Sample records for airway epithelium hae

  1. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    PubMed

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium

    PubMed Central

    Faris, Andrea N.; Ganesan, Shyamala; Chattoraj, Asamanja; Chattoraj, Sangbrita S.; Comstock, Adam T.; Unger, Benjamin L.; Hershenson, Marc B.

    2016-01-01

    Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium. However, in the injury/regeneration model, RV prolongs barrier dysfunction and alters the differentiation of cells. The prolonged barrier dysfunction caused by RV was not a result of excessive cell death but was instead associated with epithelial-to-mesenchymal transition (EMT)-like features, such as reduced expression of the apicolateral junction and polarity complex proteins, E-cadherin, occludin, ZO-1, claudins 1 and 4, and Crumbs3 and increased expression of vimentin, a mesenchymal cell marker. The expression of Snail, a transcriptional repressor of tight and adherence junctions, was also up-regulated in RV-infected injured/regenerating airway epithelium, and inhibition of Snail reversed RV-induced EMT-like features. In addition, compared with sham-infected cells, the RV-infected injured/regenerating airway epithelium showed more goblet cells and fewer ciliated cells. Inhibition of epithelial growth factor receptor promoted repolarization of cells by inhibiting Snail and enhancing expression of E-cadherin, occludin, and Crumbs3 proteins, reduced the number of goblet cells, and increased the number of ciliated cells. Together, these results suggest that RV not only disrupts barrier function, but also interferes with normal renewal of injured/regenerating airway epithelium by inducing EMT-like features and subsequent goblet cell hyperplasia. PMID:27119973

  3. Culturing of respiratory viruses in well-differentiated pseudostratified human airway epithelium as a tool to detect unknown viruses

    PubMed Central

    Jazaeri Farsani, Seyed Mohammad; Deijs, Martin; Dijkman, Ronald; Molenkamp, Richard; Jeeninga, Rienk E; Ieven, Margareta; Goossens, Herman; van der Hoek, Lia

    2015-01-01

    Background Currently, virus discovery is mainly based on molecular techniques. Here, we propose a method that relies on virus culturing combined with state-of-the-art sequencing techniques. The most natural ex vivo culture system was used to enable replication of respiratory viruses. Method Three respiratory clinical samples were tested on well-differentiated pseudostratified tracheobronchial human airway epithelial (HAE) cultures grown at an air–liquid interface, which resemble the airway epithelium. Cells were stained with convalescent serum of the patients to identify infected cells and apical washes were analyzed by VIDISCA-454, a next-generation sequencing virus discovery technique. Results Infected cells were observed for all three samples. Sequencing subsequently indicated that the cells were infected by either human coronavirus OC43, influenzavirus B, or influenzavirus A. The sequence reads covered a large part of the genome (52%, 82%, and 57%, respectively). Conclusion We present here a new method for virus discovery that requires a virus culture on primary cells and an antibody detection. The virus in the harvest can be used to characterize the viral genome sequence and cell tropism, but also provides progeny virus to initiate experiments to fulfill the Koch's postulates. PMID:25482367

  4. Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge.

    PubMed

    Pardo-Saganta, Ana; Law, Brandon M; Gonzalez-Celeiro, Meryem; Vinarsky, Vladimir; Rajagopal, Jayaraj

    2013-03-01

    Mucous cell metaplasia is a hallmark of airway diseases, such as asthma and chronic obstructive pulmonary disease. The majority of human airway epithelium is pseudostratified, but the cell of origin of mucous cells has not been definitively established in this type of airway epithelium. There is evidence that ciliated, club cell (Clara), and basal cells can all give rise to mucus-producing cells in different contexts. Because pseudostratified airway epithelium contains distinct progenitor cells from simple columnar airway epithelium, the lineage relationships of progenitor cells to mucous cells may be different in these two epithelial types. We therefore performed lineage tracing of the ciliated cells of the murine basal cell-containing airway epithelium in conjunction with the ovalbumin (OVA)-induced murine model of allergic lung disease. We genetically labeled ciliated cells with enhanced Yellow Fluorescent Protein (eYFP) before the allergen challenge, and followed the fate of these cells to determine whether they gave rise to newly formed mucous cells. Although ciliated cells increased in number after the OVA challenge, the newly formed mucous cells were not labeled with the eYFP lineage tag. Even small numbers of labeled mucous cells could not be detected, implying that ciliated cells make virtually no contribution to the new goblet cell pool. This demonstrates that, after OVA challenge, new mucous cells do not originate from ciliated cells in a pseudostratified basal cell-containing airway epithelium.

  5. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness.

    PubMed

    Li, Shanru; Koziol-White, Cynthia; Jude, Joseph; Jiang, Meiqi; Zhao, Hengjiang; Cao, Gaoyuan; Yoo, Edwin; Jester, William; Morley, Michael P; Zhou, Su; Wang, Yi; Lu, Min Min; Panettieri, Reynold A; Morrisey, Edward E

    2016-05-02

    Asthma is one of the most common chronic diseases globally and can be divided into presenting with or without an immune response. Current therapies have little effect on nonimmune disease, and the mechanisms that drive this type of asthma are poorly understood. Here, we have shown that loss of the transcription factors forkhead box P1 (Foxp1) and Foxp4, which are critical for lung epithelial development, in the adult airway epithelium evokes a non-Th2 asthma phenotype that is characterized by airway hyperresponsiveness (AHR) without eosinophilic inflammation. Transcriptome analysis revealed that loss of Foxp1 and Foxp4 expression induces ectopic expression of neuropeptide Y (Npy), which has been reported to be present in the airways of asthma patients, but whose importance in disease pathogenesis remains unclear. Treatment of human lung airway explants with recombinant NPY increased airway contractility. Conversely, loss of Npy in Foxp1- and Foxp4-mutant airway epithelium rescued the AHR phenotype. We determined that NPY promotes AHR through the induction of Rho kinase activity and phosphorylation of myosin light chain, which induces airway smooth muscle contraction. Together, these studies highlight the importance of paracrine signals from the airway epithelium to the underlying smooth muscle to induce AHR and suggest that therapies targeting epithelial induction of this phenotype may prove useful in treatment of noneosinophilic asthma.

  6. Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells.

    PubMed

    Singh, Brajesh K; Li, Ni; Mark, Anna C; Mateo, Mathieu; Cattaneo, Roberto; Sinn, Patrick L

    2016-08-01

    Measles is a highly contagious, acute viral illness. Immune cells within the airways are likely first targets of infection, and these cells traffic measles virus (MeV) to lymph nodes for amplification and subsequent systemic dissemination. Infected immune cells are thought to return MeV to the airways; however, the mechanisms responsible for virus transfer to pulmonary epithelial cells are poorly understood. To investigate this process, we collected blood from human donors and generated primary myeloid cells, specifically, monocyte-derived macrophages (MDMs) and dendritic cells (DCs). MDMs and DCs were infected with MeV and then applied to primary cultures of well-differentiated airway epithelial cells from human donors (HAE). Consistent with previous results obtained with free virus, infected MDMs or DCs were incapable of transferring MeV to HAE when applied to the apical surface. Likewise, infected MDMs or DCs applied to the basolateral surface of HAE grown on small-pore (0.4-μm) support membranes did not transfer virus. In contrast, infected MDMs and DCs applied to the basolateral surface of HAE grown on large-pore (3.0-μm) membranes successfully transferred MeV. Confocal microscopy demonstrated that MDMs and DCs are capable of penetrating large-pore membranes but not small-pore membranes. Further, by using a nectin-4 blocking antibody or recombinant MeV unable to enter cells through nectin-4, we demonstrated formally that transfer from immune cells to HAE occurs in a nectin-4-dependent manner. Thus, both infected MDMs and DCs rely on cell-to-cell contacts and nectin-4 to efficiently deliver MeV to the basolateral surface of HAE. Measles virus spreads rapidly and efficiently in human airway epithelial cells. This rapid spread is based on cell-to-cell contact rather than on particle release and reentry. Here we posit that MeV transfer from infected immune cells to epithelial cells also occurs by cell-to-cell contact rather than through cell-free particles. In

  7. Simultaneous LFA-1 and CD40 ligand antagonism prevents airway remodeling in orthotopic airway transplantation: implications for the role of respiratory epithelium as a modulator of fibrosis.

    PubMed

    Murakawa, Tomohiro; Kerklo, Michelle M; Zamora, Martin R; Wei, Yi; Gill, Ronald G; Henson, Peter M; Grover, Frederick L; Nicolls, Mark R

    2005-04-01

    Airway remodeling is a prominent feature of certain immune-mediated lung diseases such as asthma and chronic lung transplant rejection. Under conditions of airway inflammation, the respiratory epithelium may serve an important role in this remodeling process. Given the proposed role of respiratory epithelium in nonspecific injury models, we investigated the respiratory epithelium in an immune-specific orthotopic airway transplant model. MHC-mismatched tracheal transplants in mice were used to generate alloimmune-mediated airway lesions. Attenuation of this immune injury and alteration of antidonor reactivity were achieved by the administration of combined anti-LFA-1/anti-CD40L mAbs. By contrast, without immunotherapy, transplanted airways remodeled with a flattening of respiratory epithelium and significant subepithelial fibrosis. Unopposed alloimmune injury for 10 days was associated with subsequent epithelial transformation and subepithelial fibrosis that could not be reversed with immunotherapy. The relining of donor airways with recipient-derived epithelium was delayed with immunotherapy resulting in partially chimeric airways by 28 days. Partial chimerism was sufficient to prevent luminal fibrosis. However, epithelial chimerism was also associated with airway remodeling. Therefore, there appears to be an intimate relationship between the morphology and level of chimerism of the respiratory epithelium and the degree of airway remodeling following alloimmune injury.

  8. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    PubMed Central

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  9. Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium.

    PubMed

    Wang, Guoqing; Zhou, Haixia; Strulovici-Barel, Yael; Al-Hijji, Mohammed; Ou, Xuemei; Salit, Jacqueline; Walters, Matthew S; Staudt, Michelle R; Kaner, Robert J; Crystal, Ronald G

    2017-07-03

    Enhanced macroautophagy/autophagy is recognized as a component of the pathogenesis of smoking-induced airway disease. Based on the knowledge that enhanced autophagy is linked to oxidative stress and the DNA damage response, both of which are linked to smoking, we used microarray analysis of the airway epithelium to identify smoking upregulated genes known to respond to oxidative stress and the DNA damage response. This analysis identified OSGIN1 (oxidative stress induced growth inhibitor 1) as significantly upregulated by smoking, in both the large and small airway epithelium, an observation confirmed by an independent small airway microarray cohort, TaqMan PCR of large and small airway samples and RNA-Seq of small airway samples. High and low OSGIN1 expressors have different autophagy gene expression patterns in vivo. Genome-wide correlation of RNAseq analysis of airway basal/progenitor cells showed a direct correlation of OSGIN1 mRNA levels to multiple classic autophagy genes. In vitro cigarette smoke extract exposure of primary airway basal/progenitor cells was accompanied by a dose-dependent upregulation of OSGIN1 and autophagy induction. Lentivirus-mediated expression of OSGIN1 in human primary basal/progenitor cells induced puncta-like staining of MAP1LC3B and upregulation of MAP1LC3B mRNA and protein and SQSTM1 mRNA expression level in a dose and time-dependent manner. OSGIN1-induction of autophagosome, amphisome and autolysosome formation was confirmed by colocalization of MAP1LC3B with SQSTM1 or CD63 (endosome marker) and LAMP1 (lysosome marker). Both OSGIN1 overexpression and knockdown enhanced the smoking-evoked autophagic response. Together, these observations support the concept that smoking-induced upregulation of OSGIN1 is one link between smoking-induced stress and enhanced-autophagy in the human airway epithelium.

  10. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  11. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.

    PubMed

    Kindler, Eveline; Jónsdóttir, Hulda R; Muth, Doreen; Hamming, Ole J; Hartmann, Rune; Rodriguez, Regulo; Geffers, Robert; Fouchier, Ron A M; Drosten, Christian; Müller, Marcel A; Dijkman, Ronald; Thiel, Volker

    2013-02-19

    The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. IMPORTANCE A novel human coronavirus, HCoV-EMC, has recently been described to be associated with severe respiratory tract infection and fatalities, similar to severe acute respiratory syndrome (SARS) observed during the 2002-2003 epidemic. Closely related coronaviruses replicate in bats, suggesting that, like SARS-CoV, HCoV-EMC is of zoonotic origin. Since the animal reservoir and circumstances of zoonotic transmission are yet elusive, it is critically important to assess potential species barriers of HCoV-EMC infection. An important first

  12. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    PubMed

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an

  13. Nebulisation of receptor-targeted nanocomplexes for gene delivery to the airway epithelium.

    PubMed

    Manunta, Maria D I; McAnulty, Robin J; Tagalakis, Aristides D; Bottoms, Stephen E; Campbell, Frederick; Hailes, Helen C; Tabor, Alethea B; Laurent, Geoffrey J; O'Callaghan, Christopher; Hart, Stephen L

    2011-01-01

    Gene therapy mediated by synthetic vectors may provide opportunities for new treatments for cystic fibrosis (CF) via aerosolisation. Vectors for CF must transfect the airway epithelium efficiently and not cause inflammation so they are suitable for repeated dosing. The inhaled aerosol should be deposited in the airways since the cystic fibrosis transmembrane conductance regulator gene (CFTR) is expressed predominantly in the epithelium of the submucosal glands and in the surface airway epithelium. The aim of this project was to develop an optimised aerosol delivery approach applicable to treatment of CF lung disease by gene therapy. The vector suspension investigated in this study comprises receptor-targeting peptides, cationic liposomes and plasmid DNA that self-assemble by electrostatic interactions to form a receptor-targeted nanocomplex (RTN) of approximately 150 nm with a cationic surface charge of +50 mV. The aerodynamic properties of aerosolised nanocomplexes produced with three different nebulisers were compared by determining aerosol deposition in the different stages of a Next Generation Pharmaceutical Impactor (NGI). We also investigated the yield of intact plasmid DNA by agarose gel electrophoresis and densitometry, and transfection efficacies in vitro and in vivo. RTNs nebulised with the AeroEclipse II BAN were the most effective, compared to other nebulisers tested, for gene delivery both in vitro and in vivo. The biophysical properties of the nanocomplexes were unchanged after nebulisation while the deposition of RTNs suggested a range of aerosol aerodynamic sizes between 5.5 µm-1.4 µm cut off (NGI stages 3-6) compatible with deposition in the central and lower airways. RTNs showed their ability at delivering genes via nebulisation, thus suggesting their potential applications for therapeutic interventions of cystic fibrosis and other respiratory disorders.

  14. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium.

    PubMed

    Gomi, Kazunori; Staudt, Michelle R; Salit, Jacqueline; Kaner, Robert J; Heldrich, Jonna; Rogalski, Allison M; Arbelaez, Vanessa; Crystal, Ronald G; Walters, Matthew S

    2016-08-01

    Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process in the human airway epithelium is largely unknown. The objective of this study was to define the role of the Notch ligand JAG1 in regulating human BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. These data demonstrate JAG1-mediated Notch signaling regulates differentiation of BC into secretory cells.

  15. Smoking-Induced Upregulation of AKR1B10 Expression in the Airway Epithelium of Healthy Individuals

    PubMed Central

    Wang, Rui; Wang, Guoqing; Ricard, Megan J.; Ferris, Barbara; Strulovici-Barel, Yael; Salit, Jacqueline; Hackett, Neil R.; Gudas, Lorraine J.

    2010-01-01

    Background: The aldo-keto reductase (AKR) gene superfamily codes for monomeric, soluble reduced nicotinamide adenine dinucleotide phosphate-dependent oxidoreductases that mediate elimination reactions. AKR1B10, an AKR that eliminates retinals, has been observed as upregulated in squamous metaplasia and non-small cell lung cancer and has been suggested as a diagnostic marker specific to tobacco-related carcinogenesis. We hypothesized that upregulation of AKR1B10 expression may be initiated in healthy smokers prior to the development of evidence of lung cancer. Methods: Expression of AKR1B10 was assessed at the mRNA level using microarrays with TaqMan confirmation in the large airway epithelium (21 healthy nonsmokers, 31 healthy smokers) and small airway epithelium (51 healthy nonsmokers, 58 healthy smokers) obtained by fiberoptic bronchoscopy and brushing. Results: Compared with healthy nonsmokers, AKR1B10 mRNA levels were significantly upregulated in both large and small airway epithelia of healthy smokers. Consistent with the mRNA data, AKR1B10 protein was significantly upregulated in the airway epithelium of healthy smokers as assessed by Western blot analysis and immunohistochemistry, with AKR1B10 expressed in both differentiated and basal cells. Finally, cigarette smoke extract mediated upregulation of AKR1B10 in airway epithelial cells in vitro, and transfection of AKR1B10 into airway epithelial cells enhanced the conversion of retinal to retinol. Conclusions: Smoking per se mediates upregulation of AKR1B10 expression in the airway epithelia of healthy smokers with no evidence of lung cancer. In the context of these observations and the link of AKR1B10 to the metabolism of retinals and to lung cancer, the smoking-induced upregulation of AKR1B10 may be an early process in the multiple events leading to lung cancer. PMID:20705797

  16. Efficient Replication of the Novel Human Betacoronavirus EMC on Primary Human Epithelium Highlights Its Zoonotic Potential

    PubMed Central

    Kindler, Eveline; Jónsdóttir, Hulda R.; Muth, Doreen; Hamming, Ole J.; Hartmann, Rune; Rodriguez, Regulo; Geffers, Robert; Fouchier, Ron A. M.; Drosten, Christian; Müller, Marcel A.; Dijkman, Ronald; Thiel, Volker

    2013-01-01

    ABSTRACT The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. PMID:23422412

  17. Maintenance of airway epithelium in acutely rejected orthotopic vascularized mouse lung transplants.

    PubMed

    Okazaki, Mikio; Gelman, Andrew E; Tietjens, Jeremy R; Ibricevic, Aida; Kornfeld, Christopher G; Huang, Howard J; Richardson, Steven B; Lai, Jiaming; Garbow, Joel R; Patterson, G Alexander; Krupnick, Alexander S; Brody, Steven L; Kreisel, Daniel

    2007-12-01

    Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts.

  18. Chloride channel function is linked to epithelium-dependent airway relaxation.

    PubMed

    Fortner, C N; Lorenz, J N; Paul, R J

    2001-02-01

    We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.

  19. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    PubMed Central

    Krishnamurthy, Sateesh; Behlke, Mark A; Ramachandran, Shyam; Salem, Aliasger K; McCray Jr, Paul B; Davidson, Beverly L

    2012-01-01

    The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA) delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE) or human airway epithelia (HAE) grown at the air–liquid interface (ALI), the delivery of a Dicer-substrate small-interfering RNA (DsiRNA) duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT) with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding) exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF), a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap) database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi) responses. PMID

  20. The role of basal cells in adhesion of columnar epithelium to airway basement membrane.

    PubMed

    Evans, M J; Plopper, C G

    1988-08-01

    In this report, we present a new concept of the role of the basal cell in airway epithelium. Previously, the basal cell was thought to be the progenitor cell for the columnar epithelium. However, several studies have shown that this concept may not be correct. The morphologic aspects of the basal cell suggest that it could play a role in adhesion of the columnar epithelium to the basement membrane. Basal cells form attachments with columnar cells (desmosomes) and with the basement membrane (hemidesmosomes). Columnar cells do not form hemidesmosome attachments with the basement membrane. Basal cells could strengthen the adhesion of columnar cells to the basement membrane by forming hemidesmosome attachments to the basement membrane and desmosome attachments with adjacent columnar cells. Incidental evidence from 2 existing publications concerning airway microanatomy support this concept. As columnar cells grow taller, the proportion of the cell surface in contact with the basement membrane becomes progressively smaller, and thus the cell surface area related to adhesion also becomes smaller. It was found that the number of basal cells per millimeter of basement membrane was closely related to the height of the columnar cell epithelium (r = 0.98), but not to the number of columnar cells (r = 0.42). The consistency of the relationship between increased columnar cell height (and thus decreased surface area for adhesion) and the number of basal cells present (r = 0.98) supports the concept that the basal cell plays a role in adhesion of columnar cells to the basement membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  2. Effects of epithelium removal on relaxation of airway smooth muscle induced by vasoactive intestinal peptide and electrical field stimulation.

    PubMed Central

    Farmer, S. G.; Togo, J.

    1990-01-01

    1. We have studied the effect of epithelium removal on relaxation of guinea-pig isolated tracheal smooth muscle induced by vasoactive intestinal peptide (VIP) or stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves. Also examined were the effects of inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE). 2. Epithelium removal produced a 3.6 +/- 0.4 fold leftward shift in the VIP concentration-response curve. The supersensitivity to VIP, following epithelium removal was abolished by phosphoramidon or thiorphan (NEP inhibitors), but unaffected by captopril (an ACE inhibitor). In intact trachea, the NEP inhibitors produced leftward shifts in the VIP curves similar to those produced by epithelium removal. 3. In contrast to responses to exogenous VIP, neurogenic NANC inhibitory responses to electrical field stimulation were affected neither by epithelial denudation nor by the peptidase inhibitors. 4. As in previous studies, epithelium removal increased tracheal sensitivity to isoprenaline. This was not altered by pretreatment with a cocktail of peptidase inhibitors. Thus, the effect of the NEP inhibitors on responses to VIP appears to be relatively specific. 5. These data indicate that exogenous VIP is a substrate for airway NEP, since inhibition of the enzyme potentiates the peptide. This is further evidence that the airway epithelium provides a source for the metabolism of mediators. 6. In guinea-pig trachea the NEP responsible for cleaving VIP may be located largely in the epithelial layer, since NEP inhibition was without effect on sensitivity to VIP in epithelium-denuded preparations. If VIP is a NANC inhibitory neurotransmitter in this tissue its degradation endogenously does not appear to involve epithelial NEP. PMID:2196967

  3. Epithelium-dependent and -independent inhibitory effects of sivelestat, a neutrophil elastase inhibitor, on substance P-induced contraction of airway smooth muscle in lipopolysaccharide-treated guinea-pigs.

    PubMed

    Takayama, Naomi; Uchida, Kohsuke

    2005-10-01

    The underlying mechanism involved in the interaction between neutrophil elastase inhibitors and tachykinins has not been elucidated. In this study we have examined the effects of sivelestat, a neutrophil elastase inhibitor, on the in vitro responses of airways from lipopolysaccharide (LPS)-untreated or -treated guinea-pigs to substance P. Substance P (0.01-30 micromol/l) produced concentration-dependent contractions of both tracheal and bronchial ring preparations of LPS-untreated or -treated guinea-pigs. Responsiveness to substance P in these isolated airway preparations was augmented by either epithelium removal or LPS treatment. In epithelium-intact tracheal ring preparations isolated from LPS-untreated guinea-pigs, sivelestat (100 micromol/l) significantly inhibited substance P-induced contractions. The inhibitory action was markedly attenuated by pretreatment with L-NAME (100 micromol/l) or indomethacin (2 micromol/l), and was almost undetected following removal of the epithelium. On the other hand, in bronchial ring preparations isolated from LPS-untreated guinea-pigs, sivelestat had only a very slight effect on substance P-induced contraction of the epithelium-intact preparation, whereas sivelestat greatly inhibited contraction in epithelium-removed bronchial ring preparations. In LPS-treated guinea-pigs, whether the epithelium was intact or not, sivelestat significantly inhibited the substance P-induced contraction of bronchial ring preparations. Pretreatment with L-NAME (100 micromol/l) or indomethacin (2 micromol/l) did not affect the inhibitory effect of sivelestat in bronchial ring preparations. In conclusion, epithelium removal or LPS treatment induced hyperreactivity to substance P in the guinea-pig airway. Sivelestat caused epithelium-, nitric oxide- and prostaglandin-dependent inhibition of the substance P-induced contraction of isolated guinea-pig tracheal ring preparations. In contrast, the inhibitory effect of sivelestat on substance P

  4. deltaNp63 Has a Role in Maintaining Epithelial Integrity in Airway Epithelium

    PubMed Central

    Arason, Ari Jon; Jonsdottir, Hulda R.; Halldorsson, Skarphedinn; Benediktsdottir, Berglind Eva; Bergthorsson, Jon Thor; Ingthorsson, Saevar; Baldursson, Olafur; Sinha, Satrajit; Gudjonsson, Thorarinn; Magnusson, Magnus K.

    2014-01-01

    The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium. PMID:24533135

  5. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium.

    PubMed

    Arason, Ari Jon; Jonsdottir, Hulda R; Halldorsson, Skarphedinn; Benediktsdottir, Berglind Eva; Bergthorsson, Jon Thor; Ingthorsson, Saevar; Baldursson, Olafur; Sinha, Satrajit; Gudjonsson, Thorarinn; Magnusson, Magnus K

    2014-01-01

    The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.

  6. Diesel exhaust particles up-regulate interleukin-17A expression via ROS/NF-κB in airway epithelium.

    PubMed

    Weng, Chih-Ming; Lee, Meng-Jung; He, Jung-Re; Chao, Ming-Wei; Wang, Chun-Hua; Kuo, Han-Pin

    2018-05-01

    IL-17A is implicated in many aspects of pathogenesis of severe asthma, including inducing neutrophilic inflammation, airway hyperresponsiveness, steroid insensitivity and airway remodeling. Diesel exhaust particles (DEP) emission from vehicles has been shown to expand Th17 cells to increase IL-17A release that contributes to DEP-mediated exacerbation of asthma severity. It is not known whether non-immune cells in airways may also release IL-17A in response to DEP exposure. In this study, We found IL-17A expression was upregulated in the epithelium of severe allergic asthma patients from high road traffic pollution areas compared to those in low. Furthermore, we found DEP concentration-dependently increased IL-17A synthesis and release by 122.3 ± 15.72% and 235.5 ± 18.37%, respectively in primary bronchial epithelial cells (PBEC), accompanied with increased ROS production. Pretreatment of ROS scavenger (NAC) significantly inhibited DEP-induced IL-17A mRNA expression. DEP-induced IκBα degradation can be inhibited by NAC. We also found DEP increased p65 and RelB subunits expression, and pretreatment of NF-κB inhibitor (SN50) also inhibited DEP-induced IL-17A expression. We further found DEP increased NF-κB subunit RelB recruitment to IL-17A promoter in PBEC and airway tissue of severe allergic asthma patients from high road traffic pollution areas. These results indicate DEP stimulates IL-17A expression in airway epithelium through ROS/NF-κB pathway, and provide a possible link between traffic pollution exposure and IL-17A-related responses in severe allergic asthma patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Effect of azelastine on sulphur dioxide induced impairment of ciliary motility in airway epithelium.

    PubMed Central

    Tamaoki, J; Chiyotani, A; Sakai, N; Takeyama, K; Konno, K

    1993-01-01

    OBJECTIVE--The effect of azelastine on airway mucociliary transport function was studied by measuring ciliary motility of human bronchial epithelium in vitro with a photoelectric method. METHOD--Bronchial epithelial cells were obtained by fibreoptic bronchoscopy, mounted in a Rose chamber, and perfused with Krebs-Henseleit solution. The preparations were placed on a microscope stage equipped with an illuminator, and the variations of light intensity caused by ciliary beating were detected by a photometer. RESULTS--The addition of azelastine to the perfusate increased ciliary beat frequency (CBF) in a dose dependent manner without ciliary discoordination. The mean (SE) maximal increase from the baseline value and the concentration required to produce a half maximal effect were 27.0 (4.2)% and 9.2 x 10(-6) mol/l, respectively. Exposure of the cells to the perfusate containing 3 ppm sulphur dioxide rapidly decreased CBF by 59.2 (5.0)%, and was accompanied by a reduction in intracellular cyclic AMP levels from 38.1 (4.3) to 10.1 (2.4) pmol/mg protein. This effect was prevented by pretreatment of cells with azelastine in a dose dependent manner. CONCLUSIONS--Azelastine not only stimulates ciliary motility of airway epithelium and hence mucociliary transport function, but may also protect against sulphur dioxide induced ciliary dysfunction, probably by inhibiting intracellular cyclic AMP loss. PMID:8322244

  8. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium

    PubMed Central

    Polosukhin, Vasiliy V; Cates, Justin M; Lawson, William E; Milstone, Aaron P; Matafonov, Anton G; Massion, Pierre P; Lee, Jae Woo; Randell, Scott H; Blackwell, Timothy S

    2018-01-01

    Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65 – 100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O2) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD. PMID:21557221

  9. The small airway epithelium as a target for the adverse pulmonary effects of silver nanoparticle inhalation.

    PubMed

    Guo, Chang; Buckley, Alison; Marczylo, Tim; Seiffert, Joanna; Römer, Isabella; Warren, James; Hodgson, Alan; Chung, Kian Fan; Gant, Timothy W; Smith, Rachel; Leonard, Martin O

    2018-05-11

    Experimental modeling to identify specific inhalation hazards for nanomaterials has in the main focused on in vivo approaches. However, these models suffer from uncertainties surrounding species-specific differences and cellular targets for biologic response. In terms of pulmonary exposure, approaches which combine 'inhalation-like' nanoparticulate aerosol deposition with relevant human cell and tissue air-liquid interface cultures are considered an important complement to in vivo work. In this study, we utilized such a model system to build on previous results from in vivo exposures, which highlighted the small airway epithelium as a target for silver nanoparticle (AgNP) deposition. RNA-SEQ was used to characterize alterations in mRNA and miRNA within the lung. Organotypic-reconstituted 3D human primary small airway epithelial cell cultures (SmallAir) were exposed to the same spark-generated AgNP and at the same dose used in vivo, in an aerosol-exposure air-liquid interface (AE-ALI) system. Adverse effects were characterized using lactate, LDH release and alterations in mRNA and miRNA. Modest toxicological effects were paralleled by significant regulation in gene expression, reflective mainly of specific inflammatory events. Importantly, there was a level of concordance between gene expression changes observed in vitro and in vivo. We also observed a significant correlation between AgNP and mass equivalent silver ion (Ag + ) induced transcriptional changes in SmallAir cultures. In addition to key mechanistic information relevant for our understanding of the potential health risks associated with AgNP inhalation exposure, this work further highlights the small airway epithelium as an important target for adverse effects.

  10. Toll-like receptor 2 is upregulated by hog confinement dust in an IL-6 dependent manner in the airway epithelium

    PubMed Central

    Bailey, KL; Poole, JA; Mathisen, TL; Wyatt, TA; Von Essen, SG; Romberger, DJ

    2009-01-01

    Hog confinement workers are at high risk to develop chronic bronchitis as a result of their exposure to organic dust. Chronic bronchitis is characterized by inflammatory changes of the airway epithelium. A key mediator in inflammation is Toll-like receptor 2 (TLR2). We investigated the role of TLR2 in pulmonary inflammation induced by hog confinement dust. Normal Human Bronchial Epithelial Cells (NHBE) were grown in culture and exposed to hog confinement dust extract. Hog confinement dust upregulated airway epithelial cell TLR2 mRNA in a concentration and time-dependent manner using real-time PCR. There was a similar increase in TLR2 protein at 48 hours as shown by Western blot. TLR2 was upregulated on the surface of airway epithelial cells as shown by flow cytometry. A similar upregulation of pulmonary TLR2 mRNA and protein was shown in a murine model of hog confinement dust exposure. Hog confinement dust is known to stimulate epithelial cells to produce IL-6. In order to determine whether TLR2 expression was being regulated by IL-6, the production of IL-6 was blocked using an IL-6 neutralizing antibody. This resulted in attenuation of the dust-induced upregulation of TLR2. To further demonstrate the importance of IL-6 in the regulation of TLR2, NHBE were directly stimulated with recombinant human IL-6. IL-6 alone was able to upregulate TLR2 in airway epithelial cells. Hog confinement dust upregulates TLR2 in the airway epithelium through an IL-6 dependent mechanism. PMID:18359883

  11. Decreased expression of monocarboxylate transporter 1 and 4 in the branching airway epithelium of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-06-01

    Monocarboxylate transporters (MCTs) are crucial for the maintenance of intracellular pH homeostasis in developing fetal lungs. MCT1/4 is strongly expressed by epithelial airway cells throughout lung branching morphogenesis. Functional inhibition of MCT1/4 in fetal rat lung explants has been shown to result in airway defects similar to pulmonary hypoplasia (PH) in congenital diaphragmatic hernia (CDH). We hypothesized that pulmonary expression of MCT1/4 is decreased during lung branching morphogenesis in the nitrofen model of CDH-associated PH. Timed-pregnant rats received nitrofen or vehicle on gestational day 9 (D9). Fetuses were harvested on D15, D18, and D21, and divided into control and nitrofen-exposed group. Pulmonary gene expression levels of MCT1/4 were analyzed by qRT-PCR. Immunofluorescence staining for MCT1/4 was combined with E-cadherin in order to evaluate protein expression in branching airway tissue. Relative mRNA levels of MCT1/4 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18, and D21 compared to controls. Confocal laser scanning microscopy confirmed markedly decreased immunofluorescence of MCT1/4 in distal bronchial and primitive alveolar epithelium of nitrofen-exposed fetuses on D15, D18, and D21 compared to controls. Decreased expression of MCT1/4 in distal airway epithelium may disrupt lung branching morphogenesis and thus contribute to the development of PH in the nitrofen-induced CDH model. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sialic acid-to-urea ratio as a measure of airway surface hydration

    PubMed Central

    Hill, David B.; Button, Brian; Shi, Shuai; Jania, Corey; Duncan, Elizabeth A.; Doerschuk, Claire M.; Chen, Gang; Ranganathan, Sarath; Stick, Stephen M.; Boucher, Richard C.

    2017-01-01

    Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r2 = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P < 0.01). Sialic acid-to-urea ratios were elevated in bronchoalveolar lavage fluid (BALF) from β-epithelial sodium channel (ENaC) transgenic mice, known to have reduced mucus hydration, and mice sensitized to house dust mite allergen. In a translational application, elevated sialic acid-to-urea ratios were measured in BALF from young children with CF who had airway infection relative to those who did not (5.5 ± 3.7 vs. 1.9 ± 1.4, P < 0.02) and could be assessed simultaneously with established biomarkers of inflammation. The sialic acid-to-urea ratio performed similarly to percent solids, the gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized. PMID:28062483

  13. SPDEF regulates goblet cell hyperplasia in the airway epithelium

    PubMed Central

    Park, Kwon-Sik; Korfhagen, Thomas R.; Bruno, Michael D.; Kitzmiller, Joseph A.; Wan, Huajing; Wert, Susan E.; Khurana Hershey, Gurjit K.; Chen, Gang; Whitsett, Jeffrey A.

    2007-01-01

    Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In the present work, mouse SAM pointed domain-containing ETS transcription factor (SPDEF) mRNA and protein were detected in subsets of epithelial cells lining the trachea, bronchi, and tracheal glands. SPDEF interacted with the C-terminal domain of thyroid transcription factor 1, activating transcription of genes expressed selectively in airway epithelial cells, including Sftpa, Scgb1a1, Foxj1, and Sox17. Expression of Spdef in the respiratory epithelium of adult transgenic mice caused goblet cell hyperplasia, inducing both acidic and neutral mucins in vivo, and stainined for both acidic and neutral mucins in vivo. SPDEF expression was increased at sites of goblet cell hyperplasia caused by IL-13 and dust mite allergen in a process that was dependent upon STAT-6. SPDEF was induced following intratracheal allergen exposure and after Th2 cytokine stimulation and was sufficient to cause goblet cell differentiation of Clara cells in vivo. PMID:17347682

  14. Non-Genomic Estrogen Regulation of Ion Transport and Airway Surface Liquid Dynamics in Cystic Fibrosis Bronchial Epithelium

    PubMed Central

    Saint-Criq, Vinciane; Kim, Sung Hoon; Katzenellenbogen, John A.; Harvey, Brian J.

    2013-01-01

    Male cystic fibrosis (CF) patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL) in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1) and CF (CuFi-1) bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1–10 nM) reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na+/K+ATPase in CF cells. PMID:24223826

  15. Three-dimensional Culture of Human Airway Epithelium in Matrigel for Evaluation of Human Rhinovirus C and Bocavirus Infections.

    PubMed

    Chen, A Xiong; Xie, Guang Cheng; Pan, Dong; DU, Ya Rong; Pang, Li Li; Song, Jing Dong; Duan, Zhao Jun; Hu, Bu Rong

    2018-02-01

    Newly identified human rhinovirus C (HRV-C) and human bocavirus (HBoV) cannot propagate in vitro in traditional cell culture models; thus obtaining knowledge about these viruses and developing related vaccines are difficult. Therefore, it is necessary to develop a novel platform for the propagation of these types of viruses. A platform for culturing human airway epithelia in a three-dimensional (3D) pattern using Matrigel as scaffold was developed. The features of 3D culture were identified by immunochemical staining and transmission electron microscopy. Nucleic acid levels of HRV-C and HBoV in 3D cells at designated time points were quantitated by real-time polymerase chain reaction (PCR). Levels of cytokines, whose secretion was induced by the viruses, were measured by ELISA. Properties of bronchial-like tissues, such as the expression of biomarkers CK5, ZO-1, and PCK, and the development of cilium-like protuberances indicative of the human respiration tract, were observed in 3D-cultured human airway epithelial (HAE) cultures, but not in monolayer-cultured cells. Nucleic acid levels of HRV-C and HBoV and levels of virus-induced cytokines were also measured using the 3D culture system. Our data provide a preliminary indication that the 3D culture model of primary epithelia using a Matrigel scaffold in vitro can be used to propagate HRV-C and HBoV. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  16. The genetic and epigenetic landscapes of the epithelium in asthma.

    PubMed

    Moheimani, Fatemeh; Hsu, Alan C-Y; Reid, Andrew T; Williams, Teresa; Kicic, Anthony; Stick, Stephen M; Hansbro, Philip M; Wark, Peter A B; Knight, Darryl A

    2016-09-22

    Asthma is a global health problem with increasing prevalence. The airway epithelium is the initial barrier against inhaled noxious agents or aeroallergens. In asthma, the airway epithelium suffers from structural and functional abnormalities and as such, is more susceptible to normally innocuous environmental stimuli. The epithelial structural and functional impairments are now recognised as a significant contributing factor to asthma pathogenesis. Both genetic and environmental risk factors play important roles in the development of asthma with an increasing number of genes associated with asthma susceptibility being expressed in airway epithelium. Epigenetic factors that regulate airway epithelial structure and function are also an attractive area for assessment of susceptibility to asthma. In this review we provide a comprehensive discussion on genetic factors; from using linkage designs and candidate gene association studies to genome-wide association studies and whole genome sequencing, and epigenetic factors; DNA methylation, histone modifications, and non-coding RNAs (especially microRNAs), in airway epithelial cells that are functionally associated with asthma pathogenesis. Our aims were to introduce potential predictors or therapeutic targets for asthma in airway epithelium. Overall, we found very small overlap in asthma susceptibility genes identified with different technologies. Some potential biomarkers are IRAKM, PCDH1, ORMDL3/GSDMB, IL-33, CDHR3 and CST1 in airway epithelial cells. Recent studies on epigenetic regulatory factors have further provided novel insights to the field, particularly their effect on regulation of some of the asthma susceptibility genes (e.g. methylation of ADAM33). Among the epigenetic regulatory mechanisms, microRNA networks have been shown to regulate a major portion of post-transcriptional gene regulation. Particularly, miR-19a may have some therapeutic potential.

  17. SAFETY AND EFFICIENCY OF MODULATING PARACELLULAR PERMEABILITY TO ENHANCE AIRWAY EPITHELIAL GENE TRANSFER IN VIVO

    EPA Science Inventory


    ABSTRACT

    We evaluated the safety of agents that enhance gene transfer by modulating paracellular permeability. Lactate dehydrogenase (LDH) and cytokine release were measured in polarized primary human airway epithelial (HAE) cells after luminal application of vehicle, ...

  18. Chlorinated pool attendance, airway epithelium defects and the risks of allergic diseases in adolescents: Interrelationships revealed by circulating biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Alfred, E-mail: Alfred.bernard@uclouvain.be; Nickmilder, Marc; Dumont, Xavier

    It has been suggested that allergic diseases might be epithelial disorders driven by various environmental stressors but the epidemiological evidence supporting this concept is limited. In a cross-sectional study of 835 school adolescents (365 boys; mean age, 15.5 yr), we measured the serum concentrations of Club cell protein (CC16), surfactant-associated protein D (SP-D) and of total and aeroallergen-specific IgE. We used the serum CC16/SP-D concentration ratio as an index integrating changes in the permeability (SP-D) and secretory function (CC16) of the airway epithelium. In both sexes, early swimming in chlorinated pools emerged as the most consistent and strongest predictor ofmore » low CC16 and CC16/SP-D ratio in serum. Among girls, a low CC16/SP-D ratio was associated with increased odds (lowest vs. highest tertile) for pet sensitization (OR 2.97, 95% CI 1.19–8.22) and for hay fever in subjects sensitized to pollen (OR 4.12, 95% CI 1.28–14.4). Among boys, a low CC16/SP-D ratio was associated with increased odds for house-dust mite (HDM) sensitization (OR 2.01, 95% CI 1.11–3.73), for allergic rhinitis in subjects sensitized to HDM (OR 3.52, 95% CI 1.22–11.1) and for asthma in subjects sensitized to any aeroallergen (OR 3.38, 95% CI 1.17–11.0), HDM (OR 5.20, 95% CI 1.40–24.2) or pollen (OR 5.82, 95% CI 1.51–27.4). Odds for allergic sensitization or rhinitis also increased with increasing SP-D or decreasing CC16 in serum. Our findings support the hypothesis linking the development of allergic diseases to epithelial barrier defects due to host factors or environmental stressors such as early swimming in chlorinated pools. - Highlights: • We conducted a cross-sectional study of 835 school adolescents. • The airway epithelium integrity was evaluated by measuring serum pneumoproteins. • The risk of allergic diseases was associated with a defective airway epithelium. • Childhood swimming in chlorinated pools can cause persistent epithelial

  19. [Comparison of Two Symptom-Triggered Treatments for Alcohol Withdrawal: HAES vs. SAB-P].

    PubMed

    Holzbach, R; Ihlow, C; Takla, T; Kemper, U; Naber, D

    2016-02-01

    For alcohol withdrawal during hospitalization, often a medication as means for withdrawal needs to be chosen. Modern, score-controlled processes that can be used by the nursing staff after instruction by physicians are frequently not used and even unknown in hospitals. One reason for this is that some of the scores require checking several criteria and are therefore more time-consuming and complicated than use of a fixed-dosage strategy. The SAB-P and HAES are short with only 6 items that can be checked by the nursing staff. Safety of the Hamburg Alcohol Withdrawal Scale (Hamburger Alkoholentzugs-Skala (HAES)) was analyzed retrospectively and prospectively with regard to score-controlled alcohol-withdrawal treatment after rating by the nurse staff (Scoregesteuerte Alkoholentzugsbehandlung nach Rating durch das Pflegepersonal (SAB-P)). Incidence of complications in patients treated with SAB-P and HAES was nearly similar with 1% start of delirium and 3% seizures (SAB-P) and 0.5 to 1.5% start of delirium and 0 to 0.5% seizures in the HAES group. With both scales it was possible to start medical treatment while still under falling alcohol levels (0.93 and 0.91%, respectively). Medication dosage was initially higher using the HAES, so that the time needed to monitor withdrawal symptoms could be reduced (3.8 vs. 3.1 days). Using a score-controlled strategy for alcohol withdrawal leads to a lower complication rate than found in literature. The structured procedure was helpful for the nursing staff as well as for the physicians. SAB-P as well as HAES made withdrawal for the patients more comfortable and led to fewer complaints. Because of rapid reaction and faster symptom reduction of HAES, there was less time necessary for monitoring. Simple handling, clomethiazol, oxazepam or diazepam as applicable medication and clear documentation are the advantages of HAES. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Finding genes discriminating smokers from non-smokers by applying a growing self-organizing clustering method to large airway epithelium cell microarray data.

    PubMed

    Shahdoust, Maryam; Hajizadeh, Ebrahim; Mozdarani, Hossein; Chehrei, Ali

    2013-01-01

    Cigarette smoking is the major risk factor for development of lung cancer. Identification of effects of tobacco on airway gene expression may provide insight into the causes. This research aimed to compare gene expression of large airway epithelium cells in normal smokers (n=13) and non-smokers (n=9) in order to find genes which discriminate the two groups and assess cigarette smoking effects on large airway epithelium cells. Genes discriminating smokers from non-smokers were identified by applying a neural network clustering method, growing self-organizing maps (GSOM), to microarray data according to class discrimination scores. An index was computed based on differentiation between each mean of gene expression in the two groups. This clustering approach provided the possibility of comparing thousands of genes simultaneously. The applied approach compared the mean of 7,129 genes in smokers and non-smokers simultaneously and classified the genes of large airway epithelium cells which had differently expressed in smokers comparing with non-smokers. Seven genes were identified which had the highest different expression in smokers compared with the non-smokers group: NQO1, H19, ALDH3A1, AKR1C1, ABHD2, GPX2 and ADH7. Most (NQO1, ALDH3A1, AKR1C1, H19 and GPX2) are known to be clinically notable in lung cancer studies. Furthermore, statistical discriminate analysis showed that these genes could classify samples in smokers and non-smokers correctly with 100% accuracy. With the performed GSOM map, other nodes with high average discriminate scores included genes with alterations strongly related to the lung cancer such as AKR1C3, CYP1B1, UCHL1 and AKR1B10. This clustering by comparing expression of thousands of genes at the same time revealed alteration in normal smokers. Most of the identified genes were strongly relevant to lung cancer in the existing literature. The genes may be utilized to identify smokers with increased risk for lung cancer. A large sample study is now

  1. The Idiopathic Pulmonary Fibrosis Honeycomb Cyst Contains A Mucocilary Pseudostratified Epithelium

    PubMed Central

    Seibold, Max A.; Smith, Russell W.; Urbanek, Cydney; Groshong, Steve D.; Cosgrove, Gregory P.; Brown, Kevin K.; Schwarz, Marvin I.

    2013-01-01

    Background We previously identified a MUC5B gene promoter-variant that is a risk allele for sporadic and familial Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia (IPF/UIP). This allele was strongly associated with increased MUC5B gene expression in lung tissue from unaffected subjects. Despite the strong association of this airway epithelial marker with disease, little is known of mucin expressing structures or of airway involvement in IPF/UIP. Methods Immunofluorescence was used to subtype mucus cells according to MUC5B and MUC5AC expression and to identify ciliated, basal, and alveolar type II (ATII) cells in tissue sections from control and IPF/UIP subjects. Staining patterns were quantified for distal airways (Control and IPF/UIP) and in honeycomb cysts (HC). Results MUC5B-expressing cells (EC) were detected in the majority of control distal airways. MUC5AC-EC were identified in half of these airways and only in airways that contained MUC5B-EC. The frequency of MUC5B+ and MUC5AC+ distal airways was increased in IPF/UIP subjects. MUC5B-EC were the dominant mucus cell type in the HC epithelium. The distal airway epithelium from control and IPF/UIP subjects and HC was populated by basal and ciliated cells. Most honeycombing regions were distinct from ATII hyperplasic regions. ATII cells were undetectable in the overwhelming majority of HC. Conclusions The distal airway contains a pseudostratified mucocilary epithelium that is defined by basal epithelial cells and mucus cells that express MUC5B predominantly. These data suggest that the HC is derived from the distal airway. PMID:23527003

  2. Neuronal NOS localises to human airway cilia.

    PubMed

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Basal Cells Are a Multipotent Progenitor Capable of Renewing the Bronchial Epithelium

    PubMed Central

    Hong, Kyung U.; Reynolds, Susan D.; Watkins, Simon; Fuchs, Elaine; Stripp, Barry R.

    2004-01-01

    Commitment of the pulmonary epithelium to bronchial and bronchiolar airway lineages occurs during the transition from pseudoglandular to cannalicular phases of lung development, suggesting that regional differences exist with respect to the identity of stem and progenitor cells that contribute to epithelial maintenance in adulthood. We previously defined a critical role for Clara cell secretory protein-expressing (CE) cells in renewal of bronchiolar airway epithelium following injury. Even though CE cells are also the principal progenitor for maintenance of the bronchial airway epithelium, CE cell injury is resolved through a mechanism involving recruitment of a second progenitor cell population that we now identify as a GSI-B4 reactive, cytokeratin-14-expressing basal cell. These cells exhibit multipotent differentiation capacity as assessed by analysis of cellular phenotype within clones of LacZ-tagged cells. Clones were derived from K14-expressing cells tagged in a cell-type-specific fashion by ligand-regulable Cre recombinase-mediated genomic rearrangement of the ROSA26 recombination substrate allele. We conclude that basal cells represent an alternative multipotent progenitor cell population of bronchial airways and that progenitor cell selection is dictated by the type of airway injury. PMID:14742263

  4. Glucocorticoids inhibit sulfur mustard-induced airway muscle hyperresponsiveness to substance P.

    PubMed

    Calvet, J H; D'Ortho, M P; Jarreau, P H; Levame, M; Harf, A; Macquin-Mavier, I

    1994-11-01

    To explore the mechanisms of airway hyperreactivity to aerosolized substance P observed in guinea pigs 14 days after intratracheal injection of sulfur mustard (SM), we studied the effects of epithelium removal and inhibition of neutral endopeptidase (NEP) activity on airway muscle responsiveness. Tracheal rings from SM-intoxicated guinea pigs expressed a greater contractile response to substance P than rings from nonintoxicated guinea pigs. After epithelium removal or incubation with the NEP inhibitor phosphoramidon, the contractile responses of tracheal rings to substance P did not differ in guinea pigs injected with SM or ethanol (SM solvent). Treatment of the guinea pigs with betamethasone for 7 days before measurement abolished the airway muscle hyperresponsiveness observed in untreated SM-intoxicated guinea pigs and partially restored tracheal epithelium NEP activity. In addition, the tracheal epithelium height and cell density of SM-intoxicated guinea pigs treated with betamethasone were significantly greater than in those without betamethasone. These results demonstrate that SM intoxication induces airway muscle hyperresponsiveness to substance P by reducing tracheal epithelial NEP activity and that glucocorticoids might inhibit this hyperresponsiveness by increasing this activity.

  5. Levcromakalim- and isoprenaline-induced relaxation of human isolated airways--role of the epithelium and of K+ channel activation.

    PubMed

    Black, J L; Johnson, P R; McKay, K O; Carey, D; Armour, C L

    1994-06-01

    In this study we have investigated the mechanism of action of levcromakalim and isoprenaline in human isolated airways with respect to the K+ channels they activate and the possibility that these smooth muscle relaxants activate K+ channels on the airway epithelium. Mechanical removal of the epithelial layer (mean percentage of epithelium present 20 +/- 3%, n = 20 tissues) did not affect the relaxation responses to levcromakalim or isoprenaline, either in terms of maximal relaxation or sensitivity. Whilst having no effect on isoprenaline-induced relaxation, studied from basal tone, the ATP-sensitive K+ channel blocker BRL 31660 (10, 30 and 50 microM) reduced relaxation responses induced (from basal tone) by levcromakalim from 74 +/- 6% (of the maximal response to isoprenaline) to 48 +/- 12% (n = 7), 9 +/- 9% (n = 4) and 0 (n = 4), respectively. Charybdotoxin, a blocker of high conductance Ca(2+)-activated K+ channels, at concentrations of 30 and 100 nM, had no effect on either levcromakalim- or or isoprenaline-induced relaxation responses and yet charybdotoxin was active at KCa channels in outside-out patches of hippocampal granule cells. Moreover, tetraethylammonium (10 mM) inhibited neither isoprenaline- nor levcromakalim-induced relaxation. This study has demonstrated that the relaxation responses elicited in human bronchus to isoprenaline and levcromakalim are likely to be the result of direct effects on the smooth muscle with no contribution from epithelial receptors or K+ channels. The actions of levcromakalim appear to be mediated only via activation of KATP channels. Further, we have made the important observation that, under the experimental conditions of our study, isoprenaline does not activate the KCa channel to produce relaxation in human bronchus.

  6. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    PubMed Central

    2012-01-01

    Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU) to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5) and keratin 14 (K14) for basal cells, Clara cell secretory protein (CCSP) for Clara cells, and acetylated tubulin (AcTub) for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10), but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion The data are

  7. Integrin Beta 1 Suppresses Multilayering of a Simple Epithelium

    PubMed Central

    Chen, Jichao; Krasnow, Mark A.

    2012-01-01

    Epithelia are classified as either simple, a single cell layer thick, or stratified (multilayered). Stratified epithelia arise from simple epithelia during development, and transcription factor p63 functions as a key positive regulator of epidermal stratification. Here we show that deletion of integrin beta 1 (Itgb1) in the developing mouse airway epithelium abrogates airway branching and converts this monolayer epithelium into a multilayer epithelium with more than 10 extra layers. Mutant lung epithelial cells change mitotic spindle orientation to seed outer layers, and cells in different layers become molecularly and functionally distinct, hallmarks of normal stratification. However, mutant lung epithelial cells do not activate p63 and do not switch to the stratified keratin profile of epidermal cells. These data, together with previous data implicating Itgb1 in regulation of epidermal stratification, suggest that the simple-versus-stratified developmental decision may involve not only stratification inducers like p63 but suppressors like Itgb1 that prevent simple epithelia from inappropriately activating key steps in the stratification program. PMID:23285215

  8. A Dynamic Bronchial Airway Gene Expression Signature of Chronic Obstructive Pulmonary Disease and Lung Function Impairment

    PubMed Central

    Steiling, Katrina; van den Berge, Maarten; Hijazi, Kahkeshan; Florido, Roberta; Campbell, Joshua; Liu, Gang; Xiao, Ji; Zhang, Xiaohui; Duclos, Grant; Drizik, Eduard; Si, Huiqing; Perdomo, Catalina; Dumont, Charles; Coxson, Harvey O.; Alekseyev, Yuriy O.; Sin, Don; Pare, Peter; Hogg, James C.; McWilliams, Annette; Hiemstra, Pieter S.; Sterk, Peter J.; Timens, Wim; Chang, Jeffrey T.; Sebastiani, Paola; O’Connor, George T.; Bild, Andrea H.; Postma, Dirkje S.; Lam, Stephen

    2013-01-01

    Rationale: Molecular phenotyping of chronic obstructive pulmonary disease (COPD) has been impeded in part by the difficulty in obtaining lung tissue samples from individuals with impaired lung function. Objectives: We sought to determine whether COPD-associated processes are reflected in gene expression profiles of bronchial airway epithelial cells obtained by bronchoscopy. Methods: Gene expression profiling of bronchial brushings obtained from 238 current and former smokers with and without COPD was performed using Affymetrix Human Gene 1.0 ST Arrays. Measurements and Main Results: We identified 98 genes whose expression levels were associated with COPD status, FEV1% predicted, and FEV1/FVC. In silico analysis identified activating transcription factor 4 (ATF4) as a potential transcriptional regulator of genes with COPD-associated airway expression, and ATF4 overexpression in airway epithelial cells in vitro recapitulates COPD-associated gene expression changes. Genes with COPD-associated expression in the bronchial airway epithelium had similarly altered expression profiles in prior studies performed on small-airway epithelium and lung parenchyma, suggesting that transcriptomic alterations in the bronchial airway epithelium reflect molecular events found at more distal sites of disease activity. Many of the airway COPD-associated gene expression changes revert toward baseline after therapy with the inhaled corticosteroid fluticasone in independent cohorts. Conclusions: Our findings demonstrate a molecular field of injury throughout the bronchial airway of active and former smokers with COPD that may be driven in part by ATF4 and is modifiable with therapy. Bronchial airway epithelium may ultimately serve as a relatively accessible tissue in which to measure biomarkers of disease activity for guiding clinical management of COPD. PMID:23471465

  9. Isolation and Characterization of Current Human Coronavirus Strains in Primary Human Epithelial Cell Cultures Reveal Differences in Target Cell Tropism

    PubMed Central

    Dijkman, Ronald; Jebbink, Maarten F.; Koekkoek, Sylvie M.; Deijs, Martin; Jónsdóttir, Hulda R.; Molenkamp, Richard; Ieven, Margareta; Goossens, Herman; Thiel, Volker

    2013-01-01

    The human airway epithelium (HAE) represents the entry port of many human respiratory viruses, including human coronaviruses (HCoVs). Nowadays, four HCoVs, HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63, are known to be circulating worldwide, causing upper and lower respiratory tract infections in nonhospitalized and hospitalized children. Studies of the fundamental aspects of these HCoV infections at the primary entry port, such as cell tropism, are seriously hampered by the lack of a universal culture system or suitable animal models. To expand the knowledge on fundamental virus-host interactions for all four HCoVs at the site of primary infection, we used pseudostratified HAE cell cultures to isolate and characterize representative clinical HCoV strains directly from nasopharyngeal material. Ten contemporary isolates were obtained, representing HCoV-229E (n = 1), HCoV-NL63 (n = 1), HCoV-HKU1 (n = 4), and HCoV-OC43 (n = 4). For each strain, we analyzed the replication kinetics and progeny virus release on HAE cell cultures derived from different donors. Surprisingly, by visualizing HCoV infection by confocal microscopy, we observed that HCoV-229E employs a target cell tropism for nonciliated cells, whereas HCoV-OC43, HCoV-HKU1, and HCoV-NL63 all infect ciliated cells. Collectively, the data demonstrate that HAE cell cultures, which morphologically and functionally resemble human airways in vivo, represent a robust universal culture system for isolating and comparing all contemporary HCoV strains. PMID:23427150

  10. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  11. A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

    PubMed

    Liu, John Q; Yang, Dennis; Folz, Rodney J

    2006-08-01

    Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.

  12. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  13. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation.

    PubMed

    Vladar, Eszter K; Nayak, Jayakar V; Milla, Carlos E; Axelrod, Jeffrey D

    2016-08-18

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.

  14. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    PubMed Central

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.

    2016-01-01

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease. PMID:27570836

  15. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    PubMed

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.

  16. Tachykinin receptors and the airways.

    PubMed

    Frossard, N; Advenier, C

    1991-01-01

    The tachykinins, substance P, neurokinin A and neurokinin B, belong to a structural family of peptides. In mammalian airways, substance P and neurokinin A are colocalized to afferent C-fibres. Substance P-containing fibres are close to bronchial epithelium, smooth muscle, mucus glands and blood vessels. Sensory neuropeptides may be released locally, possibly as a result of a local reflex, and produce bronchial obstruction through activation of specific receptors on these various tissues. Three types of tachykinin receptors, namely NK-1, NK-2 and NK-3 receptors, have been characterized by preferential activation by substance P, neurokinin A and neurokinin B respectively. NK-1 and NK-2 receptors were recently cloned. The determination of receptor types involved in the effects of tachykinins in the airways has been done with synthetic agonists and antagonists binding specifically to NK-1, NK-2 and NK-3 receptors. Although the existence of species differences, the conclusion that bronchial smooth muscle contraction is mainly related to activation of NK-2 receptors on bronchial smooth muscle cell has been drawn. The hypothesis of a NK-2 receptor subclassification has been proposed with NK-2A receptor subtype in the guinea-pig airways. Other effects in the airways are related to stimulation of NK-1 receptors on mucus cells, vessels, epithelium and inflammatory cells. A non-receptor-mediated mechanism is also involved in the effect of substance P on inflammatory cells and mast cells.

  17. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  18. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  19. Phenotypic and physiologic variability in nasal epithelium cultured from smokers and non-smokers exposed to secondhand tobacco smoke

    EPA Science Inventory

    The emergence of air-liquid interface (ALI) culturing of mammalian airway epithelium is a recent innovation for experimental modeling of airway epithelial development, function, and pathogenic mechanisms associated with infectious agent and irritant exposure. This construct provi...

  20. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis

    PubMed Central

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F.

    2013-01-01

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated. PMID:23171502

  1. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis.

    PubMed

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F; Hoyle, Gary W

    2013-01-15

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated.

  2. EGR-1 and DUSP-1 are important negative regulators of pro-allergic responses in airway epithelium.

    PubMed

    Golebski, Korneliusz; van Egmond, Danielle; de Groot, Esther J; Roschmann, Kristina I L; Fokkens, Wytske J; van Drunen, Cornelis M

    2015-05-01

    Primary nasal epithelium of house dust mite allergic individuals is in a permanently activated inflammatory transcriptional state. To investigate whether a deregulated expression of EGR-1 and/or DUSP-1, two potential negative regulators of pro-inflammatory responses, could contribute to the activation of the inflammatory state. We silenced the expression of EGR-1 or DUSP-1 in the airway epithelial cell line NCI-H292. The cell lines were stimulated in a 24-h time course with the house dust mite allergen or poly(I:C). RNA expression profiles of cytokines were established using q-PCR and protein levels were determined in supernatants with ELISA. The shRNA-mediated gene silencing reduced expression levels of EGR-1 by 92% (p<0.0001) and of DUSP-1 by 76% (p<0.0001). Both mutant cells lines showed an increased and prolonged response to the HDM allergen. The mRNA induction of IL-6 was 4.6 fold (p=0.02) and 2.4 fold higher (p=0.01) in the EGR-1 and DUSP-1 knock-down, respectively when compared to the induced levels in the control cell line. For IL-8, the induction levels were 4.6 fold (p=0.01) and 13.0 (p=0.001) fold higher. The outcome was largely similar, yet not identical at the secreted protein levels. Furthermore, steroids were able to suppress the poly(I:C) induced cytokine levels by 70-95%. Deregulation of EGR-1 and/or DUSP-1 in nasal epithelium could be responsible for the prolonged activated transcriptional state observed in vivo in allergic disease. This could have clinical consequences as cytokine levels after the steroid treatment in EGR-1 or DUSP-1 knock-down remained higher than in the control cell line. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0234 TITLE: Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers With Lung Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...single cell RNA sequencing on airway epithelial cells obtained from smokers with and without lung cancer to identify cell-type dependent gene expression

  4. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    PubMed

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  5. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    PubMed

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  6. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  7. Macrophages are required for dendritic cell uptake of respiratory syncytial virus from an infected epithelium.

    PubMed

    Ugonna, Kelechi; Bingle, Colin D; Plant, Karen; Wilson, Kirsty; Everard, Mark L

    2014-01-01

    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells.

  8. Gene Transfer by Guanidinium-Cholesterol Cationic Lipids into Airway Epithelial Cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Oudrhiri, Noufissa; Vigneron, Jean-Pierre; Peuchmaur, Michel; Leclerc, Tony; Lehn, Jean-Marie; Lehn, Pierre

    1997-03-01

    Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis (guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.

  9. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  10. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  11. Alcohol and Airways Function in Health and Disease

    PubMed Central

    Sisson, Joseph H.

    2007-01-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The impact of alcohol on lung airway functions is dependent on the concentration, duration and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation and probably attenuates the airway inflammation and injury observed in asthma and COPD. Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management and likely worsens outcomes including lung function and mortality in COPD patients. Non-alcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase type 2 (ALDH2). The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation and the interaction with other airway exposure agents, such as cigarette smoke, represent opportunities for future investigation. PMID:17764883

  12. Alcohol and airways function in health and disease.

    PubMed

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  13. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  14. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of airway allergic inflammation

    USDA-ARS?s Scientific Manuscript database

    The epithelium lining the airway tract and allergen-specific IgE are considered essential controllers of inflammatory responses to allergens. The human IgE receptor, CD23 (Fc'RII), is capable of transporting IgE or IgE-allergen complexes across the polarized human airway epithelial cell (AEC) monola...

  15. EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2.

    PubMed

    Fortner, C N; Breyer, R M; Paul, R J

    2001-08-01

    Substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of constricted mouse tracheal smooth muscle. Relaxation to either SP or ATP is blocked by indomethacin, but the specific eicosanoid(s) involved have not been definitively identified. SP and ATP are reported to release PGE2 from airway epithelium in other species, suggesting PGE2 as a likely mediator in epithelium-dependent airway relaxation. Using mice homozygous for a gene-targeted deletion of the EP2 receptor [EP2(-/-)], one of the PGE2 receptors, we tested the hypothesis that PGE2 is the primary mediator of relaxation to SP or ATP. Relaxation in response to SP or ATP was significantly reduced in tracheas from EP2(-/-) mice. There were no differences between EP2(-/-) and wild-type tracheas in their physical dimensions, contraction to ACh, or relaxation to isoproterenol, thus ruling out any general alterations of smooth muscle function. There were also no differences between EP2(-/-) and wild-type tracheas in basal or stimulated PGE2 production. Exogenous PGE2 produced significantly less relaxation in EP2(-/-) tracheas compared with the wild type. Taken together, this experimental evidence supports the following two conclusions: EP2 receptors are of primary importance in airway relaxation to PGE2 and relaxation to SP or ATP is mediated through PGE2 acting on EP2 receptors.

  16. FAMM Flap in Reconstructing Postsurgical Nasopharyngeal Airway Stenosis

    PubMed Central

    Nangole, Ferdinand Wanjala; Khainga, Stanley Ominde

    2014-01-01

    Introduction. Postsurgical nasopharyngeal airway stenosis can be a challenge to manage. The stenosis could be as a result of any surgical procedure in the nasopharyngeal region that heals extensive scarring and fibrosis. Objective. To evaluate patients with nasopharyngeal stenosis managed with FAMM flap. Study Design. Prospective study of patients with nasopharyngeal stenosis at the Kenyatta National Hospital between 2010 and 2013 managed with FAMM flap. Materials and Methods. Patients with severe nasopharyngeal airway stenosis were reviewed and managed with FAMM flaps at the Kenyatta National Hospital. Postoperatively they were assessed for symptomatic improvement in respiratory distress, patency of the nasopharyngeal airway, and donor site morbidity. Results. A total of 8 patients were managed by the authors in a duration of 4 years with nasopharyngeal stenosis. Five patients were managed with unilateral FAMM flaps in a two-staged surgical procedure. Four patients had complete relieve of the airway obstruction with a patent airway created. One patient had a patent airway created though with only mild improvement in airway obstruction. Conclusion. FAMM flap provides an alternative in the management of postsurgical severe nasopharyngeal stenosis. It is a reliable flap that is easy to raise and could provide adequate epithelium for the stenosed pharynx. PMID:25328699

  17. Differential antiviral activities of respiratory syncytial virus (RSV) inhibitors in human airway epithelium.

    PubMed

    Mirabelli, Carmen; Jaspers, Martine; Boon, Mieke; Jorissen, Mark; Koukni, Mohamed; Bardiot, Dorothée; Chaltin, Patrick; Marchand, Arnaud; Neyts, Johan; Jochmans, Dirk

    2018-03-27

    We report the use of reconstituted 3D human airway epithelium cells (HuAECs) of bronchial origin in an air-liquid interface to study respiratory syncytial virus (RSV) infection and to assess the efficacy of RSV inhibitors in (pre-)clinical development. HuAECs were infected with RSV-A Long strain (0.01 CCID50/cell, where CCID50 represents 50% cell culture infectious dose in HEp2 cells) on the apical compartment of the culture. At the time of infection or at 1 or 3 days post-infection, selected inhibitors were added and refreshed daily on the basal compartment of the culture. Viral shedding was followed up by apical washes collected daily and quantifying viral RNA by RT-qPCR. RSV-A replicates efficiently in HuAECs and viral RNA is shed for weeks after infection. RSV infection reduces the ciliary beat frequency of the ciliated cells as of 4 days post-infection, with complete ciliary dyskinesia observed by day 10. Treatment with RSV fusion inhibitors resulted in an antiviral effect only when added at the time of infection. In contrast, the use of replication inhibitors (both nucleoside and non-nucleoside) elicited a marked antiviral effect even when the start of treatment was delayed until 1 day or even 3 days after infection. Levels of the inflammation marker RANTES (mRNA) increased ∼200-fold in infected, untreated cultures (at 3 weeks post-infection), but levels were comparable to those of uninfected cultures in the presence of PC786, an RSV replication inhibitor, suggesting that an efficient antiviral treatment might inhibit virus-induced inflammation in this model. Overall, HuAECs offer a robust and physiologically relevant model to study RSV replication and to assess the efficacy of antiviral compounds.

  18. Uptake and transport of B12-conjugated nanoparticles in airway epithelium☆

    PubMed Central

    Fowler, Robyn; Vllasaliu, Driton; Falcone, Franco H.; Garnett, Martin; Smith, Bryan; Horsley, Helen; Alexander, Cameron; Stolnik, Snow

    2013-01-01

    Non-invasive delivery of biotherapeutics, as an attractive alternative to injections, could potentially be achieved through the mucosal surfaces, utilizing nanoscale therapeutic carriers. However, nanoparticles do not readily cross the mucosal barriers, with the epithelium presenting a major barrier to their translocation. The transcytotic pathway of vitamin B12 has previously been shown to ‘ferry’ B12-decorated nanoparticles across intestinal epithelial (Caco-2) cells. However, such studies have not been reported for the airway epithelium. Furthermore, the presence in the airways of the cell machinery responsible for transepithelial trafficking of B12 is not widely reported. Using a combination of molecular biology and immunostaining techniques, our work demonstrates that the bronchial cell line, Calu-3, expresses the B12-intrinsic factor receptor, the transcobalamin II receptor and the transcobalamin II carrier protein. Importantly, the work showed that sub-200 nm model nanoparticles chemically conjugated to B12 were internalised and transported across the Calu-3 cell layers, with B12 conjugation not only enhancing cell uptake and transepithelial transport, but also influencing intracellular trafficking. Our work therefore demonstrates that the B12 endocytotic apparatus is not only present in this airway model, but also transports ligand-conjugated nanoparticles across polarised epithelial cells, indicating potential for B12-mediated delivery of nanoscale carriers of biotherapeutics across the airways. PMID:24008152

  19. ORMDL3 may participate in the pathogenesis of bronchial epithelial‑mesenchymal transition in asthmatic mice with airway remodeling.

    PubMed

    Cheng, Qi; Shang, Yunxiao

    2018-01-01

    Asthma is a common chronic respiratory disease in children that is caused by a complex interaction between genetic and environmental factors. Orosomucoid‑like 3 (ORMDL3) is a candidate gene that has been strongly associated with asthma; however, the underlying mechanisms are unknown. ORMDL3 regulates the expression of metalloproteinases and transforming growth factor‑β, and ORMDL3 transgenic mice exhibit increased airway remodeling. Therefore, ORMDL3 may be associated with airway remodeling. The present study attempted to examine the associations between ORMDL3 and the severity of airway remodeling in asthmatic mice, and also to determine whether ORMDL3 induces epithelial‑mesenchymal transition (EMT) in the bronchial epithelium. For this purpose, BALB/c mice were randomly assigned to control and asthma groups. Lung tissues were collected on days 3, 7 and 14 of the ovalbumin (OVA) challenge. Airway remodeling in asthmatic mice was then observed by hematoxylin and eosin, and Masson staining. Morphological changes in the bronchial epithelium were assessed by transmission electron microscopy. The EMT‑associated indicators E‑cadherin (E‑cad), fibroblast‑specific protein 1 (FSP1) and Vimentin (VIM) were assessed by western blotting and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) at different time points of airway remodeling in asthmatic mice to detect the trend in EMT. Then, the localization of ORMDL3 was observed by immunohistochemistry, and its protein and mRNA expression was examined by western blotting and RT‑qPCR, respectively. Furthermore, the bronchial epithelial cell line 16HBE14o‑was transfected with an ORMDL3‑expressing plasmid, and the differences in E‑cad, FSP‑1 and VIM expression were detected by immunofluorescence, western blotting and RT‑qPCR; the cell invasive ability was assessed by microscopy. The results revealed that ORMDL3 expression in the bronchial epithelium was associated with airway

  20. Mast Cells Can Amplify Airway Reactivity and Features of Chronic Inflammation in an Asthma Model in Mice

    PubMed Central

    Williams, Cara M.M.; Galli, Stephen J.

    2000-01-01

    The importance of mast cells in the development of the allergen-induced airway hyperreactivity and inflammation associated with asthma remains controversial. We found that genetically mast cell–deficient WBB6F1-W/Wv mice that were sensitized to ovalbumin (OVA) without adjuvant, then challenged repetitively with antigen intranasally, exhibited much weaker responses in terms of bronchial hyperreactivity to aerosolized methacholine, lung tissue eosinophil infiltration, and numbers of proliferating cells within the airway epithelium than did identically treated WBB6F1-+/+ normal mice. However, W/Wv mice that had undergone selective reconstitution of tissue mast cells with in vitro–derived mast cells of congenic +/+ mouse origin exhibited airway responses that were very similar to those of the +/+ mice. By contrast, W/Wv mice that were sensitized with OVA emulsified in alum and challenged with aerosolized OVA exhibited levels of airway hyperreactivity and lung tissue eosinophil infiltration that were similar to those of the corresponding +/+ mice. Nevertheless, these W/Wv mice exhibited significantly fewer proliferating cells within the airway epithelium than did identically treated +/+ mice. These results show that, depending on the “asthma model” investigated, mast cells can either have a critical role in, or not be essential for, multiple features of allergic airway responses in mice. PMID:10934234

  1. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice

    PubMed Central

    Reznikov, Leah R.; Meyerholz, David K.; Adam, Ryan J.; Abou Alaiwa, Mahmoud; Jaffer, Omar; Michalski, Andrew S.; Powers, Linda S.; Price, Margaret P.; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma. PMID:27820848

  2. Attenuation of Cigarette Smoke-Induced Airway Mucus Production by Hydrogen-Rich Saline in Rats

    PubMed Central

    Zhang, Jingxi; Dong, Yuchao; Xu, Wujian; Li, Qiang

    2013-01-01

    Background Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking (CS) is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. Methods Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. Results Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. Conclusion Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD. PMID:24376700

  3. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    PubMed

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Ion transport by primary cultures of canine tracheal epithelium: methodology, morphology, and electrophysiology.

    PubMed

    Welsh, M J

    1985-01-01

    Canine tracheal epithelial cells were isolated by enzymatic and mechanical dispersion and cultured on permeable supports. The cells formed confluent monolayers and retained most of the morphologic characteristics of the intact epithelium, including apical microvilli, apical tight junctions, and a moderately interdigitated lateral intercellular space. The cells also retained the functional properties of the epithelium. The monolayer responded to addition of isoproterenol with the characteristic changes in cellular electrical properties expected for stimulation of C1 secretion: isoproterenol increased transepithelial voltage, depolarized apical membrane voltage, and decreased both transepithelial resistance and the ratio of apical-to-basolateral membrane resistance. Examination of the cellular response to ion substitutions and inhibitors of C1 secretion indicate that the cultured monolayers retain the same cellular mechanisms of ion transport as the intact epithelium. Thus, primary cultures of tracheal epithelium may provide a useful preparation for future studies of the mechanism and regulation of C1 secretion by airway epithelia.

  5. Inhibition by New Glucocorticoid Antedrugs [16α, 17α-d] Isoxazoline and [16α, 17α-d]-3′-Hydroxy-Iminoformyl Isoxazoline Derivatives of Chemotaxis and CCL26, CCL11, IL-8, and RANTES Secretion

    PubMed Central

    Thomas, LeeShawn D.; Keller, Thomas C.S.; Lee, Henry J.

    2013-01-01

    The underlying inflammation present in chronic airway diseases is orchestrated by increased secretion of CC and CXC chemokines that selectively recruit the leukocyte populations into the pulmonary system. Human chemokines, eotaxins (CCL11 and CCL26), RANTES, and interleukin (IL)-8, are dramatically upregulated through G-protein receptors in cell inflammation, including human asthma. In previous studies, a series of new glucocorticoid antedrugs (GCAs) were synthesized as derivatives of isoxazoline and oxime, and their pharmacological properties based on the antedrug concepts were evaluated. Utilizing both human airway epithelium (HAE) and eosinophil (EOS) cell culture models, we carried out studies to test the hypothesis that new GCA cell treatment would ameliorate Th-1/Th-2-driven secretion of these asthmatic biomarkers, eotaxins (CCL11 and CCL26), RANTES, and IL-8 chemokines, that would in turn decrease recruitment, proliferation, and activation of EOS cells. Results demonstrate that isoxazoline and oxime derivatives exhibit concentration-dependent inhibition, and specifically the compound No. 7 decreases significantly the secretion of eotaxins, RANTES, and IL-8 in cytokine-stimulated HAE cells. It was shown that EOS proliferation and activation were reduced considerably, and cell apoptosis occurred when exposed to nonfluorinated isoxazoline derivatives. These results provide evidence that concentration and structural manipulation of GCAs could increase the anti-inflammatory potency in treatment of chronic diseases, including asthma. PMID:23679817

  6. Effects of nitrous oxide on the production of cytokines and chemokines by the airway epithelium during anesthesia with sevoflurane and propofol.

    PubMed

    Kumakura, Seiichiro; Yamaguchi, Keisuke; Sugasawa, Yusuke; Murakami, Taisuke; Kikuchi, Toshihiro; Inada, Eiichi; Nagaoka, Isao

    2013-12-01

    The aim of this study was to evaluate the effects of nitrous oxide (a gaseous anesthetic) on the in vivo production of inflammatory cytokines and chemokines by the airway epithelium, when combined with sevoflurane or propofol. Subjects undergoing simple or segmental mastectomy were randomly assigned to the sevoflurane and nitrous oxide, sevoflurane and air, propofol and nitrous oxide, or propofol and air group (all n=13). Epithelial lining fluid (ELF) was obtained using the bronchoscopic microsampling method prior to and following the mastectomy to enable measurement of the pre- and post-operative levels of certain inflammatory cytokines and chemokines using a cytometric bead array system. Notably, the levels of interleukin (IL)-1β, IL-8 and monocyte chemotactic protein-1 (MCP-1) in the ELF were significantly increased following the operations which involved the inhalation of sevoflurane and nitrous oxide, although the levels of these molecules were not significantly changed by the inhalation of sevoflurane and air. Furthermore, the IL-12p70 levels were significantly reduced in the ELF following the operations that involved the inhalation of sevoflurane and air, although the IL-12p70 levels were not significantly changed by the inhalation of nitrous oxide and sevoflurane. These observations suggest that the combination of sevoflurane and nitrous oxide induces an inflammatory response (increased production of IL-1β, IL-8 and MCP-1) and suppresses the anti-inflammatory response (reduced production of IL-12p70) in the local milieu of the airway. Thus, the combination of these compounds should be carefully administered for anesthesia.

  7. ZMappTM Reinforces the Airway Mucosal Barrier Against Ebola Virus.

    PubMed

    Yang, Bing; Schaefer, Alison; Wang, Ying-Ying; McCallen, Justin; Lee, Phoebe; Newby, Jay M; Arora, Harendra; Kumar, Priya A; Zeitlin, Larry; Whaley, Kevin J; McKinley, Scott A; Fischer, William A; Harit, Dimple; Lai, Samuel K

    2018-04-24

    Filoviruses, including Ebola, have the potential to be transmitted via virus-laden droplets deposited onto mucus membranes. Protecting against such emerging pathogens will require understanding how they may transmit at mucosal surfaces and developing strategies to reinforce the airway mucus barrier.Here, we prepared Ebola pseudovirus (with Zaire strain glycoproteins) and employed high resolution multiple particle tracking to track the motions of hundreds of individual pseudoviruses in fresh and undiluted human airway mucus isolated from extubated endotracheal tubes.We found that Ebola pseudovirus readily penetrate human airway mucus. Addition of ZMappTM, a cocktail of Ebola-binding IgG antibodies, effectively reduced mobility of Ebola pseudovirus in the same mucus secretions. Topical delivery of ZMappTM to the mouse airways also facilitated rapid elimination of Ebola pseudovirus.Our work demonstrates that antibodies can immobilize virions in airway mucus and reduce access to the airway epithelium, highlighting topical delivery of pathogen-specific antibodies to the lungs as a potential prophylactic or therapeutic approach against emerging viruses or biowarfare agents.

  8. [Undiagnosed hereditary angioedema in a patient undergoing emergency caesarean section].

    PubMed

    Tomita, Yukihiko; Kamei, Masataka; Jyujou, Satoshi; Horiuchi, Chinami; Katsuragi, Shinji; Onishi, Yoshihiko

    2012-12-01

    Hereditary angioedema (HAE) is characterized by acute, recurrent attacks of localized edema. Surgical procedures, trauma, and infections have been considered as potential triggers of HAE. Although HAE is a rare genetic disorder, approximately 50-60% of all HAE patients are involved with at least one occurrence of upper airway obstruction. The airway trouble is the most life-threating complication in HAE patients because HAE-related edema does not respond to typical treatment, such as administration of epinephrine, antihistamines, or glucocorticoids. Indeed, mortality rates of laryngeal attack are estimated around 25% to 40%. Here we describe a case of undiagnosed HAE patient undergoing emergency caesarean section under neuraxial blockade. A 31-year-old woman showed multiple regions at her lip margin during surgery and rapidly developed lip swelling after admission to the ward. Neither respiratory nor hemodynamic instability was found during and after surgery. Immediately, in order to assess whether HAE caused these dermatological manifestations, we measured values of both complement component 4 (C4) and functional activity of C1-esterase inhibitor (C1-inh), a protein of the complement system. These laboratory data showed low levels, which were compatible with HAE definition. After commencement of C1-inhibitor replacement therapy, her lip swelling and erythema gradually disappeared without adverse drug reactions. The patient was finally discharged from our institution 10 days after surgery.

  9. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  10. Human Lung Small Airway-on-a-Chip Protocol.

    PubMed

    Benam, Kambez H; Mazur, Marc; Choe, Youngjae; Ferrante, Thomas C; Novak, Richard; Ingber, Donald E

    2017-01-01

    Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.

  11. Exploring the context of the lung proteome within the airway mucosa following allergen challenge.

    PubMed

    Fehniger, Thomas E; Sato-Folatre, José-Gabriel; Malmström, Johan; Berglund, Magnus; Lindberg, Claes; Brange, Charlotte; Lindberg, Henrik; Marko-Varga, György

    2004-01-01

    The lung proteome is a dynamic collection of specialized proteins related to pulmonary function. Many cells of different derivations, activation states, and levels of maturity contribute to the changing environment, which produces the lung proteome. Inflammatory cells reacting to environmental challenge, for example from allergens, produce and secrete proteins which have profound effects on both resident and nonresident cells located in airways, alveoli, and the vascular tree which provides blood cells to the parenchyma alveolar bed for gas exchange. In an experimental model of allergic airway inflammation, we have compared control and allergen challenged lung compartments to determine global protein expression patterns using 2D-gel electrophoresis and subsequent spot identification by MS/MS mass spectrometry. We have then specifically isolated the epithelial mucosal layer, which lines conducting airways, from control and allergen challenged lungs, using laser capture technology and performed proteome identification on these selected cell samples. A central component of our investigations has been to contextually relate the histological features of the dynamic pulmonary environment to the changes in protein expression observed following challenge. Our results provide new information of the complexity of the submucosa/epithelium interface and the mechanisms behind the transformation of airway epithelium from normal steady states to functionally activated states.

  12. Morphological findings in the tracheal epithelium of dogs exposed to the inhalation of poorly conditioned gases under use of an endotracheal tube or laryngeal mask airway.

    PubMed

    Dias, Norimar Hernandes; Braz, José Reinaldo Cerqueira; Defaveri, Júlio; Carvalho, Lídia Raquel; Martins, Regina Helena Garcia

    2011-10-01

    To study morphological findings in the tracheal epithelium of dogs exposed to the inhalation of poorly conditioned gases under use of an endotracheal tube (ET) or laryngeal mask airway (LMA). Twelve dogs randomly were allocated to two groups: ET group (n-6) and LMA group (n-6), anaesthetized and mechanically ventilated, without CO(2) reabsorption. Haemodynamic and ventilatory parameters, tympanic temperature, temperature, relative and absolute humidity of the ambient and inhaled gases were analyzed during three hours. The animals were submitted to euthanasia and biopsies were carried out along the tracheal segment to morphological study. Three healthy dogs were used to morphological control. Inhaled gas temperature was maintained between 24ºC and 26ºC, relative humidity between 10% and 12%, and absolute humidity between 2 - 3 mg H(2)O.L(-1) with no significant differences between groups. In both groups, histological analysis showed epithelial inflammation and congestion in the corion and scanning electron microscopy showed ciliary grouping and disorganization. Transmission electron microscopy showed higher alterations in ET group than LMA group as widening of cell junctions, ciliary disorientation, cytoplasmic vacuolization, nuclear abnormalities, picnosis and chromatin condensation. LMA determined less pronounced changes in the tracheal epithelium in dogs exposed to the inhalation of poorly conditioned gases.

  13. Onset of diabetes modulates the airway smooth muscle reactivity of guinea pigs: role of epithelial mediators.

    PubMed

    Saidullah, Bano; Muralidhar, Kambadur; Fahim, Mohammad

    2014-01-01

    Diabetes induces lung dysfunction, leading to alteration in the pulmonary functions. Our aim was to investigate whether the early stage of diabetes alters the epithelium-dependent bronchial responses and whether nitric oxide (NO), KATP channels and cyclooxygenase (COX) pathways contribute in this effect. Guinea pigs were treated with a single injection of streptozotocin (180 mg/kg, i.p.) for induction of diabetes. Airway conductivity was assessed by inhaled histamine, using a non-invasive body plethysmography. The contractile responses of tracheal rings induced by acetylcholine (ACh) and relaxant responses of precontracted rings, induced by isoproterenol (IP) were compared in the presence and absence of the epithelium. Effects of N(ω)-Nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor), glybenclamide (a KATP channel inhibitor) and indomethacin (a COX inhibitor) were also assessed in diabetic guinea pigs. Early stage diabetes did not alter the airway conductivity. ACh-induced bronchoconstriction in epithelium intact tracheal rings was not affected by the onset of diabetes, however a reduction in the increased ACh responses due to epithelium removal, to L-NAME or to indomethacin was observed. The relaxation response to IP was impaired in trachea from guinea pigs in which diabetes had just developed. Early diabetes significantly reduced the IP response to glybenclamide and to indomethacin. Our results demonstrate that the early stage of diabetes, modulate the bronchial reactivity to both ACh and IP by disrupting the NO, KATP channels and COX pathways, without affecting the airway conductivity in guinea pigs.

  14. Structural Development, Cellular Differentiation and Proliferation of the Respiratory Epithelium in the Bovine Fetal Lung.

    PubMed

    Drozdowska, J; Cousens, C; Finlayson, J; Collie, D; Dagleish, M P

    2016-01-01

    Fetal bovine lung samples of 11 different gestational ages were assigned to a classical developmental stage based on histological morphology. Immunohistochemistry was used to characterize the morphology of forming airways, proliferation rate of airway epithelium and the presence of epithelial cell types (i.e. ciliated cells, club cells, neuroepithelial cells (NECs) and type II pneumocytes). Typical structural organization of pseudoglandular (84-98 days gestational age [DGA]), canalicular (154-168 DGA) and alveolar (224-266 DGA) stages was recognized. In addition, transitional pseudoglandular-canalicular (112-126 DGA) and canalicular-saccular (182 DGA) morphologies were present. The embryonic stage was not observed. A significantly (P <0.05) higher proliferation rate of pulmonary epithelium, on average 5.5% and 4.4% in bronchi and bronchioles, respectively, was present in the transitional pseudoglandular-canalicular phase (112-126 DGA) compared with all other phases, while from 8 weeks before term (224-266 DGA) proliferation had almost ceased. The first epithelial cells identified by specific marker proteins in the earliest samples available for study (84 DGA) were ciliated cells and NECs. Club cells were present initially at 112 DGA and type II pneumocytes at 224 DGA. At the latest time points (224-226 DGA) these latter cell types were still present at a much lower percentage compared with adult cattle. This study characterized bovine fetal lung development by histological morphology and cellular composition of the respiratory epithelium and suggests that the apparent structural anatomical maturity of the bovine lung at term is not matched by functional maturity of the respiratory epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Demonstration of carboxylesterase in cytology samples of human nasal respiratory epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, D.A.; Nikula, K.J.; Avila, K.

    1995-12-01

    The epithelial lining of the nasal airways is a target for responses induced by a variety of toxicant exposures. The high metabolic capacity of this tissue has been suggested to play a role in both protection of the airways through detoxication of certain toxicants, as well as in activation of other compounds to more toxic metabolites. Specifically, nasal carboxylesterase (CE) has been shown to mediate the toxicity of inhaled esters and acrylates by converting them to more toxic acid and alcohol metabolites which can be cytotoxic and/or carcinogenic to the nasal mucosa. Due to difficulties in extrapolating rodent models tomore » human, new paradigms using human cells and tissues are essential to understanding and evaluating the metabolic processes in human nasal epithelium.« less

  17. Hereditary Angioedema Caused By C1-Esterase Inhibitor Deficiency: A Literature-Based Analysis and Clinical Commentary on Prophylaxis Treatment Strategies

    PubMed Central

    2011-01-01

    Hereditary angioedema (HAE) caused by C1-esterase inhibitor deficiency is an autosomal-dominant disease resulting from a mutation in the C1-inhibitor gene. HAE is characterized by recurrent attacks of intense, massive, localized subcutaneous edema involving the extremities, genitalia, face, or trunk, or submucosal edema of upper airway or bowels. These symptoms may be disabling, have a dramatic impact on quality of life, and can be life-threatening when affecting the upper airways. Because the manifestations and severity of HAE are highly variable and unpredictable, patients need individualized care to reduce the burden of HAE on daily life. Although effective therapy for the treatment of HAE attacks has been available in many countries for more than 30 years, until recently, there were no agents approved in the United States to treat HAE acutely. Therefore, prophylactic therapy is an integral part of HAE treatment in the United States and for selected patients worldwide. Routine long-term prophylaxis with either attenuated androgens or C1-esterase inhibitor has been shown to reduce the frequency and severity of HAE attacks. Therapy with attenuated androgens, a mainstay of treatment in the past, has been marked by concern about potential adverse effects. C1-esterase inhibitor works directly on the complement and contact plasma cascades to reduce bradykinin release, which is the primary pathologic mechanism in HAE. Different approaches to long-term prophylactic therapy can be used to successfully manage HAE when tailored to meet the needs of the individual patient. PMID:23283143

  18. The effect of long-term administered CRAC channels blocker on the functions of respiratory epithelium in guinea pig allergic asthma model.

    PubMed

    Sutovska, Martina; Kocmalova, Michaela; Joskova, Marta; Adamkov, Marian; Franova, Sona

    2015-04-01

    Previously, therapeutic potency of CRAC channels blocker was evidenced as a significant decrease in airway smooth muscle hyperreactivity, antitussive and anti-inflammatory effects. The major role of the respiratory epithelium in asthma pathogenesis was highlighted only recently and CRAC channels were proposed as the most significant route of Ca2+ entry into epithelial cells. The aim of the study was to analyse the impact of long-term administered CRAC channels blocker on airway epithelium, e.g. cytokine production and ciliary beat frequency (CBF) using an animal model of allergic asthma. Ovalbumin-induced allergic airway inflammation of guinea pigs was followed by long-term (14 days lasted) therapy by CRAC blocker (3-fluoropyridine-4-carboxylic acid, FPCA). The influence of long-term therapy on cytokines (IL-4, IL-5 and IL-13) in BALF and in plasma, immunohistochemical staining of pulmonary tissue (c-Fos positivity) and CBF in vitro were used for analysis. Decrease in cytokine levels and in c-Fos positivity confirmed an anti-inflammatory effect of long-term administered FPCA. Cytokine levels in BALF and distribution of c-Fos positivity suggested that FPCA was a more potent inhibitor of respiratory epithelium secretory functions than budesonide. FPCA and budesonide reduced CBF only insignificantly. All findings supported CRAC channels as promising target in the new strategy of antiasthmatic treatment.

  19. Popcorn flavoring effects on reactivity of rat airways in vivo and in vitro.

    PubMed

    Zaccone, Eric J; Thompson, Janet A; Ponnoth, Dovenia S; Cumpston, Amy M; Goldsmith, W Travis; Jackson, Mark C; Kashon, Michael L; Frazer, David G; Hubbs, Ann F; Shimko, Michael J; Fedan, Jeffrey S

    2013-01-01

    "Popcorn workers' lung" is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism.

  20. POPCORN FLAVORING EFFECTS ON REACTIVITY OF RAT AIRWAYS IN VIVO AND IN VITRO

    PubMed Central

    Zaccone, Eric J.; Thompson, Janet A.; Ponnoth, Dovenia S.; Cumpston, Amy M.; Goldsmith, W. Travis; Jackson, Mark C.; Kashon, Michael L.; Frazer, David G.; Hubbs, Ann F.; Shimko, Michael J.; Fedan, Jeffrey S.

    2015-01-01

    “Popcorn workers’ lung” is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100–360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism. PMID:23941636

  1. Migration of guinea pig airway epithelial cells in response to bombesin analogues.

    PubMed

    Kim, J S; McKinnis, V S; White, S R

    1997-03-01

    Bombesin-like peptides within neuroepithelial cells elicit proliferation of normal and malignant airway epithelial cells. It is not clear that these peptides also elicit epithelial cell migration, a necessary component of airway repair after injury. We studied the effects of the bombesin analogues, gastrin releasing peptide (GRP) and neuromedin B (NMB), on guinea pig tracheal epithelial cell (GPTEC) migration. Primary GPTEC were allowed to migrate through 8-microm-pore gelatin-coated filters for 6 h in a chemotaxis chamber, after which the number of migrated cells per 10 high power fields (10 hpf) were counted. Both neuropeptides elicited migration of GPTEC: 24.8 +/- 4.5 cells for 10(-11) M NMB (P < 0.001 versus control, n = 4) and 16.8 +/- 1.2 cells for 10(-12) M GRP (P < 0.001 versus control, n = 8). Migration was attenuated substantially by a bombesin receptor antagonist. To investigate further the relationship of migration through a filter to the repair of a damaged epithelium, we studied the repair of epithelial cells by video microscopy. A 0.3- to 0.5-microm2 wound was created in a confluent monolayer of GPTEC, and wound closure was followed over 24 h. There was no significant acceleration in the rate of repair of GRP- or NMB-stimulated monolayers compared to control. These data demonstrate that GRP and NMB elicit migration of airway epithelial cells but may not play a significant role in the early repair of the airway epithelium in culture.

  2. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    PubMed

    Brune, Kieran A; Ferreira, Fernanda; Mandke, Pooja; Chau, Eric; Aggarwal, Neil R; D'Alessio, Franco R; Lambert, Allison A; Kirk, Gregory; Blankson, Joel; Drummond, M Bradley; Tsibris, Athe M; Sidhaye, Venkataramana K

    2016-01-01

    Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway

  3. Airway hyperresponsiveness; smooth muscle as the principal actor

    PubMed Central

    Lauzon, Anne-Marie; Martin, James G.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  4. Airway epithelial phosphoinositide 3-kinase-δ contributes to the modulation of fungi-induced innate immune response.

    PubMed

    Jeong, Jae Seok; Lee, Kyung Bae; Kim, So Ri; Kim, Dong Im; Park, Hae Jin; Lee, Hern-Ku; Kim, Hyung Jin; Cho, Seong Ho; Kolliputi, Narasaiah; Kim, Soon Ha; Lee, Yong Chul

    2018-04-05

    Respiratory fungal exposure is known to be associated with severe allergic lung inflammation. Airway epithelium is an essential controller of allergic inflammation. An innate immune recognition receptor, nucleotide-binding domain, leucine-rich-containing family, pyrin-domain-containing-3 (NLRP3) inflammasome, and phosphoinositide 3 kinase (PI3K)-δ in airway epithelium are involved in various inflammatory processes. We investigated the role of NLRP3 inflammasome in fungi-induced allergic lung inflammation and examined the regulatory mechanism of NLRP3 inflammasome, focusing on PI3K-δ in airway epithelium. We used two in vivo models induced by exposure to Aspergillus fumigatus ( Af ) and Alternaria alternata ( Aa ), as well as an Af -exposed in vitro system. We also checked NLRP3 expression in lung tissues from patients with allergic bronchopulmonary aspergillosis (ABPA). Assembly/activation of NLRP3 inflammasome was increased in the lung of Af -exposed mice. Elevation of NLRP3 inflammasome assembly/activation was observed in Af -stimulated murine and human epithelial cells. Similarly, pulmonary expression of NLRP3 in patients with ABPA was increased. Importantly, neutralisation of NLRP3 inflammasome derived IL-1β alleviated pathophysiological features of Af -induced allergic inflammation. Furthermore, PI3K-δ blockade improved Af -induced allergic inflammation through modulation of NLRP3 inflammasome, especially in epithelial cells. This modulatory role of PI3K-δ was mediated through the regulation of mitochondrial reactive oxygen species (mtROS) generation. NLRP3 inflammasome was also implicated in Aa -induced eosinophilic allergic inflammation, which was improved by PI3K-δ blockade. These findings demonstrate that fungi-induced assembly/activation of NLRP3 inflammasome in airway epithelium may be modulated by PI3K-δ, which is mediated partly through the regulation of mtROS generation. Inhibition of PI3K-δ may have potential for treating fungi-induced severe

  5. The multi-faceted role of allergen exposure to the local airway mucosa.

    PubMed

    Golebski, K; Röschmann, K I L; Toppila-Salmi, S; Hammad, H; Lambrecht, B N; Renkonen, R; Fokkens, W J; van Drunen, C M

    2013-02-01

    Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by intrinsic proteolytic activity of allergens may facilitate allergen penetration into local tissues and additionally affect chronic and ongoing inflammatory processes in respiratory tissues. Furthermore, the ability of rhinoviruses to disrupt and interfere with epithelial tight junctions may alter the barrier integrity and enable a passive passage of inhaled allergens through the airway epithelium. On the other hand, epithelial cells are no longer considered to act only as a physical barrier toward inhaled allergens, but also to actively contribute to airway inflammation by detecting and responding to environmental factors. Epithelial cells can produce mediators, which may affect the recruitment and activation of more specialized immune cells to the local tissue and also create a microenvironment in which these activated immune cells may function and propagate the inflammatory processes. This review presents the dual role of epithelium acting as a passive and active barrier when encountering an inhaled allergen and how this double role contributes to the start of local immune responses. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  6. Composition of nasal airway surface liquid in cystic fibrosis and other airway diseases determined by X-ray microanalysis.

    PubMed

    Vanthanouvong, V; Kozlova, I; Johannesson, M; Nääs, E; Nordvall, S L; Dragomir, A; Roomans, G M

    2006-04-01

    The ionic composition of the airway surface liquid (ASL) in healthy individuals and in patients with cystic fibrosis (CF) has been debated. Ion transport properties of the upper airway epithelium are similar to those of the lower airways and it is easier to collect nasal ASL from the nose. ASL was collected with ion exchange beads, and the elemental composition of nasal fluid was determined by X-ray microanalysis in healthy subjects, CF patients, CF heterozygotes, patients with rhinitis, and with primary ciliary dyskinesia (PCD). In healthy subjects, the ionic concentrations were approximately isotonic. In CF patients, CF heterozygotes, rhinitis, and PCD patients, [Na] and [Cl] were significantly higher compared when compared with those in controls. [K] was significantly higher in CF and PCD patients compared with that in controls. Severely affected CF patients had higher ionic concentrations in their nasal ASL than in patients with mild or moderate symptoms. Female CF patients had higher levels of Na, Cl, and K than male patients. As higher salt concentrations in the ASL are also found in other patients with airway diseases involving chronic inflammation, it appears likely that inflammation-induced epithelial damage is important in determining the ionic composition of the ASL. Copyright (c) 2006 Wiley-Liss, Inc.

  7. Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice.

    PubMed

    Mhanna, M J; Ferkol, T; Martin, R J; Dreshaj, I A; van Heeckeren, A M; Kelley, T J; Haxhiu, M A

    2001-05-01

    The pulmonary disease of cystic fibrosis (CF) is characterized by persistent airway obstruction, which has been attributed to chronic endobronchial infection and inflammation. The levels of exhaled nitric oxide (NO) are reduced in CF patients, which could contribute to bronchial obstruction through dysregulated constriction of airway smooth muscle. Because airway epithelium from CF mice has been shown to have reduced expression of inducible NO synthase, we examined airway responsiveness and relaxation in isolated tracheas of CF mice. Airway relaxation as measured by percent relaxation of precontracted tracheal segments to electrical field stimulation (EFS) and substance P, a nonadrenergic, noncholinergic substance, was significantly impaired in CF mice. The airway relaxation in response to prostaglandin E2 was similar in CF and non-CF animals. Treatment with the NO synthase inhibitor NG-nitro-L-arginine methylester reduced tracheal relaxation induced by EFS in wild-type animals but had virtually no effect in the CF mice. Conversely, exogenous NO and L-arginine, a NO substrate, reversed the relaxation defect in CF airway. We conclude that the relative absence of NO compromises airways relaxation in CF, and may contribute to the bronchial obstruction seen in the disease.

  8. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.

    PubMed

    Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh

    2017-10-01

    Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.

  9. Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors

    PubMed Central

    Mori, Munemasa; Mahoney, John E.; Stupnikov, Maria R.; Paez-Cortez, Jesus R.; Szymaniak, Aleksander D.; Varelas, Xaralabos; Herrick, Dan B.; Schwob, James; Zhang, Hong; Cardoso, Wellington V.

    2015-01-01

    Basal cells are multipotent airway progenitors that generate distinct epithelial cell phenotypes crucial for homeostasis and repair of the conducting airways. Little is known about how these progenitor cells expand and transition to differentiation to form the pseudostratified airway epithelium in the developing and adult lung. Here, we show by genetic and pharmacological approaches that endogenous activation of Notch3 signaling selectively controls the pool of undifferentiated progenitors of upper airways available for differentiation. This mechanism depends on the availability of Jag1 and Jag2, and is key to generating a population of parabasal cells that later activates Notch1 and Notch2 for secretory-multiciliated cell fate selection. Disruption of this mechanism resulted in aberrant expansion of basal cells and altered pseudostratification. Analysis of human lungs showing similar abnormalities and decreased NOTCH3 expression in subjects with chronic obstructive pulmonary disease suggests an involvement of NOTCH3-dependent events in the pathogenesis of this condition. PMID:25564622

  10. Activation of Influenza A Viruses by Host Proteases from Swine Airway Epithelium

    PubMed Central

    Peitsch, Catharina; Klenk, Hans-Dieter; Garten, Wolfgang

    2014-01-01

    Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways. PMID:24155384

  11. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease

    PubMed Central

    2016-01-01

    Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease. PMID:27742732

  12. Impaired airway epithelial cell responses from children with asthma to rhinoviral infection.

    PubMed

    Kicic, A; Stevens, P T; Sutanto, E N; Kicic-Starcevich, E; Ling, K-M; Looi, K; Martinovich, K M; Garratt, L W; Iosifidis, T; Shaw, N C; Buckley, A G; Rigby, P J; Lannigan, F J; Knight, D A; Stick, S M

    2016-11-01

    The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood. To explore the relationship between apoptotic, innate immune and inflammatory responses to HRV infection in airway epithelial cells (AECs) obtained from children with asthma and non-asthmatic controls. In addition, to test the hypothesis that aberrant repair of epithelium from asthmatics is further dysregulated by HRV infection. Airway epithelial brushings were obtained from 39 asthmatic and 36 non-asthmatic children. Primary cultures were established and exposed to HRV1b and HRV14. Virus receptor number, virus replication and progeny release were determined. Epithelial cell apoptosis, IFN-β production, inflammatory cytokine release and epithelial wound repair and proliferation were also measured. Virus proliferation and release was greater in airway epithelial cells from asthmatics but this was not related to the number of virus receptors. In epithelial cells from asthmatic children, virus infection dampened apoptosis, reduced IFN-β production and increased inflammatory cytokine production. HRV1b infection also inhibited wound repair capacity of epithelial cells isolated from non-asthmatic children and exaggerated the defective repair response seen in epithelial cells from asthmatics. Addition of IFN-β restored apoptosis, suppressed virus replication and improved repair of airway epithelial cells from asthmatics but did not reduce inflammatory cytokine production. Collectively, HRV infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children. The delayed repair is further exaggerated in cells from asthmatic children and is only partially reversed by exogenous IFN-β. © 2016 John Wiley & Sons

  13. Serelaxin Elicits Bronchodilation and Enhances β-Adrenoceptor-Mediated Airway Relaxation

    PubMed Central

    Lam, Maggie; Royce, Simon G.; Donovan, Chantal; Jelinic, Maria; Parry, Laura J.; Samuel, Chrishan S.; Bourke, Jane E.

    2016-01-01

    Treatment with β-adrenoceptor agonists does not fully overcome the symptoms associated with severe asthma. Serelaxin elicits potent uterine and vascular relaxation via its cognate receptor, RXFP1, and nitric oxide (NO) signaling, and is being clinically evaluated for the treatment of acute heart failure. However, its direct bronchodilator efficacy has yet to be explored. Tracheal rings were prepared from male Sprague-Dawley rats (250–350 g) and tricolor guinea pigs, and precision cut lung slices (PCLSs) containing intrapulmonary airways were prepared from rats only. Recombinant human serelaxin (rhRLX) alone and in combination with rosiglitazone (PPARγ agonist; recently described as a novel dilator) or β-adrenoceptor agonists (isoprenaline, salbutamol) were added either to pre-contracted airways, or before contraction with methacholine or endothelin-1. Regulation of rhRLX responses by epithelial removal, indomethacin (cyclooxygenase inhibitor), L-NAME (nitric oxide synthase inhibitor), SQ22536 (adenylate cyclase inhibitor) and ODQ (guanylate cyclase inhibitor) were also evaluated. Immunohistochemistry was used to localize RXFP1 to airway epithelium and smooth muscle. rhRLX elicited relaxation in rat trachea and PCLS, more slowly than rosiglitazone or isoprenaline, but potentiated relaxation to both these dilators. It markedly increased β-adrenoceptor agonist potency in guinea pig trachea. rhRLX, rosiglitazone, and isoprenaline pretreatment also inhibited the development of rat tracheal contraction. Bronchoprotection by rhRLX increased with longer pre-incubation time, and was partially reduced by epithelial removal, indomethacin and/or L-NAME. SQ22536 and ODQ also partially inhibited rhRLX-mediated relaxation in both intact and epithelial-denuded trachea. RXFP1 expression in the airways was at higher levels in epithelium than smooth muscle. In summary, rhRLX elicits large and small airway relaxation via epithelial-dependent and -independent mechanisms, likely

  14. Lubiprostone targets prostanoid EP₄ receptors in ovine airways.

    PubMed

    Cuthbert, A W

    2011-01-01

    Lubiprostone, a prostaglandin E₁ derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. The EP₄ antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP₁(,)₂(&)₃ receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a K(d) value of 0.058 µM, close to its value for binding to human EP₄ receptors (0.024 µM). The selective EP₄ agonist L-902688 and lubiprostone behaved similarly with respect to EP₄ receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a G(s) -protein coupled EP₄ receptor/cAMP cascade. Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP₄ receptor antagonists. The results suggest EP₄ receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. © 2010 The Author. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  15. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways.

    PubMed

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-08-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  16. Airway Basal Cells. The “Smoking Gun” of Chronic Obstructive Pulmonary Disease

    PubMed Central

    2014-01-01

    The earliest abnormality in the lung associated with smoking is hyperplasia of airway basal cells, the stem/progenitor cells of the ciliated and secretory cells that are central to pulmonary host defense. Using cell biology and ’omics technologies to assess basal cells isolated from bronchoscopic brushings of nonsmokers, smokers, and smokers with chronic obstructive pulmonary disease (COPD), compelling evidence has been provided in support of the concept that airway basal cells are central to the pathogenesis of smoking-associated lung diseases. When confronted by the chronic stress of smoking, airway basal cells become disorderly, regress to a more primitive state, behave as dictated by their inheritance, are susceptible to acquired changes in their genome, lose the capacity to regenerate the epithelium, are responsible for the major changes in the airway that characterize COPD, and, with persistent stress, can undergo malignant transformation. Together, these observations led to the conclusion that accelerated loss of lung function in susceptible individuals begins with disordered airway basal cell biology (i.e., that airway basal cells are the “smoking gun” of COPD, a potential target for the development of therapies to prevent smoking-related lung disorders). PMID:25354273

  17. Arsenic Alters ATP-Dependent Ca2+ Signaling in Human Airway Epithelial Cell Wound Response

    PubMed Central

    Sherwood, Cara L.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2011-01-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca2+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., < 4μM as Na-arsenite) on wound-induced Ca2+ signaling pathways in human bronchial epithelial cell line (16HBE14o-). We found that arsenic reduces purinergic Ca2+ signaling in a dose-dependent manner and results in a reshaping of the Ca2+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca2+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  18. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  19. Airway epithelial wounds in rhesus monkey generate ionic currents that guide cell migration to promote healing

    PubMed Central

    Sun, Yao-Hui; Reid, Brian; Fontaine, Justin H.; Miller, Lisa A.; Hyde, Dallas M.; Mogilner, Alex

    2011-01-01

    Damage to the respiratory epithelium is one of the most critical steps to many life-threatening diseases, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. The mechanisms underlying repair of the damaged epithelium have not yet been fully elucidated. Here we provide experimental evidence suggesting a novel mechanism for wound repair: endogenous electric currents. It is known that the airway epithelium maintains a voltage difference referred to as the transepithelial potential. Using a noninvasive vibrating probe, we demonstrate that wounds in the epithelium of trachea from rhesus monkeys generate significant outward electric currents. A small slit wound produced an outward current (1.59 μA/cm2), which could be enhanced (nearly doubled) by the ion transport stimulator aminophylline. In addition, inhibiting cystic fibrosis transmembrane conductance regulator (CFTR) with CFTR(Inh)-172 significantly reduced wound currents (0.17 μA/cm2), implicating an important role of ion transporters in wound induced electric potentials. Time-lapse video microscopy showed that applied electric fields (EFs) induced robust directional migration of primary tracheobronchial epithelial cells from rhesus monkeys, towards the cathode, with a threshold of <23 mV/mm. Reversal of the field polarity induced cell migration towards the new cathode. We further demonstrate that application of an EF promoted wound healing in a monolayer wound healing assay. Our results suggest that endogenous electric currents at sites of tracheal epithelial injury may direct cell migration, which could benefit restitution of damaged airway mucosa. Manipulation of ion transport may lead to novel therapeutic approaches to repair damaged respiratory epithelium. PMID:21719726

  20. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

    PubMed

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2017-06-01

    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Swine confinement buildings: effects of airborne particles and settled dust on airway smooth muscles.

    PubMed

    Demanche, Annick; Bonlokke, Jakob; Beaulieu, Marie-Josee; Assayag, Evelyne; Cormier, Yvon

    2009-01-01

    Swine confinement workers are exposed to various contaminants. These agents can cause airway inflammation and bronchoconstriction. This study was undertaken to evaluate if the bronchoconstrictive effects of swine barn air and settled dust are mediated by endotoxin, and if these effects are directly mediated on airway smooth muscles. Mouse tracheas where isolated and mounted isometrically in organ baths. Tracheas, with or without epithelium, were attached to a force transducer and tension was recorded. Concentrated swine building air at 68 EU/ml or settled dust extract at 0.01 g/ml were added for 20 minutes and tracheal smooth muscle contraction was measured. Direct role of LPS was assessed by removing it from air concentrates with an endotoxin affinity resin. Swine barn air and settled dust extract caused contraction of tracheal smooth muscle by 26 and 20%, respectively, of the maximal induced by methacholine. Removal of epithelium did not affect the contractile effects. LPS alone and LPS with peptidoglycans did not induce contraction. However, when endotoxin was removed from swine barn air concentrates, it lost 24% of its contractile effect. Concentrated swine barn air and settled dust have direct effects on airway smooth muscles. This effect is partially due to LPS but a synergy with other components of the environment of swine confinement buildings is required.

  2. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice.

    PubMed

    Seys, Leen J M; Verhamme, Fien M; Dupont, Lisa L; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F; Brusselle, Guy G; Mall, Marcus A; Bracke, Ken R

    2015-01-01

    Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.

  3. Fank1 and Jazf1 promote multiciliated cell differentiation in the mouse airway epithelium

    PubMed Central

    Johnson, Jo-Anne; Watson, Julie K.

    2018-01-01

    ABSTRACT The airways are lined by secretory and multiciliated cells which function together to remove particles and debris from the respiratory tract. The transcriptome of multiciliated cells has been extensively studied, but the function of many of the genes identified is unknown. We have established an assay to test the ability of over-expressed transcripts to promote multiciliated cell differentiation in mouse embryonic tracheal explants. Overexpression data indicated that Fibronectin type 3 and ankyrin repeat domains 1 (Fank1) and JAZF zinc finger 1 (Jazf1) promoted multiciliated cell differentiation alone, and cooperatively with the canonical multiciliated cell transcription factor Foxj1. Moreover, knock-down of Fank1 or Jazf1 in adult mouse airway epithelial cultures demonstrated that these factors are both required for ciliated cell differentiation in vitro. This analysis identifies Fank1 and Jazf1 as novel regulators of multiciliated cell differentiation. Moreover, we show that they are likely to function downstream of IL6 signalling and upstream of Foxj1 activity in the process of ciliated cell differentiation. In addition, our in vitro explant assay provides a convenient method for preliminary investigation of over-expression phenotypes in the developing mouse airways. This article has an associated First Person interview with the first author of the paper. PMID:29661797

  4. Vitronectin Expression in the Airways of Subjects with Asthma and Chronic Obstructive Pulmonary Disease

    PubMed Central

    Salazar-Peláez, Lina M.; Abraham, Thomas; Herrera, Ana M.; Correa, Mario A.; Ortega, Jorge E.; Paré, Peter D.; Seow, Chun Y.

    2015-01-01

    Vitronectin, a multifunctional glycoprotein, is involved in coagulation, inhibition of the formation of the membrane attack complex (MAC), cell adhesion and migration, wound healing, and tissue remodeling. The primary cellular source of vitronectin is hepatocytes; it is not known whether resident cells of airways produce vitronectin, even though the glycoprotein has been found in exhaled breath condensate and bronchoalveolar lavage from healthy subjects and patients with interstitial lung disease. It is also not known whether vitronectin expression is altered in subjects with asthma and COPD. In this study, bronchial tissue from 7 asthmatic, 10 COPD and 14 control subjects was obtained at autopsy and analyzed by immunohistochemistry to determine the percent area of submucosal glands occupied by vitronectin. In a separate set of experiments, quantitative colocalization analysis was performed on tracheobronchial tissue sections obtained from donor lungs (6 asthmatics, 4 COPD and 7 controls). Vitronectin RNA and protein expressions in bronchial surface epithelium were examined in 12 subjects who undertook diagnostic bronchoscopy. Vitronectin was found in the tracheobronchial epithelium from asthmatic, COPD, and control subjects, although its expression was significantly lower in the asthmatic group. Colocalization analysis of 3D confocal images indicates that vitronectin is expressed in the glandular serous epithelial cells and in respiratory surface epithelial cells other than goblet cells. Expression of the 65-kDa vitronectin isoform was lower in bronchial surface epithelium from the diseased subjects. The cause for the decreased vitronectin expression in asthma is not clear, however, the reduced concentration of vitronectin in the epithelial/submucosal layer of airways may be linked to airway remodeling. PMID:25768308

  5. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells.

    PubMed Central

    Kelley, T J; Drumm, M L

    1998-01-01

    It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections. PMID:9739054

  6. Lubiprostone targets prostanoid EP4 receptors in ovine airways

    PubMed Central

    Cuthbert, AW

    2011-01-01

    BACKGROUND AND PURPOSE Lubiprostone, a prostaglandin E1 derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. EXPERIMENTAL APPROACH All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. KEY RESULTS The EP4 antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP1,2&3 receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a Kd value of 0.058 µM, close to its value for binding to human EP4 receptors (0.024 µM). The selective EP4 agonist L-902688 and lubiprostone behaved similarly with respect to EP4 receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a Gs-protein coupled EP4 receptor/cAMP cascade. CONCLUSIONS AND IMPLICATIONS Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP4 receptor antagonists. The results suggest EP4 receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. PMID:20883477

  7. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure.

    PubMed

    Aghapour, Mahyar; Raee, Pourya; Moghaddam, Seyed Javad; Hiemstra, Pieter S; Heijink, Irene H

    2018-02-01

    The epithelial lining of the airway forms the first barrier against environmental insults, such as inhaled cigarette smoke, which is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). The barrier is formed by airway epithelial junctions, which are interconnected structures that restrict permeability to inhaled pathogens and environmental stressors. Destruction of the epithelial barrier not only exposes subepithelial layers to hazardous agents in the inspired air, but also alters the normal function of epithelial cells, which may eventually contribute to the development of COPD. Of note, disruption of epithelial junctions may lead to modulation of signaling pathways involved in differentiation, repair, and proinflammatory responses. Epithelial barrier dysfunction may be particularly relevant in COPD, where repeated injury by cigarette smoke exposure, pathogens, inflammatory mediators, and impaired epithelial regeneration may compromise the barrier function. In the current review, we discuss recent advances in understanding the mechanisms of barrier dysfunction in COPD, as well as the molecular mechanisms that underlie the impaired repair response of the injured epithelium in COPD and its inability to redifferentiate into a functionally intact epithelium.

  8. Development of an airway mucus defect in the cystic fibrosis rat

    PubMed Central

    Birket, Susan E.; Davis, Joy M.; Fernandez, Courtney M.; Tuggle, Katherine L.; Oden, Ashley M.; Chu, Kengyeh K.; Tearney, Guillermo J.; Fanucchi, Michelle V.; Sorscher, Eric J.

    2018-01-01

    The mechanisms underlying the development and natural progression of the airway mucus defect in cystic fibrosis (CF) remain largely unclear. New animal models of CF, coupled with imaging using micro-optical coherence tomography, can lead to insights regarding these questions. The Cftr–/– (KO) rat allows for longitudinal examination of the development and progression of airway mucus abnormalities. The KO rat exhibits decreased periciliary depth, hyperacidic pH, and increased mucus solid content percentage; however, the transport rates and viscoelastic properties of the mucus are unaffected until the KO rat ages. Airway submucosal gland hypertrophy develops in the KO rat by 6 months of age. Only then does it induce increased mucus viscosity, collapse of the periciliary layer, and delayed mucociliary transport; stimulation of gland secretion potentiates this evolution. These findings could be reversed by bicarbonate repletion but not pH correction without counterion donation. These studies demonstrate that abnormal surface epithelium in CF does not cause delayed mucus transport in the absence of functional gland secretions. Furthermore, abnormal bicarbonate transport represents a specific target for restoring mucus clearance, independent of effects on periciliary collapse. Thus, mature airway secretions are required to manifest the CF defect primed by airway dehydration and bicarbonate deficiency. PMID:29321377

  9. Allergen challenge-induced extravasation of plasma in mouse airways.

    PubMed

    Erjefält, J S; Andersson, P; Gustafsson, B; Korsgren, M; Sonmark, B; Persson, C G

    1998-08-01

    Mouse models are extensively used to study genetic and immunological mechanisms of potential importance to inflammatory airway diseases, e.g. asthma. However, the airway pathophysiology in allergic mice has received less attention. For example, plasma extravasation and the ensuing tissue-deposition of plasma proteins, which is a hallmark of inflammation, has not been examined in allergic mice. This study aims to examine the vascular permeability and the distribution of plasma proteins in mouse airways following exposure to allergen and serotonin. Extravasated plasma was quantified by a dual isotop technique using intravascular (131I-albumin) and extrasvascular (125I-albumin) plasma tracers. Histological visualization of fibrinogen and colloidal gold revealed the tissue distribution of extravasated plasma. Allergen aerosol exposure (3% OVA, 15min) of sensitized animals resulted in a marked plasma extravasation response in the trachea (P < 0.01) and the bronchi but not in the lung parenchyma. A similar extravasation response was induced by serotonin (P<0.001). Extravasating vessels (assessed by Monastral blue dye) were identified as intercartilaginous venules. Extravasated plasma abounded in the subepithelial tissue but was absent in the epithelium and airway lumen. The allergen-induced response was dose-dependently inhibited by iv administration of formoterol (P < 0.001), a vascular antipermeability agent. The present study demonstrates that serotonin and allergen challenge of sensitized mice increase airway venular permeability to cause transient extravasation and lamina propria distribution of plasma in the large airways. We suggest that the extravasation response is a useful measure of the intensity and the distribution of active inflammation

  10. Effects of local nasal immunotherapy in allergic airway inflammation: Using urea denatured Dermatophagoides pteronyssinus

    PubMed Central

    Yu, Sheng-Jie; Liao, En-Chih; Tsai, Jaw-Ji

    2015-01-01

    Despite improvements in anti-allergy medication, the prevalence of allergic airway inflammation remains high, affecting up to 40% of the population worldwide. Allergen immunotherapy is effective for inducing tolerance but has the adverse effect of severe allergic reaction. This can be avoided by denaturing with urea. In this study, we demonstrated that the serum level of allergen-specific IgE in mice sensitized with native Dermatophagoides pteronyssinus (Der p) crude extract after receiving local nasal immunotherapy (LNIT) with urea-denatured Der p crude extract (DN-Dp) significantly decreased compared to that in the normal saline (NS) treatment group. Expressions of IL-4 were significantly reduced in lung tissues after treatment. Inflammation around the bronchial epithelium improved and airway hypersensitivity was down-regulated. LNIT with DN-Dp can down-regulate IL-1b, IL-6 and TNF-a expression and then decrease Der p-induced allergic airway inflammation. This therapeutic modality may be used as an alternative treatment for airway allergic diseases. PMID:25933184

  11. Epithelium

    MedlinePlus

    The term "epithelium" refers to layers of cells that line hollow organs and glands. It is also those cells that make ... Kierszenbaum AL, Tres LL. Epithelium. In: Kierszenbaum AL, Tres LL, ... to Pathology . 4th ed. Philadelphia, PA: Elsevier Saunders; ...

  12. Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro

    PubMed Central

    Ramachandran, Shyam; Krishnamurthy, Sateesh; Jacobi, Ashley M.; Wohlford-Lenane, Christine; Behlke, Mark A.; Davidson, Beverly L.

    2013-01-01

    Polarized and pseudostratified primary airway epithelia present barriers that significantly reduce their transfection efficiency and the efficacy of RNA interference oligonucleotides. This creates an impediment in studies of the airway epithelium, diminishing the utility of loss-of-function as a research tool. Here we outline methods to introduce RNAi oligonucleotides into primary human and porcine airway epithelia grown at an air-liquid interface and difficult-to-transfect transformed epithelial cell lines grown on plastic. At the time of plating, we reverse transfect small-interfering RNA (siRNA), Dicer-substrate siRNA, or microRNA oligonucleotides into cells by use of lipid or peptide transfection reagents. Using this approach we achieve significant knockdown in vitro of hypoxanthine-guanine phosphoribosyltransferase, IL-8, and CFTR expression at the mRNA and protein levels in 1–3 days. We also attain significant reduction of secreted IL-8 in polarized primary pig airway epithelia 3 days posttransfection and inhibition of CFTR-mediated Cl− conductance in polarized air-liquid interface cultures of human airway epithelia 2 wk posttransfection. These results highlight an efficient means to deliver RNA interference reagents to airway epithelial cells and achieve significant knockdown of target gene expression and function. The ability to reliably conduct loss-of-function assays in polarized primary airway epithelia offers benefits to research in studies of epithelial cell homeostasis, candidate gene function, gene-based therapeutics, microRNA biology, and targeting the replication of respiratory viruses. PMID:23624792

  13. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    PubMed Central

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  14. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction.

    PubMed

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J; Woodruff, Prescott G; Solberg, Owen D; Donne, Matthew L; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V; Wolters, Paul J; Hogan, Brigid L M; Finkbeiner, Walter E; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R

    2012-10-02

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.

  15. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Vergara, Leoncio A; Wen, Julie W; Long, Dan; Rockx, Barry

    2016-05-01

    Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission.

  16. SERCA2 Regulates Non-CF and CF Airway Epithelial Cell Response to Ozone

    PubMed Central

    Ahmad, Shama; Nichols, David P.; Strand, Matthew; Rancourt, Raymond C.; Randell, Scott H.; White, Carl W.; Ahmad, Aftab

    2011-01-01

    Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target. PMID:22096575

  17. Ozone-Induced Injury and Oxidative Stress in Bronchiolar Epithelium Are Associated with Altered Pulmonary Mechanics

    PubMed Central

    Sunil, Vasanthi R.

    2013-01-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3h) resulted in rapid (within 3h) and persistent (up to 72h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24h post-exposure. Ozone also induced the appearance of 8-hydroxy-2′-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3–24h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning. PMID:23492811

  18. Estradiol Increases Mucus Synthesis in Bronchial Epithelial Cells

    PubMed Central

    Tam, Anthony; Wadsworth, Samuel; Dorscheid, Delbert; Man, Shu-Fan Paul; Sin, Don D.

    2014-01-01

    Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis) and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI). Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining) in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-β) antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT) in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0) cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6) mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium. PMID:24964096

  19. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation.

    PubMed

    Ullah, Md Ashik; Loh, Zhixuan; Gan, Wan Jun; Zhang, Vivian; Yang, Huan; Li, Jian Hua; Yamamoto, Yasuhiko; Schmidt, Ann Marie; Armour, Carol L; Hughes, J Margaret; Phipps, Simon; Sukkar, Maria B

    2014-08-01

    The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. Airway hyper-responsiveness to neurokinin A and bradykinin following Mycoplasma pneumoniae infection associated with reduced epithelial neutral endopeptidase.

    PubMed

    Tamaoki, J; Chiyotani, A; Tagaya, E; Araake, M; Nagai, A

    1998-09-01

    To determine whether mycoplasma infection produces airway hyper-responsiveness to tachykinins and bradykinin and, if so, to elucidate the role of neutral endopeptidase (NEP), isolated hamster tracheal segments were studied under isometric conditions in vitro. Nasal inoculation with Mycoplasma pneumoniae potentiated contractile responses to neurokinin A and bradykinin, causing a leftward shift of the dose-response curves to a lower concentration by 1 log unit for each agonist, whereas there was no response with acetylcholine. Pretreatment of tissues with the NEP inhibitor phosphoramidon augmented neurokinin A- and bradykinin-induced contractions in saline-treated control tissues, but did not further potentiate the responsiveness in M. pneumoniae-infected tissues. NEP activity in the tracheal epithelium, but not in epithelium-denuded tissues, was decreased in infected animals. These results suggest that M. pneumoniae infection causes airway bronchoconstrictor hyper-responsiveness to neurokinin A and bradykinin and that this effect may be associated with an inhibition of epithelial NEP activity.

  1. Sensory neuropeptides and the human lower airways: present state and future directions.

    PubMed

    Joos, G F; Germonpre, P R; Kips, J C; Peleman, R A; Pauwels, R A

    1994-06-01

    The sensory neuropeptides, substance P and neurokinin A, are present in human airway nerves, beneath and within the epithelium, around blood vessels and submucosal glands, and within the bronchial smooth muscle layer. Studies on autopsy tissue, bronchoalveolar lavage and sputum suggest that in asthma the substance P content of the airways may be increased. Neurokinin A is a more potent bronchoconstrictor than substance P. Asthmatics are hyperresponsive to neurokinin A and substance P. The neuropeptide degrading enzyme, neutral endopeptidase is present in the airways and is involved in the degradation of endogenously released and exogenously administered substance P and neurokinin A, both in normal and asthmatic subjects. As for other indirect bronchoconstrictor stimuli, the effect of neurokinin A on airway calibre in asthmatics can be inhibited by pretreatment with nedocromil sodium. Evidence is accumulating, not only from studies in animals but also from experiments on human airways, that tachykinins may also cause mucus secretion and plasma extravasation. They also have important proinflammatory effects, such as the chemoattraction of eosinophils and neutrophils, the adhesion of neutrophils, and the stimulation of lymphocytes, macrophages and mast cells. The tachykinins interact with the targets on the airways by specific tachykinin receptors. The NK1 and the NK2 receptor have been characterized in human airways, both pharmacologically and by cloning. The NK2 receptor is responsible for the in vitro contraction of normal airways, whilst the NK1 receptor is responsible for most of the other airway effects. Because of their presence in the airways and because of their ability to mimic the various pathophysiological features of asthma, substance P and neurokinin A are presently considered as possible mediators of asthma. The present development of potent and selective tachykinin antagonists will allow us to further define the role of tachykinins in the pathogenesis

  2. Endoscopic diode-laser applications in airway surgery

    NASA Astrophysics Data System (ADS)

    Pankratov, Michail M.; Wang, Zhi; Rebeiz, Elie E.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Gleich, Lyon L.

    1994-09-01

    A technique was developed to secure small mucosal grafts onto the airway wound with fibrin/albumin tissue adhesive mixed with ICG dye and irradiated with a 810 nm diode laser. An in vitro study of the tensile strength produced strong mucosal soldering which was adequate to fix grafts in place. In vivo studies showed that wounds with mucosal grafts were completely covered by regenerated squamous cells in 1 week and by ciliated epithelium in 2 weeks. Excellent healing was observed at 6 and 14 days postoperatively and the histology at 28 days found normal epithelium over the vocal cord lesion. This soldering technique is a less traumatic treatment for patients with extensive lesions of the larynx of various origin. Diode laser soldering with ICG-doped fibrin tissue adhesive was evaluated in tracheal anastomosis as a substitute for absorbable sutures. In vitro studies demonstrated strong anastomoses with minimal tissue damage. In vivo animal study showed that these anastomoses had less fibrosis and tissue damage than control animals repaired with sutures only.

  3. Differentiated human airway organoids to assess infectivity of emerging influenza virus.

    PubMed

    Zhou, Jie; Li, Cun; Sachs, Norman; Chiu, Man Chun; Wong, Bosco Ho-Yin; Chu, Hin; Poon, Vincent Kwok-Man; Wang, Dong; Zhao, Xiaoyu; Wen, Lei; Song, Wenjun; Yuan, Shuofeng; Wong, Kenneth Kak-Yuen; Chan, Jasper Fuk-Woo; To, Kelvin Kai-Wang; Chen, Honglin; Clevers, Hans; Yuen, Kwok-Yung

    2018-06-26

    Novel reassortant avian influenza H7N9 virus and pandemic 2009 H1N1 (H1N1pdm) virus cause human infections, while avian H7N2 and swine H1N1 virus mainly infect birds and pigs, respectively. There is no robust in vitro model for assessing the infectivity of emerging viruses in humans. Based on a recently established method, we generated long-term expanding 3D human airway organoids which accommodate four types of airway epithelial cells: ciliated, goblet, club, and basal cells. We report differentiation conditions which increase ciliated cell numbers to a nearly physiological level with synchronously beating cilia readily discernible in every organoid. In addition, the differentiation conditions induce elevated levels of serine proteases, which are essential for productive infection of human influenza viruses and low-pathogenic avian influenza viruses. We also established improved 2D monolayer culture conditions for the differentiated airway organoids. To demonstrate the ability of differentiated airway organoids to identify human-infective virus, 3D and 2D differentiated airway organoids are applied to evaluate two pairs of viruses with known distinct infectivity in humans, H7N9/Ah versus H7N2 and H1N1pdm versus an H1N1 strain isolated from swine (H1N1sw). The human-infective H7N9/Ah virus replicated more robustly than the poorly human-infective H7N2 virus; the highly human-infective H1N1pdm virus replicated to a higher titer than the counterpart H1N1sw. Collectively, we developed differentiated human airway organoids which can morphologically and functionally simulate human airway epithelium. These differentiated airway organoids can be applied for rapid assessment of the infectivity of emerging respiratory viruses to human. Copyright © 2018 the Author(s). Published by PNAS.

  4. Analysis of Cell Turnover in the Bronchiolar Epithelium Through the Normal Aging Process.

    PubMed

    Ortega-Martínez, Marta; Rodríguez-Flores, Laura E; Ancer-Arellano, Adriana; Cerda-Flores, Ricardo M; de-la-Garza-González, Carlos; Ancer-Rodríguez, Jesús; Jaramillo-Rangel, Gilberto

    2016-08-01

    Aging is associated with changes in the lung that leads to a decrease in its function. Alterations in structure and function in the small airways are well recognized in chronic lung diseases. The aim of this study was the assessment of cell turnover in the bronchiolar epithelium of mouse through the normal aging process. Lungs from CD1 mice at the age of 2, 6, 12, 18, or 24 months were fixed in neutral-buffered formalin and paraffin-embedded. Proliferating cell nuclear antigen was examined by immunohistochemistry. Apoptosis was analyzed by in situ end-labeling of fragmented DNA. Epithelial dimensions were analyzed by morphometry. The 2-month-old mice showed significantly higher number of proliferating cells when compared with mice at all other age groups. The number of apoptotic cells in mice at 24 months of age was significantly greater than in mice at all other age groups. Thus, the number of epithelial cells decreased as the age of the subject increased. We also found reductions in both area and height of the bronchiolar epithelium in mice at 18 and 24 months of age. We found a decrease in the total number of epithelial cells in the aged mice, which was accompanied by a thinning of the epithelium. These changes reflect a dysregulated tissue regeneration process in the bronchiolar epithelium that might predispose to respiratory diseases in elderly subjects.

  5. Decreased Fibronectin Production Significantly Contributes to Dysregulated Repair of Asthmatic Epithelium

    PubMed Central

    Kicic, Anthony; Hallstrand, Teal S.; Sutanto, Erika N.; Stevens, Paul T.; Kobor, Michael S.; Taplin, Christopher; Paré, Peter D.; Beyer, Richard P.; Stick, Stephen M.; Knight, Darryl A.

    2010-01-01

    Rationale: Damage to airway epithelium is followed by deposition of extracellular matrix (ECM) and migration of adjacent epithelial cells. We have shown that epithelial cells from children with asthma fail to heal a wound in vitro. Objectives: To determine whether dysregulated ECM production by the epithelium plays a role in aberrant repair in asthma. Methods: Airway epithelial cells (AEC) from children with asthma (n = 36), healthy atopic control subjects (n = 23), and healthy nonatopic control subjects (n = 53) were investigated by microarray, gene expression and silencing, transcript regulation analysis, and ability to close mechanical wounds. Measurements and Main Results: Time to repair a mechanical wound in vitro by AEC from healthy and atopic children was not significantly different and both were faster than AEC from children with asthma. Microarray analysis revealed differential expression of multiple gene sets associated with repair and remodeling in asthmatic AEC. Fibronectin (FN) was the only ECM component whose expression was significantly lower in asthmatic AEC. Expression differences were verified by quantitative polymerase chain reaction and ELISA, and reduced FN expression persisted in asthmatic cells over passage. Silencing of FN expression in nonasthmatic AEC inhibited wound repair, whereas addition of FN to asthmatic AEC restored reparative capacity. Asthmatic AEC failed to synthesize FN in response to wounding or cytokine/growth factor stimulation. Exposure to 5′, 2′deoxyazacytidine had no effect on FN expression and subsequent analysis of the FN promoter did not show evidence of DNA methylation. Conclusions: These data show that the reduced capacity of asthmatic epithelial cells to secrete FN is an important contributor to the dysregulated AEC repair observed in these cells. PMID:20110557

  6. Airway Obstruction Due to Bronchial Vascular Injury after Sulfur Mustard Analog Inhalation

    PubMed Central

    Veress, Livia A.; O'Neill, Heidi C.; Hendry-Hofer, Tara B.; Loader, Joan E.; Rancourt, Raymond C.; White, Carl W.

    2010-01-01

    Rationale: Sulfur mustard (SM) is a frequently used chemical warfare agent, even in modern history. SM inhalation causes significant respiratory tract injury, with early complications due to airway obstructive bronchial casts, akin to those seen after smoke inhalation and in single-ventricle physiology. This process with SM is poorly understood because animal models are unavailable. Objectives: To develop a rat inhalation model for airway obstruction with the SM analog 2-chloroethyl ethyl sulfide (CEES), and to investigate the pathogenesis of bronchial cast formation. Methods: Adult rats were exposed to 0, 5, or 7.5% CEES in ethanol via nose-only aerosol inhalation (15 min). Airway microdissection and confocal microscopy were used to assess cast formation (4 and 18 h after exposure). Bronchoalveolar lavage fluid (BALF) retrieval and intravascular dye injection were done to evaluate vascular permeability. Measurements and Main Results: Bronchial casts, composed of abundant fibrin and lacking mucus, occluded dependent lobar bronchi within 18 hours of CEES exposure. BALF contained elevated concentrations of IgM, protein, and fibrin. Accumulation of fibrin-rich fluid in peribronchovascular regions (4 h) preceded cast formation. Monastral blue dye leakage identified bronchial vessels as the site of leakage. Conclusions: After CEES inhalation, increased permeability from damaged bronchial vessels underlying damaged airway epithelium leads to the appearance of plasma proteins in both peribronchovascular regions and BALF. The subsequent formation of fibrin-rich casts within the airways then leads to airways obstruction, causing significant morbidity and mortality acutely after exposure. PMID:20639443

  7. Matrilysin (Matrix Metalloproteinase-7) Mediates E-Cadherin Ectodomain Shedding in Injured Lung Epithelium

    PubMed Central

    McGuire, John K.; Li, Qinglang; Parks, William C.

    2003-01-01

    Matrilysin (matrix metalloproteinase-7) is highly expressed in lungs of patients with pulmonary fibrosis and other conditions associated with airway and alveolar injury. Although matrilysin is required for closure of epithelial wounds ex vivo, the mechanism of its action in repair is unknown. We demonstrate that matrilysin mediates shedding of E-cadherin ectodomain from injured lung epithelium both in vitro and in vivo. In alveolar-like epithelial cells, transfection of activated matrilysin resulted in shedding of E-cadherin and accelerated cell migration. In vivo, matrilysin co-localized with E-cadherin at the basolateral surfaces of migrating tracheal epithelium, and the reorganization of cell-cell junctions seen in wild-type injured tissue was absent in matrilysin-null samples. E-cadherin ectodomain was shed into the bronchoalveolar lavage fluid of bleomycin-injured wild-type mice, but was not shed in matrilysin-null mice. These findings identify E-cadherin as a novel substrate for matrilysin and indicate that shedding of E-cadherin ectodomain is required for epithelial repair. PMID:12759241

  8. Pro-inflammatory mediators disrupt glucose homeostasis in airway surface liquid ‡

    PubMed Central

    Garnett, James P.; Nguyen, Trang T.; Moffatt, James D.; Pelham, Elizabeth R.; Kalsi, Kameljit K.; Baker, Emma H.; Baines, Deborah L.

    2012-01-01

    The glucose concentration of the airway surface liquid (ASL) is much lower than blood and is tightly regulated by the airway epithelium. ASL glucose is elevated in patients with viral colds, cystic fibrosis, chronic obstructive pulmonary disease (COPD) and asthma. Elevated ASL glucose is also associated with increased incidence of respiratory infection. However, the mechanism by which ASL glucose increases under inflammatory conditions is unknown. The aim of this study was to investigate the effect of pro-inflammatory mediators (PIMs) on the mechanisms governing airway glucose homeostasis in polarised monolayers of human airway (H441) and primary human bronchial epithelial (HBE) cells. Monolayers were treated with TNF-α, IFN-γ and LPS over 72 hours. PIM treatment led to increase in ASL glucose concentration and significantly reduced H441 and HBE transepithelial resistance (RT). This decline in RT was associated with an increase in paracellular permeability of glucose. Similar enhanced rates of paracellular glucose flux were also observed across excised trachea from LPS-treated mice. Interestingly, PIMs enhanced glucose uptake across the apical, but not the basolateral, membrane of H441 and HBE monolayers. This increase was predominantly via phloretin-sensitive GLUT-mediated uptake, which coincided with an increase in GLUT2 and GLUT10 abundance. In conclusion, exposure of airway epithelial monolayers to PIMs results in increased paracellular glucose flux, and apical GLUT-mediated glucose uptake. However uptake was insufficient to limit glucose accumulation in ASL. These data provide for the first time, a mechanism to support clinical findings that ASL glucose concentration is increased in patients with airway inflammation. PMID:22623330

  9. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration.

    PubMed

    Shariff, Sami; Shelfoon, Christopher; Holden, Neil S; Traves, Suzanne L; Wiehler, Shahina; Kooi, Cora; Proud, David; Leigh, Richard

    2017-06-01

    Airway remodeling, a characteristic feature of asthma, begins in early life. Recurrent human rhinovirus (HRV) infections are a potential inciting stimulus for remodeling. One component of airway remodeling is an increase in airway smooth muscle cell (ASMC) mass with a greater proximity of the ASMCs to the airway epithelium. We asked whether human bronchial epithelial cells infected with HRV produced mediators that are chemotactic for ASMCs. ASMC migration was investigated using the modified Boyden Chamber and the xCELLigence Real-Time Cell Analyzer (ACEA Biosciences Inc., San Diego, CA). Multiplex bead analysis was used to measure HRV-induced epithelial chemokine release. The chemotactic effects of CCL5, CXCL8, and CXCL10 were also examined. Supernatants from HRV-infected epithelial cells caused ASMC chemotaxis. Pretreatment of ASMCs with pertussis toxin abrogated chemotaxis, as did treatment with formoterol, forskolin, or 8-bromo-cAMP. CCL5, CXCL8, and CXCL10 were the most up-regulated chemokines produced by HRV-infected airway epithelial cells. When recombinant CCL5, CXCL8, and CXCL10 were used at levels found in epithelial supernatants, they induced ASMC chemotaxis similar to that seen with epithelial cell supernatants. When examined individually, CCL5 was the most effective chemokine in causing ASMC migration, and treatment of supernatant from HRV-infected epithelial cells with anti-CCL5 antibodies significantly attenuated ASMC migration. These findings suggest that HRV-induced CCL5 can induce ASMC chemotaxis and thus may contribute to the pathogenesis of airway remodeling in patients with asthma.

  10. Aspergillus fumigatus Infection-Induced Neutrophil Recruitment and Location in the Conducting Airway of Immunocompetent, Neutropenic, and Immunosuppressed Mice.

    PubMed

    Shevchenko, Marina A; Bogorodskiy, Andrey O; Troyanova, Natalia I; Servuli, Ekaterina A; Bolkhovitina, Elena L; Büldt, Georg; Fahlke, Christoph; Gordeliy, Valentin I; Gensch, Thomas; Borshchevskiy, Valentin I; Sapozhnikov, Alexander M

    2018-01-01

    Susceptibility to fungal infection is commonly associated with impaired neutrophil responses. To study the mechanisms underlying this association, we investigated neutrophil recruitment to the conducting airway wall after Aspergillus fumigatus conidium inhalation in mouse models of drug-induced immunosuppression and antibody-mediated neutrophil depletion (neutropenia) by performing three-dimensional confocal laser-scanning microscopy of whole-mount primary bronchus specimens. Actin staining enabled visualization of the epithelial and smooth muscle layers that mark the airway wall. Gr-1 + or Ly6G + neutrophils located between the epithelium and smooth muscles were considered airway wall neutrophils. The number of airway wall neutrophils for immunocompetent, immunosuppressed, and neutropenic mice before and 6 h after A. fumigatus infection were analyzed and compared. Our results show that the number of conducting airway wall neutrophils in immunocompetent mice significantly increased upon inflammation, while a dramatic reduction in this number was observed following immunosuppression and neutropenia. Interestingly, a slight increase in the infiltration of neutrophils into the airway wall was detected as a result of infection, even in immunosuppressed and neutropenic mice. Taken together, these data indicate that neutrophils are present in intact conducting airway walls and the number elevates upon A. fumigatus infection. Conducting airway wall neutrophils are affected by both neutropenia and immunosuppression.

  11. Aspergillus fumigatus Infection-Induced Neutrophil Recruitment and Location in the Conducting Airway of Immunocompetent, Neutropenic, and Immunosuppressed Mice

    PubMed Central

    Bogorodskiy, Andrey O.; Troyanova, Natalia I.; Servuli, Ekaterina A.; Bolkhovitina, Elena L.; Büldt, Georg; Fahlke, Christoph; Gordeliy, Valentin I.; Gensch, Thomas; Sapozhnikov, Alexander M.

    2018-01-01

    Susceptibility to fungal infection is commonly associated with impaired neutrophil responses. To study the mechanisms underlying this association, we investigated neutrophil recruitment to the conducting airway wall after Aspergillus fumigatus conidium inhalation in mouse models of drug-induced immunosuppression and antibody-mediated neutrophil depletion (neutropenia) by performing three-dimensional confocal laser-scanning microscopy of whole-mount primary bronchus specimens. Actin staining enabled visualization of the epithelial and smooth muscle layers that mark the airway wall. Gr-1+ or Ly6G+ neutrophils located between the epithelium and smooth muscles were considered airway wall neutrophils. The number of airway wall neutrophils for immunocompetent, immunosuppressed, and neutropenic mice before and 6 h after A. fumigatus infection were analyzed and compared. Our results show that the number of conducting airway wall neutrophils in immunocompetent mice significantly increased upon inflammation, while a dramatic reduction in this number was observed following immunosuppression and neutropenia. Interestingly, a slight increase in the infiltration of neutrophils into the airway wall was detected as a result of infection, even in immunosuppressed and neutropenic mice. Taken together, these data indicate that neutrophils are present in intact conducting airway walls and the number elevates upon A. fumigatus infection. Conducting airway wall neutrophils are affected by both neutropenia and immunosuppression. PMID:29577051

  12. Urban particulate matter increases human airway epithelial cell IL-1β secretion following scratch wounding and H1N1 influenza A exposure in vitro.

    PubMed

    Hirota, Jeremy A; Marchant, David J; Singhera, Gurpreet K; Moheimani, Fatemeh; Dorscheid, Delbert R; Carlsten, Christopher; Sin, Don; Knight, Darryl

    2015-01-01

    The airway epithelium represents the first line of defense against inhaled environmental insults including air pollution, allergens, and viruses. Epidemiological and experimental evidence has suggested a link between air pollution exposure and the symptoms associated with respiratory viral infections. We hypothesized that multiple insults integrated by the airway epithelium NLRP3 inflammasome would result in augmented IL-1β release and downstream cytokine production following respiratory virus exposure. We performed in vitro experiments with a human airway epithelial cell line (HBEC-6KT) that involved isolated or combination exposure to mechanical wounding, PM10, house dust mite, influenza A virus, and respiratory syncytial virus. We performed confocal microscopy to image the localization of PM10 within HBEC-6KT and ELISAs to measure soluble mediator production. Airway epithelial cells secrete IL-1β in a time-dependent fashion that is associated with internalization of PM10 particles. PM10 exposure primes human airway epithelial cells to subsequent models of cell damage and influenza A virus exposure. Prior PM10 exposure had no effect on IL-1β responses to RSV exposure. Finally we demonstrate that PM10-priming of human airway epithelial cell IL-1β and GM-CSF responses to influenza A exposure are sensitive to NLRP3 inflammasome inhibition. Our results suggest the NLRP3 inflammasome may contribute to exaggerated immune responses to influenza A virus following periods of poor air quality. Intervention strategies targeting the NLRP3 inflammasome in at risk individuals may restrict poor air quality priming of mucosal immune responses that result from subsequent viral exposures.

  13. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP) and CCL11/eotaxin-1 in human asthmatic airways.

    PubMed

    Nino, Gustavo; Huseni, Shehlanoor; Perez, Geovanny F; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M; Pillai, Dinesh K; Rose, Mary C

    2014-01-01

    Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  14. Directional Secretory Response of Double Stranded RNA-Induced Thymic Stromal Lymphopoetin (TSLP) and CCL11/Eotaxin-1 in Human Asthmatic Airways

    PubMed Central

    Perez, Geovanny F.; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M.; Pillai, Dinesh K.; Rose, Mary C.

    2014-01-01

    Background Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Methods Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Results Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. Conclusions There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations. PMID:25546419

  15. Loop diuretics inhibit cholinergic and noncholinergic nerves in guinea pig airways.

    PubMed

    Elwood, W; Lötvall, J O; Barnes, P J; Chung, K F

    1991-06-01

    Furosemide, a loop diuretic, is known to inhibit the response to a variety of indirect bronchial challenges in humans but does not inhibit bronchoconstriction induced by inhaled methacholine or histamine. We have investigated the effects of the two loop diuretics, furosemide (10(-6) to 10(-3) M) and bumetanide (10(-7) to 10(-4) M), on airway smooth muscle contraction in vitro induced by electrical field stimulation (EFS), or exogenously applied acetylcholine (ACh) or substance P (SP) in guinea pig tracheal and bronchial smooth muscle strips pretreated with indomethacin (10(-5) M) and propranolol (10(-6) M). Both furosemide and bumetanide caused a concentration-dependent inhibition of cholinergically mediated neural contraction in the trachea. The effect of furosemide was not influenced by the presence of airway epithelium. Furthermore, both furosemide and bumetanide inhibited in a concentration-dependent fashion nonadrenergic, noncholinergic (NANC) contraction induced by electrical field stimulation of bronchi pretreated with atropine (10(-5) M). Neither drug at the highest concentration inhibited the responses to exogenous acetylcholine (10(-8) to 10(-2) M) or substance P (10(-9) to 10(-5) M). Thus loop diuretics inhibit the neurally induced contraction of guinea pig airways without a direct effect on airway smooth muscle. We conclude that loop diuretics inhibit both cholinergic and excitatory NANC neurotransmission in guinea pig airways and that this effect may be related to their inhibitory effects on the sodium-potassium-chloride cotransporter.

  16. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  17. Dual p38/JNK Mitogen Activated Protein Kinase Inhibitors Prevent Ozone-Induced Airway Hyperreactivity in Guinea Pigs

    PubMed Central

    Verhein, Kirsten C.; Salituro, Francesco G.; Ledeboer, Mark W.; Fryer, Allison D.; Jacoby, David B.

    2013-01-01

    Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, ip) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction. PMID:24058677

  18. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment.

    PubMed

    Pichavant, Muriel; Charbonnier, Anne-Sophie; Taront, Solenne; Brichet, Anne; Wallaert, Benoît; Pestel, Joel; Tonnel, André-Bernard; Gosset, Philippe

    2005-04-01

    Airway dendritic cells (DCs) are crucial for allergen-induced sensitization and inflammation in allergic asthma. After allergen challenge, an increased number of DCs is observed in airway epithelium from patients with allergy. Because Der p 1, a cysteine protease allergen from Dermatophagoides pteronyssinus , induces chemokine production by bronchial epithelial cells (BECs), the purpose of this investigation was to evaluate the capacity of BEC exposed to Der p 1 to recruit DCs. Chemotactic activity of BEAS-2B, a bronchial epithelial cell line, and BECs from nonatopic controls and patients with allergic asthma was evaluated on the migration of precursors, immature and mature monocyte-derived DCs (MDDCs), and CD34 + -derived Langerhans cells (LCs). C-C chemokine ligand (CCL)-2, CCL5, and C-X-C chemokine ligand 10 production by BEAS-2B and BEC was increased after Der p 1 exposure, whereas the proenzyme proDer p 1 devoid of enzymatic activity had no effect. Der p 1 stimulation of BEAS-2B and BEC from both groups increased significantly the recruitment of MDDC precursors, depending on CCL2, CCL5, and C-X-C chemokine ligand 10 production. In a reconstituted polarized epithelium, apical application of Der p 1 enhanced MDDC precursor migration into the epithelial layer. Moreover, Der p 1 stimulation of BEC from patients with asthma but not from controls increased the migration of LC precursors, mainly dependent on CCL20 secretion. No migration of immature and mature DCs was observed. These data confirmed that BECs participate in the homeostasis of the DC network present within the bronchial epithelium through the secretion of chemokines. In allergic asthma, upregulation of CCL20 production induced LC recruitment, the role of which remains to be determined.

  19. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth.

    PubMed

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-05-02

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period.

  20. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium.

    PubMed

    Kamdar, O; Le, Wei; Zhang, J; Ghio, A J; Rosen, G D; Upadhyay, D

    2008-10-29

    We studied the effects of airborne particulate matters (PM) on cystic fibrosis (CF) epithelium. We noted that PM enhanced human CF bronchial epithelial apoptosis, activated caspase-9 and PARP-1; and reduced mitochondrial membrane potential. Mitochondrial inhibitors (4,4-diisothiocyanatostilbene-2,2'disulfonic acid, rotenone and thenoyltrifluoroacetone) blocked PM-induced generation of reactive oxygen species and apoptosis. PM upregulated pro-apoptotic Bad, Bax, p53 and p21; and enhanced mitochondrial localization of Bax. The anti-apoptotic Bcl-2, Bcl-xl, Mcl-1 and Xiap remained unchanged; however, overexpression of Bcl-xl blocked PM-induced apoptosis. Accordingly, we provide the evidence that PM enhances oxidative stress and mitochondrial signaling mediated apoptosis via the modulation of Bcl family proteins in CF.

  1. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth

    PubMed Central

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-01-01

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period. PMID:24785116

  2. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.

    PubMed

    Haq, Iram J; Gray, Michael A; Garnett, James P; Ward, Christopher; Brodlie, Malcolm

    2016-03-01

    Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. The Complex Interaction Between Polycystic Ovary Syndrome and Hereditary Angioedema: Case Reports and Review of the Literature.

    PubMed

    Iahn-Aun, Marina; Aun, Marcelo Vivolo; Motta, Antonio Abílio; Kalil, Jorge; Giavina-Bianchi, Pedro; Hayashida, Sylvia Asaka; Baracat, Edmund Chada; Maciel, Gustavo Arantes

    2017-07-01

    Hereditary angioedema (HAE) is a rare but severe disease, with high risk of death, and attacks have been associated to high estrogen levels. Polycystic ovary syndrome (PCOS) is a common hyperandrogenic condition, which is frequently treated with combined oral contraceptives. The aim of this study was to describe 2 clinical cases of young women diagnosed as having PCOS who developed HAE attacks after the introduction of combined estrogen-progestin pills to treat PCOS symptoms. Literature review of sex hormones' role in genesis of HAE attacks and possible mechanisms involved. In the cases reported, after initiation of combined contraceptives, patients presented with facial swelling with airway involvement (laryngeal edema) and abdominal pain. They had a familial history of angioedema and normal C1 inhibitor (C1-INH) levels, leading to the diagnosis of HAE with normal C1-INH (HAEnC1-INH) or HAE type III. After suspension of exogenous estrogen, patients remained asymptomatic from HAE. HAEnC1-INH is an estrogen-dependent form of HAE. It is well established that exogenous estrogen triggers attacks of all types of HAE. However, this is the first description of the association between PCOS and HAE, in which PCOS could be masking HAE symptoms. We propose that PCOS might have a protective role regarding HAE attacks, because of its particular hormonal features, that is, hyperandrogenism and relative stable levels of estradiol. The use of combined estrogen-progestin compounds in women with PCOS and HAE must be avoided, and treatment must be individualized.

  4. Novel usage of fresh frozen plasma in hereditary angioedema.

    PubMed

    Hanizah, N; Affirul, C A; Farah, N A; Shamila, M A; Ridzuan, M I

    2016-01-01

    Hereditary angioedema (HAE) is a rare and potentially life threatening autosomal dominant disease characterized by recurrent episodes of cutaneous and mucosal oedema. It results from reduced expression or loss of function of CI-esterase inhibitors (C1-INH). As opposed to the more common histamine-mediated angioedema, HAE does not respond well to conventional treatments with anti-histamines, steroids and adrenaline. Early recognition and timely intervention with the correct treatment are crucial particularly preventing airway obstruction. New disease specific treatment including plasma derived or recombinant C1-INH, ecallantide and icatibant have recently emerged and its appropriate use can reduce HAE-associated mortality and morbidity. However due to its costs, these disease specific treatments have yet to reach Malaysia. Despite that no randomized clinical trial on FFP has been performed, its efficacy in treating acute attacks of HAE is only demonstrated in case studies. This case report illustrates the successful treatment of acute HAE episode with FFP in a Malaysian government hospital setting.

  5. Enhanced Viral Replication and Modulated Innate Immune Responses in Infant Airway Epithelium following H1N1 Infection

    PubMed Central

    Clay, Candice C.; Reader, J. Rachel; Gerriets, Joan E.; Wang, Theodore T.; Harrod, Kevin S.

    2014-01-01

    ABSTRACT Influenza is the cause of significant morbidity and mortality in pediatric populations. The contribution of pulmonary host defense mechanisms to viral respiratory infection susceptibility in very young children is poorly understood. As a surrogate to compare mucosal immune responses of infant and adult lungs, rhesus monkey primary airway epithelial cell cultures were infected with pandemic influenza A/H1N1 virus in vitro. Virus replication, cytokine secretion, cell viability, and type I interferon (IFN) pathway PCR array profiles were evaluated for both infant and adult cultures. In comparison with adult cultures, infant cultures showed significantly increased levels of H1N1 replication, reduced alpha interferon (IFN-α) protein synthesis, and no difference in cell death following infection. Age-dependent differences in expression levels of multiple genes associated with the type I IFN pathway were observed in H1N1-infected cultures. To investigate the pulmonary and systemic responses to H1N1 infection in early life, infant monkeys were inoculated with H1N1 by upper airway administration. Animals were monitored for virus and parameters of inflammation over a 14-day period. High H1N1 titers were recovered from airways at day 1, with viral RNA remaining detectable until day 9 postinfection. Despite viral clearance, bronchiolitis and alveolitis persisted at day 14 postinfection; histopathological analysis revealed alveolar septal thickening and intermittent type II pneumocyte hyperplasia. Our overall findings are consistent with the known susceptibility of pediatric populations to respiratory virus infection and suggest that intrinsic developmental differences in airway epithelial cell immune function may contribute to the limited efficacy of host defense during early childhood. IMPORTANCE To the best of our knowledge, this study represents the first report of intrinsic developmental differences in infant airway epithelial cells that may contribute to the

  6. High Degree of Overlap between Responses to a Virus and to the House Dust Mite Allergen in Airway Epithelial Cells

    PubMed Central

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Background Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. Methods We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). Results We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Conclusions Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other. PMID:24498371

  7. High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells.

    PubMed

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other.

  8. Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis

    PubMed Central

    Sandefur, Conner I.; Boucher, Richard C.; Elston, Timothy C.

    2017-01-01

    Mucociliary clearance is composed of three components (i.e., mucin secretion, airway surface hydration, and ciliary-activity) which function coordinately to clear inhaled microbes and other foreign particles from airway surfaces. Airway surface hydration is maintained by water fluxes driven predominantly by active chloride and sodium ion transport. The ion channels that mediate electrogenic ion transport are regulated by extracellular purinergic signals that signal through G protein-coupled receptors. These purinoreceptors and the signaling pathways they activate have been identified as possible therapeutic targets for treating lung disease. A systems-level description of airway surface liquid (ASL) homeostasis could accelerate development of such therapies. Accordingly, we developed a mathematical model to describe the dynamic coupling of ion and water transport to extracellular purinergic signaling. We trained our model from steady-state and time-dependent experimental measurements made using normal and cystic fibrosis (CF) cultured human airway epithelium. To reproduce CF conditions, reduced chloride secretion, increased potassium secretion, and increased sodium absorption were required. The model accurately predicted ASL height under basal normal and CF conditions and the collapse of surface hydration due to the accelerated nucleotide metabolism associated with CF exacerbations. Finally, the model predicted a therapeutic strategy to deliver nucleotide receptor agonists to effectively rehydrate the ASL of CF airways. PMID:28808008

  9. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    PubMed Central

    2011-01-01

    Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens. PMID:21232137

  10. Expression of taste receptors in solitary chemosensory cells of rodent airways.

    PubMed

    Tizzano, Marco; Cristofoletti, Mirko; Sbarbati, Andrea; Finger, Thomas E

    2011-01-13

    Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.

  11. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  12. Airway epithelial repair in health and disease: Orchestrator or simply a player?

    PubMed

    Iosifidis, Thomas; Garratt, Luke W; Coombe, Deirdre R; Knight, Darryl A; Stick, Stephen M; Kicic, Anthony

    2016-04-01

    Epithelial cells represent the most important surface of contact in the body and form the first line of defence of the body to external environment. Consequently, epithelia have numerous roles in order to maintain a homeostatic defence barrier. Although the epithelium has been extensively studied over several decades, it remains the focus of new research, indicating a lack of understanding that continues to exist around these cells in specific disease settings. Importantly, evidence is emerging that airway epithelial cells in particular have varied complex functions rather than simple passive roles. One area of current interest is its role following injury. In particular, the epithelial-specific cellular mechanisms regulating their migration during wound repair remain poorly understood and remain an area that requires much needed investigation. A better understanding of the physiological, cellular and molecular wound repair mechanisms could assist in elucidating pathological processes that contribute to airway epithelial pathology. This review attempts to highlight migration-specific and cell-extracellular matrix (ECM) aspects of repair used by epithelial cells under normal and disease settings, in the context of human airways. © 2016 Asian Pacific Society of Respirology.

  13. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  14. Early growth response gene 1 is essential for urban particulate matter-induced inflammation and mucus hyperproduction in airway epithelium.

    PubMed

    Xu, Feng; Cao, Jiaofei; Luo, Man; Che, Luanqing; Li, Wen; Ying, Songmin; Chen, Zhihua; Shen, Huahao

    2018-05-19

    Particulate matter (PM) has been implicated as a risk factor for human airway disorders. However, the biological mechanisms underlying the correlation between PM exposure and adverse airway effects have not yet been fully clarified. The objective of this study was to explore the possible role of early growth response gene 1 (Egr-1) in PM-induced toxic effects in pulmonary inflammation and mucus hyperproduction in vitro and in vivo. Particulate matter exposure induced a rapid Egr-1 expression in human bronchial epithelial (HBE) cells and in mouse lungs. Genetic blockage of Egr-1 markedly reduced PM-induced inflammatory cytokines, e.g., IL6 and IL8, and MUC5AC in HBE cells, and these effects were mechanistically mediated by the nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) pathways, respectively. Egr-1-knockout mice displayed significantly reduced airway inflammation and mucus hyperproduction in response to PM exposure in vivo. Moreover, polycyclic aromatic hydrocarbons (PAHs) contained in the PM also induced Egr-1 expression, and also played a role in the inflammatory responses and mucus production. Taken together, our data reveal novel Egr-1 signaling that mediates the NF-κB and AP-1 pathways to orchestrate PM-induced pulmonary inflammation and mucus hyperproduction, suggesting that Egr-1 inhibition could be an effective therapeutic approach for airway disorders or disease exacerbations induced by airborne particulate pollution. Copyright © 2018. Published by Elsevier B.V.

  15. Polymeric nanocarriers for transport modulation across the pulmonary epithelium: dendrimers, polymeric nanoparticles, and their nanoblends.

    PubMed

    Bharatwaj, Balaji; Dimovski, Radovan; Conti, Denise S; da Rocha, Sandro R P

    2014-05-01

    The purpose of this study was to (a) Determine the cellular transport and uptake of amine-terminated generation 3 (G3) poly(amido amine) (PAMAM) dendrimers across an in vitro model of the pulmonary epithelium, and the ability to modulate their transport by forming nanoblends of the dendrimers with biodegradable solid polymeric nanoparticles (NPs) and (b) to formulate dendrimer nanocarriers in portable oral inhalation devices and evaluate their aerosol characteristics. To that end, fluorescein isothiocyanate (FITC)-labeled G3 PAMAM dendrimer nanocarriers (DNCs) were synthesized, and also encapsulated within poly lactide-co-glycolide nanoparticles (NPs). Transport and uptake of both DNCs encapsulated within NPs (nanoblends) and unencapsulated DNCs were tracked across polarized monolayers of airway epithelial cells, Calu-3. DNCs were also formulated as core-shell microparticles in pressurized metered-dose inhalers (pMDIs) and their aerodynamic properties evaluated by Andersen cascade impaction. The apparent permeability of DNCs across the airway epithelial model was similar to that of a paracellular marker of comparable molar mass--order of 10(-7) cm s(-1). The transport and cellular internalization of the DNCs can be modulated by formulating them as nanoblends. The transport of the DNCs across the lung epithelium was completely suppressed within the time of the experiment (5 h) when formulated as blends. The encapsulation also prevents saturation of the cellular internalization profile. Nanoblending may be a potential strategy to modulate the rate of transport and cellular uptake of DNCs, and thus be used as a design strategy to achieve enhanced local or systemic drug delivery.

  16. Comparison of vectorial ion transport in primary murine airway and human sinonasal air-liquid interface cultures, models for studies of cystic fibrosis, and other airway diseases.

    PubMed

    Zhang, Shaoyan; Fortenberry, James A; Cohen, Noam A; Sorscher, Eric J; Woodworth, Bradford A

    2009-01-01

    The purpose of this study was to compare vectorial ion transport within murine trachea, murine nasal septa, and human sinonasal cultured epithelium. Our hypothesis is that murine septal epithelium, rather than trachea, will more closely mimic the electrophysiology properties of human sinonasal epithelium. Epithelium from murine trachea, murine septa, and human sinonasal tissue were cultured at an air-liquid interface to confluence and full differentiation. A limited number of homozygous dF508 epithelia were also cultured. Monolayers were mounted in modified Ussing chambers to investigate pharmacologic manipulation of ion transport. The change in forskolin-stimulated current (delta-I(SC), expressed as micro-A/cm(2)) in murine septal (n = 19; 16.84 +/- 2.09) and human sinonasal (n = 18; 12.15 +/- 1.93) cultures was significantly increased over murine tracheal cultures (n = 15; 6.75 +/- 1.35; p = 0.035 and 0.0005, respectively). Forskolin-stimulated I(SC) was inhibited by the specific cystic fibrosis transmembrane regulator (CFTR) inhibitor INH-172 (5 microM). No forskolin-stimulated I(SC) was shown in cultures of dF508 homozygous murine septal epithelium (n = 3). Murine septal I(SC) was largely inhibited by amiloride (12.03 +/- 0.66), whereas human sinonasal cultures had a very limited response (0.70 +/- 0.47; p < 0.0001). The contribution of CFTR to stimulated chloride current as measured by INH-172 was highly significantly different between all groups (murine septa, 19.51 +/- 1.28; human sinonasal, 11.12 +/- 1.58; murine trachea, 4.85 +/- 0.49; p < 0.0001). Human sinonasal and murine septal epithelial cultures represent a useful model for studying CFTR activity and may provide significant advantages over lower airway tissues for investigating upper and lower respiratory pathophysiology.

  17. Bacillus licheniformis in geogenic dust induces inflammation in respiratory epithelium.

    PubMed

    Pickering, Janessa; Teo, Teck Hui; Thornton, Ruth B; Kirkham, Lea-Ann; Zosky, Graeme R; Clifford, Holly D

    2018-07-01

    Exposure to environmental geogenic (or earth-derived) dust can lead to more frequent and severe infections in the human airway. Particulate matter < 10 µm (PM 10 ) is the component of air pollution that is commonly associated with the exacerbation of respiratory diseases. We have previously demonstrated that mice exposed to geogenic dust PM 10 experienced an exacerbation of inflammatory responses to influenza A virus. Whether geogenic dust PM 10 also exacerbates respiratory bacterial infection is not yet known, nor are the components of the dust that drive these responses. We treated airway bronchial epithelial cells (NuLi-1) with UV-irradiated geogenic dust PM 10 from six remote Western Australian towns. High levels of IL-6 and IL-8 production were observed, as well as persistent microbial growth. 16 S rRNA sequencing of the growth identified the microbe as Bacillus licheniformis, a spore-forming, environmentally abundant bacterium. We next investigated the interaction of B. licheniformis with respiratory epithelium in vitro to determine whether this exacerbated infection with a bacterial respiratory pathogen (non-typeable Haemophilus influenzae, NTHi). Heat treatment (100 °C) of all PM 10 samples eliminated B. licheniformis contamination and reduced epithelial inflammatory responses, suggesting that heat-labile and/or microbial factors were involved in the host response to geogenic dust PM 10 . We then exposed NuLi-1 epithelium to increasing doses of the isolated Bacillus licheniformis (multiplicity of infection of 10:1, 1:1 or 0.1:1 bacteria: cells) for 1, 3, and 24 h. B. licheniformis and NTHi infection (association and invasion) was assessed using a standard gentamicin survival assay, and epithelial release of IL-6 and IL-8 was measured using a bead based immunoassay. B. licheniformis was cytotoxic to NuLi-1 cells at 24 h. At 3 h post-challenge, B. licheniformis elicited high IL-6 and IL-8 inflammatory responses from NuLi-1 cells compared with

  18. Increased Expression of FoxM1 Transcription Factor in Respiratory Epithelium Inhibits Lung Sacculation and Causes Clara Cell Hyperplasia

    PubMed Central

    Wang, I-Ching; Zhang, Yufang; Snyder, Jonathan; Sutherland, Mardi J.; Burhans, Michael S.; Shannon, John M.; Park, Hyun Jung; Whitsett, Jeffrey A.; Kalinichenko, Vladimir V.

    2010-01-01

    Foxm1 is a member of the Forkhead Box (Fox) family of transcription factors. Foxm1 (previously called Foxm1b, HFH-11B, Trident, Win, or MPP2) is expressed in multiple cell types and plays important roles in cellular proliferation, differentiation and tumorigenesis. Genetic deletion of Foxm1 from mouse respiratory epithelium during initial stages of lung development inhibits lung maturation and causes respiratory failure after birth. However, the role of Foxm1 during postnatal lung morphogenesis remains unknown. In the present study, Foxm1 expression was detected in epithelial cells of conducting and peripheral airways and changing dynamically with lung maturation. To discern the biological role of Foxm1 in the prenatal and postnatal lung, a novel transgenic mouse line that expresses a constitutively active form of FoxM1 (FoxM1 N-terminal deletion mutant or FoxM1-ΔN) under the control of lung epithelial-specific SPC promoter was produced. Expression of the FoxM1-ΔN transgene during embryogenesis caused epithelial hyperplasia, inhibited lung sacculation and expression of the type II epithelial marker, pro-SPC. Expression of FoxM1-ΔN mutant during the postnatal period did not influence alveologenesis but caused focal airway hyperplasia and increased proliferation of Clara cells. Likewise, expression of FoxM1-ΔN mutant in conducting airways with Scgb1a1 promoter was sufficient to induce Clara cell hyperplasia. Furthermore, FoxM1-ΔN cooperated with activated K-Ras to induce lung tumor growth in vivo. Increased activity of Foxm1 altered lung sacculation, induced proliferation in the respiratory epithelium and accelerated lung tumor growth, indicating that precise regulation of Foxm1 is critical for normal lung morphogenesis and development of lung cancer. PMID:20816795

  19. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    PubMed Central

    Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.

    2017-01-01

    Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172

  20. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    PubMed Central

    Stø, Ida M.; Orr, Russell J. S.; Fooyontphanich, Kim; Jin, Xu; Knutsen, Jonfinn M. B.; Fischer, Urs; Tranbarger, Timothy J.; Nordal, Inger; Aalen, Reidunn B.

    2015-01-01

    The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2), controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step toward testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologs of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL) peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2, and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot—eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales) and grasses (Poales). IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications (WGD). We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species. PMID:26579174

  1. Bronchial airway gene expression signatures in mouse lung squamous cell carcinoma and their modulation by cancer chemopreventive agents

    PubMed Central

    Szabo, Eva; Miller, Mark Steven; Lubet, Ronald A.; You, Ming; Wang, Yian

    2017-01-01

    Due to exposure to environmental toxicants, a “field cancerization” effect occurs in the lung resulting in the development of a field of initiated but morphologically normal appearing cells in the damaged epithelium of bronchial airways with dysregulated gene expression patterns. Using a mouse model of lung squamous cell carcinoma (SCC), we performed transcriptome sequencing (RNA-Seq) to profile bronchial airway gene expression and found activation of the PI3K and Myc signaling networks in cytologically normal bronchial airway epithelial cells of mice with preneopastic lung SCC lesions, which was reversed by treatment with the PI3K Inhibitor XL-147 and pioglitazone, respectively. Activated MYC signaling was also present in premalignant and tumor tissues from human lung SCC patients. In addition, we identified a key microRNA, mmu-miR-449c-5p, whose suppression significantly up-regulated Myc expression in the normal bronchial airway epithelial cells of mice with early stage SCC lesions. We developed a novel bronchial genomic classifier in mice and validated it in humans. In the classifier, Ppbp (pro-platelet basic protein) was overexpressed 115 fold in the bronchial airways of mice with preneoplastic lung SCC lesions. This is the first report that demonstrates Ppbp as a novel biomarker in the bronchial airway for lung cancer diagnosis. PMID:27935865

  2. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.

    PubMed

    Hu, Yue; Lou, Jian; Mao, Yuan-Yuan; Lai, Tian-Wen; Liu, Li-Yao; Zhu, Chen; Zhang, Chao; Liu, Juan; Li, Yu-Yan; Zhang, Fan; Li, Wen; Ying, Song-Min; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-12-01

    MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.

  3. Molecular architecture of the fruit fly's airway epithelial immune system.

    PubMed

    Wagner, Christina; Isermann, Kerstin; Fehrenbach, Heinz; Roeder, Thomas

    2008-09-29

    immune system of the fly's airway epithelium has a very peculiar organization. A great variety of pattern recognition receptors as well as of potential effector molecules are conspicuous, whereas signalling presumably occurs through a single NF-kappaB activating pathway. This architecture will allow reacting if confronted with different bacterial or fungal elicitors by activation of a multitude of effectors.

  4. Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Whiteman, Suzanne; Gey van Pittius, Daniel; He, Yonghong; Wang, Ruikang K.; Spiteri, Monica A.

    2004-04-01

    An ideal diagnostic system for the human airways should be able to detect and define early development of premalignant pathological lesions, to facilitate optimal curative treatment and prevent irreversible and/or invasive lung disease. There is great need for exploration of safe, repeatable imaging techniques which can run at real-time and with high spatial resolution. In this study, optical coherence tomography (OCT) was utilized to acquire cross-sectional images of upper and lower airways using fresh pig lung resections as a model system. Obtained OCT images were compared with parallel tissue characterization by conventional histological analysis. Our objective was to determine whether OCT differentiates the composite structural layers and inherent anatomical variations along different airway locations. The data show that OCT can clearly display the multilayered structure of the airways. The subtle architectural differences in three separate anatomical locations including trachea, main bronchus and tertiary bronchus were clearly delineated. Images of the appropriate anatomical profiles, with depth of up to 2 mm and 10 µm spatial resolution were obtained by our current OCT system, which was sufficient for recognition of the epithelium, subepithelial tissues and cartilage. In addition, the relative thickness of individual structural components was accurately reflected and comparable to histological sections. These data support OCT as a highly feasible, optical biopsy tool, which merits further exploration for early diagnosis of human airway epithelial pathology.

  5. Normoxic Cyclic GMP-independent Oxidative Signaling by Nitrite Enhances Airway Epithelial Cell Proliferation and Wound Healing

    PubMed Central

    Wang, Ling; Frizzell, Sheila A.; Zhao, Xuejun; Gladwin, Mark T.

    2013-01-01

    The airway epithelium provides important barrier and host defense functions. Recent studies reveal that nitrite is an endocrine reservoir of nitric oxide (NO) bioactivity that is converted to NO by enzymatic reductases along the physiological oxygen gradient. Nitrite signaling has been described as NO dependent activation mediated by reactions with deoxygenated redox active hemoproteins, such as hemoglobin, myoglobin, neuroglobin, xanthine oxidoreductase (XO) and NO synthase at low pH and oxygen tension. However, nitrite can also be readily oxidized to nitrogen dioxide (NO2•) via heme peroxidase reactions, suggesting the existence of alternative oxidative signaling pathways for nitrite under normoxic conditions. In the present study we examined normoxic signaling effects of sodium nitrite on airway epithelial cell wound healing. In an in vitro scratch injury model under normoxia, we exposed cultured monolayers of human airway epithelial cells to various concentrations of sodium nitrite and compared responses to NO donor. We found sodium nitrite potently enhanced airway epithelium wound healing at physiological concentrations (from 1uM). The effect of nitrite was blocked by the NO and NO2• scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (c-PTIO). Interestingly, nitrite treatment did not increase cyclic guanosine monophosphate (cGMP) levels under these normoxic conditions, even in the presence of a phosphodiesterase 5 inhibitor, suggesting cGMP independent signaling. Consistent with an oxidative signaling pathway requiring hydrogen peroxide (H2O2)/heme peroxidase/NO2• signaling, the effects of nitrite were potentiated by superoxide dismutase (SOD) and low concentration H2O2, whereas inhibited completely by catalase, followed by downstream extracellular-signal-regulated kinase (ERK) 1/2 activation. Our data represent the first description of normoxic nitrite signaling on lung epithelial cell proliferation and wound healing and suggest

  6. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.

    PubMed Central

    Amitani, R; Taylor, G; Elezis, E N; Llewellyn-Jones, C; Mitchell, J; Kuze, F; Cole, P J; Wilson, R

    1995-01-01

    The mechanisms by which Aspergillus fumigatus colonizes the respiratory mucosa are unknown. Culture filtrates of eight of nine clinical isolates of A. fumigatus slowed ciliary beat frequency and damaged human respiratory epithelium in vitro. These changes appeared to occur concurrently. Culture filtrates of two clinical isolates of Candida albicans had no effect on ciliated epithelium. We have purified and characterized cilioinhibitory factors of a clinical isolate of A. fumigatus. The cilioinhibitory activity was heat labile, reduced by dialysis, and partially extractable into chloroform. The activity was associated with both high- and low-molecular-weight factors, as determined by gel filtration on Sephadex G-50. A low-molecular-weight cilioinhibitory factor was further purified by reverse-phase high-performance liquid chromatography and shown by mass spectrometry to be gliotoxin, a known metabolite of A. fumigatus. Gliotoxin significantly slowed ciliary beat frequency in association with epithelial damage at concentrations above 0.2 microgram/ml; other Aspergillus toxins, i.e., fumagillin and helvolic acid, were also cilioinhibitory but at much higher concentrations. High-molecular-weight (> or = 35,000 and 25,000) cilioinhibitory materials had neither elastolytic nor proteolytic activity and remain to be identified. Thus, A. fumigatus produces a number of biologically active substances which slow ciliary beating and damage epithelium and which may influence colonization of the airways. PMID:7543879

  7. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.

    PubMed

    Amitani, R; Taylor, G; Elezis, E N; Llewellyn-Jones, C; Mitchell, J; Kuze, F; Cole, P J; Wilson, R

    1995-09-01

    The mechanisms by which Aspergillus fumigatus colonizes the respiratory mucosa are unknown. Culture filtrates of eight of nine clinical isolates of A. fumigatus slowed ciliary beat frequency and damaged human respiratory epithelium in vitro. These changes appeared to occur concurrently. Culture filtrates of two clinical isolates of Candida albicans had no effect on ciliated epithelium. We have purified and characterized cilioinhibitory factors of a clinical isolate of A. fumigatus. The cilioinhibitory activity was heat labile, reduced by dialysis, and partially extractable into chloroform. The activity was associated with both high- and low-molecular-weight factors, as determined by gel filtration on Sephadex G-50. A low-molecular-weight cilioinhibitory factor was further purified by reverse-phase high-performance liquid chromatography and shown by mass spectrometry to be gliotoxin, a known metabolite of A. fumigatus. Gliotoxin significantly slowed ciliary beat frequency in association with epithelial damage at concentrations above 0.2 microgram/ml; other Aspergillus toxins, i.e., fumagillin and helvolic acid, were also cilioinhibitory but at much higher concentrations. High-molecular-weight (> or = 35,000 and 25,000) cilioinhibitory materials had neither elastolytic nor proteolytic activity and remain to be identified. Thus, A. fumigatus produces a number of biologically active substances which slow ciliary beating and damage epithelium and which may influence colonization of the airways.

  8. Visualization of ex vivo human ciliated epithelium and induced flow using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ling, Yuye; Gamm, Uta A.; Yao, Xinwen; Arteaga-Solis, Emilio; Emala, Charles W.; Choma, Michael A.; Hendon, Christine P.

    2017-04-01

    The ciliated epithelium is important to the human respiratory system because it clears mucus that contains harmful microorganisms and particulate matter. We report the ex vivo visualization of human trachea/bronchi ciliated epithelium and induced flow characterized by using spectral-domain optical coherence tomography (SD-OCT). A total number of 17 samples from 7 patients were imaged. Samples were obtained from Columbia University Department of Anesthesiology's tissue bank. After excision, the samples were placed in Gibco Medium 199 solution with oxygen at 4°C until imaging. The samples were maintained at 36.7°C throughout the experiment. The imaging protocol included obtaining 3D volumes and 200 consecutive B-scans parallel to the head-to-feet direction (superior-inferior axis) of the airway, using Thorlabs Telesto system at 1300 nm at 28 kHz A-line rate and a custom built high resolution SDOCT system at 800nm at 32 kHz A-line rate. After imaging, samples were processed with H and E histology. Speckle variance of the time resolved datasets demonstrate significant contrast at the ciliated epithelium sites. Flow images were also obtained after injecting 10μm polyester beads into the solution, which shows beads traveling trajectories near the ciliated epithelium areas. In contrary, flow images taken in the orthogonal plane show no beads traveling trajectories. This observation is in line with our expectation that cilia drive flow predominantly along the superior-inferior axis. We also observed the protective function of the mucus, shielding the epithelium from the invasion of foreign objects such as microspheres. Further studies will be focused on the cilia's physiological response to environmental changes such as drug administration and physical injury.

  9. Abnormal epithelial structure and chronic lung inflammation after repair of chlorine-induced airway injury

    PubMed Central

    Mo, Yiqun; Chen, Jing; Humphrey, David M.; Fodah, Ramy A.; Warawa, Jonathan M.

    2014-01-01

    Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium. PMID:25398987

  10. Metachronal waves in epithelium cilia to transport bronchial mucus in airways

    NASA Astrophysics Data System (ADS)

    Favier, Julien; Sylvain, Chateau; D'Ortona, Umberto; Poncet, Sébastien

    2017-11-01

    Metachronal waves of beating cilia are an efficient mechanism to transport mucus in human airways. The numerical results we will present will shed new light on the understanding of chronic respiratory diseases, such as Asthma of COPD. A coupled lattice Boltzmann - Immersed Boundary is used to simulate the multiphase environment in which the cilia are immersed: a periciliary layer and the mucus layer. A purely hydrodynamical feedback of the fluids is taken into account, and a coupling parameter α is introduced, allowing the tuning of both the direction of the wave propagation, and the strength of the fluid feedback. The cilia, initially set in a random state, quickly synchronize with their immediate neighbors giving birth to metachronal waves. A comparative study of both antipleptic and sympleptic waves is performed by imposing the metachrony. Antiplectic waves are found to be the most efficient to transport and mix fluids compared to other random or synchronised cilia motions. The numerical results will be discussed and compared to experimental and clinical results obtained by collaborators, to progress on the understanding of the inner mechanisms of chronic respiratory diseases.

  11. Functional short- and long-term effects of nasal CPAP with and without humidification on the ciliary function of the nasal respiratory epithelium.

    PubMed

    Sommer, J Ulrich; Kraus, Marius; Birk, Richard; Schultz, Johannes D; Hörmann, Karl; Stuck, Boris A

    2014-03-01

    Continuous positive airway pressure (CPAP) is the gold standard in the treatment of obstructive sleep apnea (OSA), but its impact on ciliary function is unclear to date. Furthermore, CPAP is associated with numerous side effects related to the nose and upper airway. Humidified CPAP is used to relieve these symptoms, but again, little is known regarding its effect on ciliary function of the nasal respiratory epithelium. In this prospective, randomized, crossover trial, 31 patients with OSA (AHI >15/h) were randomized to two treatment arms: nasal continuous positive airway pressure (nCPAP) with humidification or nCPAP without humidification for one night in each modality to assess short-term effects of ciliary beat frequency (CBF) and mucus transport time (MTT) and consecutively for 8 weeks in each modality to assess long-term effects in a crossover fashion. The baseline CBF was 4.8 ± 0.6 Hz, and baseline MTT was 540 ± 221 s. After one night of CPAP with and without humidification, ciliary function increased moderately yet with statistical significance (p <0.05). The short-term groups with and without humidification did not differ statistically significant. Regarding long-term effects of CPAP, a statistically significant increase in ciliary function above the baseline level and above the short-term level was shown without humidification (7.2 ± 0.4 Hz; 402 ± 176 s; p <0.01). The increase above baseline level was even more pronounced with humidification (9.3 ± 0.7 Hz; 313 ± 95 s; p <0.01). There was a statistically significant difference between both groups at long-term assessment with regard to CBF (p <0.01). Independent of airway humidification, nCPAP has moderate effects on short-term ciliary function of the nasal respiratory epithelium. However, a significant increase in ciliary function-both in terms of an increased CBF and a decreased MTT-was detected after long-term use. The effect was more pronounced when humidification was used during nCPAP.

  12. Role of airway epithelial injury in murine orthotopic tracheal allograft rejection.

    PubMed

    Kuo, Elbert; Bharat, Ankit; Shih, Jennifer; Street, Tyler; Norris, Jenyi; Liu, Wei; Parks, William; Walter, Michael; Patterson, G Alexander; Mohanakumar, T

    2006-10-01

    Murine tracheal transplantation is a model used to study bronchiolitis obliterans syndrome, a major cause of morbidity and mortality after lung transplantation. Unlike murine heterotopic tracheal transplants, orthotopic transplantation does not cause luminal obliteration despite major histocompatibility antigen mismatch. Repopulation of the tracheal allografts with recipient-derived epithelium confers protection against luminal obliteration. The purpose of this study was to determine whether (1) orthotopic tracheal transplantation showed signs of allograft rejection, and (2) airway epithelial cell injury promoted orthotopic tracheal allograft rejection. Forty isogeneic (C57BL/6 to C57BL/6) and 40 allogeneic (BALB/c to C57BL/6) orthotopic tracheal transplants were performed. Damage to airway epithelial cells was induced by Sendai viral (SdV) infection and tracheal transplantation into non-reepithelializing matrix metalloproteinase-7 knockout (MMP7-KO) recipient mice. Percent fibrosis and lamina propria to cartilage ratio were calculated with computer assistance on harvested allografts. Allografts showed significantly more intramural fibrosis compared with isografts at 30, 60, and 180 days after transplant without luminal occlusion. Tracheal allografts infected with SdV showed an increase in fibrosis and lamina propria to cartilage ratio compared with noninfected controls. Allografts retrieved from MMP7-KO recipients also showed a significant increase in fibrosis and lamina propria to cartilage ratio. Although orthotopic tracheal transplantation does not cause luminal obliteration, it results in increased fibrosis in allografts. Damage to the respiratory epithelium by viral infection or defective reepithelialization after transplant as seen in MMP7-KO recipient mice leads to changes consistent with chronic allograft rejection, suggesting a role for epithelial injury in bronchiolitis obliterans syndrome development.

  13. Central Role of the NF-κB Pathway in the Scgb1a1-Expressing Epithelium in Mediating Respiratory Syncytial Virus-Induced Airway Inflammation.

    PubMed

    Tian, Bing; Yang, Jun; Zhao, Yingxin; Ivanciuc, Teodora; Sun, Hong; Wakamiya, Maki; Garofalo, Roberto P; Brasier, Allan R

    2018-06-01

    Lower respiratory tract infection with respiratory syncytial virus (RSV) produces profound inflammation. Despite an understanding of the role of adaptive immunity in RSV infection, the identity of the major sentinel cells initially triggering inflammation is controversial. Here we evaluate the role of nonciliated secretoglobin ( Scgb1a1 )-expressing bronchiolar epithelial cells in RSV infection. Mice expressing a tamoxifen (TMX)-inducible Cre recombinase-estrogen receptor fusion protein (CreERTM) knocked into the Scgb1a1 locus were crossed with mice that harbor a RelA conditional allele ( RelA fl ), with loxP sites flanking exons 5 to 8 of the Rel homology domain. The Scgb1a1 CreERTM/+ × RelA fl/fl mouse is a RelA conditional knockout (RelA CKO ) of a nonciliated epithelial cell population enriched in the small bronchioles. TMX-treated RelA CKO mice have reduced pulmonary neutrophilic infiltration and impaired expression and secretion of NF-κB-dependent cytokines in response to RSV. In addition, RelA CKO mice had reduced expression levels of interferon (IFN) regulatory factor 1/7 (IRF1/7) and retinoic acid-inducible gene I (RIG-I), components of the mucosal IFN positive-feedback loop. We demonstrate that RSV replication induces RelA to complex with bromodomain-containing protein 4 (BRD4), a cofactor required for RNA polymerase II (Pol II) phosphorylation, activating the atypical histone acetyltransferase (HAT) activity of BRD4 required for phospho-Ser2 Pol II formation, histone H3K122 acetylation, and cytokine secretion in vitro and in vivo TMX-treated RelA CKO mice have less weight loss and reduced airway obstruction/hyperreactivity yet similar levels of IFN-γ production despite higher levels of virus production. These data indicate that the nonciliated Scgb1a1 -expressing epithelium is a major innate sensor for restricting RSV infection by mediating neutrophilic inflammation and chemokine and mucosal IFN production via the RelA-BRD4 pathway. IMPORTANCE RSV

  14. Effects of the calcium ionophore A23187 on airway responsiveness to histamine and substance P in guinea pigs.

    PubMed

    Uno, D; Tsukagoshi, H; Hisada, T; Iwamae, S; Mori, M

    1997-03-01

    We evaluated the mechanism of the airway hyperresponsiveness (AHR) induced by a calcium ionophore in guinea pigs. Airway responsiveness to intravenous histamine (HS) and substance P (SP) was measured 24 h after a 1-h exposure to aerosolized A23187 (0.03 or 0.1 mg/ml) or its vehicle (10% DMSO). Changes were assessed by calculating -logPC350HS and logPC350SP. Neutral endopeptidase (NEP) activity in the airway tissues, as well as the nitrite (NO2) levels and the cell population in bronchoalveolar lavage fluid (BALF) was determined after measurement of pulmonary function. Changes in SP-induced vascular permeability 24 h after exposure to A23187 were measured by the Evans Blue dye extravasation technique. Exposure to A23187 caused a significant AHR to SP, along with a significant increase in the number of neutrophils and epithelial cells in the BALF. While there was no significant change in NEP activity in the airway tissues, the levels of nitrite in the BALF were significantly decreased in A23187-exposed animals. Significant correlations were found between the number of epithelial cells in the BALF and logPC350SP (r = 0.477, p < 0.05) and between nitrite levels in the BALF and -logPC350SP (r = 0.491, p < 0.05) A23187 exposure did not significantly change the SP-induced airway microvascular leakage. These data suggest that A23187 exposure induced AHR to SP possibly by reducing NO levels in the airway tissues. This may be due to damaged airway epithelium and/or NO breakdown by activated inflammatory cells in the airways of these guinea pigs.

  15. Nicotine-induced activation of soluble adenylyl cyclase participates in ion transport regulation in mouse tracheal epithelium.

    PubMed

    Hollenhorst, Monika I; Lips, Katrin S; Kummer, Wolfgang; Fronius, Martin

    2012-11-27

    Functional nicotinic acetylcholine receptors (nAChR) have been identified in airway epithelia and their location in the apical and basolateral membrane makes them targets for acetylcholine released from neuronal and non-neuronal sources. One function of nAChR in airway epithelia is their involvement in the regulation of transepithelial ion transport by activation of chloride and potassium channels. However, the mechanisms underlying this nicotine-induced activation of ion transport are not fully elucidated. Thus, the aim of this study was to investigate the involvement of adenylyl cyclases in the nicotine-induced ion current in mouse tracheal epithelium. To evaluate the nicotine-mediated changes of transepithelial ion transport processes electrophysiological Ussing chamber measurements were applied and nicotine-induced ion currents were recorded in the absence and presence of adenylyl cyclase inhibitors. The ion current changes induced by nicotine (100 μM, apical) were not altered in the presence of high doses of atropine (25 μM, apical and basolateral), underlining the involvement of nAChR. Experiments with the transmembrane adenylyl cyclase inhibitor 2'5'-dideoxyadenosine (50 μM, apical and basolateral) and the soluble adenylyl cyclase inhibitor KH7 (10 μM, apical and basolateral) both reduced the nicotine-mediated ion current to a similar extent. Yet, a statistically significant reduction was obtained only in the experiments with KH7. This study indicates that nicotine binding to nAChR in mouse tracheal epithelium activates transepithelial ion transport involving adenylyl cyclase activity. This might be important for novel therapeutic strategies targeting epithelial ion transport mediated by the non-neuronal cholinergic system. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Influence of pirfenidone on airway hyperresponsiveness and inflammation in a Brown-Norway rat model of asthma.

    PubMed

    Mansoor, Jim K; Decile, Kendra C; Giri, Shri N; Pinkerton, Kent E; Walby, William F; Bratt, Jennifer M; Grewal, Harinder; Margolin, Solomon B; Schelegle, Edward S

    2007-01-01

    Pirfenidone was administered to sensitized Brown Norway rats prior to a series of ovalbumin challenges. Airway hyperresponsiveness, inflammatory cell infiltration, mucin and collagen content, and the degree of epithelium and smooth muscle staining for TGF-beta were examined in control, sensitized, and sensitized/challenged rats fed a normal diet or pirfenidone diet. Pirfenidone had no effect on airway hyperresponsiveness, but reduced distal bronchiolar cell infiltration and proximal and distal mucin content. Statistical analysis showed that the control group and sensitized/challenged pirfenidone diet group TGF-beta staining intensity scores were not significantly different from isotype controls, but that the staining intensity scores for the sensitized/challenged normal diet group was significantly different from isotype controls. These results suggest that pirfenidone treatment is effective in reducing some of the components of acute inflammation induced by allergen challenge.

  17. Dimethylthiourea protects against chlorine induced changes in airway function in a murine model of irritant induced asthma.

    PubMed

    McGovern, Toby K; Powell, William S; Day, Brian J; White, Carl W; Govindaraju, Karuthapillai; Karmouty-Quintana, Harry; Lavoie, Normand; Tan, Ju Jing; Martin, James G

    2010-10-06

    Exposure to chlorine (Cl2) causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl2-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury. Balb/C mice were exposed to Cl2 gas (100 ppm) for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl2, airway responsiveness to aerosolized methacholine (MCh) was measured. Bronchoalveolar lavage (BAL) was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg) was administered one hour before or one hour following Cl2 exposure. Mice exposed to Cl2 had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl2 exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl2-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl2 prevented lipid peroxidation in the lung. Following Cl2 exposure glutathione (GSH) was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl2 exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU. Our data show that the anti-oxidant DMTU is effective in attenuating Cl2 induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.

  18. Abnormal epithelial structure and chronic lung inflammation after repair of chlorine-induced airway injury.

    PubMed

    Mo, Yiqun; Chen, Jing; Humphrey, David M; Fodah, Ramy A; Warawa, Jonathan M; Hoyle, Gary W

    2015-01-15

    Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium. Copyright © 2015 the American Physiological Society.

  19. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    PubMed

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  20. Airway-parenchymal interdependence

    PubMed Central

    Paré, Peter D; Mitzner, Wayne

    2015-01-01

    In this manuscript we discuss the interaction of the lung parenchyma and the airways as well as the physiological and pathophysiological significance of this interaction. These two components of the respiratory organ can be thought of as two independent elastic structures but in fact the mechanical properties of one influence the behavior of the other. Traditionally the interaction has focused on the effects of the lung on the airways but there is good evidence that the opposite is also true, i.e., that the mechanical properties of the airways influence the elastic properties of the parenchyma. The interplay between components of the respiratory system including the airways, parenchyma and vasculature is often referred to as “interdependence.” This interdependence transmits the elastic recoil of the lung to create an effective pressure that dilates the airways as transpulmonary pressure and lung volume increase. By using a continuum mechanics analysis of the lung parenchyma, it is possible to predict the effective pressure between the airways and parenchyma, and these predictions can be empirically evaluated. Normal airway caliber is maintained by this pressure in the adventitial interstitium of the airway, and it counteracts airway compression during forced expiration as well as the ability of airway smooth muscle to narrow airways. Interdependence has physiological and pathophysiological significance. Weakening of the forces of interdependence contributes to airway dysfunction and gas exchange impairment in acute and chronic airway diseases including asthma and emphysema. PMID:23723029

  1. Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.

    PubMed

    Tang, Zan; Hu, Yucheng; Wang, Zheng; Jiang, Kewu; Zhan, Cheng; Marshall, Wallace F; Tang, Nan

    2018-02-05

    Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The human airway trypsin-like protease modulates the urokinase receptor (uPAR, CD87) structure and functions.

    PubMed

    Beaufort, Nathalie; Leduc, Dominique; Eguchi, Hiroshi; Mengele, Karin; Hellmann, Daniela; Masegi, Tsukio; Kamimura, Takashi; Yasuoka, Susumu; Fend, Falko; Chignard, Michel; Pidard, Dominique

    2007-05-01

    The human airway trypsin-like protease (HAT) is a respiratory epithelium-associated, type II transmembrane serine protease, which is also detected as an extracellular enzyme in lung fluids during airway inflammatory disorders. We have evaluated its capacity to affect the urokinase-type plasminogen activator receptor (uPAR), a membrane glycolipid-anchored, three-domain (D1D2D3) glycoprotein that plays a crucial role in innate immunity and inflammation by supporting cell migration and matrix degradation, with structure and biological properties that can be regulated via limited endoproteolysis. With the use of immunoblotting, flow immunocytometry, and ELISA analyses applied to a recombinant uPAR protein and to uPAR-expressing monocytic and human bronchial epithelial cells, it was shown that exposure of uPAR to soluble HAT in the range of 10-500 nM resulted in the proteolytic processing of the full-length (D1D2D3) into the truncated (D2D3) species, with cleavage occurring in the D1 to D2 linker sequence after arginine residues at position 83 and 89. Using immunohistochemistry, we found that both HAT and uPAR were expressed in the human bronchial epithelium. Moreover, transient cotransfection in epithelial cells showed that membrane coexpression of the two partners produced a constitutive and extensive shedding of the D1 domain, occurring for membrane-associated HAT concentrations in the nanomolar range. Because the truncated receptor was found to be unable to bind two of the major uPAR ligands, the adhesive matrix protein vitronectin and the serine protease urokinase, it thus appears that proteolytic regulation of uPAR by HAT is likely to modulate cell adherence and motility, as well as tissue remodeling during the inflammatory response in the airways.

  3. LYSOSOMAL FRACTIONS FROM TRANSITIONAL EPITHELIUM

    PubMed Central

    Kanczak, Norbert M.; Krall, Joseph I.; Hayes, E. Russell; Elliott, Willard B.

    1965-01-01

    Histochemical data suggested that the so called lipoid granules of transitional epithelium in some species are equivalent to lysosomes. Scrapings of bovine and canine transitional epithelium were subjected to differential centrifugation to confirm this identification biochemically. Fractions of rat liver, the classic source of lysosomes, were also prepared by the same methods to compare with the fractions obtained from urinary epithelium. In contrast to rat liver, uroepithelial fractions with a high relative specific activity for hydrolases were sedimented before the heavy mitochondria. Microscopically, these fractions contained the highest proportion of lipoid granules. The size and sedimentation characteristics of lysosomes from transitional epithelium more closely resembled those of lysosomes derived from rat kidney than those isolated from liver. PMID:14326111

  4. Increase of poorly proliferated p63+ /Ki67+ basal cells forming multiple layers in the aberrant remodeled epithelium in nasal polyps.

    PubMed

    Zhao, L; Li, Y Y; Li, C W; Chao, S S; Liu, J; Nam, H N; Dung, N T N; Shi, L; Wang, D Y

    2017-06-01

    Aberrant epithelial remodeling with the ectopic expression of p63 (basal cell markers) is an important pathologic phenomenon seen in chronically inflamed airway epithelium such as in nasal polyps (NPs). Biopsies were obtained from 55 NP patients and 18 healthy controls (inferior turbinate). Among NP patients, 15 were treated with oral and nasal steroids, so that two sets of NP biopsies were taken before and after the treatments. p63, Ki67, type IV β-tubulin, and cell cycle markers were investigated in these specimens. The number of p63 + cells is significantly higher in both hyperplastic (1.53-fold, P < 0.0001) and squamous metaplastic (2.02-fold, P < 0.0001) epithelium from NPs than from healthy controls. There are three types of proliferative basal cells (p63 + /Ki67 + ) which are in different phases of the cell cycle, such as G1 phase (type I cells), S to G2 phase (type II cells), and mitosis (type III cells). Of importance, some type I cells may arrest after proliferation although they may still be p63 + /Ki67 + . In healthy epithelium, the ratio of the type I and II cells is almost 50:50. However, less type II cells are found in hyperplastic epithelium (34.85%, P = 0.012) and in squamous metaplastic epithelium (30.77%, P = 0.02) together with the presence of type III cells (3.45%, P = 0.01). These findings were not changed after steroid treatments. An increase of poorly proliferated basal cells forming multiple layers, which may stain for basal cell markers but does not form a proper epidermal barrier, is an important histopathologic phenomenon in aberrant remodeled epithelium of NPs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. MTOR Suppresses Cigarette Smoke-Induced Epithelial Cell Death and Airway Inflammation in Chronic Obstructive Pulmonary Disease.

    PubMed

    Wang, Yong; Liu, Juan; Zhou, Jie-Sen; Huang, Hua-Qiong; Li, Zhou-Yang; Xu, Xu-Chen; Lai, Tian-Wen; Hu, Yue; Zhou, Hong-Bin; Chen, Hai-Pin; Ying, Song-Min; Li, Wen; Shen, Hua-Hao; Chen, Zhi-Hua

    2018-04-15

    Airway epithelial cell death and inflammation are pathological features of chronic obstructive pulmonary disease (COPD). Mechanistic target of rapamycin (MTOR) is involved in inflammation and multiple cellular processes, e.g., autophagy and apoptosis, but little is known about its function in COPD pathogenesis. In this article, we illustrate how MTOR regulates cigarette smoke (CS)-induced cell death, airway inflammation, and emphysema. Expression of MTOR was significantly decreased and its suppressive signaling protein, tuberous sclerosis 2 (TSC2), was increased in the airway epithelium of human COPD and in mouse lungs with chronic CS exposure. In human bronchial epithelial cells, CS extract (CSE) activated TSC2, inhibited MTOR, and induced autophagy. The TSC2-MTOR axis orchestrated CSE-induced autophagy, apoptosis, and necroptosis in human bronchial epithelial cells; all of which cooperatively regulated CSE-induced inflammatory cytokines IL-6 and IL-8 through the NF-κB pathway. Mice with a specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly augmented airway inflammation and airspace enlargement in response to CS exposure, accompanied with enhanced levels of autophagy, apoptosis, and necroptosis in the lungs. Taken together, these data demonstrate that MTOR suppresses CS-induced inflammation and emphysema-likely through modulation of autophagy, apoptosis, and necroptosis-and thus suggest that activation of MTOR may represent a novel therapeutic strategy for COPD. Copyright © 2018 by The American Association of Immunologists, Inc.

  6. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.

    PubMed

    2017-07-01

    We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P  < .001). Using bronchial gene expression data from the AEGIS-1 patients, we found statistically significant concordant cancer-associated gene expression alterations between the two airway sites ( P  < .001). Differentially expressed genes in the nose were enriched for genes associated with the regulation of apoptosis and immune system signaling. A nasal lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P  = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P  = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection. © The Author 2017. Published by Oxford

  7. Correlative Ultratructural Investigations of Airway Epithelium Following Experimental Exposure to Defined Air Pollutants and Lifestyle Exposure to Tobacco Smoke

    EPA Science Inventory

    Context: Investigations of cell/molecular level effects of in vivo exposure of airway mucosa of experimental animals to common irritant gases have demonstrated structural and physiological changes reflective of breaches in epithelial barrier function, presence of inflammatory cel...

  8. Role of Airway Recruitment and Derecruitment in Lung Injury

    PubMed Central

    Ghadiali, S. N.; Huang, Y.

    2011-01-01

    The mechanical forces generated during the ventilation of patients with acute lung injury causes significant lung damage and inflammation. Low-volume ventilation protocols are commonly used to prevent stretch-related injury that occurs at high lung volumes. However, the cyclic closure and reopening of pulmonary airways at low lung volumes, i.e., derecruitment and recruitment, also causes significant lung damage and inflammation. In this review, we provide an overview of how biomedical engineering techniques are being used to elucidate the complex physiological and biomechanical mechanisms responsible for cellular injury during recruitment/derecruitment. We focus on the development of multiscale, multiphysics computational models of cell deformation and injury during airway reopening. These models, and the corresponding in vitro experiments, have been used to both elucidate the basic mechanisms responsible for recruitment/derecruitment injury and to develop alternative therapies that make the epithelium more resistant to injury. For example, models and experiments indicate that fluidization of the cytoskeleton is cytoprotective and that changes in cytoskeletal structure and cell mechanics can be used to mitigate the mechanotransduction of oscillatory pressure into inflammatory signaling. The continued application of biomedical engineering techniques to the problem of recruitment/derecruitment injury may therefore lead to novel and more effective therapies. PMID:22011235

  9. Humidification and heating of inhaled gas in patients with artificial airway. A narrative review.

    PubMed

    Plotnikow, Gustavo Adrián; Accoce, Matias; Navarro, Emiliano; Tiribelli, Norberto

    2018-03-01

    Instrumentation of the airways in critical patients (endotracheal tube or tracheostomy cannula) prevents them from performing their function of humidify and heating the inhaled gas. In addition, the administration of cold and dry medical gases and the high flows that patients experience during invasive and non-invasive mechanical ventilation generate an even worse condition. For this reason, a device for gas conditioning is needed, even in short-term treatments, to avoid potential damage to the structure and function of the respiratory epithelium. In the field of intensive therapy, the use of heat and moisture exchangers is common for this purpose, as is the use of active humidification systems. Acquiring knowledge about technical specifications and the advantages and disadvantages of each device is needed for proper use since the conditioning of inspired gases is a key intervention in patients with artificial airway and has become routine care. Incorrect selection or inappropriate configuration of a device can have a negative impact on clinical outcomes. The members of the Capítulo de Kinesiología Intensivista of the Sociedad Argentina de Terapia Intensiva conducted a narrative review aiming to show the available evidence regarding conditioning of inhaled gas in patients with artificial airways, going into detail on concepts related to the working principles of each one.

  10. Transduction of ferret airway epithelia using a pre-treatment and lentiviral gene vector.

    PubMed

    Cmielewski, Patricia; Farrow, Nigel; Donnelley, Martin; McIntyre, Chantelle; Penny-Dimri, Jahan; Kuchel, Tim; Parsons, David

    2014-11-21

    The safety and efficiency of gene therapies for cystic fibrosis (CF) need to be assessed in pre-clinical models. Using the normal ferret, this study sought to determine whether ferret airway epithelia could be transduced with a lysophosphatidylcholine (LPC) pre-treatment followed by a VSV-G pseudotyped HIV-1 based lentiviral (LV) vector, in preparation for future studies in CF ferrets. Six normal ferrets (7 -8 weeks old) were treated with a 150 μL LPC pre-treatment, followed one hour later by a 500 μL LV vector dose containing the LacZ transgene. LacZ gene expression in the conducting airways and lung was assessed by X-gal staining after 7 days. The presence of transduction in the lung, as well as off-target transduction in the liver, spleen and gonads, were assessed by qPCR. The levels of LV vector p24 protein bio-distribution in blood sera were assessed by ELISA at 0, 1, 3, 5 and 7 days. The dosing protocol was well tolerated. LacZ gene expression was observed en face in the trachea of all animals. Histology showed that ciliated and basal cells were transduced in the trachea, with rare LacZ transduced single cells noted in lung. p24 levels was not detectable in the sera of 5 of the 6 animals. The LacZ gene was not detected in the lung tissue and no off-target transduction was detected by qPCR. This study shows that ferret airway epithelia are transducible using our unique two-step pre-treatment and LV vector dosing protocol. We have identified a number of unusual anatomical factors that are likely to influence the level of transduction that can be achieved in ferret airways. The ability to transduce ferret airway epithelium is a promising step towards therapeutic LV-CFTR testing in a CF ferret model.

  11. Progenitor Epithelium

    PubMed Central

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  12. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia

    PubMed Central

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-01-01

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  13. Prostaglandin I2 promotes the development of IL-17-producing γδ T cells that associate with the epithelium during allergic lung inflammation

    PubMed Central

    Jaffar, Zeina; Ferrini, Maria E.; Shaw, Pamela K.; FitzGerald, Garret A.; Roberts, Kevan

    2011-01-01

    γδ T cells rapidly produce cytokines and represent a first line of defence against microbes and other environmental insults at mucosal tissues and are thus thought to play a local immunoregulatory role. We show that allergic airway inflammation was associated with an increase in innate IL-17-producing γδ T (γδ-17) cells that expressed the αEβ7 integrin and were closely associated with the airway epithelium. Importantly, prostaglandin (PG)I2 and its receptor IP, which downregulated airway eosinophilic inflammation, promoted the emergence of these intraepithelial γδ-17 cells into the airways by enhancing IL-6 production by lung eosinophils and dendritic cells. Accordingly, a pronounced reduction of γδ-17 cells was observed in the thymus of naïve mice lacking the PGI2 receptor IP, as well as in the lungs during allergic inflammation, implying a critical role for PGI2 in the programming of “natural” γδ-17 cells. Conversely, iloprost, a stable analog of PGI2, augmented IL-17 production by γδ T cells but significantly reduced the airway inflammation. Together, these findings suggest that PGI2 plays a key immunoregulatory role by promoting the development of innate intraepithelial γδ-17 cells through an IL-6-dependent mechanism. By enhancing γδ-17 cell responses, stable analogs of PGI2 may be exploited in the development of new immunotherapeutic approaches. PMID:21976777

  14. Peripheral Airway Smooth Muscle, but Not the Trachealis, Is Hypercontractile in an Equine Model of Asthma.

    PubMed

    Matusovsky, Oleg S; Kachmar, Linda; Ijpma, Gijs; Bates, Genevieve; Zitouni, Nedjma; Benedetti, Andrea; Lavoie, Jean-Pierre; Lauzon, Anne-Marie

    2016-05-01

    Heaves is a naturally occurring equine disease that shares many similarities with human asthma, including reversible antigen-induced bronchoconstriction, airway inflammation, and remodeling. The purpose of this study was to determine whether the trachealis muscle is mechanically representative of the peripheral airway smooth muscle (ASM) in an equine model of asthma. Tracheal and peripheral ASM of heaves-affected horses under exacerbation, or under clinical remission of the disease, and control horses were dissected and freed of epithelium to measure unloaded shortening velocity (Vmax), stress (force/cross-sectional area), methacholine effective concentration at which 50% of the maximum response is obtained, and stiffness. Myofibrillar Mg(2+)-ATPase activity, actomyosin in vitro motility, and contractile protein expression were also measured. Horses with heaves had significantly greater Vmax and Mg(2+)-ATPase activity in peripheral airway but not in tracheal smooth muscle. In addition, a significant correlation was found between Vmax and the time elapsed since the end of the corticosteroid treatment for the peripheral airways in horses with heaves. Maximal stress and stiffness were greater in the peripheral airways of the horses under remission compared with controls and the horses under exacerbation, potentially due to remodeling. Actomyosin in vitro motility was not different between controls and horses with heaves. These data demonstrate that peripheral ASM is mechanically and biochemically altered in heaves, whereas the trachealis behaves as in control horses. It is therefore conceivable that the trachealis muscle may not be representative of the peripheral ASM in human asthma either, but this will require further investigation.

  15. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells.

    PubMed

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-04-11

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.

  16. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    PubMed Central

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells. PMID:23577829

  17. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses

    PubMed Central

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-01-01

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma. PMID:28775364

  18. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses.

    PubMed

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-08-04

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.

  19. Bronchoscopic assessment of airway retention time of aerosolized xylitol

    PubMed Central

    Durairaj, Lakshmi; Neelakantan, Srividya; Launspach, Janice; Watt, Janet L; Allaman, Margaret M; Kearney, William R; Veng-Pedersen, Peter; Zabner, Joseph

    2006-01-01

    Background Human airway surface liquid (ASL) has abundant antimicrobial peptides whose potency increases as the salt concentration decreases. Xylitol is a 5-carbon sugar that has the ability to lower ASL salt concentration, potentially enhancing innate immunity. Xylitol was detected for 8 hours in the ASL after application in airway epithelium in vitro. We tested the airway retention time of aerosolized iso-osmotic xylitol in healthy volunteers. Methods After a screening spirometry, volunteers received 10 ml of nebulized 5% xylitol. Bronchoscopy was done at 20 minutes (n = 6), 90 minutes (n = 6), and 3 hours (n = 5) after nebulization and ASL was collected using microsampling probes, followed by bronchoalveolar lavage (BAL). Xylitol concentration was measured by nuclear magnetic resonance spectroscopy and corrected for dilution using urea concentration. Results All subjects tolerated nebulization and bronchoscopy well. Mean ASL volume recovered from the probes was 49 ± 23 μl. The mean ASL xylitol concentration at 20, 90, and 180 minutes was 1.6 ± 1.9 μg/μl, 0.6 ± 0.6 μg/μl, and 0.1 ± 0.1 μg/μl, respectively. Corresponding BAL concentration corrected for dilution was consistently lower at all time points. The terminal half-life of aerosolized xylitol obtained by the probes was 45 minutes with a mean residence time of 65 minutes in ASL. Corresponding BAL values were 36 and 50 minutes, respectively. Conclusion After a single dose nebulization, xylitol was detected in ASL for 3 hours, which was shorter than our in vitro measurement. The microsampling probe performed superior to BAL when sampling bronchial ASL. PMID:16483382

  20. Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma.

    PubMed

    Singhania, Akul; Wallington, Joshua C; Smith, Caroline G; Horowitz, Daniel; Staples, Karl J; Howarth, Peter H; Gadola, Stephan D; Djukanović, Ratko; Woelk, Christopher H; Hinks, Timothy S C

    2018-02-01

    Asthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues. We sought to undertake a comprehensive transcriptomic assessment of the epithelium and airway T cells that remain understudied in asthma and investigate interactions between multiple cells and tissues. Epithelial brushings and flow-sorted CD3 + T cells from sputum and BAL were obtained from healthy subjects (n = 19) and patients with asthma (mild, moderate, and severe asthma; n = 46). Gene expression was assessed using Affymetrix HT HG-U133 + PM GeneChips, and results were validated by real-time quantitative PCR. In the epithelium, IL-13 response genes (POSTN, SERPINB2, and CLCA1), mast cell mediators (CPA3 and TPSAB1), inducible nitric oxide synthase, and cystatins (CST1, CST2, and CST4) were upregulated in mild asthma, but, except for cystatins, were suppressed by corticosteroids in moderate asthma. In severe asthma-with predominantly neutrophilic phenotype-several distinct processes were upregulated, including neutrophilia (TCN1 and MMP9), mucins, and oxidative stress responses. The majority of the disease signature was evident in sputum T cells in severe asthma, where 267 genes were differentially regulated compared with health, highlighting compartmentalization of inflammation. This signature included IL-17-inducible chemokines (CXCL1, CXCL2, CXCL3, IL8, and CSF3) and chemoattractants for neutrophils (IL8, CCL3, and LGALS3), T cells, and monocytes. A protein interaction network in severe asthma highlighted signatures of responses to bacterial infections across tissues (CEACAM5, CD14, and TLR2), including Toll-like receptor signaling. In conclusion, the activation of innate immune pathways in the airways suggests that activated T cells may be driving neutrophilic inflammation and steroid-insensitive IL-17 response in severe asthma.

  1. Ketamine relaxes airway smooth muscle contracted by endothelin.

    PubMed

    Sato, T; Matsuki, A; Zsigmond, E K; Rabito, S F

    1997-04-01

    Endothelins (ETs) are synthesized not only in vascular endothelial cells but also in airway epithelial cells. Increased ET-1 has been demonstrated in bronchial epithelium of asthmatic patients, and, in severe asthma attacks, ET-1 increases in plasma and bronchoalveolar lavage fluid. In this study, we investigated whether ketamine (KET) relaxes ET-induced tracheal contractions. Female guinea pigs were killed with an overdose of pentobarbital. The trachea was removed and cut spirally into two strips that were mounted in an organ bath filled with Krebs-bicarbonate buffer. The response of each strip to 10(-7) M carbachol was taken as 100% contraction to which the response to ET was referred. The contribution of the epithelium to the relaxant effect of KET was studied in denuded tracheae or in the presence of 5 x 10(-5) M indomethacin. ET-1 (3 x 10(-8) M) induced contractions that were 76 +/- 3% of those induced by carbachol. KET reversed the response to ET-1 in a dose-dependent fashion. Similarly, ET-2 (3 x 10(-8) M) induced contractions that were 74 +/- 5% of those induced by carbachol, and KET also reversed this response in a dose-dependent manner. In epithelium-denuded strips, ET-1 induced contractions that were 104 +/- 3% of those induced by carbachol, and KET still reversed this response. The tonic phase of the response to ET-1 was equal (100 +/- 6%) to the response to carbachol, and KET did not affect it significantly. In the presence of ryanodine, KET reduced the ET-1-induced contraction from 67 +/- 2% to 36 +/- 3.%, P < 0.01. In the presence of nicardipine, KET also inhibited the ET-1-induced contraction. We conclude that KET relaxes the tracheal smooth muscle contracted by ETs via a mechanism that is independent of the tracheal epithelium. The relaxant effect of KET on the ET-induced contraction of the trachealis muscle is not dependent upon blockade of 1) sarcolemma influx of Ca2+ through the dihydropyridine Ca2+ channel or 2) the release of intracellular Ca2

  2. Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability.

    PubMed

    Looi, Kevin; Troy, Niamh M; Garratt, Luke W; Iosifidis, Thomas; Bosco, Anthony; Buckley, Alysia G; Ling, Kak-Ming; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Shaw, Nicole C; Sutanto, Erika N; Zosky, Graeme R; Rigby, Paul J; Larcombe, Alexander N; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M

    2016-10-11

    No studies have assessed the effects of human rhinovirus (HRV) infection on epithelial tight junctions (TJs) and resultant barrier function. To correlate viral infection with TJ disassembly, epithelial barrier integrity, and function. Human airway epithelial cells were infected with HRV minor serotype 1B (HRV-1B) at various 50% tissue culture infectivity doses (TCID 50 ) over 72 hours. HRV replication was assessed by quantitative-polymerase chain reaction (qPCR) while cell viability and apoptosis were assessed by proliferation and apoptotic assays, respectively. Protein expression of claudin-1, occludin, and zonula occludens protein-1 (ZO-1) was assessed using In-Cell™ Western assays. Transepithelial permeability assays were performed to assess effects on barrier functionality. RT 2 Profiler focused qPCR arrays and pathway analysis evaluating associations between human TJ and antiviral response were performed to identify potential interactions and pathways between genes of interests. HRV-1B infection affected viability that was both time and TCID 50 dependent. Significant increases in apoptosis and viral replication post-infection correlated with viral titer. Viral infection significantly decreased claudin-1 protein expression at the lower TCID 50 , while a significant decrease in all three TJ protein expressions occurred at higher TCID 50 . Decrease in protein expression was concomitant with significant increases in epithelial permeability of fluorescein isothiocynate labeled-dextran 4 and 20 kDa. Analysis of focused qPCR arrays demonstrated a significant decrease in ZO-1 gene expression. Furthermore, network analysis between human TJ and antiviral response genes revealed possible interactions and regulation of TJ genes via interleukin (IL)-15 in response to HRV-1B infection. HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via an antiviral response of IL-15.

  3. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  4. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    PubMed

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  5. Postnatal remodeling of the neural components of the epithelial-mesenchymal trophic unit in the proximal airways of infant rhesus monkeys exposed to ozone and allergen.

    PubMed

    Larson, Shawnessy D; Schelegle, Edward S; Walby, William F; Gershwin, Laural J; Fanuccihi, Michelle V; Evans, Michael J; Joad, Jesse P; Tarkington, Brian K; Hyde, Dallas M; Plopper, Charles G

    2004-02-01

    Nerves and neuroendocrine cells located within the airway epithelium are ideally situated to sample a changing airway environment, to transmit that information to the central nervous system, and to promote trophic interactions between epithelial and mesenchymal cellular and acellular components. We tested the hypothesis that the environmental stresses of ozone (O(3)) and house dust mite allergen (HDMA) in atopic infant rhesus monkeys alter the distribution of airway nerves. Midlevel bronchi and bronchioles from 6-month-old infant monkeys that inhaled filtered air (FA), house dust mite allergen HDMA, O(3), or HDMA + O(3) for 11 episodes (5 days each, 0.5 ppm O(3), 8 h/day followed by 9 days recovery) were examined using immunohistochemistry for the presence of Protein gene product 9.5 (PGP 9.5), a nonspecific neural indicator, and calcitonin gene-related peptide (CGRP). Along the axial path between the sixth and the seventh intrapulmonary airway generations, there were small significant (P < 0.05) decrements in the density of epithelial nerves in monkeys exposed to HDMA or O(3), while in monkeys exposed to HDMA + O(3) there was a greater significant (P < 0.05) reduction in epithelial innervation. In animals exposed to O(3) or HDMA + O(3) there was a significant increase in the number of PGP 9.5 positive/CGRP negative cells that were anchored to the basal lamina and emitted projections in primarily the lateral plain and often intertwined with projections and cell bodies of other similar cells. We conclude that repeated cycles of acute injury and repair associated with the episodic pattern of ozone and allergen exposure alter the normal development of neural innervation of the epithelial compartment and the appearance of a new population of undefined PGP 9.5 positive cells within the epithelium.

  6. Upper airway gene expression in smokers: the mouth as a "window to the soul" of lung carcinogenesis?

    PubMed

    Spira, Avrum

    2010-03-01

    This perspective on Boyle et al. (beginning on page 266 in this issue of the journal) explores transcriptomic profiling of upper airway epithelium as a biomarker of host response to tobacco smoke exposure. Boyle et al. have shown a striking relationship between smoking-related gene expression changes in the mouth and bronchus. This relationship suggests that buccal gene expression may serve as a relatively noninvasive surrogate marker of the physiologic response of the lung to tobacco smoke that could be used in large-scale screening and chemoprevention studies for lung cancer.

  7. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl ormore » 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R{sub t}) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na{sup +} transport, without affecting Cl{sup −} transport or Na{sup +},K{sup +}-pump activity. R{sub t} was unaffected. Na{sup +} transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione

  8. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  9. Airway stents

    PubMed Central

    Keyes, Colleen

    2018-01-01

    Stents and tubes to maintain the patency of the airways are commonly used for malignant obstruction and are occasionally employed in benign disease. Malignant airway obstruction usually results from direct involvement of bronchogenic carcinoma, or by extension of carcinomas occurring in the esophagus or the thyroid. External compression from lymph nodes or metastatic disease from other organs can also cause central airway obstruction. Most malignant airway lesions are surgically inoperable due to advanced disease stage and require multimodality palliation, including stent placement. As with any other medical device, stents have significantly evolved over the last 50 years and deserve an in-depth understanding of their true capabilities and complications. Not every silicone stent is created equal and the same holds for metallic stents. Herein, we present an overview of the topic as well as some of the more practical and controversial issues surrounding airway stents. We also try to dispel the myths surrounding stent removal and their supposed use only in central airways. At the end, we come to the long-held conclusion that stents should not be used as first line treatment of choice, but after ruling out the possibility of curative surgical resection or repair. PMID:29707506

  10. Nitric Oxide Promotes Airway Epithelial Wound Repair through Enhanced Activation of MMP-9

    PubMed Central

    Bove, Peter F.; Wesley, Umadevi V.; Greul, Anne-Katrin; Hristova, Milena; Dostmann, Wolfgang R.; van der Vliet, Albert

    2007-01-01

    The airway epithelium provides a protective barrier against inhaled environmental toxins and microorganisms, and epithelial injury initiates a number of processes to restore its barrier integrity, including activation of matrix metalloproteinases such as MMP-9 (92-kD gelatinase B). Airway epithelial cells continuously produce nitric oxide (NO), which has been linked to cell migration and MMP-9 regulation in several cell types, but the importance of epithelial NO in mediating airway epithelial repair or MMP-9 activation is unknown. Using primary or immortalized human bronchial epithelial cells, we demonstrate that low concentrations of NO promote epithelial cell migration and wound repair in an in vitro wound assay, which was associated with increased localized expression and activation of MMP-9. In addition, in HBE1 cells that were stably transfected with inducible NOS (NOS2), to mimic constitutive epithelial NOS2 expression in vivo, NOS inhibition decreased epithelial wound repair and MMP-9 expression. The stimulatory effects of NO on epithelial wound repair and MMP-9 expression were dependent on cGMP-mediated pathways and were inhibited by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase. Inhibition of cGMP-dependent protein kinase (PKG) attenuated NO-mediated epithelial wound closure, but did not affect MMP-9 expression. However, pharmacologic MMP inhibition and siRNA knockdown of MMP-9 expression demonstrated the contribution of MMP-9 to NO-mediated wound closure. Overall, our results demonstrate that NOS2-derived NO contributes to airway epithelial repair by both PKG-dependent and -independent mechanisms, and involves NO-dependent expression and activation of MMP-9. PMID:16980554

  11. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.

    PubMed

    Turturice, Benjamin A; McGee, Halvor S; Oliver, Brian; Baraket, Melissa; Nguyen, Brian T; Ascoli, Christian; Ranjan, Ravi; Rani, Asha; Perkins, David L; Finn, Patricia W

    2017-01-01

    Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids. To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics. A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13) were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6) and to themselves after six weeks of treatment with fluticasone propionate (FP). Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing. Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP), termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls. The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to microbiota.

  12. Humidification and heating of inhaled gas in patients with artificial airway. A narrative review

    PubMed Central

    Plotnikow, Gustavo Adrián; Accoce, Matias; Navarro, Emiliano; Tiribelli, Norberto

    2018-01-01

    Instrumentation of the airways in critical patients (endotracheal tube or tracheostomy cannula) prevents them from performing their function of humidify and heating the inhaled gas. In addition, the administration of cold and dry medical gases and the high flows that patients experience during invasive and non-invasive mechanical ventilation generate an even worse condition. For this reason, a device for gas conditioning is needed, even in short-term treatments, to avoid potential damage to the structure and function of the respiratory epithelium. In the field of intensive therapy, the use of heat and moisture exchangers is common for this purpose, as is the use of active humidification systems. Acquiring knowledge about technical specifications and the advantages and disadvantages of each device is needed for proper use since the conditioning of inspired gases is a key intervention in patients with artificial airway and has become routine care. Incorrect selection or inappropriate configuration of a device can have a negative impact on clinical outcomes. The members of the Capítulo de Kinesiología Intensivista of the Sociedad Argentina de Terapia Intensiva conducted a narrative review aiming to show the available evidence regarding conditioning of inhaled gas in patients with artificial airways, going into detail on concepts related to the working principles of each one. PMID:29742220

  13. Circular flow patterns induced by ciliary activity in reconstituted human bronchial epithelium

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Khelloufi, Kamel; Gras, Delphine; Chanez, Pascal; Aix Marseille Univ., CNRS, CINaM, Marseille, France Team; Aix Marseille Univ., CNRS, Inserm, LAI, Marseille, France Team

    2016-11-01

    Mucociliary clearance is the transport at the surface of airways of a complex fluid layer, the mucus, moved by the beats of microscopic cilia present on epithelial ciliated cells. We explored the coupling between the spatial organisation and the activity of cilia and the transport of surface fluids on reconstituted cultures of human bronchial epithelium at air-liquid interface, obtained by human biopsies. We reveal the existence of stable local circular surface flow patterns of mucus or Newtonian fluid at the epithelium surface. We find a power law over more than 3 orders of magnitude showing that the average ciliated cell density controls the size of these flow patterns, and, therefore the distance over which mucus can be transported. We show that these circular flow patterns result from the radial linear increase of the local propelling forces (due to ciliary beats) on each flow domain. This linear increase of local forces is induced by a fine self-regulation of both cilia density and orientation of ciliary beats. Local flow domains grow and merge during ciliogenesis to provide macroscopic mucus transport. This is possible only when the viscoelastic mucus continuously exerts a shear stress on beating cilia, revealing a mechanosensitive function of cilia. M. K. Khelloufi thanks the society MedBioMed for financial support. This work was supported by the ANR MUCOCIL project, Grant ANR-13-BSV5-0015 of the French Agence Nationale de la Recherche.

  14. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2014-12-01

    airway epithelium [1, 6, 7], and 2) these changes can be detected and serve as biomarker for early detection of lung cancer [8, 9], in the current...biospecimens from seven locations: nasal epithelium , proximal and distal bronchial airway epithelium obtained at bronchoscopy (ipsilateral and...contralateral to the tumor) as well as the tumor/benign lesion, adjacent normal parenchyma, and sub- segmental bronchial epithelium at time of lobectomy

  15. Comparison of the effects of epithelium removal and of an enkephalinase inhibitor on the neurokinin-induced contractions of guinea-pig isolated trachea.

    PubMed Central

    Devillier, P.; Advenier, C.; Drapeau, G.; Marsac, J.; Regoli, D.

    1988-01-01

    1. The influence of epithelium removal and/or thiorphan on the effects of neurokinins (substance P (SP), neurokinin A (NKA), neurokinin B (NKB)) and related peptides on airway contractility was investigated on the guinea-pig isolated trachea. 2. Removing the tracheal epithelium significantly enhanced the sensitivity but not the maximum contractile responses to the peptides. 3. After removal of the epithelial layer, the shifts to the left of the log concentration response curves were greater for SP and SP-OMe (1.62 and 1.94 log units, respectively) than for two SP analogues substituted in position 9 namely [Pro9]SP sulfone and [beta-Ala4, Sar9]SP(4-11) sulfone (0.66 and 0.68 log units, respectively). The leftward shifts for compounds related to NKA or NKB lay between 0.58 and 0.73 log units. 4. The leftward shifts of the log concentration-response curves for SP, SP-OMe, [Pro9]SP sulfone, [beta-Ala4, Sar9]SP(4-11) sulfone and NKA were of similar magnitude after removal of the epithelium or after pretreatment with thiorphan (10(-5) M), an enkephalinase inhibitor, in the presence of epithelium. No significant additional shift of the curves to the left was observed with thiorphan plus epithelium removal. 5. The results obtained with the selective agonists for each of the three classes of neurokinin receptor (i.e NK1, NK2, NK3) suggest that the guinea-pig trachea contains receptors for SP and NKA but few if any for NKB. 6. It was concluded that neurokinins and related peptides (especially SP and analogues not substituted in position 9) are degraded by enkephalinase mainly located in the tracheal epithelium and that the addition of thiorphan or epithelium removal results in an inhibition or loss of enkephalinase activity, thereby increasing similarly the potencies of these peptides. It was, therefore, suggested that the supersensitivity to neurokinins produced by epithelium removal was due neither to the elimination of a permeability barrier nor to reduced production of a

  16. A Comparative Immunohistochemical Study of Anal Canal Epithelium in Humans and Swine, Focusing on the Anal Transitional Zone Epithelium and the Anal Glands.

    PubMed

    Muranaka, Futoshi; Nakajima, Tomoyuki; Iwaya, Mai; Ishii, Keiko; Higuchi, Kayoko; Ogiwara, Naoko; Miyagawa, Shinichi; Ota, Hiroyoshi

    2018-05-01

    To better understand the cellular origins and differentiation of anal canal epithelial neoplasms, the immunohistochemical profiles of the anal canal epithelium in humans and swine were evaluated. Formalin-fixed tissue sections were immunostained for mucin (MUC: MUC2, MUC5AC, MUC5B), desmoglein 3 (DGS3), p63, CDX2, SOX2, and α-smooth muscle actin (α-SMA). The anal transitional zone (ATZ) epithelium covered the anal sinus and consisted of a stratified epithelium with mucous cells interspersed within the surface lining. Anal glands opened into the anal sinus. Ducts and acini of intraepithelial or periepithelial mucous type were the main structures of human anal glands, whereas those of swine were compound tubuloacinar mixed glands. Distal to the ATZ epithelium, non-keratinized stratified squamous epithelium merged with the keratinized stratified squamous epithelium of the perianal skin. MUC5AC expression predominated over MUC5B expression in the ATZ epithelium, while MUC5B expression was higher in the anal glands. SOX2 was positive in the ATZ epithelium, anal glands, and squamous epithelium except in the perianal skin. In humans, DGS3 was expressed in the ATZ epithelium, anal gland ducts, and squamous epithelium. p63 was detected in the ATZ epithelium, anal glands, and squamous epithelium. Myoepithelial cells positive for α-SMA and p63 were present in the anal glands of swine. Colorectal columnar cells were MUC5B + /MUC2 + /CDX2 + /MUC5AC - /SOX2 - . The ATZ epithelium seems to be a distinctive epithelium, with morphological and functional features allowing smooth defecation. The MUC5AC + /SOX2 + /MUC2 - /CDX2 - profile of the ATZ epithelium and anal glands is a useful feature for diagnosing adenocarcinoma arising from these regions. Anat Rec, 301:796-805, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    PubMed

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  18. Association of HaeIII single nucleotide polymorphisms in the SLC2A1 gene with risk of diabetic nephropathy; evidence from Kurdish patients with type 2 diabetes mellitus.

    PubMed

    Amini, Sabrieh; Javanmardi, Mitra; Mokarizadeh, Aram; Maroofi, Farzad; Jalali, Chiya; Azadi, Namam-Ali; Mohammadi, Hamid; Abdi, Mohammad

    2016-06-01

    Given the growing rate of patients with type 2 diabetes mellitus, uncovering the effects of gene polymorphism on diabetes pathogenesis has attracted a lot of attention. Because glucose transporter 1 is involved in glucose uptake, the polymorphism of this gene may be an important risk factor in type 2 diabetes mellitus or in the progression of diabetes complications such as diabetic nephropathy. As far as the authors are concerned, this study is the first one aiming at evaluating the probable effects of solute carrier family 2 facilitated glucose transporter member 1 (SLC2A1) HaeIII polymorphism on clinical and laboratory outcomes of Kurdish patients with type 2 diabetes mellitus. This study was conducted involving 126 diabetic nephropathy patients and 150 diabetic patients without renal involvement. Serum levels of Cystatin C, fasting blood glucose, creatinine and urinary albumin; levels of glycated hemoglobin and estimated glomerular filtration rate were measured. Moreover, the Hae III polymorphism of SLC2A1 gene was determined by PCR-restriction fragment length polymorphism (RFLP). The rate of CC genotype was higher (37%) in patients with diabetic nephropathy compared with controls. There were a significant correlation between the CC genotype and risk of diabetic nephropathy. There were significant correlations between genotypes, serum Cystatin C and estimated glomerular filtration rate in patients with diabetic nephropathy. The results demonstrated the high frequency of C allele of SLC2A1 HaeIII in Kurdish patients with diabetic nephropathy. It was also found that this polymorphism is a significant risk factor for diabetic nephropathy. The effect of this polymorphism on clinical and laboratory characteristics of diabetic nephropathy patients was significant. © The Author 2015. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Rhinovirus disrupts the barrier function of polarized airway epithelial cells.

    PubMed

    Sajjan, Umadevi; Wang, Qiong; Zhao, Ying; Gruenert, Dieter C; Hershenson, Marc B

    2008-12-15

    Secondary bacterial infection following rhinovirus (RV) infection has been recognized in chronic obstructive pulmonary disease. We sought to understand mechanisms by which RV infection facilitates secondary bacterial infection. Primary human airway epithelial cells grown at air-liquid interface and human bronchial epithelial (16HBE14o-) cells grown as polarized monolayers were infected apically with RV. Transmigration of bacteria (nontypeable Haemophilus influenzae and others) was assessed by colony counting and transmission electron microscopy. Transepithelial resistance (R(T)) was measured by using a voltmeter. The distribution of zona occludins (ZO)-1 was determined by immunohistochemistry and immunoblotting. Epithelial cells infected with RV showed 2-log more bound bacteria than sham-infected cultures, and bacteria were recovered from the basolateral media of RV- but not sham-infected cells. Infection of polarized airway epithelial cell cultures with RV for 24 hours caused a significant decrease in R(T) without causing cell death or apoptosis. Ultraviolet-treated RV did not decrease R(T), suggesting a requirement for viral replication. Reduced R(T) was associated with increased paracellular permeability, as determined by flux of fluorescein isothiocyanate (FITC)-inulin. Neutralizing antibodies to tumor necrosis factor (TNF)-alpha, IFN-gamma and IL-1beta reversed corresponding cytokine-induced reductions in R(T) but not that induced by RV, indicating that the RV effect is independent of these proinflammatory cytokines. Confocal microscopy and immunoblotting revealed the loss of ZO-1 from tight junction complexes in RV-infected cells. Intranasal inoculation of mice with RV1B also caused the loss of ZO-1 from the bronchial epithelium tight junctions in vivo. RV facilitates binding, translocation, and persistence of bacteria by disrupting airway epithelial barrier function.

  20. RGS4 Overexpression in Lung Attenuates Airway Hyperresponsiveness in Mice.

    PubMed

    Madigan, Laura A; Wong, Gordon S; Gordon, Elizabeth M; Chen, Wei-Sheng; Balenga, Nariman; Koziol-White, Cynthia J; Panettieri, Reynold A; Levine, Stewart J; Druey, Kirk M

    2018-01-01

    A cardinal feature of asthma is airway hyperresponsiveness (AHR) to spasmogens, many of which activate G protein-coupled receptors (GPCRs) on airway smooth muscle (ASM) cells. Asthma subtypes associated with allergy are characterized by eosinophilic inflammation in the lung due to the type 2 immune response to allergens and proinflammatory mediators that promote AHR. The degree to which intrinsic abnormalities of ASM contribute to this phenotype remains unknown. The regulators of G protein signaling (RGS) proteins are a large group of intracellular proteins that inhibit GPCR signaling pathways. RGS2- and RGS5-deficient mice develop AHR spontaneously. Although RGS4 is upregulated in ASM from patients with severe asthma, the effects of increased RGS4 expression on AHR in vivo are unknown. Here, we examined the impact of forced RGS4 overexpression in lung on AHR using transgenic (Tg) mice. Tg RGS4 was expressed in bronchial epithelium and ASM in vivo, and protein expression in lung was increased at least 4-fold in Tg mice compared with wild-type (WT) mice. Lung slices from Tg mice contracted less in response to the m3 muscarinic receptor agonist methacholine compared with the WT, although airway resistance in live, unchallenged mice of both strains was similar. Tg mice were partially protected against AHR induced by fungal allergen challenge due to weakened contraction signaling in ASM and reduced type 2 cytokine (IL-5 and IL-13) levels in Tg mice compared with the WT. These results provide support for the hypothesis that increasing RGS4 expression and/or function could be a viable therapeutic strategy for asthma.

  1. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells

    NASA Astrophysics Data System (ADS)

    Youta Dombu, Christophe; Kroubi, Maya; Zibouche, Rima; Matran, Regis; Betbeder, Didier

    2010-09-01

    A major challenge of drug delivery using colloids via the airway is to understand the mechanism implied in their interactions with epithelial cells. The purpose of this work was to characterize the process of endocytosis and exocytosis of cationic nanoparticles (NPs) made of maltodextrin which were developed as a delivery system for antigens in vaccine applications. Confocal microscopy demonstrated that these NP are rapidly endocytosed after as little as 3 min incubation, and that the endocytosis was also faster than NP binding since most of the NPs were found in the middle of the cells around the nuclei. A saturation limit was observed after a 40 min incubation, probably due to an equilibrium becoming established between endocytosis and exocytosis. Endocytosis was dramatically reduced at 4 °C compared with 37 °C, or by NaN3 treatment, both results suggesting an energy dependent process. Protamine pretreatment of the cells inhibited NPs uptake and we found that clathrin pathway is implied in their endocytosis. Cholesterol depletion increased NP uptake by 300% and this phenomenon was explained by the fact that cholesterol depletion totally blocked NP exocytosis. These results suggest that these cationic NPs interact with anionic sites, are quickly endocytosed via the clathrin pathway and that their exocytosis is cholesterol dependent, and are similar to those obtained in other studies with viruses such as influenza.

  2. Acute Lung Injury and Persistent Small Airway Disease in a Rabbit Model of Chlorine Inhalation

    PubMed Central

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M.; Powell, Karen S.; Roberts, Andrew M.; Hoyle, Gary W.

    2016-01-01

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. PMID:27913141

  3. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation.

    PubMed

    Musah, Sadiatu; Schlueter, Connie F; Humphrey, David M; Powell, Karen S; Roberts, Andrew M; Hoyle, Gary W

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24h after exposure to 800ppm chlorine for 4min to study acute effects or up to 7days after exposure to 400ppm for 8min to study longer term effects. Acute effects observed 6 or 24h after inhalation of 800ppm chlorine for 4min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400ppm chlorine for 8min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Airway Humidification Reduces the Inflammatory Response During Mechanical Ventilation.

    PubMed

    Jiang, Min; Song, Jun-Jie; Guo, Xiao-Li; Tang, Yong-Lin; Li, Hai-Bo

    2015-12-01

    Currently, no clinical or animal studies have been performed to establish the relationship between airway humidification and mechanical ventilation-induced lung inflammatory responses. Therefore, an animal model was established to better define this relationship. Rabbits (n = 40) were randomly divided into 6 groups: control animals, sacrificed immediately after anesthesia (n = 2); dry gas group animals, subjected to mechanical ventilation for 8 h without humidification (n = 6); and experimental animals, subjected to mechanical ventilation for 8 h under humidification at 30, 35, 40, and 45°C, respectively (n = 8). Inflammatory cytokines in the bronchi alveolar lavage fluid (BALF) were measured. The integrity of the airway cilia and the tracheal epithelium was examined by scanning and transmission electron microscopy, respectively. Peripheral blood white blood cell counts and the wet to dry ratio and lung pathology were determined. Dry gas group animals showed increased tumor necrosis factor alpha levels in BALF compared with control animals (P < .05). The tumor necrosis factor alpha and interleukin-8 levels in the BALF reached baseline levels when the humidification temperature was increased to 40°C. Scanning and transmission electron microscopy analysis revealed that cilia integrity was maintained in the 40°C groups. Peripheral white blood cell counts were not different among those groups. Compared with control animals, the wet to dry ratio was significantly elevated in the dry gas group (P < .05). Moreover, humidification at 40°C resulted in reduced pathologic injury compared with the other groups based on the histologic score. Pathology and reduced inflammation observed in animals treated at 40°C was similar to that observed in the control animals, suggesting that appropriate humidification reduced inflammatory responses elicited as a consequence of mechanical ventilation, in addition to reducing damage to the cilia and reducing water loss in the airway

  5. Parasympathetic Control of Airway Submucosal Glands: Central Reflexes and the Airway Intrinsic Nervous System

    PubMed Central

    Wine, Jeffrey J.

    2007-01-01

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  6. CCAAT/Enhancer Binding Protein–α Regulates the Protease/Antiprotease Balance Required for Bronchiolar Epithelium Regeneration

    PubMed Central

    Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A.

    2012-01-01

    Many transcription factors that regulate lung morphogenesis during development are reactivated to mediate repairs of the injured adult lung. We hypothesized that CCAAT/enhancer binding protein–α (C/EBPα), a transcription factor critical for perinatal lung maturation, regulates genes required for the normal repair of the bronchiolar epithelium after injury. Transgenic CebpαΔ/Δ mice, in which Cebpa was conditionally deleted from Clara cells and Type II cells after birth, were used in this study. Airway injury was induced in mice by the intraperitoneal administration of naphthalene to ablate bronchiolar epithelial cells. Although the deletion of C/EBPα did not influence lung structure and function under unstressed conditions, C/EBPα was required for the normal repair of terminal bronchiolar epithelium after naphthalene injury. To identify cellular processes that are influenced by C/EBPα during repair, mRNA microarray was performed on terminal bronchiolar epithelial cells isolated by laser-capture microdissection. Normal repair of the terminal bronchiolar epithelium was highly associated with the mRNAs regulating antiprotease activities, and their induction required C/EBPα. The defective deposition of fibronectin in CebpαΔ/Δ mice was associated with increased protease activity and delayed differentiation of FoxJ1-expressing ciliated cells. The fibronectin and ciliated cells were restored by the intratracheal treatment of CebpαΔ/Δ mice with the serine protease inhibitor. In conclusion, C/EBPα regulates the expression of serine protease inhibitors that are required for the normal increase of fibronectin and the restoration of ciliated cells after injury. Treatment with serine protease inhibitor may aid in the recovery of injured bronchiolar epithelial cells, and prevent common chronic lung diseases. PMID:22652201

  7. A UK national audit of hereditary and acquired angioedema

    PubMed Central

    Jolles, S; Williams, P; Carne, E; Mian, H; Huissoon, A; Wong, G; Hackett, S; Lortan, J; Platts, V; Longhurst, H; Grigoriadou, S; Dempster, J; Deacock, S; Khan, S; Darroch, J; Simon, C; Thomas, M; Pavaladurai, V; Alachkar, H; Herwadkar, A; Abinun, M; Arkwright, P; Tarzi, M; Helbert, M; Bangs, C; Pastacaldi, C; Phillips, C; Bennett, H; El-Shanawany, T

    2014-01-01

    Hereditary angioedema (HAE) and acquired angioedema (AAE) are rare life-threatening conditions caused by deficiency of C1 inhibitor (C1INH). Both are characterized by recurrent unpredictable episodes of mucosal swelling involving three main areas: the skin, gastrointestinal tract and larynx. Swelling in the gastrointestinal tract results in abdominal pain and vomiting, while swelling in the larynx may be fatal. There are limited UK data on these patients to help improve practice and understand more clearly the burden of disease. An audit tool was designed, informed by the published UK consensus document and clinical practice, and sent to clinicians involved in the care of HAE patients through a number of national organizations. Data sets on 376 patients were received from 14 centres in England, Scotland and Wales. There were 55 deaths from HAE in 33 families, emphasizing the potentially lethal nature of this disease. These data also show that there is a significant diagnostic delay of on average 10 years for type I HAE, 18 years for type II HAE and 5 years for AAE. For HAE the average annual frequency of swellings per patient affecting the periphery was eight, abdomen 5 and airway 0·5, with wide individual variation. The impact on quality of life was rated as moderate or severe by 37% of adult patients. The audit has helped to define the burden of disease in the UK and has aided planning new treatments for UK patients. PMID:23786259

  8. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker.

    PubMed

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-12-19

    Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow

  9. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation

    PubMed Central

    Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G

    2007-01-01

    Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839

  10. Challenges and opportunities for tissue-engineering polarized epithelium.

    PubMed

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  11. Alpha-1 Antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase.

    PubMed

    Garratt, Luke W; Sutanto, Erika N; Ling, Kak-Ming; Looi, Kevin; Iosifidis, Thomas; Martinovich, Kelly M; Shaw, Nicole C; Buckley, Alysia G; Kicic-Starcevich, Elizabeth; Lannigan, Francis J; Knight, Darryl A; Stick, Stephen M; Kicic, Anthony

    2016-03-01

    Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAECnon-CF and pAECCF, respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAECCF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAECnon-CF and pAECCF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥ 50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAECCF, but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail.

  12. Investigations of Pulmonary Epithelial Cell Damage due to Air-Liquid Interfacial Stresses in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Gaver, Donald P., III; Bilek, A. M.; Kay, S.; Dee, K. C.

    2004-01-01

    Pulmonary airway closure is a potentially dangerous event that can occur in microgravity environments and may result in limited gas exchange for flight crew during long-term space flight. Repetitive airway collapse and reopening subjects the pulmonary epithelium to large, dynamic, and potentially injurious mechanical stresses. During ventilation at low lung volumes and pressures, airway instability leads to repetitive collapse and reopening. During reopening, air must progress through a collapsed airway, generating stresses on the airway walls, potentially damaging airway tissues. The normal lung can tolerate repetitive collapse and reopening. However, combined with insufficient or dysfunctional pulmonary surfactant, repetitive airway collapse and reopening produces severe lung injury. Particularly at risk is the pulmonary epithelium. As an important regulator of lung function and physiology, the degree of pulmonary epithelial damage influences the course and outcome of lung injury. In this paper we present experimental and computational studies to explore the hypothesis that the mechanical stresses associated with airway reopening inflict injury to the pulmonary epithelium.

  13. Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection.

    PubMed

    Pavel, Ana B; Campbell, Joshua D; Liu, Gang; Elashoff, David; Dubinett, Steven; Smith, Kate; Whitney, Duncan; Lenburg, Marc E; Spira, Avrum

    2017-11-01

    We have previously shown that gene expression alterations in normal-appearing bronchial epithelial cells can serve as a lung cancer detection biomarker in smokers. Given that miRNAs regulate airway gene expression responses to smoking, we evaluated whether miRNA expression is also altered in the bronchial epithelium of smokers with lung cancer. Using epithelial brushings from the mainstem bronchus of patients undergoing bronchoscopy for suspected lung cancer (as part of the AEGIS-1/2 clinical trials), we profiled miRNA expression via small-RNA sequencing from 347 current and former smokers for which gene expression data were also available. Patients were followed for one year postbronchoscopy until a final diagnosis of lung cancer ( n = 194) or benign disease ( n = 153) was made. Following removal of 6 low-quality samples, we used 138 patients (AEGIS-1) as a discovery set to identify four miRNAs (miR-146a-5p, miR-324-5p, miR-223-3p, and miR-223-5p) that were downregulated in the bronchial airway of lung cancer patients (ANOVA P < 0.002, FDR < 0.2). The expression of these miRNAs is significantly more negatively correlated with the expression of their mRNA targets than with the expression of other nontarget genes (K-S P < 0.05). Furthermore, these mRNA targets are enriched among genes whose expression is elevated in cancer patients (GSEA FDR < 0.001). Finally, we found that the addition of miR-146a-5p to an existing mRNA biomarker for lung cancer significantly improves its performance (AUC) in the 203 samples (AEGIS-1/2) serving an independent test set (DeLong P < 0.05). Our findings suggest that there are miRNAs whose expression is altered in the cytologically normal bronchial epithelium of smokers with lung cancer, and that they may regulate cancer-associated gene expression differences. Cancer Prev Res; 10(11); 651-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Caveolin-1: Functional Insights into Its Role in Muscarine- and Serotonin-Induced Smooth Muscle Constriction in Murine Airways

    PubMed Central

    Keshavarz, Maryam; Schwarz, Heike; Hartmann, Petra; Wiegand, Silke; Skill, Melanie; Althaus, Mike; Kummer, Wolfgang; Krasteva-Christ, Gabriela

    2017-01-01

    An increased bronchoconstrictor response is a hallmark in the progression of obstructive airway diseases. Acetylcholine and 5-hydroxytryptamine (5-HT, serotonin) are the major bronchoconstrictors. There is evidence that both cholinergic and serotonergic signaling in airway smooth muscle (ASM) involve caveolae. We hypothesized that caveolin-1 (cav-1), a structural protein of caveolae, plays an important regulatory role in ASM contraction. We analyzed airway contraction in different tracheal segments and extra- and intrapulmonary bronchi in cav-1 deficient (cav-1−/−) and wild-type mice using organ bath recordings and videomorphometry of methyl-beta-cyclodextrin (MCD) treated and non-treated precision-cut lung slices (PCLS). The presence of caveolae was investigated by electron microscopy. Receptor subtypes driving 5-HT-responses were studied by RT-PCR and videomorphometry after pharmacological inhibition with ketanserin. Cav-1 was present in tracheal epithelium and ASM. Muscarine induced a dose dependent contraction in all airway segments. A significantly higher Emax was observed in the caudal trachea. Although, caveolae abundancy was largely reduced in cav-1−/− mice, muscarine-induced airway contraction was maintained, albeit at diminished potency in the middle trachea, in the caudal trachea and in the bronchus without changes in the maximum efficacy. MCD-treatment of PLCS from cav-1−/− mice reduced cholinergic constriction by about 50%, indicating that cholesterol-rich plasma domains account for a substantial portion of the muscarine-induced bronchoconstriction. Notably, cav-1-deficiency fully abrogated 5-HT-induced contraction of extrapulmonary airways. In contrast, 5-HT-induced bronchoconstriction was fully maintained in cav-1-deficient intrapulmonary bronchi, but desensitization upon repetitive stimulation was enhanced. RT-PCR analysis revealed 5-HT1B, 5-HT2A, 5-HT6, and 5-HT7 receptors as the most prevalent subtypes in the airways. The 5-HT

  15. Does Inhalation of Virgin Coconut Oil Accelerate Reversal of Airway Remodelling in an Allergic Model of Asthma?

    PubMed

    Kamalaldin, N A; Sulaiman, S A; Yusop, M R; Yahaya, B

    2017-01-01

    Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma.

  16. Does Inhalation of Virgin Coconut Oil Accelerate Reversal of Airway Remodelling in an Allergic Model of Asthma?

    PubMed Central

    Sulaiman, S. A.

    2017-01-01

    Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma. PMID:28660089

  17. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, Da

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbitsmore » were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was

  18. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system.

    PubMed

    Wine, Jeffrey J

    2007-04-30

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  19. Olfactory epithelium changes in germfree mice

    PubMed Central

    François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas

    2016-01-01

    Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944

  20. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    PubMed

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways. Copyright ©ERS 2015.

  1. The New Perilaryngeal Airway (CobraPLA™)1 Is as Efficient as the Laryngeal Mask Airway (LMA™)2, But Provides Better Airway Sealing Pressures

    PubMed Central

    Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.

    2006-01-01

    The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543

  2. Visualisation of Multiple Tight Junctional Complexes in Human Airway Epithelial Cells.

    PubMed

    Buckley, Alysia G; Looi, Kevin; Iosifidis, Thomas; Ling, Kak-Ming; Sutanto, Erika N; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Garratt, Luke W; Shaw, Nicole C; Lannigan, Francis J; Larcombe, Alexander N; Zosky, Graeme; Knight, Darryl A; Rigby, Paul J; Kicic, Anthony; Stick, Stephen M

    2018-01-01

    Apically located tight junctions in airway epithelium perform a fundamental role in controlling macromolecule migration through paracellular spaces. Alterations in their expression may lead to disruptions in barrier integrity, which subsequently facilitates entry of potential bacterial and other pathogens into the host. Furthermore, there is emerging evidence that the barrier integrity of the airway in certain airway inflammatory diseases may be altered. However, there is little consensus on the way this is assessed and measured and the type of cells used to achieve this. Here, we assessed four fixation methods including; (i) 4% ( v /v) paraformaldehyde; (ii) 100% methanol; (iii) acetone or; (iv) 1:1 methanol: acetone. Pre-extraction with Triton X-100 was also performed and assessed on cells prior to fixation with either methanol or paraformaldehyde. Cells were also permeabilized with 0.1% (v/v) Saponin in 1× TBS following fixation and subsequently stained for tight junction proteins. Confocal microscopy was then used to visualise, compare and evaluate staining intensity of the tight junctional complexes in order to determine a standardised workflow of reproducible staining. Positive staining was observed following methanol fixation for claudin-1 and ZO-1 tight junction proteins but no staining was detected for occludin in 16HBE14o- cells. Combinatorial fixation with methanol and acetone also produced consistent positive staining for both occludin and ZO-1 tight junction proteins in these cells. When assessed using primary cells cultured at air-liquid interface, similar positive staining for claudin-1 and ZO-1 was observed following methanol fixation, while similar positive staining for occludin and ZO-1 was observed following the same combinatorial fixation with methanol and acetone. The present study demonstrates the importance of a personalised approach to optimise staining for the visualisation of different tight junction proteins. Of significance, the

  3. Airway surface mycosis in chronic TH2-associated airway disease.

    PubMed

    Porter, Paul C; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-08-01

    Environmental fungi have been linked to TH2 cell-related airway inflammation and the TH2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. To determine the frequency of fungus isolation and fungus-specific immunity in patients with TH2-associated and non-TH2-associated airway disease. Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Filamentous fungi were significantly more commonly cultured in patients with TH2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-TH2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with TH2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with TH2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  5. Aerosolized polymerized type I collagen reduces airway inflammation and remodelling in a guinea pig model of allergic asthma.

    PubMed

    Moreno-Alvarez, Paola; Sánchez-Guerrero, Edgar; Martínez-Cordero, Erasmo; Hernández-Pando, Rogelio; Campos, María G; Cetina, Lucely; Bazán-Perkins, Blanca

    2010-04-01

    Collagen-polyvinylpyrrolidone (Collagen-PVP) has been demonstrated to elicit immunomodulatory properties in different chronic inflammatory diseases. Nevertheless, its effects on asthma are still unknown. We have evaluated whether collagen-PVP could modulate airway inflammation and remodelling in a guinea pig model of allergic asthma. Sensitized guinea pigs were challenged with the allergen (ovalbumin) six times (at 10-day intervals). From the third challenge on, animals were treated every 5 days with saline aerosols containing 0.16, 0.33, or 0.66 mg/ml of collagen-PVP (n = 5, respectively). Some guinea pigs, sensitized and challenged with saline as well as treated with 0 or 0.66 mg/ml collagen-PVP, were included in the study as control (n = 7) and sham groups (n = 5), respectively. From the first challenge on, ovalbumin induced a transient airway obstruction, measured by barometric plethysmography, which was not modified by collagen-PVP treatments. After the last allergen challenge, guinea pigs were anesthetized to obtain bronchoalveolar lavage (BAL) and the left lung caudal lobe. As expected, BAL cell count from allergen-challenged guinea pigs showed abundant neutrophils and eosinophils, as well as numerous tumor necrosis factor (TNF)-alpha-expressing granulocytes and macrophages in airway wall (determined by immunohistochemical assay). Neutrophilia and TNF-alpha-expressing leukocytes, from collagen-PVP treated animals, diminished from 0.16 mg/ml, and eosinophilia from 0.66 mg/ml of collagen-PVP doses. Histological changes induced by allergen challenges include thickening of connective tissue below airway epithelium and vascular wall widening of airway adjacent vessels; these changes were reduced by collagen-PVP treatment. Collagen-PVP seems to have anti-inflammatory and antifibrotic properties in this guinea pig asthma model.

  6. Cytokeratin expression in mouse lacrimal gland germ epithelium.

    PubMed

    Hirayama, Masatoshi; Liu, Ying; Kawakita, Tetsuya; Shimmura, Shigeto; Tsubota, Kazuo

    2016-05-01

    The lacrimal gland secretes tear fluids that protect the ocular surface epithelium, and its dysfunction leads to dry eye disease (DED). The functional restoration of the lacrimal gland by engraftment of a bioengineered lacrimal gland using lacrimal gland germ epithelial cells has been proposed to cure DED in mice. Here, we investigate the expression profile of cytokeratins in the lacrimal gland germ epithelium to clarify their unique characteristics. We performed quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC) analysis to clarify the expression profile of cytokeratin in the lacrimal gland germ epithelium. The mRNA expression of keratin (KRT) 5, KRT8, KRT14, KRT15, and KRT18 in the lacrimal gland germ epithelium was increased compared with that in mouse embryonic stem cells and the lacrimal gland germ mesenchyme, as analyzed by Q-PCR. The expression level of KRT15 increased in the transition from stem cells to lacrimal gland germ epithelium, then decreased as the lacrimal gland matured. IHC revealed that the expression set of these cytokeratins in the lacrimal gland germ epithelium was different from that in the adult lacrimal gland. The expression of KRT15 was observed in the lacrimal gland germ epithelium, and it segmentalized into some of the basal cells in the intercanulated duct in mature gland. We determined the expression profile of cytokeratins in the lacrimal gland epithelium, and identified KRT15 as a candidate unique cellular marker for the lacrimal gland germ epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness.

    PubMed

    Hjoberg, Josephine; Shore, Stephanie; Kobzik, Lester; Okinaga, Shoji; Hallock, Arlene; Vallone, Joseph; Subramaniam, Venkat; De Sanctis, George T; Elias, Jack A; Drazen, Jeffrey M; Silverman, Eric S

    2004-07-01

    Individuals with asthma have increased levels of nitric oxide in their exhaled air. To explore its role, we have developed a regulatable transgenic mouse capable of overexpressing inducible nitric oxide synthase in a lung-specific fashion. The CC10-rtTA-NOS-2 mouse contains two transgenes, a reverse tetracycline transactivator under the control of the Clara cell protein promoter and the mouse nitric oxide synthase-2 (NOS-2) coding region under control of a tetracycline operator. Addition of doxycycline to the drinking water of CC10-rtTA-NOS-2 mice causes an increase in nitric oxide synthase-2 that is largely confined to the airway epithelium. The fraction of expired nitric oxide increases over the first 24 h from approximately 10 parts per billion to a plateau of approximately 20 parts per billion. There were no obvious differences between CC10-rtTA-NOS-2 mice, with or without doxycycline, and wild-type mice in lung histology, bronchoalveolar protein, total cell count, or count differentials. However, airway resistance was lower in CC10-rtTA-NOS-2 mice with doxycycline than in CC10-rtTA-NOS-2 mice without doxycycline or wild-type mice with doxycycline. Moreover, doxycycline-treated CC10-rtTA-NOS-2 mice were hyporesponsive to methacholine compared with other groups. These data suggest that increased nitric oxide in the airways has no proinflammatory effects per se and may have beneficial effects on pulmonary function.

  8. Systemic and airway oxidative stress in competitive swimmers.

    PubMed

    Škrgat, Sabina; Marčun, Robert; Kern, Izidor; Šilar, Mira; Šelb, Julij; Fležar, Matjaž; Korošec, Peter

    2018-04-01

    The environment in swimming pools, which contain chlorine, might interact with the airway epithelium, resulting in oxidative stress and/or inflammation during high intensity training periods. We evaluated pulmonary functional (metacholine challenge test, FEV1 and VC), cellular (eosinophils and neutrophils), inflammatory (FeNo, IL-5, IL-6, IL-8 and TNF-α), oxidative (8-isoprostanes) and angiogenesis factors (VEGF) in induced sputum and peripheral blood of 41 healthy non-asthmatic elite swimmers (median 16 years) during the period of high intensity training before a national championship. The second paired sampling was performed seven months later after training had been stopped for one month. There was a ten-fold increase (median 82-924 pg/ml; P < 0.001) in 8-isoprostanes in induced sputum and five-fold increase (median 82-924 pg/ml; P < 0.001) in sera during training in comparison to the period of rest. However, there was no difference in FEV1 (113 vs 116%), VC (119 vs 118%), FeNo (median 34 vs 38 ppb), eosinophils (2.7 vs 2.9% in sputum; 180 vs 165 cells/μl in blood), neutrophils, different cytokines or VEGF in induced sputum or sera. The only exception was TNF-α, which was moderately increased in sera (median 23 vs 40 pg/ml; P = 0.02) during the peak training period. Almost half (18 of 41) of swimmers showed bronchial hyperresponsiveness during the peak training period (PC20 cutoff was 4 mg/ml). There was no correlation between hyperresponsiveness and the markers of oxidative stress or inflammation. High intensity training in healthy, non-asthmatic competitive swimmers results in marked oxidative stress at the airway and systemic levels, but does not lead to airway inflammation. However, we could not confirm that oxidative stress is associated with bronchial hyperresponsiveness (AHR), which is often observed during the peak exercise training period. Copyright © 2018. Published by Elsevier Ltd.

  9. The eicosanoid, 15-(S)-HETE, stimulates secretion of mucin-like glycoprotein by the corneal epithelium.

    PubMed

    Jackson , R S; Van Dyken, S J; McCartney, M D; Ubels, J L

    2001-07-01

    The eicosanoid, 15-(S)-hydroxyeicosa-5Z, 8Z-11Z, 13E-tetraenoic acid (15-(S)-HETE), is known to stimulate production of mucin glycoprotein by airway epithelium. This study investigated the effect of 15-(S)-HETE on the mucin glycoprotein secretion by the corneal epithelium. To determine the effect of dose, corneas of anesthetized New Zealand White rabbits were treated with 50, 500, or 5,000 nM 15-(S)-HETE in artificial tears for 120 minutes. To determine the time to onset of the response, corneas were treated with 500 or 1,000 nM 15-(S)-HETE in balanced salt solution for periods ranging from 5 to 120 minutes. Corneas were fixed for electron microscopy in fixative containing 0.5% cetylpyridinium chloride (CPC) to stabilize the layer of mucin-like glycoprotein on the corneal surface. The mucin layer thickness was measured by image analysis of electron micrographs. The layer of CPC-fixed mucin-like glycoprotein on the surface of control corneas was 0.46 +/- 0.04 microm thick. After treatment with 15-(S)-HETE, the thickness of the mucin layer increased to 0.64 +/- 0.1 microm at 50 or 5,000 nM HETE and as much as 1.02 +/- 0.2 microm in response to 500 nM HETE. Mucin thickness reached a statistical maximum of 0.59 +/- 0.1 microm after only 5 minutes of exposure to 500 or 1,000 nM HETE. Exposure of the cornea to 15-(S)-HETE causes a rapid-onset increase in the thickness of a layer of mucin-like glycoprotein on the surface of the corneal epithelium. This supports previous reports that corneal epithelial cells produce mucin and suggests that treatment with topical 15-(S)-HETE may be effective in treating ocular surface mucin deficiency in dry eye syndrome.

  10. Difficult airway response team: a novel quality improvement program for managing hospital-wide airway emergencies.

    PubMed

    Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A

    2015-07-01

    Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty

  11. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  12. Interactions of Aspergillus fumigatus Conidia with Airway Epithelial Cells: A Critical Review

    PubMed Central

    Croft, Carys A.; Culibrk, Luka; Moore, Margo M.; Tebbutt, Scott J.

    2016-01-01

    Aspergillus fumigatus is an environmental filamentous fungus that also acts as an opportunistic pathogen able to cause a variety of symptoms, from an allergic response to a life-threatening disseminated fungal infection. The infectious agents are inhaled conidia whose first point of contact is most likely to be an airway epithelial cell (AEC). The interaction between epithelial cells and conidia is multifaceted and complex, and has implications for later steps in pathogenesis. Increasing evidence has demonstrated a key role for the airway epithelium in the response to respiratory pathogens, particularly at early stages of infection; therefore, elucidating the early stages of interaction of conidia with AECs is essential to understand the establishment of infection in cohorts of at-risk patients. Here, we present a comprehensive review of the early interactions between A. fumigatus and AECs, including bronchial and alveolar epithelial cells. We describe mechanisms of adhesion, internalization of conidia by AECs, the immune response of AECs, as well as the role of fungal virulence factors, and patterns of fungal gene expression characteristic of early infection. A clear understanding of the mechanisms involved in the early establishment of infection by A. fumigatus could point to novel targets for therapy and prophylaxis. PMID:27092126

  13. Laryngeal mask airway for airway control during percutaneous dilatational tracheostomy.

    PubMed

    Pratt, T; Bromilow, J

    2011-11-01

    Percutaneous dilatational tracheostomy is a common bedside procedure in critical care for patients requiring prolonged mechanical ventilation. The traditional technique requires withdrawal of the endotracheal tube to a proximal position to facilitate tracheostomy insertion, but this carries the risk of inadvertent extubation and does not prevent cuff rupture. Use of a supraglottic airway such as the laryngeal mask airway may avoid these risks and could provide a safe alternative to the endotracheal tube. We present an appraisal of the literature to date. We found reasonable evidence to show improved ventilation and bronchoscopic visualisation with the laryngeal mask airway, but this has not been translated into improved outcome. There is currently insufficient evidence to draw conclusions about the safety of the laryngeal mask airway during percutaneous dilatational tracheostomy.

  14. Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and beta2-agonist use.

    PubMed

    Hastie, Annette T; Wu, Min; Foster, Gayle C; Hawkins, Gregory A; Batra, Vikas; Rybinski, Katherine A; Cirelli, Rosemary; Zangrilli, James G; Peters, Stephen P

    2006-02-15

    Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo beta2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for beta2-adrenergic receptor haplotype determination. Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the beta2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to beta-agonist. The decreased phosphorylation does not appear to be

  15. Use of a Novel Airway Kit and Simulation in Resident Training on Emergent Pediatric Airways.

    PubMed

    Melzer, Jonathan M; Hamersley, Erin R S; Gallagher, Thomas Q

    2017-06-01

    Objective Development of a novel pediatric airway kit and implementation with simulation to improve resident response to emergencies with the goal of improving patient safety. Methods Prospective study with 9 otolaryngology residents (postgraduate years 1-5) from our tertiary care institution. Nine simulated pediatric emergency airway drills were carried out with the existing system and a novel portable airway kit. Response times and time to successful airway control were noted with both the extant airway system and the new handheld kit. Results were analyzed to ensure parametric data and compared with t tests. A Bonferroni adjustment indicated that an alpha of 0.025 was needed for significance. Results Use of the airway kit significantly reduced the mean time of resident arrival by 47% ( P = .013) and mean time of successful intubation by 50% ( P = .007). Survey data indicated 100% improved resident comfort with emergent airway scenarios with use of the kit. Discussion Times to response and meaningful intervention were significantly reduced with implementation of the handheld airway kit. Use of simulation training to implement the new kit improved residents' comfort and airway skills. This study describes an affordable novel mobile airway kit and demonstrates its ability to improve response times. Implications for Practice The low cost of this airway kit makes it a tenable option even for smaller hospitals. Simulation provides a safe and effective way to familiarize oneself with novel equipment, and, when possible, realistic emergent airway simulations should be used to improve provider performance.

  16. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis.

    PubMed

    Tsukioka, Takuma; Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2016-01-01

    Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh-Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty.

  17. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  18. Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma.

    PubMed

    Işık, S; Karaman, M; Çilaker Micili, S; Çağlayan-Sözmen, Ş; Bağrıyanık, H Alper; Arıkan-Ayyıldız, Z; Uzuner, N; Karaman, Ö

    In previous studies, anti-inflammatory, anti-apoptotic and immunomodulatory effects of ursodeoxycholic acid (UDCA) on liver diseases have been shown. In this study, we aimed to investigate the effects of UDCA on airway remodelling, epithelial apoptosis, and T Helper (Th)-2 derived cytokine levels in a murine model of chronic asthma. Twenty-seven BALB/c mice were divided into five groups; PBS-Control, OVA-Placebo, OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone. Mice in groups OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone received the UDCA (50mg/kg), UDCA (150mg/kg), and dexamethasone, respectively. Epithelium thickness, sub-epithelial smooth muscle thickness, number of mast and goblet cells of samples isolated from the lung were measured. Immunohistochemical scorings of the lung tissue for matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEG-F), transforming growth factor-beta (TGF-β), terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) and cysteine-dependent aspartate-specific proteases (caspase)-3 were determined. IL-4, IL-5, IL-13, Nitric oxide, ovalbumin-specific immunoglobulin (Ig) E levels were quantified. The dose of 150mg/kg UDCA treatment led to lower epithelial thickness, sub-epithelial smooth muscle thickness, goblet and mast cell numbers compared to placebo. Except for MMP-9 and TUNEL all immunohistochemical scores were similar in both UDCA treated groups and the placebo. All cytokine levels were significantly lower in group IV compared to the placebo. These findings suggested that the dose of 150mg/kg UDCA improved all histopathological changes of airway remodelling and its beneficial effects might be related to modulating Th-2 derived cytokines and the inhibition of apoptosis of airway epithelial cells. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  19. Advanced Optical Technologies for Defense Trauma and Critical Care

    DTIC Science & Technology

    2008-11-01

    aid in successful transitioning of optical imaging platforms from the laboratory setting to the clinical environment. Project #2: Airway Injury, Part...characterize the response of an in vitro tissue model of the lung epithelium to chlorine inhalation injury, and evaluate the potential use of this...to more effectively simulate a human airway epithelium . This tissue model of the bronchial epithelium was then exposed to different doses of

  20. Allergen and ozone exacerbate serotonin-induced increases in airway smooth muscle contraction in a model of childhood asthma.

    PubMed

    Moore, Brian D; Hyde, Dallas; Miller, Lisa; Wong, Emily; Frelinger, Jessica; Schelegle, Edward S

    2012-01-01

    Serotonin (5-HT) modulates cholinergic neurotransmission and exacerbates airway smooth muscle (ASM) contraction in normal animal and nonasthmatic human tissue. Exposure to house dust mite allergen (HDMA) and ozone (O(3)) leads to airway hyperreactivity and 5-HT-positive cells in the airway epithelium of infant rhesus monkeys. Research shows that concomitant exposure in allergic animals has an additive effect on airway hyperreactivity. In this study, the hypothesis is that the exposure of allergic infant rhesus monkeys to HDMA, O(3) and in combination, acting through 5-HT receptors, enhances 5-HT modulation of postganglionic cholinergic ASM contraction. Twenty-four HDMA-sensitized infant monkeys were split into 4 groups at the age of 1 month, and were exposed to filtered air (FA), HDMA, O(3) or in combination (HDMA+O(3)). At the age of 6 months, airway rings were harvested and postganglionic, and parasympathetic-mediated ASM contraction was evaluated using electrical-field stimulation (EFS). 5-HT exacerbated the EFS response within all exposure groups, but had no effect in the FA group. 5-HT(2), 5-HT(3) and 5-HT(4) receptor agonists exacerbated the response. 5-HT concentration-response curves performed after incubation with specific receptor antagonists confirmed the involvement of 5-HT(2), 5-HT(3) and 5-HT(4) receptors. Conversely, a 5-HT(1) receptor agonist attenuated the tension across all groups during EFS, and in ASM contracted via exogenous acetylcholine. HDMA, O(3) and HDMA+O(3) exposure in a model of childhood allergic asthma enhances 5-HT exacerbation of EFS-induced ASM contraction through 5-HT(2), 5-HT(3) and 5-HT(4) receptors. A nonneurogenic inhibitory pathway exists, unaffected by exposure, mediated by 5-HT(1) receptors located on ASM. Copyright © 2012 S. Karger AG, Basel.

  1. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    PubMed Central

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-01-01

    Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any

  2. Airway management in neuroanesthesiology.

    PubMed

    Aziz, Michael

    2012-06-01

    Airway management for neuroanesthesiology brings together some key principles that are shared throughout neuroanesthesiology. This article appropriately targets the cervical spine with associated injury and the challenges surrounding airway management. The primary focus of this article is on the unique airway management obstacles encountered with cervical spine injury or cervical spine surgery, and unique considerations regarding functional neurosurgery are addressed. Furthermore, topics related to difficult airway management for those with rheumatoid arthritis or pituitary surgery are reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Imaging of mucus clearance in the airways of living spontaneously breathing mice by optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pieper, Mario; Schulz-Hildebrandt, Hinnerk; Hüttmann, Gereon; König, Peter

    2016-03-01

    Mucus transport is essential to remove inhaled particles and pathogens from the lung. Impaired removal of mucus often results in worsening of lung diseases. To understand the mechanisms of mucus transport and to monitor the impact of therapeutic strategies, it is essential to visualize airways and mucus in living animals without disturbing transport processes by intubation or surgically opening the airways. We developed a custom-built optical coherence microscope (OCM) providing a lateral and axial resolution of approximately 1.5 µm with a field of view of 2 mm at up to 150 images/s. Images of the intact trachea and its mucus transport were recorded in anesthetized spontaneously breathing mice. NaCl solution (0.9% and 7%) or Lipopolysaccharide were applied intranasally. OCM resolved detailed structure of the trachea and enabled measuring the airway surface liquid (ASL) thickness through the tracheal wall. Without stimulation, the amount of ASL was only a few µm above the epithelium and remained constant. After intranasal application of 30 µl saline at different concentrations, an early fast cough-like fluid removal with velocities higher than 1 mm/s was observed that removed a high amount of liquid. The ASL thickness increased transiently and quickly returned to levels before stimulation. In contrast to saline, application of Lipopolysaccharide induced substantial mucus release and an additional slow mucus transport by ciliary beating (around 100 µm/s) towards the larynx was observed. In conclusion, OCM is appropriate unique tool to study mechanisms of mucus transport in the airways and effects of therapeutic interventions in living animals.

  4. High rhinovirus burden in lower airways of children with cystic fibrosis.

    PubMed

    Kieninger, Elisabeth; Singer, Florian; Tapparel, Caroline; Alves, Marco P; Latzin, Philipp; Tan, Hui-Leng; Bossley, Cara; Casaulta, Carmen; Bush, Andrew; Davies, Jane C; Kaiser, Laurent; Regamey, Nicolas

    2013-03-01

    Rhinovirus (RV)-induced pulmonary exacerbations are common in cystic fibrosis (CF) and have been associated with impaired virus clearance by the CF airway epithelium in vitro. Here, we assess in vivo the association of RV prevalence and load with antiviral defense mechanisms, airway inflammation, and lung function parameters in children with CF compared with a control group and children with other chronic respiratory diseases. RV presence and load were measured by real-time reverse transcription-polymerase chain reaction in BAL samples and were related to antiviral and inflammatory mediators measured in BAL and to clinical parameters. BAL samples were obtained from children with CF (n = 195), non-CF bronchiectasis (n = 40), or asthma (n = 29) and from a control group (n = 35) at a median (interquartile range [IQR]) age of 8.2 (4.0-11.7) years. RV was detected in 73 samples (24.4%). RV prevalence was similar among groups. RV load (median [IQR] x 10(3) copies/mL) was higher in children with CF (143.0 [13.1-1530.0]), especially during pulmonary exacerbations, compared with children with asthma (3.0 [1.3-25.8], P = .006) and the control group (0.5 [0.3-0.5], P < .001), but similar to patients with non-CF bronchiectasis (122.1 [2.7-4423.5], P = not significant). In children with CF, RV load was negatively associated with interferon (IFN)- b and IFN- l , IL-1ra levels, and FEV 1 , and positively with levels of the cytokines CXCL8 and CXCL10. RV load in CF BAL is high, especially during exacerbated lung disease. Impaired production of antiviral mediators may lead to the high RV burden in the lower airways of children with CF. Whether high RV load is a cause or a consequence of inflammation needs further investigation in longitudinal studies.

  5. [The research on the airway hyperresponsiveness and IOS airway resistance index of industrial area resident].

    PubMed

    Xu, Jin; Wang, Zhen; Sun, Hongcun

    2015-09-01

    To study airway reactivity and impulse oscillation (IOS)-measured airway resistance indicators of residents of Zhenhai industrial area in Ningbo city. In the form of follow-up, both. airway reactivity and respiratory functions of populations in Zhenhai industrial zone (n = 215) and urban (n = 203) were measured, comparing difference degree between different regions. Ninty-five of 215 cases in industrial area were identified as suspected airway hyperresponsiveness, but only 43 of 203 cases were in urban areas. Forty-seven of 95 cases (49.5%) in industrial zone were positive, while only 14 cases (32.6%) in urban. The proportions of people in the two regions on different types of airway hyperresponsiveness were significantly different (P < 0.01). All airway resistance indexes of urban populations were significantly lower than that of industrial zone (P < 0.05). The prevalence of airway hyperresponsiveness and IOS airway resistance aspects of industrial area residents was higher than that of urban residents. Monitoring and evaluating the airway diseases, inflammatory lesions and respiratory function in the region were good for understanding the severe pollution in the local area in certain significance.

  6. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  7. Cyclosporine a inhibits apoptosis of rat gingival epithelium.

    PubMed

    Ma, Su; Liu, Peihong; Li, Yanwu; Hou, Lin; Chen, Li; Qin, Chunlin

    2014-08-01

    The use of cyclosporine A (CsA) induces hyperplasia of the gingival epithelium in a site-specific response manner, but the molecular mechanism via which the lesion occurs is unclear. The present research aims to investigate the site-specific effect of CsA on the apoptosis of gingival epithelium associated with gingival hyperplasia. Forty Wistar rats were divided into CsA-treated and non-treated groups. Paraffin-embedded sections of mandibular first molars were selected for hematoxylin and eosin staining, immunohistochemistry analyses of bcl-2 and caspase-3, and the staining of terminal deoxynucleotidyl transfer-mediated dUTP nick-end labeling (TUNEL). The area of the whole gingival epithelium and the length of rete pegs were measured, and the number of bcl-2- and caspase-3-positive cells in the longest rete peg were counted. The analysis of variance for factorial designs and Fisher least significant difference test for post hoc analysis were used to determine the significance levels. In CsA-treated rats, bcl-2 expression was significantly upregulated, whereas caspase-3 expression was downregulated, along with a reduced number of TUNEL-positive cells. The site-specific distribution of bcl-2 was consistent with the site-specific hyperplasia of the gingival epithelium in CsA-treated rats. CsA inhibited gingival epithelial apoptosis via the mitochondrial pathway and common pathway. The antiapoptotic protein bcl-2 might play a critical role in the pathogenesis of the site-specific hyperplasia of gingival epithelium induced by CsA. There were mechanistic differences in the regulation of apoptosis for cells in the attached gingival epithelium, free gingival epithelium, and junctional epithelium.

  8. Exposure to Ozone Modulates Human Airway Protease/Antiprotease Balance Contributing to Increased Influenza A Infection

    PubMed Central

    Kesic, Matthew J.; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID

  9. Corneal epithelium and UV-protection of the eye.

    PubMed

    Ringvold, A

    1998-04-01

    To study UV-absorption and UV-induced fluorescence in the bovine corneal epithelium. Spectrophotometry and spectrofluorimetry. The corneal epithelium absorbs UV-B radiation mainly owing to its content of protein, RNA, and ascorbate. Some of the absorbed energy is transformed to the less biotoxic UV-A radiation by fluorescence. RNA and ascorbate reduce tissue fluorescence. The corneal epithelium acts as a UV-filter, protecting internal eye structures through three different mechanisms: (1) Absorption of UV-B roughly below 310 nm wavelength. (2) Fluorescence-mediated ray transformation to longer wavelengths. (3) Fluorescence reduction. The extremely high ascorbate concentration in the corneal epithelium has a key role in two of these processes.

  10. Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness

    PubMed Central

    Wilson, Rhonda H.; Whitehead, Gregory S.; Nakano, Hideki; Free, Meghan E.; Kolls, Jay K.; Cook, Donald N.

    2009-01-01

    Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant. Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum. Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR). Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR. Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma. PMID:19661246

  11. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  12. THE PERMEABILITY OF RAT TRANSITIONAL EPITHELIUM

    PubMed Central

    Hicks, R. M.

    1966-01-01

    Permeability barriers must exist in transitional epithelium to prevent the free flow of water from underlying blood capillaries through the epithelium into the hypertonic urine, and such a barrier has now been demonstrated in isolated bladders. This barrier is passive in function and can be destroyed by damaging the luminal surface of the transitional epithelium with sodium hydroxide and 8 M urea solutions, by digesting it with trypsin, lecithinase C, and lecithinase D, or by treating it with lipid solvents such as Triton x 100 and saponin. From this it is concluded that the barrier depends on the integrity of lipoprotein cell membranes. The barrier function is also destroyed by sodium thioglycollate solutions, and electron microscope investigations show that sodium thioglycollate damages the thick asymmetric membrane which limits the luminal face of the superficial squamous cell. Cytochemical staining shows the epithelium to contain disulfide and thiol groups and to have a concentration of these groups at the luminal margin of the superficial cells. It thus appears that the permeability barrier also depends on the presence of disulfide bridges in the epithelium, and it is presumed that these links are located in keratin. Because of the effect of thioglycollates, both on the barrier function and on the morphology of the membrane, it is suggested that keratin may be incorporated in the thick barrier membrane. It is proposed that the cells lining the urinary bladder and ureters should be regarded as a keratinizing epitheluim. PMID:5901498

  13. Corneal epithelium, visual acuity, and laser refractive keratectomy

    NASA Astrophysics Data System (ADS)

    Simon, Gabriel; Parel, Jean-Marie A.; Kervick, Gerard N.; Rol, Pascal O.; Hanna, Khalil; Thompson, Keith P.

    1991-06-01

    Photorefractive keratectomy (PRK) using an argon fluoride excimer laser for photoablation of the cornea shows potential for the precise correction of refractive errors in patients. Usually, the epithelium is mechanically removed, and Bowman's layer and stromal tissue are photoablated to precomputed depths and shapes that are based on known ablation rates for these tissues. After four day's time, the epithelium has regrown. Assuming the epithelium to be preoperatively uniform in thickness across the central optical zone, and assuming that it regrows to the same thickness, a theoretical precision of +/- 0.05 diopters is achievable with PRK. Keratometric measurements of the epithelium and of Bowman's layer were made at the 2.0 and 3.6 mm optical zones on 10 fresh cadaver eyes (<21 hours postmortem). In the eyes studied, the epithelium thickness was found to vary across the central optical zone, accounting for the measured refractive differences of 0.5 to 1.8 diopters. Bowman's layer was found to be more prolated than the epithelial surface (ratios: 1.005 compared to 1.033). In addition, the surface of Bowman's layer had a larger degree of astigmatism. Other studies have shown that the epithelium regrowth is a function of the newly exposed corneal topography as the wing cells compensate for irregularities in Bowman's surface. As the preoperative topography of the epithelium cannot be used as a reference surface when computing photoablation depth, intraoperative keratometry of Bowman's surface becomes a necessity in PRK.

  14. Misdiagnosis trends in patients with hereditary angioedema from the real-world clinical setting.

    PubMed

    Zanichelli, Andrea; Longhurst, Hilary J; Maurer, Marcus; Bouillet, Laurence; Aberer, Werner; Fabien, Vincent; Andresen, Irmgard; Caballero, Teresa

    2016-10-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) causes swelling in the skin and upper airways and pain in the abdomen because of mucosal swelling. C1-INH-HAE is frequently misdiagnosed, leading to delays in diagnosis, inadequate treatment, and unnecessary procedures. To evaluate the history of misdiagnosis in patients participating in the Icatibant Outcome Survey (IOS). The IOS is an observational study in which safety and effectiveness of icatibant have been evaluated since 2009. As part of the IOS, patients record any misdiagnoses received before being diagnosed as having C1-INH-HAE. In January 2016, a total of 418 of 633 IOS patients with C1-INH-HAE type I or II had provided misdiagnosis data. Of these, 185 of 418 (44.3%) received 1 or more prior misdiagnoses. The most common misdiagnoses were allergic angioedema (103 of 185) and appendicitis (50 of 185). A variety of other misdiagnoses were reported, including a substantial number of gastrointestinal disorders (excluding appendicitis). Misdiagnosis rates were similar between males (41.1%) and females (46.5%) and between C1-INH-HAE type I (43.7%) and type II (51.6%). Patients with family members diagnosed as having C1-INH-HAE were significantly less likely to be misdiagnosed than patients without a family history (140 of 366 [41.7%] vs 38 of 58 [65.5%], respectively; P = .001). Patients with a prior misdiagnosis had longer median delay to C1-INH-HAE diagnosis (13.3 years) than patients without (1.7 years; P < .001). From this large database, approximately 50% of patients with C1-INH-HAE type I or II have previously had their conditions misdiagnosed, most commonly as allergic angioedema or appendicitis. Misdiagnosis results in marked delays in receiving the correct diagnosis, during which time patients cannot access effective, lifesaving treatment. ClinicalTrials.gov: NCT01034969. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Neurotoxic, inflammatory, and mucosecretory responses in the nasal airways of mice repeatedly exposed to the macrocyclic trichothecene mycotoxin roridin A: dose-response and persistence of injury.

    PubMed

    Corps, Kara N; Islam, Zahidul; Pestka, James J; Harkema, Jack R

    2010-04-01

    Macrocyclic trichothecene mycotoxins encountered in water-damaged buildings have been suggested to contribute to illnesses of the upper respiratory tract. Here, the authors characterized the adverse effects of repeated exposures to roridin A (RA), a representative macrocyclic trichothecene, on the nasal airways of mice and assessed the persistence of these effects. Young, adult, female C57BL/6 mice were exposed to single daily, intranasal, instillations of RA (0.4, 2, 10, or 50 microg/kg body weight [bw]) in saline (50 microl) or saline alone (controls) over 3 weeks or 250 microg/kg RA over 2 weeks. Histopathologic, immunohistochemical, and morphometric analyses of nasal airways conducted 24 hr after the last instillation revealed that the lowest-effect level was 10 microg/kg bw. RA exposure induced a dose-dependent, neutrophilic rhinitis with mucus hypersecretion, atrophy and exfoliation of nasal transitional and respiratory epithelium, olfactory epithelial atrophy and loss of olfactory sensory neurons (OSNs). In a second study, the persistence of lesions in mice instilled with 250 microg/kg bw RA was assessed. Nasal inflammation and excess luminal mucus were resolved after 3 weeks, but OSN loss was still evident in olfactory epithelium (OE). These results suggest that nasal inflammation, mucus hypersecretion, and olfactory neurotoxicity could be important adverse health effects associated with short-term, repeated, airborne exposures to macrocyclic trichothecenes.

  16. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.

    PubMed

    Humayun, Mouhita; Chow, Chung-Wai; Young, Edmond W K

    2018-05-01

    Chronic lung diseases (CLDs) are regulated by complex interactions between many different cell types residing in lung airway tissues. Specifically, interactions between airway epithelial cells (ECs) and airway smooth muscle cells (SMCs) have been shown in part to play major roles in the pathogenesis of CLDs, but the underlying molecular mechanisms are not well understood. To advance our understanding of lung pathophysiology and accelerate drug development processes, new innovative in vitro tissue models are needed that can reconstitute the complex in vivo microenvironment of human lung tissues. Organ-on-a-chip technologies have recently made significant strides in recapitulating physiological properties of in vivo lung tissue microenvironments. However, novel advancements are still needed to enable the study of airway SMC-EC communication with matrix interactions, and to provide higher throughput capabilities and manufacturability. We have developed a thermoplastic-based microfluidic lung airway-on-a-chip model that mimics the lung airway tissue microenvironment, and in particular, the interactions between SMCs, ECs, and supporting extracellular matrix (ECM). The microdevice is fabricated from acrylic using micromilling and solvent bonding techniques, and consists of three vertically stacked microfluidic compartments with a bottom media reservoir for SMC culture, a middle thin hydrogel layer, and an upper microchamber for achieving air-liquid interface (ALI) culture of the epithelium. A unique aspect of the design lies in the suspended hydrogel with upper and lower interfaces for EC and SMC culture, respectively. A mixture of type I collagen and Matrigel was found to promote EC adhesion and monolayer formation, and SMC adhesion and alignment. Optimal culturing protocols were established that enabled EC-SMC coculture for more than 31 days. Epithelial monolayers displayed common morphological markers including ZO-1 tight junctions and F-actin cell cortices, while

  17. Relapsing polychondritis and airway involvement.

    PubMed

    Ernst, Armin; Rafeq, Samaan; Boiselle, Phillip; Sung, Arthur; Reddy, Chakravarthy; Michaud, Gaetane; Majid, Adnan; Herth, Felix J F; Trentham, David

    2009-04-01

    To assess the prevalence and characteristics of airway involvement in relapsing polychondritis (RP). Retrospective chart review and data analysis of RP patients seen in the Rheumatology Clinic and the Complex Airway Center at Beth Israel Deaconess Medical Center from January 2004 through February 2008. RP was diagnosed in 145 patients. Thirty-one patients had airway involvement, a prevalence of 21%. Twenty-two patients were women (70%), and they were between 11 and 61 years of age (median age, 42 years) at the time of first symptoms. Airway symptoms were the first manifestation of disease in 17 patients (54%). Dyspnea was the most common symptom in 20 patients (64%), followed by cough, stridor, and hoarseness. Airway problems included the following: subglottic stenosis (n = 8; 26%); focal and diffuse malacia (n = 15; 48%); and focal stenosis in different areas of the bronchial tree in the rest of the patients. Twelve patients (40%) required and underwent intervention including balloon dilatation, stent placement, tracheotomy, or a combination of the above with good success. The majority of patients experienced improvement in airway symptoms after intervention. One patient died during the follow-up period from the progression of airway disease. The rest of the patients continue to undergo periodic evaluation and intervention. In this largest cohort described in the English language literature, we found symptomatic airway involvement in RP to be common and at times severe. The nature of airway problems is diverse, with tracheomalacia being the most common. Airway intervention is frequently required and in experienced hands results in symptom improvement.

  18. Airway recovery after face transplantation.

    PubMed

    Fischer, Sebastian; Wallins, Joe S; Bueno, Ericka M; Kueckelhaus, Maximilian; Chandawarkar, Akash; Diaz-Siso, J Rodrigo; Larson, Allison; Murphy, George F; Annino, Donald J; Caterson, Edward J; Pomahac, Bohdan

    2014-12-01

    Severe facial injuries can compromise the upper airway by reducing airway volume, obstructing or obliterating the nasal passage, and interfering with oral airflow. Besides the significant impact on quality of life, upper airway impairments can have life-threatening or life-altering consequences. The authors evaluated improvements in functional airway after face transplantation. Between 2009 and 2011, four patients underwent face transplantation at the authors' institution, the Brigham and Women's Hospital. Patients were examined preoperatively and postoperatively and their records reviewed for upper airway infections and sleeping disorders. The nasal mucosa was biopsied after face transplantation and analyzed using scanning electron microscopy. Volumetric imaging software was used to evaluate computed tomographic scans of the upper airway and assess airway volume changes before and after transplantation. Before transplantation, two patients presented an exposed naked nasal cavity and two suffered from occlusion of the nasal passage. Two patients required tracheostomy tubes and one had a prosthetic nose. Sleeping disorders were seen in three patients, and chronic cough was diagnosed in one. After transplantation, there was no significant improvement in sleeping disorders. The incidence of sinusitis increased because of mechanical interference of the donor septum and disappeared after surgical correction. All patients were decannulated after transplantation and were capable of nose breathing. Scanning electron micrographs of the respiratory mucosa revealed viable tissue capable of mucin production. Airway volume significantly increased in all patients. Face transplantation successfully restored the upper airway in four patients. Unhindered nasal breathing, viable respiratory mucosa, and a significant increase in airway volume contributed to tracheostomy decannulation.

  19. Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers

    PubMed Central

    Miotto, D; Hollenberg, M; Bunnett, N; Papi, A; Braccioni, F; Boschetto, P; Rea, F; Zuin, A; Geppetti, P; Saetta, M; Maestrelli, P; Fabbri, L; Mapp, C

    2002-01-01

    Background: Protease activated receptor-2 (PAR-2) is a transmembrane G protein coupled receptor preferentially activated by trypsin and tryptase. The protease activated receptors play an important role in most components of injury responses including cell proliferation, migration, matrix remodelling, and inflammation. Cigarette smoking causes an inflammatory process in the central airways, peripheral airways, lung parenchyma, and adventitia of pulmonary arteries. Methods: To quantify the expression of PAR-2 in the central airways of smokers and non-smokers, surgical specimens obtained from 30 subjects undergoing lung resection for localised pulmonary lesions (24 with a history of cigarette smoking and six non-smoking control subjects) were examined. Central airways were immunostained with an antiserum specific for PAR-2 and PAR-2 expression was quantified using light microscopy and image analysis. Results: PAR-2 expression was found in bronchial smooth muscle, epithelium, glands, and in the endothelium and smooth muscle of bronchial vessels. PAR-2 expression was similar in the central airways of smokers and non-smokers. When smokers were divided according to the presence of symptoms of chronic bronchitis and chronic airflow limitation, PAR-2 expression was increased in smooth muscle (median 3.8 (interquartile range 2.9–5.8) and 1.4 (1.07–3.4) respectively); glands (33.3 (18.2–43.8) and 16.2 (11.5–22.2), respectively); and bronchial vessels (54.2 (48.7–56.8) and 40.0 (36–40.4), respectively) of smokers with symptoms of chronic bronchitis with normal lung function compared with smokers with chronic airflow limitation (COPD), but the increase was statistically significant (p<0.005) only for bronchial vessels. Conclusions: PAR-2 is present in bronchial smooth muscle, glands, and bronchial vessels of both smokers and non-smokers. An increased expression of PAR-2 was found in bronchial vessels of patients with bronchitis compared with those with COPD. PMID

  20. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Ken-ichiro; Koike, Eiko; Yanagisawa, Rie

    The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology,more » levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.« less

  1. Effect of neutral endopeptidase inhibition on substance-P-induced increase in short-circuit current of canine cultured tracheal epithelium.

    PubMed

    Tamaoki, J; Sakai, N; Isono, K; Kanemura, T; Chiyotani, A; Yamauchi, F; Takizawa, T; Konno, K

    1991-01-01

    We studied the effect of substance P (SP) on the electric properties of cultured canine tracheal epithelium and its possible modulation by neutral endopeptidase (NEP) by Ussing's short-circuited technique in vitro. Addition of SP (5 x 10(-6) M) to the mucosal side increased short-circuit current (SCC) from 5.1 +/- 0.9 to 10.3 +/- 2.2 microA/cm2 (mean +/- SE; p less than 0.01), which was accompanied by increases in transepithelial potential difference and conductance. The effect of the mucosal SP on SCC was dose-dependent, with the maximal increase from the baseline value being 5.8 +/- 1.0 microA/cm2 observed at 5 x 10(-5) M. The NEP inhibitor phosphoramidon (10(-5) M) did not affect these responses. On the other hand, SCC was not altered by the addition of SP to the submucosal side. However, it was increased dose-dependently in the presence of phosphoramidon (10(-5) M) but not in the presence of captopril, bestatin or leupeptin. This stimulatory effect of submucosal SP was abolished by furosemide, diphenylamine-2-carboxylate and Cl-free medium, but not by amiloride. These results suggest that SP may selectively stimulate Cl secretion across the airway epithelium and that this effect may be modulated by submucosal NEP.

  2. [Quality assurance in airway management: education and training for difficult airway management].

    PubMed

    Kaminoh, Yoshiroh

    2006-01-01

    Respiratory problem is one of the main causes of death or severe brain damage in perioperative period. Three major factors of respiratory problem are esophageal intubation, inadequate ventilation, and difficult airway. The wide spread of pulse oximeter and capnograph reduced the incidences of esophageal intubation and inadequate ventilation, but the difficult airway still occupies the large portion in the causes of adverse events during anesthesia. "Practice guideline for management of the difficult airway" was proposed by American Society of Anesthesiologists (ASA) in 1992 and 2002. Improvement of knowledge, technical skills, and cognitive skills are necessary for the education and training of the difficult airway management. "The practical seminar of difficult airway management (DAM practical seminar)" has been cosponsored by the Japanese Association of Medical Simulation (JAMS) in the 51 st and 52 nd annual meetings of Japanese Society of Anesthesiologists and the 24th annual meeting of Japanese Society for Clinical Anesthesia. The DAM practical seminar is composed of the lecture session for ASA difficult airway algorithm, the hands-on training session for technical skills, and the scenario-based training session for cognitive skills. Ninty six Japanese anesthesiologists have completed the DAM practical seminar in one year. "The DAM instructor course" should be immediately prepared to organize the seminar more frequently.

  3. Prevalence of ciliated epithelium in apical periodontitis lesions.

    PubMed

    Ricucci, Domenico; Loghin, Simona; Siqueira, José F; Abdelsayed, Rafik A

    2014-04-01

    This article reports on the morphologic features and the frequency of ciliated epithelium in apical cysts and discusses its origin. The study material consisted of 167 human apical periodontitis lesions obtained consecutively from patients presenting for treatment during a period of 12 years in a dental practice operated by one of the authors. All of the lesions were obtained still attached to the root apices of teeth with untreated (93 lesions) or treated canals (74 lesions). The former were obtained by extraction and the latter by extraction or apical surgery. Specimens were processed for histopathologic and histobacteriologic analyses. Lesions were classified, and the type of epithelium, if present, was recorded. Of the lesions analyzed, 49 (29%) were diagnosed as cysts. Of these, 26 (53%) were found in untreated teeth, and 23 (47%) related to root canal-treated teeth. Ciliated columnar epithelium was observed partially or completely lining the cyst wall in 4 cysts, and all of them occurred in untreated maxillary molars. Three of these lesions were categorized as pocket cysts, and the other was a true cyst. Ciliated columnar epithelium-lined cysts corresponded to approximately 2% of the apical periodontitis lesions and 8% of the cysts of endodontic origin in the population studied. This epithelium is highly likely to have a sinus origin in the majority of cases. However, the possibility of prosoplasia or upgraded differentiation into ciliated epithelium from the typical cystic lining squamous epithelium may also be considered. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments. © 2013 Wiley Periodicals, Inc.

  5. Extraglottic airway devices: technology update.

    PubMed

    Sharma, Bimla; Sahai, Chand; Sood, Jayashree

    2017-01-01

    Extraglottic airway devices (EADs) have revolutionized the field of airway management. The invention of the laryngeal mask airway was a game changer, and since then, there have been several innovations to improve the EADs in design, functionality, safety and construction material. These have ranged from changes in the shape of the mask, number of cuffs and material used, like rubber, polyvinylchloride and latex. Phthalates, which were added to the construction material in order to increase device flexibility, were later omitted when this chemical was found to have serious adverse reproductive outcomes. The various designs brought out by numerous companies manufacturing EADs resulted in the addition of several devices to the airway market. These airway devices were put to use, many of them with inadequate or no evidence base regarding their efficacy and safety. To reduce the possibility of compromising the safety of the patient, the Difficult Airway Society (DAS) formed the Airway Device Evaluation Project Team (ADEPT) to strengthen the evidence base for airway equipment and vet the new extraglottic devices. A preuse careful analysis of the design and structure may help in better understanding of the functionality of a particular device. In the meantime, the search for the ideal EAD continues.

  6. Airway Protective Mechanisms

    PubMed Central

    Pitts, Teresa

    2014-01-01

    Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e inspiration or swallow) or the reverse (i.e expiration reflex or vomiting).These vital mechanisms have not been evaluated in clinical conditions, but could be impaired in many neurodegenerative diseases leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations. PMID:24297325

  7. The effect of body weight on distal airway function and airway inflammation.

    PubMed

    van de Kant, Kim D G; Paredi, Paolo; Meah, Sally; Kalsi, Harpal S; Barnes, Peter J; Usmani, Omar S

    Obesity is a global health problem that adversely influences the respiratory system. We assessed the effects of body mass index (BMI) on distal airway function and airway inflammation. Impulse oscillometry (IOS) as a measure of distal airway function, together with spirometry, were assessed in adults with a range of different BMIs. Airway inflammation was assessed with the fraction of exhaled nitric oxide (FeNO) and participants exhaled at various exhalation flows to determine alveolar and bronchial NO. In total 34 subjects were enrolled in the study; 19 subjects had a normal BMI (18.50-24.99), whilst 15 subjects were overweight (BMI 25.00-29.99), or obese (BMI ≥30). All subjects had normal spirometry. However, IOS measures of airway resistance (R) at 5Hz, 20Hz and frequency dependence (R 5-20 ) were elevated in overweight/obese individuals, compared to subjects with a normal BMI (median (interquartile range)); 5Hz: 0.41 (0.37, 0.45) vs. 0.32 (0.30, 0.37)kPa/l/s; 20Hz: 0.34 (0.30, 0.37) vs. 0.30 (0.26, 0.33)kPa/l/s; R 5-20 : 0.06 (0.04, 0.11) vs. 0.03 (0.01, 0.05)kPa/l/s; p<0.05), whereas airway reactance at 20Hz was decreased in overweight/obese individuals (20Hz: 0.07 (0.03, 0.09) vs. 0.10 (0.07, 0.13)kPa/l/s, p=0.009; 5Hz: -0.12 (-0.15, -0.10) vs. -0.10 (-0.13, -0.09)kPa/l/s, p=0.07). In contrast, within-breath IOS measures (a sign of expiratory flow limitation) and FeNO inflammatory measures, did not differ between groups (p>0.05). Being overweight has significant effects on distal and central airway function as determined by IOS, which is not detected by spirometry. Obesity does not influence airway inflammation as measured by FeNO. IOS is a reliable technique to identify airway abnormalities in the presence of normal spirometry in overweight people. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  8. The effects of human serum to the morphology, proliferation and gene expression level of the respiratory epithelium in vitro.

    PubMed

    Yunus, Mohd Heikal Mohd; Siang, Kan Chan; Hashim, Nurul Izzati; Zhi, Ng Pei; Zamani, Nur Fathurah; Sabri, Primuharsa Putra; Busra, Mohd Fauzi; Chowdhury, Shiplu Roy; Idrus, Ruszymah Binti Haji

    2014-08-01

    The culture of human airway epithelial cells has played an important role in advancing our understanding of the metabolic and molecular mechanisms underlying normal function and disease pathology of airway epithelial cells. The present study focused on investigating the effects of human serum (HS) on the qualitative and quantitative properties of the human respiratory epithelium compared to the fetal bovine serum (FBS), as a supplement in culture. Respiratory epithelial (RE) cells derived from human nasal turbinate were co-cultured with fibroblasts, subsequently separated at 80-90% confluency by differential trypsinization. RE cells were then sub-cultured into 2 different plates containing 5% allogenic HS and FBS supplemented media respectively up to passage 1 (P1). Cell morphology, growth rate, cell viability and population doubling time were assessed under light microscope, and levels of gene expression were measured via real time reverse transcriptase-polymerase chain reaction (qRT-PCR). RE cells appeared as polygonal shape and expanded when cultured in HS whereas RE cells in FBS were observed to be easily matured thus limit the RE cells expansion. Proliferation rate of RE cells in HS supplemented media (7673.18 ± 1207.15) was 3 times higher compared to RE in FBS supplemented media (2357.68 ± 186.85). Furthermore, RE cells cultured in HS-supplemented media required fewer days (9.15 ± 1.10) to double in numbers compared to cells cultured in FBS-supplemented media (13.66 ± 0.81). Both the differences were significant (p<0.05). However, there were no significant differences in the viability of RE cells in both groups (p=0.105). qRT-PCR showed comparable expressions of gene Cytokeratin-14 (CK-14), Cytokeratin-18 (CK-18) and Mucin-5 subtype B (MUC5B) in RE cells cultured in both groups (p>0.05). In conclusion, HS is a comparatively better choice of media supplement in accelerating growth kinetics of RE cells in vitro thus producing a better quality of respiratory

  9. Definitive airway management after pre-hospital supraglottic airway insertion: Outcomes and a management algorithm for trauma patients.

    PubMed

    Hernandez, Matthew C; Aho, Johnathon M; Zielinski, Martin D; Zietlow, Scott P; Kim, Brian D; Morris, David S

    2018-01-01

    Prehospital airway management increasingly involves supraglottic airway insertion and a paucity of data evaluates outcomes in trauma populations. We aim to describe definitive airway management in traumatically injured patients who necessitated prehospital supraglottic airway insertion. We performed a single institution retrospective review of multisystem injured patients (≥15years) that received prehospital supraglottic airway insertion during 2009 to 2016. Baseline demographics, number and type of: supraglottic airway insertion attempts, definitive airway and complications were recorded. Primary outcome was need for tracheostomy. Univariate and multivariable statistics were performed. 56 patients met inclusion criteria and were reviewed, 78% were male. Median age [IQR] was 36 [24-56] years. Injuries comprised blunt (94%), penetrating (4%) and burns (2%). Median ISS was 26 [22-41]. Median number of prehospital endotracheal intubation (PETI) attempts was 2 [1-3]. Definitive airway management included: (n=20, 36%, tracheostomy), (n=10, 18%, direct laryngoscopy), (n=6, 11%, bougie), (n=9, 15%, Glidescope), (n=11, 20%, bronchoscopic assistance). 24-hour mortality was 41%. Increasing number of PETI was associated with increasing facial injury. On regression, increasing cervical and facial injury patterns as well as number of PETI were associated with definitive airway control via surgical tracheostomy. After supraglottic airway insertion, operative or non-operative approaches can be utilized to obtain a definitive airway. Patients with increased craniofacial injuries have an increased risk for airway complications and need for tracheostomy. We used these factors to generate an evidence based algorithm that requires prospective validation. Level IV - Retrospective study. Retrospective single institution study. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips.

    PubMed

    Dowie, Jackson; Ansell, Thomas K; Noble, Peter B; Donovan, Graham M

    2016-01-01

    Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Acute and Chronic Changes in the Subglottis Induced by Graded CO2 Laser Injury in the Rabbit Airway*

    PubMed Central

    Otteson, Todd D.; Sandulache, Vlad C.; Barsic, Mark; DiSilvio, Gregory M.; Hebda, Patricia A.; Dohar, Joseph E.

    2010-01-01

    Objective To investigate the repair process following CO2 laser injury to the upper airway mucosa (UAM) during the development of chronic subglottic stenosis (SGS). Design Animals were assigned to either sham control (cricothyroidotomy only) or injured (cricothyroidotomy and posterior subglottic laser) groups using various CO2 laser exposures (8W, 12W, 16W) for 4 seconds. Subjects 24 New Zealand white rabbits. Interventions The subglottis was approached via cricothyroidotomy. Sham control airways were immediately closed while injured airways were subjected to graded CO2 laser exposures prior to closure. Airways were endoscopically monitored preoperatively, postoperatively, and on postoperative days 7,14,28,42,56,70 and 84. Animals were sacrificed at 14 and 84 days. Subglottic tissue was harvested for histological evaluation (re-epithelialization, extracellular matrix, vascularity and inflammation). Results 1) Increases in UAM thickness up to five times thicker than normal mucosa were observed, but were limited primarily to the lamina propria. The mucosal epithelium regenerated without chronic changes. Focal areas of cartilage repair were encountered acutely post-injury and to a greater extent in the chronic phases of repair. 2) Acutely, the thickened lamina propria was comprised of poorly organized extracellular matrix components and demonstrated increases in blood vessel size and number. 3) Histological changes present in the acute phase only partially resolved in progression to chronic SGS. Chronic SGS was characterized by thick collagen fiber bundles extending into the remodeled subglottic cartilage. Conclusions The CO2 laser induces acute changes to lamina propria architecture and vascularity which persist chronically. Elucidating responsible signaling pathways may facilitate the development of therapeutic agents to prevent or reduce the formation of SGS. PMID:18645117

  12. Inhalation of honey reduces airway inflammation and histopathological changes in a rabbit model of ovalbumin-induced chronic asthma.

    PubMed

    Kamaruzaman, Nurfatin Asyikhin; Sulaiman, Siti Amrah; Kaur, Gurjeet; Yahaya, Badrul

    2014-05-29

    Honey is widely used in folk medicine to treat cough, fever, and inflammation. In this study, the effect of aerosolised honey on airway tissues in a rabbit model of ovalbumin (OVA)-induced asthma was investigated. The ability of honey to act either as a rescuing agent in alleviating asthma-related symptoms or as a preventive agent to preclude the occurrence of asthma was also assessed. Forty New Zealand white rabbits were sensitized twice with mixture of OVA and aluminium hydroxide on days 1 and 14. Honey treatments were given from day 23 to day 25 at two different doses (25% (v/v) and 50% (v/v) of honey diluted in sterile phosphate buffer saline. In the aerosolised honey as a rescue agent group, animals were euthanized on day 28; for the preventive group, animals were further exposed to aerosolised OVA for 3 days starting from day 28 and euthanized on day 31. The effects of honey on inflammatory cell response, airway inflammation, and goblet cell hyperplasia were assessed for each animal. Histopathological analyses revealed that aerosolised honey resulted in structural changes of the epithelium, mucosa, and submucosal regions of the airway that caused by the induction with OVA. Treatment with aerosolised honey has reduced the number of airway inflammatory cells present in bronchoalveolar lavage fluid and inhibited the goblet cell hyperplasia. In this study, aerosolised honey was used to effectively treat and manage asthma in rabbits, and it could prove to be a promising treatment for asthma in humans. Future studies with a larger sample size and studies at the gene expression level are needed to better understand the mechanisms by which aerosolised honey reduces asthma symptoms.

  13. Transport across the choroid plexus epithelium.

    PubMed

    Praetorius, Jeppe; Damkier, Helle Hasager

    2017-06-01

    The choroid plexus epithelium is a secretory epithelium par excellence. However, this is perhaps not the most prominent reason for the massive interest in this modest-sized tissue residing inside the brain ventricles. Most likely, the dominant reason for extensive studies of the choroid plexus is the identification of this epithelium as the source of the majority of intraventricular cerebrospinal fluid. This finding has direct relevance for studies of diseases and conditions with deranged central fluid volume or ionic balance. While the concept is supported by the vast majority of the literature, the implication of the choroid plexus in secretion of the cerebrospinal fluid was recently challenged once again. Three newer and promising areas of current choroid plexus-related investigations are as follows: 1 ) the choroid plexus epithelium as the source of mediators necessary for central nervous system development, 2 ) the choroid plexus as a route for microorganisms and immune cells into the central nervous system, and 3 ) the choroid plexus as a potential route for drug delivery into the central nervous system, bypassing the blood-brain barrier. Thus, the purpose of this review is to highlight current active areas of research in the choroid plexus physiology and a few matters of continuous controversy. Copyright © 2017 the American Physiological Society.

  14. Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and β2-agonist use

    PubMed Central

    Hastie, Annette T; Wu, Min; Foster, Gayle C; Hawkins, Gregory A; Batra, Vikas; Rybinski, Katherine A; Cirelli, Rosemary; Zangrilli, James G; Peters, Stephen P

    2006-01-01

    Background Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo β2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. Methods Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β2-adrenergic receptor haplotype determination. Results Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. Conclusion Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to β-agonist. The decreased

  15. Critical Airway Team: A Retrospective Study of an Airway Response System in a Pediatric Hospital.

    PubMed

    Sterrett, Emily C; Myer, Charles M; Oehler, Jennifer; Das, Bobby; Kerrey, Benjamin T

    2017-12-01

    Objective Study the performance of a pediatric critical airway response team. Study Design Case series with chart review. Setting Freestanding academic children's hospital. Subjects and Methods A structured review of the electronic medical record was conducted for all activations of the critical airway team. Characteristics of the activations and patients are reported using descriptive statistics. Activation of the critical airway team occurred 196 times in 46 months (March 2012 to December 2015); complete data were available for 162 activations (83%). For 49 activations (30%), patients had diagnoses associated with difficult intubation; 45 (28%) had a history of difficult laryngoscopy. Results Activation occurred at least 4 times per month on average (vs 3 per month for hospital-wide codes). The most common reasons for team activation were anticipated difficult intubation (45%) or failed intubation attempt (20%). For 79% of activations, the team performed an airway procedure, most commonly direct laryngoscopy and tracheal intubation. Bronchoscopy was performed in 47% of activations. Surgical airway rescue was attempted 4 times. Cardiopulmonary resuscitation occurred in 41 activations (25%). Twenty-nine patients died during or following team activation (18%), including 10 deaths associated with the critical airway event. Conclusion Critical airway team activation occurred at least once per week on average. Direct laryngoscopy, tracheal intubation, and bronchoscopic procedures were performed frequently; surgical airway rescue was rare. Most patients had existing risk factors for difficult intubation. Given our rate of serious morbidity and mortality, primary prevention of critical airway events will be a focus of future efforts.

  16. A 4-Week Model of House Dust Mite (HDM) Induced Allergic Airways Inflammation with Airway Remodeling.

    PubMed

    Woo, L N; Guo, W Y; Wang, X; Young, A; Salehi, S; Hin, A; Zhang, Y; Scott, J A; Chow, C W

    2018-05-02

    Animal models of allergic airways inflammation are useful tools in studying the pathogenesis of asthma and potential therapeutic interventions. The different allergic airways inflammation models available to date employ varying doses, frequency, duration and types of allergen, which lead to the development of different features of asthma; showing varying degrees of airways inflammation and hyper-responsiveness (AHR) and airways remodeling. Models that also exhibit airway remodeling, a key feature of asthma, in addition to AHR and airway inflammation typically require 5-12 weeks to develop. In this report, we describe a 4-week mouse model of house dust mite (HDM)-induced allergic airways inflammation, and compare the phenotypic features of two different doses of HDM exposures (10 µg and 25 µg) for 5 days/week with a well-characterized 8-week chronic HDM model. We found that 4 weeks of intranasal HDM (25 µg in 35 µl saline; 5 days/week) resulted in AHR, airway inflammation and airway remodeling that were comparable to the 8-week model. We conclude that this new 4-week HDM model is another useful tool in studies of human asthma that offers advantages of shorter duration for development and decreased costs when compared to other models that require longer durations of exposure (5-12 weeks) to develop.

  17. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed

    Sun, J; Sakamoto, T; Chung, K F

    1995-08-01

    Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation.

  18. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed Central

    Sun, J.; Sakamoto, T.; Chung, K. F.

    1995-01-01

    BACKGROUND--Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. METHODS--Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. RESULTS--Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. CONCLUSIONS--MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation. Images PMID:7570440

  19. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.

  20. In vivo effects of endotoxin on DNA synthesis in rat nasal epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkema, J.R.; Hotchkiss, J.A.

    Airway inflammation in bacterial infections is characterized by the presence of neutrophils and often epithelial injury and repair. Release of endotoxin from bacteria may contribute to these processes. The purpose of this study was to determine the in vivo effects of repeated endotoxin exposure on DNA synthesis in rat nasal epithelium in the presence and absence of neutrophilic influx. Rats were intranasally instilled, once a day for 3 days, with endotoxin or saline (controls). Before the first and third instillations, half of the saline and endotoxin-instilled animals were depleted of circulating blood neutrophils by administering a rabbit anti-rat neutrophil antiserum.more » Rats were sacrificed 6 or 24 h after the last instillation. Two hours prior to sacrifice, rats were intraperitoneally injected with bromodeoxyuridine (BrdU), an analog of thymidine that is incorporated in the nucleus of cells in the S-phase of the cell cycle. Nasal tissues were processed for light microscopy and immunohistochemical detection of BrdU in nasal epithelial cells. The numbers of nasal epithelial cells, BrdU-labeled epithelial nuclei, and neutrophils per millimeter of basal lamina in the epithelium lining the nasal turbinates in the proximal nasal passages were determined by morphometric analysis. The authors did not observe a neutrophilic influx in the nasal tissues of neutrophil-depleted rats at 6 or 24 h after the last endotoxin instillation; however, the numbers of nasal epithelial cells and the BrdU-labeling index were significantly increased compared to saline-instilled controls. In contrast, non-neutrophil-depleted rats instilled with endotoxin had a marked neutrophilic influx, but no significant differences in the number of nasal epithelial cells at 6 or 24 h, compared to controls. In addition, the BrdU-labeling index in neutrophil-sufficient rats was increased only 6 h after the last instillation, compared to controls.« less

  1. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects.

    PubMed

    Szőke, István; Farkas, Arpád; Balásházy, Imre; Hofmann, Werner; Madas, Balázs G; Szőke, Réka

    2012-06-01

    The primary objective of this paper was to investigate the distribution of radiation doses and the related biological responses in cells of a central airway bifurcation of the human lung of a hypothetical worker of the New Mexico uranium mines during approximately 12 hours of exposure to short-lived radon progenies. State-of-the-art computational modelling techniques were applied to simulate the relevant biophysical and biological processes in a central human airway bifurcation. The non-uniform deposition pattern of inhaled radon daughters caused a non-uniform distribution of energy deposition among cells, and of related cell inactivation and cell transformation probabilities. When damage propagation via bystander signalling was assessed, it produced more cell killing and cell transformation events than did direct effects. If bystander signalling was considered, variations of the average probabilities of cell killing and cell transformation were supra-linear over time. Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.

  2. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  3. In vivo μOCT imaging of the airways(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Yonker, Lael M.; Mou, Hongmei; Som, Avira; Hurley, Bryan P.; Tearney, Guillermo J.

    2017-04-01

    Chronic dysregulated influx of neutrophil into the airway increases neutrophil burden and augments the inflammatory processes often observed in diseases such as cystic fibrosis. The quantification of neutrophil influx is often accomplished with the use of destructive tests such as imaging cytometry and myeloperoxidase assay. However, those methods are unable to capture information about the cascade of events that precede trans-epithelium migration. In this work, we employed a high resolution micro-optical coherence tomography (µOCT) technology to perform real time imaging of neutrophil activity across airway epithelial cells grown on the underside of Transwell permeable supports. This inverted configuration allows the creation of an air-liquid interface at the apical side of the cells. The µOCT imaging technology, based on the principles of spectral-domain OCT, has a lateral and axial resolution of 2 and 1.3µm, respectively. In addition, it has an axial range of approximately 300µm and is capable of recording cross-sectional images at 40 fps. By raster scanning the illumination beam, the behavior of the neutrophils across a 3D volume can be recorded over time. Thus, this imaging modality is capable of resolving individual neutrophils and, potentially, capturing the cascading events involving neutrophil tethering, subsequent adhesion to activated epithelial cells and the ultimate passage through the epithelial cells to the air space on the apical side. As a result, not only can the amount of neutrophil migration be quantified, how neutrophils behave, organize and interact with the epithelial cells and each other can also be more closely analyzed by µOCT imaging.

  4. Hair cell regeneration in the avian auditory epithelium.

    PubMed

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing

  5. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2004-01-01

    A wealth of clinical observation has suggested that stress and asthma morbidity are associated. We have previously established a mouse model of stress-exacerbated allergic airway inflammation, which reflects major clinical findings. The aim of the current study was to investigate the role of the neurokinin- (NK-)1 receptor in the mediation of stress effects in allergic airway inflammation. BALB/c mice were systemically sensitized with ovalbumin (OVA) on assay days 1, 14, and 21 and repeatedly challenged with OVA aerosol on days 26 and 27. Sound stress was applied to the animals for 24 hours, starting with the first airway challenge. Additionally, one group of stressed and one group of nonstressed mice received the highly specific NK-1 receptor antagonist RP 67580. Bronchoalveolar lavage fluid was obtained, and cell numbers and differentiation were determined. Airway hyperreactivity was measured in vitro by electrical field stimulation of tracheal smooth-muscle elements. Application of stress in sensitized and challenged animals resulted in a significant increase in leukocyte number in the bronchoalveolar lavage fluid. Furthermore, stressed animals showed enhanced airway reactivity. The increase of inflammatory cells and airway reactivity was blocked by treatment of animals with the NK-1 receptor antagonist. These data indicate that the NK-1 receptor plays an important role in mediating stress effects in allergen-induced airway inflammation.

  6. Ferret airway epithelial cell cultures support efficient replication of influenza B virus but not mumps virus.

    PubMed

    Elderfield, Ruth A; Parker, Lauren; Stilwell, Peter; Roberts, Kim L; Schepelmann, Silke; Barclay, Wendy S

    2015-08-01

    Ferrets have become the model animal of choice for influenza pathology and transmission experiments as they are permissive and susceptible to human influenza A viruses. However, inoculation of ferrets with mumps virus (MuV) did not lead to successful infections. We evaluated the use of highly differentiated ferret tracheal epithelium cell cultures, FTE, for predicting the potential of ferrets to support respiratory viral infections. FTE cultures supported productive replication of human influenza A and B viruses but not of MuV, whereas analogous cells generated from human airways supported replication of all three viruses. We propose that in vitro strategies using these cultures might serve as a method of triaging viruses and potentially reducing the use of ferrets in viral studies.

  7. [Anaesthesic management of vaginal delivery in a parturient with C1 esterase deficiency].

    PubMed

    Libert, N; Schérier, S; Dubost, C; Franck, L; Rouquette, I; Tortosa, J-C; Rousseau, J-M

    2009-04-01

    Hereditary and acquired angioedema (HAE/AAE) are the clinical translation of a qualitative or a quantitative deficit of C1 esterase inhibitor (C1 INH). The frequency and severity of clinical manifestations vary greatly, ranging from a moderate swelling of the extremities to obstruction of upper airway. Anaesthesiologists and intensivists must be prepared to manage acute manifestations of this disease in case of life-threatening laryngeal edema. Surgery, physical trauma and labour are classical triggers of the disease. The anaesthesiologists should be aware of the drugs used as prophylaxis and treatment of acute attacks when considering labour and caesarean section. Androgens are contraindicated during pregnancy. If prophylaxis is required, tranexamic acid may be used with caution. The safest obstetric approach appears to be to administer a predelivery infusion of C1 INH concentrate. It is important to avoid manipulation of the airway as much as possible by relying on regional techniques. We report the case of a patient suffering from an HAE discovered during pregnancy. The management included administration of C1 INH during labor and early epidural analgesia for pain relief. A short review of the pathophysiology and therapeutic options follows.

  8. Objectivity in the classification of tumours of the nasal epithelium

    PubMed Central

    Michaels, L.; Hyams, V. J.

    1975-01-01

    A survey of tumours derived from each of the four cell types of nasal epithelium is presented. Criticism is levelled at the adoption of additional terms for tissue types such as lympho-epithelium and transitional cell epithelium and tumours said to be derived from them. Electron microscopy is of assistance in classification particularly in the detection of evidence of keratin synthesis. The proposed classification of tumours of the nasal epithelium is: (1) Pseudostratified columnar epithelium: (a) papillary adenoma, (b) papillary carcinoma. (2) Squamous epithelium: (a) everted squamous papilloma, (b) inverted papilloma, (c) squamous carcinoma of any grade of differentiation from well differentiated to undifferentiated. (3) Melanocyte: malignant melanoma. (4) Olfactory neuroepithelium: olfactory neuroblastoma. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 21Fig. 20 PMID:1197175

  9. Developmental origin of the posterior pigmented epithelium of iris.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lu, Lei; Gu, Dandan; Wang, Songtao; Chen, Jing; Xiao, Honglei; Zhou, Guomin

    2015-03-01

    Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

  10. Follistatin-like 1 expression is decreased in the alveolar epithelium of hypoplastic rat lungs with nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Zimmer, Julia; Friedmacher, Florian; Puri, Prem

    2017-05-01

    Pulmonary hypoplasia (PH), characterized by incomplete alveolar development, remains a major therapeutic challenge associated with congenital diaphragmatic hernia (CDH). Follistatin-like 1 (Fstl1) is a crucial regulator of alveolar formation and maturation, which is strongly expressed in distal airway epithelium. Fstl1-deficient mice exhibit reduced airspaces, impaired alveolar epithelial cell differentiation, and insufficient production of surfactant proteins similar to PH in human CDH. We hypothesized that pulmonary Fstl1 expression is decreased during alveolarization in the nitrofen-induced CDH model. Timed-pregnant rats received nitrofen or vehicle on gestational day 9 (D9). Fetal lungs were harvested on D18 and D21 and divided into control-/nitrofen-exposed specimens. Alveolarization was assessed using morphometric analysis techniques. Pulmonary gene expression of Fstl1 was determined by qRT-PCR. Immunofluorescence-double-staining for Fstl1 and alveolar epithelial marker surfactant protein C (SP-C) was performed to evaluate protein expression/localization. Radial alveolar count was significantly reduced in hypoplastic lungs of nitrofen-exposed fetuses with significant down regulation of Fstl1 mRNA expression on D18 and D21 compared to controls. Confocal-laser-scanning-microscopy revealed strikingly diminished Fstl1 immunofluorescence and SP-C expression in distal alveolar epithelium of nitrofen-exposed fetuses with CDH-associated PH on D18 and D21 compared to controls. Decreased expression of Fstl1 in alveolar epithelium may disrupt alveolarization and pulmonary surfactant production, thus contributing to the development of PH in the nitrofen-induced CDH model. 2b (Centre for Evidence-Based Medicine, Oxford). Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  12. Airway management in cervical spine injury

    PubMed Central

    Austin, Naola; Krishnamoorthy, Vijay; Dagal, Arman

    2014-01-01

    To minimize risk of spinal cord injury, airway management providers must understand the anatomic and functional relationship between the airway, cervical column, and spinal cord. Patients with known or suspected cervical spine injury may require emergent intubation for airway protection and ventilatory support or elective intubation for surgery with or without rigid neck stabilization (i.e., halo). To provide safe and efficient care in these patients, practitioners must identify high-risk patients, be comfortable with available methods of airway adjuncts, and know how airway maneuvers, neck stabilization, and positioning affect the cervical spine. This review discusses the risks and benefits of various airway management strategies as well as specific concerns that affect patients with known or suspected cervical spine injury. PMID:24741498

  13. Relationships between equine airway reactivity measured by flowmetric plethysmography and specific indicators of airway inflammation in horses with suspected inflammatory airway disease.

    PubMed

    Wichtel, M; Gomez, D; Burton, S; Wichtel, J; Hoffman, A

    2016-07-01

    Agreement between airway reactivity measured by flowmetric plethysmography and histamine bronchoprovocation, and lower airway inflammation measured by bronchoalveolar lavage (BAL) cytology, has not been studied in horses with suspected inflammatory airway disease (IAD). We tested the hypothesis that airway reactivity is associated with BAL cytology in horses presenting for unexplained poor performance and/or chronic cough. Prospective clinical study. Forty-five horses, predominantly young Standardbred racehorses, presenting for unexplained poor performance or chronic cough, underwent endoscopic evaluation, tracheal wash, flowmetric plethysmography with histamine bronchoprovocation and BAL. Histamine response was measured by calculating PC35, the concentration of nebulised histamine eliciting an increase in Δflow of 35%. In this population, there was no significant correlation between histamine response and cell populations in BAL cytology. When airway hyperreactivity (AHR) was defined as ≥35% increase in Δflow at a histamine concentration of <6 mg/ml, 24 of the 45 horses (53%) were determined to have AHR. Thirty-three (73%) had either abnormal BAL cytology or AHR, and were diagnosed with IAD on this basis. Of horses diagnosed with IAD, 9 (27%) had an abnormal BAL, 11 (33%) had AHR and 13 (39%) had both. Airway reactivity and BAL cytology did not show concordance in this population of horses presenting for unexplained poor performance and/or chronic cough. Failure to include tests of airway reactivity may lead to underdiagnosis of IAD in young Standardbred racehorses that present with clinical signs suggestive of IAD. © 2015 EVJ Ltd.

  14. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  15. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis.

    PubMed

    Li, Zong Ming; Wu, Gang; Han, Xin Wei; Ren, Ke Wei; Zhu, Ming

    2014-01-01

    We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy.

  16. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis

    PubMed Central

    Li, Zong-Ming; Wu, Gang; Han, Xin-Wei; Ren, Ke-Wei; Zhu, Ming

    2014-01-01

    PURPOSE We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. MATERIALS AND METHODS This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. RESULTS The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. CONCLUSION Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy. PMID:24808434

  17. Satratoxin-G from the black mold Stachybotrys chartarum induces rhinitis and apoptosis of olfactory sensory neurons in the nasal airways of rhesus monkeys.

    PubMed

    Carey, Stephan A; Plopper, Charles G; Hyde, Dallas M; Islam, Zahidul; Pestka, James J; Harkema, Jack R

    2012-08-01

    Satratoxin-G (SG) is a trichothecene mycotoxin of Stachybotrys chartarum, the black mold suggested to contribute etiologically to illnesses associated with water-damaged buildings. We have reported that intranasal exposure to SG evokes apoptosis of olfactory sensory neurons (OSNs) and acute inflammation in the nose and brain of laboratory mice. To further assess the potential human risk of nasal airway injury and neurotoxicity, we developed a model of SG exposure in monkeys, whose nasal airways more closely resemble those of humans. Adult, male rhesus macaques received a single intranasal instillation of 20 µg SG (high dose, n = 3), or 5 µg SG daily for four days (repeated low dose, n = 3) in one nasal passage, and saline vehicle in the contralateral nasal passage. Nasal tissues were examined using light and electron microscopy and morphometric analysis. SG induced acute rhinitis, atrophy of the olfactory epithelium (OE), and apoptosis of OSNs in both groups. High-dose and repeated low-dose SG elicited a 13% and 66% reduction in OSN volume density, and a 14-fold and 24-fold increase in apoptotic cells of the OE, respectively. This model provides new insight into the potential risk of nasal airway injury and neurotoxicity caused by exposure to water-damaged buildings.

  18. Comparative Study of Influenza Virus Replication in MDCK Cells and in Primary Cells Derived from Adenoids and Airway Epithelium

    PubMed Central

    Ikizler, Mine R.; Kawaoka, Yoshihiro; Rudenko, Larisa G.; Treanor, John J.; Subbarao, Kanta; Wright, Peter F.

    2012-01-01

    Although clinical trials with human subjects are essential for determination of safety, infectivity, and immunogenicity, it is desirable to know in advance the infectiousness of potential candidate live attenuated influenza vaccine strains for human use. We compared the replication kinetics of wild-type and live attenuated influenza viruses, including H1N1, H3N2, H9N2, and B strains, in Madin-Darby canine kidney (MDCK) cells, primary epithelial cells derived from human adenoids, and human bronchial epithelium (NHBE cells). Our data showed that despite the fact that all tissue culture models lack a functional adaptive immune system, differentiated cultures of human epithelium exhibited the greatest restriction for all H1N1, H3N2, and B vaccine viruses studied among three cell types tested and the best correlation with their levels of attenuation seen in clinical trials with humans. In contrast, the data obtained with MDCK cells were the least predictive of restricted viral replication of live attenuated vaccine viruses in humans. We were able to detect a statistically significant difference between the replication abilities of the U.S. (A/Ann Arbor/6/60) and Russian (A/Leningrad/134/17/57) cold-adapted vaccine donor strains in NHBE cultures. Since live attenuated pandemic influenza vaccines may potentially express a hemagglutinin and neuraminidase from a non-human influenza virus, we assessed which of the three cell cultures could be used to optimally evaluate the infectivity and cellular tropism of viruses derived from different hosts. Among the three cell types tested, NHBE cultures most adequately reflected the infectivity and cellular tropism of influenza virus strains with different receptor specificities. NHBE cultures could be considered for use as a screening step for evaluating the restricted replication of influenza vaccine candidates. PMID:22915797

  19. Epithelium percentage estimation facilitates epithelial quantitative protein measurement in tissue specimens.

    PubMed

    Chen, Jing; Toghi Eshghi, Shadi; Bova, George Steven; Li, Qing Kay; Li, Xingde; Zhang, Hui

    2013-12-01

    The rapid advancement of high-throughput tools for quantitative measurement of proteins has demonstrated the potential for the identification of proteins associated with cancer. However, the quantitative results on cancer tissue specimens are usually confounded by tissue heterogeneity, e.g. regions with cancer usually have significantly higher epithelium content yet lower stromal content. It is therefore necessary to develop a tool to facilitate the interpretation of the results of protein measurements in tissue specimens. Epithelial cell adhesion molecule (EpCAM) and cathepsin L (CTSL) are two epithelial proteins whose expressions in normal and tumorous prostate tissues were confirmed by measuring staining intensity with immunohistochemical staining (IHC). The expressions of these proteins were measured by ELISA in protein extracts from OCT embedded frozen prostate tissues. To eliminate the influence of tissue heterogeneity on epithelial protein quantification measured by ELISA, a color-based segmentation method was developed in-house for estimation of epithelium content using H&E histology slides from the same prostate tissues and the estimated epithelium percentage was used to normalize the ELISA results. The epithelium contents of the same slides were also estimated by a pathologist and used to normalize the ELISA results. The computer based results were compared with the pathologist's reading. We found that both EpCAM and CTSL levels, measured by ELISA assays itself, were greatly affected by epithelium content in the tissue specimens. Without adjusting for epithelium percentage, both EpCAM and CTSL levels appeared significantly higher in tumor tissues than normal tissues with a p value less than 0.001. However, after normalization by the epithelium percentage, ELISA measurements of both EpCAM and CTSL were in agreement with IHC staining results, showing a significant increase only in EpCAM with no difference in CTSL expression in cancer tissues. These results

  20. Endocrine cells in ectocervical epithelium. An immunohistochemical and ultrastructural analysis.

    PubMed

    Fetissof, F; Arbeille, B; Boivin, F; Sam-Giao, M; Henrion, C; Lansac, J

    1987-01-01

    A systematic study of endocrine cells in the ectocervix was carried out using histochemical, immunohistochemical and ultrastructural techniques. Serotonin and calcitonin immunoreactive cells were demonstrated in this site. Serotonin and calcitonin immunoreactivities were coexpressed in the same endocrine cell. These distinctive cells were encountered in two main morphological varieties of ectocervical epithelium. Normal-appearing stratified squamous epithelium contained only very rare serotonin and calcitonin cells. In contrast, endocrine cells were fairly abundant in a specific epithelium termed "transitional-like". This type of epithelium was not only confined to the transformation zone but could also extend onto the portio as far as the vaginal cut margin. In some cases, transitional-like epithelium bore morphological resemblance to urothelium. In other cases, it could be regarded as basal cell hyperplasia or immature squamous metaplasia. Of interest, serotonin and calcitonin cells have been well-documented as normal inhabitants of some other non-squamous epithelia, such as urothelium or pseudostratified columnar epithelium. Therefore, it is suggested that certain ectocervical epithelia show some similarities to urothelium, in respect of their morphological appearance and endocrine profile. Further investigations using more objective and specific markers of urothelial cells are needed to assess the exact degree of homology connecting all these types of epithelium.

  1. Morphological studies of the developing human esophageal epithelium.

    PubMed

    Ménard, D

    1995-06-15

    This article focusses on the structural development of human esophageal ciliated epithelium. A combination of transmission electron microscopic (TEM), scanning electron microscopic (SEM), radioautographic, and light microscopic (LM) analyses were carried out using intact fetal tissues between 8 and 20 weeks of gestation as well as cultured esophageal explants. Up to the age of 10 weeks, the stratified esophageal epithelium consisted of two longitudinal primary folds. The surface cells were undifferentiated and contained large glycogen aggregates. Between 11 and 16 weeks, the primary folds (now up to four) had developed secondary folds. The thickness of the epithelium drastically increased (123%) in concomittance with a differentiation of surface columnar ciliated cells. These highly specialized surface cells exhibited junctional complexes and well-developed organelles with numerous microvilli interspersed among the cilia. Transverse sections revealed the internal structure of the cilia with a consistent pattern of nine doublet microtubules surrounding a central pair of single microtubules. Freeze-fracture studies illustrated the presence of a ciliary necklace composed of 6 ring-like rows of intramembranous particles. They also revealed the structure of ciliary cell tight junctions consisting of up to nine anastomosing strands (P-face) or complementary grooves (E-face). Ultrastructural studies (LM, TEM, SEM) of the esophageal squamous epithelium obtained after 15 days of culture showed that the newly formed epithelium was similar to adult human epithelium. Finally LM and SEM observations established that the esophagogastric junction was not yet well delineated, consisting of a transitional area composed of a mixture of esophageal ciliated cells and gastric columnar mucous cells.

  2. Inflammatory bowel disease and airway diseases.

    PubMed

    Vutcovici, Maria; Brassard, Paul; Bitton, Alain

    2016-09-14

    Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact.

  3. Administration of SIN-1 induces guinea pig airway hyperresponsiveness through inactivation of airway neutral endopeptidase.

    PubMed

    Kanazawa, H; Hirata, K; Yoshikawa, J

    1999-12-01

    Peroxynitrite plays an important role in the pathogenesis of airway inflammation. We have already found that peroxynitrite may contribute to decreased beta(2)-adrenoceptor responses in airway smooth muscle. However, it is not known whether peroxynitrite can alter neutral endopeptidase (EC 3.4.24.11; NEP) activity in the airways. This study was designed to determine whether peroxynitrite induces airway hyperresponsiveness to substance P (SP) and endothelin-1 (ET-1) through the inactivation of airway NEP. We examined whether the administration of S-morpholinosydnonimine (SIN-1), a compound that releases peroxynitrite, increased bronchoconstrictor responses to SP and ET-1 in anesthetized guinea pigs. In addition, we assayed NEP activity in the airways of SIN-1-exposed guinea pigs. Though SIN-1 (10(-7) M) alone had no effect on pulmonary resistance, pretreatment with SIN-1 significantly enhanced SP- and ET-1-induced bronchoconstriction. Pretreatment with phosphoramidon, an NEP inhibitor, also enhanced SP- and ET-1-induced bronchoconstriction. However, simultaneous administration of phosphoramidon and SIN-1 had no additive effect on SP- and ET-1-induced bronchoconstriction. Peroxynitrite formation by SIN-1 was completely inhibited by N-acetylcysteine (NAC) and glutathione (GSH) in vitro, and pretreatment with NAC and GSH significantly reversed the potentiation by SIN-1 of SP-induced bronchoconstriction. In addition, the NEP activity of the trachea after SIN-1 exposure was significantly reduced compared to the level in control guinea pigs (solvent for SIN-1: 30.0+/-4.2 fmol.min(-1).mg tissue(-1); 10(-7) M SIN-1; 15.5+/-4.5 fmol.min(-1).mg tissue(-1), p<0.05). These findings suggest that peroxynitrite induces airway hyperresponsiveness to SP and ET-1 through the inactivation of airway NEP, and that peroxynitrite is an important mediator of the alterations in airway functions.

  4. Airway extravasation induced by increasing airway temperature in ovalbumin-sensitized rats

    PubMed Central

    Hsu, Chun-Chun; Tapia, Reyno J.; Lee, Lu-Yuan

    2015-01-01

    This study was carried out to determine whether hyperventilation of humidified warm air (HWA) induced airway extravasation in ovalbumin (Ova)-sensitized rats. Our results showed: 1) After isocapnic hyperventilation with HWA for 2 min, tracheal temperature (Ttr) was increased to 40.3°C, and the Evans blue contents in major airways and lung tissue were elevated to 651% and 707%, respectively, of that after hyperventilation with humidified room air in Ova-sensitized rats; this striking effect of HWA was absent in control rats. 2) The HWA-induced increase in Evans blue content in sensitized rats was completely prevented by a pretreatment with either L-732138, a selective antagonist of neurokinin type 1 (NK-1) receptor, or formoterol, a selective agonist of β2 adrenoceptor. This study demonstrated that an increase in airway temperature induced protein extravasation in the major airways and lung tissue of sensitized rats, and an activation of the NK-1 receptor by tachykinins released from bronchopulmonary C-fiber nerve endings was primarily responsible. PMID:25864799

  5. Androgens are bronchoactive drugs that act by relaxing airway smooth muscle and preventing bronchospasm.

    PubMed

    Montaño, Luis M; Espinoza, Julia; Flores-Soto, Edgar; Chávez, Jaime; Perusquía, Mercedes

    2014-07-01

    Changes in the androgen levels in asthmatic men may be associated with the severity of asthma. Androgens induce a nongenomic relaxation in airway smooth muscle, but the underlying mechanisms remain unclear. The aim of this study was to investigate the potential bronchorelaxing action of testosterone (TES) and its metabolites (5α- and 5β-dihydrotestosterone (DHT). A preventive effect on ovalbumin (OVA)-induced bronchospasm was observed in sensitized guinea pigs for each androgen. Androgens were studied in response to bronchoconstrictors: carbachol (CCh) and KCl in isolated trachea rings with and without epithelium from non-sensitized and sensitized animals as well as on OVA-induced contraction. Androgens concentration-dependently abolished the contraction in response to CCh, KCl, and OVA. There were significant differences in the sensitivity to the relaxation induced by each androgen. 5β-DHT was more potent for relaxing KCl-induced contraction, while TES and 5α-DHT were more potent for CCh- and OVA-induced contraction. No differences were found in preparations with and without epithelium or in the presence of a nitric oxide (NO) synthase inhibitor or an inhibitor of K(+) channels. These data indicate the absence of involvement of the epithelium-, NO- and K(+) channels-dependent pathway in androgen-induced relaxation. However, in dissociated tracheal myocytes loaded with the calcium-binding fluorescent dye Fura -2, physiological concentrations of androgens decreased the KCl-induced [Ca(2+)]i increment. 5β-DHT was the most potent at decreasing KCl-induced [Ca(2+)]i increment and preventing bronchospasm. We suggest that androgen-induced brochorelaxation was mediated via decreased Ca(2+) influx through L-type Ca(2+)channels but additional Ca(2+) entry blockade may be involved. Molecular changes in androgen structure may determine its preferential site of action. © 2014 Society for Endocrinology.

  6. Inhalation of honey reduces airway inflammation and histopathological changes in a rabbit model of ovalbumin-induced chronic asthma

    PubMed Central

    2014-01-01

    Background Honey is widely used in folk medicine to treat cough, fever, and inflammation. In this study, the effect of aerosolised honey on airway tissues in a rabbit model of ovalbumin (OVA)-induced asthma was investigated. The ability of honey to act either as a rescuing agent in alleviating asthma-related symptoms or as a preventive agent to preclude the occurrence of asthma was also assessed. Methods Forty New Zealand white rabbits were sensitized twice with mixture of OVA and aluminium hydroxide on days 1 and 14. Honey treatments were given from day 23 to day 25 at two different doses (25% (v/v) and 50% (v/v) of honey diluted in sterile phosphate buffer saline. In the aerosolised honey as a rescue agent group, animals were euthanized on day 28; for the preventive group, animals were further exposed to aerosolised OVA for 3 days starting from day 28 and euthanized on day 31. The effects of honey on inflammatory cell response, airway inflammation, and goblet cell hyperplasia were assessed for each animal. Results Histopathological analyses revealed that aerosolised honey resulted in structural changes of the epithelium, mucosa, and submucosal regions of the airway that caused by the induction with OVA. Treatment with aerosolised honey has reduced the number of airway inflammatory cells present in bronchoalveolar lavage fluid and inhibited the goblet cell hyperplasia. Conclusion In this study, aerosolised honey was used to effectively treat and manage asthma in rabbits, and it could prove to be a promising treatment for asthma in humans. Future studies with a larger sample size and studies at the gene expression level are needed to better understand the mechanisms by which aerosolised honey reduces asthma symptoms. PMID:24886260

  7. Interleukin-1beta-induced airway hyperresponsiveness enhances substance P in intrinsic neurons of ferret airway.

    PubMed

    Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D

    2002-11-01

    Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.

  8. [Effect of airway humidification on lung injury induced by mechanical ventilation].

    PubMed

    Song, Junjie; Jiang, Min; Qi, Guiyan; Xie, Yuying; Wang, Huaiquan; Tian, Yonggang; Qu, Jingdong; Zhang, Xiaoming; Li, Haibo

    2014-12-01

    To explore the effect of airway humidification on lung injury as a result of mechanical ventilation with different tidal volume (VT). Twenty-four male Japanese white rabbits were randomly divided into four groups: low VT with airway humidification group, high VT with airway humidification group, low VT and high VT group without humidification, with 6 rabbits in each group. Mechanical ventilation was started after intubation and lasted for 6 hours. Low VT denoted 8 mL/kg, while high VT was 16 mL/kg, fraction of inspired oxygen (FiO₂) denoted 0.40, positive end-expiratory pressure (PEEP) was 0. Temperature at Y piece of circuit in airway humidification groups was monitored and controlled at 40 centigrade. Arterial blood gas analysis, including pH value, arterial partial pressure of oxygen (PaO₂), arterial partial pressure of carbon dioxide (PaCO₂), lung mechanics indexes, including peak airway pressure (P(peak)) and airway resistance (Raw), and lung compliance was measured at 0, 2, 4, 6 hours of mechanical ventilation. The levels of tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in plasma and bronchoalveolar lavage fluid (BALF) were determined by enzyme linked immunosorbent assay (ELISA). The animals were sacrificed at the end of mechanical ventilation. The wet to dry (W/D) ratio of lung tissues was calculated. Histopathologic changes in the lung tissueies were observed with microscope, and lung injury score was calculated. Scanning and transmission electron microscopies were used to examine the integrity of the airway cilia and the tracheal epithelium. Compared with low V(T) group, pH value in high V(T) group was significantly increased, PaCO₂was significantly lowered, and no difference in PaO₂was found. P(peak), Raw, and lung compliance were significantly increased during mechanical ventilation. There were no significant differences in blood gas analysis and lung mechanics indexes between low V(T) with airway humidification group and low V

  9. Combined Effects of Ventilation Mode and Positive End-Expiratory Pressure on Mechanics, Gas Exchange and the Epithelium in Mice with Acute Lung Injury

    PubMed Central

    Thammanomai, Apiradee; Hamakawa, Hiroshi; Bartolák-Suki, Erzsébet; Suki, Béla

    2013-01-01

    The accepted protocol to ventilate patients with acute lung injury is to use low tidal volume (VT) in combination with recruitment maneuvers or positive end-expiratory pressure (PEEP). However, an important aspect of mechanical ventilation has not been considered: the combined effects of PEEP and ventilation modes on the integrity of the epithelium. Additionally, it is implicitly assumed that the best PEEP-VT combination also protects the epithelium. We aimed to investigate the effects of ventilation mode and PEEP on respiratory mechanics, peak airway pressures and gas exchange as well as on lung surfactant and epithelial cell integrity in mice with acute lung injury. HCl-injured mice were ventilated at PEEPs of 3 and 6 cmH2O with conventional ventilation (CV), CV with intermittent large breaths (CVLB) to promote recruitment, and a new mode, variable ventilation, optimized for mice (VVN). Mechanics and gas exchange were measured during ventilation and surfactant protein (SP)-B, proSP-B and E-cadherin levels were determined from lavage and lung homogenate. PEEP had a significant effect on mechanics, gas exchange and the epithelium. The higher PEEP reduced lung collapse and improved mechanics and gas exchange but it also down regulated surfactant release and production and increased epithelial cell injury. While CVLB was better than CV, VVN outperformed CVLB in recruitment, reduced epithelial injury and, via a dynamic mechanotransduction, it also triggered increased release and production of surfactant. For long-term outcome, selection of optimal PEEP and ventilation mode may be based on balancing lung physiology with epithelial injury. PMID:23326543

  10. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-10-30

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.

  11. Region-specific role for Pten in maintenance of epithelial phenotype and integrity

    PubMed Central

    Flodby, Per; Sunohara, Mitsuhiro; Castillo, Dan R.; McConnell, Alicia M.; Krishnaveni, Manda S.; Banfalvi, Agnes; Li, Min; Stripp, Barry; Zhou, Beiyun; Crandall, Edward D.; Minoo, Parviz

    2017-01-01

    Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and β-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific. PMID:27864284

  12. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    PubMed

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  13. A 'Good' muscle in a 'Bad' environment: the importance of airway smooth muscle force adaptation to airway hyperresponsiveness.

    PubMed

    Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M

    2011-12-15

    Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Mechanotransduction, asthma, and airway smooth muscle

    PubMed Central

    Fabry, Ben; Fredberg, Jeffrey J.

    2008-01-01

    Excessive force generation by airway smooth muscle is the main culprit in excessive airway narrowing during an asthma attack. The maximum force the airway smooth muscle can generate is exquisitely sensitive to muscle length fluctuations during breathing, and is governed by complex mechanotransduction events that can best be studied by a hybrid approach in which the airway wall is modeled in silico so as to set a dynamic muscle load comparable to that experienced in vivo. PMID:18836522

  15. Cardiovascular causes of airway compression.

    PubMed

    Kussman, Barry D; Geva, Tal; McGowan, Francis X

    2004-01-01

    Compression of the paediatric airway is a relatively common and often unrecognized complication of congenital cardiac and aortic arch anomalies. Airway obstruction may be the result of an anomalous relationship between the tracheobronchial tree and vascular structures (producing a vascular ring) or the result of extrinsic compression caused by dilated pulmonary arteries, left atrial enlargement, massive cardiomegaly, or intraluminal bronchial obstruction. A high index of suspicion of mechanical airway compression should be maintained in infants and children with recurrent respiratory difficulties, stridor, wheezing, dysphagia, or apnoea unexplained by other causes. Prompt diagnosis is required to avoid death and minimize airway damage. In addition to plain chest radiography and echocardiography, diagnostic investigations may consist of barium oesophagography, magnetic resonance imaging (MRI), computed tomography, cardiac catheterization and bronchoscopy. The most important recent advance is MRI, which can produce high quality three-dimensional reconstruction of all anatomic elements allowing for precise anatomic delineation and improved surgical planning. Anaesthetic technique will depend on the type of vascular ring and the presence of any congenital heart disease or intrinsic lesions of the tracheobronchial tree. Vascular rings may be repaired through a conventional posterolateral thoracotomy, or utilizing video-assisted thoracoscopic surgery (VATS) or robotic endoscopic surgery. Persistent airway obstruction following surgical repair may be due to residual compression, secondary airway wall instability (malacia), or intrinsic lesions of the airway. Simultaneous repair of cardiac defects and vascular tracheobronchial compression carries a higher risk of morbidity and mortality.

  16. Unusual epithelium in a subpubic sinus.

    PubMed

    Chao, Hong-Ming; Chuang, Chia-Jueng; Chen, Ke-Chi; Chu, Chih-Chun; Chou, Jung-Mao

    2002-09-01

    A 5-year-old male presented with the history of whitish discharge from a midline sinus opening just above the pubis for 2 months. Attempted radiography of the sinus revealed a blind fistula and voiding cystourethrography was normal. The fistula was excised deep to the subpubic space without any evidence of connection to the lower urinary tract. Pathologic evaluation of the lesion revealed a ciliated-columnar lining with stratified-squamous and transitional epithelium. To our knowledge, a subpubic sinus with this unique presentation of epithelium has not been reported previously.

  17. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper airway...

  18. Awake Craniotomy: A New Airway Approach.

    PubMed

    Sivasankar, Chitra; Schlichter, Rolf A; Baranov, Dimitry; Kofke, W Andrew

    2016-02-01

    Awake craniotomies have been performed regularly at the University of Pennsylvania since 2004. Varying approaches to airway management are described for this procedure, including intubation with an endotracheal tube and use of a laryngeal mask airway, simple facemask, or nasal cannula. In this case series, we describe the successful use (i.e., no need for endotracheal intubation related to inadequate gas exchange) of bilateral nasopharyngeal airways in 90 patients undergoing awake craniotomies. The use of nasopharyngeal airways can ease the transition between the asleep and awake phases of the craniotomy without the need to stimulate the airway. Our purpose was to describe our experience and report adverse events related to this technique.

  19. Airway structure and function in Eisenmenger's syndrome.

    PubMed

    McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L

    1998-10-01

    The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.

  20. A meta-analysis of prehospital airway control techniques part II: alternative airway devices and cricothyrotomy success rates.

    PubMed

    Hubble, Michael W; Wilfong, Denise A; Brown, Lawrence H; Hertelendy, Attila; Benner, Randall W

    2010-01-01

    Airway management is a key component of prehospital care for seriously ill and injured patients. Oral endotracheal intubation (OETI) is the definitive airway of choice in most emergency medical services (EMS) systems. However, OETI may not be an approved skill for some clinicians or may prove problematic in certain patients because of anatomic abnormalities, trauma, or inadequate relaxation. In these situations alternative airways are frequently employed. However, the reported success rates for these devices vary widely, and established benchmarks are lacking. We sought to determine pooled estimates of the success rates of alternative airway devices (AADs) and needle cricothyrotomy (NCRIC) and surgical cricothyrotomy (SCRIC) placement through a meta-analysis of the literature. We performed a systematic literature search for all English-language articles reporting success rates for AADs, SCRIC, and NCRIC. Studies of field procedures performed by prehospital personnel from any nation were included. All titles were reviewed independently by two authors using prespecified inclusion criteria. Pooled estimates of success rates for each airway technique were calculated using a random-effects meta-analysis model. Of 2,005 prehospital airway titles identified, 35 unique studies were retained for analysis of AAD success rates, encompassing a total of 10,172 prehospital patients. The success rates for SCRIC and NCRIC were analyzed across an additional 21 studies totaling 512 patients. The pooled estimates (and 95% confidence intervals [CIs]) for intervention success across all clinicians and patients were as follows: esophageal obturator airway-esophageal gastric tube airway (EOA-EGTA) 92.6% (90.1%-94.5%); pharyngeotracheal lumen airway (PTLA) 82.1% (74.0%-88.0%); esophageal-tracheal Combitube (ETC) 85.4% (77.3%-91.0%); laryngeal mask airway (LMA) 87.4% (79.0%-92.8%); King Laryngeal Tube airway (King LT) 96.5% (71.2%-99.7%); NCRIC 65.8% (42.3%-83.59%); and SCRIC 90.5% (84

  1. Coelomic epithelium-derived cells in visceral morphogenesis.

    PubMed

    Ariza, Laura; Carmona, Rita; Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón

    2016-03-01

    Coelomic cavities of vertebrates are lined by a mesothelium which develops from the lateral plate mesoderm. During development, the coelomic epithelium is a highly active cell layer, which locally is able to supply mesenchymal cells that contribute to the mesodermal elements of many organs and provide signals which are necessary for their development. The relevance of this process of mesenchymal cell supply to the developing organs is becoming clearer because genetic lineage tracing techniques have been developed in recent years. Body wall, heart, liver, lungs, gonads, and gastrointestinal tract are populated by cells derived from the coelomic epithelium which contribute to their connective and vascular tissues, and sometimes to specialized cell types such as the stellate cells of the liver, the Cajal interstitial cells of the gut or the Sertoli cells of the testicle. In this review we collect information about the contribution of coelomic epithelium derived cells to visceral development, their developmental fates and signaling functions. The common features displayed by all these processes suggest that the epithelial-mesenchymal transition of the embryonic coelomic epithelium is an underestimated but key event of vertebrate development, and probably it is shared by all the coelomate metazoans. © 2015 Wiley Periodicals, Inc.

  2. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  3. Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol.

    PubMed

    Cancado, Jose E; Mendes, Eliana S; Arana, Johana; Horvath, Gabor; Monzon, Maria E; Salathe, Matthias; Wanner, Adam

    2015-04-02

    In vitro and animal experiments have shown that the transport and signaling of β2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic β2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (ΔQ̇aw) were assessed. Mean ± SE EBC pH (units) and ΔQ̇aw (μl.min(-1).mL(-1)) were 6.4 ± 0.1 and 16.8 ± 1.9 during quiet breathing, 6.3 ± 0.1 and 14.5 ± 2.4 during eucapnic hyperventilation, 6.6 ± 0.2 and -0.2 ± 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 ± 0.1 and 2.0 ± 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). Albuterol responsiveness in the airway as assessed by ΔQ̇aw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic β2-adrenergic agonists during airway disease exacerbations associated with changes in pH. Registered at clinicaltrials.gov: NCT01216748 .

  4. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    PubMed

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  5. Sequential Stenting for Extensive Malignant Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Tei, Keiko; Yamamoto, Ryoji

    2014-01-01

    Purpose: Malignant airway stenosis extending from the bronchial bifurcation to the lower lobar orifice was treated with airway stenting. We herein examine the effectiveness of airway stenting for extensive malignant airway stenosis. Methods: Twelve patients with extensive malignant airway stenosis underwent placement of a silicone Dumon Y stent (Novatech, La Ciotat, France) at the tracheal bifurcation and a metallic Spiral Z-stent (Medico’s Hirata, Osaka, Japan) at either distal side of the Y stent. We retrospectively analyzed the therapeutic efficacy of the sequential placement of these silicone and metallic stents in these 12 patients. Results: The primary disease was lung cancer in eight patients, breast cancer in two patients, tracheal cancer in one patient, and thyroid cancer in one patient. The median survival period after airway stent placement was 46 days. The Hugh–Jones classification and performance status improved in nine patients after airway stenting. One patient had prolonged hemoptysis and died of respiratory tract hemorrhage 15 days after the treatment. Conclusion: Because the initial disease was advanced and aggressive, the prognosis after sequential airway stent placement was significantly poor. However, because respiratory distress decreased after the treatment in most patients, this treatment may be acceptable for selected patients with extensive malignant airway stenosis. PMID:25273272

  6. Malignant central airway obstruction

    PubMed Central

    Mudambi, Lakshmi; Miller, Russell

    2017-01-01

    This review comprehensively describes recent advances in the management of malignant central airway obstruction (CAO). Malignant CAO can be a dramatic and devastating manifestation of primary lung cancer or metastatic disease. A variety of diagnostic modalities are available to provide valuable information to plan a therapeutic intervention. Clinical heterogeneity in the presentation of malignant CAO provides opportunities to adapt and utilize endoscopic technology and tools in many ways. Mechanical debulking, thermal tools, cryotherapy and airway stents are methods and instruments used to rapidly restore airway patency. Delayed bronchoscopic methods, such as photodynamic therapy (PDT) and brachytherapy can also be utilized in specific non-emergent situations to establish airway patency. Although data regarding the success and complications of therapeutic interventions are retrospective and characterized by clinical and outcome measure variability, the symptoms of malignant CAO can often be successfully palliated. Assessment of risks and benefits of interventions in each individual patient during the decision-making process forms the critical foundation of the management of malignant CAO. PMID:29214067

  7. Dynamics of Bovine Sperm Interaction with Epithelium Differ Between Oviductal Isthmus and Ampulla.

    PubMed

    Ardon, Florencia; Markello, Ross D; Hu, Lian; Deutsch, Zarah I; Tung, Chih-Kuan; Wu, Mingming; Suarez, Susan S

    2016-10-01

    In mammals, many sperm that reach the oviduct are held in a reservoir by binding to epithelium. To leave the reservoir, sperm detach from the epithelium; however, they may bind and detach again as they ascend into the ampulla toward oocytes. In order to elucidate the nature of binding interactions along the oviduct, we compared the effects of bursts of strong fluid flow (as would be caused by oviductal contractions), heparin, and hyperactivation on detachment of bovine sperm bound in vitro to epithelium on intact folds of isthmic and ampullar mucosa. Intact folds of oviductal mucosa were used to represent the strong attachments of epithelial cells to each other and to underlying connective tissue that exist in vivo. Effects of heparin on binding were tested because heparin binds to the Binder of SPerm (BSP) proteins that attach sperm to oviductal epithelium. Sperm bound by their heads to beating cilia on both isthmic and ampullar epithelia and could not be detached by strong bursts of fluid flow. Addition of heparin immediately detached sperm from isthmic epithelium but not ampullar epithelium. Addition of 4-aminopyridine immediately stimulated hyperactivation of sperm but did not detach them from isthmic or ampullar epithelium unless added with heparin. These observations indicate that the nature of binding of sperm to ampullar epithelium differs from that of binding to isthmic epithelium; specifically, sperm bound to isthmic epithelium can be detached by heparin alone, while sperm bound to ampullar epithelium requires both heparin and hyperactivation to detach from the epithelium. © 2016 by the Society for the Study of Reproduction, Inc.

  8. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia.

  9. Postnatal airway growth in cystic fibrosis piglets.

    PubMed

    Adam, Ryan J; Abou Alaiwa, Mahmoud H; Bouzek, Drake C; Cook, Daniel P; Gansemer, Nicholas D; Taft, Peter J; Powers, Linda S; Stroik, Mallory R; Hoegger, Mark J; McMenimen, James D; Hoffman, Eric A; Zabner, Joseph; Welsh, Michael J; Meyerholz, David K; Stoltz, David A

    2017-09-01

    Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis. NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis. Copyright © 2017 the American Physiological Society.

  10. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  11. The Development and Application of Airway Devices in China

    PubMed Central

    Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong

    2017-01-01

    Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485

  12. Icatibant, an inhibitor of bradykinin receptor 2, for hereditary angioedema attacks: prospective experimental single-cohort study.

    PubMed

    Campos, Regis Albuquerque; Valle, Solange Oliveira Rodrigues; França, Alfeu Tavares; Cordeiro, Elisabete; Serpa, Faradiba Sarquis; Mello, Yara Ferreira; Malheiros, Teresinha; Toledo, Eliana; Mansour, Elie; Fusaro, Gustavo; Grumach, Anete Sevciovic

    2014-01-01

    Hereditary angioedema (HAE) with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil. Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients. Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored. 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age). The symptoms were: subcutaneous edema (22/24); abdominal pain (15/24) and upper airway obstruction (10/24). The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%); 10-20 (5/24; 20.8%); 20-30 (8/24; 33.4%); 30-60 (5/24; 20.8%); and 2 hours (1/24; 4.3%). The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6. HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.

  13. Airway smooth muscle responsiveness from dogs with airway hyperresponsiveness after O/sub 3/ inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.L.; O'Byrne, P.M.; Pashley, M.

    1988-07-01

    Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in allmore » dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.« less

  14. Elevated Airway Purines in COPD

    PubMed Central

    Lazaar, Aili L.; Bordonali, Elena; Qaqish, Bahjat; Boucher, Richard C.

    2011-01-01

    Background: Adenosine and related purines have established roles in inflammation, and elevated airway concentrations are predicted in patients with COPD. However, accurate airway surface purine measurements can be confounded by stimulation of purine release during collection of typical respiratory samples. Methods: Airway samples were collected noninvasively as exhaled breath condensate (EBC) from 36 healthy nonsmokers (NS group), 28 healthy smokers (S group), and 89 subjects with COPD (29 with GOLD [Global Initiative for Chronic Obstructive Lung Disease] stage II, 29 with GOLD stage III, and 31 with GOLD stage IV) and analyzed with mass spectrometry for adenosine, adenosine monophosphate (AMP), and phenylalanine, plus urea as a dilution marker. Variable dilution of airway secretions in EBC was controlled using ratios to urea, and airway surface concentrations were calculated using EBC to serum urea-based dilution factors. Results: EBC adenosine to urea ratios were similar in NS (0.20 ± 0.21) and S (0.22 ± 0.20) groups but elevated in those with COPD (0.32 ± 0.30, P < .01 vs NS). Adenosine to urea ratios were highest in the most severely affected cohort (GOLD IV, 0.35 ± 0.34, P < .01 vs NS) and negatively correlated with FEV1 (r = −0.27, P < .01). Elevated AMP to urea ratios were also observed in the COPD group (0.58 ± 0.97 COPD, 0.29 ± 0.35 NS, P < .02), but phenylalanine to urea ratios were similar in all groups. Airway surface adenosine concentrations calculated in a subset of subjects were 3.2 ± 2.7 μM in those with COPD (n = 28) relative to 1.7 ± 1.5 μM in the NS group (n = 16, P < .05). Conclusions: Airway purines are present on airway surfaces at physiologically significant concentrations, are elevated in COPD, and correlate with markers of COPD severity. Purinergic signaling pathways are potential therapeutic targets in COPD, and EBC purines are potential noninvasive biomarkers. PMID:21454402

  15. Expressions of TRPVs in the cholesteatoma epithelium.

    PubMed

    Do, Ba Hung; Koizumi, Hiroki; Ohbuchi, Toyoaki; Kawaguchi, Rintaro; Suzuki, Hideaki

    2017-10-01

    We have recently proposed a hypothesis that acid leakage through the cholesteatoma epithelium mediates bone resorption in middle ear cholesteatoma. In the present study, we investigated the expressions of transient receptor potential vanilloid (TRPV) channels, which have been shown to play roles in the regulation of epidermal barrier function, in the cholesteatoma epithelium in comparison with the normal skin. Cholesteatoma epithelium and postauricular skin were collected from 17 patients with primary acquired middle ear cholesteatoma who underwent tympanomastoidectomy. Expressions of TRPV1, TRPV3, TRPV4, and TRPV6 were explored by fluorescence immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). TRPV1, TRPV3, TRPV4, and TRPV6 mRNAs were all detected by qRT-PCR both in the skin and cholesteatoma tissue. Immunohistochemical staining showed that TRPV1 and TRPV3 were positive in the viable cell layers of the epidermis of the skin, and only TRPV3 was positive in those of the cholesteatoma epithelium. The immunoreactivity for TRPV3 was significantly weaker in cholesteatoma than in the skin. The lower expression of TRPV3 in cholesteatoma may be one of the mechanisms underlying the increased permeability of this tissue. On the other hand, TRPV1, TRPV4, and TRPV6 are unlikely to be involved in the regulation of epithelial permeability in cholesteatoma.

  16. Anatomic and physiopathologic changes affecting the airway of the elderly patient: implications for geriatric-focused airway management

    PubMed Central

    Johnson, Kathleen N; Botros, Daniel B; Groban, Leanne; Bryan, Yvon F

    2015-01-01

    There are many anatomical, physiopathological, and cognitive changes that occur in the elderly that affect different components of airway management: intubation, ventilation, oxygenation, and risk of aspiration. Anatomical changes occur in different areas of the airway from the oral cavity to the larynx. Common changes to the airway include tooth decay, oropharyngeal tumors, and significant decreases in neck range of motion. These changes may make intubation challenging by making it difficult to visualize the vocal cords and/or place the endotracheal tube. Also, some of these changes, including but not limited to, atrophy of the muscles around the lips and an edentulous mouth, affect bag mask ventilation due to a difficult face-mask seal. Physiopathologic changes may impact airway management as well. Common pulmonary issues in the elderly (eg, obstructive sleep apnea and COPD) increase the risk of an oxygen desaturation event, while gastrointestinal issues (eg, achalasia and gastroesophageal reflux disease) increase the risk of aspiration. Finally, cognitive changes (eg, dementia) not often seen as related to airway management may affect patient cooperation, especially if an awake intubation is required. Overall, degradation of the airway along with other physiopathologic and cognitive changes makes the elderly population more prone to complications related to airway management. When deciding which airway devices and techniques to use for intubation, the clinician should also consider the difficulty associated with ventilating the patient, the patient’s risk of oxygen desaturation, and/or aspiration. For patients who may be difficult to bag mask ventilate or who have a risk of aspiration, a specialized supralaryngeal device may be preferable over bag mask for ventilation. Patients with tumors or decreased neck range of motion may require a device with more finesse and maneuverability, such as a flexible fiberoptic broncho-scope. Overall, geriatric-focused airway

  17. The Difficult Airway Society 'ADEPT' guidance on selecting airway devices: the basis of a strategy for equipment evaluation.

    PubMed

    Pandit, J J; Popat, M T; Cook, T M; Wilkes, A R; Groom, P; Cooke, H; Kapila, A; O'Sullivan, E

    2011-08-01

    Faced with the concern that an increasing number of airway management devices were being introduced into clinical practice with little or no prior evidence of their clinical efficacy or safety, the Difficult Airway Society formed a working party (Airway Device Evaluation Project Team) to establish a process by which the airway management community within the profession could itself lead a process of formal device/equipment evaluation. Although there are several national and international regulations governing which products can come on to the market and be legitimately sold, there has hitherto been no formal professional guidance relating to how products should be selected (i.e. purchased). The Airway Device Evaluation Project Team's first task was to formulate such advice, emphasising evidence-based principles. Team discussions led to a definition of the minimum level of evidence needed to make a pragmatic decision about the purchase or selection of an airway device. The Team concluded that this definition should form the basis of a professional standard, guiding those with responsibility for selecting airway devices. We describe how widespread adoption of this professional standard can act as a driver to create an infrastructure in which the required evidence can be obtained. Essential elements are that: (i) the Difficult Airway Society facilitates a coherent national network of research-active units; and (ii) individual anaesthetists in hospital trusts play a more active role in local purchasing decisions, applying the relevant evidence and communicating their purchasing decisions to the Difficult Airway Society. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  18. Multi-stage surgery for airway patency after metallic stent removal in benign laryngotracheal airway disease in two adolescents.

    PubMed

    Coordes, Annekatrin; Todt, Ingo; Ernst, Arne; Seidl, Rainer O

    2013-05-01

    Laryngotracheal stents may damage the highly complex laryngeal structures, impair voice and swallowing functions and cause tissue ingrowths, thereby necessitating airway patency interventions. In benign airway disease, the number of adolescents with laryngotracheal stents is therefore limited. We present two cases of laryngeal metallic stent placement following benign airway disease. Two adolescents presented with severe dyspnea and self-expandable metallic stent placement after benign laryngotracheal stenoses. Granulation tissue ingrowths required additional surgical interventions every 6-8 weeks to recanalize the stent lumen. We performed multi-stage surgery including removal of the embedded stent, segmental resection of the stenotic area, end-to-end-anastomosis and laryngotracheal reconstruction respectively, to achieve patent airway without tracheal cannulation. Montgomery T-tubes were temporarily inserted to bridge the complex reconstructions. In both adolescents, we achieved successful removal of the embedded stent and patent airway. Bilateral vocal fold paralysis required additional surgery to improve the final airway patency and vocal rehabilitation. Stent removal, segmental resection and laryngotracheal reconstruction provide the achievement of patent airway and allow decannulation. Temporary Montgomery T-tubes bridge complex laryngotracheal reconstructions. In benign laryngeal airway disease, stent placement should be avoided, especially in adolescents. Transfer to a specialist center should be considered prior to metallic stent implantation. In general, self-expanding tracheobronchial stents can be placed in selected patients where surgical interventions are limited. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  20. Meckel's diverticulum and ectopic epithelium: Evaluation of a complex relationship.

    PubMed

    Burjonrappa, Sathyaprasad; Khaing, Phue

    2014-04-01

    Meckel's diverticulum is the most common congenital anomaly of the gastrointestinal tract. Currently, for any incidentally discovered Meckel's diverticulum, the management approach is based on weighing the statistical odds of future complications against the risks of a diverticulectomy. The temporal relationship between age at Meckel's diverticulectomy and the presence of ectopic epithelium was evaluated in our series. A meta-analysis of all reported recent literature on this condition was subsequently performed to evaluate the strength of the relationship between ectopic epithelium and symptomatic Meckel's diverticulum. There was a paucity of ectopic epithelium in Meckel's diverticulectomy specimens in infants operated on at less than 1 year of age. Having two or more ectopic epithelia in a diverticulum does not appear to carry an additive risk for complications. The meta-analysis confirmed that ectopic epithelium was the most significant factor that influenced surgical intervention in all series of Meckel's diverticulum. The relationship between ectopic epithelium and the development of symptomatic Meckel's diverticulum is complex. Further understanding of the development of ectopic rests in the diverticulum will facilitate elucidating the pathophysiology in symptomatic cases.

  1. Oxidative stress in Nipah virus-infected human small airway epithelial cells.

    PubMed

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella; Rockx, Barry

    2015-10-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development.

  2. Assessment of upper airway mechanics during sleep.

    PubMed

    Farré, Ramon; Montserrat, Josep M; Navajas, Daniel

    2008-11-30

    Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

  3. Mechanisms and regulation of polymorphonuclear leukocyte and eosinophil adherence to human airway epithelial cells.

    PubMed

    Jagels, M A; Daffern, P J; Zuraw, B L; Hugli, T E

    1999-09-01

    -gamma. Maximal adhesion of Eos and PMN required pretreatment of HBECs with either TNF-alpha or IFN-gamma in addition to leukocyte activation. Adherence of Eos to unstimulated HBECs was mediated through both beta(1) and beta(2) integrins, whereas adhesion of Eos to activated HBECs was dominated by beta(2) integrins. Adhesion of both Eos and PMN was inhibited by treatment of HBECs with blocking antibodies to ICAM-1. Differential utilization of beta(1) and beta(2) integrins by Eos, depending on the activation state of the epithelium, is a novel finding and may affect activation and/or recruitment of Eos in airway tissue. Mechanisms of adhesion of HBECs to Eos and PMN, as evidenced by the different responsiveness of the two latter types of cells to IL-8 and IL-5, may account for a prevalence of Eos over PMN in certain airway diseases.

  4. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents.

    PubMed

    Zaccone, Eric J; Goldsmith, W Travis; Shimko, Michael J; Wells, J R; Schwegler-Berry, Diane; Willard, Patsy A; Case, Shannon L; Thompson, Janet A; Fedan, Jeffrey S

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance,we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity.We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport,without affecting Cl- transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro.

  5. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2014-12-18

    that the adjacent field cancerization extends to relatively less invasive large airways and harbors markers that can detect lung cancer in smokers ; 5...profiles have been described in the normal-appearing bronchial epithelium of healthy smokers (9) including those that were diagnostic of lung cancer...10). In addition, modulation of global gene expression in the normal epithelium in health smokers is similar in the large and small airways and the

  6. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  7. [Characterization of stem cells derived from the neonatal auditory sensory epithelium].

    PubMed

    Diensthuber, M; Heller, S

    2010-11-01

    In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.

  8. Adeno-Associated Virus Type 6 (AAV6) Vectors Mediate Efficient Transduction of Airway Epithelial Cells in Mouse Lungs Compared to That of AAV2 Vectors

    PubMed Central

    Halbert, Christine L.; Allen, James M.; Miller, A. Dusty

    2001-01-01

    Although vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in many somatic tissues, studies with animal models and cultured cells show that the apical surface of airway epithelia is resistant to transduction by AAV2 vectors. Approaches to increase transduction rates include increasing the amount of vector and perturbing the integrity of the epithelia. In this study, we explored the use of vectors based on AAV6 to increase transduction rates in airways. AAV vectors were made using combinations of rep, cap, and packaged genomes from AAV2 or AAV6. The packaged genomes encoded human placental alkaline phosphatase and contained terminal repeat sequences from AAV2 or AAV6. We found that transduction efficiency was primarily dependent on the source of Cap protein, defined here as the vector pseudotype. The AAV6 and AAV2 pseudotype vectors exhibited different tropisms in tissue-cultured cells, and cell transduction by AAV6 vectors was not inhibited by heparin, nor did they compete for entry in a transduction assay, indicating that AAV6 and AAV2 capsid bind different receptors. In vivo analysis of vectors showed that AAV2 pseudotype vectors gave high transduction rates in alveolar cells but much lower rates in the airway epithelium. In contrast, the AAV6 pseudotype vectors exhibited much more efficient transduction of epithelial cells in large and small airways, showing up to 80% transduction in some airways. These results, combined with our previous results showing lower immunogenicity of AAV6 than of AAV2 vectors, indicate that AAV6 vectors may provide significant advantages over AAV2 for gene therapy of lung diseases like cystic fibrosis. PMID:11413329

  9. [Small airway diseases and immune deficiency].

    PubMed

    Burgel, P-R; Bergeron, A; Knoop, C; Dusser, D

    2016-02-01

    Innate or acquired immune deficiency may show respiratory manifestations, often characterized by small airway involvement. The purpose of this article is to provide an overview of small airway disease across the major causes of immune deficiency. In patients with common variable immune deficiency, recurrent lower airway infections may lead to bronchiolitis and bronchiectasis. Follicular and/or granulomatous bronchiolitis of unknown origin may also occur. Bronchiolitis obliterans is the leading cause of death after the first year in patients with lung transplantation. Bronchiolitis obliterans also occurs in patients with allogeneic haematopoietic stem cell transplantation, especially in the context of systemic graft-versus-host disease. Small airway diseases have different clinical expression and pathophysiology across various causes of immune deficiency. A better understanding of small airways disease pathogenesis in these settings may lead to the development of novel targeted therapies. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  10. Effects of the tripeptide substance P antagonist, FR113680, on airway constriction and airway edema induced by neurokinins in guinea-pigs.

    PubMed

    Murai, M; Morimoto, H; Maeda, Y; Fujii, T

    1992-06-24

    FR113680 is a newly developed tripeptide substance P (SP) receptor antagonist. The effects of FR113680 on airway constriction and airway edema induced by neurokinins were investigated in guinea-pigs. In in vitro experiments, FR113680 inhibited the contraction of isolated guinea-pig trachea induced by SP and neurokinin A (NKA) in a dose-dependent manner with IC50 values of 2.3 x 10(-6) and 1.5 x 10(-5) M, respectively. The tracheal contraction induced by histamine and acetylcholine was not affected by FR113680. FR113680 (5 x 10(-5) M) also significantly inhibited the atropine-resistant contraction of isolated guinea-pig bronchi induced by electrical field stimulation. In in vivo experiments, FR113680 given i.v. inhibited SP-induced airway constriction in guinea-pigs at doses of 1 and 10 mg kg-1. However, FR113680 only inhibited NKA- and capsaicin-induced airway constriction by 40-50% even at a dose of 10 mg kg-1. FR113680 also inhibited SP-induced airway edema in guinea-pigs with the same potency as it inhibited SP-induced airway constriction. Histamine-induced airway constriction and airway edema were not affected at a dose of 10 mg kg-1. These results suggest that FR113680 preferentially inhibits responses induced by NK1 receptor activation (SP-induced airway constriction and airway edema), but is less effective on a NK2 receptor-induced response (airway constriction by NKA and neurogenic stimulation).

  11. How anaesthesiologists understand difficult airway guidelines-an interview study.

    PubMed

    Knudsen, Kati; Pöder, Ulrika; Nilsson, Ulrica; Högman, Marieann; Larsson, Anders; Larsson, Jan

    2017-11-01

    In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. A qualitative phenomenographic design was chosen to explore anaesthesiologists' views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts' consensus, a set of scientifically based guidelines for handling the difficult airway. The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently.

  12. Morphology of the epithelium of the lower rectum and the anal canal in the adult human.

    PubMed

    Tanaka, Eiichi; Noguchi, Tsuyoshi; Nagai, Kaoruko; Akashi, Yuichi; Kawahara, Katsunobu; Shimada, Tatsuo

    2012-06-01

    The anal canal is an important body part clinically. However, there is no agreement about the epithelium of the anal canal, the anal transitional zone (ATZ) epithelium in particular. The aim of this study is to clarify the structure of the epithelium of the human lower rectum and anal canal. Intact rectum and anus obtained from patients who underwent surgery for rectal carcinoma were examined by light and scanning electron microscopy (LM and SEM). By LM, three types of epithelium were observed in the anal canal: simple columnar epithelium, stratified squamous epithelium, and stratified columnar epithelium. The lower rectum was composed of simple columnar epithelium. SEM findings showed stratified squamous epithelium that consisted of squamous cells with microridges, changing to simple columnar epithelium consisting of columnar cells with short microvilli at the anorectal line. LM and SEM observations in a one-to-one ratio revealed that the area of stratified columnar epithelium based on LM corresponded to the anal crypt and sinus. In conclusion, the epithelium of the human anal canal was fundamentally composed of simple columnar epithelium and stratified squamous epithelium. We found no evidence of the ATZ.

  13. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  14. Dynamics of Bovine Sperm Interaction with Epithelium Differ Between Oviductal Isthmus and Ampulla1

    PubMed Central

    Ardon, Florencia; Markello, Ross D.; Hu, Lian; Deutsch, Zarah I.; Tung, Chih-Kuan; Wu, Mingming; Suarez, Susan S.

    2016-01-01

    In mammals, many sperm that reach the oviduct are held in a reservoir by binding to epithelium. To leave the reservoir, sperm detach from the epithelium; however, they may bind and detach again as they ascend into the ampulla toward oocytes. In order to elucidate the nature of binding interactions along the oviduct, we compared the effects of bursts of strong fluid flow (as would be caused by oviductal contractions), heparin, and hyperactivation on detachment of bovine sperm bound in vitro to epithelium on intact folds of isthmic and ampullar mucosa. Intact folds of oviductal mucosa were used to represent the strong attachments of epithelial cells to each other and to underlying connective tissue that exist in vivo. Effects of heparin on binding were tested because heparin binds to the Binder of SPerm (BSP) proteins that attach sperm to oviductal epithelium. Sperm bound by their heads to beating cilia on both isthmic and ampullar epithelia and could not be detached by strong bursts of fluid flow. Addition of heparin immediately detached sperm from isthmic epithelium but not ampullar epithelium. Addition of 4-aminopyridine immediately stimulated hyperactivation of sperm but did not detach them from isthmic or ampullar epithelium unless added with heparin. These observations indicate that the nature of binding of sperm to ampullar epithelium differs from that of binding to isthmic epithelium; specifically, sperm bound to isthmic epithelium can be detached by heparin alone, while sperm bound to ampullar epithelium requires both heparin and hyperactivation to detach from the epithelium. PMID:27605344

  15. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells

    PubMed Central

    Pace, Elisabetta; Ferraro, Maria; Siena, Liboria; Melis, Mario; Montalbano, Angela M; Johnson, Malcolm; Bonsignore, Maria R; Bonsignore, Giovanni; Gjomarkaj, Mark

    2008-01-01

    Airway epithelium is emerging as a regulator of innate immune responses to a variety of insults including cigarette smoke. The main goal of this study was to explore the effects of cigarette smoke extracts (CSE) on Toll-like receptor (TLR) expression and activation in a human bronchial epithelial cell line (16-HBE). The CSE increased the expression of TLR4 and the lipopolysaccharide (LPS) binding, the nuclear factor-κB (NF-κB) activation, the release of interleukin-8 (IL-8) and the chemotactic activity toward neutrophils. It did not induce TLR2 expression or extracellular signal-regulated signal kinase 1/2 (ERK1/2) activation. The LPS increased the expression of TLR4 and induced both NF-κB and ERK1/2 activation. The combined exposure of 16-HBE to CSE and LPS was associated with ERK activation rather than NF-κB activation and with a further increase of IL-8 release and of chemotactic activity toward neutrophils. Furthermore, CSE decreased the constitutive interferon-inducible protein-10 (IP-10) release and counteracted the effect of LPS in inducing both the IP-10 release and the chemotactic activity toward lymphocytes. In conclusion, cigarette smoke, by altering the expression and the activation of TLR4 via the preferential release of IL-8, may contribute to the accumulation of neutrophils within the airways of smokers. PMID:18217953

  16. Are new supraglottic airway devices, tracheal tubes and airway viewing devices cost-effective?

    PubMed

    Slinn, Simon J; Froom, Stephen R; Stacey, Mark R W; Gildersleve, Christopher D

    2015-01-01

    Over the past two decades, a plethora of new airway devices has become available to the pediatric anesthetist. While all have the laudable intention of improving patient care and some have proven clinical benefits, these devices are often costly and at times claims of an advantage over current equipment and techniques are marginal. Supraglottic airway devices are used in the majority of pediatric anesthetics delivered in the U.K., and airway-viewing devices provide an alternative for routine intubation as well as an option in the management of the difficult airway. Yet hidden beneath the convenience of the former and the technology of the latter, the impact on basic airway skills with a facemask and the lack of opportunities to fine-tune the core skill of intubation represent an unrecognised and unquantifiable cost. A judgement on this value must be factored into the absolute purchase cost and any potential benefits to the quality of patient care, thus blurring any judgement on cost-effectiveness that we might have. An overall value on cost-effectiveness though not in strict monetary terms can then be ascribed. In this review, we evaluate the role of these devices in the care of the pediatric patient and attempt to balance the advantages they offer against the cost they incur, both financial and environmental, and in any quality improvement they might offer in clinical care. © 2014 John Wiley & Sons Ltd.

  17. How anaesthesiologists understand difficult airway guidelines—an interview study

    PubMed Central

    Knudsen, Kati; Nilsson, Ulrica; Larsson, Anders; Larsson, Jan

    2017-01-01

    Background In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. Methods A qualitative phenomenographic design was chosen to explore anaesthesiologists’ views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Results Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts’ consensus, a set of scientifically based guidelines for handling the difficult airway. Conclusions The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently. PMID:29299973

  18. Nerve growth factor-enhanced airway responsiveness involves substance P in ferret intrinsic airway neurons.

    PubMed

    Wu, Z-X; Dey, R D

    2006-07-01

    Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.

  19. Air-Q intubating laryngeal airway: A study of the second generation supraglottic airway device.

    PubMed

    Attarde, Viren Bhaskar; Kotekar, Nalini; Shetty, Sarika M

    2016-05-01

    Air-Q intubating laryngeal mask airway (ILA) is used as a supraglottic airway device and as a conduit for endotracheal intubation. This study aims to assess the efficacy of the Air-Q ILA regarding ease of insertion, adequacy of ventilation, rate of successful intubation, haemodynamic response and airway morbidity. Sixty patients presenting for elective surgery at our Medical College Hospital were selected. Following adequate premedication, baseline vital parameters, pulse rate and blood pressure were recorded. Air-Q size 3.5 for patients 50-70 kg and size 4.5 for 70-100 kg was selected. After achieving adequate intubating conditions, Air-Q ILA was introduced. Confirming adequate ventilation, appropriate sized endotracheal tube was advanced through the Air-Q blindly to intubate the trachea. Placement of the endotracheal tube in trachea was confirmed. Air-Q ILA was successfully inserted in 88.3% of patients in first attempt and 11.7% patients in second attempt. Ventilation was adequate in 100% of patients. Intubation was successful in 76.7% of patients with Air-Q ILA. 23.3% of patients were intubated by direct laryngoscopy following failure with two attempts using Air-Q ILA. Post-intubation the change in heart rate was statistically significant (P < 0.0001). 10% of patients were noted to have a sore throat and 5% of patients had mild airway trauma. Air-Q ILA is a reliable device as a supraglottic airway ensuring adequate ventilation as well as a conduit for endotracheal intubation. It benefits the patient by avoiding the stress of direct laryngoscopy and is also superior alternative device for use in a difficult airway.

  20. Meckel's diverticulum and ectopic epithelium: Evaluation of a complex relationship

    PubMed Central

    Burjonrappa, Sathyaprasad; Khaing, Phue

    2014-01-01

    Introduction: Meckel's diverticulum is the most common congenital anomaly of the gastrointestinal tract. Currently, for any incidentally discovered Meckel's diverticulum, the management approach is based on weighing the statistical odds of future complications against the risks of a diverticulectomy. Materials and Methods: The temporal relationship between age at Meckel's diverticulectomy and the presence of ectopic epithelium was evaluated in our series. A meta-analysis of all reported recent literature on this condition was subsequently performed to evaluate the strength of the relationship between ectopic epithelium and symptomatic Meckel's diverticulum. Results: There was a paucity of ectopic epithelium in Meckel's diverticulectomy specimens in infants operated on at less than 1 year of age. Having two or more ectopic epithelia in a diverticulum does not appear to carry an additive risk for complications. The meta-analysis confirmed that ectopic epithelium was the most significant factor that influenced surgical intervention in all series of Meckel's diverticulum. Conclusion: The relationship between ectopic epithelium and the development of symptomatic Meckel's diverticulum is complex. Further understanding of the development of ectopic rests in the diverticulum will facilitate elucidating the pathophysiology in symptomatic cases. PMID:24741211

  1. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.

    PubMed

    Nagalakshmi, Vidya K; Yu, Jing

    2015-03-01

    The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney. © 2015 Wiley Periodicals, Inc.

  2. Adenosine uptake by the isolated epithelium of guine pig jejunum.

    PubMed

    Kolassa, N; Stengg, R; Turnheim, K

    1977-10-01

    The uptake of [8-14C]adenosine by the isolated epithelium of guinea pig jejunum was faster than that of inosine, hypoxanthine, or adenine. The initial velocity of adenosine uptake from both the luminal and the antiluminal side of the epithelium exhibited saturation kinetics. The apparent Km, V, and passive permeability of luminal adenosine uptake were all lower than the corresponding values of antiluminal uptake. p-Nitrobenzyl-thioguanosine inhibited adenosine uptake from both the luminal and the antiluminal side, whilst hexobendine decreased the uptake only from the antiluminal side of the epithelium. The results suggest that adenosine enters the intestinal epithelium by a carrier-mediated process in addition to passive diffusion. The antiluminal transport system for adenosine seems similar to that of other tissues with respect to hexobendine inhibition; the luminal transport mechanism, however, exhibits different properties, being insensitive to hexobendine.

  3. Use of a Supraglottic Airway to Relieve Ventilation-Impeding Gastric Insufflation During Emergency Airway Management in an Infant.

    PubMed

    Dodd, Kenneth W; Strobel, Ashley M; Driver, Brian E; Reardon, Robert F

    2016-10-01

    Positive-pressure bag-valve-mask ventilation during emergency airway management often results in significant gastric insufflation, which may impede adequate ventilation and oxygenation. Current-generation supraglottic airways have beneficial features, such as channels for gastric decompression while ventilation is ongoing. A 5-week-old female infant required resuscitation for hypoxemic respiratory failure caused by rhinovirus with pneumonia. Bag-valve-mask ventilation led to gastric insufflation that compromised ventilation, thereby interfering with intubation because of precipitous oxygen desaturation during laryngoscopy. A current-generation supraglottic airway (LMA Supreme; Teleflex Inc, Morrisville, NC) was used to facilitate gastric decompression while ventilation and oxygenation was ongoing. After gastric decompression, ventilation was markedly improved and the pulse oxygen saturation improved to 100%. Intubation was successful on the next attempt, without oxygen desaturation. Current-generation supraglottic airways have 3 distinct advantages compared with first-generation supraglottic airways, which make them better devices for emergency airway management: gastric decompression ports, conduits for intubation, and higher oropharyngeal leak pressures. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  4. Baicalein Reduces Airway Injury in Allergen and IL-13 Induced Airway Inflammation

    PubMed Central

    Mabalirajan, Ulaganathan; Ahmad, Tanveer; Rehman, Rakhshinda; Leishangthem, Geeta Devi; Dinda, Amit Kumar; Agrawal, Anurag; Ghosh, Balaram; Sharma, Surendra Kumar

    2013-01-01

    Background Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. Methodology/Principal Findings In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA), treated with baicalein (10 mg/kg, ip) or a vehicle control, either during (preventive use) or after OVA challenge (therapeutic use). In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR), histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-β1, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. Conclusion/Significance Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function. PMID:23646158

  5. Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma

    PubMed Central

    Oesterle, Elizabeth C.

    2012-01-01

    Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236

  6. Definitive airway management of patients presenting with a pre-hospital inserted King LT(S)-D laryngeal tube airway: a historical cohort study.

    PubMed

    Subramanian, Arun; Garcia-Marcinkiewicz, Annery G; Brown, Daniel R; Brown, Michael J; Diedrich, Daniel A

    2016-03-01

    The King LT(S)-D laryngeal tube (King LT) has gained popularity as a bridge airway for pre-hospital airway management. In this study, we retrospectively reviewed the use of the King LT and its associated airway outcomes at a single Level 1 trauma centre. The data on all adult patients presenting to the Mayo Clinic in Rochester, Minnesota with a King LT in situ from July 1, 2007 to October 10, 2012 were retrospectively evaluated. Data collected and descriptively analyzed included patient demographics, comorbidities, etiology of respiratory failure, airway complications, subsequent definitive airway management technique, duration of mechanical ventilation, and status at discharge. Forty-eight adult patients met inclusion criteria. The most common etiology for respiratory failure requiring an artificial airway was cardiac arrest [28 (58%) patients] or trauma [9 (19%) patients]. Four of the nine trauma patients had facial trauma. Surgical tracheostomy was the definitive airway management technique in 14 (29%) patients. An airway exchange catheter, direct laryngoscopy, and video laryngoscopy were used in 11 (23%), ten (21%), and ten (21%) cases, respectively. Seven (78%) of the trauma patients underwent surgical tracheostomy compared with seven (18%) of the medical patients. Adverse events associated with King LT use occurred in 13 (27%) patients, with upper airway edema (i.e., tongue engorgement and glottic edema) being most common (19%). In this study of patients presenting to a hospital with a King LT, the majority of airway exchanges required an advanced airway management technique beyond direct laryngoscopy. Upper airway edema was the most common adverse observation associated with King LT use.

  7. Development of a disease-specific quality of life questionnaire for adult patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-QoL): Spanish multi-centre research project.

    PubMed

    Prior, Nieves; Remor, Eduardo; Gómez-Traseira, Carmen; López-Serrano, Concepción; Cabañas, Rosario; Contreras, Javier; Campos, Ángel; Cardona, Victoria; Cimbollek, Stefan; González-Quevedo, Teresa; Guilarte, Mar; de Rojas, Dolores Hernández Fernández; Marcos, Carmen; Rubio, María; Tejedor-Alonso, Miguel Ángel; Caballero, Teresa

    2012-07-20

    There is a need for a disease-specific instrument for assessing health-related quality of life in adults with hereditary angioedema due to C1 inhibitor deficiency, a rare, disabling and life-threatening disease. In this paper we report the protocol for the development and validation of a specific questionnaire, with details on the results of the process of item generation, domain selection, and the expert and patient rating phase. Semi-structured interviews were completed by 45 patients with hereditary angioedema and 8 experts from 8 regions in Spain. A qualitative content analysis of the responses was carried out. Issues raised by respondents were grouped into categories. Content analysis identified 240 different responses, which were grouped into 10 conceptual domains. Sixty- four items were generated. A total of 8 experts and 16 patients assessed the items for clarity, relevance to the disease, and correct dimension assignment. The preliminary version of the specific health-related quality of life questionnaire for hereditary angioedema (HAE-QoL v 1.1) contained 44 items grouped into 9 domains. To the best of our knowledge, this is the first multi-centre research project that aims to develop a specific health-related quality of life questionnaire for adult patients with hereditary angioedema due to C1 inhibitor deficiency. A preliminary version of the specific HAE-QoL questionnaire was obtained. The qualitative analysis of interviews together with the expert and patient rating phase helped to ensure content validity. A pilot study will be performed to assess the psychometric properties of the questionnaire and to decide on the final version.

  8. Development of the ovarian follicular epithelium.

    PubMed

    Rodgers, R J; Lavranos, T C; van Wezel, I L; Irving-Rodgers, H F

    1999-05-25

    A lot is known about the endocrine control of the development of ovarian follicles, but a key question now facing researchers is which molecular and cellular processes take part in control of follicular growth and development. The growth and development of ovarian follicles occurs postnatally and throughout adult life. In this review, we focus on the follicular epithelium (membrana granulosa) and its basal lamina. We discuss a model of how granulosa cells arise from a population of stem cells and then enter different lineages before differentiation. The structure of the epithelium at the antral stage of development is presented, and the effects that follicle growth has on the behavior of the granulosa cells are discussed. Finally, we discuss the evidence that during follicle development the follicular basal lamina changes in composition. This would be expected if the behavior of the granulosa cells changes, or if the permeability of the basal lamina changes. It will be evident that the follicular epithelium has similarities to other epithelia in the body, but that it is more dynamic, as gross changes occur during the course of follicle development. This basic information will be important for the development of future reproductive technologies in both humans and animals, and possibly for understanding polycystic ovarian syndrome in women.

  9. Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea-pigs: the effect of anti-asthma drugs.

    PubMed Central

    Sanjar, S.; Aoki, S.; Kristersson, A.; Smith, D.; Morley, J.

    1990-01-01

    1. Guinea-pigs were sensitized with 3 injections of ovalbumin (OA) (1 or 10 micrograms per animal) using Al(OH)3 and pertussis vaccine as adjuvants at two week intervals. 2. Sensitized guinea-pigs were challenged with an aerosol of OA (0.1%) over a one hour period and both airway reactivity and cellular content of bronchoalveolar lavage (BAL) fluid were assessed at intervals for up to 7 days. 3. Guinea-pigs sensitized with 1 microgram of ovalbumin responded to an aerosol of OA with increased pulmonary airway eosinophilia, which was evident 1 day after challenge and was present for up to 7 days. Airway hyperreactivity was not detectable in these animals. 4. Guinea-pigs sensitized with 10 micrograms of ovalbumin responded to an aerosol of OA with increased pulmonary airway neutrophilia and eosinophilia and with increased airway reactivity which was maximal between 8 and 24 h after exposure to OA. 5. Depletion of circulating platelets or neutrophils, by use of selective antisera, did not alter either the magnitude of eosinophilia or the intensity of airway reactivity in sensitized guinea-pigs (10 micrograms) exposed to an aerosol of OA. 6. Pretreatment of sensitized guinea-pigs (10 micrograms) for 6 days with AH 21-132, aminophylline, dexamethasone or ketotifen inhibited pulmonary airway eosinophilia, but did not diminish airway hyperreactivity. Neither eosinophil accumulation nor development of airway hyperreactivity was influenced by treatment with mepyramine or salbutamol over a 6 day period before OA inhalation. 7. Although eosinophilia may occur in association with increased airway reactivity in this animal model, there is no evidence of a causal relationship. PMID:2361168

  10. [Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation].

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  11. Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation.

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. The Tulip GT® airway versus the facemask and Guedel airway: a randomised, controlled, cross-over study by Basic Life Support-trained airway providers in anaesthetised patients.

    PubMed

    Shaikh, A; Robinson, P N; Hasan, M

    2016-03-01

    We performed a randomised, controlled, cross-over study of lung ventilation by Basic Life Support-trained providers using either the Tulip GT® airway or a facemask with a Guedel airway in 60 anaesthetised patients. Successful ventilation was achieved if the provider produced an end-tidal CO2 > 3.5 kPa and a tidal volume > 250 ml in two of the first three breaths, within 60 sec and within two attempts. Fifty-seven (95%) providers achieved successful ventilation using the Tulip GT compared with 35 (58%) using the facemask (p < 0.0001). Comparing the Tulip GT and facemask, the mean (SD) end-tidal CO2 was 5.0 (0.7) kPa vs 2.5 (1.5) kPa, tidal volume was 494 (175) ml vs 286 (186) ml and peak inspiratory pressure was 18.3 (3.4) cmH2 O vs 13.6 (7) cmH2 O respectively (all p < 0.0001). Forty-seven (78%) users favoured the Tulip GT airway. These results are similar to a previous manikin study using the same protocol, suggesting a close correlation between human and manikin studies for this airway device. We conclude that the Tulip GT should be considered as an adjunct to airway management both within and outside hospitals when ventilation is being undertaken by Basic Life Support-trained airway providers. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  13. Hereditary Angioedema Attacks Resolve Faster and Are Shorter after Early Icatibant Treatment

    PubMed Central

    Maurer, Marcus; Kaplan, Allen; Investigators, on behalf of I. O. S.

    2013-01-01

    Background Attacks of hereditary angioedema (HAE) are unpredictable and, if affecting the upper airway, can be lethal. Icatibant is used for physician- or patient self-administered symptomatic treatment of HAE attacks in adults. Its mode of action includes disruption of the bradykinin pathway via blockade of the bradykinin B2 receptor. Early treatment is believed to shorten attack duration and prevent severe outcomes; however, evidence to support these benefits is lacking. Objective To examine the impact of timing of icatibant administration on the duration and resolution of HAE type I and II attacks. Methods The Icatibant Outcome Survey is an international, prospective, observational study for patients treated with icatibant. Data on timings and outcomes of icatibant treatment for HAE attacks were collected between July 2009–February 2012. A mixed-model of repeated measures was performed for 426 attacks in 136 HAE type I and II patients. Results Attack duration was significantly shorter in patients treated <1 hour of attack onset compared with those treated ≥1 hour (6.1 hours versus 16.8 hours [p<0.001]). Similar significant effects were observed for <2 hours versus ≥2 hours (7.2 hours versus 20.2 hours [p<0.001]) and <5 hours versus ≥5 hours (8.0 hours versus 23.5 hours [p<0.001]). Treatment within 1 hour of attack onset also significantly reduced time to attack resolution (5.8 hours versus 8.8 hours [p<0.05]). Self-administrators were more likely to treat early and experience shorter attacks than those treated by a healthcare professional. Conclusion Early blockade of the bradykinin B2 receptor with icatibant, particularly within the first hour of attack onset, significantly reduced attack duration and time to attack resolution. PMID:23390491

  14. Airway obstruction in children with infectious mononucleosis.

    PubMed

    Wohl, D L; Isaacson, J E

    1995-09-01

    Epstein-Barr Virus (EBV) infection generally has a benign clinical course. Upper airway obstruction is a known complication requiring the otolaryngologist's attention. EBV is usually associated with adolescence but has been increasingly documented in younger children. We review 36 pediatric admissions for infectious mononucleosis over a 12-year period at our institution, 11 of which required consultation for airway obstruction. Airway management was based on clinical severity and ranged from monitored observation, with or without nasopharyngeal stenting, to prolonged intubation or emergent tonsilloadenoidectomy. A rare case of a four-year-old with near total upper airway obstruction secondary to panpharyngeal and transglottic inflammatory edema prompted this review and is reported. The otolaryngologist must recognize the potential severity of EBV-related airway compromise and be prepared to manage it.

  15. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation.

    PubMed

    Sverrild, A; Bergqvist, A; Baines, K J; Porsbjerg, C; Andersson, C K; Thomsen, S F; Hoffmann, H J; Gibson, P; Erjefält, J S; Backer, V

    2016-02-01

    Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. Airway hyperresponsiveness to inhaled mannitol was measured in 23 non-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. The proportion of submucosal MCTC was higher in asthmatic individuals with AHR to mannitol compared with asthmatic individuals without AHR (median: 40.3% vs. 18.7%, P = 0.03). Increased submucosal MCTC numbers were associated with increased levels of mRNA for thymic stromal lymphopoietin (TSLP) and CPA3 in asthmatics. Reactivity to mannitol correlated significantly with eosinophils in submucosa (r(s): 0.56, P = 0.01). Airway hyperresponsiveness to inhaled mannitol is associated with an altered submucosal mast cell profile in asthmatic individuals. This mast cell profile is associated with increased levels of TSLP and CPA3. The degree of AHR to mannitol is correlated with the degree of eosinophilic inflammation in the airway submucosa. © 2015 John Wiley & Sons Ltd.

  16. Visualization and Quantification of Nasal and Olfactory Deposition in a Sectional Adult Nasal Airway Cast.

    PubMed

    Xi, Jinxiang; Yuan, Jiayao Eddie; Zhang, Yu; Nevorski, Dannielle; Wang, Zhaoxuan; Zhou, Yue

    2016-06-01

    To compare drug deposition in the nose and olfactory region with different nasal devices and administration techniques. A Sar-Gel based colorimetry method will be developed to quantify local deposition rates. A sectional nasal airway cast was developed based on an MRI-based nasal airway model to visualize deposition patterns and measure regional dosages. Four nasal spray pumps and four nebulizers were tested with both standard and point-release administration techniques. Delivered dosages were measured using a high-precision scale. The colorimetry correlation for deposited mass was developed via image processing in Matlab and its performance was evaluated through comparison to experimental measurements. Results show that the majority of nasal spray droplets deposited in the anterior nose while only a small fraction (less than 4.6%) reached the olfactory region. For all nebulizers considered, more droplets went beyond the nasal valve, leading to distinct deposition patterns as a function of both the nebulizer type (droplet size and initial speed) and inhalation flow rate. With the point-release administration, up to 9.0% (±1.9%) of administered drugs were delivered to the olfactory region and 15.7 (±2.4%) to the upper nose using Pari Sinus. Standard nasal devices are inadequate to deliver clinically significant olfactory dosages without excess drug losses in other nasal epitheliums. The Sar-Gel based colorimetry method appears to provide a simple and practical approach to visualize and quantify regional deposition.

  17. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a devic...

  18. Recurrent airway obstructions in a patient with benign tracheal stenosis and a silicone airway stent: a case report

    PubMed Central

    Sriram, KB; Robinson, PC

    2008-01-01

    Airway stents (silicone and metal stents) are used to treat patients with benign tracheal stenosis, who are symptomatic and in whom tracheal surgical reconstruction has failed or is not appropriate. However airway stents are often associated with complications such as migration, granuloma formation and mucous hypersecretion, which cause significant morbidity, especially in patients with benign tracheal stenosis and relatively normal life expectancy. We report a patient who had frequent critical airway obstructions over 8 years due to granuloma and mucus hypersecretion in a silicone airway stent. The problem was resolved when the silicone stent was removed and replaced with a covered self expanding metal stent. PMID:18840299

  19. Serum progranulin as an indicator of neutrophilic airway inflammation and asthma severity.

    PubMed

    Park, So Young; Hong, Gyong Hwa; Park, Sunjoo; Shin, Bomi; Yoon, Sun-Young; Kwon, Hyouk-Soo; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-12-01

    Progranulin, a protein secreted from the airway epithelium, is known to attenuate the downstream cascade of neutrophilic inflammation in particular. We hypothesized that progranulin may have a role in inflammatory regulation in asthma. To investigate the association between serum progranulin levels and various clinical features in patients with asthma. Serum samples and clinical data of 475 patients with asthma and 35 healthy controls at a tertiary referral hospital and its affiliated health promotion center were collected. Serum progranulin levels were compared between patients with asthma and healthy controls and then were compared within the patients with asthma in terms of pulmonary function and measures of inflammatory status. Univariate and multivariate analyses were performed to identify factors associated with severity of asthma. Serum progranulin levels were significantly lower in the asthma group than in healthy group and were positively correlated with prebronchodilator forced expiratory volume in 1 second predicted within patients with asthma. We found a negative correlation between serum progranulin levels and blood neutrophil counts. Multivariate analysis revealed that higher serum progranulin levels were associated with a lower risk of severe asthma (odds ratio, 0.888; 95% confidence interval, 0.846-0.932; P < .001) after adjustment for other variables, such as age, sex, smoking status, blood neutrophil count, and current use of systemic corticosteroids. Although the exact mechanism of the anti-inflammatory action of progranulin remains unknown, we suggest that serum progranulin may be an indicator of severe asthma with airflow limitation. Future studies with comprehensive airway sampling strategies are warranted to clarify its role, particularly in neutrophilic asthma. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. The disruption of the epithelial mesenchymal trophic unit in COPD.

    PubMed

    Behzad, Ali R; McDonough, John E; Seyednejad, Nazgol; Hogg, James C; Walker, David C

    2009-12-01

    Progression of COPD is associated with a measurable increase in small airway wall thickness resulting from a repair and remodeling process that involves fibroblasts of the epithelial mesenchymal trophic unit (EMTU). The present study was designed to examine the organization of fibroblasts within the lamina propria of small airways with respect to their contacts with the epithelium and with each other in persons with COPD. Transmission electron microcopy (TEM) and three-dimensional (3D) reconstructions of serial TEM sections were used to estimate the frequency and determine the nature of the contacts between the epithelium and fibroblasts within the EMTU in small airways from 5 controls (smokers with normal lung function), from 6 persons with mild (GOLD-1) and 5 with moderate (GOLD-2) COPD. In airways from control lungs fibroblasts make frequent contact with cytoplasmic extensions of epithelial cells through apertures in the epithelial basal lamina, but the frequency of these fibroblast-epithelial contacts is reduced in both mild and moderate COPD compared to controls (p < 0.01). The 3D reconstructions showed that the cytoplasmic extensions of lamina propria fibroblasts form a reticulum with fibroblast-fibroblast contacts in an airway from a control subject but this reticulum may be reorganized in airways of COPD patients. Development of COPD is associated with significant disruption of the EMTU due to a reduction of contacts between fibroblasts and the epithelium.

  1. Pressure-volume behavior of the upper airway.

    PubMed

    Fouke, J M; Teeter, J P; Strohl, K P

    1986-09-01

    The study was performed to investigate the relationship between force generation and upper airway expansion during respiratory efforts by upper airway muscles. In 11 anesthetized dogs we isolated the upper airway (nasal, oral, pharyngeal, and laryngeal regions) by transecting the cervical trachea and sealing the nasal and oral openings. During spontaneous respiratory efforts the pressure within the sealed upper airway, used as an index of dilating force, decreased during inspiration. On alternate breaths the upper airway was opened to a pneumotachograph, and an increase in volume occurred, also during inspiration. Progressive hyperoxic hypercapnia produced by rebreathing increased the magnitude of change in pressure and volume. At any level of drive, peak pressure or volume occurred at the same point during inspiration. At any level of drive, volume and pressure changes increased with end-expiratory occlusion of the trachea. The force-volume relationship determined from measurements during rebreathing was compared with pressure-volume curves performed by passive inflation of the airway while the animal was apneic. The relationship during apnea was 1.06 +/- 0.55 (SD) ml/cmH2O, while the force-volume relationship from rebreathing trials was -1.09 +/- 0.45 ml/cmH2O. We conclude that there is a correspondence between force production and volume expansion in the upper airway during active respiratory efforts.

  2. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    PubMed Central

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2016-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport, without affecting Cl− transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. PMID:26454031

  3. Durability of Silicone Airway Stents in the Management of Benign Central Airway Obstruction.

    PubMed

    Karush, Justin M; Seder, Christopher W; Raman, Anish; Chmielewski, Gary W; Liptay, Michael J; Warren, William H; Arndt, Andrew T

    2017-10-01

    The literature is devoid of a comprehensive analysis of silicone airway stenting for benign central airway obstruction (BCAO). With the largest series in the literature to date, we aim to demonstrate the safety profile, pattern of re-intervention, and duration of silicone airway stents. An institutional database was used to identify patients with BCAO who underwent rigid bronchoscopy with dilation and silicone stent placement between 2002 and 2015 at Rush University Medical Center. During the study period, 243 stents were utilized in 63 patients with BCAO. Pure tracheal stenosis was encountered in 71% (45/63), pure tracheomalacia in 11% (7/63), and a hybrid of both in 17% (11/63). Median freedom from re-intervention was 104 (IQR 167) days. Most common indications for re-intervention include mucus accumulation (60%; 131/220), migration (28%; 62/220), and intubation (8%; 18/220). The most common diameters of stent placed were 12 mm (94/220) and 14 mm (96/220). The most common lengths utilized were 30 mm (60/220) and 40 mm (77/220). Duration was not effected by stent size when placed for discrete stenosis. However, 14 mm stents outperformed 12 mm when tracheomalacia was present (157 vs. 37 days; p = 0.005). Patients with a hybrid stenosis fared better when longer stents were used (60 mm stents outlasted 40 mm stents 173 vs. 56 days; p = 0.05). Rigid bronchoscopy with silicone airway stenting is a safe and effective option for the management of benign central airway obstruction. Our results highlight several strategies to improve stent duration.

  4. Topical airway anesthesia for awake fiberoptic intubation: Comparison between airway nerve blocks and nebulized lignocaine by ultrasonic nebulizer

    PubMed Central

    Gupta, Babita; Kohli, Santvana; Farooque, Kamran; Jalwal, Gopal; Gupta, Deepak; Sinha, Sumit; Chandralekha

    2014-01-01

    Overview: Awake fiberoptic bronchoscope (FOB) guided intubation is the gold standard of airway management in patients with cervical spine injury. It is essential to sufficiently anesthetize the upper airway before the performance of awake FOB guided intubation in order to ensure patient comfort and cooperation. This randomized controlled study was performed to compare two methods of airway anesthesia, namely ultrasonic nebulization of local anesthetic and performance of airway blocks. Materials and Methods: A total of 50 adult patients with cervical spine injury were randomly allocated into two groups. Group L received airway anesthesia through ultrasonic nebulization of 10 ml of 4% lignocaine and Group NB received airway blocks (bilateral superior laryngeal and transtracheal recurrent laryngeal) each with 2 ml of 2% lignocaine and viscous lignocaine gargles. FOB guided orotracheal intubation was then performed. Hemodynamic variables at baseline and during the procedure, patient recall, vocal cord visibility, ease of intubation, coughing/gagging episodes, and signs of lignocaine toxicity were noted. Results: The observations did not reveal any significant differences in demographics or hemodynamic parameters at any time during the study. However, the time taken for intubation was significantly lower in Group NB as compared with the Group L. Group L had an increased number of coughing/gagging episodes as compared with Group NB. Vocal cord visibility and ease of intubation were better in patients who received airway blocks and hence the amount of supplemental lignocaine used was less in this group. Overall patient comfort was better in Group NB with fewer incidences of unpleasant recalls as compared with Group L. Conclusion: Upper airway blocks provide better quality of anesthesia than lignocaine nebulization as assessed by patient recall of procedure, coughing/gagging episodes, ease of intubation, vocal cord visibility, and time taken to intubate. PMID:25538514

  5. Airway basement membrane perimeter in human airways is not a constant; potential implications for airway remodeling in asthma.

    PubMed

    McParland, Brent E; Paré, Peter D; Johnson, Peter R A; Armour, Carol L; Black, Judith L

    2004-08-01

    Many studies that demonstrate an increase in airway smooth muscle in asthmatic patients rely on the assumption that bronchial internal perimeter (P(i)) or basement membrane perimeter (P(bm)) is a constant, i.e., not affected by fixation pressure or the degree of smooth muscle shortening. Because it is the basement membrane that has been purported to be the indistensible structure, this study examines the assumption that P(bm) is not affected by fixation pressure. P(bm) was determined for the same human airway segment (n = 12) fixed at distending pressures of 0 cmH(2)O and 21 cmH(2)O in the absence of smooth muscle tone. P(bm) for the segment fixed at 0 cmH(2)O was determined morphometrically, and the P(bm) for the same segment, had the segment been fixed at 21 cmH(2)O, was predicted from knowing the luminal volume and length of the airway when distended to 21 cmH(2)O (organ bath-derived P(i)). To ensure an accurate transformation of the organ bath-derived P(i) value to a morphometry-derived P(bm) value, had the segment been fixed at 21 cmH(2)O, the relationship between organ bath-derived P(i) and morphometry-derived P(bm) was determined for five different bronchial segments distended to 21 cmH(2)O and fixed at 21 cmH(2)O (r(2) = 0.99, P < 0.0001). Mean P(bm) for bronchial segments fixed at 0 cmH(2)O was 9.4 +/- 0.4 mm, whereas mean predicted P(bm), had the segments been fixed at 21 cmH(2)O, was 14.1 +/- 0.5 mm (P < 0.0001). This indicates that P(bm) is not a constant when isolated airway segments without smooth muscle tone are fixed distended to 21 cmH(2)O. The implication of these results is that the increase in smooth muscle mass in asthma may have been overestimated in some previous studies. Therefore, further studies are required to examine the potential artifact using whole lungs with and without abolition of airway smooth muscle tone and/or inflation.

  6. Substance P released from intrinsic airway neurons contributes to ozone-enhanced airway hyperresponsiveness in ferret trachea.

    PubMed

    Wu, Zhong-Xin; Satterfield, Brian E; Dey, Richard D

    2003-08-01

    Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.

  7. Airway fires during surgery: Management and prevention

    PubMed Central

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires. PMID:27006554

  8. Airway fires during surgery: Management and prevention.

    PubMed

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires.

  9. Airway somatosensory deficits and dysphagia in Parkinson's disease.

    PubMed

    Hammer, Michael J; Murphy, Caitlin A; Abrams, Trisha M

    2013-01-01

    Individuals with Parkinson's disease (PD) often experience substantial impairment of swallow control, and are typically unaware of the presence or severity of their impairments suggesting that these individuals may also experience airway sensory deficits. However, the degree to which impaired swallow function in PD may relate to airway sensory deficits has yet to be formally tested. The purpose of this study was to examine whether airway sensory function is associated with swallow impairment in PD. Eighteen PD participants and 18 healthy controls participated in this study and underwent endoscopic assessment of airway somatosensory function, endoscopic assessment of swallow function, and clinical ratings of swallow and disease severity. PD participants exhibited abnormal airway somatosensory function and greater swallow impairment compared with healthy controls. Swallow and sensory deficits in PD were correlated with disease severity. Moreover, PD participants reported similar self-rated swallow function as healthy controls, and swallow deficits were correlated with sensory function suggesting an association between impaired sensory function and poor self-awareness of swallow deficits in PD. These results suggest that control of swallow is influenced by airway somatosensory function, that swallow-related deficits in PD are related to abnormal somatosensation, and that swallow and airway sensory function may degrade as a function of disease severity. Therefore, the basal ganglia and related neural networks may play an important role to integrate airway sensory input for swallow-related motor control. Furthermore, the airway deficits observed in PD suggest a disintegration of swallow-related sensory and motor control.

  10. Improving the safety of remote site emergency airway management.

    PubMed

    Wijesuriya, Julian; Brand, Jonathan

    2014-01-01

    Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications

  11. Gene expression changes in human small airway epithelial cells exposed to Delta9-tetrahydrocannabinol.

    PubMed

    Sarafian, Theodore; Habib, Nancy; Mao, Jenny T; Tsu, I-Hsien; Yamamoto, Mitsuko L; Hsu, Erin; Tashkin, Donald P; Roth, Michael D

    2005-08-14

    Marijuana smoking is associated with inflammation, cellular atypia, and molecular dysregulation of the tracheobronchial epithelium. While marijuana smoke shares many components in common with tobacco, it also contains a high concentration of Delta9-tetrahydrocannabinol (THC). The potential contribution of THC to airway injury was assessed by exposing primary cultures of human small airway epithelial (SAE) cells to THC (0.1-10.0 microg/ml) for either 1 day or 7 days. THC induced a time- and concentration-dependent decrease in cell viability, ATP level, and mitochondrial membrane potential. Using a targeted gene expression array, we observed acute changes (24 h) in the expression of mRNA for caspase-8, catalase, Bax, early growth response-1, cytochrome P4501A1 (CYP1A1), metallothionein 1A, PLAB, and heat shock factor 1 (HSF1). After 7 days of exposure, decrease in expression of mRNA for heat shock proteins (HSPs) and the pro-apoptotic protein Bax was observed, while expression of GADD45A, IL-1A, CYP1A1, and PTGS-2 increased significantly. These findings suggest a contribution of THC to DNA damage, inflammation, and alterations in apoptosis. Treatment with selected prototypical toxicants, 2,3,7,8-tetrachlorodibenznzo-p-dioxin (TCDD) and carbonyl cyanide-p-(trifluoramethoxy)-phenyl hydrazone (FCCP), produced partially overlapping gene expression profiles suggesting some similarity in mechanism of action with THC. THC, delivered as a component of marijuana smoke, may induce a profile of gene expression that contributes to the pulmonary pathology associated with marijuana use.

  12. Airway management after maxillectomy with free flap reconstruction.

    PubMed

    Brickman, Daniel S; Reh, Douglas D; Schneider, Daniel S; Bush, Ben; Rosenthal, Eben L; Wax, Mark K

    2013-08-01

    Maxillectomy defects require complex 3-dimensional reconstructions often best suited to microvascular free tissue transfer. Postoperative airway management during this procedure has little discussion in the literature and is often dictated by surgical dogma. The purpose of this article was to review our experience in order to evaluate the effect of airway management on perioperative outcomes in patients undergoing maxillectomy with free flap reconstruction. A retrospective chart review was performed on patients receiving maxillectomy with microvascular reconstruction at 2 institutions between 1999 and 2011. Patient's airways were managed with or without elective tracheotomy at the surgical team's discretion and different perioperative outcomes were measured. The primary outcome was incidence of airway complication including pneumonia and need for further airway intervention. Secondary outcome was measured as factors leading to perioperative performance of the tracheotomy. Seventy-nine of 143 patients received elective tracheotomy perioperatively. The incidence of airway complication was equivalent between groups (10.1% vs 9.4%; p = .89). Patients with cardiopulmonary comorbidities were more likely to receive perioperative tracheotomy (74.1% vs 50.9%; p = .03) without a difference in airway complications. Other patient cofactors did not have an impact on perioperative tracheotomy or airway complication rate. Elective tracheotomy may safely be avoided in a subset of patients undergoing maxillectomy with microvascular reconstruction. Elective tracheotomy should be considered in patients with cardiopulmonary risk factors. Copyright © 2012 Wiley Periodicals, Inc.

  13. Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of prehospital cardiac arrest (REVIVE-Airways): a feasibility study research protocol.

    PubMed

    Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew

    2013-01-01

    Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. ISRCTN: 18528625.

  14. Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of prehospital cardiac arrest (REVIVE-Airways): a feasibility study research protocol

    PubMed Central

    Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew

    2013-01-01

    Introduction Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. Methods and analysis The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Ethics and dissemination Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. Trial

  15. Safety and Efficacy of Thoracic External Beam Radiotherapy After Airway Stenting in Malignant Airway Obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochet, Nathalie, E-mail: nrochet@partners.org; Hauswald, Henrik; Schmaus, Martina

    Purpose: We retrospectively evaluated the outcome and toxicity of external beam radiotherapy (EBRT) after airway stents were placed in patients treated for malignant airway obstruction. Methods and Materials: Between 2004 and 2009, we performed airway stenting followed by EBRT in 43 patients for symptomatic primary lung cancer (n = 31) or other thoracic malignancies (n = 12). The median time interval between stent placement and first irradiation was 14 days. A median total dose of 50 Gy was delivered. Sixty-seven percent of the patients had reduced performance status (Karnofsky performance score, {<=}70). Results: EBRT had to be stopped prematurely inmore » 16 patients (37%), at a median total dose of 17 Gy, for various reasons. In this group of patients, the survival was poor, with a median overall survival (OS) of only 21 days. Twenty-seven patients (63%) completed radiotherapy as planned, with a median OS of 8.4 months. Fourteen of 43 patients (33%) developed at least one Common Terminology Criteria for Adverse Event of grade 3 to 5. The most common event was a malignant restenosis of the stent leading to asphyxia (n = 7), followed by fistula formation (n = 4), necrosis (n = 3), mediastinitis with abscess (n = 1), secondary nonmalignant airway stenosis (n = 1), and hemoptysis (n = 1). With the exception of one event, all events were associated with a local progression of the tumor. Conclusions: Although the long-term prognosis for patients with malignant airway obstruction is poor, airway stenting combined with EBRT offers a possible therapeutic option, achieving fast relief of acute respiratory distress with an associated antitumor effect, resulting in a potential survival benefit. However, due to local advanced tumor growth, increased rates of adverse events are to be expected, necessitating careful monitoring.« less

  16. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  17. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.

  18. Color analysis of the human airway wall

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepa; McLennan, Geoffrey; Donnelley, Martin; Delsing, Angela; Suter, Melissa; Flaherty, Dawn; Zabner, Joseph; Hoffman, Eric A.; Reinhardt, Joseph M.

    2002-04-01

    A bronchoscope can be used to examine the mucosal surface of the airways for abnormalities associated with a variety of lung diseases. The diagnosis of these abnormalities through the process of bronchoscopy is based, in part, on changes in airway wall color. Therefore it is important to characterize the normal color inside the airways. We propose a standardized method to calibrate the bronchoscopic imaging system and to tabulate the normal colors of the airway. Our imaging system consists of a Pentium PC and video frame grabber, coupled with a true color bronchoscope. The calibration procedure uses 24 standard color patches. Images of these color patches at three different distances (1, 1.5, and 2 cm) were acquired using the bronchoscope in a darkened room, to assess repeatability and sensitivity to illumination. The images from the bronchoscope are in a device-dependent Red-Green-Blue (RGB) color space, which was converted to a tri-stimulus image and then into a device-independent color space sRGB image by a fixed polynomial transformation. Images were acquired from five normal human volunteer subjects, two cystic fibrosis (CF) patients and one normal heavy smoker subject. The hue and saturation values of regions within the normal airway were tabulated and these values were compared with the values obtained from regions within the airways of the CF patients and the normal heavy smoker. Repeated measurements of the same region in the airways showed no measurable change in hue or saturation.

  19. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  20. Chronic Arsenic Exposure in Nanomolar Concentrations Compromises Wound Response and Intercellular Signaling in Airway Epithelial Cells

    PubMed Central

    Boitano, Scott

    2013-01-01

    Paracrine ATP signaling in the lung epithelium participates in a variety of innate immune functions, including mucociliary clearance, bactericide production, and as an initiating signal in wound repair. We evaluated the effects of chronic low-dose arsenic relevant to U.S. drinking water standards (i.e., 10 ppb [130nM]) on airway epithelial cells. Immortalized human bronchial epithelial cells (16HBE14o-) were exposed to 0, 130, or 330nM arsenic (as Na-arsenite) for 4–5 weeks and examined for wound repair efficiency and ATP-mediated Ca2+ signaling. We found that chronic arsenic exposure at these low doses slows wound repair and reduces ATP-mediated Ca2+ signaling. We further show that arsenic compromises ATP-mediated Ca2+ signaling by altering both Ca2+ release from intracellular stores (via metabotropic P2Y receptors) and Ca2+ influx mechanisms (via ionotropic P2X receptors). To better model the effects of arsenic on ATP-mediated Ca2+ signaling under conditions of natural exposure, we cultured tracheal epithelial cells obtained from mice exposed to control or 50 ppb Na-arsenite supplemented drinking water for 4 weeks. Tracheal epithelial cells from arsenic-exposed mice displayed reduced ATP-mediated Ca2+ signaling dynamics similar to our in vitro chronic exposure. Our findings demonstrate that chronic arsenic exposure at levels that are commonly found in drinking water (i.e., 10–50 ppb) alters cellular mechanisms critical to airway innate immunity. PMID:23204110

  1. Intrathoracic airway wall detection using graph search and scanner PSF information

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan

    1997-05-01

    Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.

  2. 76 FR 23687 - Amendment of Federal Airways; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends all Anchorage, AK, Federal airways... airways that currently use the Anchorage (ANC) VOR located on Fire Island, AK. The ANC VOR was upgraded to... Federal airways. * * * * * V-319 [Amended] From Yakutat, AK, via Johnstone Point, AK, INT Johnstone Point...

  3. A framework for understanding shared substrates of airway protection

    PubMed Central

    TROCHE, Michelle Shevon; BRANDIMORE, Alexandra Essman; GODOY, Juliana; HEGLAND, Karen Wheeler

    2014-01-01

    Deficits of airway protection can have deleterious effects to health and quality of life. Effective airway protection requires a continuum of behaviors including swallowing and cough. Swallowing prevents material from entering the airway and coughing ejects endogenous material from the airway. There is significant overlap between the control mechanisms for swallowing and cough. In this review we will present the existing literature to support a novel framework for understanding shared substrates of airway protection. This framework was originally adapted from Eccles' model of cough28 (2009) by Hegland, et al.42 (2012). It will serve to provide a basis from which to develop future studies and test specific hypotheses that advance our field and ultimately improve outcomes for people with airway protective deficits. PMID:25141195

  4. Clinical review: Airway hygiene in the intensive care unit

    PubMed Central

    Jelic, Sanja; Cunningham, Jennifer A; Factor, Phillip

    2008-01-01

    Maintenance of airway secretion clearance, or airway hygiene, is important for the preservation of airway patency and the prevention of respiratory tract infection. Impaired airway clearance often prompts admission to the intensive care unit (ICU) and can be a cause and/or contributor to acute respiratory failure. Physical methods to augment airway clearance are often used in the ICU but few are substantiated by clinical data. This review focuses on the impact of oral hygiene, tracheal suctioning, bronchoscopy, mucus-controlling agents, and kinetic therapy on the incidence of hospital-acquired respiratory infections, length of stay in the hospital and the ICU, and mortality in critically ill patients. Available data are distilled into recommendations for the maintenance of airway hygiene in ICU patients. PMID:18423061

  5. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption

    PubMed Central

    Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni

    2017-01-01

    Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570

  6. Airway complications in the head injured.

    PubMed

    Woo, P; Kelly, G; Kirshner, P

    1989-07-01

    Fifty head-injured patients who had tracheostomy were followed during rehabilitation by video fiberoptic laryngoscopy examination. Complications of aspiration (23/50), airway stenosis (13/50), and phonation dysfunction (16/24) were followed. Spontaneous resolution of aspiration may require a prolonged course. A majority of patients (37/50) had improvement and could be decannulated. Prognostic factors correlated to eventual decannulation included age, level on the Glasgow Coma Outcome Scale, and type of head injury. Those with poor neurologic improvement and glottic incompetence (13/50) are poor candidates for decannulation. Significant airway stenosis can involve both laryngeal and tracheal sites. Neurologic dysfunction may complicate the decannulation process after airway anatomy has been restored by surgery. Dysphonia resulting from intubation, peripheral laryngeal and nerve injury, or central laryngeal movement dysfunction are common. Preventive maintenance with ongoing evaluation can avoid airway crises such as aspiration pneumonia, hemoptysis, and innominate artery.

  7. Videolaryngoscopy versus Fiber-optic Intubation through a Supraglottic Airway in Children with a Difficult Airway: An Analysis from the Multicenter Pediatric Difficult Intubation Registry.

    PubMed

    Burjek, Nicholas E; Nishisaki, Akira; Fiadjoe, John E; Adams, H Daniel; Peeples, Kenneth N; Raman, Vidya T; Olomu, Patrick N; Kovatsis, Pete G; Jagannathan, Narasimhan; Hunyady, Agnes; Bosenberg, Adrian; Tham, See; Low, Daniel; Hopkins, Paul; Glover, Chris; Olutoye, Olutoyin; Szmuk, Peter; McCloskey, John; Dalesio, Nicholas; Koka, Rahul; Greenberg, Robert; Watkins, Scott; Patel, Vikram; Reynolds, Paul; Matuszczak, Maria; Jain, Ranu; Khalil, Samia; Polaner, David; Zieg, Jennifer; Szolnoki, Judit; Sathyamoorthy, Kumar; Taicher, Brad; Riveros Perez, N Ricardo; Bhattacharya, Solmaletha; Bhalla, Tarun; Stricker, Paul; Lockman, Justin; Galvez, Jorge; Rehman, Mohamed; Von Ungern-Sternberg, Britta; Sommerfield, David; Soneru, Codruta; Chiao, Franklin; Richtsfeld, Martina; Belani, Kumar; Sarmiento, Lina; Mireles, Sam; Bilen Rosas, Guelay; Park, Raymond; Peyton, James

    2017-09-01

    The success rates and related complications of various techniques for intubation in children with difficult airways remain unknown. The primary aim of this study is to compare the success rates of fiber-optic intubation via supraglottic airway to videolaryngoscopy in children with difficult airways. Our secondary aim is to compare the complication rates of these techniques. Observational data were collected from 14 sites after management of difficult pediatric airways. Patient age, intubation technique, success per attempt, use of continuous ventilation, and complications were recorded for each case. First-attempt success and complications were compared in subjects managed with fiber-optic intubation via supraglottic airway and videolaryngoscopy. Fiber-optic intubation via supraglottic airway and videolaryngoscopy had similar first-attempt success rates (67 of 114, 59% vs. 404 of 786, 51%; odds ratio 1.35; 95% CI, 0.91 to 2.00; P = 0.16). In subjects less than 1 yr old, fiber-optic intubation via supraglottic airway was more successful on the first attempt than videolaryngoscopy (19 of 35, 54% vs. 79 of 220, 36%; odds ratio, 2.12; 95% CI, 1.04 to 4.31; P = 0.042). Complication rates were similar in the two groups (20 vs. 13%; P = 0.096). The incidence of hypoxemia was lower when continuous ventilation through the supraglottic airway was used throughout the fiber-optic intubation attempt. In this nonrandomized study, first-attempt success rates were similar for fiber-optic intubation via supraglottic airway and videolaryngoscopy. Fiber-optic intubation via supraglottic airway is associated with higher first-attempt success than videolaryngoscopy in infants with difficult airways. Continuous ventilation through the supraglottic airway during fiber-optic intubation attempts may lower the incidence of hypoxemia.

  8. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  9. Airway growth and development: a computerized 3-dimensional analysis.

    PubMed

    Schendel, Stephen A; Jacobson, Richard; Khalessi, Sadri

    2012-09-01

    The present study was undertaken to investigate the changes in the normal upper airway during growth and development using 3-dimensional computer analysis from cone-beam computed tomography (CBCT) data to provide a normative reference. The airway size and respiratory mode are known to have a relationship to facial morphology and the development of a malocclusion. The use of CBCT, 3-dimensional imaging, and automated computer analysis in treatment planning allows the upper airway to be precisely evaluated. In the present study, we evaluated the growth of the airway using 3-dimensional analysis and CBCT data from age 6 through old age, in 1300 normal individuals. The airway size and length increase until age 20 at which time a variable period of stability occurs. Next, the airway at first decreases slowly in size and then, after age 40, more rapidly. Normative data are provided in the present study for age groups from 6 to 60 years in relation to the airway total volume, smallest cross-sectional area and vertical length of the airway. This 3-dimensional data of the upper airway will provide a normative reference as an aid in the early understanding of respiration and dentofacial anatomy, which will help in early treatment planning. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Airway hyperreactivity in asymptomatic military personnel.

    PubMed

    Morris, Michael J; Schwartz, Darin S; Nohrenberg, Jana L; Dooley, Sean N

    2007-11-01

    Asthma is frequently diagnosed in military personnel despite strict guidelines that disqualify persons with active disease or a recent history of asthma. It is generally considered incompatible with military service, because of the regular physical training, outdoor training exercises, and deployments to remote locations. The objective of this study was to determine the prevalence of airway hyperreactivity in asymptomatic military personnel, as an estimate of subclinical reactive airway disease. A prospective study of healthy, asymptomatic, military personnel with no previous history of asthma and <1 year on active duty status was conducted. After completion of a screening questionnaire, personnel underwent baseline spirometry with a portable spirometer. Personnel with obstructive indices (based on published guidelines) and matched control subjects participated in an exercise test (1.5-mile run), with pre- and postexercise spirometry. A total of 222 asymptomatic military personnel completed baseline spirometry, and 31 (14%) were found have airway obstruction. A normal matched control group of 31 military personnel and 26 personnel with obstruction performed exercise spirometry. Twenty-three percent of the participants with obstruction demonstrated increased airway hyper-reactivity after exercise, based on a reduction in forced expiratory volume at 1 second, compared with 19% of control subjects. Asymptomatic airway obstruction has a prevalence of 14% in young military personnel. A significant percentage of individuals also have evidence of worsening obstruction during exercise. These data suggest that screening spirometry may identify early reactive airway disease in asymptomatic individuals and should be considered as a method to identify persons predisposed to developing symptomatic asthma.

  11. Bronchoscopic management of critical central airway obstruction by thyroid cancer: Combination airway stenting using tracheal and inverted-Y carinal self-expanding metallic stents

    PubMed Central

    Madan, Karan; Shrestha, Prajowl; Garg, Rakesh; Hadda, Vijay; Mohan, Anant; Guleria, Randeep

    2017-01-01

    Central airway obstruction (CAO) can result from various benign and malignant etiologies. Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid cancer. Rapid airway compromise is the main cause of death in ATC. We report a patient with ATC who presented with a large neck mass leading to CAO with long segment tracheal and right main bronchial compression and respiratory failure. Urgent Rigid Bronchoscopy was performed for airway stabilization and patient was managed with a combination airway stenting approach. A combination of self expanding, metallic, covered inverted Y and straight tracheal stents was used to stabilize the near complete airway structure. We herein highlight the role of therapeutic rigid bronchoscopy with airway stenting as an efficacious treatment modality for management of malignant CAO. PMID:28360477

  12. How good is the neosquamous epithelium?

    PubMed

    Orlando, Roy C

    2014-01-01

    Endoscopic radiofrequency ablation of dysplastic Barrett's esophagus (BE) combined with proton pump inhibitor therapy is commonly utilized for preventing progression of dysplastic BE to esophageal adenocarcinoma. Fundamental to the success of this and all ablative approaches is the healing of the ablated areas of BE with a stratified squamous epithelium referred to as 'neosquamous epithelium' (NSE). Although NSE appears 'normal' endoscopically, the reemergence of BE over time in the previously ablated segments raises the question of the health and integrity of NSE. The health of NSE was recently investigated in endoscopic biopsies in vitro in a group of patients after ablation while on proton pump inhibitors. Biopsies of NSE were compared to upper squamous epithelium (USE) from the same patients morphologically (light microscopy) and with respect to barrier function by measuring electrical resistance and fluorescein flux in mini-Ussing chambers. Compared to USE, NSE exhibited dilated intercellular spaces and inflammation and defective barrier function by low electrical resistance and high fluorescein flux. Moreover, NSE exhibited downregulation of claudin-4, a highly expressed protein in squamous tight junctions. NSE has defective barrier function in part due to downregulation of claudin-4. Since downregulation of claudin-4 increases paracellular permeability to cations, e.g. hydrogen ions, NSE is more vulnerable to attack and damage by acidic and weakly acidic refluxates--a phenomenon that may contribute in part to the reemergence of BE. 2014 S. Karger AG, Basel.

  13. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  14. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  15. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  16. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  17. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  18. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  19. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  20. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  1. Airway Strain during Mechanical Ventilation in an Intact Animal Model

    PubMed Central

    Sinclair, Scott E.; Molthen, Robert C.; Haworth, Steve T.; Dawson, Christopher A.; Waters, Christopher M.

    2007-01-01

    Rationale: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP). Objectives: To measure airway strain and to estimate airway wall tension during mechanical ventilation in an intact animal model. Methods: Sprague-Dawley rats were anesthetized and mechanically ventilated with tidal volumes of 6, 12, and 25 cm3/kg with and without 10–cm H2O PEEP. Real-time tantalum bronchograms were obtained for each condition, using microfocal X-ray imaging. Images were used to calculate circumferential and longitudinal airway strains, and on the basis of a simplified mathematical model we estimated airway wall tensions. Measurements and Main Results: Circumferential and longitudinal airway strains increased with increasing tidal volume. Levels of mechanical strain were heterogeneous throughout the bronchial tree. Circumferential strains were higher in smaller airways (less than 800 μm). Airway size did not influence longitudinal strain. When PEEP was applied, wall tensions increased more rapidly than did strain levels, suggesting that a “strain limit” had been reached. Airway collapse was not observed under any experimental condition. Conclusions: Mechanical ventilation results in significant airway mechanical strain that is heterogeneously distributed in the uninjured lung. The magnitude of circumferential but not axial strain varies with airway diameter. Airways exhibit a “strain limit” above which an abrupt dramatic rise in wall tension is observed. PMID:17626911

  2. Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium via the c-Src Pathway

    PubMed Central

    Lee, Heung-Man; Kang, Ju-Hyung; Shin, Jae-Min; Lee, Seoung-Ae

    2017-01-01

    Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-β1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-β1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-β1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-β1 on migration of A549 cells and suppressed TGF-β1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-β1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-β1 in upper airway chronic inflammatory disease such as CRS. PMID:28804222

  3. Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium via the c-Src Pathway.

    PubMed

    Lee, Heung-Man; Kang, Ju-Hyung; Shin, Jae-Min; Lee, Seoung-Ae; Park, Il-Ho

    2017-01-01

    Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF- β 1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF- β 1. We found that E-cadherin, vimentin, fibronectin, and α -SMA expression was increased in nasal polyps compared to inferior turbinates. TGF- β 1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α -SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF- β 1 on migration of A549 cells and suppressed TGF- β 1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF- β 1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF- β 1 in upper airway chronic inflammatory disease such as CRS.

  4. A child with a difficult airway: what do I do next?

    PubMed

    Engelhardt, Thomas; Weiss, Markus

    2012-06-01

    Difficulties in pediatric airway management are common and continue to result in significant morbidity and mortality. This review reports on current concepts in approaching a child with a difficult airway. Routine airway management in healthy children with normal airways is simple in experienced hands. Mask ventilation (oxygenation) is always possible and tracheal intubation normally simple. However, transient hypoxia is common in these children usually due to unexpected anatomical and functional airway problems or failure to ventilate during rapid sequence induction. Anatomical airway problems (upper airway collapse and adenoid hypertrophy) and functional airway problems (laryngospasm, bronchospasm, insufficient depth of anesthesia and muscle rigidity, gastric hyperinflation, and alveolar collapse) require urgent recognition and treatment algorithms due to insufficient oxygen reserves. Early muscle paralysis and epinephrine administration aids resolution of these functional airway obstructions. Children with an 'impaired' normal (foreign body, allergy, and inflammation) or an expected difficult (scars, tumors, and congenital) airway require careful planning and expertise. Training in the recognition and management of these different situations as well as a suitably equipped anesthesia workstation and trained personnel are essential. The healthy child with an unexpected airway problem requires clear strategies. The 'impaired' normal pediatric airway may be handled by anesthetists experienced with children, whereas the expected difficult pediatric airway requires dedicated pediatric anesthesia specialist care and should only be managed in specialized centers.

  5. Forced oscillometry track sites of airway obstruction in bronchial asthma.

    PubMed

    Hafez, Manal Refaat; Abu-Bakr, Samiha Mohamed; Mohamed, Alyaa Abdelnaser

    2015-07-01

    Spirometry is the most commonly used method for assessment of airway function in bronchial asthma but has several limitations. Forced oscillometry was developed as a patient-friendly test that requires passive cooperation of the patient breathing normally through the mouth. To compare spirometry with forced oscillometry to assess the role of forced oscillometry in the detection of the site of airway obstruction. This case-and-control study included 50 patients with known stable asthma and 50 age- and sex-matched healthy subjects. All participants underwent spirometry (ratio of force expiration volume in 1 second to forced vital capacity, percentage predicted for forced expiration volume in 1 second, percentage predicted for forced vital capacity, percentage predicted for vital capacity, and forced expiratory flow at 25-75%) and forced oscillometry (resistance at 5, 20, and 5-20 Hz). By spirometry, all patients with asthma had airway obstruction, 8% had isolated small airway obstruction, 10% had isolated large airway obstruction, and 82% had large and small airway obstruction. By forced oscillometry, 12% had normal airway resistance, 50% had isolated small airway obstruction with frequency-dependent resistance, and 38% had large and small airway obstruction with frequency-independent resistance. There was significant difference between techniques for the detection of the site of airway obstruction (P = .012). Forced oscillometry indices were negatively correlated with spirometric indices (P < .01). Forced oscillometry as an effortless test, conducted during quiet tidal breathing, and does not alter airway caliber; thus, it can detect normal airway function better than spirometry in patients with asthma. Forced oscillometry detects isolated small airway obstruction better than spirometry in bronchial asthma. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Corticosteroid treatment inhibits airway hyperresponsiveness and lung injury in a murine model of chemical-induced airway inflammation.

    PubMed

    Wigenstam, Elisabeth; Jonasson, Sofia; Koch, Bo; Bucht, Anders

    2012-11-15

    Exposure to toxic alkylating mustard agents causes both acute and long-term effects to the lungs as indicated by increased number of inflammatory cells in airways, lung edema and lung tissue fibrosis. We have previously demonstrated that treatment with the corticosteroid dexamethasone 1 h after lung exposure to the nitrogen mustard analog melphalan protects mice from acute and sub-acute inflammatory responses, as well as from lung tissue fibrosis. In order to address the importance of early anti-inflammatory treatment, we investigated the therapeutic effect of dexamethasone administered 1, 2 or 6 h following exposure to melphalan. C57BL/6 mice were exposed to melphalan and treated with dexamethasone 1, 2 or 6 h after exposure. Twenty hours or 14 days post exposure mice were subjected to analysis of respiratory mechanics where the effects of incremental doses of methacholine on central and peripheral lung components were measured. We also determined the amount of inflammatory cells in the bronchoalveolar lavage fluid and measured the amount of collagen content in the lungs. Melphalan exposure increased airway hyperresponsiveness in both central and peripheral airways and induced an airway inflammation dominated by infiltration of macrophages and neutrophils. Dexamethasone given 1 h after exposure to melphalan provided better protection against airway inflammation than administration 2 or 6 h after exposure. Collagen deposition 14 days after exposure was decreased due to dexamethasone treatment. Early treatment with dexamethasone is important in order to reduce the airway hyperresponsiveness and inflammation caused by toxic alkylating mustards such as melphalan. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Management of the difficult airway.

    PubMed

    Schwartz, D E; Wiener-Kronish, J P

    1991-09-01

    For clinicians involved in airway management, a plan of action for dealing with the difficult airway or a failed intubation should be developed well in advance of encountering a patient in whom intubation is not routine. When difficulty is anticipated, the equipment necessary for performing a difficult intubation should be immediately available. It also is prudent to have a surgeon skilled in performing a tracheotomy and a criothyroidotomy stand by. The intubation should be attempted in the awake state, preferably using the fiberoptic bronchoscope. The more challenging situation is when the difficult airway is confronted unexpectedly. After the first failed attempt at laryngoscopy, head position should be checked and the patient ventilated with oxygen by mask. A smaller styletted tube and possibly a different laryngoscope blade should be selected for a second attempt at intubation. The fiberoptic bronchoscope and other equipment for difficult intubation should be obtained. A second attempt should then be made. If this is unsuccessful, the patient should be reoxygenated, and assistance including a skilled anesthesiologist and surgeon should be summoned. On a third attempt, traction to the tongue can be applied by an assistant, a tube changer could be used to enter the larynx, or one of the other special techniques previously described can be used. If this third attempt fails, it may be helpful to have a physician more experienced in airway management attempt intubation after oxygen has been administered to the patient. If all attempts are unsuccessful, then invasive techniques to secure the airway will have to be performed.

  8. Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training

    ERIC Educational Resources Information Center

    Berry, David C.; Seitz, S. Robert

    2011-01-01

    The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…

  9. Athletic Trainers' Knowledge Regarding Airway Adjuncts

    ERIC Educational Resources Information Center

    Edler, Jessica R.; Eberman, Lindsey E.; Kahanov, Leamor; Roman, Christopher; Mata, Heather Lynne

    2015-01-01

    Context: Research suggests that knowledge gaps regarding the appropriate use of airway adjuncts exist among various health care practitioners, and that knowledge is especially limited within athletic training. Objective: To determine the relationship between perceived knowledge (PK) and actual knowledge (AK) of airway adjunct use and the…

  10. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface

    PubMed Central

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long

    2016-01-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229

  11. The impact of low-frequency, low-force cyclic stretching of human bronchi on airway responsiveness.

    PubMed

    Le Guen, Morgan; Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Brollo, Marion; Longchampt, Elisabeth; Kleinmann, Philippe; Devillier, Philippe; Faisy, Christophe

    2016-11-14

    In vivo, the airways are constantly subjected to oscillatory strain (due to tidal breathing during spontaneous respiration) and (in the event of mechanical ventilation) positive pressure. This exposure is especially problematic for the cartilage-free bronchial tree. The effects of cyclic stretching (other than high-force stretching) have not been extensively characterized. Hence, the objective of the present study was to investigate the functional and transcriptional response of human bronchi to repetitive mechanical stress caused by low-frequency, low-force cyclic stretching. After preparation and equilibration in an organ bath, human bronchial rings from 66 thoracic surgery patients were stretched in 1-min cycles of elongation and relaxation over a 60-min period. For each segment, the maximal tension corresponded to 80% of the reference contraction (the response to 3 mM acetylcholine). The impact of cyclic stretching (relative to non-stretched controls) was examined by performing functional assessments (epithelium removal and incubation with sodium channel agonists/antagonists or inhibitors of intracellular pathways), biochemical assays of the organ bath fluid (for detecting the release of pro-inflammatory cytokines), and RT-PCR assays of RNA isolated from tissue samples. The application of low-force cyclic stretching to human bronchial rings for 60 min resulted in an immediate, significant increase in bronchial basal tone, relative to non-cyclic stretching (4.24 ± 0.16 g vs. 3.28 ± 0.12 g, respectively; p < 0.001). This cyclic stimulus also increased the affinity for acetylcholine (-log EC50: 5.67 ± 0.07 vs. 5.32 ± 0.07, respectively; p p < 0.001). Removal of airway epithelium and pretreatment with the Rho-kinase inhibitor Y27632 and inward-rectifier K+ or L-type Ca 2+ channel inhibitors significantly modified the basal tone response. Exposure to L-NAME had opposing effects in all cases. Pro-inflammatory pathways were not involved

  12. Allergenic proteases cleave the chemokine CX3CL1 directly from the surface of airway epithelium and augment the effect of rhinovirus.

    PubMed

    Loxham, M; Smart, D E; Bedke, N J; Smithers, N P; Filippi, I; Blume, C; Swindle, E J; Tariq, K; Howarth, P H; Holgate, S T; Davies, D E

    2018-03-01

    CX3CL1 has been implicated in allergen-induced airway CD4 + T-lymphocyte recruitment in asthma. As epidemiological evidence supports a viral infection-allergen synergy in asthma exacerbations, we postulated that rhinovirus (RV) infection in the presence of allergen augments epithelial CX3CL1 release. Fully differentiated primary bronchial epithelial cultures were pretreated apically with house dust mite (HDM) extract and infected with rhinovirus-16 (RV16). CX3CL1 was measured by enzyme-linked immunosorbent assay and western blotting, and shedding mechanisms assessed using inhibitors, protease-activated receptor-2 (PAR-2) agonist, and recombinant CX3CL1-expressing HEK293T cells. Basolateral CX3CL1 release was unaffected by HDM but stimulated by RV16; inhibition by fluticasone or GM6001 implicated nuclear factor-κB and ADAM (A Disintegrin and Metalloproteinase) sheddases. Conversely, apical CX3CL1 shedding was stimulated by HDM and augmented by RV16. Although fluticasone or GM6001 reduced RV16+HDM-induced apical CX3CL1 release, heat inactivation or cysteine protease inhibition completely blocked CX3CL1 shedding. The HDM effect was via enzymatic cleavage of CX3CL1, not PAR-2 activation, yielding a product mitogenic for smooth muscle cells. Extracts of Alternaria fungus caused similar CX3CL1 shedding. We have identified a novel mechanism whereby allergenic proteases cleave CX3CL1 from the apical epithelial surface to yield a biologically active product. RV16 infection augmented HDM-induced CX3CL1 shedding-this may contribute to synergy between allergen exposure and RV infection in triggering asthma exacerbations and airway remodeling.

  13. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  14. 75 FR 13079 - Action Affecting Export Privileges; MAHAN AIRWAYS; Mahan Airways, Mahan Tower, No. 21, Azadegan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... AIRWAYS; Mahan Airways, Mahan Tower, No. 21, Azadegan St., M.A. Jenah Exp. Way, Tehran, Iran, Respondent... prohibited by the EAR by knowingly re-exporting to Iran three U.S.-origin aircraft, specifically Boeing 747s... (``Aircraft 4-6'') to Iran. As more fully discussed in the September 17, 2008 TDO Renewal Order, evidence...

  15. [A comparison of various supraglottic airway devices for fiberoptical guided tracheal intubation].

    PubMed

    Metterlein, Thomas; Dintenfelder, Anna; Plank, Christoph; Graf, Bernhard; Roth, Gabriel

    Fiberoptical assisted intubation via placed supraglottic airway devices has been described as safe and easy procedure to manage difficult airways. However visualization of the glottis aperture is essential for fiberoptical assisted intubation. Various different supraglottic airway devices are commercially available and might offer different conditions for fiberoptical assisted intubation. The aim of this study was to compare the best obtainable view of the glottic aperture using different supraglottic airway devices. With approval of the local ethics committee 52 adult patients undergoing elective anesthesia were randomly assigned to a supraglottic airway device (Laryngeal Tube, Laryngeal Mask Airway I-Gel, Laryngeal Mask Airway Unique, Laryngeal Mask Airway Supreme, Laryngeal Mask Airway Aura-once). After standardized induction of anaesthesia the supraglottic airway device was placed according to the manufacturers recommendations. After successful ventilation the position of the supraglottic airway device in regard to the glottic opening was examined with a flexible fiberscope. A fully or partially visible glottic aperture was considered as suitable for fiberoptical assisted intubation. Suitability for fiberoptical assisted intubation was compared between the groups (H-test, U-test; p<0.05). Demographic data was not different between the groups. Placement of the supraglottic airway device and adequate ventilation was successful in all attempts. Glottic view suitable for fiberoptical assisted intubation differed between the devices ranging from 40% for the laringeal tube (LT), 66% for the laryngeal mask airway Supreme, 70% for the Laryngeal Mask Airway I-Gel and 90% for both the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once. None of the used supraglottic airway devices offered a full or partial glottic view in all cases. However the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once seem to be more suitable for fiberoptical

  16. A comparison of various supraglottic airway devices for fiberoptical guided tracheal intubation.

    PubMed

    Metterlein, Thomas; Dintenfelder, Anna; Plank, Christoph; Graf, Bernhard; Roth, Gabriel

    Fiberoptical assisted intubation via placed supraglottic airway devices has been described as safe and easy procedure to manage difficult airways. However visualization of the glottis aperture is essential for fiberoptical assisted intubation. Various different supraglottic airway devices are commercially available and might offer different conditions for fiberoptical assisted intubation. The aim of this study was to compare the best obtainable view of the glottic aperture using different supraglottic airway devices. With approval of the local ethics committee 52 adult patients undergoing elective anesthesia were randomly assigned to a supraglottic airway device (Laryngeal Tube, Laryngeal Mask Airway I-Gel, Laryngeal Mask Airway Unique, Laryngeal Mask Airway Supreme, Laryngeal Mask Airway Aura-once). After standardized induction of anesthesia the supraglottic airway device was placed according to the manufacturers recommendations. After successful ventilation the position of the supraglottic airway device in regard to the glottic opening was examined with a flexible fiberscope. A fully or partially visible glottic aperture was considered as suitable for fiberoptical assisted intubation. Suitability for fiberoptical assisted intubation was compared between the groups (H-test, U-test; p<0.05). Demographic data was not different between the groups. Placement of the supraglottic airway device and adequate ventilation was successful in all attempts. Glottic view suitable for fiberoptical assisted intubation differed between the devices ranging from 40% for the laringeal tube (LT), 66% for the laryngeal mask airway Supreme, 70% for the Laryngeal Mask Airway I-Gel and 90% for both the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once. None of the used supraglottic airway devices offered a full or partial glottic view in all cases. However the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once seem to be more suitable for fiberoptical

  17. Bronchial mucosal immunoreactivity of sensory neuropeptides in severe airway diseases.

    PubMed

    Chanez, P; Springall, D; Vignola, A M; Moradoghi-Hattvani, A; Polak, J M; Godard, P; Bousquet, J

    1998-09-01

    Neuropeptides act on most of the components of the bronchial environment. They influence bronchomotor tone and bronchial vascular caliber and permeability. To investigate the nonadrenergic, noncholinergic system within the airways in asthma and chronic bronchitis, we performed endobronchial biopsies in 16 normal human volunteers, 49 patients with asthma of varying severity, including 16 patients treated with oral corticosteroids, and 13 patients with chronic bronchitis. Frozen sections of biopsies stained with specific antibodies against the neural marker PGP 9.5, vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), and neuropeptide Y (NPY) were analyzed for the presence of nerves through indirect immunofluorescence. Nerves were present in most of the biopsies and were found within and below the epithelium and adjacent to smooth muscle, glands, and blood vessels. By comparison with those in normal subjects, the numbers of VIP-immunoreactive nerves were not significantly decreased in patients with asthma and chronic bronchitis, but NPY-immunoreactive nerves were significantly decreased in the smooth muscle of these latter two groups of patients (p < 0.005). There was no correlation between disease severity and the number of nerves found in the biopsies. This study does not confirm previous findings in autopsy material of some defects in sensory and VIP-containing nerves in severe asthma.

  18. Nitrogen Dioxide Exposure and Airway Responsiveness in ...

    EPA Pesticide Factsheets

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway responsiveness of individuals with asthma. However, no meta-analysis has provided a comprehensive assessment of clinical relevance of changes in airway responsiveness, the potential for methodological biases in the original papers, and the distribution of responses. This paper provides analyses showing that a statistically significant fraction, 70% of individuals with asthma exposed to NO2 at rest, experience increases in airway responsiveness following 30-minute exposures to NO2 in the range of 200 to 300 ppb and following 60-minute exposures to 100 ppb. The distribution of changes in airway responsiveness is log-normally distributed with a median change of 0.75 (provocative dose following NO2 divided by provocative dose following filtered air exposure) and geometric standard deviation of 1.88. About a quarter of the exposed individuals experience a clinically relevant reduction in their provocative dose due to NO2 relative to air exposure. The fraction experiencing an increase in responsiveness was statistically significant and robust to exclusion of individual studies. Results showed minimal change in airway responsiveness for individuals exposed to NO2 during exercise. A variety of fa

  19. Interventions designed using quality improvement methods reduce the incidence of serious airway events and airway cardiac arrests during pediatric anesthesia.

    PubMed

    Spaeth, James P; Kreeger, Renee; Varughese, Anna M; Wittkugel, Eric

    2016-02-01

    Although serious complications during pediatric anesthesia are less common than they were 20 years ago, serious airway events continue to occur. Based on Quality Improvement (QI) data from our institution, a QI project was designed to reduce the incidence of serious airway events and airway cardiac arrests. A quality improvement team consisting of members of the Department of Anesthesia was formed and QI data from previous years were analyzed. The QI team developed a Smart Aim, Key Driver Diagram, and specific Interventions that focused on the accessibility of emergency drugs, the use of nondepolarizing muscle relaxants for endotracheal intubation in children 2 years and younger, and the presence of anesthesia providers until emergence from anesthesia in high-risk patients. The percentage of cases where muscle relaxants were utilized in children 2 years and younger for endotracheal intubation and where atropine and succinylcholine were readily available increased at both our base and outpatient facilities. Over the 2.5-year study period, the incidence of serious airway events and airway cardiac arrests was reduced by 44% and 59%, respectively compared to the previous 2-year period. We utilized QI methodology to design and implement a project which led to greater standardization of clinical practice within a large pediatric anesthesia group. Based on an understanding of system issues impacting our clinical practice, we designed and tested interventions that led to a significant reduction in the incidence of serious airway events and airway cardiac arrests. © 2015 John Wiley & Sons Ltd.

  20. Effect of Continuous Positive Airway Pressure on Airway Reactivity in Asthma. A Randomized, Sham-controlled Clinical Trial

    PubMed Central

    Sugar, Elizabeth A.; Brown, Robert H.; Drye, Lea T.; Irvin, Charles G.; Schwartz, Alan R.; Tepper, Robert S.; Wise, Robert A.; Yasin, Razan Z.; Busk, Michael F.

    2016-01-01

    Rationale: Studies have demonstrated that application of stress suppresses airway smooth muscle contractility. In animal models of asthma, continuous positive airway pressure (CPAP) reduced airway reactivity. Short-term studies of CPAP in patients with asthma showed reductions in airway reactivity. Objectives: To evaluate whether nocturnal CPAP decreased the provocative concentration of methacholine to reduce FEV1 by 20% (PC20). Methods: One hundred ninety-four individuals with asthma were randomized (1:1:1) to use CPAP with warmed, filtered, humidified air at night at pressures either less than 1 cm H2O (sham) or at 5 cm H2O or 10 cm H2O. The primary outcome was change in PC20 after 12 weeks. Measurements and Main Results: Adherence to CPAP was low in all groups. Regardless, all groups had a significant improvement in PC20, with 12 weeks/baseline PC20 ratios of 2.12, 1.73, and 1.78 for the sham, 5 cm H2O, and 10 cm H2O groups, respectively, and no significant differences between the active and sham groups. Changes in FEV1 and exhaled nitric oxide were minimal in all groups. The sham group had larger improvements in most patient-reported outcomes measuring asthma symptoms and quality of life, as well as sinus symptoms, than the 5 cm H2O group. The 10 cm H2O group showed similar but less consistent improvements in scores, which were not different from improvements in the sham group. Conclusions: Adherence to nocturnal CPAP was low. There was no evidence to support positive pressure as being effective for reducing airway reactivity in people with well-controlled asthma. Regardless, airway reactivity was improved in all groups, which may represent an effect of participating in a study and/or an effect of warm, humid, filtered air on airway reactivity. Clinical trial registered with www.clinicaltrials.gov (NCT01629823). PMID:27398992

  1. Infection-induced airway fibrosis in two rat strains with differential susceptibility.

    PubMed Central

    McIntosh, J C; Simecka, J W; Ross, S E; Davis, J K; Miller, E J; Cassell, G H

    1992-01-01

    Chronic infections play a significant role in the morbidity and mortality of patients with chronic airflow limitation. By stimulating airway inflammation, persistent infection has the potential to cause airway fibrosis. However, in patient this condition is most typically found in lungs damaged by other factors, such as smoking, abnormal secretions, or barotrauma. We report the characterization of Mycoplasma pulmonis infection-induced lung fibrosis in two immunocompetent rat strains with no preexisting lung disease. The fibrosis was predominantly in the airways, as demonstrated by the findings for infected animals of increased airway inflammation, airway fibrosis, and airway wall thickness, which correlated with the collagen content of the lungs. Also, the physiological alterations were the opposite of those found in interstitial fibrosis, with a positive correlation between lung compliance and collagen content. The airway fibrosis was noted earlier and to a greater extent in Lewis rats than in Fisher rats, and this result apparently was related to regulation of the inflammatory response. Airway wall thickness, airway inflammation, and airway fibrosis are commonly reported in tissue specimens from patients with chronic airway diseases and have been shown to correlate with airflow limitation in patients with chronic obstructive pulmonary disease. Thus, this model may be useful in furthering our understanding of the role of chronic infection and airway inflammation in airflow obstruction. Images PMID:1612760

  2. Infectious mononucleosis and bilateral peritonsillar abscesses resulting in airway obstruction.

    PubMed

    Burstin, P P; Marshall, C L

    1998-12-01

    Upper airway obstruction is an uncommon but recognized complication of infectious mononucleosis. The management depends upon the degree of airway compromise. In the case described, severe airway obstruction was treated by securing the airway with awake fibre-optic endoscopic intubation and then proceeding to tonsillectomy. Bilateral inferiorly loculated quinsies were encountered unexpectedly and drained. This is the first report of 'bilateral' quinsies, associated with infectious mononucleosis and severe airway obstruction. The association, pathogenesis and significance of this finding are also discussed.

  3. Removal of obstructing T-tube and stabilization of the airway.

    PubMed

    Athavale, Sanjay M; Dang, Jennifer; Rangarajan, Sanjeet; Garrett, Gaelyn

    2011-05-01

    Although they are extremely effective in maintaining tracheal and subglottic patency, T-tubes themselves can result in airway obstruction from plugging. Many practitioners educate patients on placing a small (5.0) endotracheal tube (ETT) through the tracheal limb of the T-tube if they develop airway obstruction. Unfortunately, this can be a difficult task to complete during acute airway obstruction. In this article, we describe a simple set of steps for rapid relief of airway obstruction and stabilization of the airway in the event of T-tube obstruction. This method requires removal of the T-tube with a Kelly clamp and stabilization of the airway with a tracheostomy tube. Although it is simple, we hope that this technique will prevent morbidity and mortality from acute airway obstructions related to T-tubes. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  4. The differentiation profile of the epithelium of the human lip.

    PubMed

    Barrett, A W; Morgan, M; Nwaeze, G; Kramer, G; Berkovitz, B K B

    2005-04-01

    The aim of this study was to analyse the immunohistochemical differentiation profile of the stratified squamous epithelium of the adult human lip. Full-thickness lower lips taken from 31 cadavers were analysed. Sections were stained with haematoxylin and eosin, periodic acid-Schiff (PAS), cytokeratins (CK), loricrin, involucrin, profilaggrin and filaggrin. The stratified squamous epithelium covering the lip could be divided into: (i) appendage-bearing, orthokeratinised epidermis; (ii) orthokeratinised vermilion which had a more prominent rete pattern than the epidermis; (iii) parakeratinised, PAS-positive intermediate zone; and (iv) non- or parakeratinised labial mucosal epithelium. Epithelial thickness increased gradually from the skin to the mucosal aspect. The CK pattern changed across the intermediate zone, with gradual loss of CK 1 and 10 from the skin, and CK 4, 13 and 19 from the mucosal, aspect. CK 5 and 14 were consistently expressed basally, and variably expressed suprabasally. Apart from labelling Merkel cells, CK 8, 18 and 20 were negative. Involucrin, which was present at all sites, was restricted to the stratum granulosum in skin, but extended into the stratum spinosum, and gradually into parabasal keratinocytes, across the vermilion and mucosa. Loricrin, profilaggrin and filaggrin were present in the stratum granulosum of orthokeratinised sites, but expression was abruptly lost at the junction between the vermilion and the intermediate zone. In conclusion, the phenotype of the stratified squamous epithelium covering the lip changes at, or across, the intermediate zone of the adult vermilion. It is possible that changes in the composition of the stratified squamous epithelium affect the colour of the vermilion.

  5. Patterns of recruitment and injury in a heterogeneous airway network model

    PubMed Central

    Stewart, Peter S.; Jensen, Oliver E.

    2015-01-01

    In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air–liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls. PMID:26423440

  6. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  7. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  8. Central Airway Obstruction: Benign Strictures, Tracheobronchomalacia, and Malignancy-related Obstruction.

    PubMed

    Murgu, Septimiu Dan; Egressy, Katarine; Laxmanan, Balaji; Doblare, Guillermo; Ortiz-Comino, Rosamaria; Hogarth, D Kyle

    2016-08-01

    The purpose of this article is to provide an update on methods for palliating symptoms in patients with histologically benign and malignant central airway obstruction. We review the published literature within the past decade on postintubation, posttracheostomy, and TB- and transplant-related airway strictures; tracheobronchomalacia; and malignant airway obstruction. We review terminology, classification systems, and parameters that impact treatment decisions. The focus is on how airway stent insertion fits into the best algorithm of care. Several case series and cohort studies demonstrate that airway stents improve dyspnea, lung function, and quality of life in patients with airway obstruction. Airway stenting, however, is associated with high rates of adverse events and should be used only when curative open surgical interventions are not feasible or are contraindicated. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  9. Prehospital airway management on rescue helicopters in the United Kingdom.

    PubMed

    Schmid, M; Mang, H; Ey, K; Schüttler, J

    2009-06-01

    Adequate equipment is one prerequisite for advanced, out of hospital, airway management. There are no data on current availability of airway equipment on UK rescue helicopters. An internet search revealed all UK rescue helicopters, and a questionnaire was sent to the bases asking for available airway management items. We identified 27 helicopter bases and 26 (96%) sent the questionnaire back. Twenty-four bases (92%) had at least one supraglottic airway device; 16 (62%) helicopters had material for establishing a surgical airway (e.g. a cricothyroidotomy set); 88% of the helicopters had CO(2) detection; 25 (96%) helicopters carried automatic ventilators; among these, four (15%) had sophisticated ventilators and seven (27%) helicopters carried special face masks suitable for non-invasive ventilation. We found a wide variation in the advanced airway management equipment that was carried routinely on air ambulances. Current guidelines for airway management are not met by all UK air ambulances.

  10. CT-assessed large airway involvement and lung function decline in eosinophilic asthma: The association between induced sputum eosinophil differential counts and airway remodeling.

    PubMed

    Inoue, Hideki; Ito, Isao; Niimi, Akio; Matsumoto, Hisako; Matsuoka, Hirofumi; Jinnai, Makiko; Takeda, Tomoshi; Oguma, Tsuyoshi; Otsuka, Kojiro; Nakaji, Hitoshi; Tajiri, Tomoko; Iwata, Toshiyuki; Nagasaki, Tadao; Kanemitsu, Yoshihiro; Mishima, Michiaki

    2016-11-01

    Eosinophilic asthma (EA) is a distinct clinical phenotype characterized by eosinophilic airway inflammation and airway remodeling. Few studies have used computed tomography (CT) scanning to assess the association between sputum eosinophil differential counts and airway involvement. We aimed to investigate the clinical characteristics and airway involvement of EA, and to examine the correlation between induced sputum eosinophil differential counts and CT-assessed airway remodeling. We retrospectively divided 63 patients with stable asthma receiving inhaled corticosteroids into 2 groups: 26 patients with EA (sputum eosinophil >3%) and 37 patients with non-eosinophilic asthma (NEA). Clinical measurements such as spirometry, fractional exhaled nitric oxide levels (FeNO), and CT-assessed indices of airway involvement were compared between the groups. Multivariate analysis was performed to identify determinants of the percentage of wall area (WA%). The EA group had significantly longer asthma duration, lower pulmonary function, and higher FeNO than the NEA group. Also, the EA group had higher WA% and smaller airway luminal area than the NEA group. Sputum eosinophil differential counts and WA% were positively correlated. The multivariate linear regression analysis showed that the factors associated with WA% included sputum eosinophil differential counts, age, and body mass index. However, asthma duration was not associated with WA%. Our CT-assessed findings demonstrated large airway involvement in EA, and we observed a positive association between induced sputum eosinophil differential counts and WA%. The findings indicate that induced sputum eosinophil differential counts may be associated with airway remodeling in patients with stable asthma.

  11. NORMAL GENE EXPRESSION IN MALE F344 RAT NASAL TRANSITIONAL/RESPIRATORY EPITHELIUM

    EPA Science Inventory

    Abstract

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Ce...

  12. Airway exchange of highly soluble gases.

    PubMed

    Hlastala, Michael P; Powell, Frank L; Anderson, Joseph C

    2013-03-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol.

  13. Airway exchange of highly soluble gases

    PubMed Central

    Powell, Frank L.; Anderson, Joseph C.

    2013-01-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol. PMID:23305981

  14. Solitary chemoreceptor cell proliferation in adult nasal epithelium.

    PubMed

    Gulbransen, Brian D; Finger, Thomas E

    2005-03-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein alpha-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cbeta2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These experiments were designed to test whether new SCCs are generated within the epithelium of adult mice. Wild type C57/B6 mice were injected with the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. At various times after injection (1-40 days), the mice were perfused with 4% paraformaldehyde and prepared for dual-label immunocytochemistry. Double labeled cells were detected as early as 3 days post BrdU injection and remained for as long as 12 days post-injection suggesting that SCCs do undergo turnover like the surrounding nasal epithelium. No BrdU labeled cells were detected after 24 days suggesting relatively rapid replacement of the SCCs.

  15. Solitary Chemoreceptor Cell Proliferation in Adult Nasal Epithelium

    PubMed Central

    Gulbransen, Brian D.; Finger, Thomas E.

    2008-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein α-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cβ2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These experiments were designed to test whether new SCCs are generated within the epithelium of adult mice. Wild type C57/B6 mice were injected with the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. At various times after injection (1-40 days), the mice were perfused with 4% paraformaldehyde and prepared for dual-label immunocytochemistry. Double labeled cells were detected as early as 3 days post BrdU injection and remained for as long as 12 days post-injection suggesting that SCCs do undergo turnover like the surrounding nasal epithelium. No BrdU labeled cells were detected after 24 days suggesting relatively rapid replacement of the SCCs. PMID:16374713

  16. [Helium-Oxigen (Heliox) mixture in airway obstruction

    PubMed

    Ulhôa, C A; Larner, L

    2000-01-01

    OBJECTIVE: Demonstrate the effectiveness and the good outcome of the patients treated with helium-oxygen (Heliox) mixture. This mixture (Heliox) has been used in patients with airway obstruction, from different ethiologies, who did not respond to a conventional treatment with oxygen. METHODS: Case report of five patients that received Heliox as treatment for airway obstruction. All of them had good results without side effects during the treatment. CONCLUSION: Heliox is a promising treatment for severe airway obstruction with good results in a short period of time, until the final treatment is established.

  17. Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs.

    PubMed

    Turner, Debra J; Noble, Peter B; Lucas, Matthew P; Mitchell, Howard W

    2002-10-01

    Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.

  18. Abnormal Ion Permeation through Cystic Fibrosis Respiratory Epithelium

    NASA Astrophysics Data System (ADS)

    Knowles, M. R.; Stutts, M. J.; Spock, A.; Fischer, N.; Gatzy, J. T.; Boucher, R. C.

    1983-09-01

    The epithelium of nasal tissue excised from subjects with cystic fibrosis exhibited higher voltage and lower conductance than tissue from control subjects. Basal sodium ion absorption by cystic fibrosis and normal nasal epithelia equaled the short-circuit current and was amiloride-sensitive. Amiloride induced chloride ion secretion in normal but not cystic fibrosis tissue and consequently was more effective in inhibiting the short-circuit current in cystic fibrosis epithelia. Chloride ion-free solution induced a smaller hyperpolarization of cystic fibrosis tissue. The increased voltage and amiloride efficacy in cystic fibrosis reflect absorption of sodium ions across an epithelium that is relatively impermeable to chloride ions.

  19. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    PubMed Central

    Ribeiro, Carla M. P.; Lubamba, Bob A.

    2017-01-01

    Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361

  20. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...