogenic, and adipogenic lineages when cultured in specific inducing media. MSCs have the ability to migrate and engraft at sites of inflammation and injury in response to cytokines, chemokines, and growth factors at a wound site and they can exert local reparative effects through transdifferentiation and differentiation into specific cell types or via the paracrine secretion of soluble factors with anti-inflammatory and wound-healing activities. Experimental and clinical evidence exists regarding MSCs efficacy in airway defects restoration; although clinical MSCs use, in the daily practice, is not yet completely reached for airway diseases, we can argue that MSCs do not represent any more merely an experimental approach to airway tissue defects restoration but they can be considered as a “salvage” therapeutic tool in very selected patients and diseases. PMID:26167186

  9. Resolution of Allergic Airway Inflammation and Airway Hyperreactivity Is Mediated by IL-17–producing γδT Cells

    PubMed Central

    Murdoch, Jenna R.; Lloyd, Clare M.

    2010-01-01

    Rationale: γδT lymphocytes are enriched within the epithelial microenvironment, where they are thought to maintain homeostasis and limit immunopathology. γδT cells are postulated to exert a regulatory influence during acute allergic airway disease, but the mechanism is unknown. Although regulation of allergic airway disease has been attributed to IL-17–producing T helper (Th) 17 cells, we have found that γδT cells represent the major source of IL-17 in the allergic lung. Objectives: The aim of this study was to determine the contribution of these IL-17–producing γδT cells to regulation of allergic airway inflammation. Methods: Flow cytometry revealed that IL-17–producing γδT cells are more prevalent than IL-17+αβT cells (Th17) in a murine model of ovalbumin-induced allergic inflammation. Measurements and Main Results: Transfer of γδT cells at the peak of acute allergic responses ameliorated airway hyperresponsiveness with a corresponding acceleration in the resolution of eosinophilic and Th2-driven inflammation. Conversely, functional blockade of γδT cells led to exacerbation of injury. Neither treatment changed pulmonary Th17 cell numbers. Moreover, transfer of Th17 cells had no effect on disease outcome. Importantly, IL-17–deficient γδT cells were unable to promote resolution of injury. These data identify IL-17–producing γδT cells as key regulators of the allergic response in vivo. Conclusions: This unfolds a new perspective for the understanding of γδT cell function with regard to innate regulation of the adaptive immune responses, emphasizing that resolution of responses are important in determining the outcome of acute inflammatory episodes as well as for maintenance of tissue integrity and homeostasis. PMID:20413629

  10. Near Equilibrium Calculus of Stem Cells in Application to the Airway Epithelium Lineage.

    PubMed

    Sun, Zheng; Plikus, Maksim V; Komarova, Natalia L

    2016-07-01

    Homeostatic maintenance of tissues is orchestrated by well tuned networks of cellular signaling. Such networks regulate, in a stochastic manner, fates of all cells within the respective lineages. Processes such as symmetric and asymmetric divisions, differentiation, de-differentiation, and death have to be controlled in a dynamic fashion, such that the cell population is maintained at a stable equilibrium, has a sufficiently low level of stochastic variation, and is capable of responding efficiently to external damage. Cellular lineages in real tissues may consist of a number of different cell types, connected by hierarchical relationships, albeit not necessarily linear, and engaged in a number of different processes. Here we develop a general mathematical methodology for near equilibrium studies of arbitrarily complex hierarchical cell populations, under regulation by a control network. This methodology allows us to (1) determine stability properties of the network, (2) calculate the stochastic variance, and (3) predict how different control mechanisms affect stability and robustness of the system. We demonstrate the versatility of this tool by using the example of the airway epithelium lineage. Recent research shows that airway epithelium stem cells divide mostly asymmetrically, while the so-called secretory cells divide predominantly symmetrically. It further provides quantitative data on the recovery dynamics of the airway epithelium, which can include secretory cell de-differentiation. Using our new methodology, we demonstrate that while a number of regulatory networks can be compatible with the observed recovery behavior, the observed division patterns of cells are the most optimal from the viewpoint of homeostatic lineage stability and minimizing the variation of the cell population size. This not only explains the observed yet poorly understood features of airway tissue architecture, but also helps to deduce the information on the still largely hypothetical

  11. SERCA2 Regulates Non-CF and CF Airway Epithelial Cell Response to Ozone

    PubMed Central

    Ahmad, Shama; Nichols, David P.; Strand, Matthew; Rancourt, Raymond C.; Randell, Scott H.; White, Carl W.; Ahmad, Aftab

    2011-01-01

    Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target. PMID:22096575

  12. Near Equilibrium Calculus of Stem Cells in Application to the Airway Epithelium Lineage

    PubMed Central

    Sun, Zheng; Plikus, Maksim V.; Komarova, Natalia L.

    2016-01-01

    Homeostatic maintenance of tissues is orchestrated by well tuned networks of cellular signaling. Such networks regulate, in a stochastic manner, fates of all cells within the respective lineages. Processes such as symmetric and asymmetric divisions, differentiation, de-differentiation, and death have to be controlled in a dynamic fashion, such that the cell population is maintained at a stable equilibrium, has a sufficiently low level of stochastic variation, and is capable of responding efficiently to external damage. Cellular lineages in real tissues may consist of a number of different cell types, connected by hierarchical relationships, albeit not necessarily linear, and engaged in a number of different processes. Here we develop a general mathematical methodology for near equilibrium studies of arbitrarily complex hierarchical cell populations, under regulation by a control network. This methodology allows us to (1) determine stability properties of the network, (2) calculate the stochastic variance, and (3) predict how different control mechanisms affect stability and robustness of the system. We demonstrate the versatility of this tool by using the example of the airway epithelium lineage. Recent research shows that airway epithelium stem cells divide mostly asymmetrically, while the so-called secretory cells divide predominantly symmetrically. It further provides quantitative data on the recovery dynamics of the airway epithelium, which can include secretory cell de-differentiation. Using our new methodology, we demonstrate that while a number of regulatory networks can be compatible with the observed recovery behavior, the observed division patterns of cells are the most optimal from the viewpoint of homeostatic lineage stability and minimizing the variation of the cell population size. This not only explains the observed yet poorly understood features of airway tissue architecture, but also helps to deduce the information on the still largely hypothetical

  13. Relation of circulating T cell profiles to airway inflammation and asthma control in asthmatic pregnancy.

    PubMed

    Eszes, N; Bohács, A; Cseh, A; Toldi, G; Bikov, A; Ivancsó, I; Müller, V; Horváth, I; Rigó, J; Vásárhelyi, B; Losonczy, Gy; Tamási, L

    2012-09-01

    Asthmatic inflammation during pregnancy poses a risk for maternal and fetal morbidities. Circulating T cell immune phenotype is known to correlate with airway inflammation (detectable by fractional concentration of nitric oxide present in exhaled breath (FENO)) in non-pregnant allergic asthmatics. The aim of this study was to assess the relationship of peripheral T cell phenotype to FENO and clinical variables of asthma during pregnancy.We examined 22 pregnant women with allergic asthma in the 2nd/3rd trimester. The prevalence of Th1, Th2, regulatory T (Treg) and natural killer (NK) cell subsets was identified with flow cytometry using cell-specific markers. FENO, Asthma Control Test (ACT) total score and lung function were evaluated.Peripheral blood Th1, Th2, Treg, and NK cell prevalence were not significantly correlated to airway inflammation assessed by FENO in asthmatic pregnant women (all cells p > 0.05; study power > 75%). However, an inverse correlation was detected between Th2 cell prevalence and ACT total scores (p = 0.03) in asthmatic pregnancy.Blunted relationship between T cell profile and airway inflammation may be the result of pregnancy induced immune tolerance in asthmatic pregnancy. On the other hand, increased Th2 response impairs disease control that supports direct relationship between symptoms and cellular mechanisms of asthma during pregnancy. PMID:22982718

  14. γ-Secretase Inhibitor Alleviates Acute Airway Inflammation of Allergic Asthma in Mice by Downregulating Th17 Cell Differentiation

    PubMed Central

    Zhang, Weixi; Zhang, Xueya; Sheng, Anqun; Weng, Cuiye; Zhu, Tingting; Zhao, Wei; Li, Changchong

    2015-01-01

    T helper 17 (Th17) cells play an important role in the pathogenesis of allergic asthma. Th17 cell differentiation requires Notch signaling. γ-Secretase inhibitor (GSI) blocks Notch signaling; thus, it may be considered as a potential treatment for allergic asthma. The aim of this study was to evaluate the effect of GSI on Th17 cell differentiation in a mouse model of allergic asthma. OVA was used to induce mouse asthma model in the presence and absence of GSI. GSI ameliorated the development of OVA-induced asthma, including suppressing airway inflammation responses and reducing the severity of clinical signs. GSI also significantly suppressed Th17-cell responses in spleen and reduced IL-17 levels in serum. These findings suggest that GSI directly regulates Th17 responses through a Notch signaling-dependent pathway in mouse model of allergic asthma, supporting the notion that GSI is a potential therapeutic agent for the treatment of allergic asthma. PMID:26339131

  15. Regulation of airway neurogenic inflammation by neutral endopeptidase.

    PubMed

    Di Maria, G U; Bellofiore, S; Geppetti, P

    1998-12-01

    Airway neurogenic inflammation is caused by tachykinins released from peripheral nerve endings of sensory neurons within the airways, and is characterized by plasma protein extravasation, airway smooth muscle contraction and increased secretion of mucus. Tachykinins are degraded and inactivated by neutral endopeptidase (NEP), a membrane-bound metallopeptidase, which is located mainly at the surface of airway epithelial cells, but is also present in airway smooth muscle cells, submucosal gland cells and fibroblasts. The key role of NEP in limiting and regulating the neurogenic inflammation provoked by different stimuli has been demonstrated in a large series of studies published in recent years. It has also been shown that a variety of factors, which are relevant for airway diseases, including viral infections, allergen exposure, inhalation of cigarette smoke and other respiratory irritants, is able to reduce NEP activity, thus enhancing the effects of tachykinins within the airways. On the basis of these observations, the reduction of neutral endopeptidase activity may be regarded as a factor that switches neurogenic airway responses from their physiological and protective functions to a detrimental role that increases and perpetuates airway inflammation. However, further studies are needed to assess the role of neutral endopeptidase down regulation in the pathogenesis of asthma and other inflammatory airway diseases. PMID:9877509

  16. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication.

    PubMed

    Brockman-Schneider, Rebecca A; Pickles, Raymond J; Gern, James E

    2014-01-01

    Vitamin D has been linked to reduced risk of viral respiratory illness. We hypothesized that vitamin D could directly reduce rhinovirus (RV) replication in airway epithelium. Primary human bronchial epithelial cells (hBEC) were treated with vitamin D, and RV replication and gene expression were evaluated by quantitative PCR. Cytokine/chemokine secretion was measured by ELISA, and transepithelial resistance (TER) was determined using a voltohmmeter. Morphology was examined using immunohistochemistry. Vitamin D supplementation had no significant effects on RV replication, but potentiated secretion of CXCL8 and CXCL10 from infected or uninfected cells. Treatment with vitamin D in the form of 1,25(OH)2D caused significant changes in cell morphology, including thickening of the cell layers (median of 46.5 µm [35.0-69.0] vs. 30 µm [24.5-34.2], p<0.01) and proliferation of cytokeratin-5-expressing cells, as demonstrated by immunohistochemical analysis. Similar effects were seen for 25(OH)D. In addition to altering morphology, higher concentrations of vitamin D significantly upregulated small proline-rich protein (SPRR1β) expression (6.3 fold-induction, p<0.01), suggestive of squamous metaplasia. Vitamin D treatment of hBECs did not alter repair of mechanically induced wounds. Collectively, these findings indicate that vitamin D does not directly affect RV replication in airway epithelial cells, but can influence chemokine synthesis and alters the growth and differentiation of airway epithelial cells. PMID:24475177

  17. Nickel Mobilizes Intracellular Zinc to Induce Metallothionein in Human Airway Epithelial Cells

    PubMed Central

    Nemec, Antonia A.; Leikauf, George D.; Pitt, Bruce R.; Wasserloos, Karla J.; Barchowsky, Aaron

    2009-01-01

    We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release. PMID:19097988

  18. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  19. Inflammatory responses of airway smooth muscle cells and effects of endothelin receptor antagonism.

    PubMed

    Knobloch, Jürgen; Lin, Yingfeng; Konradi, Jürgen; Jungck, David; Behr, Juergen; Strauch, Justus; Stoelben, Erich; Koch, Andrea

    2013-07-01

    Endothelin receptor antagonists (ETRAs), authorized for pulmonary hypertension, have failed to prove their utility in chronic lung diseases with corticosteroid-resistant airway inflammation when applied at late disease stages with emphysema/fibrosis. Earlier administration might prove effective by targeting the interaction between airway inflammation and tissue remodeling. We hypothesized that human airway smooth muscle cells (HASMCs) participate in linking inflammation with remodeling and that associated genes become differentially suppressed by ambrisentan (A-receptor selective ETRA) and bosentan (nonselective/dual ETRA). Inflammatory responses of ex vivo-cultivated HASMCs to TNF-α were investigated by whole-genome microarray analyses. qRT-PCR and ELISA were used to test inflammatory and remodeling genes for sensitivity to bosentan and ambrisentan and to investigate differential sensitivities mechanistically. ETRA and corticosteroid effects were compared in HASMCs from patients with chronic obstructive pulmonary disease. TNF-α induced the expression of 18 cytokines/chemokines and five tissue remodeling genes involved in severe, corticosteroid-insensitive asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and/or pulmonary hypertension. Thirteen cytokines/chemokines, MMP13, and WISP1 were suppressed by ETRAs. Eight genes had differential sensitivity to bosentan and ambrisentan depending on the endothelin-B receptor impact on transcriptional regulation and mRNA stabilization. Chemokine (C-C motif) ligands 2 and 5, granulocyte macrophage colony-stimulating factor, and MMP13 had increased sensitivity to bosentan or bosentan/dexamethasone combination versus dexamethasone alone. Suppression of cytokine and remodeling gene expression by ETRAs was confirmed in TNF-α-activated human bronchial epithelial cells. HASMCs and human bronchial epithelial cells participate in the interaction of inflammation and tissue remodeling. This interaction is

  20. The effect of ozone on inflammatory cell infiltration and airway hyperresponsiveness in the guinea pig lung

    SciTech Connect

    Schultheis, A.J.H.

    1993-01-01

    Inflammatory cells may contribute to the development of exaggerated bronchoconstrictor responses since a persistent link has been noted between pulmonary inflammation and airway hyperresponsiveness. In these studies guinea pigs were exposed to 2.0 ppm ozone for 4 hours, then immediately sacrificed or allowed to breathe filtered air for up to 14 days. Following ozone exposure there was an immediate massive neutrophil infiltration into the lung. Neutrophils in lung digest dropped to control values within 3-12 hours post-ozone but remained elevated in BAL fluid for 3 days. There was probable eosinophil degranulation within the first 24 hours post-ozone. Guinea pigs were hyperresponsive to vigal stimulation through 3 days post-ozone. Although they were also hyperresponsive to ACh, responses to MCh were unchanged. Neuronal M[sub 2] receptors were dysfunctional through 3 days post-ozone. There was resolution of inflammation, airway responsiveness, and neuronal M[sub 2] receptor function by 14 days post-exposure. This investigation has (1) confirmed an immediate lung inflammation following acute ozone exposure; (2) established that cells in BAL give a distorted reflection of inflammatory events in lung digest; (3) demonstrated that ozone-induced hyperresponsiveness is at least partially due to efferent cholinergic mechanisms without functional changes of muscarinic receptors on airway smooth muscle; (4) shown that ACh may not be an appropriate agent to test ozone-induced airway hyperresponsiveness; and (5) demonstrated that inhibitory neuronal M[sub 2] receptors are dysfunctional following ozone exposure. There was close linkage between these events, suggesting that they may be causally related. This investigation proposes a specific mechanism, dysfunction of neuronal M[sub 2] receptors, by which inflammatory cells could cause airway hyperresponsiveness following acute ozone exposure.

  1. Mesenchymal stem cells for repair of the airway epithelium in asthma.

    PubMed

    Knight, Darryl A; Rossi, Fabio M; Hackett, Tillie-Louise

    2010-12-01

    The airway epithelium is constantly faced with inflammatory and potentially injurious stimuli. Following damage, rapid repair mechanisms involving proliferation and differentiation of resident progenitor and stem cell pools are necessary in order to maintain a protective barrier. In asthma, evidence pointing to a compromised ability of the epithelium to properly repair and regenerate is rapidly accumulating. The consequences of this are presently unknown but are likely to have a significant impact on lung function. Mesenchymal stem cells have the potential to serve as a universal source for replacement of specific cells in several diseases and thus offer hope as a potential therapeutic intervention for the treatment of the chronic remodeling changes that occur in the asthmatic epithelium. However, controversy exists regarding whether these cells can actually home to and engraft within the airways and contribute to tissue function or whether this mechanism is necessary, since they can have potent paracrine immunomodulatory effects. This article focuses on the current knowledge about specific stem cell populations that may contribute to airway epithelial regeneration and discusses the use of mesenchymal stem cells as a potential therapeutic intervention. PMID:21128750

  2. Effects of miRNA-145 on airway smooth muscle cells function.

    PubMed

    Liu, Yun; Sun, Xiuzhen; Wu, Yuanyuan; Fang, Ping; Shi, Hongyang; Xu, Jing; Li, Manxiang

    2015-11-01

    The pathological changes of airway smooth muscle (ASM) contribute to airway remodeling during asthma. Here, we investigated the effect of miR-145 on ASM function. We found that miR-145 was aberrantly more highly expressed in ASM cells exposed to cytokine stimulation that mimic the airway conditions of patients with asthma. Repression of miR-145 resulted in decreased ASM cell proliferation and migration in a dose-dependent manner and down-regulation of type I collagen and contractile protein MHC in ASM cells. qRT-PCR and Western blot analysis demonstrated that miR-145 negatively regulated the expression of downstream target Krüppel-like factor 4 (KLF4) protein, and overexpression of KLF4 attenuated the effects of miR-145 on ASM cells. Further studies showed that KLF4 significantly up-regulated the expression of p21 and down-regulated matrix metalloproteinase (MMP-2 and MMP-9). In conclusion, miR-145 overexpression in ASM cells significantly inhibited KLF4, and subsequently affected downstream p21, MMP-2, and MMP-9 expressions, eventually leading to enhanced proliferation and migration of ASM cells in vitro. PMID:26197891

  3. Vasoactive peptides upregulate mRNA expression and secretion of vascular endothelial growth factor in human airway smooth muscle cells.

    PubMed

    Alagappan, Vijay K T; Willems-Widyastuti, Anna; Seynhaeve, Ann L B; Garrelds, Ingrid M; ten Hagen, Timo L M; Saxena, Pramod R; Sharma, Hari S

    2007-01-01

    Airway remodeling and associated angiogenesis are documented features of asthma, of which the molecular mechanisms are not fully understood. Angiotensin (ANG)II and endothelin (ET)-1 are potent vasoconstricting circulatory hormones implicated in asthma. We investigated the effects of ANG II and ET-1 on human airway smooth muscle (ASM) cells proliferation and growth and examined the mRNA expression and release of the angiogenic peptide, vascular endothelial growth factor (VEGF). Serum deprived (48 h) human ASM cells were incubated with ANG II (100 nM) or ET-1 (10 nM) for 30 min, 1, 2, 4, 8, 16, and 24 h and the endogenous synthesis of VEGF was examined in relation to control cells receiving serum free culture medium. ET-1 induced time dependent DNA biosynthesis as determined by [3H]-thymidine incorporation assay. Using northern blot hybridization, we detected two mRNA species of 3.9 and 1.7 kb encoding VEGF in the cultured smooth muscle cells. Both ANG II and ET-1 induced the mRNA expression (two- to threefold) and secretion (1.8- to 2.8-fold) of VEGF reaching maximal levels between 4-8 h of incubation. Induced expression and release of VEGF declined after 8 h of ANG II incubation while levels remained elevated in the case of ET-1. The conditioned medium derived from ET-1-treated ASM cells induced [3H]-thymidine incorporation and cell number in porcine pulmonary artery endothelial as well as human umbilical vein endothelial cells. Moreover, the VEGF tyrosine kinase receptor inhibitor blocked the conditioned medium induced mitogenesis in endothelial cells. Our results suggest a potential role for ANG II and ET-1 in ASM cell growth and upregulation of VEGF that may participate in endothelial cell proliferation via paracrine mechanisms and thus causing pathological angiogenesis and vascular remodelling seen during asthma. PMID:17406064

  4. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy.

    PubMed

    Chhin, Brigitte; Negre, Didier; Merrot, Olivier; Pham, Jacqueline; Tourneur, Yves; Ressnikoff, Denis; Jaspers, Martine; Jorissen, Mark; Cosset, François-Loïc; Bouvagnet, Patrice

    2009-03-01

    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1-deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT-PCR and western blot, respectively. Human airway epithelial cells that were DNAI1-deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease. PMID:19300481

  5. Ciliary Beating Recovery in Deficient Human Airway Epithelial Cells after Lentivirus Ex Vivo Gene Therapy

    PubMed Central

    Chhin, Brigitte; Negre, Didier; Merrot, Olivier; Pham, Jacqueline; Tourneur, Yves; Ressnikoff, Denis; Jaspers, Martine; Jorissen, Mark; Cosset, François-Loïc; Bouvagnet, Patrice

    2009-01-01

    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1–deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT–PCR and western blot, respectively. Human airway epithelial cells that were DNAI1–deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease. PMID:19300481

  6. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production.

    PubMed

    Oglesby, Irene K; Vencken, Sebastian F; Agrawal, Raman; Gaughan, Kevin; Molloy, Kevin; Higgins, Gerard; McNally, Paul; McElvaney, Noel G; Mall, Marcus A; Greene, Catherine M

    2015-11-01

    Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases. PMID:26160865

  7. Natural antibody repertoires: development and functional role in inhibiting allergic airway disease.

    PubMed

    Kearney, John F; Patel, Preeyam; Stefanov, Emily K; King, R Glenn

    2015-01-01

    In this review we discuss the effects of microbial exposure on the B cell repertoire. Neonatal exposure to conserved bacterial carbohydrates and phospholipids permanently reprograms the natural antibody repertoire directed toward these antigens by clonal expansion, alterations in clonal dominance, and increased serum antibody levels. These epitopes are present not only in bacterial cell walls, but also in common environmental allergens. Neonatal immunization with bacterial polysaccharide vaccines results in attenuated allergic airway responses to fungi-, house dust mite-, and cockroach-associated allergens in mouse models. The similarities between mouse and human natural antibody repertoires suggest that reduced microbial exposure in children may have the opposite effect, providing a potential mechanistic explanation for the hygiene hypothesis. We propose that understanding the effects of childhood infections on the natural antibody repertoire and the mechanisms of antibody-mediated immunoregulation observed in allergy models will lead to the development of prevention/interventional strategies for treatment of allergic asthma. PMID:25622195

  8. Nanotubes connect CD4+ T cells to airway smooth muscle cells: novel mechanism of T cell survival.

    PubMed

    Al Heialy, Saba; Zeroual, Melissa; Farahnak, Soroor; McGovern, Toby; Risse, Paul-André; Novali, Mauro; Lauzon, Anne-Marie; Roman, Horia N; Martin, James G

    2015-06-15

    Contact between airway smooth muscle (ASM) cells and activated CD4(+) T cells, a key interaction in diseases such as asthma, triggers ASM cell proliferation and enhances T cell survival. We hypothesized that direct contact between ASM and CD4(+) T cells facilitated the transfer of anti-apoptotic proteins via nanotubes, resulting in increased survival of activated CD4(+) T cells. CD4(+) T cells, isolated from PBMCs of healthy subjects, when activated and cocultured with ASM cells for 24 h, formed nanotubes that were visualized by immunofluorescence and atomic force microscopy. Cell-to-cell transfer of the fluorescent dye calcein-AM confirmed cytoplasmic communication via nanotubes. Immunoreactive B cell lymphoma 2 (Bcl-2) and induced myeloid leukemia cell differentiation protein (Mcl-1), two major anti-apoptotic proteins, were present within the nanotubes. Downregulation of Mcl-1 by small interfering RNA in ASM cells significantly increased T cell apoptosis, whereas downregulation of Bcl-2 had no effect. Transfer of GFP-tagged Mcl-1 from ASM cells to CD4(+) T cells via the nanotubes confirmed directionality of transfer. In conclusion, activated T cells communicate with ASM cells via nanotube formation. Direct transfer of Mcl-1 from ASM to CD(+) T cells via nanotubes is involved in T cell survival. This study provides a novel mechanism of survival of CD4(+) T cells that is dependent on interaction with a structural cell. PMID:25934863

  9. Gene Transfer by Guanidinium-Cholesterol Cationic Lipids into Airway Epithelial Cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Oudrhiri, Noufissa; Vigneron, Jean-Pierre; Peuchmaur, Michel; Leclerc, Tony; Lehn, Jean-Marie; Lehn, Pierre

    1997-03-01

    Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis (guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.

  10. What do we need for airway management of adult casualties on the Primary Casualty Receiving Facility? A review of airway management on Role 3 Afloat.

    PubMed

    Mercer, S; Read, J; Sudheer, S; Risdall, J E; Connor, D

    2015-01-01

    The Primary Casualty Receiving Facility (PCRF) of the Royal Navy (RN) is currently based on Royal Fleet Auxiliary (RFA) ARGUS and provides a functioning hospital with surgical teams and a CT scanner (Role 3) within the maritime environment. The case mix could include complex trauma, critically ill patients returning to theatre several times, as well as non-battle injury procedures. This paper describes how we have used national guidelines, evidence from recent military experience, and the Clinical Guidelines for Operations (CGOs) to review and rationalise the airway equipment that is available and that would be required for the PCRF in its current configuration, whilst maintaining capability in a deployed setting. PMID:26867417

  11. Recent insights into the relationship between airway inflammation and asthma.

    PubMed

    Siva, R; Berry, M; Pavord, I D

    2003-01-01

    There have been important recent advances in our understanding of the relationship between eosinophilic airway inflammation and airway dysfunction. Observational studies have shown that eosinophilic airway inflammation is not always present in asthma nor is it an exclusive feature of asthma. Its presence seems to be more closely linked to the presence of corticosteroid responsive airways disease and the occurrence of severe exacerbations than the presence of symptoms or the extent of airway dysfunction--indeed recent evidence suggests that in asthma these features may be more closely linked to the site of localisation of mast cells in the airway wall. One implication of this new understanding of the significance of eosinophilic airway inflammation is that it predicts that measuring airway inflammation might provide information that it is not readily available from a more traditional clinical assessment, and that patients might do better if this information is available. Recent studies support this view, showing a marked reduction in asthma exacerbation in patients with moderate to severe disease who are managed with reference to markers of airway inflammation as well as symptoms and simple tests of airway function. The development of new agents that have the potential to modulate specific aspects of airway inflammation, together with refinements in non-invasive techniques to assess the efficacy of these agents offers the prospect of further refining our understanding of the role of this aspect of the inflammatory response in asthma and other airway diseases. PMID:15148839

  12. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance.

    PubMed

    Soroosh, Pejman; Doherty, Taylor A; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H; Croft, Michael

    2013-04-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3(+) iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3(+) Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma. PMID:23547101

  13. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses.

    PubMed

    Zhao, Jincun; Zhao, Jingxian; Mangalam, Ashutosh K; Channappanavar, Rudragouda; Fett, Craig; Meyerholz, David K; Agnihothram, Sudhakar; Baric, Ralph S; David, Chella S; Perlman, Stanley

    2016-06-21

    Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8(+) T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks. PMID:27287409

  14. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  15. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.

    PubMed

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N

    2013-04-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma. PMID:24665390

  16. An investigation of the influence of cell topography on epithelial mechanical stresses during pulmonary airway reopening

    NASA Astrophysics Data System (ADS)

    Jacob, A. M.; Gaver, D. P.

    2005-03-01

    The goal of this study is to assess the local mechanical environment of the pulmonary epithelium in a computational model of airway reopening. To this end, the boundary element method (BEM) in conjunction with lubrication theory is implemented to assess the stationary-state behavior of a semi-infinite bubble traveling through a liquid-occluded parallel plate flow chamber lined with epithelial cells. The fluid occlusion is assumed to be Newtonian and inertia is neglected. The interactions between the microgeometry of the model airway's walls and the interfacial kinematics surrounding the bubble's tip result in a complex, spatially and temporally dependent stress distribution. The walls' nonplanar topography magnifies the normal and shear stresses and stress gradients. We find that decreasing the bubble's speed serves to increase the maximum normal stress and stress gradient but decrease the maximum shear stress and stress gradient. Our results give credence to the pressure-gradient-induced epithelial damage theory recently proposed by Bilek et al. [J. Appl. Physiol. 94, 770 (2003)] and Kay et al. [J. Appl. Physiol. 97, 269 (2004)]. We conclude that the amplified pressure gradients found in this study may be even more detrimental to the airway's cellular epithelium during airway reopening.

  17. An investigation of the influence of cell topography on epithelial mechanical stresses during pulmonary airway reopening.

    PubMed

    Jacob, A M; Gaver, D P

    2005-01-01

    The goal of this study is to assess the local mechanical environment of the pulmonary epithelium in a computational model of airway reopening. To this end, the boundary element method (BEM) in conjunction with lubrication theory is implemented to assess the stationary-state behavior of a semi-infinite bubble traveling through a liquid-occluded parallel plate flow chamber lined with epithelial cells. The fluid occlusion is assumed to be Newtonian and inertia is neglected. The interactions between the microgeometry of the model airway's walls and the interfacial kinematics surrounding the bubble's tip result in a complex, spatially and temporally dependent stress distribution. The walls' nonplanar topography magnifies the normal and shear stresses and stress gradients. We find that decreasing the bubble's speed serves to increase the maximum normal stress and stress gradient but decrease the maximum shear stress and stress gradient. Our results give credence to the pressure-gradient-induced epithelial damage theory recently proposed by Bilek et al. [J. Appl. Physiol. 94, 770 (2003)] and Kay et al. [J. Appl. Physiol. 97, 269 (2004)]. We conclude that the amplified pressure gradients found in this study may be even more detrimental to the airway's cellular epithelium during airway reopening. PMID:23745044

  18. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense.

    PubMed

    Li, Xiaopeng; Tang, Xiao Xiao; Vargas Buonfiglio, Luis G; Comellas, Alejandro P; Thornell, Ian M; Ramachandran, Shyam; Karp, Philip H; Taft, Peter J; Sheets, Kelsey; Abou Alaiwa, Mahmoud H; Welsh, Michael J; Meyerholz, David K; Stoltz, David A; Zabner, Joseph

    2016-04-01

    While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl(-) and bicarbonate (HCO3 (-)) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl(-) and HCO3 (-) transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization. PMID:26801568

  19. IDENTIFICATION AND CHARACTERIZATION OF HUMAN AIRWAY EPITHELIAL CELL PROTEINS PHOSPHORYLATED IN RESPONSE TO PARTICULATE MATTER (PM) EXPOSURE.

    EPA Science Inventory

    Multiple studies conducted by NHEERL scientists in recent years have shown that acute exposure to metals found associated with combustion-derived particulate matter (PM) alters phosphoprotein metabolism in human airway epithelial cells causing intracellular signaling. This disreg...

  20. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO UTAH VALLEY PARTICULATE MATTER

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) in the Utah Valley (UV) has previously been associated with a variety of adverse health effects. To investigate intracellular signaling mechanisms for pulmonary responses to UV PM inhalation, human primary airway epithelial cells (NHBE)...

  1. Ineffective correction of PPARγ signaling in cystic fibrosis airway epithelial cells undergoing repair.

    PubMed

    Bou Saab, J; Bacchetta, M; Chanson, M

    2016-09-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) represents a potential target to treat airway mucus hypersecretion in cystic fibrosis (CF). We aimed to determine if PPARγ is altered in CF human airway epithelial cells (HAECs), if PPARγ contributes to mucin expression and HAEC differentiation, and if PPARγ ligand therapy corrects the CF phenotype. To this end, well-differentiated CF and NCF HAEC primary cultures were wounded to monitor the expression of key genes involved in PPARγ activation and mucus homeostasis, and to evaluate the effect of a PPARγ agonist, at different times of repair. Hydroxyprostaglandin dehydrogenase (HPGD) converts prostaglandin E2 to 15-keto PGE2 (15kPGE2), an endogenous PPARγ ligand. Interestingly, PPARγ and HPGD expression dramatically decreased in CF HAECs. These changes were accompanied by an increase in the expression of MUC5B. The correlation between PPARγ and MUC5B was confirmed in an airway epithelial cell line after CFTR knock-down. Exposure of HAECs to 15kPGE2 did not correct the CF phenotype but revealed a defect in the process of basal cell (BC) differentiation. The HPGD/PPARγ axis is deregulated in primary HAEC cultures from CF patients, which may impact the maturation of BCs to differentiated luminal cells. Importantly, PPARγ therapy was inefficient in correcting the CF defect. PMID:27484450

  2. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer.

    PubMed Central

    Willumsen, N J; Davis, C W; Boucher, R C

    1994-01-01

    The response of cultured human nasal epithelia to hypertonic bathing solutions was tested using ion-selective microelectrode and quantitative microscopy. Raised luminal, but not serosal, osmolality (+/- 150 mM mannitol) decreased Na+ absorption but did not induce Cl- secretion. Raised luminal osmolality increased cell Cl- activity, Na+ activity, and transepithelial resistance and decreased both apical and basolateral membrane potentials and the fractional resistance of the apical membrane; equivalent circuit analysis revealed increases in apical, basolateral, and shunt resistances. Prolonged exposure (10 min) to 430 mosM luminal solution elicited no regulation of any parameter. Optical measurements revealed a reduction in the thickness of preparations only in response to luminal hypertonic solutions. We conclude that (a) airway epithelial cells exhibit asymmetric water transport properties, with the apical membrane water permeability exceeding that of the basolateral membrane; (b) the cellular response to volume loss is a deactivation of the basolateral membrane K+ conductance and the apical membrane Cl- conductance; (c) luminal hypertonicity slows the rate of Na+ absorption but does not induce Cl- secretion; and (d) cell volume loss increases the resistance of the paracellular path. We speculate that these properties configure human nasal epithelium to behave as an osmotic sensor, transducing information about luminal solutions to the airway wall. Images PMID:8040333

  3. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  4. Parasitic Nematode-Induced CD4+Foxp3+T Cells Can Ameliorate Allergic Airway Inflammation

    PubMed Central

    Kang, Shin Ae; Park, Mi-Kyung; Cho, Min Kyoung; Park, Sang Kyun; Jang, Min Seong; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Background The recruitment of CD4+CD25+Foxp3+T (Treg) cells is one of the most important mechanisms by which parasites down-regulate the immune system. Methodology/Principal Findings We compared the effects of Treg cells from Trichinella spiralis-infected mice and uninfected mice on experimental allergic airway inflammation in order to understand the functions of parasite-induced Treg cells. After four weeks of T. spiralis infection, we isolated Foxp3-GFP-expressing cells from transgenic mice using a cell sorter. We injected CD4+Foxp3+ cells from T. spiralis-infected [Inf(+)Foxp3+] or uninfected [Inf(-)Foxp3+] mice into the tail veins of C57BL/6 mice before the induction of inflammation or during inflammation. Inflammation was induced by ovalbumin (OVA)-alum sensitization and OVA challenge. The concentrations of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchial alveolar lavage fluid and the levels of OVA-specific IgE and IgG1 in the serum were lower in mice that received intravenous application of Inf(+)Foxp3+ cells [IV(inf):+(+) group] than in control mice. Some features of allergic airway inflammation were ameliorated by the intravenous application of Inf(-)Foxp3+ cells [IV(inf):+(-) group], but the effects were less distinct than those observed in the IV(inf):+(+) group. We found that Inf(+)Foxp3+ cells migrated to inflammation sites in the lung and expressed higher levels of Treg-cell homing receptors (CCR5 and CCR9) and activation markers (Klrg1, Capg, GARP, Gzmb, OX40) than did Inf(-)Foxp3+ cells. Conclusion/Significance T. spiralis infection promotes the proliferation and functional activation of Treg cells. Parasite-induced Treg cells migrate to the inflammation site and suppress immune responses more effectively than non-parasite-induced Treg cells. The adoptive transfer of Inf(+)Foxp3+ cells is an effective method for the treatment and prevention of allergic airway diseases in mice and is a promising therapeutic approach for the treatment

  5. Dynamics of airway response in lung microsections: a tool for studying airway-extra cellular matrix interactions.

    PubMed

    Khan, Mohammad Afzal

    2016-01-01

    The biological configuration of extracellular matrix (ECM) plays a key role in how mechanical interactions of the airway with its parenchymal attachments affect the dynamics of airway responses in different pulmonary disorders including asthma, emphysema and chronic bronchitis. It is now recognized that mechanical interactions between airway tissue and ECM play a key regulatory role on airway physiology and kinetics that can lead to the reorganization and remodeling of airway connective tissue. A connective tissue is composed of airway smooth muscle cells (ASM) and the ECM, which includes variety of glycoproteins and therefore the extent of interactions between ECM and ASM affects airway dynamics during exacerbations of major pulmonary disorders. Measurement of the velocity and magnitude of airway closure or opening provide important insights into the functions of the airway contractile apparatus and the interactions with its surrounding connective tissues. This review highlights suitability of lung microsection technique in studying measurements of airway dynamics (narrowing/opening) and associated structural distortions in airway compartments. PMID:27176036

  6. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol.

    PubMed

    Khosravi, Ali Reza; Erle, David J

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin. PMID

  7. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    PubMed Central

    Erle, David J.

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin. PMID

  8. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    PubMed

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. J. Cell. Physiol. 231: 1586-1592, 2016. © 2015 Wiley Periodicals, Inc. PMID:26566264

  9. Ozone-Induced Type 2 Immunity in Nasal Airways. Development and Lymphoid Cell Dependence in Mice.

    PubMed

    Ong, Chee Bing; Kumagai, Kazuyoshi; Brooks, Phillip T; Brandenberger, Christina; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Nault, Rance; Zacharewski, Timothy R; Wagner, James G; Harkema, Jack R

    2016-03-01

    Inhalation exposures to ozone commonly encountered in photochemical smog cause airway injury and inflammation. Elevated ambient ozone concentrations have been epidemiologically associated with nasal airway activation of neutrophils and eosinophils. In the present study, we elucidated the temporal onset and lymphoid cell dependency of eosinophilic rhinitis and associated epithelial changes in mice repeatedly exposed to ozone. Lymphoid cell-sufficient C57BL/6 mice were exposed to 0 or 0.5 parts per million (ppm) ozone for 1, 2, 4, or 9 consecutive weekdays (4 h/d). Lymphoid cell-deficient, Rag2(-/-)Il2rg(-/-) mice were similarly exposed for 9 weekdays. Nasal tissues were taken at 2 or 24 hours after exposure for morphometric and gene expression analyses. C57BL/6 mice exposed to ozone for 1 day had acute neutrophilic rhinitis, with airway epithelial necrosis and overexpression of mucosal Ccl2 (MCP-1), Ccl11 (eotaxin), Cxcl1 (KC), Cxcl2 (MIP-2), Hmox1, Il1b, Il5, Il6, Il13, and Tnf mRNA. In contrast, 9-day ozone exposure elicited type 2 immune responses in C57BL/6 mice, with mucosal mRNA overexpression of Arg1, Ccl8 (MCP-2), Ccl11, Chil4 (Ym2), Clca1 (Gob5), Il5, Il10, and Il13; increased density of mucosal eosinophils; and nasal epithelial remodeling (e.g., hyperplasia/hypertrophy, mucous cell metaplasia, hyalinosis, and increased YM1/YM2 proteins). Rag2(-/-)Il2rg(-/-) mice exposed to ozone for 9 days, however, had no nasal pathology or overexpression of transcripts related to type 2 immunity. These results provide a plausible paradigm for the activation of eosinophilic inflammation and type 2 immunity found in the nasal airways of nonatopic individuals subjected to episodic exposures to high ambient ozone. PMID:26203683

  10. Effect of modifying quantum dot surface charge on airway epithelial cell uptake in vitro

    PubMed Central

    Chau, Eric; Galloway, Justin F.; Nelson, Antoinette; Breysse, Patrick N.; Wirtz, Denis; Searson, Peter C.

    2012-01-01

    The respiratory system is one of the portals of entry into the body, and hence inhalation of engineered nanomaterials is an important route of exposure. The broad range of physicochemical properties that influence biological responses necessitate the systematic study to contribute to understanding occupational exposure. Here, we report on the influence of nanoparticle charge and dose on human airway epithelial cells, and show that this platform can be used to evaluate consequences of exposure to engineered nanomaterials. PMID:22783847

  11. The effect of N-acetylcysteine on chloride efflux from airway epithelial cells.

    PubMed

    Varelogianni, Georgia; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2010-03-01

    Defective chloride transport in epithelial cells increases mucus viscosity and leads to recurrent infections with high oxidative stress in patients with CF (cystic fibrosis). NAC (N-acetylcysteine) is a well known mucolytic and antioxidant drug, and an indirect precursor of glutathione. Since GSNO (S-nitrosoglutathione) previously has been shown to be able to promote Cl- efflux from CF airway epithelial cells, it was investigated whether NAC also could stimulate Cl- efflux from CF and non-CF epithelial cells and through which mechanisms. CFBE (CF bronchial epithelial cells) and normal bronchial epithelial cells (16HBE) were treated with 1 mM, 5 mM, 10 mM or 15 mM NAC for 4 h at 37 degrees C. The effect of NAC on Cl- transport was measured by Cl- efflux measurements and by X-ray microanalysis. Cl- efflux from CFBE cells was stimulated by NAC in a dose-dependent manner, with 10 mM NAC causing a significant increase in Cl- efflux with nearly 80% in CFBE cells. The intracellular Cl- concentration in CFBE cells was significantly decreased up to 60% after 4 h treatment with 10 mM NAC. Moreover immunocytochemistry and Western blot experiments revealed expression of CFTR channel on CFBE cells after treatment with 10 mM NAC. The stimulation of Cl- efflux by NAC in CF airway epithelial cells may improve hydration of the mucus and thereby be beneficial for CF patients. PMID:19947928

  12. Ex Vivo and In Vivo Lentivirus-Mediated Transduction of Airway Epithelial Progenitor Cells.

    PubMed

    Leoni, Giulia; Wasowicz, Marguerite Y; Chan, Mario; Meng, Cuixiang; Farley, Raymond; Brody, Steven L; Inoue, Makoto; Hasegawa, Mamoru; Alton, Eric W F W; Griesenbach, Uta

    2015-01-01

    A key challenge in pulmonary gene therapy for cystic fibrosis is to provide long-term correction of the genetic defect. This may be achievable by targeting airway epithelial stem/progenitor cells with an integrating vector. Here, we evaluated the ability of a lentiviral vector, derived from the simian immunodeficiency virus and pseudotyped with F and HN envelope proteins from Sendai virus, to transduce progenitor basal cells of the mouse nasal airways. We first transduced basal cell-enriched cultures ex vivo and confirmed efficient transduction of cytokeratin-5 positive cells. We next asked whether progenitor cells could be transduced in vivo. We evaluated the transduction efficiency in mice pretreated by intranasal administration of polidocanol to expose the progenitor cell layer. Compared to control mice, polidocanol treated mice demonstrated a significant increase in the number of transduced basal cells at 3 and 14 days post vector administration. At 14 days, the epithelium of treated mice contained clusters (4 to 8 adjacent cells) of well differentiated ciliated, as well as basal cells suggesting a clonal expansion. These results indicate that our lentiviral vector can transduce progenitor basal cells in vivo, although transduction required denudation of the surface epithelium prior to vector administration. PMID:26471068

  13. Absence of inflammatory response from upper airway epithelial cells after X irradiation.

    PubMed

    Reiter, R; Deutschle, T; Wiegel, T; Riechelmann, H; Bartkowiak, D

    2009-03-01

    Radiotherapy of head and neck tumors causes adverse reactions in normal tissue, especially mucositis. The dose- and time-dependent response of upper airway cells to X radiation should be analyzed in terms of the pro-inflammatory potential. Immortalized BEAS-2B lung epithelial cells were treated with 2, 5 and 8 Gy. Out of 1232 genes, those that were transcribed differentially after 2, 6 and 24 h were assigned to biological themes according to the Gene Ontology Consortium. Enrichment of differentially regulated gene clusters was determined with GOTree ( http://bioinfo.vanderbilt.edu/gotm ). Eleven cytokines were measured in culture supernatants. The cell cycle response up to 24 h and induction of apoptosis up to 4 days after exposure were determined by flow cytometry. A significant dose- and time-dependent gene activation was observed for the categories response to DNA damage, oxidative stress, cell cycle arrest and cell death/apoptosis but not for immune/inflammatory response. This correlated with functional G(2) arrest and apoptosis. Pro-inflammatory cytokines accumulated in supernatants of control cells but not of X-irradiated cells. The complex gene expression pattern of X-irradiated airway epithelial cells is accompanied by cell cycle arrest and induction of apoptosis. In vivo, this may impair the epithelial barrier. mRNA and protein expression suggest at most an indirect contribution of epithelial cells to early radiogenic mucositis. PMID:19267554

  14. The role of the mast cell in the pathophysiology of asthma.

    PubMed

    Bradding, Peter; Walls, Andrew F; Holgate, Stephen T

    2006-06-01

    There is compelling evidence that human mast cells contribute to the pathophysiology of asthma. Mast cells, but not T cells or eosinophils, localize within the bronchial smooth muscle bundles in patients with asthma but not in normal subjects or those with eosinophilic bronchitis, a factor likely to be important in determining the asthmatic phenotype. The mechanism of mast cell recruitment by asthmatic airway smooth muscle involves the CXCL10/CXCR3 axis, and several mast cell mediators have profound effects on airway smooth muscle function. The autacoids are established as potent bronchoconstrictors, whereas the proteases tryptase and chymase are being demonstrated to have a range of actions consistent with key roles in inflammation, tissue remodeling, and bronchial hyperresponsiveness. IL-4 and IL-13, known mast cell products, also induce bronchial hyperresponsiveness in the mouse independent of the inflammatory response and enhance the magnitude of agonist-induced intracellular Ca2+ responses in cultured human airway smooth muscle. There are therefore many pathways by which the close approximation of mast cells with airway smooth muscle cells might lead to disordered airway smooth muscle function. Mast cells also infiltrate the airway mucous glands in subjects with asthma, showing features of degranulation, and a positive correlation with the degree of mucus obstructing the airway lumen, suggesting that mast cells play an important role in regulating mucous gland secretion. The development of potent and specific inhibitors of mast cell secretion, which remain active when administered long-term to asthmatic airways, should offer a novel approach to the treatment of asthma. PMID:16750987

  15. Proton-Sensing Ovarian Cancer G Protein-Coupled Receptor 1 on Dendritic Cells Is Required for Airway Responses in a Murine Asthma Model

    PubMed Central

    Hisada, Takeshi; Nakakura, Takashi; Kamide, Yosuke; Ichimonji, Isao; Tomura, Hideaki; Tobo, Masayuki; Sato, Koichi; Tsurumaki, Hiroaki; Dobashi, Kunio; Mori, Tetsuya; Harada, Akihiro; Yamada, Masanobu; Mori, Masatomo; Ishizuka, Tamotsu; Okajima, Fumikazu

    2013-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) stimulation by extracellular protons causes the activation of G proteins and subsequent cellular functions. However, the physiological and pathophysiological roles of OGR1 in airway responses remain largely unknown. In the present study, we show that OGR1-deficient mice are resistant to the cardinal features of asthma, including airway eosinophilia, airway hyperresponsiveness (AHR), and goblet cell metaplasia, in association with a remarkable inhibition of Th2 cytokine and IgE production, in an ovalbumin (OVA)-induced asthma model. Intratracheal transfer to wild-type mice of OVA-primed bone marrow-derived dendritic cells (DCs) from OGR1-deficient mice developed lower AHR and eosinophilia after OVA inhalation compared with the transfer of those from wild-type mice. Migration of OVA-pulsed DCs to peribronchial lymph nodes was also inhibited by OGR1 deficiency in the adoption experiments. The presence of functional OGR1 in DCs was confirmed by the expression of OGR1 mRNA and the OGR1-sensitive Ca2+ response. OVA-induced expression of CCR7, a mature DC chemokine receptor, and migration response to CCR7 ligands in an in vitro Transwell assay were attenuated by OGR1 deficiency. We conclude that OGR1 on DCs is critical for migration to draining lymph nodes, which, in turn, stimulates Th2 phenotype change and subsequent induction of airway inflammation and AHR. PMID:24244587

  16. Inhibition of antigen-induced airway inflammation and hyperresponsiveness in guinea pigs by a selective antagonist of "chemoattractant receptor homologous molecule expressed on Th2 cells" (CRTH2).

    PubMed

    Tasaki, Mamoru; Kobayashi, Miki; Tenda, Yoshiyuki; Tsujimoto, Susumu; Nakazato, Shoko; Numazaki, Mako; Hirano, Yasuno; Matsuda, Hiroshi; Terasaka, Tadashi; Miyao, Yasuhiro; Shimizu, Yasuaki; Hirayama, Yoshitaka

    2013-06-14

    Chemoattractant receptor homologous molecule expressed on T helper type 2 cells (CRTH2) is a PGD2 receptor found on eosinophils, basophils, and Th2 type T cells which exhibits chemotaxis and functions in activation cascades. However, while a number of CRTH2 antagonists, including ramatroban, are known to exert activity in certain animal models, activity in a guinea pig model of EA-induced airway hyperresponsiveness has not been demonstrated. The newly developed CRTH2 antagonist ASP5642 has shown antagonistic activity against human and guinea pig CRTH2 in previous studies and has also been found effective in treating guinea pig models of airway inflammation and airway hyperresponsiveness. While previous studies have used animals such as rats and mice to evaluate CRTH2 antagonist effects, ours is the first attempt to evaluate CRTH2 function in a guinea pig asthma model, which may prove useful in evaluating the compound's effects in humans, given the comparable airway function between the two species taken together, these data from the present study strongly suggest the utility of ASP5642 in investigating the role of CRTH2 in inflammatory responses and as a drug treatment for human asthma. PMID:23624353

  17. APICAL LOCATION OF FERROPORTIN 1 IN AIRWAY EPITHELIA AND ITS ROLE IN IRON DETOXIFICATION IN THE LUNG

    EPA Science Inventory

    Ferroportin 1 (FPN1; aka MTP1, IREG1, and SLC40A1), which was originally identified as a basolateral iron transporter crucial for nutritional iron absorption in the intestine, is expressed in airway epithelia and upregulated when these cells are exposed to iron. Using immunofluor...

  18. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma.

    PubMed

    Cho, Kyu-Sup; Park, Mi-Kyung; Kang, Shin-Ae; Park, Hee-Young; Hong, Sung-Lyong; Park, Hye-Kyung; Yu, Hak-Sun; Roh, Hwan-Jung

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13) and enhanced Th1 cytokine (IFN-γ) and regulatory cytokines (IL-10 and TGF-β) in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production. PMID:25246732

  19. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation

    PubMed Central

    Scanlon, Seth T.; Thomas, Seddon Y.; Ferreira, Caroline M.; Bai, Li; Krausz, Thomas; Savage, Paul B.

    2011-01-01

    Airborne exposure to microbial cell wall lipids such as lipopolysaccharide triggers innate immune responses that regulate susceptibility to allergic airway inflammation. α-Glycosylceramides represent another widespread class of microbial lipids that directly stimulate innate-like, IL-4– and IL-13–producing, CD1d-restricted NKT cells. In this study, we demonstrate that NKT cells constitutively accumulate and reside in the microvasculature of the mouse lung. After a single airborne exposure to lipid antigen, they promptly extravasate to orchestrate the formation of peribronchiolar and interstitial lymphohistiocytic granulomas containing numerous eosinophils. Concomitant airborne exposure to ovalbumin (OVA) induces the priming of OVA-specific Th2 cells and IgE antibodies by the same dendritic cell coexpressing CD1d and MHC class II. Although NKT cell activation remains confined to the lipid-exposed lung and draining lymph nodes, Th2 cells recirculate and seed the lung of a parabiotic partner, conferring susceptibility to OVA challenge months after the initial exposure, in a manner independent of NKT cells and CD1d. Thus, transient recruitment and activation of lung-resident intravascular NKT cells can trigger long-term susceptibility to allergic airway inflammation. PMID:21930768

  20. Characterization of Regulatory T-Cell Markers in CD4+ T Cells of the Upper Airway Mucosa

    PubMed Central

    Ballke, Christina; Gran, Einar; Baekkevold, Espen S.; Jahnsen, Frode L.

    2016-01-01

    CD4+ T regulatory cells (Tregs) comprise a heterogeneous population of cells the regulate immune responses and prevent autoimmunity. Most reports on human Tregs are derived from studies of peripheral blood, although Tregs mainly exert their functions in the periphery. Here we performed a detailed analysis of Tregs in the human upper airway mucosa under non-inflammatory conditions, and found that 10% of all CD4+ T cells expressed the transcription factor FOXP3 and the memory marker CD45RO, as well as high levels of CTLA-4. The majority of FOXP3+CD4+ T cells co-expressed the transcription factor Helios and produced very little cytokines, compatible with being thymus-derived Tregs. FOXP3+Helios-CD4+ T cells were more heterogeneous. A mean of 24% produced the immunomodulatory cytokine IL-10, whereas a large fraction also produced IL-2, IFN-μ or IL-17. A significant population (6%) of FOXP3-negative T cells also produced IL-10, usually in combination with IFN-μ. Together, we found that CD4+ T cells in the upper airways differed functionally from their counterparts in peripheral blood, including higher expression of IL-10. Moreover, our findings suggest that several subsets of CD4+ T cells with functionally distinct regulatory properties reside in the upper airway mucosa which should be taken into account when targeting Tregs for therapy. PMID:26866695

  1. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells.

    PubMed

    Suzukawa, Maho; Koketsu, Rikiya; Baba, Shintaro; Igarashi, Sayaka; Nagase, Hiroyuki; Yamaguchi, Masao; Matsutani, Noriyuki; Kawamura, Masafumi; Shoji, Shunsuke; Hebisawa, Akira; Ohta, Ken

    2015-10-15

    There is rising interest in how obesity affects respiratory diseases, since epidemiological findings indicate a strong relationship between the two conditions. Leptin is a potent adipokine produced mainly by adipocytes. It regulates energy storage and expenditure and also induces inflammation. Previous studies have shown that leptin is able to activate inflammatory cells such as lymphocytes and granulocytes, but little is known about its effect on lung structural cells. The present study investigated the effects of leptin on human airway epithelial cells by using human primary airway epithelial cells and a human airway epithelial cell line, BEAS-2B. Flow cytometry showed enhanced ICAM-1 expression by both of those cells in response to leptin, and that effect was abrogated by dexamethasone or NF-κB inhibitor. Flow cytometry and quantitative PCR showed that airway epithelial cells expressed leptin receptor (Ob-R), whose expression level was downregulated by leptin itself. Multiplex cytokine analysis demonstrated enhanced production of CCL11, G-CSF, VEGF, and IL-6 by BEAS-2B cells stimulated with leptin. Furthermore, transfection of Ob-R small interference RNA decreased the effect of leptin on CCL11 production as assessed by quantitative PCR. Finally, leptin induced migration of primary airway epithelial cells toward leptin, suppressed BEAS-2B apoptosis induced with TNF-α and IFN-γ, and enhanced proliferation of primary airway epithelial cells. In summary, leptin was able to directly activate human airway epithelial cells by binding to Ob-R and by NF-κB activation, resulting in upregulation of ICAM-1 expression, induction of CCL11, VEGF, G-CSF, and IL-6 synthesis, induction of migration, inhibition of apoptosis, and enhancement of proliferation. PMID:26276826

  2. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.

    PubMed

    Myerburg, Michael M; King, J Darwin; Oyster, Nicholas M; Fitch, Adam C; Magill, Amy; Baty, Catherine J; Watkins, Simon C; Kolls, Jay K; Pilewski, Joseph M; Hallows, Kenneth R

    2010-06-01

    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease. PMID:19617399

  3. Transcription Factor Runx3 Is Induced by Influenza A Virus and Double-Strand RNA and Mediates Airway Epithelial Cell Apoptosis

    PubMed Central

    Gan, Huachen; Hao, Qin; Idell, Steven; Tang, Hua

    2015-01-01

    Influenza A virus (IAV) targets airway epithelial cells and exploits the host cell machinery to replicate, causing respiratory illness in annual epidemics and pandemics of variable severity. The high rate of antigenic drift (viral mutation) and the putative antigenic shift (reassortant strains) have raised the need to find the host cell inducible factors modulating IAV replication and its pathogenesis to develop more effective antiviral treatment. In this study, we found for the first time that transcription factor Runx3, a developmental regulator and tumor suppressor, was induced by IAV H1N1 and H3N2, viral RNA, a synthetic analog of viral double-stranded RNA (dsRNA) polyinosinic-polycytidylic acid, and type-II interferon-γ (IFNγ) in human airway epithelial cells. Whereas Runx3 was essentially not induced by type-I IFNα and type-III IFNλ, we show that Runx3 induction by IAV infection and viral RNA is mediated through the innate immune receptor MDA5 and the IκB kinase-β−NF-κB pathway. Moreover, we provide substantial evidence indicating that Runx3 plays a crucial role in airway epithelial cell apoptosis induced by IAV infection and dsRNA through the activation of extrinsic and intrinsic apoptosis pathways. Thus, we have identified Runx3 as an inducible and important transcription factor modulating IAV-induced host epithelial cell apoptosis. PMID:26643317

  4. Pseudomonas aeruginosa pyocyanin modulates mucin glycosylation with sialyl-Lewis(x) to increase binding to airway epithelial cells.

    PubMed

    Jeffries, J L; Jia, J; Choi, W; Choe, S; Miao, J; Xu, Y; Powell, R; Lin, J; Kuang, Z; Gaskins, H R; Lau, G W

    2016-07-01

    Cystic fibrosis (CF) patients battle life-long pulmonary infections with the respiratory pathogen Pseudomonas aeruginosa (PA). An overabundance of mucus in CF airways provides a favorable niche for PA growth. When compared with that of non-CF individuals, mucus of CF airways is enriched in sialyl-Lewis(x), a preferred binding receptor for PA. Notably, the levels of sialyl-Lewis(x) directly correlate with infection severity in CF patients. However, the mechanism by which PA causes increased sialylation remains uncharacterized. In this study, we examined the ability of PA virulence factors to modulate sialyl-Lewis(x) modification in airway mucins. We found pyocyanin (PCN) to be a potent inducer of sialyl-Lewis(x) in both mouse airways and in primary and immortalized CF and non-CF human airway epithelial cells. PCN increased the expression of C2/4GnT and ST3Gal-IV, two of the glycosyltransferases responsible for the stepwise biosynthesis of sialyl-Lewis(x), through a tumor necrosis factor (TNF)-α-mediated phosphoinositol-specific phospholipase C (PI-PLC)-dependent pathway. Furthermore, PA bound more efficiently to airway epithelial cells pre-exposed to PCN in a flagellar cap-dependent manner. Importantly, antibodies against sialyl-Lewis(x) and anti-TNF-α attenuated PA binding. These results indicate that PA secretes PCN to induce a favorable environment for chronic colonization of CF lungs by increasing the glycosylation of airway mucins with sialyl-Lewis(x). PMID:26555707

  5. Pseudomonas aeruginosa pyocyanin modulates mucin glycosylation with sialyl-Lewisx to increase binding to airway epithelial cells

    PubMed Central

    Choi, Woosuk; Choe, Shawn; Miao, Jinfeng; Xu, Ying; Powell, Rebecca; Lin, Jingjun; Kuang, Zhizhou; Gaskins, H Rex; Lau, Gee W.

    2015-01-01

    Cystic fibrosis (CF) patients battle life-long pulmonary infections with the respiratory pathogen Pseudomonas aeruginosa (PA). An overabundance of mucus in CF airways provides a favorable niche for PA growth. When compared to that of non-CF individuals, mucus of CF airways is enriched in sialyl-Lewisx, a preferred binding receptor for PA. Notably, the levels of sialyl-Lewisx directly correlate with infection severity in CF patients. However, the mechanism by which PA causes increased sialylation remains uncharacterized. In this study, we examined the ability of PA virulence factors to modulate sialyl-Lewisx modification in airway mucins. We found pyocyanin (PCN) to be a potent inducer of sialyl-Lewisx in both mouse airways and in primary and immortalized CF and non-CF human airway epithelial cells. PCN increased the expression of C2/4GnT and ST3Gal-IV, two of the glycosyltransferases responsible for the stepwise biosynthesis of sialyl-Lewisx, through a TNF-α-mediated phosphoinositol-specific phospholipase C (PI-PLC) dependent pathway. Furthermore, PA bound more efficiently to airway epithelial cells pre-exposed to PCN through a flagellar cap-dependent manner. Importantly, antibodies against sialyl-Lewisx and anti-TNF-α attenuated PA binding. These results indicate that PCN secretes PCN to induce a favorable environment for chronic colonization of CF lungs by increasing the glycosylation of airway mucins with sialyl-Lewisx. PMID:26555707

  6. Primary airway epithelial cell culture and asthma in children-lessons learnt and yet to come.

    PubMed

    McLellan, Kirsty; Shields, Mike; Power, Ultan; Turner, Steve

    2015-12-01

    Until recently the airway epithelial cell (AEC) was considered a simple barrier that prevented entry of inhaled matter into the lung parenchyma. The AEC is now recognized as having an important role in the inflammatory response of the respiratory system to inhaled exposures, and abnormalities of these responses are thought to be important to asthma pathogenesis. This review first explores how the challenges of studying nasal and bronchial AECs in children have been addressed and then summarizes the results of studies of primary AEC function in children with and without asthma. There is good evidence that nasal AECs may be a suitable surrogate for the study of certain aspects of bronchial AEC function, although bronchial AECs remain the gold standard for asthma research. There are consistent differences between children with and without asthma for nasal and bronchial AEC mediator release following exposure to a range of pro-inflammatory stimulants including interleukins (IL)-1β, IL-4, and IL-13. However, there are inconsistencies between studies, e.g., release of IL-6, an important pro-inflammatory cytokine, is not increased in children with asthma relative to controls in all studies. Future work should expand current understanding of the "upstream" signalling pathways in AEC, study AEC from children before the onset of asthma symptoms and in vitro models should be developed that replicate the in vivo status more completely, e.g., co-culture with dendritic cells. AECs are difficult to obtain from children and collaboration between centers is expected to yield meaningful advances in asthma understanding and ultimately help deliver novel therapies. PMID:26178976

  7. Effects of cigarette smoke extract on human airway smooth muscle cells in COPD.

    PubMed

    Chen, Ling; Ge, Qi; Tjin, Gavin; Alkhouri, Hatem; Deng, Linghong; Brandsma, Corry-Anke; Adcock, Ian; Timens, Wim; Postma, Dirkje; Burgess, Janette K; Black, Judith L; Oliver, Brian G G

    2014-09-01

    We hypothesised that the response to cigarette smoke in airway smooth muscle (ASM) cells from smokers with chronic obstructive pulmonary disease (COPD) would be intrinsically different from smokers without COPD, producing greater pro-inflammatory mediators and factors relating to airway remodelling. ASM cells were obtained from smokers with or without COPD, and then stimulated with cigarette smoke extract (CSE) or transforming growth factor-β1. The production of chemokines and matrix metalloproteinases (MMPs) were measured by ELISA, and the deposition of collagens by extracellular matrix ELISA. The effects of CSE on cell attachment and wound healing were measured by toluidine blue attachment and cell tracker green wound healing assays. CSE increased the release of CXCL8 and CXCL1 from human ASM cells, and cells from smokers with COPD produced more CSE-induced CXCL1. The production of MMP-1, -3 and -10, and the deposition of collagen VIII alpha 1 (COL8A1) were increased by CSE, especially in the COPD group which had higher production of MMP-1 and deposition of COL8A1. CSE decreased ASM cell attachment and wound healing in the COPD group only. ASM cells from smokers with COPD were more sensitive to CSE stimulation, which may explain, in part, why some smokers develop COPD. PMID:24969654

  8. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model.

    PubMed

    Tavana, Hossein; Zamankhan, Parsa; Christensen, Paul J; Grotberg, James B; Takayama, Shuichi

    2011-08-01

    Airways of the peripheral lung are prone to closure at low lung volumes. Deficiency or dysfunction of pulmonary surfactant during various lung diseases compounds this event by destabilizing the liquid lining of small airways and giving rise to occluding liquid plugs in airways. Propagation of liquid plugs in airways during inflation of the lung exerts large mechanical forces on airway cells. We describe a microfluidic model of small airways of the lung that mimics airway architecture, recreates physiologic levels of pulmonary pressures, and allows studying cellular response to repeated liquid plug propagation events. Substantial cellular injury happens due to the propagation of liquid plugs devoid of surfactant. We show that addition of a physiologic concentration of a clinical surfactant, Survanta, to propagating liquid plugs protects the epithelium and significantly reduces cell death. Although the protective role of surfactants has been demonstrated in models of a propagating air finger in liquid-filled airways, this is the first time to study the protective role of surfactants in liquid plugs where fluid mechanical stresses are expected to be higher than in air fingers. Our parallel computational simulations revealed a significant decrease in mechanical forces in the presence of surfactant, confirming the experimental observations. The results support the practice of providing exogenous surfactant to patients in certain clinical settings as a protective mechanism against pathologic flows. More importantly, this platform provides a useful model to investigate various surface tension-mediated lung diseases at the cellular level. PMID:21487664

  9. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    SciTech Connect

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F.

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  10. Cell migration leads to spatially distinct but clonally related airway cancer precursors

    PubMed Central

    Pipinikas, Christodoulos P; Kiropoulos, Theodoros S; Teixeira, Vitor H; Brown, James M; Varanou, Aikaterini; Falzon, Mary; Capitanio, Arrigo; Bottoms, Steven E; Carroll, Bernadette; Navani, Neal; McCaughan, Frank; George, Jeremy P; Giangreco, Adam; Wright, Nicholas A; McDonald, Stuart A C; Graham, Trevor A; Janes, Sam M

    2014-01-01

    Background Squamous cell carcinoma of the lung is a common cancer with 95% mortality at 5 years. These cancers arise from preinvasive lesions, which have a natural history of development progressing through increasing severity of dysplasia to carcinoma in situ (CIS), and in some cases, ending in transformation to invasive carcinoma. Synchronous preinvasive lesions identified at autopsy have been previously shown to be clonally related. Methods Using autofluorescence bronchoscopy that allows visual observation of preinvasive lesions within the upper airways, together with molecular profiling of biopsies using gene sequencing and loss-of-heterozygosity analysis from both preinvasive lesions and from intervening normal tissue, we have monitored individual lesions longitudinally and documented their visual, histological and molecular relationship. Results We demonstrate that rather than forming a contiguous field of abnormal tissue, clonal CIS lesions can develop at multiple anatomically discrete sites over time. Further, we demonstrate that patients with CIS in the trachea have invariably had previous lesions that have migrated proximally, and in one case, into the other lung over a period of 12 years. Conclusions Molecular information from these unique biopsies provides for the first time evidence that field cancerisation of the upper airways can occur through cell migration rather than via local contiguous cellular expansion as previously thought. Our findings urge a clinical strategy of ablating high-grade premalignant airway lesions with subsequent attentive surveillance for recurrence in the bronchial tree. PMID:24550057

  11. Redox warfare between airway epithelial cells and Pseudomonas: dual oxidase versus pyocyanin.

    PubMed

    Rada, Balázs; Leto, Thomas L

    2009-01-01

    The importance of reactive oxygen species-dependent microbial killing by the phagocytic cell NADPH oxidase has been appreciated for some time, although only recently has an appreciation developed for the partnership of lactoperoxidase with related dual oxidases (Duox) within secretions of the airway surface layer. This system produces mild oxidants designed for extracellular killing that are effective against several airway pathogens, including Staphylococcus aureus, Burkholderia cepacia, and Pseudomonas aeruginosa. Establishment of chronic pseudomonas infections involves adaptations to resist oxidant-dependent killing by expression of a redox-active virulence factor, pyocyanin, that competitively inhibits epithelial Duox activity by consuming intracellular NADPH and producing superoxide, thereby inflicting oxidative stress on the host. PMID:18979077

  12. Hyperoxia promotes polarization of the immune response in ovalbumin-induced airway inflammation, leading to a TH17 cell phenotype

    PubMed Central

    Nagato, Akinori C; Bezerra, Frank S; Talvani, André; Aarestrup, Beatriz J; Aarestrup, Fernando M

    2015-01-01

    Previous studies have demonstrated that hyperoxia-induced stress and oxidative damage to the lungs of mice lead to an increase in IL-6, TNF-α, and TGF-β expression. Together, IL-6 and TGF-β have been known to direct T cell differentiation toward the TH17 phenotype. In the current study, we tested the hypothesis that hyperoxia promotes the polarization of T cells to the TH17 cell phenotype in response to ovalbumin-induced acute airway inflammation. Airway inflammation was induced in female BALB/c mice by intraperitoneal sensitization and intranasal introduction of ovalbumin, followed by challenge methacholine. After the methacholine challenge, animals were exposed to hyperoxic conditions in an inhalation chamber for 24 h. The controls were subjected to normoxia or aluminum hydroxide dissolved in phosphate buffered saline. After 24 h of hyperoxia, the number of macrophages and lymphocytes decreased in animals with ovalbumin-induced airway inflammation, whereas the number of neutrophils increased after ovalbumin-induced airway inflammation. The results showed that expression of Nrf2, iNOS, T-bet and IL-17 increased after 24 of hyperoxia in both alveolar macrophages and in lung epithelial cells, compared with both animals that remained in room air, and animals with ovalbumin-induced airway inflammation. Hyperoxia alone without the induction of airway inflammation lead to increased levels of TNF-α and CCL5, whereas hyperoxia after inflammation lead to decreased CCL2 levels. Histological evidence of extravasation of inflammatory cells into the perivascular and peribronchial regions of the lungs was observed after pulmonary inflammation and hyperoxia. Hyperoxia promotes polarization of the immune response toward the TH17 phenotype, resulting in tissue damage associated with oxidative stress, and the migration of neutrophils to the lung and airways. Elucidating the effect of hyperoxia on ovalbumin-induced acute airway inflammation is relevant to preventing or

  13. Antigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation.

    PubMed

    Daniels, N J; Hyde, E; Ghosh, S; Seo, K; Price, K M; Hoshino, K; Kaisho, T; Okada, T; Ronchese, F

    2016-01-01

    Allergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13. In addition, treatment with specific CTLs also increased the proportion of caspase(+) dendritic cells (DCs) in mediastinal lymph node (MLN), and decreased the numbers of CD103(+) and CD11b(+) DCs in the lung. This decrease required expression of the cytotoxic mediator perforin in CTLs and of the appropriate MHC-antigen ligand on DCs, suggesting that direct CTL-DC contact was necessary. Lastly, lung imaging experiments revealed that in airway-challenged mice XCR1-GFP(+) DCs, corresponding to the CD103(+) DC subset, and XCR1-GFP(-) CD11c(+) cells, which include CD11b(+) DCs and alveolar macrophages, both clustered in the areas surrounding the small airways and were closely associated with allergen-specific CTLs. Thus, allergen-specific CTLs reduce allergic airway inflammation by depleting CD103(+) and CD11b(+) DC populations in the lung, and may constitute a mechanism through which allergic immune responses are regulated. PMID:26104914

  14. Arsenic alters ATP-dependent Ca²+ signaling in human airway epithelial cell wound response.

    PubMed

    Sherwood, Cara L; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2011-05-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca²+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., < 4 μM as Na-arsenite) on wound-induced Ca²+ signaling pathways in human bronchial epithelial cell line (16HBE14o-). We found that arsenic reduces purinergic Ca²+ signaling in a dose-dependent manner and results in a reshaping of the Ca²+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca²+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  15. GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

    1992-11-01

    Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

  16. Role of signal transducer and activator of transcription 1 in murine allergen-induced airway remodeling and exacerbation by carbon nanotubes.

    PubMed

    Thompson, Elizabeth A; Sayers, Brian C; Glista-Baker, Ellen E; Shipkowski, Kelly A; Ihrie, Mark D; Duke, Katherine S; Taylor, Alexia J; Bonner, James C

    2015-11-01

    Asthma is characterized by a T helper type 2 phenotype and by chronic allergen-induced airway inflammation (AAI). Environmental exposure to air pollution ultrafine particles (i.e., nanoparticles) exacerbates AAI, and a concern is possible exacerbation posed by engineered nanoparticles generated by emerging nanotechnologies. Signal transducer and activator of transcription (STAT) 1 is a transcription factor that maintains T helper type 1 cell development. However, the role of STAT1 in regulating AAI or exacerbation by nanoparticles has not been explored. In this study, mice with whole-body knockout of the Stat1 gene (Stat1(-/-)) or wild-type (WT) mice were sensitized to ovalbumin (OVA) allergen and then exposed to multiwalled carbon nanotubes (MWCNTs) by oropharygneal aspiration. In Stat1(-/-) and WT mice, OVA increased eosinophils in bronchoalveolar lavage fluid, whereas MWCNTs increased neutrophils. Interestingly, OVA sensitization prevented MWCNT-induced neutrophilia and caused only eosinophilic inflammation. Stat1(-/-) mice displayed increased IL-13 in bronchoalveolar lavage fluid at 1 day compared with WT mice after treatment with OVA or OVA and MWCNTs. At 21 days, the lungs of OVA-sensitized Stat1(-/-) mice displayed increased eosinophilia, goblet cell hyperplasia, airway fibrosis, and subepithelial apoptosis. MWCNTs further increased OVA-induced goblet cell hyperplasia, airway fibrosis, and apoptosis in Stat1(-/-) mice at 21 days. These changes corresponded to increased levels of profibrogenic mediators (transforming growth factor-β1, TNF-α, osteopontin) but decreased IL-10 in Stat1(-/-) mice. Finally, fibroblasts isolated from the lungs of Stat1(-/-) mice produced significantly more collagen mRNA and protein in response to transforming growth factor-β1 compared with WT lung fibroblasts. Our results support a protective role for STAT1 in chronic AAI and exacerbation of remodeling caused by MWCNTs. PMID:25807359

  17. The Three A's in Asthma - Airway Smooth Muscle, Airway Remodeling & Angiogenesis.

    PubMed

    Keglowich, L F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  18. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    PubMed Central

    Keglowich, L.F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  19. Regulation of local immunity by airway epithelial cells.

    PubMed

    Mayer, Anja K; Dalpke, Alexander H

    2007-01-01

    Epithelial cells are the first line of defense against invading microbial pathogens. They are important contributors to innate mucosal immunity and generate various and sophisticated anti-microbial defense mechanisms, including the formation of a tight barrier and secretion of anti-microbial substances as well as inflammatory mediators. To provide these active defense mechanisms, epithelial cells functionally express various pattern-recognition receptors. Toll-like receptors have been shown to recognize conserved microbial patterns mediating inducible activation of innate immunity. Mucosal surfaces, however, are prone to contact with pathogenic as well as non-pathogenic microbes and, therefore, immune-recognition principles have to be strictly regulated to avoid uncontrolled permanent activation. This review will focus on mechanisms by which epithelial cells regulate mucosal immune responses, thus creating an organ-specific microenvironment. This includes local adaptations in microbial recognition, regulation of local immune homeostasis, and modulation of antigen-presenting cells and adaptive immune responses. These regulatory mechanisms serve the special needs of controlled microbial recognition in mucosal compartments. PMID:18060372

  20. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    SciTech Connect

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent . E-mail: vbours@ulg.ac.be; Griffioen, Arjan W.

    2007-05-11

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.

  1. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury.

    PubMed

    Volckaert, Thomas; Dill, Erik; Campbell, Alice; Tiozzo, Caterina; Majka, Susan; Bellusci, Saverio; De Langhe, Stijn P

    2011-11-01

    During lung development, parabronchial SMC (PSMC) progenitors in the distal mesenchyme secrete fibroblast growth factor 10 (Fgf10), which acts on distal epithelial progenitors to promote their proliferation. β-catenin signaling within PSMC progenitors is essential for their maintenance, proliferation, and expression of Fgf10. Here, we report that this Wnt/Fgf10 embryonic signaling cascade is reactivated in mature PSMCs after naphthalene-induced injury to airway epithelium. Furthermore, we found that this paracrine Fgf10 action was essential for activating surviving variant Clara cells (the cells in the airway epithelium from which replacement epithelial cells originate) located at the bronchoalveolar duct junctions and adjacent to neuroendocrine bodies. After naphthalene injury, PSMCs secreted Fgf10 to activate Notch signaling and induce Snai1 expression in surviving variant Clara cells, which subsequently underwent a transient epithelial to mesenchymal transition to initiate the repair process. Epithelial Snai1 expression was important for regeneration after injury. We have therefore identified PSMCs as a stem cell niche for the variant Clara cells in the lung and established that paracrine Fgf10 signaling from the niche is critical for epithelial repair after naphthalene injury. These findings also have implications for understanding the misregulation of lung repair in asthma and cancer. PMID:21985786

  2. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice.

    PubMed

    Sun, Yue-Qi; Deng, Meng-Xia; He, Jia; Zeng, Qing-Xiang; Wen, Weiping; Wong, David S H; Tse, Hung-Fat; Xu, Geng; Lian, Qizhou; Shi, Jianbo; Fu, Qing-Ling

    2012-12-01

    We previously found that mesenchymal stem cells (MSCs) derived from human-induced pluripotent stem cells (iPSCs) exerted immunomodulatory effects on Th2-mediated allergic rhinitis in vitro. However, their contribution to the asthma and allergic rhinitis in animal models remains unclear. In this study, we developed a mouse model of ovalbumin (OVA)-induced allergic inflammation in both the upper and lower airways and evaluated the effects of the systemic administration of human iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on allergic inflammation. Our results showed that treatments with both the iPSC-MSCs and BM-MSCs before the challenge phase protected the animals from the majority of allergy-specific pathological changes. This protection included an inhibition of inflammatory cell infiltration and mucus production in the lung, a reduction in eosinophil infiltration in the nose, and a decrease in inflammatory cell infiltration in both the bronchoalveolar and nasal lavage fluids. In addition, treatment with iPSC-MSCs or BM-MSCs before the challenge phase resulted in reduced serum levels of Th2 immunoglobulins (e.g., IgE) and decreased levels of Th2 cytokines including interleukin (IL)-4, IL-5, or IL-13 in the bronchoalveolar and/or nasal lavage fluids. Similar therapeutic effects were observed when the animals were pretreated with human iPSC-MSCs before the sensitization phase. These data suggest that iPSC-MSCs may be used as an alternative strategy to adult MSCs in the treatment of asthma and allergic rhinitis. PMID:22987325

  3. Alternaria-Induced Release of IL-18 from Damaged Airway Epithelial Cells: An NF-κB Dependent Mechanism of Th2 Differentiation?

    PubMed Central

    Wild, Jim; Dharajiya, Nilesh; Vaidya, Swapnil; Kalita, Anjana; Bacsi, Attila; Corry, David; Kurosky, Alexander; Brasier, Allan; Boldogh, Istvan; Sur, Sanjiv

    2012-01-01

    Background A series of epidemiologic studies have identified the fungus Alternaria as a major risk factor for asthma. The airway epithelium plays a critical role in the pathogenesis of allergic asthma. These reports suggest that activated airway epithelial cells can produce cytokines such as IL-25, TSLP and IL-33 that induce Th2 phenotype. However the epithelium-derived products that mediate the pro-asthma effects of Alternaria are not well characterized. We hypothesized that exposure of the airway epithelium to Alternaria releasing cytokines that can induce Th2 differentiation. Methodology/Principal Finding We used ELISA to measure human and mouse cytokines. Alternaria extract (ALT-E) induced rapid release of IL-18, but not IL-4, IL-9, IL-13, IL-25, IL-33, or TSLP from cultured normal human bronchial epithelial cells; and in the BAL fluids of naïve mice after challenge with ALT-E. Both microscopic and FACS indicated that this release was associated with necrosis of epithelial cells. ALT-E induced much greater IL-18 release compared to 19 major outdoor allergens. Culture of naïve CD4 cells with rmIL-18 induced Th2 differentiation in the absence of IL-4 and STAT6, and this effect was abrogated by disrupting NF- κB p50 or with a NEMO binding peptide inhibitor. Conclusion/Significance Rapid and specific release of IL-18 from Alternaria-exposed damaged airway epithelial cells can directly initiate Th2 differentiation of naïve CD4+ T-cells via a unique NF-κB dependent pathway. PMID:22347372

  4. Alpha-1 Antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase.

    PubMed

    Garratt, Luke W; Sutanto, Erika N; Ling, Kak-Ming; Looi, Kevin; Iosifidis, Thomas; Martinovich, Kelly M; Shaw, Nicole C; Buckley, Alysia G; Kicic-Starcevich, Elizabeth; Lannigan, Francis J; Knight, Darryl A; Stick, Stephen M; Kicic, Anthony

    2016-03-01

    Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAECnon-CF and pAECCF, respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAECCF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAECnon-CF and pAECCF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥ 50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAECCF, but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail. PMID:26221769

  5. Ozone-induced airway epithelial cell death, the neurokinin-1 receptor pathway, and the postnatal developing lung

    PubMed Central

    Murphy, Shannon R.; Oslund, Karen L.; Hyde, Dallas M.; Miller, Lisa A.; Van Winkle, Laura S.

    2014-01-01

    Children are uniquely susceptible to ozone because airway and lung growth continue for an extensive period after birth. Early-life exposure of the rhesus monkey to repeated ozone cycles results in region-specific disrupted airway/lung growth, but the mediators and mechanisms are poorly understood. Substance P (SP), neurokinin-1 receptor (NK-1R); and nuclear receptor Nur77 (NR4A1) are signaling pathway components involved in ozone-induced cell death. We hypothesize that acute ozone (AO) exposure during postnatal airway development disrupts SP/NK-1R/Nur77 pathway expression and that these changes correlate with increased ozone-induced cell death. Our objectives were to 1) spatially define the normal development of the SP/NK-1R/Nur77 pathway in conducting airways; 2) compare how postnatal age modulates responses to AO exposure; and 3) determine how concomitant, episodic ozone exposure modifies age-specific acute responses. Male infant rhesus monkeys were assigned at age 1 mo to two age groups, 2 or 6 mo, and then to one of three exposure subgroups: filtered air (FA), FA+AO (AO: 8 h/day × 2 days), or episodic biweekly ozone exposure cycles (EAO: 8 h/day × 5 days/14-day cycle+AO). O3 = 0.5 ppm. We found that 1) ozone increases SP/NK-1R/Nur77 pathway expression in conducting airways, 2) an ozone exposure cycle (5 days/cycle) delivered early at age 2 mo resulted in an airway that was hypersensitive to AO exposure at the end of 2 mo, and 3) continued episodic exposure (11 cycles) resulted in an airway that was hyposensitive to AO exposure at 6 mo. These observations collectively associate with greater overall inflammation and epithelial cell death, particularly in early postnatal (2 mo), distal airways. PMID:25063800

  6. Preventing Cleavage of the Respiratory Syncytial Virus Attachment Protein in Vero Cells Rescues the Infectivity of Progeny Virus for Primary Human Airway Cultures

    PubMed Central

    Corry, Jacqueline; Johnson, Sara M.; Cornwell, Jessica

    2015-01-01

    are less infectious for primary airway epithelial cells, the natural RSV target. In the study described here we identified the protease responsible, located the cleavage site, and demonstrated that cleavage likely occurs during endocytic recycling. Moreover, we showed that the infectivity of Vero cell-derived virus for primary airway epithelial cells is increased 5-fold if the virus contains a mutation in the G protein that prevents cleavage. The blocking of cleavage should improve RSV vaccine yield, consequently reducing production costs. Posttranslational cleavage of the fusion glycoprotein of many viruses plays an essential role in activation; however, cleavage of the RSV G protein is a novel example of a detrimental effect of cleavage on virus infectivity. PMID:26581976

  7. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Vergara, Leoncio A; Wen, Julie W; Long, Dan; Rockx, Barry

    2016-05-01

    Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission. PMID:26932515

  8. A miRNA upregulated in asthma airway T cells promotes TH2 cytokine production

    PubMed Central

    Simpson, Laura J.; Patel, Sana; Bhakta, Nirav R.; Choy, David F.; Brightbill, Hans D.; Ren, Xin; Wang, Yanli; Pua, Heather H.; Baumjohann, Dirk; Montoya, Misty M.; Panduro, Marisella; Remedios, Kelly A.; Huang, Xiaozhu; Fahy, John V.; Arron, Joseph R.; Woodruff, Prescott G.; Ansel., Karl M.

    2014-01-01

    MicroRNAs (miRNAs) exert powerful effects on immune function by tuning networks of target genes that orchestrate cell behavior. We sought to uncover miRNAs and miRNA-regulated pathways that control the TH2 responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed miR-19a elevation in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promotes TH2 cytokine production and amplifies PI(3)K, JAK-STAT, and NF-κB signaling by direct targeting of PTEN, SOCS1, and A20. Thus, miR-19a up regulation in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways. PMID:25362490

  9. Syntaxin 1A is expressed in airway epithelial cells, where it modulates CFTR Cl– currents

    PubMed Central

    Naren, Anjaparavanda P.; Di, Anke; Cormet-Boyaka, Estelle; Boyaka, Prosper N.; McGhee, Jerry R.; Zhou, Weihong; Akagawa, Kimio; Fujiwara, Tomonori; Thome, Ulrich; Engelhardt, John F.; Nelson, Deborah J.; Kirk, Kevin L.

    2000-01-01

    The CFTR Cl– channel controls salt and water transport across epithelial tissues. Previously, we showed that CFTR-mediated Cl– currents in the Xenopus oocyte expression system are inhibited by syntaxin 1A, a component of the membrane trafficking machinery. This negative modulation of CFTR function can be reversed by soluble syntaxin 1A peptides and by the syntaxin 1A binding protein, Munc-18. In the present study, we determined whether syntaxin 1A is expressed in native epithelial tissues that normally express CFTR and whether it modulates CFTR currents in these tissues. Using immunoblotting and immunofluorescence, we observed syntaxin 1A in native gut and airway epithelial tissues and showed that epithelial cells from these tissues express syntaxin 1A at >10-fold molar excess over CFTR. Syntaxin 1A is seen near the apical cell surfaces of human bronchial airway epithelium. Reagents that disrupt the CFTR-syntaxin 1A interaction, including soluble syntaxin 1A cytosolic domain and recombinant Munc-18, augmented cAMP-dependent CFTR Cl– currents by more than 2- to 4-fold in mouse tracheal epithelial cells and cells derived from human nasal polyps, but these reagents did not affect CaMK II–activated Cl– currents in these cells. PMID:10675364

  10. Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats.

    PubMed Central

    Watanabe, A; Mishima, H; Renzi, P M; Xu, L J; Hamid, Q; Martin, J G

    1995-01-01

    Activated CD4+ helper T cells have been demonstrated in asthmatic airways and postulated to play a central role in eliciting allergic inflammation; direct evidence of their involvement seems to be lacking. We hypothesized that CD4+ T cells have the potential to induce allergic responses to antigen challenge, and tested this hypothesis in a model of allergic bronchoconstriction, the Brown Norway rat, using the approach of adoptive transfer. Animals were actively sensitized to either ovalbumin (OVA) or BSA and were used as donors of T cells. W3/25(CD4)+ or OX8(CD8)+ T cells were isolated from the cervical lymph nodes of sensitized donors and transferred to naive BN rats. 2 d after adoptive transfer recipient rats were challenged by OVA inhalation, and changes in lung resistance (RL), bronchoalveolar lavage (BAL) cells, and serum levels of antigen-specific IgE were studied. After OVA challenge recipients of OVA-primed W3/25+ T cells exhibited sustained increases in RL throughout the entire 8-h observation period and had significant bronchoalveolar lavage eosinophilia, which was detected by immunocytochemistry using an antimajor basic protein mAb. Recipients of BSA-primed W3/25+ T cells or OVA-primed OX8+ T cells failed to respond to inhaled OVA. OVA-specific immunoglobulin E was undetectable by ELISA or skin testing in any of the recipient rats after adoptive transfer. In conclusion, antigen-induced airway bronchoconstriction and eosinophilia were successfully transferred by antigen-specific W3/25+ T cells in Brown Norway rats. These responses were dependent on antigen-primed W3/25+ T cells and appeared to be independent of IgE-mediated mast cell activation. This study provides clear evidence for T cell mediated immune mechanisms in allergic airway responses in this experimental model. Images PMID:7657805

  11. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  12. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells

    PubMed Central

    Nemec, Antonia A.; Zubritsky, Lindsey M.; Barchowsky, Aaron

    2009-01-01

    Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes and we hypothesized this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation. PMID:19994902

  13. A mouse model of airway disease: oncostatin M-induced pulmonary eosinophilia, goblet cell hyperplasia, and airway hyperresponsiveness are STAT6 dependent, and interstitial pulmonary fibrosis is STAT6 independent.

    PubMed

    Fritz, Dominik K; Kerr, Christine; Fattouh, Ramzi; Llop-Guevara, Alba; Khan, Waliul I; Jordana, Manel; Richards, Carl D

    2011-01-15

    Oncostatin M (OSM), a pleiotropic cytokine of the gp130 cytokine family, has been implicated in chronic allergic inflammatory and fibrotic disease states associated with tissue eosinophilia. Mouse (m)OSM induces airway eosinophilic inflammation and interstitial pulmonary fibrosis in vivo and regulates STAT6 activation in vitro. To determine the requirement of STAT6 in OSM-induced effects in vivo, we examined wild-type (WT) and STAT6-knockout (STAT6(-/-)) C57BL/6 mouse lung responses to transient ectopic overexpression of mOSM using an adenoviral vector (AdmOSM). Intratracheal AdmOSM elicited persistent eosinophilic lung inflammation that was abolished in STAT6(-/-) mice. AdmOSM also induced pronounced pulmonary remodeling characterized by goblet cell hyperplasia and parenchymal interstitial fibrosis. Goblet cell hyperplasia was STAT6 dependent; however, parenchymal interstitial fibrosis was not. OSM also induced airway hyperresponsiveness in WT mice that was abolished in STAT6(-/-) mice. OSM stimulated an inflammatory signature in the lungs of WT mice that demonstrated STAT6-dependent regulation of Th2 cytokines (IL-4, IL-13), chemokines (eotaxin-1/2, MCP-1, keratinocyte chemoattractant), and extracellular matrix modulators (tissue inhibitor of matrix metalloproteinase-1, matrix metalloproteinase-13), but STAT6-independent regulation of IL-4Rα, total lung collagen, collagen-1A1, -1A2 mRNA, and parenchymal collagen and α smooth muscle actin accumulation. Thus, overexpression of mOSM induces STAT6-dependent pulmonary eosinophilia, mucous/goblet cell hyperplasia, and airway hyperresponsiveness but STAT6-independent mechanisms of lung tissue extracellular matrix accumulation. These results also suggest that eosinophil or neutrophil accumulation in mouse lungs is not required for OSM-induced lung parenchymal collagen deposition and that OSM may have unique roles in the pathogenesis of allergic and fibrotic lung disease. PMID:21160052

  14. Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes.

    PubMed

    White, Thomas A; Xue, Ailing; Chini, Eduardo N; Thompson, Michael; Sieck, Gary C; Wylam, Mark E

    2006-08-01

    Previous studies have suggested that the proinflammatory cytokine, TNF-alpha, contributes to airway hyperresponsivness by altering airway smooth muscle (ASM) Ca(2+) responses to agonist stimulation. The present study examined the effects of TNF-alpha on Ca(2+) influx pathways in cultured human ASM cells (HASMCs). Proteins encoded by the transient receptor potential (TRP) gene family function as channels through which receptor-operated and store-operated Ca(2+) entry (SOCE) occur. In the present study, the presence of TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 mRNA and protein expression was confirmed in cultured HASMCs using RT-PCR and Western blot analysis. TNF-alpha treatment significantly increased TRPC3 mRNA and protein levels in HASMCs as well as SOCE. TNF-alpha treatment also increased both the peak and plateau intracellular Ca(2+) concentration responses in HASMCs elicited by acetylcholine and bradykinin. The effects of TNF-alpha treatment on SOCE and agonist-induced intracellular Ca(2+) concentration responses were attenuated using small interfering RNA transfection, which knocked down TRPC3 expression. Thus, in inflammatory airway diseases, TNF-alpha treatment may result in increased myocyte activation due to altered Ca(2+) influx pathways. These results suggest that TRPC3 may be an important therapeutic target in inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease. PMID:16574942

  15. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells

    PubMed Central

    Chirkova, Tatiana; Lin, Songbai; Oomens, Antonius G. P.; Gaston, Kelsey A.; Boyoglu-Barnum, Seyhan; Meng, Jia; Stobart, Christopher C.; Cotton, Calvin U.; Hartert, Tina V.; Moore, Martin L.; Ziady, Assem G.

    2015-01-01

    Respiratory syncytial virus (RSV) is a major cause of severe pneumonia and bronchiolitis in infants and young children, and causes disease throughout life. Understanding the biology of infection, including virus binding to the cell surface, should help develop antiviral drugs or vaccines. The RSV F and G glycoproteins bind cell surface heparin sulfate proteoglycans (HSPGs) through heparin-binding domains. The G protein also has a CX3C chemokine motif which binds to the fractalkine receptor CX3CR1. G protein binding to CX3CR1 is not important for infection of immortalized cell lines, but reportedly is so for primary human airway epithelial cells (HAECs), the primary site for human infection. We studied the role of CX3CR1 in RSV infection with CX3CR1-transfected cell lines and HAECs with variable percentages of CX3CR1-expressing cells, and the effect of anti-CX3CR1 antibodies or a mutation in the RSV CX3C motif. Immortalized cells lacking HSPGs had low RSV binding and infection, which was increased markedly by CX3CR1 transfection. CX3CR1 was expressed primarily on ciliated cells, and ∼50 % of RSV-infected cells in HAECs were CX3CR1+. HAECs with more CX3CR1-expressing cells had a proportional increase in RSV infection. Blocking G binding to CX3CR1 with anti-CX3CR1 antibody or a mutation in the CX3C motif significantly decreased RSV infection in HAECs. The kinetics of cytokine production suggested that the RSV/CX3CR1 interaction induced RANTES (regulated on activation normal T-cell expressed and secreted protein), IL-8 and fractalkine production, whilst it downregulated IL-15, IL1-RA and monocyte chemotactic protein-1. Thus, the RSV G protein/CX3CR1 interaction is likely important in infection and infection-induced responses of the airway epithelium, the primary site of human infection. PMID:26297201

  16. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells

    PubMed Central

    Berntsen, P.; Park, C. Y.; Rothen-Rutishauser, B.; Tsuda, A.; Sager, T. M.; Molina, R. M.; Donaghey, T. C.; Alencar, A. M.; Kasahara, D. I.; Ericsson, T.; Millet, E. J.; Swenson, J.; Tschumperlin, D. J.; Butler, J. P.; Brain, J. D.; Fredberg, J. J.; Gehr, P.; Zhou, E. H.

    2010-01-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40–100 nm and less than 44 μm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 μm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 μM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  17. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells.

    PubMed

    Berntsen, P; Park, C Y; Rothen-Rutishauser, B; Tsuda, A; Sager, T M; Molina, R M; Donaghey, T C; Alencar, A M; Kasahara, D I; Ericsson, T; Millet, E J; Swenson, J; Tschumperlin, D J; Butler, J P; Brain, J D; Fredberg, J J; Gehr, P; Zhou, E H

    2010-06-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  18. Human Lung Mast Cell Products Regulate Airway Smooth Muscle CXCL10 Levels

    PubMed Central

    Alkhouri, H.; Cha, V.; Tong, K.; Moir, L. M.; Armour, C. L.; Hughes, J. M.

    2014-01-01

    In asthma, the airway smooth muscle (ASM) produces CXCL10 which may attract CXCR3+ mast/T cells to it. Our aim was to investigate the effects of mast cell products on ASM cell CXCL10 production. ASM cells from people with and without asthma were stimulated with IL-1β, TNF-α, and/or IFNγ and treated with histamine (1–100 μM) ± chlorpheniramine (H1R antagonist; 1 μM) or ranitidine (H2R antagonist; 50 μM) or tryptase (1 nM) ± leupeptin (serine protease inhibitor; 50 μM), heat-inactivated tryptase, or vehicle for 4 h or 24 h. Human lung mast cells (MC) were isolated and activated with IgE/anti-IgE and supernatants were collected after 2 h or 24 h. The supernatants were added to ASM cells for 48 h and ASM cell CXCL10 production detected using ELISA (protein) and real-time PCR (mRNA). Histamine reduced IL-1β/TNF-α-induced CXCL10 protein, but not mRNA, levels independent of H1 and H2 receptor activation, whereas tryptase and MC 2 h supernatants reduced all cytokine-induced CXCL10. Tryptase also reduced CXCL10 levels in a cell-free system. Leupeptin inhibited the effects of tryptase and MC 2 h supernatants. MC 24 h supernatants contained TNF-α and amplified IFNγ-induced ASM cell CXCL10 production. This is the first evidence that MC can regulate ASM cell CXCL10 production and its degradation. Thus MC may regulate airway myositis in asthma. PMID:24648846

  19. The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency During Allergic Inflammation.

    PubMed

    Joskova, M; Sutovska, M; Durdik, P; Koniar, D; Hargas, L; Banovcin, P; Hrianka, M; Khazaei, V; Pappova, L; Franova, S

    2016-01-01

    Overproduction of mucus is a hallmark of asthma. The aim of this study was to identify potentially effective therapies for removing excess mucus. The role of voltage-gated (Kir 6.1, KCa 1.1) and store-operated ion channels (SOC, CRAC) in respiratory cilia, relating to the tracheal ciliary beat frequency (CBF), was compared under the physiological and allergic airway conditions. Ex vivo experiments were designed to test the local effects of Kir 6.1, KCa 1.1 and CRAC ion channel modulators in a concentration-dependent manner on the CBF. Cilia, obtained with the brushing method, were monitored by a high-speed video camera and analyzed with ciliary analysis software. In natural conditions, a Kir 6.1 opener accelerated CBF, while CRAC blocker slowed it in a concentration-dependent manner. In allergic inflammation, the effect of Kir 6.1 opener was insignificant, with a tendency to decrease CBF. A cilio-inhibitory effect of a CRAC blocker, while gently reduced by allergic inflammation, remained significant. A KCa 1.1 opener turned out to significantly enhance the CBF under the allergic OVA-sensitized conditions. We conclude that optimally attuned concentration of KCa 1.1 openers or special types of bimodal SOC channel blockers, potentially given by inhalation, might benefit asthma. PMID:27369295

  20. Prostaglandin E2 induces expression of MAPK phosphatase 1 (MKP-1) in airway smooth muscle cells.

    PubMed

    Rumzhum, Nowshin N; Ammit, Alaina J

    2016-07-01

    Prostaglandin E2 (PGE2) is a prostanoid with diverse actions in health and disease. In chronic respiratory diseases driven by inflammation, PGE2 has both positive and negative effects. An enhanced understanding of the receptor-mediated cellular signalling pathways induced by PGE2 may help us separate the beneficial properties from unwanted actions of this important prostaglandin. PGE2 is known to exert anti-inflammatory and bronchoprotective actions in human airways. To date however, whether PGE2 increases production of the anti-inflammatory protein MAPK phosphatase 1 (MKP-1) was unknown. We address this herein and use primary cultures of human airway smooth muscle (ASM) cells to show that PGE2 increases MKP-1 mRNA and protein upregulation in a concentration-dependent manner. We explore the signalling pathways responsible and show that PGE2-induces CREB phosphorylation, not p38 MAPK activation, in ASM cells. Moreover, we utilize selective antagonists of EP2 (PF-04418948) and EP4 receptors (GW 627368X) to begin to identify EP-mediated functional outcomes in ASM cells in vitro. Taken together with earlier studies, our data suggest that PGE2 increases production of the anti-inflammatory protein MKP-1 via cAMP/CREB-mediated cellular signalling in ASM cells and demonstrates that EP2 may, in part, be involved. PMID:27108790

  1. ROLE OF NEPRILYSIN IN AIRWAY INFLAMMATION INDUCED BY DIESEL EXHAUST EMISSIONS

    EPA Science Inventory

    The investigators intend to evaluate airway inflammatory responses and expression of the enzyme neprilysin in response to diesel exhaust particle exposure. Dr. Wong and colleagues anticipate that their research will reveal that components of diesel exhaust decrease neprilys...

  2. Ozonolysis products of membrane fatty acids activate eicosanoid metabolism in human airway epithelial cells

    SciTech Connect

    Leikauf, G.D.; Zhao, Q.; Zhou, S.; Santrock, J. )

    1993-12-01

    When inhaled, ozone reacts at the airway luminal surface with unsaturated fatty acids contained in the extracellular fluid and plasma membrane to form an aldehyde and hydroxyhydroperoxide. The resulting hydroxyhydroperoxide degrades in aqueous systems to yield a second aldehyde and hydrogen peroxide (H2O2). Previously, we demonstrated that ozone can augment eicosanoid metabolism in bovine airway epithelial cells. To examine structure-activity relationships of ozone-fatty acid degradation products on eicosanoid metabolism in human airway epithelial cells, 3-, 6-, and 9-carbon saturated aldehydes and hydroxyhydroperoxides were synthesized and purified. Eicosanoid metabolism was evaluated by determination of total 3H-activity release from confluent cells previously incubated with [3H]arachidonic acid and by identification of specific metabolites with high performance liquid chromatography and radioimmunoassay. The major metabolites detected were prostaglandin E2, prostaglandin F2 alpha, and 15-hydroxyeicosatetraenoic acid. The 9-carbon aldehyde, nonanal, in contrast to 3- or 6-carbon aldehydes, stimulated release at concentrations > or = 100 microM, suggesting that the stimulatory effect increases with increasing chain length. When tested under identical conditions, the 3-, 6-, and 9-carbon hydroxyhydroperoxides were more potent than the corresponding aldehydes. Again, a greater effect was noted when the chain length was increased. One possible explanation for the increased potency of the hydroxyhydroperoxides over the aldehydes could be due to degradation of the hydroxyhydroperoxide into H2O2 and aldehyde. We consider this an unlikely explanation because responses varied with chain length (although each hydroxyhydroperoxide would produce an equivalent amount of H2O2) and because exposure to H2O2 alone or H2O2 plus hexanal produced a response dissimilar to 1-hydroxy-1-hexanehydroperoxide.

  3. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations.

    PubMed

    Du, Kai; Karp, Philip H; Ackerley, Cameron; Zabner, Joseph; Keshavjee, Shaf; Cutz, Ernest; Yeger, Herman

    2015-03-01

    Cystic fibrosis (CF) is caused by a mutation in the CF transmembrane conductance regulator (CFTR) gene resulting in a loss of Cl(-) channel function, disrupting ion and fluid homeostasis, leading to severe lung disease with airway obstruction due to mucus plugging and inflammation. The most common CFTR mutation, F508del, occurs in 90% of patients causing the mutant CFTR protein to misfold and trigger an endoplasmic reticulum based recycling response. Despite extensive research into the pathobiology of CF lung disease, little attention has been paid to the cellular changes accounting for the pathogenesis of CF lung disease. Here we report a novel finding of intracellular retention and accumulation of a cleaved fragment of F508del CFTR in concert with autophagic like phagolysosomes in the airway epithelium of patients with F508del CFTR. Aggregates consisting of poly-ubiquitinylated fragments of only the N-terminal domain of F508del CFTR but not the full-length molecule accumulate to appreciable levels. Importantly, these undegraded intracytoplasmic aggregates representing the NT-NBD1 domain of F508del CFTR were found in ciliated, in basal, and in pulmonary neuroendocrine cells. Aggregates were found in both native lung tissues and ex-vivo primary cultures of bronchial epithelial cells from CF donors, but not in normal control lungs. Our findings present a new, heretofore, unrecognized innate CF gene related cell defect and a potential contributing factor to the pathogenesis of CF lung disease. Mutant CFTR intracytoplasmic aggregates could be analogous to the accumulation of misfolded proteins in other degenerative disorders and in pulmonary "conformational protein-associated" diseases. Consequently, potential alterations to the functional integrity of airway epithelium and regenerative capacity may represent a critical new element in the pathogenesis of CF lung disease. PMID:25453871

  4. Inhibition of the interactions between eosinophil cationic protein and airway epithelial cells by traditional Chinese herbs

    PubMed Central

    2010-01-01

    Background The eosinophil cationic protein (ECP) is cytotoxic to bacteria, viruses, parasites and mammalian cells. Cells are damaged via processes of pore formation, permeability alteration and membrane leaking. Some clinical studies indicate that ECP gathers in the bronchial tract of asthma sufferers, damages bronchial and airway epithelial cells, and leads to in breathing tract inflammation; therefore, prevention of the cytotoxicity caused by ECP may serve as an approach to treat airway inflammation. To achieve the purpose, reduction of the ECP-cell interactions is rational. In this work, the Chinese herbal combinative network was generated to predict and identify the functional herbs from the pools of prescriptions. It was useful to select the node herbs and to demonstrate the relative binding ability between ECP and Beas-2B cells with or withour herb treatments. Results Eighty three Chinese herbs and prescriptions were tested and five effective herbs and six prescription candidates were selected. On the basis of effective single-herbal drugs and prescriptions, a combinative network was generated. We found that a single herb, Gan-cao, served as a node connecting five prescriptions. In addition, Sheng-di-huang, Dang-guei and Mu-tong also appeared in five, four and three kinds of prescriptions, respectively. The extracts of these three herbs indeed effectively inhibited the interactions between ECP and Beas-2B cells. According to the Chinese herbal combinative network, eight of the effective herbal extracts showed inhibitory effects for ECP internalizing into Beas-2B cells. The major components of Gang-cao and Sheng-di-huang, glycyrrhizic acid and verbascose, respectively, reduced the binding affinity between ECP and cells effectively. Conclusions Since these Chinese herbs reduced the binding affinity between ECP and cells and inhibited subsequent ECP entrance into cells, they were potential for mitigating the airway inflammation symptoms. Additionally, we

  5. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways. PMID:25068642

  6. Variations of chromosomes 2 and 3 gene expression profiles among pulmonary telocytes, pneumocytes, airway cells, mesenchymal stem cells and lymphocytes

    PubMed Central

    Zheng, Minghuan; Sun, Xiaoru; Zhang, Miaomiao; Qian, Mengjia; Zheng, Yonghua; Li, Meiyi; Cretoiu, Sanda M; Chen, Chengshui; Chen, Luonan; Cretoiu, Dragos; Popescu, Laurentiu M; Fang, Hao; Wang, Xiangdong

    2014-01-01

    Telocytes (TCs) were identified as a distinct cellular type of the interstitial tissue and defined as cells with extremely long telopodes (Tps). Our previous data demonstrated patterns of mouse TC-specific gene profiles on chromosome 1. The present study focuses on the identification of characters and patterns of TC-specific or TC-dominated gene expression profiles in chromosome 2 and 3, the network of principle genes and potential functional association. We compared gene expression profiles of pulmonary TCs, mesenchymal stem cells, fibroblasts, alveolar type II cells, airway basal cells, proximal airway cells, CD8+T cells from bronchial lymph nodes (T-BL), and CD8+ T cells from lungs (T-LL). We identified that 26 or 80 genes of TCs in chromosome 2 and 13 or 59 genes of TCs up-or down-regulated in chromosome 3, as compared with other cells respectively. Obvious overexpression of Myl9 in chromosome 2 of TCs different from other cells, indicates that biological functions of TCs are mainly associated with tissue/organ injury and ageing, while down-expression of Pltp implies that TCs may be associated with inhibition or reduction of inflammation in the lung. Dominant overexpression of Sh3glb1, Tm4sf1 or Csf1 in chromosome 3 of TCs is mainly associated with tumour promotion in lung cancer, while most down-expression of Pde5 may be involved in the development of pulmonary fibrosis and other acute and chronic interstitial lung disease. PMID:25278030

  7. Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells

    PubMed Central

    Antigny, Fabrice; Norez, Caroline; Cantereau, Anne; Becq, Frédéric; Vandebrouck, Clarisse

    2008-01-01

    Background In airway epithelial cells, calcium mobilization can be elicited by selective autocrine and/or paracrine activation of apical or basolateral membrane heterotrimeric G protein-coupled receptors linked to phospholipase C (PLC) stimulation, which generates inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG) and induces Ca2+ release from endoplasmic reticulum (ER) stores. Methods In the present study, we monitored the cytosolic Ca2+ transients using the UV light photolysis technique to uncage caged Ca2+ or caged IP3 into the cytosol of loaded airway epithelial cells of cystic fibrosis (CF) and non-CF origin. We compared in these cells the types of Ca2+ receptors present in the ER, and measured their Ca2+ dependent activity before and after correction of F508del-CFTR abnormal trafficking either by low temperature or by the pharmacological corrector miglustat (N-butyldeoxynojirimycin). Results We showed reduction of the inositol 1,4,5-trisphosphate receptors (IP3R) dependent-Ca2+ response following both correcting treatments compared to uncorrected cells in such a way that Ca2+ responses (CF+treatment vs wild-type cells) were normalized. This normalization of the Ca2+ rate does not affect the activity of Ca2+-dependent chloride channel in miglustat-treated CF cells. Using two inhibitors of IP3R1, we observed a decrease of the implication of IP3R1 in the Ca2+ response in CF corrected cells. We observed a similar Ca2+ mobilization between CF-KM4 cells and CFTR-cDNA transfected CF cells (CF-KM4-reverted). When we restored the F508del-CFTR trafficking in CFTR-reverted cells, the specific IP3R activity was also reduced to a similar level as in non CF cells. At the structural level, the ER morphology of CF cells was highly condensed around the nucleus while in non CF cells or corrected CF cells the ER was extended at the totality of cell. Conclusion These results suggest reversal of the IP3R dysfunction in F508del-CFTR epithelial cells by correction of

  8. Cultured human airway epithelial cells (calu-3): a model of human respiratory function, structure, and inflammatory responses.

    PubMed

    Zhu, Yan; Chidekel, Aaron; Shaffer, Thomas H

    2010-01-01

    This article reviews the application of the human airway Calu-3 cell line as a respiratory model for studying the effects of gas concentrations, exposure time, biophysical stress, and biological agents on human airway epithelial cells. Calu-3 cells are grown to confluence at an air-liquid interface on permeable supports. To model human respiratory conditions and treatment modalities, monolayers are placed in an environmental chamber, and exposed to specific levels of oxygen or other therapeutic modalities such as positive pressure and medications to assess the effect of interventions on inflammatory mediators, immunologic proteins, and antibacterial outcomes. Monolayer integrity and permeability and cell histology and viability also measure cellular response to therapeutic interventions. Calu-3 cells exposed to graded oxygen concentrations demonstrate cell dysfunction and inflammation in a dose-dependent manner. Modeling positive airway pressure reveals that pressure may exert a greater injurious effect and cytokine response than oxygen. In experiments with pharmacological agents, Lucinactant is protective of Calu-3 cells compared with Beractant and control, and perfluorocarbons also protect against hyperoxia-induced airway epithelial cell injury. The Calu-3 cell preparation is a sensitive and efficient preclinical model to study human respiratory processes and diseases related to oxygen- and ventilator-induced lung injury. PMID:20948883

  9. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma.

    PubMed

    Kuperman, Douglas A; Huang, Xiaozhu; Koth, Laura L; Chang, Grace H; Dolganov, Gregory M; Zhu, Zhou; Elias, Jack A; Sheppard, Dean; Erle, David J

    2002-08-01

    Asthma is an increasingly common disease that remains poorly understood and difficult to manage. This disease is characterized by airway hyperreactivity (AHR, defined by exaggerated airflow obstruction in response to bronchoconstrictors), mucus overproduction and chronic eosinophilic inflammation. AHR and mucus overproduction are consistently linked to asthma symptoms and morbidity. Asthma is mediated by Th2 lymphocytes, which produce a limited repertoire of cytokines, including interleukin-4 (IL-4), IL-5, IL-9 and IL-13. Although each of these cytokines has been implicated in asthma, IL-13 is now thought to be especially critical. In animal models of allergic asthma, blockade of IL-13 markedly inhibits allergen-induced AHR, mucus production and eosinophilia. Furthermore, IL-13 delivery to the airway causes all of these effects. IL-13 is thus both necessary and sufficient for experimental models of asthma. However, the IL-13-responsive cells causing these effects have not been identified. Here we show that mice lacking signal transducer and activator of transcription 6 (STAT6) were protected from all pulmonary effects of IL-13. Reconstitution of STAT6 only in epithelial cells was sufficient for IL-13-induced AHR and mucus production in the absence of inflammation, fibrosis or other lung pathology. These results demonstrate the importance of direct effects of IL-13 on epithelial cells in causing two central features of asthma. PMID:12091879

  10. Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells.

    PubMed

    Denning, G M; Wollenweber, L A; Railsback, M A; Cox, C D; Stoll, L L; Britigan, B E

    1998-12-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1alpha. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  11. Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells

    PubMed Central

    Denning, Gerene M.; Wollenweber, Laura A.; Railsback, Michelle A.; Cox, Charles D.; Stoll, Lynn L.; Britigan, Bradley E.

    1998-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  12. Yap Tunes Airway Epithelial Size and Architecture by Regulating the Identity, Maintenance, and Self-renewal of Stem Cells

    PubMed Central

    Zhao, Rui; Fallon, Timothy R.; Saladi, Srinivas Vinod; Pardo-Saganta, Ana; Villoria, Jorge; Mou, Hongmei; Vinarsky, Vladimir; Gonzalez-Celeiro, Meryem; Nunna, Naveen; Hariri, Lida P.; Camargo, Fernando; Ellisen, Leif W.; Rajagopal, Jayaraj

    2014-01-01

    SUMMARY Our understanding of how stem cells are regulated to maintain appropriate tissue size and architecture is incomplete. We show that Yap is required for the actual maintenance of an adult mammalian stem cell. Without Yap, adult airway basal stem cells are lost through their unrestrained differentiation, resulting in the simplification of a pseudostratified epithelium into a columnar one. Conversely, Yap overexpression increases stem cell self-renewal and blocks terminal differentiation, resulting in epithelial hyperplasia and stratification. Yap overexpression in differentiated secretory cells causes them to partially reprogram and adopt a stem cell-like identity. In contrast, Yap knockdown prevents the dedifferentiation of secretory cells into stem cells. We then show that Yap functionally interacts with p63, the cardinal transcription factor associated with myriad epithelial basal stem cells. In aggregate, we show that Yap regulates all of the cardinal behaviors of airway epithelial stem cells and in so doing determines epithelial architecture. PMID:25043474

  13. Model of ion transport regulation in chloride-secreting airway epithelial cells. Integrated description of electrical, chemical, and fluorescence measurements.

    PubMed Central

    Hartmann, T; Verkman, A S

    1990-01-01

    An electrokinetic model was developed to calculate the time course of electrical parameters, ion fluxes, and intracellular ion activities for experiments performed in airway epithelial cells. Model variables included cell [Na], [K], [Cl], volume, and membrane potentials. The model contained apical membrane Cl, Na, and K conductances, basolateral membrane K conductance, Na/K/2 Cl and Na/Cl symport, and 3 Na/2 K ATPase, and a paracellular conductance. Transporter permeabilities and ion saturabilities were determined from reported ion flux data and membrane potentials in intact canine trachea. Without additional assumptions, the model predicted accurately the measured short-circuit current (Isc), cellular conductances, voltage-divider ratios, open-circuit potentials, and the time course of cell ion composition in ion substitution experiments. The model was used to examine quantitatively: (a) the effect of transport inhibitors on Isc and membrane potentials, (b) the dual role of apical Cl and basolateral K conductance in cell secretion, (c) whether the basolateral symporter requires K, and (d) the regulation of apical Cl conductance by cAMP and Ca-dependent signaling pathways. Model predictions gave improved understanding of the interrelations among transporting systems and in many cases gave surprising predictions that were not obvious without a detailed model. The model developed here has direct application to secretory or absorptive epithelial cells in the kidney thick ascending limb, cornea, sweat duct, and intestine in normal and pathophysiological states such as cystic fibrosis and cholera. PMID:1698471

  14. Dual Oxidase 2 (Duox2) Regulates Pannexin 1-mediated ATP Release in Primary Human Airway Epithelial Cells via Changes in Intracellular pH and Not H2O2 Production.

    PubMed

    Krick, Stefanie; Wang, Junjie; St-Pierre, Melissa; Gonzalez, Carlos; Dahl, Gerhard; Salathe, Matthias

    2016-03-18

    Human airway epithelial cells express pannexin 1 (Panx1) channels to release ATP, which regulates mucociliary clearance. Airway inflammation causes mucociliary dysfunction. Exposure of primary human airway epithelial cell cultures to IFN-γ for 48 h did not alter Panx1 protein expression but significantly decreased ATP release in response to hypotonic stress. The IFN-γ-induced functional down-regulation of Panx1 was due to the up-regulation of dual oxidase 2 (Duox2). Duox2 suppression by siRNA led to an increase in ATP release in control cells and restoration of ATP release in cells treated with IFN-γ. Both effects were reduced by the pannexin inhibitor probenecid. Duox2 up-regulation stoichiometrically increases H2O2 and proton production. H2O2 inhibited Panx1 function temporarily by formation of disulfide bonds at the thiol group of its terminal cysteine. Long-term exposure to H2O2, however, had no inhibitory effect. To assess the role of cellular acidification upon IFN-γ treatment, fully differentiated airway epithelial cells were exposed to ammonium chloride to alkalinize the cytosol. This led to a 2-fold increase in ATP release in cells treated with IFN-γ that was also inhibited by probenecid. Duox2 knockdown also partially corrected IFN-γ-mediated acidification. The direct correlation between intracellular pH and Panx1 open probability was shown in oocytes. Therefore, airway epithelial cells release less ATP in response to hypotonic stress in an inflammatory environment (IFN-γ exposure). Decreased Panx1 function is a response to cell acidification mediated by IFN-γ-induced up-regulation of Duox2, representing a novel mechanism for mucociliary dysfunction in inflammatory airway diseases. PMID:26823467

  15. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice

    PubMed Central

    Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases. PMID:26599511

  16. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  17. Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells.

    PubMed

    Devor, D C; Singh, A K; Lambert, L C; DeLuca, A; Frizzell, R A; Bridges, R J

    1999-05-01

    Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete HCO-3 by a Cl-offdependent, serosal Na+-dependent, serosal bumetanide-insensitive, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca2+-activated K+ channels, reduced HCO-3 secretion and caused the secretion of Cl- by a bumetanide-sensitive, electrogenic mechanism. Nystatin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole- inhibited basolateral membrane K+ current. Patch-clamp studies confirmed the presence of an intermediate conductance inwardly rectified K+ channel with this pharmacological profile. We propose that hyperpolarization of the basolateral membrane voltage elicits a switch from HCO-3 secretion to Cl- secretion because the uptake of HCO-3 across the basolateral membrane is mediated by a 4,4 '-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive Na+:HCO-3 cotransporter. Since the stoichiometry reported for Na+:HCO-3 cotransport is 1:2 or 1:3, hyperpolarization of the basolateral membrane potential by 1-EBIO would inhibit HCO-3 entry and favor the secretion of Cl-. Therefore, differential regulation of the basolateral membrane K+ conductance by secretory agonists could provide a means of stimulating HCO-3 and Cl- secretion. In this context, cystic fibrosis transmembrane conductance

  18. The Role of Bacterial Secretion Systems in the Virulence of Gram-Negative Airway Pathogens Associated with Cystic Fibrosis

    PubMed Central

    Depluverez, Sofie; Devos, Simon; Devreese, Bart

    2016-01-01

    Cystic fibrosis (CF) is the most common lethal inherited disorder in Caucasians. It is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. A defect in the CFTR ion channel causes a dramatic change in the composition of the airway surface fluid, leading to a highly viscous mucus layer. In healthy individuals, the majority of bacteria trapped in the mucus layer are removed and destroyed by mucociliary clearance. However, in the lungs of patients with CF, the mucociliary clearance is impaired due to dehydration of the airway surface fluid. As a consequence, patients with CF are highly susceptible to chronic or intermittent pulmonary infections, often causing extensive lung inflammation and damage, accompanied by a decreased life expectancy. This mini review will focus on the different secretion mechanisms used by the major bacterial CF pathogens to release virulence factors, their role in resistance and discusses the potential for therapeutically targeting secretion systems. PMID:27625638

  19. The Role of Bacterial Secretion Systems in the Virulence of Gram-Negative Airway Pathogens Associated with Cystic Fibrosis.

    PubMed

    Depluverez, Sofie; Devos, Simon; Devreese, Bart

    2016-01-01

    Cystic fibrosis (CF) is the most common lethal inherited disorder in Caucasians. It is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. A defect in the CFTR ion channel causes a dramatic change in the composition of the airway surface fluid, leading to a highly viscous mucus layer. In healthy individuals, the majority of bacteria trapped in the mucus layer are removed and destroyed by mucociliary clearance. However, in the lungs of patients with CF, the mucociliary clearance is impaired due to dehydration of the airway surface fluid. As a consequence, patients with CF are highly susceptible to chronic or intermittent pulmonary infections, often causing extensive lung inflammation and damage, accompanied by a decreased life expectancy. This mini review will focus on the different secretion mechanisms used by the major bacterial CF pathogens to release virulence factors, their role in resistance and discusses the potential for therapeutically targeting secretion systems. PMID:27625638

  20. Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells☆

    PubMed Central

    Wages, Phillip A.; Silbajoris, Robert; Speen, Adam; Brighton, Luisa; Henriquez, Andres; Tong, Haiyan; Bromberg, Philip A.; Simmons, Steven O.; Samet, James M.

    2014-01-01

    Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn2+) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn2+ toxicity is not fully understood. H2O2 and Zn2+ have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn2+ to cause cellular H2O2 production. To determine the role of Zn2+-induced H2O2 production in the human airway epithelial cell response to Zn2+ exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2) or roGFP2 (EGSH) in the cytosol or mitochondria were exposed to 50 µM Zn2+ for 5 min in the presence of 1 µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn2+ exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn2+-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn2+-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn2+ leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms. PMID:25462065

  1. Adoptive transfer of allergen-specific CD4+ T cells induces airway inflammation and hyperresponsiveness in brown-Norway rats.

    PubMed

    Haczku, A; Macary, P; Huang, T J; Tsukagoshi, H; Barnes, P J; Kay, A B; Kemeny, D M; Chung, K F; Moqbel, R

    1997-06-01

    Following allergen exposure, sensitized Brown-Norway rats develop airway hyperresponsiveness (AHR) and eosinophilic inflammation together with an increase in activated T cells (CD25+) in the airways. We tested the hypothesis that CD4+ T cells are involved directly in the acquisition of AHR. Spleen T cells from animals that were injected intraperitoneally on three consecutive days with ovalbumin/Al(OH)3, showed a dose-dependent proliferative response in vitro to ovalbumin, but not to bovine serum albumin, as measured by [3H]thymidine uptake. For total T-cell transfer, spleen cells obtained from donor rats 4 days after sensitization were depleted of adherent cells by a nylon wool column separation. CD4+ and CD8+ T cells were purified by immunomagnetic beads cell separation. Recipient naive rats were injected intravenously with 50 x 10(6) total T cells, 20 x 10(6) and 5 x 10(6) CD4+ cells, and 5 x 10(6) CD8+ cells, and were exposed to ovalbumin aerosol 24 hr afterwards. After a further 24 hr, airway responsiveness to acetylcholine (ACh) was measured and provocative concentration (PC) values PC100, PC200 and PC300) (the ACh concentration needed to achieve 100, 200 and 300% increase in lung resistance above baseline) were calculated. Airway responsiveness was significantly increased in recipients of sensitized total T cells compared with recipients of cells from saline-injected donor rats (P < 0.05). There were significantly increased eosinophil major basic protein (MBP)+ cell counts/mm2 in airway submucosal tissue in the hyperreactive rats and a significant correlation was found between the number of MBP+ cells and PC100 (r = 0.75; P < 0.03) in recipients of sensitized total T cells. Purified CD4+ T cells from sensitized donors induced AHR in naive recipients (P < 0.05), while sensitized CD8+ and naive CD4+ cells failed to do so. Our data indicate that T cells may induce AHR through an eosinophilic airway inflammation and that CD4+ T cells may have a direct effect in

  2. Eradication of Pseudomonas aeruginosa biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination

    PubMed Central

    Anderson, Gregory G.; Kenney, Thomas F.; MacLeod, David L.; Henig, Noreen R.; O’Toole, George A.

    2016-01-01

    Chronic biofilm formation by Pseudomonas aeruginosa in cystic fibrosis (CF) lungs is a major cause of morbidity and mortality for patients with CF. To gain insights into effectiveness of novel anti-infective therapies, the inhibitory effects of fosfomycin, tobramycin, and a 4 : 1 (wt/wt) fosfomycin/tobramycin combination (FTI) on Pseudomonas aeruginosa biofilms grown on cultured human CF-derived airway cells (CFBE41o-) were investigated. In preformed biofilms treated for 16 h with antibiotics, P. aeruginosa CFU per mL were reduced 4 log10 units by both FTI and tobramycin at 256 mg L−1, while fosfomycin alone had no effect. Importantly, the FTI treatment contained five times less tobramycin than the tobramycin-alone treatment. Inhibition of initial biofilm formation was achieved at 64 mg L−1 FTI and 16 mg L−1 tobramycin. Fosfomycin (1024 mg L−1) did not inhibit biofilm formation. Cytotoxicity was also determined by measuring lactate dehydrogenase (LDH). Intriguingly, sub-inhibitory concentrations of FTI (16 mg L−1) and tobramycin (4 mg L−1) and high concentrations of fosfomycin (1024 mg L−1) prevented bacterially mediated airway cell toxicity without a corresponding reduction in CFU. Overall, it was observed that FTI and tobramycin demonstrated comparable activity on biofilm formation and disruption. Decreased administration of tobramycin upon treatment with FTI might lead to a decrease in negative side effects of aminoglycosides. PMID:23620118

  3. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells.

    PubMed

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca(2+) increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  4. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors

    PubMed Central

    Teixeira, Vitor H; Nadarajan, Parthiban; Graham, Trevor A; Pipinikas, Christodoulos P; Brown, James M; Falzon, Mary; Nye, Emma; Poulsom, Richard; Lawrence, David; Wright, Nicholas A; McDonald, Stuart; Giangreco, Adam; Simons, Benjamin D; Janes, Sam M

    2013-01-01

    Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to “neutral drift” of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI: http://dx.doi.org/10.7554/eLife.00966.001 PMID:24151545

  5. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

    PubMed Central

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M.; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  6. SNAP23 is selectively expressed in airway secretory cells and mediates baseline and stimulated mucin secretion

    PubMed Central

    Ren, Binhui; Azzegagh, Zoulikha; Jaramillo, Ana M.; Zhu, Yunxiang; Pardo-Saganta, Ana; Bagirzadeh, Rustam; Flores, Jose R.; Han, Wei; Tang, Yong-jun; Tu, Jing; Alanis, Denise M.; Evans, Christopher M.; Guindani, Michele; Roche, Paul A.; Rajagopal, Jayaraj; Chen, Jichao; Davis, C. William; Tuvim, Michael J.; Dickey, Burton F.

    2015-01-01

    Airway mucin secretion is important pathophysiologically and as a model of polarized epithelial regulated exocytosis. We find the trafficking protein, SNAP23 (23-kDa paralogue of synaptosome-associated protein of 25 kDa), selectively expressed in secretory cells compared with ciliated and basal cells of airway epithelium by immunohistochemistry and FACS, suggesting that SNAP23 functions in regulated but not constitutive epithelial secretion. Heterozygous SNAP23 deletant mutant mice show spontaneous accumulation of intracellular mucin, indicating a defect in baseline secretion. However mucins are released from perfused tracheas of mutant and wild-type (WT) mice at the same rate, suggesting that increased intracellular stores balance reduced release efficiency to yield a fully compensated baseline steady state. In contrast, acute stimulated release of intracellular mucin from mutant mice is impaired whether measured by a static imaging assay 5 min after exposure to the secretagogue ATP or by kinetic analysis of mucins released from perfused tracheas during the first 10 min of ATP exposure. Together, these data indicate that increased intracellular stores cannot fully compensate for the defect in release efficiency during intense stimulation. The lungs of mutant mice develop normally and clear bacteria and instilled polystyrene beads comparable to WT mice, consistent with these functions depending on baseline secretion that is fully compensated. PMID:26182382

  7. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions.

    PubMed

    Min, Kyoung Ah; Rosania, Gus R; Shin, Meong Cheol

    2016-06-01

    To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport. PMID:26818810

  8. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  9. REGULATION OF CYTOKINE PRODUCTION IN HUMAN ALVEOLAR MACHROPHAGES AND AIRWAY EPITHELIAL CELLS IN RESPONSE TO AMBIENT AIR POLLUTION PARTICLES: FURTHER MECHANISTIC STUDIES

    EPA Science Inventory

    In order to better understand how ambient air particulate matter (PM) affect lung health, the two main airway cell types likely to interact with inhaled particles, alveolar macrophages (AM) and airway epithelial cells have been exposed to particles in vitro and followed for endp...

  10. M2 Muscarinic acetylcholine receptor modulates rat airway smooth muscle cell proliferation

    PubMed Central

    2013-01-01

    Airways chronic inflammatory conditions in asthma and COPD are characterized by tissue remodeling, being smooth muscle hyperplasia, the most important feature. Non-neuronal and neuronal Acetylcholine acting on muscarinic receptors (MAChRs) has been postulated as determinant of tissue remodeling in asthma and COPD by promoting proliferation and phenotypic changes of airway smooth muscle cells (ASMC). The objective was to evaluate proliferative responses to muscarinic agonist as carbamylcholine (Cch) and to identify the MAchR subtype involved. ASMC were isolated from tracheal fragments of Sprague–Dawley rats by enzymatic digestion. Proliferation assays were performed by MTS-PMS method. Viability was confirmed by trypan blue exclusion method. Mitogens as, epidermal growth factor (EGF), Tumor necrosis factor-alpha (TNF-α) and fetal bovine serum (FBS) increased ASMC proliferation (p < 0.05, n = 5). Cch alone increased ASMC proliferation at 24 and 48 hrs. However, combination of Cch with other mitogens exhibited a dual effect, synergistic proliferation effect in the presence of EGF (5 ng/mL) and 5% FBS and inhibiting the proliferation induced by 10% FBS, EGF (10 ng/mL) and TNF-α (10 ng/mL). To determine the MAChR subtype involved in these biological responses, a titration curve of selective muscarinic antagonists were performed. The Cch stimulatory and inhibitory effects on ASCM proliferation was blocked by AF-DX-116 (M2AChR selective antagonist), in greater proportion than 4-DAMP (M3AChR selective antagonist), suggesting that the modulation of muscarinic agonist-induced proliferation is M2AChR mediated responses. Thus, M2AChR can activate multiple signal transduction systems and mediate both effects on ASMC proliferation depending on the plethora and variable airway microenvironments existing in asthma and COPD. PMID:24377382

  11. Endothelial leukocyte adhesion molecule-1 mediates antigen-induced acute airway inflammation and late-phase airway obstruction in monkeys.

    PubMed Central

    Gundel, R H; Wegner, C D; Torcellini, C A; Clarke, C C; Haynes, N; Rothlein, R; Smith, C W; Letts, L G

    1991-01-01

    This study examines the role of endothelial leukocyte adhesion molecule-1 (ELAM-1) in the development of the acute airway inflammation (cell influx) and late-phase airway obstruction in a primate model of extrinsic asthma. In animals sensitive to antigen, a single inhalation exposure induced the rapid expression of ELAM-1 (6 h) exclusively on vascular endothelium that correlated with the influx of neutrophils into the lungs and the onset of late-phase airway obstruction. In contrast, basal levels of ICAM-1 was constitutively expressed on vascular endothelium and airway epithelium before antigen challenge. After the single antigen exposure, changes in ICAM-1 expression did not correlate with neutrophil influx or the change in airway caliber. This was confirmed by showing that pretreatment with a monoclonal antibody to ICAM-1 did not inhibit the acute influx of neutrophils associated with late-phase airway obstruction, whereas a monoclonal antibody to ELAM-1 blocked both the influx of neutrophils and the late-phase airway obstruction. This study demonstrates a functional role for ELAM-1 in the development of acute airway inflammation in vivo. We conclude that, in primates, the late-phase response is the result of an ELAM-1 dependent influx of neutrophils. Therefore, the regulation of ELAM-1 expression may provide a novel approach to controlling the acute inflammatory response, and thereby, affecting airway function associated with inflammatory disorders, including asthma. Images PMID:1717514

  12. Expression of the chloride channel CLC-K in human airway epithelial cells.

    PubMed

    Mummery, Jennifer L; Killey, Jennifer; Linsdell, Paul

    2005-12-01

    Airway submucosal gland function is severely disrupted in cystic fibrosis (CF), as a result of genetic mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane Cl(-) channel. To identify other Cl(-) channel types that could potentially substitute for lost CFTR function in these cells, we investigated the functional and molecular expression of Cl(-) channels in Calu-3 cells, a human cell line model of the submucosal gland serous cell. Whole cell patch clamp recording from these cells identified outwardly rectified, pH- and calcium-sensitive Cl(-) currents that resemble those previously ascribed to ClC-K type chloride channels. Using reverse transcription polymerase chain reaction, we identified expression of mRNA for ClC-2, ClC-3, ClC-4, ClC-5, ClC-6, ClC-7, ClC-Ka, and ClC-Kb, as well as the common ClC-K channel beta subunit barttin. Western blotting confirmed that Calu-3 cells express both ClC-K and barttin protein. Thus, Calu-3 cells express multiple members of the ClC family of Cl(-) channels that, if also expressed in native submucosal gland serous cells within the CF lung, could perhaps act to partially substitute lost CFTR function. Furthermore, this work represents the first evidence for functional ClC-K chloride channel expression within the lung. PMID:16462912

  13. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    PubMed Central

    Berman, Reena; Jiang, Di; Wu, Qun; Chu, Hong Wei

    2016-01-01

    Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. PMID:27354786

  14. Macrolides Inhibit Fusobacterium nucleatum-Induced MUC5AC Production in Human Airway Epithelial Cells

    PubMed Central

    Nagaoka, Kentaro; Harada, Yosuke; Yamada, Koichi; Migiyama, Yohei; Morinaga, Yoshitomo; Hasegawa, Hiroo; Izumikawa, Koichi; Kakeya, Hiroshi; Nishimura, Masaharu; Kohno, Shigeru

    2013-01-01

    Fusobacterium nucleatum is one of the most common anaerobic bacteria in periodontitis and is responsible for several extraoral infections, including respiratory tract diseases. In this study, we examined whether F. nucleatum induces mucin secretion in airway epithelial cells. We also examined the effects of macrolides on F. nucleatum-induced mucus production compared with the effects of other antibiotics that exert anti-anaerobic activities. The production of MUC5AC, the major core protein of mucin secreted from the airway surface epithelium, in bronchial epithelial cells after stimulation with culture supernatants (Sup) of F. nucleatum was analyzed by performing enzyme-linked immunosorbent assay and quantitative RT-PCR. The cell-signaling pathway of F. nucleatum Sup stimulation was also analyzed by Western blotting. For inhibition studies, cells were treated with azithromycin, clarithromycin, clindamycin (CLDM), and metronidazole (MTZ). The F. nucleatum Sup induced NCI-H292 cells to express MUC5AC at both the protein level and the mRNA level in both a time- and dose-dependent manner. Macrolides inhibited F. nucleatum Sup-induced MUC5AC production, while CLDM and MTZ were less effective. F. nucleatum Sup induced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and this induction was suppressed by macrolides. F. nucleatum Sup-induced MUC5AC production was blocked by the ERK pathway inhibitor U0126. F. nucleatum is likely to contribute to excessive mucin production, which suggests that periodontitis may correlate with the pathogenesis of chronic respiratory tract infection. Macrolides seem to reduce this mucin production and might represent an additional means of therapeutic intervention for F. nucleatum respiratory tract infections other than CLDM and MTZ. PMID:23380724

  15. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration.

    PubMed

    Zuo, Wei; Zhang, Ting; Wu, Daniel Zheng'An; Guan, Shou Ping; Liew, Audrey-Ann; Yamamoto, Yusuke; Wang, Xia; Lim, Siew Joo; Vincent, Matthew; Lessard, Mark; Crum, Christopher P; Xian, Wa; McKeon, Frank

    2015-01-29

    Lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis involve the progressive and inexorable destruction of oxygen exchange surfaces and airways, and have emerged as a leading cause of death worldwide. Mitigating therapies, aside from impractical organ transplantation, remain limited and the possibility of regenerative medicine has lacked empirical support. However, it is clinically known that patients who survive sudden, massive loss of lung tissue from necrotizing pneumonia or acute respiratory distress syndrome often recover full pulmonary function within six months. Correspondingly, we recently demonstrated lung regeneration in mice following H1N1 influenza virus infection, and linked distal airway stem cells expressing Trp63 (p63) and keratin 5, called DASC(p63/Krt5), to this process. Here we show that pre-existing, intrinsically committed DASC(p63/Krt5) undergo a proliferative expansion in response to influenza-induced lung damage, and assemble into nascent alveoli at sites of interstitial lung inflammation. We also show that the selective ablation of DASC(p63/Krt5) in vivo prevents this regeneration, leading to pre-fibrotic lesions and deficient oxygen exchange. Finally, we demonstrate that single DASC(p63/Krt5)-derived pedigrees differentiate to type I and type II pneumocytes as well as bronchiolar secretory cells following transplantation to infected lung and also minimize the structural consequences of endogenous stem cell loss on this process. The ability to propagate these cells in culture while maintaining their intrinsic lineage commitment suggests their potential in stem cell-based therapies for acute and chronic lung diseases. PMID:25383540

  16. Klebsiella pneumoniae Is Able to Trigger Epithelial-Mesenchymal Transition Process in Cultured Airway Epithelial Cells

    PubMed Central

    Leone, Laura; Mazzetta, Francesca; Martinelli, Daniela; Valente, Sabatino; Alimandi, Maurizio; Raffa, Salvatore; Santino, Iolanda

    2016-01-01

    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells. PMID:26812644

  17. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction

    PubMed Central

    Hessel, Edith M.; Chu, Mabel; Lizcano, Jennifer O.; Chang, Bonnie; Herman, Nancy; Kell, Sariah A.; Wills-Karp, Marsha; Coffman, Robert L.

    2005-01-01

    A single treatment with a CpG-containing immunostimulatory DNA sequence (ISS) given before allergen challenge can inhibit T helper type 2 cell (Th2)–mediated airway responses in animal models of allergic asthma; however, the mechanism of this inhibition remains largely undefined. Here, we demonstrate that airway delivery of ISS before allergen challenge in Th2-primed mice acts in two distinct ways to prevent the allergic responses to this challenge. The first is to prevent induction of cytokines from allergen-specific Th2 cells, as demonstrated by the nearly complete inhibition of Th2 cytokine production, Th2-dependent functional responses, and gene induction patterns. ISS inhibits the Th2 response by rendering lung antigen-presenting cells (APCs) unable to effectively present antigen to Th2 cells, but not to Th1 cells. This loss of APC function correlates with a reduced expression of costimulatory molecules, including programmed cell death ligand (PD-L)1, PD-L2, CD40, CD80, CD86, and inducible T cell costimulator, and of major histocompatibility complex class II on CD11c+APCs from the airways of ISS-treated mice. The second important action of ISS is inhibition of immunoglobulin E–dependent release of Th2 cytokines, especially interleukin 4, from basophils and/or mast cells in the airways of Th2-primed mice. Thus, inhibition by ISS of allergic responses can be explained by two novel mechanisms that culminate in the inhibition of the principal sources of type 2 cytokines in the airways. PMID:16314434

  18. Pore properties and pharmacological features of the P2X receptor channel in airway ciliated cells

    PubMed Central

    Ma, Weiyuan; Korngreen, Alon; Weil, Simy; Cohen, Enbal Ben-Tal; Priel, Avi; Kuzin, Liubov; Silberberg, Shai D

    2006-01-01

    Airway ciliated cells express an ATP-gated P2X receptor channel of unknown subunit composition (P2Xcilia) which is modulated by Na+ and by long exposures to ATP. P2Xcilia was investigated by recording currents from freshly dissociated rabbit airway ciliated cells with the patch-clamp technique in the whole-cell configuration. During the initial continuous exposure to extracellular ATP, P2Xcilia currents gradually increase in magnitude (priming), yet the permeability to N-methyl-d-glucamine (NMDG) does not change, indicating that priming does not arise from a progressive change in pore diameter. Na+, which readily permeates P2Xcilia receptor channels, was found to inhibit the channel extracellular to the electric field. The rank order of permeability to various monovalent cations is: Li+, Na+, K+, Rb+, Cs+, NMDG+ and TEA+, with a relative permeability of 1.35, 1.0, 0.99, 0.91, 0.79, 0.19 and 0.10, respectively. The rank order for the alkali cations follows an Eisenman series XI for a high-strength field site. Ca2+ has been estimated to be 7-fold more permeant than Na+. The rise in [Ca2+]i in ciliated cells, induced by the activation of P2Xcilia, is largely inhibited by either Brilliant Blue G or KN-62, indicating that P2X7 may be a part of P2Xcilia. P2Xcilia is augmented by Zn2+ and by ivermectin, and P2X4 receptor protein is detected by immunolabelling at the basal half of the cilia, strongly suggesting that P2X4 is a component of P2Xcilia receptor channels. Taken together, these results suggest that P2Xcilia is either assembled from P2X4 and P2X7 subunits, or formed from modified P2X4 subunits. PMID:16423852

  19. An investigation of the influence of cell topography on epithelial mechanical stresses during pulmonary airway reopening

    PubMed Central

    Jacob, A. M.; Gaver, D. P.

    2013-01-01

    The goal of this study is to assess the local mechanical environment of the pulmonary epithelium in a computational model of airway reopening. To this end, the boundary element method (BEM) in conjunction with lubrication theory is implemented to assess the stationary-state behavior of a semi-infinite bubble traveling through a liquid-occluded parallel plate flow chamber lined with epithelial cells. The fluid occlusion is assumed to be Newtonian and inertia is neglected. The interactions between the microgeometry of the model airway’s walls and the interfacial kinematics surrounding the bubble’s tip result in a complex, spatially and temporally dependent stress distribution. The walls’ nonplanar topography magnifies the normal and shear stresses and stress gradients. We find that decreasing the bubble’s speed serves to increase the maximum normal stress and stress gradient but decrease the maximum shear stress and stress gradient. Our results give credence to the pressure-gradient-induced epithelial damage theory recently proposed by Bilek et al. [J. Appl. Physiol. 94, 770 (2003)] and Kay et al. [J. Appl. Physiol. 97, 269 (2004)]. We conclude that the amplified pressure gradients found in this study may be even more detrimental to the airway’s cellular epithelium during airway reopening. PMID:23745044

  20. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells

    PubMed Central

    Yang, Chao-Huei; Tsao, Chiung-Fang; Ko, Wang-Sheng; Chiou, Ya-Ling

    2016-01-01

    In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs) is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF)-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL) to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL) increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05). Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%–99% after 48 h (p < 0.05) and induced G1/G0 cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2), Akt, and nuclear factor (NF)-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials. PMID:26761017