Sample records for airway glucose concentrations

  1. Pro-inflammatory mediators disrupt glucose homeostasis in airway surface liquid ‡

    PubMed Central

    Garnett, James P.; Nguyen, Trang T.; Moffatt, James D.; Pelham, Elizabeth R.; Kalsi, Kameljit K.; Baker, Emma H.; Baines, Deborah L.

    2012-01-01

    The glucose concentration of the airway surface liquid (ASL) is much lower than blood and is tightly regulated by the airway epithelium. ASL glucose is elevated in patients with viral colds, cystic fibrosis, chronic obstructive pulmonary disease (COPD) and asthma. Elevated ASL glucose is also associated with increased incidence of respiratory infection. However, the mechanism by which ASL glucose increases under inflammatory conditions is unknown. The aim of this study was to investigate the effect of pro-inflammatory mediators (PIMs) on the mechanisms governing airway glucose homeostasis in polarised monolayers of human airway (H441) and primary human bronchial epithelial (HBE) cells. Monolayers were treated with TNF-α, IFN-γ and LPS over 72 hours. PIM treatment led to increase in ASL glucose concentration and significantly reduced H441 and HBE transepithelial resistance (RT). This decline in RT was associated with an increase in paracellular permeability of glucose. Similar enhanced rates of paracellular glucose flux were also observed across excised trachea from LPS-treated mice. Interestingly, PIMs enhanced glucose uptake across the apical, but not the basolateral, membrane of H441 and HBE monolayers. This increase was predominantly via phloretin-sensitive GLUT-mediated uptake, which coincided with an increase in GLUT2 and GLUT10 abundance. In conclusion, exposure of airway epithelial monolayers to PIMs results in increased paracellular glucose flux, and apical GLUT-mediated glucose uptake. However uptake was insufficient to limit glucose accumulation in ASL. These data provide for the first time, a mechanism to support clinical findings that ASL glucose concentration is increased in patients with airway inflammation. PMID:22623330

  2. Nitric oxide airway diffusing capacity and mucosal concentration in asthmatic schoolchildren.

    PubMed

    Pedroletti, Christophe; Högman, Marieann; Meriläinen, Pekka; Nordvall, Lennart S; Hedlin, Gunilla; Alving, Kjell

    2003-10-01

    Asthmatic patients show increased concentrations of nitric oxide (NO) in exhaled air (Feno). The diffusing capacity of NO in the airways (Dawno), the NO concentrations in the alveoli and the airway wall, and the maximal airway NO diffusion rate have previously been estimated noninvasively by measuring Feno at different exhalation flow rates in adults. We investigated these variables in 15 asthmatic schoolchildren (8-18 y) and 15 age-matched control subjects, with focus on their relation to exhaled NO at the recommended exhalation flow rate of 0.05 L/s (Feno0.05), age, and volume of the respiratory anatomic dead space. NO was measured on-line by chemiluminescence according to the European Respiratory Society's guidelines, and the NO plateau values at three different exhalation flow rates (11, 99, and 382 mL/s) were incorporated in a two-compartment model for NO diffusion. The NO concentration in the airway wall (p < 0.001), Dawno (p < 0.01), and the maximal airway NO diffusion rate (p < 0.001) were all higher in the asthmatic children than in control children. In contrast, there was no difference in the NO concentration in the alveoli (p = 0.13) between the groups. A positive correlation was seen between the volume of the respiratory anatomic dead space and Feno0.05 (r = 0.68, p < 0.01), the maximal airway NO diffusion rate (r = 0.71, p < 0.01), and Dawno (r = 0.56, p < 0.01) in control children, but not in asthmatic children. Feno0.05 correlated better with Dawno in asthmatic children (r = 0.65, p < 0.01) and with the NO concentration in the airway wall in control subjects (r < 0.77, p < 0.001) than vice versa. We conclude that Feno0.05 increases with increasing volume of the respiratory anatomic dead space in healthy children, suggesting that normal values for Feno0.05 should be related to age or body weight in this age group. Furthermore, the elevated Feno0.05 seen in asthmatic children is related to an increase in both Dawno and NO concentration in the airway

  3. Determination of Glucose Concentration in Yeast Culture Medium

    NASA Astrophysics Data System (ADS)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  4. Salivary glucose concentration and excretion in normal and diabetic subjects.

    PubMed

    Jurysta, Cedric; Bulur, Nurdan; Oguzhan, Berrin; Satman, Ilhan; Yilmaz, Temel M; Malaisse, Willy J; Sener, Abdullah

    2009-01-01

    The present report aims mainly at a reevaluation of salivary glucose concentration and excretion in unstimulated and mechanically stimulated saliva in both normal and diabetic subjects. In normal subjects, a decrease in saliva glucose concentration, an increase in salivary flow, but an unchanged glucose excretion rate were recorded when comparing stimulated saliva to unstimulated saliva. In diabetic patients, an increase in salivary flow with unchanged salivary glucose concentration and glucose excretion rate were observed under the same experimental conditions. Salivary glucose concentration and excretion were much higher in diabetic patients than in control subjects, whether in unstimulated or stimulated saliva. No significant correlation between glycemia and either glucose concentration or glucose excretion rate was found in the diabetic patients, whether in unstimulated or stimulated saliva. In the latter patients, as compared to control subjects, the relative magnitude of the increase in saliva glucose concentration was comparable, however, to that of blood glucose concentration. The relationship between these two variables was also documented in normal subjects and diabetic patients undergoing an oral glucose tolerance test.

  5. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    NASA Astrophysics Data System (ADS)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  6. Estimating in vivo airway surface liquid concentration in trials of inhaled antibiotics.

    PubMed

    Hasan, M A; Lange, C F

    2007-01-01

    Antibiotic drugs exhibit concentration dependence in their efficacy. Therefore, ensuring appropriate concentration of these drugs in the relevant body fluid is important for obtaining the desired therapeutic and physiological action. Until recently there had been no suitable method available to measure or estimate concentration of drugs in the human airways resulting from inhaled aerosols or to determine the amount of inhaled antibiotics required to ensure minimum inhibitory concentration of a drug in the airway surface liquid (ASL). In this paper a numerical method is used for estimating local concentration of inhaled pharmaceutical aerosols in different generations of the human tracheobronchial airways. The method utilizes a mathematical lung deposition model to estimate amounts of aerosols depositing in different lung generations, and a recent ASL model along with deposition results to assess the concentration of deposited drugs immediately following inhalation. Examples of concentration estimates for two case studies: one for the antibiotic tobramycin against Pseudomonas aeruginosa, and another for taurolidine against Burkholderia cepacia are presented. The aerosol characteristics, breathing pattern and properties of nebulized solutions were adopted from two recent clinical studies on efficacy of these drugs in cystic fibrosis (CF) patients and from other sources in the literature. While the clinically effective tobramycin showed a concentration higher than the required in vivo concentration, that for the ineffective taurolidine was found to be below the speculated required in vivo concentration. Results of this study thus show that the mathematical ASL model combined with the lung deposition model can be an effective tool for helping decide the optimum dosage of inhaled antibiotic drugs delivered during human clinical trials.

  7. Millimeter-Wave Sensing of Diabetes-Relevant Glucose Concentration Changes in Pigs

    NASA Astrophysics Data System (ADS)

    Cano-Garcia, Helena; Saha, Shimul; Sotiriou, Ioannis; Kosmas, Panagiotis; Gouzouasis, Ioannis; Kallos, Efthymios

    2018-06-01

    The paper presents the first in vivo glucose monitoring animal study in a pig, which correlates radio frequency signal transmission changes with changes in blood glucose concentration in the 58-62 GHz frequency range. The presented non-invasive glucose sensing system consists of two opposite facing patch antennas sandwiching glucose-loaded samples. Prior to the animal study, the system was tested using saline solution samples, for which a linear relationship between changes in transmitted signal and glucose concentration was observed. In the animal study, glucose concentration changes were induced by injecting a known glucose solution in the blood stream. The non-invasive transmission measurements were compared to the glucose levels obtained invasively from the animal. Our results suggest that the system can detect spikes in glucose concentration in the blood, which is an important milestone towards non-invasive glucose monitoring.

  8. Dietary chromium tripicolinate supplementation reduces glucose concentrations and improves glucose tolerance in normal-weight cats.

    PubMed

    Appleton, D J; Rand, J S; Sunvold, G D; Priest, J

    2002-03-01

    The effect of dietary chromium supplementation on glucose and insulin metabolism in healthy, non-obese cats was evaluated. Thirty-two cats were randomly divided into four groups and fed experimental diets consisting of a standard diet with 0 ppb (control), 150 ppb, 300 ppb, or 600 ppb added chromium as chromium tripicolinate. Intravenous glucose tolerance, insulin tolerance and insulin sensitivity tests with minimal model analysis were performed before and after 6 weeks of feeding the test diets. During the glucose tolerance test, glucose concentrations, area under the glucose concentration-time curve, and glucose half-life (300 ppb only), were significantly lower after the trial in cats supplemented with 300 ppb and 600 ppb chromium, compared with values before the trial. Fasting glucose concentrations measured on a different day in the biochemistry profile were also significantly lower after supplementation with 600 ppb chromium. There were no significant differences in insulin concentrations or indices in either the glucose or insulin tolerance tests following chromium supplementation, nor were there any differences between groups before or after the dietary trial.Importantly, this study has shown a small but significant, dose-dependent improvement in glucose tolerance in healthy, non-obese cats supplemented with dietary chromium. Further long-term studies are warranted to determine if the addition of chromium to feline diets is advantageous. Cats most likely to benefit are those with glucose intolerance and insulin resistance from lack of exercise, obesity and old age. Healthy cats at risk of glucose intolerance and diabetes from underlying low insulin sensitivity or genetic factors may also benefit from long-term chromium supplementation. Copyright 2002 ESFM and AAFP.

  9. Effects of taurine on plasma glucose concentration and active glucose transport in the small intestine.

    PubMed

    Tsuchiya, Yo; Kawamata, Koichi

    2017-11-01

    Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.

  10. Newborn Plasma Glucose Concentration Nadirs by Gestational-Age Group.

    PubMed

    Kaiser, Jeffrey R; Bai, Shasha; Rozance, Paul J

    2018-01-01

    The glucose concentrations and times to nadir for newborns of all gestational ages when intrapartum glucose-containing solutions are not routinely provided are unknown. To characterize and compare patterns of initial glucose concentration nadirs by gestational-age groups. A cross-sectional cohort study of 1,366 newborns born in 1998 at the University of Arkansas for Medical Sciences, appropriate for gestational age, nonasphyxiated, nonpolycythemic, and not infants of diabetic mothers, were included. Initial plasma glucose concentrations, before intravenous fluids or feedings, were plotted against time after birth for 4 gestational-age groups (full term [FT], ≥37-42 weeks; late preterm [LPT], ≥34 and < 37 weeks; preterm [PT], ≥28 and < 34 weeks; and extremely low gestational age newborns [ELGAN], 23 and < 28 weeks of gestation). ELGAN had the earliest nadir at 61 ± 4 min, followed by PT newborns (71 ± 2 min), and then LPT and FT newborns at 92-93 min. The time to nadir for ELGAN and PT newborns was significantly earlier than for FT newborns. Glucose nadir concentrations for ELGAN, PT, and LPT newborns were significantly lower than for FT newborns. LPT newborns' pattern of glucose paralleled those of FT newborns, with values approximately 5-6 mg/dL lower during the first 3 h. Plasma glucose nadirs occurred at different times among gestational-age groups during the early postnatal period as follows: ELGAN < PT < LPT ≈ FT. In order to potentially prevent low glucose concentrations at the time of the nadir, exogenous glucose should be provided to all newborns as soon as possible after birth. © 2018 S. Karger AG, Basel.

  11. Lowering Plasma Glucose Concentration by Inhibiting Renal Sodium-Glucose Co-Transport

    PubMed Central

    Abdul-Ghani, Muhammad A; DeFronzo, Ralph A

    2017-01-01

    Maintaining normoglycaemia not only reduces the risk of diabetic microvascular complications but also corrects the metabolic abnormalities that contribute to the development and progression of hyperglycaemia (i.e. insulin resistance and beta-cell dysfunction). Progressive beta-cell failure, in addition to the multiple side effects associated with many current antihyperglycaemic agents (e.g., hypoglycaemia and weight gain) presents major obstacle to the achievement of the recommended goal of glycaemic control in patients with diabetes mellitus (DM). Thus, novel effective therapies are needed for optimal glucose control in subjects with DM. Recently, specific inhibitors of renal sodium glucose cotransporter 2 (SGLT2) have been developed to produce glucosuria and lower the plasma glucose concentration. Because of their unique mechanism of action (which is independent of the secretion and action of insulin), these agents are effective in lowering the plasma glucose concentration in all stages of DM and can be combined with all other antidiabetic agents. In this review, we summarize the available data concerning the mechanism of action, efficacy and safety of this novel class of antidiabetic agent. PMID:24690096

  12. [Insulin concentration in polytraumatized patients during infusion of glucose, fructose and sorbitol].

    PubMed

    Förster, H; Steuer, A; Albrecht, H; Quadbeck, R; Dudziak, R

    1978-08-01

    Serum insulin concentration was measured during infusion of glucose, fructose or sorbitol for several days in polytraumatized patients. The patients are divided in two groups, one group with normal glucose tolerance and a second group, where an extreme disturbance of the glucose utilization was found. In patients with normal glucose tolerance the glucose substitutes had the same metabolic effects as in metabolically healthy volunteers. In patients with disturbed glucose tolerance the glucose substitutes (fructose as well as sorbitol) effected an increase in blood glucose concentration and in serum insulin concentration. It is concluded that the increase in blood glucose concentration causes the increase in serum insulin concentration. Obviously, in a certain group of polytraumatized patients a "metabolic insulin resistence" exists. Therefore, glucose utilization is decreased despite an increase in serum insulin. In most cases the metabolic disturbance in these patients is mastered, if glucose substitutes are used instead of glucose as energy source. However, in many cases glucose can be administered only if insulin is given additionally.

  13. Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood.

    PubMed

    Thomé-Duret, V; Reach, G; Gangnerau, M N; Lemonnier, F; Klein, J C; Zhang, Y; Hu, Y; Wilson, G S

    1996-11-01

    The development of a hypoglycemic alarm system using a subcutaneous glucose sensor implies that a decrease in blood glucose is rapidly followed by a decrease in the signal generated by the sensor. In a first set of experiments the linearity and the kinetics of the response of sensors implanted in the subcutaneous tissue of normal rats were investigated during a progressive increase in plasma glucose concentration: the sensitivities determined between 5 and 10 mM and between 10 and 15 mM were not significantly different, and a 5-10 min delay in the sensor's response was observed. In a second set of experiments, performed in diabetic rats, the kinetics of the decrease in subcutaneous glucose concentration following insulin administration was monitored during a decrease in plasma glucose level, from 15 to 3 mmol/L. During the 20 first min following insulin administration, the sensor monitored glucose concentration in subcutaneous tissue with no lag time. Subsequently, the decrease in the estimation of subcutaneous glucose concentration preceded that of plasma glucose. This phenomenon was not observed when the same sensors were investigated in vitro during a similar decrease in glucose concentration and may be due to a mechanism occurring in vivo, such as the effect of insulin on glucose transfer from the interstitial space to the cells surrounding the sensor. It reinforces the interest of the use of implantable glucose sensors as a part of a hypoglycemic alarm.

  14. Effect of Cinnamon Tea on Postprandial Glucose Concentration.

    PubMed

    Bernardo, Maria Alexandra; Silva, Maria Leonor; Santos, Elisabeth; Moncada, Margarida Maria; Brito, José; Proença, Luis; Singh, Jaipaul; de Mesquita, Maria Fernanda

    2015-01-01

    Glycaemic control, in particular at postprandial period, has a key role in prevention of different diseases, including diabetes and cardiovascular events. Previous studies suggest that postprandial high blood glucose levels (BGL) can lead to an oxidative stress status, which is associated with metabolic alterations. Cinnamon powder has demonstrated a beneficial effect on postprandial glucose homeostasis in animals and human models. The purpose of this study is to investigate the effect of cinnamon tea (C. burmannii) on postprandial capillary blood glucose level on nondiabetic adults. Participants were given oral glucose tolerance test either with or without cinnamon tea in a randomized clinical trial. The data revealed that cinnamon tea administration slightly decreased postprandial BGL. Cinnamon tea ingestion also results in a significantly lower postprandial maximum glucose concentration and variation of maximum glucose concentration (p < 0.05). Chemical analysis showed that cinnamon tea has a high antioxidant capacity, which may be due to its polyphenol content. The present study provides evidence that cinnamon tea, obtained from C. burmannii, could be beneficial for controlling glucose metabolism in nondiabetic adults during postprandial period.

  15. Enzymatic glucose sensor compensation for variations in ambient oxygen concentration

    NASA Astrophysics Data System (ADS)

    Collier, Bradley B.; McShane, Michael J.

    2013-02-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in "smart materials" for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases.

  16. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  17. Blood glucose concentrations in prehospital trauma patients with traumatic shock: A retrospective analysis.

    PubMed

    Kreutziger, Janett; Lederer, Wolfgang; Schmid, Stefan; Ulmer, Hanno; Wenzel, Volker; Nijsten, Maarten W; Werner, Daniel; Schlechtriemen, Thomas

    2018-01-01

    Deranged glucose metabolism after moderate to severe trauma with either high or low concentrations of blood glucose is associated with poorer outcome. Data on prehospital blood glucose concentrations and trauma are scarce. The primary aim was to describe the relationship between traumatic shock and prehospital blood glucose concentrations. The secondary aim was to determine the additional predictive value of prehospital blood glucose concentration for traumatic shock when compared with vital parameters alone. Retrospective analysis of the predefined, observational database of a nationwide Helicopter Emergency Medical Service (34 bases). Emergency trauma patients treated by Helicopter Emergency Medical Service between 2005 and 2013 were investigated. All adult trauma patients (≥18 years) with recorded blood glucose concentrations were enrolled. Primary outcome: upper and lower thresholds of blood glucose concentration more commonly associated with traumatic shock. Secondary outcome: additional predictive value of prehospital blood glucose concentrations when compared with vital parameters alone. Of 51 936 trauma patients, 20 177 were included. In total, 220 (1.1%) patients died on scene. Hypoglycaemia (blood glucose concentration 2.8 mmol l or less) was observed in 132 (0.7%) patients, hyperglycaemia (blood glucose concentration exceeding 15 mmol l) was observed in 265 patients (1.3%). Blood glucose concentrations more than 10 mmol l (n = 1308 (6.5%)) and 2.8 mmol l or less were more common in patients with traumatic shock (P < 0.0001). The Youden index for traumatic shock ((sensitivity + specificity) - 1) was highest when blood glucose concentration was 3.35 mmol l (P < 0.001) for patients with low blood glucose concentrations and 7.75 mmol l (P < 0.001) for those with high blood glucose concentrations. In logistic regression analysis of patients with spontaneous circulation on scene, prehospital blood glucose

  18. Measurement of glucose concentration by image processing of thin film slides

    NASA Astrophysics Data System (ADS)

    Piramanayagam, Sankaranaryanan; Saber, Eli; Heavner, David

    2012-02-01

    Measurement of glucose concentration is important for diagnosis and treatment of diabetes mellitus and other medical conditions. This paper describes a novel image-processing based approach for measuring glucose concentration. A fluid drop (patient sample) is placed on a thin film slide. Glucose, present in the sample, reacts with reagents on the slide to produce a color dye. The color intensity of the dye formed varies with glucose at different concentration levels. Current methods use spectrophotometry to determine the glucose level of the sample. Our proposed algorithm uses an image of the slide, captured at a specific wavelength, to automatically determine glucose concentration. The algorithm consists of two phases: training and testing. Training datasets consist of images at different concentration levels. The dye-occupied image region is first segmented using a Hough based technique and then an intensity based feature is calculated from the segmented region. Subsequently, a mathematical model that describes a relationship between the generated feature values and the given concentrations is obtained. During testing, the dye region of a test slide image is segmented followed by feature extraction. These two initial steps are similar to those done in training. However, in the final step, the algorithm uses the model (feature vs. concentration) obtained from the training and feature generated from test image to predict the unknown concentration. The performance of the image-based analysis was compared with that of a standard glucose analyzer.

  19. Detection of saliva-range glucose concentrations using organic thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors formore » salivary glucose.« less

  20. The Effect of Fasting Duration on Baseline Blood Glucose Concentration, Blood Insulin Concentration, Glucose/Insulin Ratio, Oral Sugar Test, and Insulin Response Test Results in Horses.

    PubMed

    Bertin, F R; Taylor, S D; Bianco, A W; Sojka-Kritchevsky, J E

    2016-09-01

    Published descriptions of the oral sugar test (OST) and insulin response test (IRT) have been inconsistent when specifying the protocol for fasting horses before testing. The purpose of our study was to examine the effect of fasting duration on blood glucose concentration, blood insulin concentration, glucose/insulin ratio, OST, and IRT results in horses. Ten healthy adult horses. Both OST and IRT were performed on horses without fasting and after fasting for 3, 6, and 12 hours. Thus, 8 tests were performed per horse in a randomized order. Blood collected at the initial time point of the OST was analysed for both blood glucose and serum insulin concentrations so that baseline concentrations and the glucose/insulin ratio could be determined. Unless fasted, horses had free-choice access to grass hay. There was no effect of fasting and fasting duration on blood glucose concentration, serum insulin concentration, glucose/insulin ratio, or the OST. Response to insulin in the IRT was decreased in fasted horses. The effect increased with fasting duration, with the least response to insulin administration after a 12-hour fast. These data indicate that insulin sensitivity is not a fixed trait in horses. Fasting a horse is not recommended for a glucose/insulin ratio or IRT, and fasting a horse for 3 hours is recommended for the OST. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  1. A study on detection of glucose concentration using changes in color coordinates.

    PubMed

    Kim, Ji-Sun; Oh, Han-Byeol; Kim, A-Hee; Kim, Jun-Sik; Lee, Eun-Suk; Baek, Jin-Young; Lee, Ki Sung; Chung, Soon-Cheol; Jun, Jae-Hoon

    2017-01-02

    Glucose concentration is closely related to the metabolic activity of cells and it is the most important substance as the energy source of a living body which plays an important role in the human body. This paper proposes an optical method that can measure the concentration of glucose. The change in glucose concentration was observed by using CIE diagram, and wavelength and purity values were detected. Also, even small changes in glucose concentration can be evaluated through mathematical modeling. This system is simple, economical, and capable of quantifying optical signals with numerical values for glucose sensing. This method can be applicable to the clinical field that examines diabetes mellitus or metabolic syndrome.

  2. Evaluation of blood glucose concentration measurement using photoacoustic spectroscopy in near-infrared region

    NASA Astrophysics Data System (ADS)

    Namita, Takeshi; Sato, Mitsuki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2017-03-01

    Diabetes, a typical lifestyle-related disease, is an important disease presenting risks of various complications such as retinopathy, kidney failure, and nervous neuropathy. To treat diabetes, regular and continual self-measurement of blood glucose concentrations is necessary to maintain blood glucose levels and to prevent complications. Usually, daily measurements are taken using invasive methods such as finger-prick blood sampling. Some non-invasive optical techniques have been proposed to reduce pain and infection risk, however, few practical techniques exist today. To realize highly accurate and practical measurement of blood glucose concentrations, the feasibility of a photoacoustic method using near-infrared light was evaluated. A photoacoustic signal from a solution of glucose in water (+0-5 g/dl) or equine blood (+0-400 mg/dl) was measured using a hydrophone (9 mm diameter) at 800-1800 nm wavelengths. We investigated the relation between the glucose solution concentration and the photoacoustic signal intensity or peak position of the received photoacoustic signal (i.e. speed of sound in solutions). Results show that the signal intensity and sound speed of the glucose solution increase with increased glucose concentration for wavelengths at which light absorbance of glucose is high. For quantitative estimation of the glucose solution concentration, the photoacoustic signal intensity ratio between two wavelengths, at which dependence of the signal intensity on glucose concentration is high and low, was calculated. Results confirmed that the signal intensity ratios increase linearly with the glucose concentration. These analyses verified the feasibility of glucose level estimation using photoacoustic measurement in the near-infrared region.

  3. Conjoint regulation of glucagon concentrations via plasma insulin and glucose in dairy cows.

    PubMed

    Zarrin, M; Wellnitz, O; Bruckmaier, R M

    2015-04-01

    Insulin and glucagon are glucoregulatory hormones that contribute to glucose homeostasis. Plasma insulin is elevated during normoglycemia or hyperglycemia and acts as a suppressor of glucagon secretion. We have investigated if and how insulin and glucose contribute to the regulation of glucagon secretion through long term (48 h) elevated insulin concentrations during simultaneous hypoglycemia or euglycemia in mid-lactating dairy cows. Nineteen Holstein dairy cows were randomly assigned to 3 treatment groups: an intravenous insulin infusion (HypoG, n = 5) to decrease plasma glucose concentrations (2.5 mmol/L), a hyperinsulinemic-euglycemic clamp to study effects of insulin at simultaneously normal glucose concentrations (EuG, n = 6) and a 0.9% saline infusion (NaCl, n = 8). Plasma glucose was measured at 5-min intervals, and insulin and glucose infusion rates were adjusted accordingly. Area under the curve of hourly glucose, insulin, and glucagon concentrations on day 2 of infusion was evaluated by analysis of variance with treatments as fixed effect. Insulin infusion caused an increase of plasma insulin area under the curve (AUC)/h in HypoG (41.9 ± 8.1 mU/L) and EuG (57.8 ± 7.8 mU/L) compared with NaCl (13.9 ± 1.1 mU/L; P < 0.01). Induced hyperinsulinemia caused a decline of plasma glucose AUC/h to 2.3 ± 0.1 mmol/L in HypoG (P < 0.01), whereas plasma glucose AUC/h remained unchanged in EuG (3.8 ± 0.2 mmol/L) and NaCl (4.1 ± 0.1 mmol/L). Plasma glucagon AUC/h was lower in EuG (84.0 ± 6.3 pg/mL; P < 0.05) and elevated in HypoG (129.0 ± 7.0 pg/mL; P < 0.01) as compared with NaCl (106.1 ± 5.4 pg/mL). The results show that intravenous insulin infusion induces elevated glucagon concentrations during hypoglycemia, although the same insulin infusion reduces glucagon concentrations at simultaneously normal glucose concentrations. Thus, insulin does not generally have an inhibitory effect on glucagon concentrations. If simultaneously glucose is low and insulin is

  4. Jump neural network for real-time prediction of glucose concentration.

    PubMed

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio

    2015-01-01

    Prediction of the future value of a variable is of central importance in a wide variety of fields, including economy and finance, meteorology, informatics, and, last but not least important, medicine. For example, in the therapy of Type 1 Diabetes (T1D), in which, for patient safety, glucose concentration in the blood should be maintained in a defined normoglycemic range, the ability to forecast glucose concentration in the short-term (with a prediction horizon of around 30 min) might be sufficient to reduce the incidence of hypoglycemic and hyperglycemic events. Neural Network (NN) approaches are suitable for prediction purposes because of their ability to model nonlinear dynamics and handle in their inputs signals coming from different domains. In this chapter we illustrate the design of a jump NN glucose prediction algorithm that exploits past glucose concentration data, measured in real-time by a minimally invasive continuous glucose monitoring (CGM) sensor, and information on ingested carbohydrates, supplied by the patient himself or herself. The methodology is assessed by tuning the NN on data of ten T1D individuals and then testing it on a dataset of ten different subjects. Results with a prediction horizon of 30 min show that prediction of glucose concentration in T1D via NN is feasible and sufficiently accurate. The average time anticipation obtained is compatible with the generation of preventive hypoglycemic and hyperglycemic alerts and the improvement of artificial pancreas performance.

  5. High-resolution surface plasmon resonance biosensing system for glucose concentration detecting

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Dachao; Yu, Haixia; Huang, Fuxiang; Hu, Xiaotang; Xu, Kexin

    2007-02-01

    Glucose is one of the most important substances widely contained in organism and food, thus people pay much attention in researching and improving the way for the detection of glucose. Traditional ways, although precise and reliable when in high concentration and large amount of sample, have unconvincing performance in detecting mixture and solution with low concentration and micro-volume. As far as the ideal way is concerned, it should not only specifically detect the glucose and exclude other components in solution, but also meet the need of micro-sample (approximately 5μL) and low concentration. We introduced D-galactose/D-glucose Binding Protein (GGBP) - a kind of protein which has the ability to absorb the glucose specifically, to construct a novel surface plasmon resonance measuring system. By immobilizing GGBP onto the surface of the SPR sensor, we develop a new detecting system for glucose testing in mixed solution. The experimental result indicates that compared with 0.1g/L before immobilization of GGBP, the detecting limit or the resolution of glucose testing rises to 1mg/L after the immobilization, the system succeeds in distinguishing glucose from other components in mixture, which reveals a bright future to apply SPR in the minimally invasive diabetes testing and food quality control.

  6. Plasma Insulin Levels and Hypoglycemia Affect Subcutaneous Interstitial Glucose Concentration.

    PubMed

    Moscardó, Vanessa; Bondia, Jorge; Ampudia-Blasco, Francisco J; Fanelli, Carmine G; Lucidi, Paola; Rossetti, Paolo

    2018-04-01

    Continuous glucose monitoring (CGM) accuracy during hypoglycemia is suboptimal. This might be partly explained by insulin or hypoglycemia-induced changes in the plasma interstitial subcutaneous (SC) fluid glucose gradient. The aim of the present study was to assess the role of plasma insulin (PI) and hypoglycemia itself in the plasma and interstitial SC fluid glucose concentration in patients with type 1 diabetes mellitus. Eleven subjects with type 1 diabetes (age 36.5 ± 9.1 years, HbA 1c 7.9 ± 0.4% [62.8 ± 2.02 mmol/mol]; mean ± standard deviation) were evaluated under hyperinsulinemic euglycemia and hypoglycemia. Each subject underwent two randomized crossover clamps with either a primed 0.3 (low insulin) or 1 mU/(kg·min) (high insulin) insulin infusion. The raw CGM signal was normalized with median preclamp values to obtain a standardized measure of the interstitial glucose (IG) concentration before statistical analysis. The mean PI concentration was greater in high insulin studies (HISs) versus low insulin studies (LISs) (412.89 ± 13.63 vs. 177.22 ± 10.05 pmol/L). During hypoglycemia, glucagon, adrenaline, free fatty acids, glycerol, and beta-OH-butyrate were higher in the LIS (P < 0.0001). Likewise, the IG concentration was significantly different (P < 0.0001). This was due to lower IG concentration than plasma glucose (PG) concentration during the euglycemic hyperinsulinemic phases in the HIS. In contrast, no difference was observed during hypoglycemia. This was the result of an unchanged PG/IG gradient during the entire LIS, while in the HIS, this gradient increased during the hyperinsulinemic euglycemia phase. Both PI levels and hypoglycemia affect the relationship between IG and PG concentration. ClinicalTrials.gov Identifier: NCT01714895.

  7. An In-Line Photonic Biosensor for Monitoring of Glucose Concentrations

    PubMed Central

    Al-Halhouli, Ala'aldeen; Demming, Stefanie; Alahmad, Laila; LIobera, Andreu; Büttgenbach, Stephanus

    2014-01-01

    This paper presents two PDMS photonic biosensor designs that can be used for continuous monitoring of glucose concentrations. The first design, the internally immobilized sensor, consists of a reactor chamber, micro-lenses and self-alignment structures for fiber optics positioning. This sensor design allows optical detection of glucose concentrations under continuous glucose flow conditions of 33 μL/h based on internal co-immobilization of glucose oxidase (GOX) and horseradish peroxidase (HRP) on the internal PDMS surface of the reactor chamber. For this design, two co-immobilization methods, the simple adsorption and the covalent binding (PEG) methods were tested. Experiments showed successful results when using the covalent binding (PEG) method, where glucose concentrations up to 5 mM with a coefficient of determination (R2) of 0.99 and a limit of detection of 0.26 mM are detectable. The second design is a modified version of the internally immobilized sensor, where a microbead chamber and a beads filling channel are integrated into the sensor. This modification enabled external co-immobilization of enzymes covalently onto functionalized silica microbeads and allows binding a huge amount of HRP and GOX enzymes on the microbeads surfaces which increases the interaction area between immobilized enzymes and the analyte. This has a positive effect on the amount and rate of chemical reactions taking place inside the chamber. The sensor was tested under continuous glucose flow conditions and was found to be able to detect glucose concentrations up to 10 mM with R2 of 0.98 and a limit of detection of 0.7 mM. Such results are very promising for the application in photonic LOC systems used for online analysis. PMID:25157552

  8. Exogenous glucagon-like peptide-1 attenuates glucose absorption and reduces blood glucose concentration after small intestinal glucose delivery in critical illness.

    PubMed

    Miller, Asaf; Deane, Adam M; Plummer, Mark P; Cousins, Caroline E; Chapple, Lee-Anne S; Horowitz, Michael; Chapman, Marianne J

    2017-03-01

    To evaluate the effect of exogenous glucagonlike peptide-1 (GLP-1) on small intestinal glucose absorption and blood glucose concentrations during critical illness. A prospective, blinded, placebo-controlled, cross-over, randomised trial in a mixed medical-surgical adult intensive care unit, with 12 mechanically ventilated critically ill patients, who were suitable for receiving small intestinal nutrient. On consecutive days, in a randomised order, participants received intravenous GLP-1 (1.2 pmol/ kg/min) or placebo (0.9% saline) as a continuous infusion over 270 minutes. After 6 hours of fasting, intravenous infusions of GLP-1 or placebo began at T = -30 min (in which T = time), with the infusion maintained at a constant rate until study completion at T = 240 min. At T = 0 min, a 100 mL bolus of mixed liquid nutrient meal (1 kcal/mL) containing 3 g of 3-O-methyl-D-gluco-pyranose (3-OMG), a marker of glucose absorption, was administered directly into the small intestine, via a post-pyloric catheter, over 6 minutes. Blood samples were taken at regular intervals for the measurement of plasma glucose and 3-OMG concentrations. Intravenous GLP-1 attenuated initial small intestinal glucose absorption (mean area under the curve [AUC] 0-30 for 3-OMG: GLP-1 group, 4.4 mmol/L/min [SEM, 0.9 mmol/L/min] v placebo group, 6.5 mmol/L/min [SEM, 1.0 mmol/L/min]; P = 0.01), overall small intestinal glucose absorption (mean AUC 0-240 for 3-OMG: GLP-1, 68.2 mmol/L/ min [SEM, 4.7 mmol/L/min] v placebo, 77.7 mmol/L/min [SEM, 4.4 mmol/lLmin]; P = 0.02), small intestinal glucose absorption and overall blood glucose concentration (mean AUC 0-240 for blood glucose: GLP-1, 2062 mmol/L/min [SEM, 111 mmol/L/min] v placebo 2328 mmol/L/min [SEM, 145 mmol/L/min]; P = 0.005). Short-term administration of exogenous GLP-1 reduces small intestinal glucose absorption for up to 4 hours during critical illness. This is likely to be an additional mechanism for the glucose-lowering effect of this agent.

  9. Photonic crystal based biosensor for the detection of glucose concentration in urine

    NASA Astrophysics Data System (ADS)

    Robinson, Savarimuthu; Dhanlaksmi, Nagaraj

    2017-03-01

    Photonic sensing technology is a new and accurate measurement technology for bio-sensing applications. In this paper, a two-dimensional photonic crystal ring resonator based sensor is proposed and designed to detect the glucose concentration in urine over the range of 0 gm/dl-15 gm/dl. The proposed sensor is consisted of two inverted "L" waveguides and a ring resonator. If the glucose concentration in urine is varied, the refractive index of the urine is varied, which in turn the output response of sensor will be varied. By having the aforementioned principle, the glucose concentration in urine, glucose concentration in blood, albumin, urea, and bilirubin concentration in urine are predicted. The size of the proposed sensor is about 11.4 µm×11.4 µm, and the sensor can predict the result very accurately without any delay, hence, this attempt could be implemented for medical applications.

  10. Effects of exposure to malathion on blood glucose concentration: a meta-analysis.

    PubMed

    Ramirez-Vargas, Marco Antonio; Flores-Alfaro, Eugenia; Uriostegui-Acosta, Mayrut; Alvarez-Fitz, Patricia; Parra-Rojas, Isela; Moreno-Godinez, Ma Elena

    2018-02-01

    Exposure to malathion (an organophosphate pesticide widely used around the world) has been associated with alterations in blood glucose concentration in animal models. However, the results are inconsistent. The aim of this meta-analysis was to evaluate whether malathion exposure can disturb the concentrations of blood glucose in exposed rats. We performed a literature search of online databases including PubMed, EBSCO, and Google Scholar and reviewed original articles that analyzed the relation between malathion exposure and glucose levels in animal models. The selection of articles was based on inclusion and exclusion criteria. The database search identified thirty-five possible articles, but only eight fulfilled our inclusion criteria, and these studies were included in the meta-analysis. The effect of malathion on blood glucose concentration showed a non-monotonic dose-response curve. In addition, pooled analysis showed that blood glucose concentrations were 3.3-fold higher in exposed rats than in the control group (95% CI, 2-5; Z = 3.9; p < 0.0001) in a random-effect model. This result suggested that alteration of glucose homeostasis is a possible mechanism of toxicity associated with exposure to malathion.

  11. Modest changes in cerebral glucose metabolism in patients with sleep apnea syndrome after continuous positive airway pressure treatment.

    PubMed

    Ju, Gawon; Yoon, In-Young; Lee, Sang Don; Kim, Yu Kyeong; Yoon, Eunjin; Kim, Jeong-Whun

    2012-01-01

    Decreased cerebral glucose metabolism has been reported in patients with sleep apnea syndrome (SAS), but it has yet to be decided whether cerebral glucose metabolism in SAS can be altered by continuous positive airway pressure (CPAP) treatment. The aim of this study was to evaluate cerebral glucose metabolism changes in patients with SAS after CPAP treatment. Thirteen middle-aged male patients with severe SAS [mean age 49.3 ± 7.2 years, mean apnea-hypopnea index (AHI) 60.4 ± 21.2] and 13 male controls (mean age 46.0 ± 9.4 years, mean AHI 4.1 ± 3.7) participated in the study. All 26 study subjects underwent fluorodeoxyglucose-positron emission tomography (FDG-PET), but SAS patients underwent FDG-PET twice, namely before and 3 months after acceptable CPAP usage. Significant hypometabolism was observed in the bilateral prefrontal areas, left cuneus and left cingulate cortex of SAS patients before CPAP, and after CPAP, significant increases in cortical glucose metabolism were observed in the bilateral precentral gyri and left anterior cingulate cortex. However, these improvements in hypometabolism in both areas were insufficient to reach control levels, and hypometabolism in other regions persisted after CPAP treatment. Reduced cerebral glucose metabolism in the precentral gyrus and the cingulate cortex in patients with SAS was modestly improved by acceptable CPAP treatment. The findings of this study suggest that acceptable CPAP usage cannot completely reverse reduced cerebral glucose metabolism in SAS patients. Further studies are required to evaluate the long-term effects of CPAP treatment with total compliance. Copyright © 2012 S. Karger AG, Basel.

  12. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Tseng-Lin; Lo, Yu-Lung; Liao, Chia-Chi; Phan, Quoc-Hung

    2018-04-01

    A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.

  13. Effect of feeding glucose, fructose, and inulin on blood glucose and insulin concentrations in normal ponies and those predisposed to laminitis.

    PubMed

    Borer, K E; Bailey, S R; Menzies-Gow, N J; Harris, P A; Elliott, J

    2012-09-01

    Identification of ponies (Equus caballus) at increased risk of pasture-associated laminitis would aid in the prevention of the disease. Insulin resistance has been associated with laminitis and could be used to identify susceptible individuals. Insulin resistance may be diagnosed by feeding supplementary water-soluble carbohydrate (WSC) and measuring blood glucose and insulin concentrations. The aim of this study was to assess the glycemic and insulinemic responses of 7 normal (NP) and 5 previously laminitic (PLP), mixed breed, native UK ponies fed glucose, fructose, and inulin [1 g/(kg·d) for 3 d] or no supplementary WSC (control) in spring and fall after a 7-d adaptation to a pasture or hay diet. Blood samples were taken for 12 h after feeding on each day, and baseline and peak concentrations and area under the curve (AUC) for glucose and insulin were recorded. Linear mixed models were used for statistical analysis. Differences between PLP and NP groups were most marked after glucose feeding with differences in peak glucose (P = 0.02) and peak insulin (P = 0.016) concentrations. Season and diet adaptation also affected results. Peak concentrations of glucose and insulin occurred 2 to 4 h after WSC feeding. Peak insulin concentration was greater and more variable in fall, particularly in PLP adapted to fall pasture. Baseline glucose and insulin concentrations varied between individuals and with season and diet adaptation but were not greater in PLP than NP. Insulin AUC was greater in PLP than NP after feeding both glucose and fructose (P = 0.017), but there were no differences between PLP and NP in glucose AUC. Glycemic and insulinemic changes were less (P ≤ 0.05) after feeding fructose than glucose, although differences between PLP and NP were still evident. Minimal changes in glucose and insulin concentrations occurred after inulin feeding. Measurement of peak insulin 2 h after feeding of a single dose of glucose (1 g/kg) may be a simple and practical way to

  14. A high-accuracy measurement method of glucose concentration in interstitial fluid based on microdialysis

    NASA Astrophysics Data System (ADS)

    Li, Dachao; Xu, Qingmei; Liu, Yu; Wang, Ridong; Xu, Kexin; Yu, Haixia

    2017-11-01

    A high-accuracy microdialysis method that can provide the reference values of glucose concentration in interstitial fluid for the accurate evaluation of non-invasive and minimally invasive continuous glucose monitoring is reported in this study. The parameters of the microdialysis process were firstly optimized by testing and analyzing three main factors that impact microdialysis recovery, including the perfusion rate, temperature, and glucose concentration in the area surrounding the microdialysis probe. The precision of the optimized microdialysis method was then determined in a simulation system that was designed and established in this study to simulate variations in continuous glucose concentration in the human body. Finally, the microdialysis method was tested for in vivo interstitial glucose concentration measurement.

  15. Treatment with continuous positive airway pressure may affect blood glucose levels in nondiabetic patients with obstructive sleep apnea syndrome.

    PubMed

    Czupryniak, Leszek; Loba, Jerzy; Pawlowski, Maciej; Nowak, Dariusz; Bialasiewicz, Piotr

    2005-05-01

    Obstructive sleep apnea syndrome (OSAS) is often associated with impaired glucose metabolism. Data on the effects of OSAS treatment with continuous positive airway pressure (CPAP) on blood glucose and insulin resistance are conflicting. The study aimed at assessing the immediate effect of CPAP on glucose control measured with a continuous glucose monitoring system (CGMS). Nine non-diabetes subjects with OSAS (mean age 53.0 +/- 8.0 years; body mass index 34.8 +/- 5.3 kg/m2) underwent 2 overnight polysomnographic examinations: a diagnostic study and one with CPAP treatment. Continuous glucose monitoring system (CGMS) was applied overnight on both occasions. Glucose metabolism was assessed with a 75-g oral glucose tolerance test, plasma insulin and homeostatic model assessment of insulin resistance (HOMA-IR) index. The mean (+/- SD) apnoea-hypopnea index (AHI) at diagnostic polysomnography was 54.3 +/- 29.3 (range 16-81). Fasting plasma insulin levels in patients with OSAS was 84.3 +/- 43.4 pM at baseline, and the HOMA-IR was 3.6 +/- 2.2. CPAP treatment in the subjects with OSAS resulted in a significant reduction in the AHI to 4.5 +/- 7.1. All of the major saturation parameters improved significantly on CPAP. CGMS showed mean glucose values significantly higher during the CPAP night than during the diagnostic night: 80 +/- 11 mg/dL versus 63 +/- 7 mg/dL (P < .01). Fasting insulin and HOMA-IR measured after the CPAP night tended to be higher than at baseline (98.4 +/- 51.0 pmol vs 84.3 +/- 43.4 pmol and 3.9 pmol +/- 2.6 vs 3.6 +/- 2.2 pmol, respectively, P > .05). CPAP treatment in nondiabetic obese patients with OSAS may have an immediate elevating effect on blood glucose.

  16. Positive Allosteric Modulation of the Calcium-sensing Receptor by Physiological Concentrations of Glucose*

    PubMed Central

    Medina, Johan; Nakagawa, Yuko; Nagasawa, Masahiro; Fernandez, Anny; Sakaguchi, Kazushige; Kitaguchi, Tetsuya; Kojima, Itaru

    2016-01-01

    The calcium-sensing receptor (CaSR) is activated by various cations, cationic compounds, and amino acids. In the present study we investigated the effect of glucose on CaSR in HEK293 cells stably expressing human CaSR (HEK-CaSR cells). When glucose concentration in the buffer was raised from 3 to 25 mm, a rapid elevation of cytoplasmic Ca2+ concentration ([Ca2+]c) was observed. This elevation was immediate and transient and was followed by a sustained decrease in [Ca2+]c. The effect of glucose was detected at a concentration of 4 mm and reached its maximum at 5 mm. 3-O-Methylglucose, a non-metabolizable analogue of glucose, reproduced the effect of glucose. Sucrose also induced an elevation of [Ca2+]c in HEK-CaSR cells. Similarly, sucralose was nearly as effective as glucose in inducing elevation of [Ca2+]c. Glucose was not able to increase [Ca2+]c in the absence of extracellular Ca2+. The effect of glucose on [Ca2+]c was inhibited by NPS-2143, an allosteric inhibitor of CaSR. In addition, NPS-2143 also inhibited the [Ca2+]c responses to sucralose and sucrose. Glucose as well as sucralose decreased cytoplasmic cAMP concentration in HEK-CaSR cells. The reduction of cAMP induced by glucose was blocked by pertussis toxin. Likewise, sucralose reduced [cAMP]c. Finally, glucose increased [Ca2+]c in PT-r parathyroid cells and in Madin-Darby canine kidney cells, both of which express endogenous CaSR. These results indicate that glucose acts as a positive allosteric modulator of CaSR. PMID:27613866

  17. Circulating catecholamine and glucose concentrations in Japanese toads (Bufo japonicus) during the breeding season.

    PubMed

    Wilson, J X; Sawai, H; Kikuchi, M; Kubokawa, K; Ishii, S

    1995-06-01

    We investigated the relationship between catecholamine neurohormones and glucose during seasonal reproductive activity in Japanese toads (Bufo japonicus). Field studies found that plasma epinephrine concentration increased as toads migrated to their breeding ponds, where amplexus most frequently took place. Blood glucose concentration also increased as toads arrived at the ponds, even though these animals did not eat during the breeding season, and there was a positive correlation between epinephrine and glucose levels. Blood glucose concentration was higher in amplectic than in solitary males, whereas this relationship did not occur in females. For both males and females, plasma epinephrine concentration was elevated during amplexus. The plasma concentration of norepinephrine was lower than that of epinephrine and did not correlate with either the proximity of the animal to the breeding ponds or the blood glucose concentration. Laboratory experiments showed that systemic injection of [Trp7,Leu8]gonadotropin-releasing hormone (sGnRH) increased plasma epinephrine to levels characteristic of amplectic feral toads. These results suggest that a physiological role of GnRH-like peptides may be to stimulate epinephrine secretion and consequently to increase glucose production in toads under the starvation conditions associated with the breeding migration.

  18. Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae.

    PubMed

    Guidi, Francesca; Francesca, Guidi; Magherini, Francesca; Francesca, Magherini; Gamberi, Tania; Tania, Gamberi; Borro, Marina; Marina, Borro; Simmaco, Maurizio; Maurizio, Simmaco; Modesti, Alessandra; Alessandra, Modesti

    2010-07-01

    We performed a proteomic study to understand how Saccharomyces cerevisiae adapts its metabolism during the exponential growth on three different concentrations of glucose; this information will be necessary to understand yeast carbon metabolism in different environments. We induced a natural diauxic shift by growing yeast cells in glucose restriction thus having a fast and complete glucose exhaustion. We noticed differential expressions of groups of proteins. Cells in high glucose have a decreased growth rate during the initial phase of fermentation; in glucose restriction and in high glucose we found an over-expression of a protein (Peroxiredoxin) involved in protection against oxidative stress insult. The information obtained in our study validates the application of a proteomic approach for the identification of the molecular bases of environmental variations such as fermentation in high glucose and during a naturally induced diauxic shift. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Modelling the growth and ethanol production of Brettanomyces bruxellensis at different glucose concentrations.

    PubMed

    Aguilar-Uscanga, M G; Garcia-Alvarado, Y; Gomez-Rodriguez, J; Phister, T; Delia, M L; Strehaiano, P

    2011-08-01

    To study the effect of glucose concentrations on the growth by Brettanomyces bruxellensis yeast strain in batch experiments and develop a mathematical model for kinetic behaviour analysis of yeast growing in batch culture. A Matlab algorithm was developed for the estimation of model parameters. Glucose fermentation by B. bruxellensis was studied by varying its concentration (5, 9.3, 13.8, 16.5, 17.6 and 21.4%). The increase in substrate concentration up to a certain limit was accompanied by an increase in ethanol and biomass production; at a substrate concentration of 50-138 g l(-1), the ethanol and biomass production were 24, 59 and 6.3, 11.4 g l(-1), respectively. However, an increase in glucose concentration to 165 g l(-1) led to a drastic decrease in product formation and substrate utilization. The model successfully simulated the batch kinetic observed in all cases. The confidence intervals were also estimated at each phase at a 0.95 probability level in a t-Student distribution for f degrees of freedom. The maximum ethanol and biomass yields were obtained with an initial glucose concentration of 138 g l(-1). These experiments illustrate the importance of using a mathematical model applied to kinetic behaviour on glucose concentration by B. bruxellensis. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Influence of artificial sweetener on human blood glucose concentration.

    PubMed

    Skokan, Ilse; Endler, P Christian; Wulkersdorfer, Beatrix; Magometschnigg, Dieter; Spranger, Heinz

    2007-10-05

    Artificial sweeteners, such as saccharin or cyclamic acid are synthetically manufactured sweetenings. Known for their low energetic value they serve especially diabetic and adipose patients as sugar substitutes. It has been hypothesized that the substitution of sugar with artificial sweeteners may induce a decrease of the blood glucose. The aim of this study was to determine the reliability of this hypothesis by comparing the influence of regular table sugar and artificial sweeteners on the blood glucose concentration. In this pilot-study 16 patients were included suffering from adiposity, pre-diabetes and hypertension. In the sense of a cross-over design, three test trials were performed at intervals of several weeks. Each trial was followed by a test free interval. Within one test trial each patient consumed 150 ml test solution (water) that contained either 6 g of table sugar ("Kandisin") with sweetener free serving as control group. Tests were performed within 1 hr after lunch to ensure conditions comparable to patients having a desert. Every participant had to determine their blood glucose concentration immediately before and 5, 15, 30 and 60 minutes after the intake of the test solution. For statistics an analysis of variance was performed. The data showed no significant changes in the blood glucose concentration. Neither the application of sugar (F(4;60) = 1.645; p = .175) nor the consumption of an artificial sweetener (F(2.068;31.023) = 1.551; p > .05) caused significant fluctuations in the blood sugar levels. Over a time frame of 60 minutes in the control group a significant decrease of the blood sugar concentration was found (F(2.457;36.849) = 4.005; p = .020) as a physiological reaction during lunch digestion.

  1. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  2. Vitreous Fluid and/or Urine Glucose Concentrations in 1,335 Civil Aviation Accident Pilot Fatalities

    DTIC Science & Technology

    2008-05-01

    glucose, and in those cases wherein glucose levels are elevated, blood hemoglobin A1c ( HbA1c ) is measured. These analyses are conducted to monitor...diabetes. In this study, the prevalence of elevated glucose concentrations in fatally injured civilian pilots is evaluated. Glucose and HbA1c are measured...whom samples were received during 1998–2005 and whose vitreous fluid and/or urine glucose concentrations were measured. HbA1c levels and information

  3. Cutpoints for screening blood glucose concentrations in healthy senior cats.

    PubMed

    Reeve-Johnson, Mia K; Rand, Jacquie S; Vankan, Dianne; Anderson, Stephen T; Marshall, Rhett; Morton, John M

    2017-12-01

    Objectives The objectives of this study were to determine the reference interval for screening blood glucose in senior cats, to apply this to a population of obese senior cats, to compare screening and fasting blood glucose, to assess whether screening blood glucose is predicted by breed, body weight, body condition score (BCS), behaviour score, fasting blood glucose and/or recent carbohydrate intake and to assess its robustness to changes in methodology. Methods The study included a total of 120 clinically healthy client-owned cats aged 8 years and older of varying breeds and BCSs. Blood glucose was measured at the beginning of the consultation from an ear/paw sample using a portable glucose meter calibrated for cats, and again after physical examination from a jugular sample. Fasting blood glucose was measured after overnight hospitalisation and fasting for 18-24 h. Results The reference interval upper limit for screening blood glucose was 189 mg/dl (10.5 mmol/l). Mean screening blood glucose was greater than mean fasting glucose. Breed, body weight, BCS, behaviour score, fasting blood glucose concentration and amount of carbohydrate consumed 2-24 h before sampling collectively explained only a small proportion of the variability in screening blood glucose. Conclusions and relevance Screening blood glucose measurement represents a simple test, and cats with values from 117-189 mg/dl (6.5-10.5 mmol/l) should be retested several hours later. Cats with initial screening blood glucose >189 mg/dl (10.5 mmol/l), or a second screening blood glucose >116 mg/dl (6.4 mmol/l) several hours after the first, should have fasting glucose and glucose tolerance measured after overnight hospitalisation.

  4. A Biophysical Basis for Mucus Solids Concentration as a Candidate Biomarker for Airways Disease

    PubMed Central

    Hill, David B.; Vasquez, Paula A.; Mellnik, John; McKinley, Scott A.; Vose, Aaron; Mu, Frank; Henderson, Ashley G.; Donaldson, Scott H.; Alexis, Neil E.; Boucher, Richard C.; Forest, M. Gregory

    2014-01-01

    In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%), is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE) cultures. Guided by sputum from healthy (1.5–2.5 wt%) and diseased (COPD, CF; 5 wt%) subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel). These findings have significant implications for: (1) penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2) diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions. PMID:24558372

  5. Effect of glucose concentration on peritoneal inflammatory cytokines in continuous ambulatory peritoneal dialysis patients.

    PubMed Central

    Sayarlioglu, Hayriye; Topal, Cevat; Sayarlioglu, Mehmet; Dulger, Haluk; Dogan, Ekrem; Erkoc, Reha

    2004-01-01

    OBJECTIVE: It is known that glucose concentrations of peritoneal dialysis solutions are detrimental to the peritoneal membrane. In order to determine the effect of glucose concentration on cytokine levels of peritoneal fluid of continuous ambulatory peritoneal dialysis (CAPD) patients, a cross-sectional study was performed. METHODS: Nine non-diabetic CAPD patients participated in two 8-h dwell sessions of overnight exchanges in consecutive days, with 1.36% and 3.86% glucose containing peritoneal dialysis solutions (Baxter-Eczacibas). Peritoneal dialysis fluid tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 levels were measured. RESULTS: TNF-alpha levels after 1.36% and 3.86% glucose used dwells were 23+/-14 pg/ml and 28+/-4 pg/ml, respectively (p=0.78). The IL-6 levels were 106+/-57 pg/ml and 115+/-63 pg/ml (p=0.81), respectively. CONCLUSION: In our in vivo study we found that the glucose concentration of the conventional lactate-based CAPD solution has no effect on basal IL-6 and TNF-alpha levels of peritoneal fluid. Further in vivo studies with non-lactate-based CAPD solutions are needed in order to determine the effect of glucose concentration per se on cytokine release. PMID:15203553

  6. Elevated Airway Purines in COPD

    PubMed Central

    Lazaar, Aili L.; Bordonali, Elena; Qaqish, Bahjat; Boucher, Richard C.

    2011-01-01

    Background: Adenosine and related purines have established roles in inflammation, and elevated airway concentrations are predicted in patients with COPD. However, accurate airway surface purine measurements can be confounded by stimulation of purine release during collection of typical respiratory samples. Methods: Airway samples were collected noninvasively as exhaled breath condensate (EBC) from 36 healthy nonsmokers (NS group), 28 healthy smokers (S group), and 89 subjects with COPD (29 with GOLD [Global Initiative for Chronic Obstructive Lung Disease] stage II, 29 with GOLD stage III, and 31 with GOLD stage IV) and analyzed with mass spectrometry for adenosine, adenosine monophosphate (AMP), and phenylalanine, plus urea as a dilution marker. Variable dilution of airway secretions in EBC was controlled using ratios to urea, and airway surface concentrations were calculated using EBC to serum urea-based dilution factors. Results: EBC adenosine to urea ratios were similar in NS (0.20 ± 0.21) and S (0.22 ± 0.20) groups but elevated in those with COPD (0.32 ± 0.30, P < .01 vs NS). Adenosine to urea ratios were highest in the most severely affected cohort (GOLD IV, 0.35 ± 0.34, P < .01 vs NS) and negatively correlated with FEV1 (r = −0.27, P < .01). Elevated AMP to urea ratios were also observed in the COPD group (0.58 ± 0.97 COPD, 0.29 ± 0.35 NS, P < .02), but phenylalanine to urea ratios were similar in all groups. Airway surface adenosine concentrations calculated in a subset of subjects were 3.2 ± 2.7 μM in those with COPD (n = 28) relative to 1.7 ± 1.5 μM in the NS group (n = 16, P < .05). Conclusions: Airway purines are present on airway surfaces at physiologically significant concentrations, are elevated in COPD, and correlate with markers of COPD severity. Purinergic signaling pathways are potential therapeutic targets in COPD, and EBC purines are potential noninvasive biomarkers. PMID:21454402

  7. Study on the mechanism of human blood glucose concentration measuring using mid-infrared spectral analysis technology

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    2016-10-01

    All forms of diabetes increase the risk of long-term complications. Blood glucose monitoring is of great importance for controlling diabetes procedure, preventing the complications and improving the patient's life quality. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. The mid-infrared spectral region contains strong characteristic and well-defined absorption bands. Therefore, mid-infrared provides an opportunity for monitoring blood glucose invasively with only a few discrete bonds. Although the blood glucose concentration measurement using mid-infrared spectroscopy has a lot of advantages, the disadvantage is also obvious. The absorption in this infrared region is fundamental molecular group vibration. Absorption intensity is very strong, especially for biological molecules. In this paper, it figures out that the osmosis rate of glucose has a certain relationship with the blood glucose concentration. Therefore, blood glucose concentration could be measured indirectly by measuring the glucose exudate in epidermis layer. Human oral glucose tolerance tests were carried out to verify the correlation of glucose exudation in shallow layer of epidermis layer and blood glucose concentration. As it has been explained above, the mid-infrared spectral region contains well-defined absorption bands, the intensity of absorption peak around 1123 cm-1 was selected to measure the glucose and that around 1170 cm-1 was selected as reference. Ratio of absorption peak intensity was recorded for each set of measurement. The effect and importance of the cleaning the finger to be measured before spectrum measuring are discussed and also verified by experiment.

  8. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit.

    PubMed

    Poitout, V; Moatti-Sirat, D; Reach, G; Zhang, Y; Wilson, G S; Lemonnier, F; Klein, J C

    1993-07-01

    We have developed a miniaturized glucose sensor which has been shown previously to function adequately when implanted in the subcutaneous tissue of rats and dogs. Following a glucose load, the sensor output increases, making it possible to calculate a sensitivity coefficient to glucose in vivo, and an extrapolated background current in the absence of glucose. These parameters are used for estimating at any time the apparent subcutaneous glucose concentration from the current. In the previous studies, this calibration was performed a posteriori, on the basis of the retrospective analysis of the changes in blood glucose and in the current generated by the sensor. However, for clinical application of the system, an on line estimation of glucose concentration would be necessary. Thus, this study was undertaken in order to assess the possibility of calibrating the sensor in real time, using a novel calibration procedure and a monitoring unit which was specifically designed for this purpose. This electronic device is able to measure, to filter and to store the current. During an oral glucose challenge, when a stable current is reached, it is possible to feed the unit with two different values of blood glucose and their corresponding times. The unit calculates the in vivo parameters, transforms every single value of current into an estimation of the glucose concentration, and then displays this estimation. In this study, 11 sensors were investigated of which two did not respond to glucose. In the other nine trials, the volunteers were asked to record every 30 s what appeared on the display during the secondary decrease in blood glucose.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Blood concentrations of amino acids, glucose and lactate during experimental swine dysentery.

    PubMed

    Jonasson, R; Essén-Gustavsson, B; Jensen-Waern, M

    2007-06-01

    The aim of this study was to examine blood concentrations of amino acids, glucose and lactate in association with experimental swine dysentery. Ten pigs (approximately 23kg) were orally inoculated with Brachyspira hyodysenteriae. Eight animals developed muco-haemorrhagic diarrhoea with impaired general appearance, changes in white blood cell counts and increased levels of the acute phase protein Serum Amyolid A. Blood samples were taken before inoculation, during the incubation period, during clinical signs of dysentery and during recovery. Neither plasma glucose nor lactate concentrations changed during the course of swine dysentery, but the serum concentrations of gluconeogenic non-essential amino acids decreased during dysentery. This was mainly due to decreases in alanine, glutamine, serine and tyrosine. Lysine increased during dysentery and at the beginning of the recovery period, and leucine increased during recovery. Glutamine, alanine and tyrosine levels show negative correlations with the numbers of neutrophils and monocytes. In conclusion, swine dysentery altered the blood concentrations of amino acids, but not of glucose or lactate.

  10. A non-invasive photoacoustic and ultrasonic method for the measurement of glucose solution concentration

    NASA Astrophysics Data System (ADS)

    Zhao, Siwei; Tao, Wei; He, Qiaozhi; Zhao, Hui; Cao, Wenwu

    2017-03-01

    Diabetes mellitus (DM) is a chronic disease affecting nearly 400 million people worldwide. In order to manage the disease, patients need to monitor the blood glucose level by puncturing the finger several times a day, which is uncomfortable and inconvenient. We present here a potential non-invasive monitoring method based on the velocity of ultrasonic waves generated in glucose solution by the photoacoustic principal, which can recognize the glucose concentration down to 20mg/dL. In order to apply this method to warm bodies, we carefully designed the experiment and performed measurements from 30 °C to 50 °C to generate a set of calibration curves, which may be used by engineers to build devices. Most importantly, we have theoretically explained the relationship between the compressibility and the glucose concentration. Our results show that the compressibility of solution decreases with the glucose concentration, which clarified the controversy between theory and experiment results in the literature. The derived formula is generally validity, which can be used to nondestructively measure solution concentration for other types of solutions using photoacoustic principle.

  11. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study.

    PubMed

    Çuhadar, Serap; Köseoğlu, Mehmet; Çinpolat, Yasemin; Buğdaycı, Güler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Baseline (group I) serum pool with glucose concentration of 5.55 (5.44-5.61) mmol/L was prepared from patient sera. Spiking with 20% dextrose solution, sample groups were obtained with glucose concentrations: 17.09, 34.52, and 50.95 mmol/L (group II, III, IV, respectively). Total of 21 biochemistry analytes and thyroid tests were studied on Abbott c8000 and i2000sr with commercial reagents. Bias from baseline value was checked statistically and clinically. Creatinine increased significantly by 8.74%, 31.66%, 55.31% at groups II, III, IV, respectively with P values of < 0.001. At the median glucose concentration of 50.95 mmol/L, calcium, albumin, chloride and FT4 biased significantly clinically (-0.85%, 1.63%, 0.65%, 7.4% with P values 0.138, 0.214, 0.004, < 0.001, respectively). Remaining assays were free of interference. Among the numerous biochemical parameters studied, only a few parameters are affected by dramatically increased glucose concentration. The creatinine measurements obtained in human sera with the Jaffe alkaline method at high glucose concentrations should be interpreted with caution. Other tests that were affected with extremely high glucose concentrations were calcium, albumin, chloride and FT4, hence results should be taken into consideration in patients with poor diabetic control.

  12. Molecular Binding Contributes to Concentration Dependent Acrolein Deposition in Rat Upper Airways: CFD and Molecular Dynamics Analyses

    PubMed Central

    Hu, Qin; Si, Xiuhua April

    2018-01-01

    Existing in vivo experiments show significantly decreased acrolein uptake in rats with increasing inhaled acrolein concentrations. Considering that high-polarity chemicals are prone to bond with each other, it is hypothesized that molecular binding between acrolein and water will contribute to the experimentally observed deposition decrease by decreasing the effective diffusivity. The objective of this study is to quantify the probability of molecular binding for acrolein, as well as its effects on acrolein deposition, using multiscale simulations. An image-based rat airway geometry was used to predict the transport and deposition of acrolein using the chemical species model. The low Reynolds number turbulence model was used to simulate the airflows. Molecular dynamic (MD) simulations were used to study the molecular binding of acrolein in different media and at different acrolein concentrations. MD results show that significant molecular binding can happen between acrolein and water molecules in human and rat airways. With 72 acrolein embedded in 800 water molecules, about 48% of acrolein compounds contain one hydrogen bond and 10% contain two hydrogen bonds, which agreed favorably with previous MD results. The percentage of hydrogen-bonded acrolein compounds is higher at higher acrolein concentrations or in a medium with higher polarity. Computational dosimetry results show that the size increase caused by the molecular binding reduces the effective diffusivity of acrolein and lowers the chemical deposition onto the airway surfaces. This result is consistent with the experimentally observed deposition decrease at higher concentrations. However, this size increase can only explain part of the concentration-dependent variation of the acrolein uptake and acts as a concurrent mechanism with the uptake-limiting tissue ration rate. Intermolecular interactions and associated variation in diffusivity should be considered in future dosimetry modeling of high

  13. Myeloperoxidase concentration in bronchoalveolar lavage fluid from healthy horses and those with recurrent airway obstruction

    PubMed Central

    Art, Tatiana; Franck, Thierry; Lekeux, Pierre; de Moffarts, Brieuc; Couëtil, Laurent; Becker, Martine; Kohnen, Serge; Deby-Dupont, Ginette; Serteyn, Didier

    2006-01-01

    The aim of this work was to measure the myeloperoxidase (MPO) concentration in bronchoalveolar lavage (BAL) fluid collected from horses with recurrent airway obstruction (RAO), both in crisis and in remission, as well as from healthy horses. Seven horses with RAO were exposed to moldy hay until the maximum change in pleural pressure was greater than 1.5 kPa. At that point, BAL was performed, and the total cell counts and percentages in the fluid were immediately determined. To measure the MPO concentration in BAL-fluid supernatant, we used a specific enzyme-linked immunosorbent assay with polyclonal antibodies against equine MPO. The tests were repeated on the horses with RAO after they had spent 2 mo on pasture. Six healthy horses serving as controls underwent the same tests. The absolute and relative neutrophil counts and the MPO concentration in the BAL fluid were significantly greater in the horses with an RAO crisis than in the control horses. After 2 mo on pasture, the horses that had been in RAO crisis were clinically normal, and their neutrophil counts and MPO levels in BAL fluid had significantly decreased; during remission their neutrophil counts were not significantly different from those in the healthy horses, but their MPO concentration remained significantly higher. This study showed that determining the MPO concentration in a horse’s BAL fluid is technically possible and that during remission from RAO the concentration remains higher than normal. Thus, MPO may be a marker of neutrophil presence and activation in the lower airways. PMID:17042382

  14. High glucose concentrations attenuate hypoxia-inducible factor-1{alpha} expression and signaling in non-tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehne, Nathalie, E-mail: dehne@biochem.uni-frankfurt.de; Hintereder, Gudrun, E-mail: Gudrun.Hintereder@kgu.de; Bruene, Bernhard, E-mail: bruene@pathobiochemie1.de

    2010-04-15

    Hypoxia-inducible factor (HIF) is the major transcription factor mediating adaption to hypoxia e.g. by enhancing glycolysis. In tumor cells, high glucose concentrations are known to increase HIF-1{alpha} expression even under normoxia, presumably by enhancing the concentration of tricarboxylic acid cycle intermediates, while reactions of non-tumor cells are not well defined. Therefore, we analyzed cellular responses to different glucose concentrations in respect to HIF activation comparing tumor to non-tumor cells. Using cells derived from non-tumor origin, we show that HIF-1{alpha} accumulation was higher under low compared to high glucose concentrations. Low glucose allowed mRNA expression of HIF-1 target genes like adrenomedullin.more » Transfection of C{sub 2}C{sub 12} cells with a HIF-1{alpha} oxygen-dependent degradation domaine-GFP fusion protein revealed that prolyl hydroxylase (PHD) activity is impaired at low glucose concentrations, thus stabilizing the fusion protein. Mechanistic considerations suggested that neither O{sub 2} redistribution nor an altered redox state explains impaired PHD activity in the absence of glucose. In order to affect PHD activity, glucose needs to be metabolized. Amino acids present in the medium also diminished HIF-1{alpha} expression, while the addition of fatty acids did not. This suggests that glucose or amino acid metabolism increases oxoglutarate concentrations, which enhances PHD activity in non-tumor cells. Tumor cells deprived of glutamine showed HIF-1{alpha} accumulation in the absence of glucose, proposing that enhanced glutaminolysis observed in many tumors enables these cells to compensate reduced oxoglutarate production in the absence of glucose.« less

  15. Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods.

    PubMed

    Hidalgo, J Ignacio; Colmenar, J Manuel; Kronberger, Gabriel; Winkler, Stephan M; Garnica, Oscar; Lanchares, Juan

    2017-08-08

    Predicting glucose values on the basis of insulin and food intakes is a difficult task that people with diabetes need to do daily. This is necessary as it is important to maintain glucose levels at appropriate values to avoid not only short-term, but also long-term complications of the illness. Artificial intelligence in general and machine learning techniques in particular have already lead to promising results in modeling and predicting glucose concentrations. In this work, several machine learning techniques are used for the modeling and prediction of glucose concentrations using as inputs the values measured by a continuous monitoring glucose system as well as also previous and estimated future carbohydrate intakes and insulin injections. In particular, we use the following four techniques: genetic programming, random forests, k-nearest neighbors, and grammatical evolution. We propose two new enhanced modeling algorithms for glucose prediction, namely (i) a variant of grammatical evolution which uses an optimized grammar, and (ii) a variant of tree-based genetic programming which uses a three-compartment model for carbohydrate and insulin dynamics. The predictors were trained and tested using data of ten patients from a public hospital in Spain. We analyze our experimental results using the Clarke error grid metric and see that 90% of the forecasts are correct (i.e., Clarke error categories A and B), but still even the best methods produce 5 to 10% of serious errors (category D) and approximately 0.5% of very serious errors (category E). We also propose an enhanced genetic programming algorithm that incorporates a three-compartment model into symbolic regression models to create smoothed time series of the original carbohydrate and insulin time series.

  16. Photoacoustic measurement for glucose solution concentration based on tunable pulsed laser induced ultrasound

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen; Zhao, Dengji

    2012-12-01

    Noninvasive measurement of blood glucose concentration (BGC) has become a research hotspot. BGC measurement based on photoacoustic spectroscopy (PAS) was employed to detect the photoacoustic (PA) signal of blood glucose due to the advantages of avoiding the disturbance of optical scattering. In this paper, a set of custom-built BGC measurement system based on tunable optical parametric oscillator (OPO) pulsed laser and ultrasonic transducer was established to test the PA response effect of the glucose solution. In the experiments, we successfully acquired the time resolved PA signals of distilled water and glucose aqueous solution, and the PA peak-to-peak values(PPV) were gotten under the condition of excitated pulsed laser with changed wavelength from 1340nm to 2200nm by increasing interval of 10nm, the optimal characteristic wavelengths of distilled water and glucose solution were determined. Finally, to get the concentration prediction error, we used the linear fitting of ordinary least square (OLS) algorithm to fit the PPV of 1510nm, and we got the predicted concentration error was about 0.69mmol/L via the fitted linear equation. So, this system and scheme have some values in the research of noninvasive BGC measurement.

  17. Relationships between equine airway reactivity measured by flowmetric plethysmography and specific indicators of airway inflammation in horses with suspected inflammatory airway disease.

    PubMed

    Wichtel, M; Gomez, D; Burton, S; Wichtel, J; Hoffman, A

    2016-07-01

    Agreement between airway reactivity measured by flowmetric plethysmography and histamine bronchoprovocation, and lower airway inflammation measured by bronchoalveolar lavage (BAL) cytology, has not been studied in horses with suspected inflammatory airway disease (IAD). We tested the hypothesis that airway reactivity is associated with BAL cytology in horses presenting for unexplained poor performance and/or chronic cough. Prospective clinical study. Forty-five horses, predominantly young Standardbred racehorses, presenting for unexplained poor performance or chronic cough, underwent endoscopic evaluation, tracheal wash, flowmetric plethysmography with histamine bronchoprovocation and BAL. Histamine response was measured by calculating PC35, the concentration of nebulised histamine eliciting an increase in Δflow of 35%. In this population, there was no significant correlation between histamine response and cell populations in BAL cytology. When airway hyperreactivity (AHR) was defined as ≥35% increase in Δflow at a histamine concentration of <6 mg/ml, 24 of the 45 horses (53%) were determined to have AHR. Thirty-three (73%) had either abnormal BAL cytology or AHR, and were diagnosed with IAD on this basis. Of horses diagnosed with IAD, 9 (27%) had an abnormal BAL, 11 (33%) had AHR and 13 (39%) had both. Airway reactivity and BAL cytology did not show concordance in this population of horses presenting for unexplained poor performance and/or chronic cough. Failure to include tests of airway reactivity may lead to underdiagnosis of IAD in young Standardbred racehorses that present with clinical signs suggestive of IAD. © 2015 EVJ Ltd.

  18. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    PubMed

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P < .001) effects were detected for glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  19. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  20. Production of Mannitol from a High Concentration of Glucose by Candida parapsilosis SK26.001.

    PubMed

    Meng, Qing; Zhang, Tao; Wei, Wenting; Mu, Wanmeng; Miao, Ming

    2017-01-01

    A novel strain, SK26.001, which can produce mannitol from a high concentration of glucose without the addition of fructose, was isolated from sugarcane juice. This strain was identified as Candida parapsilosis based on 18S ribosomal RNA (rRNA) sequence analysis and the morphological and physiological-biochemical characteristics of the strain. Under optimized fermentation conditions, the mannitol concentration in shake flasks reached 68.5 g/L. When batch fermentation was performed, the fed glucose was completely consumed after 72 h, resulting in a final mannitol concentration of 80.3 g/L. Fed-batch fermentation was then performed with glucose feed. During the fed-batch process, ammonia water was added to maintain the pH at 4.0. The mannitol concentration in the fermenter reached 97.1 g/L after 120 h, with a total glucose consumption of 284 g/L.

  1. Cell lineage allocation in equine blastocysts produced in vitro under varying glucose concentrations.

    PubMed

    Choi, Young-Ho; Ross, Pablo; Velez, Isabel C; Macías-García, B; Riera, Fernando L; Hinrichs, Katrin

    2015-07-01

    Equine embryos develop in vitro in the presence of high glucose concentrations, but little is known about their requirements for development. We evaluated the effect of glucose concentrations in medium on blastocyst development after ICSI. In experiment 1, there were no significant differences in rates of blastocyst formation among embryos cultured in our standard medium (DMEM/F-12), which contained >16 mM glucose, and those cultured in a minimal-glucose embryo culture medium (<1 mM; Global medium, GB), with either 0 added glucose for the first 5 days, then 20 mM (0-20) or 20 mM for the entire culture period (20-20). In experiment 2, there were no significant differences in the rates of blastocyst development (31-46%) for embryos cultured in four glucose treatments in GB (0-10, 0-20, 5-10, or 5-20). Blastocysts were evaluated by immunofluorescence for lineage-specific markers. All cells stained positively for POU5F1. An inner cluster of cells was identified that included presumptive primitive endoderm cells (GATA6-positive) and presumptive epiblast (EPI) cells. The 5-20 treatment resulted in a significantly lower number of presumptive EPI-lineage cells than the 0-20 treatment did. GATA6-positive cells appeared to be allocated to the primitive endoderm independent of the formation of an inner cell mass, as was previously hypothesized for equine embryos. These data demonstrate that equine blastocyst development is not dependent on high glucose concentrations during early culture; rather, environmental glucose may affect cell allocation. They also present the first analysis of cell lineage allocation in in vitro-fertilized equine blastocysts. These findings expand our understanding of the factors that affect embryo development in the horse. © 2015 Society for Reproduction and Fertility.

  2. Freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems.

    PubMed

    Kajiwara, K; Motegi, A; Murase, N

    2001-01-01

    The freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems was investigated by differential scanning calorimetry (DSC). In the aqueous NaCl-glucose solution system, single or double glass transitions followed by the corresponding devitrification exotherms were observed during rewarming. In the aqueous KCl-glucose solution system, on the other hand, a single glass transition followed by an exotherm was observed during rewarming. The presence of double glass transitions observed for a certain composition of the aqueous NaCl-glucose solution was taken as an evidence for the liquid-liquid immiscibility at low temperatures. Two kinds of crystallisation accompanied by exotherms during rewarming were identified by X-ray diffraction as ice and ice/NaCl x 2H(2)O, or ice/KCl eutectic component.

  3. Capsaicinoids-induced changes of plasma glucose, free fatty acid and glycerol concentrations in rats.

    PubMed

    Imaizumi, Kazuhiko; Sato, Shogo; Kumazawa, Mari; Arai, Natsuko; Aritoshi, Shoko; Akimoto, Shunta; Sakakibara, Yuko; Kawashima, Yu; Tachiyashiki, Kaoru

    2011-01-01

    Red peppers are used as a spice for enhancing the palatability of foods. Two major capsaicinoids, dihydrocapsaicin (DHC) and capsaicin (CAP) are responsible for up to 90% of the total pungency of pepper fruits. These capsaicinoids are known to enhance energy metabolism and thermogenesis. However, there is a little information on the effects of capsaicinoids on the lipolysis and carbohydrate metabolism. We studied the effects of DHC and CAP on plasma glucose, free fatty acid (FFA) and glycerol concentrations in rats. Male six-week-old Sprague Dawley rats were divided into the DHC, CAP and control groups. Each capsaicinoid (dose = 3 mg/kg BW/day) was subcutaneously administered to rats for 10 days. DHC increased markedly plasma glucose, FFA and glycerol concentrations on day 1-10 by 14-35%, 61-103% and 108-174%, respectively, as compared with those of the control group. CAP increased relatively plasma glucose concentrations on day 1-3 by 15-17%, as compared with the control group. However, there were no significant differences in plasma glucose concentrations on day 7-10 among three groups. On the contrary, CAP did not change plasma FFA and glycerol concentrations on day 1-3. However, CAP increased markedly plasma FFA and glycerol concentrations on day 7-10 by 54-89% and 92-98%, respectively, as compared with the control group. DHC and CAP did not change the weights of white (perirenal and periepididymal) and brown (interscapular) adipose tissues. In conclusion, the effects of capsaicinoids on plasma glucose, FFA and glycerol concentrations were relatively higher in the DHC than in the CAP, and capsaicinoids did not change the weight of white and brown adipose tissues.

  4. Sleep/wake dependent changes in cortical glucose concentrations.

    PubMed

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  5. Glucose-stimulated insulin response in pregnant sheep following acute suppression of plasma non-esterified fatty acid concentrations

    PubMed Central

    Regnault, Timothy RH; Oddy, Hutton V; Nancarrow, Colin; Sriskandarajah, Nadarajah; Scaramuzzi, Rex J

    2004-01-01

    Background Elevated non-esterified fatty acids (NEFA) concentrations in non-pregnant animals have been reported to decrease pancreatic responsiveness. As ovine gestation advances, maternal insulin concentrations fall and NEFA concentrations increase. Experiments were designed to examine if the pregnancy-associated rise in NEFA concentration is associated with a reduced pancreatic sensitivity to glucose in vivo. We investigated the possible relationship of NEFA concentrations in regulating maternal insulin concentrations during ovine pregnancy at three physiological states, non-pregnant, non-lactating (NPNL), 105 and 135 days gestational age (dGA, term 147+/- 3 days). Methods The plasma concentrations of insulin, growth hormone (GH) and ovine placental lactogen (oPL) were determined by double antibody radioimmunoassay. Insulin responsiveness to glucose was measured using bolus injection and hyperglycaemic clamp techniques in 15 non-pregnant, non-lactating ewes and in nine pregnant ewes at 105 dGA and near term at 135 dGA. Plasma samples were also collected for hormone determination. In addition to bolus injection glucose and insulin Area Under Curve calculations, the Mean Plasma Glucose Increment, Glucose Infusion Rate and Mean Plasma Insulin Increment and Area Under Curve were determined for the hyperglycaemic clamp procedures. Statistical analysis of data was conducted with Students t-tests, repeated measures ANOVA and 2-way ANOVA. Results Maternal growth hormone, placental lactogen and NEFA concentrations increased, while basal glucose and insulin concentrations declined with advancing gestation. At 135 dGA following bolus glucose injections, peak insulin concentrations and insulin area under curve (AUC) profiles were significantly reduced in pregnant ewes compared with NPNL control ewes (p < 0.001 and P < 0.001, respectively). In hyperglycaemic clamp studies, while maintaining glucose levels not different from NPNL ewes, pregnant ewes displayed significantly

  6. Airway smooth muscle responsiveness from dogs with airway hyperresponsiveness after O/sub 3/ inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.L.; O'Byrne, P.M.; Pashley, M.

    1988-07-01

    Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in allmore » dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.« less

  7. Alcohol and Airways Function in Health and Disease

    PubMed Central

    Sisson, Joseph H.

    2007-01-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The impact of alcohol on lung airway functions is dependent on the concentration, duration and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation and probably attenuates the airway inflammation and injury observed in asthma and COPD. Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management and likely worsens outcomes including lung function and mortality in COPD patients. Non-alcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase type 2 (ALDH2). The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation and the interaction with other airway exposure agents, such as cigarette smoke, represent opportunities for future investigation. PMID:17764883

  8. Alcohol and airways function in health and disease.

    PubMed

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  9. Associations of Fatty Acids in Cerebrospinal Fluid with Peripheral Glucose Concentrations and Energy Metabolism

    PubMed Central

    Jumpertz, Reiner; Guijarro, Ana; Pratley, Richard E.; Mason, Clinton C.; Piomelli, Daniele; Krakoff, Jonathan

    2012-01-01

    Rodent experiments have emphasized a role of central fatty acid (FA) species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF) and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT) followed by measurements of 24 hour (24EE) and sleep energy expenditure (SLEEP) as well as respiratory quotient (RQ) in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid) concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16∶1, C18∶1) and very-long-chain saturated (C24∶0, C26∶0) FAs. Conclusions: Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis. PMID:22911803

  10. Spontaneously obese dogs exhibit greater postprandial glucose, triglyceride, and insulin concentrations than lean dogs.

    PubMed

    Verkest, K R; Rand, J S; Fleeman, L M; Morton, J M

    2012-02-01

    Dogs do not appear to progress from obesity-induced insulin resistance to type 2 diabetes mellitus. Both postprandial hyperglycemia and postprandial hypertriglyceridemia have been proposed to cause or maintain beta cell failure and progression to type 2 diabetes mellitus in other species. Postprandial glucose, triglyceride, and insulin concentrations have not been compared in lean and obese dogs. We measured serum glucose, triglyceride, and insulin concentrations in nine naturally occurring obese and nine age- and gender-matched lean dogs. After a 24-h fast, dogs were fed half their calculated daily energy requirement of a standardized diet that provided 37% and 40% of metabolizable energy as carbohydrate and fat, respectively. Fasting and postprandial glucose and triglyceride concentrations were greater in the obese dogs (P < 0.001), although the mean insulin concentration for this group was five times greater than that of the lean group (P < 0.001). Most of the 0.6 mM (11 mg/dL) difference in mean postprandial glucose concentrations between lean and obese dogs was attributable to a subset of persistently hyperglycemic obese dogs with mean postprandial glucose concentrations 1.0 mM (18 mg/dL) greater than that in lean dogs. Persistently hyperglycemic obese dogs had lower triglyceride (P = 0.02 to 0.04) and insulin (P < 0.02) concentrations than other obese dogs. None of the dogs developed clinical signs of diabetes mellitus during follow-up for a median of 2.6 yr. We conclude that pancreatic beta cells in dogs are either not sensitive to toxicity because of mild hyperglycemia or lack another component of the pathophysiology of beta cell failure in type 2 diabetes mellitus. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Postoperative environmental anesthetic vapour concentrations following removal of the airway device in the operating room versus the postanesthesia care unit.

    PubMed

    Cheung, Sara K; Özelsel, Timur; Rashiq, Saifee; Tsui, Ban C

    2016-09-01

    This study was designed to compare waste anesthetic gas (WAG) concentrations within patients' breathing zones after removal of the patient's airway device in the postanesthesia care unit (PACU) vs in the operating room (OR). Following Research Ethics Board approval and patient consent, we recruited patients undergoing surgery who received volatile anesthesia via an endotracheal tube or supraglottic airway. Patients had their airway device removed in the OR or in the PACU depending on the attending anesthesiologist's preference. Upon the patient's arrival in the PACU, concentrations of exhaled sevoflurane and desflurane were measured at their breathing zone (i.e., 15 cm from the patient's mouth and nose) using a single-beam infrared spectrophotometer. Seventy patients were recruited during the five-month study period. The median [interquartile range] WAG levels in the patients' breathing zones were higher when their airway devices were removed in the PACU vs in the OR. The WAG levels for sevoflurane were 0.7 [0.4-1.1] parts per million (ppm) vs 0.5 [0.4-0.7] ppm, respectively; median difference, 0.3; 95% confidence interval (CI), 0.1 to 0.6; P = 0.04. The WAG levels for desflurane were 2.4 [1.2-3.4] ppm vs 4.1 [2.5-5.2] ppm, respectively; median difference, 1.5; 95% CI, 0.3 to 2.7; P = 0.04. After a volatile-based anesthetic, our results suggest that removal of the airway device in the PACU vs in the OR increases the amount of waste anesthetic gas in a patient's breathing zone and thus potentially in the PACU nurse's working zone.

  12. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    PubMed

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  13. Maternal Circadian Eating Time and Frequency Are Associated with Blood Glucose Concentrations during Pregnancy.

    PubMed

    Loy, See Ling; Chan, Jerry Kok Yen; Wee, Poh Hui; Colega, Marjorelee T; Cheung, Yin Bun; Godfrey, Keith M; Kwek, Kenneth; Saw, Seang Mei; Chong, Yap-Seng; Natarajan, Padmapriya; Müller-Riemenschneider, Falk; Lek, Ngee; Chong, Mary Foong-Fong; Yap, Fabian

    2017-01-01

    Synchronizing eating schedules to daily circadian rhythms may improve metabolic health, but its association with gestational glycemia is unknown. This study examined the association of maternal night-fasting intervals and eating episodes with blood glucose concentrations during pregnancy. This was a cross-sectional study within a prospective cohort in Singapore. Maternal 24-h dietary recalls, fasting glucose, and 2-h glucose concentrations were ascertained at 26-28 wk gestation for 1061 women (aged 30.7 ± 5.1 y). Night-fasting intervals were based on the longest fasting duration during the night (1900-0659). Eating episodes were defined as events that provided >50 kcal, with a time interval between eating episodes of ≥15 min. Multiple linear regressions with adjustment for confounders were conducted. Mean ± SD night-fasting intervals and eating episodes per day were 9.9 ± 1.6 h and 4.2 ± 1.3 times/d, respectively; fasting and 2-h glucose concentrations were 4.4 ± 0.5 and 6.6 ± 1.5 mmol/L, respectively. In adjusted models, each hourly increase in night-fasting intervals was associated with a 0.03 mmol/L decrease in fasting glucose (95% CI: -0.06, -0.01 mmol/L), whereas each additional daily eating episode was associated with a 0.15 mmol/L increase in 2-h glucose (95% CI: 0.03, 0.28 mmol/L). Conversely, night-fasting intervals and daily eating episodes were not associated with 2-h and fasting glucose, respectively. Increased maternal night-fasting intervals and reduced eating episodes per day were associated with decreased fasting glucose and 2-h glucose, respectively, in the late-second trimester of pregnancy. This points to potential alternative strategies to improve glycemic control in pregnant women. This study was registered at www.clinicaltrials.gov as NCT01174875. © 2017 American Society for Nutrition.

  14. Carbohydrate Ingestion Before and During Soccer Match Play and Blood Glucose and Lactate Concentrations

    PubMed Central

    Russell, Mark; Benton, David; Kingsley, Michael

    2014-01-01

    Context: The ingestion of carbohydrate (CHO) before and during exercise and at halftime is commonly recommended to soccer players for maintaining blood glucose concentrations throughout match play. However, an exercise-induced rebound glycemic response has been observed in the early stages of the second half of simulated soccer-specific exercise when CHO-electrolyte beverages were consumed regularly. Therefore, the metabolic effects of CHO beverage consumption throughout soccer match play remain unclear. Objective: To investigate the blood glucose and blood lactate responses to CHOs ingested before and during soccer match play. Design: Crossover study. Setting: Applied research study. Patients or Other Participants: Ten male outfield academy soccer players (age = 15.6 ± 0.2 years, height = 1.74 ± 0.02 m, mass = 65.3 ± 1.9 kg, estimated maximal oxygen consumption = 58.4 ± 0.8 mL·kg−1·min−1). Intervention(s): Players received a 6% CHO-electrolyte solution or an electrolyte (placebo) solution 2 hours before kickoff, before each half (within 10 minutes), and every 15 minutes throughout exercise. Blood samples were obtained at rest, every 15 minutes during the match (first half: 0–15, 15–30, and 30–45 minutes; second half: 45–60, 60–75, and 75–90 minutes) and 10 minutes into the halftime break. Main Outcome Measure(s): Metabolic responses (blood glucose and blood lactate concentrations) and markers of exercise intensity (heart rate) were recorded. Results: Supplementation influenced the blood glucose response to exercise (time × treatment interaction effect: P ≤ .05), such that glucose concentrations were higher at 30 to 45 minutes in the CHO than in the placebo condition. However, in the second half, blood glucose concentrations were similar between conditions because of transient reductions from peak values occurring in both trials at halftime. Blood lactate concentrations were elevated above those at rest in the first 15 minutes of exercise

  15. Carbohydrate ingestion before and during soccer match play and blood glucose and lactate concentrations.

    PubMed

    Russell, Mark; Benton, David; Kingsley, Michael

    2014-01-01

    The ingestion of carbohydrate (CHO) before and during exercise and at halftime is commonly recommended to soccer players for maintaining blood glucose concentrations throughout match play. However, an exercise-induced rebound glycemic response has been observed in the early stages of the second half of simulated soccer-specific exercise when CHO-electrolyte beverages were consumed regularly. Therefore, the metabolic effects of CHO beverage consumption throughout soccer match play remain unclear. To investigate the blood glucose and blood lactate responses to CHOs ingested before and during soccer match play. Crossover study. Applied research study. Ten male outfield academy soccer players (age = 15.6 ± 0.2 years, height = 1.74 ± 0.02 m, mass = 65.3 ± 1.9 kg, estimated maximal oxygen consumption = 58.4 ± 0.8 mL·kg(-1)·min(-1)). Players received a 6% CHO-electrolyte solution or an electrolyte (placebo) solution 2 hours before kickoff, before each half (within 10 minutes), and every 15 minutes throughout exercise. Blood samples were obtained at rest, every 15 minutes during the match (first half: 0-15, 15-30, and 30-45 minutes; second half: 45-60, 60-75, and 75-90 minutes) and 10 minutes into the halftime break. Metabolic responses (blood glucose and blood lactate concentrations) and markers of exercise intensity (heart rate) were recorded. Supplementation influenced the blood glucose response to exercise (time × treatment interaction effect: P ≤ .05), such that glucose concentrations were higher at 30 to 45 minutes in the CHO than in the placebo condition. However, in the second half, blood glucose concentrations were similar between conditions because of transient reductions from peak values occurring in both trials at halftime. Blood lactate concentrations were elevated above those at rest in the first 15 minutes of exercise (time-of-sample effect: P < .001) and remained elevated throughout exercise. Supplementation did not influence the pattern of

  16. In-Vitro Performance of the Enlite Sensor in Various Glucose Concentrations during Hypobaric and Hyperbaric Conditions

    PubMed Central

    Adolfsson, Peter; Örnhagen, Hans; Eriksson, Bengt M.; Gautham, Raghavendhar; Jendle, Johan

    2012-01-01

    Background There is a need for reliable methods of glucose measurement in different environmental conditions. The objective of this in vitro study was to evaluate the performance of the Enlite® Sensor when connected to either the iPro™ Continuous Glucose Monitor recording device or the Guardian® REAL-Time transmitting device, in hypobaric and hyperbaric conditions. Methods Sixteen sensors connected to eight iPro devices and eight Guardian REAL-Time devices were immersed in three beakers containing separate glucose concentrations: 52, 88, and 207 mg/dl (2.9, 4.9, and 11.3 mmol/liter). Two different pressure tests were conducted: a hypobaric test, corresponding to maximum 18000 ft/5500 m height, and a hyperbaric test, corresponding to maximum 100 ft/30 m depth. The linearity of the sensor signals in the different conditions was evaluated. Results The sensors worked continuously, and the sensor signals were collected without interruption at all pressures tested. When comparing the input signals for glucose (ISIGs) and the different glucose concentrations during altered pressure, linearity (R2) of 0.98 was found. During the hypobaric test, significant differences (p < .005) were seen when comparing the ISIGs during varying pressure at two of the glucose concentrations (52 and 207 mg/dl), whereas no difference was seen at the 88 mg/dl glucose concentration. During the hyperbaric test, no differences were found. Conclusions The Enlite Sensors connected to either the iPro or the Guardian REAL-Time device provided values continuously. In hyperbaric conditions, no significant differences were seen during changes in ambient pressure; however, during hypobaric conditions, the ISIG was significantly different in the low and high glucose concentrations. PMID:23294783

  17. In-vitro performance of the Enlite Sensor in various glucose concentrations during hypobaric and hyperbaric conditions.

    PubMed

    Adolfsson, Peter; Ornhagen, Hans; Eriksson, Bengt M; Gautham, Raghavendhar; Jendle, Johan

    2012-11-01

    There is a need for reliable methods of glucose measurement in different environmental conditions. The objective of this in vitro study was to evaluate the performance of the Enlite® Sensor when connected to either the iPro™ Continuous Glucose Monitor recording device or the Guardian® REAL-Time transmitting device, in hypobaric and hyperbaric conditions. Sixteen sensors connected to eight iPro devices and eight Guardian REAL-Time devices were immersed in three beakers containing separate glucose concentrations: 52, 88, and 207 mg/dl (2.9, 4.9, and 11.3 mmol/liter). Two different pressure tests were conducted: a hypobaric test, corresponding to maximum 18000 ft/5500 m height, and a hyperbaric test, corresponding to maximum 100 ft/30 m depth. The linearity of the sensor signals in the different conditions was evaluated. The sensors worked continuously, and the sensor signals were collected without interruption at all pressures tested. When comparing the input signals for glucose (ISIGs) and the different glucose concentrations during altered pressure, linearity (R(2)) of 0.98 was found. During the hypobaric test, significant differences (p < .005) were seen when comparing the ISIGs during varying pressure at two of the glucose concentrations (52 and 207 mg/dl), whereas no difference was seen at the 88 mg/dl glucose concentration. During the hyperbaric test, no differences were found. The Enlite Sensors connected to either the iPro or the Guardian REAL-Time device provided values continuously. In hyperbaric conditions, no significant differences were seen during changes in ambient pressure; however, during hypobaric conditions, the ISIG was significantly different in the low and high glucose concentrations. © 2012 Diabetes Technology Society.

  18. Dietary patterns predict changes in two-hour post-oral glucose tolerance test plasma glucose concentrations in middle-aged adults.

    PubMed

    Lau, Cathrine; Toft, Ulla; Tetens, Inge; Carstensen, Bendix; Jørgensen, Torben; Pedersen, Oluf; Borch-Johnsen, Knut

    2009-03-01

    We examined whether the adherence to major dietary patterns at baseline of 5824 nondiabetic Danes (30-60 y) enrolled in the nonpharmacological Inter99 intervention predicted changes in fasting plasma glucose (FPG) and postchallenge 2-h plasma glucose (2h-PG) concentrations during a 5 y period and whether a potential association was dependent on baseline glucose tolerance status. Through principal component analysis, a score for a traditional dietary pattern (characterized by higher intakes of high-fat sandwich spreads, red meat, potatoes, butter and lard, low-fat fish, sandwich meat, and sauces) and a score for a modern dietary pattern (characterized by higher intakes of vegetables, fruit, vegetable oil/vinegar dressing, poultry, pasta, rice, and cereals) were estimated for each person at baseline. Random effect models adjusting for relevant confounders were used to estimate changes in repetitive measures of FPG and 2h-PG. A higher modern score (of 1 SD) predicted an annual decrease in 2h-PG of 0.015 mmol/L (P < 0.01) regardless of glucose tolerance status. For individuals with isolated impaired glucose tolerance, a higher traditional score (of 1 SD) predicted an annual increase in 2h-PG of 0.083 mmol/L (P < 0.0001). In conclusion, glucose tolerance status did not, in general, affect the predictive effect of the dietary patterns. The study suggests that the risk of worsening 2h-PG concentrations may be smaller for individuals with a high modern dietary pattern score characterized by high intakes of vegetables, fruit, vegetable oil/vinegar dressing, poultry, pasta, rice, and cereals.

  19. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands.

    PubMed

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto

    2018-06-01

    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  20. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    PubMed

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-10-05

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations.

  1. Elevation of blood β-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition.

    PubMed

    Zarrin, M; Grossen-Rösti, L; Bruckmaier, R M; Gross, J J

    2017-03-01

    Recent studies in mid- and late-lactation dairy cows showed that β-hydroxybutyrate (BHB) infusion had a considerable effect on glucose metabolism and immune response during intramammary lipopolysaccharide challenge. The objective of the present study was to infuse BHB during the dry period and after parturition to investigate the effects of elevated plasma BHB concentrations on metabolism and endocrine changes in transition dairy cows. The hypothesis tested was that regulation of glucose metabolism would change at different physiological stages and an additional elevation of BHB concentration would alter glucose concentration. Multiparous Holstein cows in wk -2 (antepartum, a.p.; n = 6) and wk +2 (postpartum, p.p.; n = 8) relative to calving were infused (4 h from 0800 to 1200 h) with a BHB solution to increase plasma BHB concentration to 1.5 to 2.0 mmol/L (HyperB). The same period the next day without any infusion was considered the control period (CON). Blood samples were taken 1 h before the start of infusion as reference samples and every 30 min during the following 6 h (4 h of infusion and 2 h after infusion) in the HyperB and CON periods, and analyzed for glucose, BHB, insulin, and glucagon concentrations. During the steady state period (the latter 2 h of the 4-h infusion), plasma BHB concentration reached 1.87 ± 0.05 mmol/L (a.p.) and 1.93 ± 0.05 mmol/L (p.p.) in HyperB compared with 0.55 ± 0.06 mmol/L (a.p.) and 0.64 ± 0.04 mmol/L (p.p.) in CON, respectively. The 4-h average BHB infusion rate was 12.4 ± 1.0 and 13.3 ± 0.9 μmol/kg of BW per minute in wk -2 and +2, respectively. Infusion of BHB caused a decrease of plasma glucose concentrations relative to preinfusion levels both before and after parturition, although basal glucose concentrations were different before and after calving. Infusion of BHB increased plasma insulin concentrations a.p. but not p.p., despite a higher basal insulin concentration before than after parturition. These findings

  2. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. Themore » AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.« less

  3. IN VITRO EFFECTS OF PARTICULATE MATTER ON AIRWAY EPITHELIAL CELLS ISOLATED FROM CONCENTRATED AIR PARTICLES-EXPOSED SPONTANEOUS HYPERTENSIVE RATS

    EPA Science Inventory

    In vitro effects of particulate matter on airway epithelial cells isolated from concentrated air particles-exposed spontaneous hypertensive rats

    Ines Pagan, Urmila Kodavanti, Paul Evansky, Daniel L Costa and Janice A Dye. U.S. Environmental Protection Agency, ORD, National...

  4. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians12

    PubMed Central

    Fretts, Amanda M; Follis, Jack L; Nettleton, Jennifer A; Lemaitre, Rozenn N; Ngwa, Julius S; Wojczynski, Mary K; Kalafati, Ioanna Panagiota; Varga, Tibor V; Frazier-Wood, Alexis C; Houston, Denise K; Lahti, Jari; Ericson, Ulrika; van den Hooven, Edith H; Mikkilä, Vera; Kiefte-de Jong, Jessica C; Mozaffarian, Dariush; Rice, Kenneth; Renström, Frida; North, Kari E; McKeown, Nicola M; Feitosa, Mary F; Kanoni, Stavroula; Smith, Caren E; Garcia, Melissa E; Tiainen, Anna-Maija; Sonestedt, Emily; Manichaikul, Ani; van Rooij, Frank JA; Dimitriou, Maria; Raitakari, Olli; Pankow, James S; Djoussé, Luc; Province, Michael A; Hu, Frank B; Lai, Chao-Qiang; Keller, Margaux F; Perälä, Mia-Maria; Rotter, Jerome I; Hofman, Albert; Graff, Misa; Kähönen, Mika; Mukamal, Kenneth; Johansson, Ingegerd; Ordovas, Jose M; Liu, Yongmei; Männistö, Satu; Uitterlinden, André G; Deloukas, Panos; Seppälä, Ilkka; Psaty, Bruce M; Cupples, L Adrienne; Borecki, Ingrid B; Franks, Paul W; Arnett, Donna K; Nalls, Mike A; Eriksson, Johan G; Orho-Melander, Marju; Franco, Oscar H; Lehtimäki, Terho; Dedoussis, George V; Meigs, James B; Siscovick, David S

    2015-01-01

    Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined 1) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049–ln-pmol/L (95% CI: 0.035, 0.063–ln-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic

  5. Reducing dietary fat from a meal increases the bioavailability of exogenous carbohydrate without altering plasma glucose concentration.

    PubMed

    Knuth, Nicolas D; Shrivastava, Cara R; Horowitz, Jeffrey F

    2009-01-01

    The primary goal of this study was to determine the acute glycemic and endocrine responses to the reduction of fat content from a meal. On three separate occasions, nine overweight subjects (body mass index = 30 +/- 1 kg/m(2); 5 men, 4 women) consumed 1) a control meal ( approximately 800 kcal; 100 g of carbohydrate, 31 g of fat, and 30 g of protein), 2) a low-fat meal ( approximately 530 kcal; 100 g of carbohydrate, 1 g of fat, and 30 g of protein), or 3) a low-fat meal plus lipid infusion [same meal as low-fat meal, but the total energy provided was the same as control (800 kcal), with the "missing" fat ( approximately 30 g) provided via an intravenous lipid infusion]. All three meals contained [(13)C]glucose (3 mg/kg body wt) to assess the bioavailability of ingested glucose. During the 5-h period after each meal, we measured the recovery of [(13)C]glucose in plasma, plasma glucose, and insulin concentrations. We also measured plasma concentration of the gastrointestinal peptides: glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY(3-36) (PYY(3-36)). The recovery of the ingested [(13)C]glucose in the hour after ingestion was greater (P < 0.05) after the low-fat than after the control meal [area under the curve (AUC): 1,206 +/- 252 and 687 +/- 161 microM.h, respectively]. However, removing dietary fat from the meal did not affect the plasma concentration of glucose or insulin. Importantly, [(13)C]glucose recovery was not different during the low-fat and lipid infusion trials (AUC: 1,206 +/- 252 and 1,134 +/- 247 microM.h, respectively), indicating that the accelerated delivery of exogenous glucose found after removing fat from the meal is due exclusively to the reduction of fat in the gastrointestinal tract. In parallel with these findings, the reduction in fat calories from the meal reduced plasma concentration of GIP, GLP-1, and PYY(3-36). In summary, these data suggest that removing fat from the diet expedited

  6. The salivary microbiome is altered in the presence of a high salivary glucose concentration

    PubMed Central

    Hartman, Mor-Li; Shi, Ping; Hasturk, Hatice; Yaskell, Tina; Vargas, Jorel; Song, Xiaoqing; Cugini, Maryann; Barake, Roula; Alsmadi, Osama; Al-Mutawa, Sabiha; Ariga, Jitendra; Soparkar, Pramod; Behbehani, Jawad; Behbehani, Kazem

    2017-01-01

    Background Type II diabetes (T2D) has been associated with changes in oral bacterial diversity and frequency. It is not known whether these changes are part of the etiology of T2D, or one of its effects. Methods We measured the glucose concentration, bacterial counts, and relative frequencies of 42 bacterial species in whole saliva samples from 8,173 Kuwaiti adolescents (mean age 10.00 ± 0.67 years) using DNA probe analysis. In addition, clinical data related to obesity, dental caries, and gingivitis were collected. Data were compared between adolescents with high salivary glucose (HSG; glucose concentration ≥ 1.0 mg/d, n = 175) and those with low salivary glucose (LSG, glucose concentration < 0.1 mg/dL n = 2,537). Results HSG was associated with dental caries and gingivitis in the study population. The overall salivary bacterial load in saliva decreased with increasing salivary glucose concentration. Under HSG conditions, the bacterial count for 35 (83%) of 42 species was significantly reduced, and relative bacterial frequencies in 27 species (64%) were altered, as compared with LSG conditions. These alterations were stronger predictors of high salivary glucose than measures of oral disease, obesity, sleep or fitness. Conclusions HSG was associated with a reduction in overall bacterial load and alterations to many relative bacterial frequencies in saliva when compared with LSG in samples from adolescents. We propose that hyperglycemia due to obesity and/or T2D results in HSG and subsequent acidification of the oral environment, leading to a generalized perturbation in the oral microbiome. This suggests a basis for the observation that hyperglycemia is associated with an increased risk of dental erosion, dental caries, and gingivitis. We conclude that HSG in adolescents may be predicted from salivary microbial diversity or frequency, and that the changes in the oral microbial composition seen in adolescents with developing metabolic disease may the consequence

  7. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans

    PubMed Central

    Butler, Andrew A.; St-Onge, Marie-Pierre; Siebert, Emily A.; Medici, Valentina; Stanhope, Kimber L.; Havel, Peter J.

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  8. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores.

    PubMed

    Mascarin, Gabriel Moura; Jackson, Mark A; Kobori, Nilce Naomi; Behle, Robert W; Dunlap, Christopher A; Delalibera Júnior, Ítalo

    2015-08-01

    The filamentous fungus Beauveria bassiana is an economically important pathogen of numerous arthropod pests and is able to grow in submerged culture as filaments (mycelia) or as budding yeast-like blastospores. In this study, we evaluated the effect of dissolved oxygen and high glucose concentrations on blastospore production by submerged cultures of two isolates of B. bassiana, ESALQ1432 and GHA. Results showed that maintaining adequate dissolved oxygen levels coupled with high glucose concentrations enhanced blastospore yields by both isolates. High glucose concentrations increased the osmotic pressure of the media and coincided with higher dissolved oxygen levels and increased production of significantly smaller blastospores compared with blastospores produced in media with lower concentrations of glucose. The desiccation tolerance of blastospores dried to less than 2.6 % moisture was not affected by the glucose concentration of the medium but was isolate dependent. Blastospores of isolate ESALQ1432 produced in media containing 140 g glucose L(-1) showed greater virulence toward whitefly nymphs (Bemisia tabaci) as compared with blastospores produced in media containing 40 g glucose L(-1). These results suggest a synergistic effect between glucose concentration and oxygen availability on changing morphology and enhancing the yield and efficacy of blastospores of B. bassiana, thereby facilitating the development of a cost-effective production method for this blastospore-based bioinsecticide.

  9. Effect of acarbose on postprandial blood glucose concentrations in healthy cats fed low and high carbohydrate diets.

    PubMed

    Singh, Ranee; Rand, Jacquie S; Coradini, Marcia; Morton, John M

    2015-10-01

    Feeding a low carbohydrate diet is recommended for diabetic cats; however, some cats may require diets containing moderate-to-high carbohydrate and may benefit from the use of therapeutic agents to improve glycemic control. The aim of the study was to determine the effect of the α-glucosidase inhibitor acarbose on postprandial plasma glucose concentration when combined with commercially available feline diets high and low in carbohydrate. Twelve healthy, adult, non-obese, neutered cats were enrolled. Plasma glucose concentrations were assessed over 24 h after feeding high and low carbohydrate diets, with and without acarbose, during single and multiple meal tests, in a crossover study. Commercially available feline diets were used, which were high and low in carbohydrate (providing 51% and 7% of metabolizable energy, respectively). In cats fed the high carbohydrate diet as a single meal, mean 24 h glucose concentrations were lower when acarbose was administered. Mean glucose concentrations were lower in the first 12 h when acarbose was given once daily, whereas no significant difference was observed in mean results from 12-24 h. Acarbose had little effect in cats eating multiple meals. Compared with consumption of the high carbohydrate diet with acarbose, lower mean 24 h and peak glucose concentrations were achieved by feeding the low carbohydrate diet alone. In healthy cats meal-fed diets of similar composition to the diets used in this study, acarbose has minimal effect when a low carbohydrate diet is fed but reduces postprandial glucose concentrations over 24 h when a high carbohydrate diet is fed. However, mean glucose concentrations over 24 h are still higher when a high carbohydrate diet with acarbose is fed relative to the low carbohydrate diet without acarbose. Future studies in diabetic cats are warranted to confirm these findings. © ISFM and AAFP 2014.

  10. A Bayesian network for modelling blood glucose concentration and exercise in type 1 diabetes.

    PubMed

    Ewings, Sean M; Sahu, Sujit K; Valletta, John J; Byrne, Christopher D; Chipperfield, Andrew J

    2015-06-01

    This article presents a new statistical approach to analysing the effects of everyday physical activity on blood glucose concentration in people with type 1 diabetes. A physiologically based model of blood glucose dynamics is developed to cope with frequently sampled data on food, insulin and habitual physical activity; the model is then converted to a Bayesian network to account for measurement error and variability in the physiological processes. A simulation study is conducted to determine the feasibility of using Markov chain Monte Carlo methods for simultaneous estimation of all model parameters and prediction of blood glucose concentration. Although there are problems with parameter identification in a minority of cases, most parameters can be estimated without bias. Predictive performance is unaffected by parameter misspecification and is insensitive to misleading prior distributions. This article highlights important practical and theoretical issues not previously addressed in the quest for an artificial pancreas as treatment for type 1 diabetes. The proposed methods represent a new paradigm for analysis of deterministic mathematical models of blood glucose concentration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Blood glucose concentrations of arm and finger during dynamic glucose conditions.

    PubMed

    Szuts, Ete Z; Lock, J Paul; Malomo, Kenneth J; Anagnostopoulos, Althea

    2002-01-01

    We set out to determine the physiological difference between the capillary blood of the arm and finger with the greatest possible accuracy using the HemoCue B-glucose analyzer on subjects undergoing a meal tolerance test (MTT) or oral glucose tolerance test (OGTT). MTT study was performed on 50 subjects who drank a liquid meal (Ensure, 40 g of carbohydrates) and who were tested on the arm and finger every 30 min for up to 4 h. OGTT study was performed on 12 subjects who drank a 100-g glucose solution (Glucola) and were tested on the arm and finger every 15 min during the first hour and thereafter every 30 min for up to 3 h. Average percent glucose difference between arm and finger reached a maximal value about 1 h following glucose load, with arm glucose being about 5% lower than that of finger. At other times, average differences were less than this. At the greatest rate of glucose change (>2 mg/dL-min), mean percent bias was found to be about 6%. Despite these measurable differences, when arm results were plotted on the Clarke error grid against finger values, >97% of the data were within zone A (rest in zone B). Thus, physiological differences between arm and finger were clinically insignificant. Our studies with HemoCue confirmed the existence of measurable physiological glucose differences between arm and finger following a glucose challenge, but these differences were found to be clinically insignificant even in those subjects in whom they were measurable.

  12. On-Line Control of Glucose Concentration in High-Yielding Mammalian Cell Cultures Enabled Through Oxygen Transfer Rate Measurements.

    PubMed

    Goldrick, Stephen; Lee, Kenneth; Spencer, Christopher; Holmes, William; Kuiper, Marcel; Turner, Richard; Farid, Suzanne S

    2018-04-01

    Glucose control is vital to ensure consistent growth and protein production in mammalian cell cultures. The typical fed-batch glucose control strategy involving bolus glucose additions based on infrequent off-line daily samples results in cells experiencing significant glucose concentration fluctuations that can influence product quality and growth. This study proposes an on-line method to control and manipulate glucose utilizing readily available process measurements. The method generates a correlation between the cumulative oxygen transfer rate and the cumulative glucose consumed. This correlation generates an on-line prediction of glucose that has been successfully incorporated into a control algorithm manipulating the glucose feed-rate. This advanced process control (APC) strategy enables the glucose concentration to be maintained at an adjustable set-point and has been found to significantly reduce the deviation in glucose concentration in comparison to conventional operation. This method has been validated to produce various therapeutic proteins across cell lines with different glucose consumption demands and is successfully demonstrated on micro (15 mL), laboratory (7 L), and pilot (50 L) scale systems. This novel APC strategy is simple to implement and offers the potential to significantly enhance the glucose control strategy for scales spanning micro-scale systems through to full scale industrial bioreactors. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells

    PubMed Central

    Cisewski, Sarah E.; Zhang, Lixia; Kuo, Jonathan; Wright, Gregory J.; Wu, Yongren; Kern, Michael J.; Yao, Hai

    2015-01-01

    Objective To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. Design TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 hours with 0, 1.5, 5, or 25mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-3H]proline and [35S]sulfate into the cells, respectively. Results TMJ disc cell viability significantly decreased (P<0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P<0.0001), while a decrease in glucose concentration significantly decreased viability (P<0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P<0.0001) and matrix synthesis (P<0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P<0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P<0.0001), ATP production (P=0.00015), and collagen (P=0.0002) and proteoglycan synthesis (P<0.0001). Conclusions Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. PMID:26033165

  14. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.

    PubMed

    Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H

    2015-10-01

    To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P < 0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P < 0.0001), while a decrease in glucose concentration significantly decreased viability (P < 0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P < 0.0001) and matrix synthesis (P < 0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P < 0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P < 0.0001), ATP production (P = 0.00015), and collagen (P = 0.0002) and proteoglycan synthesis (P < 0.0001). Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean

    PubMed Central

    Muñoz-Marín, María del Carmen; Luque, Ignacio; Zubkov, Mikhail V.; Hill, Polly G.; Diez, Jesús; García-Fernández, José Manuel

    2013-01-01

    Prochlorococcus is responsible for a significant part of CO2 fixation in the ocean. Although it was long considered an autotrophic cyanobacterium, the uptake of organic compounds has been reported, assuming they were sources of limited biogenic elements. We have shown in laboratory experiments that Prochlorococcus can take up glucose. However, the mechanisms of glucose uptake and its occurrence in the ocean have not been shown. Here, we report that the gene Pro1404 confers capability for glucose uptake in Prochlorococcus marinus SS120. We used a cyanobacterium unable to take up glucose to engineer strains that express the Pro1404 gene. These recombinant strains were capable of specific glucose uptake over a wide range of glucose concentrations, showing multiphasic transport kinetics. The Ks constant of the high affinity phase was in the nanomolar range, consistent with the average concentration of glucose in the ocean. Furthermore, we were able to observe glucose uptake by Prochlorococcus in the central Atlantic Ocean, where glucose concentrations were 0.5–2.7 nM. Our results suggest that Prochlorococcus are primary producers capable of tuning their metabolism to energetically benefit from environmental conditions, taking up not only organic compounds with key limiting elements in the ocean, but also molecules devoid of such elements, like glucose. PMID:23569224

  16. Effects of intravenous glucose infusion and nutritional balance on serum concentrations of nonesterified fatty acids, glucose, insulin, and progesterone in nonlactating dairy cows.

    PubMed

    Vieira, F V R; Lopes, C N; Cappellozza, B I; Scarpa, A B; Cooke, R F; Vasconcelos, J L M

    2010-07-01

    The objective of this study was to evaluate serum concentrations of nonesterified fatty acids, glucose, insulin, and progesterone in nonlactating dairy cows according to nutritional balance and glucose infusion. Ten nonlactating, ovariectomized Gir x Holstein cows were stratified by body weight (BW) and body condition score (BCS) on d -28 of the study, and randomly assigned to 1) negative nutrient balance (NB) or 2) positive nutrient balance (PB). From d -28 to d 0, cows were allocated according to nutritional treatment (5 cows/treatment) into 2 low-quality pastures with reduced forage availability. However, PB cows individually received, on average, 3 kg/cow per day (as-fed) of a concentrate during the study. All cows had an intravaginal progesterone releasing device inserted on d -14, which remained in cows until the end of the study. Cow BW and BCS were assessed again on d 0. On d 0, cows within nutritional treatment were randomly assigned to receive, in a crossover design containing 2 periods of 24h each, 1) intravenous glucose infusion (GLU; 0.5 g of glucose/kg of BW, as a 5% glucose solution administered, on average, at 32 mL/min over a 3-h period), or 2) intravenous saline infusion (SAL; 0.9% solution infused on average at 32 mL/min over a 3-h period). Prior to the beginning of each period, all cows were fasted for 12h. Blood samples were collected, relative to the beginning of the infusion, at -12 and -11.5h (beginning of fasting), and at -0.5, 0, 0.5, 1, 2, 3, 4, 5, and 6h. Following the last blood collection of period 1, cows received (PB) or not (NB) concentrate and were returned to their respective pastures. Changes in BCS and BW were greater in NB cows compared with PB cows (-0.60 and -0.25+/-0.090 for BCS, respectively; -22.4 and 1.2+/-6.58 kg for BW, respectively). Cows receiving GLUC had greater glucose concentrations from 0.5 to 3h relative to infusion compared with SAL cows. Insulin concentrations were greater in PB cows assigned to GLUC compared

  17. The Correlation of Blood Glucose Concentration and the Movement of Laser Secondary Speckle Pattern of the Artery

    NASA Astrophysics Data System (ADS)

    Saputra, M. A.; Prajitno, P.

    2018-04-01

    Blood glucose is the molecule needed for human life, it usually measured invasively (by taking blood). but that measurement is still very vulnerable. The alternative method namely the non-invasive method is very interesting. In addition, the article [1] explains the relationship between the movement of the arterial pulse with glucose concentration, therefore the research study to investigate the correlation between the blood glucose and the movement of laser speckle pattern resulted from the arterial movement will be promising as the non-invasive method for measuring the blood glucose concentration. In this study, the laser speckle pattern imaging method, where the microscopically movement of the object is illuminated by a laser beam and recorded by the high-speed camera in a certain interval time, are used to identify the movement patterns of the artery. From the image processing, the graphs such as electrocardiograph (ECG) can be extracted. The average of the maximum peaks of the graph can be correlated with the blood glucose concentration in the blood, as the same as shown in the article [2]. From the data that has been obtained in this research, the movement of the speckle tends to increase in accordance with the rise of blood glucose concentration.

  18. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila.

    PubMed

    Jahid, Iqbal Kabir; Lee, Na-Young; Kim, Anna; Ha, Sang-Do

    2013-02-01

    Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.

  19. In vitro evidence of glucose-induced toxicity in GnRH secreting neurons: high glucose concentrations influence GnRH secretion, impair cell viability, and induce apoptosis in the GT1-1 neuronal cell line.

    PubMed

    Pal, Lubna; Chu, Hsiao-Pai; Shu, Jun; Topalli, Ilir; Santoro, Nanette; Karkanias, George

    2007-10-01

    To evaluate for direct toxic effects of high glucose concentrations on cellular physiology in GnRH secreting immortalized GT1-1 neurons. Prospective experimental design. In vitro experimental model using a cell culture system. GT1-1 cells were cultured in replicates in media with two different glucose concentrations (450 mg/dL and 100 mg/dL, respectively) for varying time intervals (24, 48, and 72 hours). Effects of glucose concentrations on GnRH secretion by the GT1-1 neurons were evaluated using a static culture model. Cell viability, cellular apoptosis, and cell cycle events in GT1-1 neurons maintained in two different glucose concentrations were assessed by flow cytometry (fluorescence-activated cell sorter) using Annexin V-PI staining. Adverse influences of high glucose concentrations on GnRH secretion and cell viability were noted in cultures maintained in high glucose concentration (450 mg/dL) culture medium for varying time intervals. A significantly higher percentage of cells maintained in high glucose concentration medium demonstrated evidence of apoptosis by a fluorescence-activated cell sorter. We provide in vitro evidence of glucose-induced cellular toxicity in GnRH secreting GT1-1 neurons. Significant alterations in GnRH secretion, reduced cell viability, and a higher percentage of apoptotic cells were observed in GT1-1 cells maintained in high (450 mg/dL) compared with low (100 mg/dL) glucose concentration culture medium.

  20. Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode

    NASA Astrophysics Data System (ADS)

    Zhao, Zuomin; Myllylae, Risto A.

    2001-06-01

    The near-infrared photoacoustic technique is recognized as a potential method for the non-invasive determination of human glucose, because near-infrared light can incident a few millimeters into human tissue, where it produces an acoustic wave capable of carrying information about the composition of the tissue. This paper demonstrates a photoacoustic glucose measurement in a blood sample as a step toward a non-invasive measurement. The experimental apparatus consists of a near-infrared laser diode operating with 4 micro joules pulse energy at 905 nm, a roller pump connected to a silicon plastic tube and a cuvette for circulating the blood sample. In addition, the apparatus comprises a PZT piezoelectric transducer integrated with a battery-powered preamplifier to receive the photoacoustic signal. During the experiment, a glucose solution is mixed into a human blood sample to change its concentration. Although the absorption coefficient of glucose is much smaller than that of blood in the near-infrared region, the osmotic and hydrophilic properties of glucose decrease the reduced scattering coefficient of blood caused by the dissolved glucose surrounding the blood cells. This changes the distribution of the absorbed optical energy in blood, which, in turn, produces a change in the photoacoustic signal. Our experiment demonstrates that signal amplitudes in fresh and stored blood samples in crease about 7% and 10%, respectively, when the glucose concentration reaches the upper limit of the physiological region (500 mg/dl).

  1. Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei V.; Welch, George R.

    2010-01-01

    We investigate the possibility of using a hybrid coherent anti-Stokes Raman scattering technique for noninvasive monitoring of blood glucose levels. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the nonresonant four-wave mixing background while maximizing the Raman-resonant signal and allows rapid and highly specific detection even in the presence of multiple scattering. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically relevant glucose levels.

  2. Elevated glucose concentrations during an oral glucose tolerance test are associated with the presence of metabolic syndrome in childhood obesity.

    PubMed

    Sabin, M A; Hunt, L P; Ford, A L; Werther, G A; Crowne, E C; Shield, J P H

    2008-03-01

    To investigate whether changes in glucose concentrations during an OGTT in obese children reflect the presence of peripheral insulin resistance and/or cardiovascular risk factors more closely than single measurements of fasting plasma glucose (FPG). One hundred and twenty-two obese children attending our Paediatric Obesity Service underwent formal OGTTs, following the measurement of blood pressure and fasting levels of insulin, glucose and lipid profiles in the majority. Fasting insulin was used as a surrogate measure of insulin sensitivity. Three different child-specific definitions for metabolic syndrome were used to identify clustering of cardiovascular risk factors in 65 of these children. In the whole group, 10.7% had IGT but changes in glucose during the OGTT were not influenced by age, sex, pubertal status or raw (or age- and sex-adjusted) body mass index (BMI). During the OGTT, FPG, glucose at 60 min and area under the glucose curve correlated highly with fasting insulin. Children with metabolic syndrome (defined using any of three definitions) had comparable FPG levels to those without metabolic syndrome, but they demonstrated significantly elevated glucose levels at 60 min. On sub-group analysis, obese children with normal carbohydrate metabolism were significantly more likely to have a 1 h glucose level > or = 7.8 mmol/l if they had metabolic syndrome (P = 0.026). These data suggest that an elevated 1 h post-load glucose measurement is seen in obese children who have a coexistent clustering of cardiovascular risk factors.

  3. Infusion of fluoxetine, a serotonin reuptake inhibitor, in the shell region of the nucleus accumbens increases blood glucose concentrations in rats.

    PubMed

    Diepenbroek, C; Rijnsburger, M; Eggels, L; van Megen, K M; Ackermans, M T; Fliers, E; Kalsbeek, A; Serlie, M J; la Fleur, S E

    2017-01-10

    The brain is well known to regulate blood glucose, and the hypothalamus and hindbrain, in particular, have been studied extensively to understand the underlying mechanisms. Nuclei in these regions respond to alterations in blood glucose concentrations and can alter glucose liver output or glucose tissue uptake to maintain blood glucose concentrations within strict boundaries. Interestingly, several cortico-limbic regions also respond to alterations in glucose concentrations and have been shown to project to hypothalamic nuclei and glucoregulatory organs. For instance, electrical stimulation of the shell of the nucleus accumbens (sNAc) results in increased circulating concentrations of glucose and glucagon and activation of the lateral hypothalamus (LH). Whether this is caused by the simultaneous increase in serotonin release in the sNAc remains to be determined. To study the effect of sNAc serotonin on systemic glucose metabolism, we implanted bilateral microdialysis probes in the sNAc of male Wistar rats and infused fluoxetine, a serotonin reuptake inhibitor, or vehicle after which blood glucose, endogenous glucose production (EGP) and glucoregulatory hormones were measured. Fluoxetine in the sNAc for 1h significantly increased blood glucose concentrations without an effect on glucoregulatory hormones. This increase was accompanied by a higher EGP in the fluoxetine infused rats compared to the controls. These data provide further evidence for a role of sNAc-serotonin in the regulation of glucose metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Composition of nasal airway surface liquid in cystic fibrosis and other airway diseases determined by X-ray microanalysis.

    PubMed

    Vanthanouvong, V; Kozlova, I; Johannesson, M; Nääs, E; Nordvall, S L; Dragomir, A; Roomans, G M

    2006-04-01

    The ionic composition of the airway surface liquid (ASL) in healthy individuals and in patients with cystic fibrosis (CF) has been debated. Ion transport properties of the upper airway epithelium are similar to those of the lower airways and it is easier to collect nasal ASL from the nose. ASL was collected with ion exchange beads, and the elemental composition of nasal fluid was determined by X-ray microanalysis in healthy subjects, CF patients, CF heterozygotes, patients with rhinitis, and with primary ciliary dyskinesia (PCD). In healthy subjects, the ionic concentrations were approximately isotonic. In CF patients, CF heterozygotes, rhinitis, and PCD patients, [Na] and [Cl] were significantly higher compared when compared with those in controls. [K] was significantly higher in CF and PCD patients compared with that in controls. Severely affected CF patients had higher ionic concentrations in their nasal ASL than in patients with mild or moderate symptoms. Female CF patients had higher levels of Na, Cl, and K than male patients. As higher salt concentrations in the ASL are also found in other patients with airway diseases involving chronic inflammation, it appears likely that inflammation-induced epithelial damage is important in determining the ionic composition of the ASL. Copyright (c) 2006 Wiley-Liss, Inc.

  5. Evaluation of the agreement among three handheld blood glucose meters and a laboratory blood analyzer for measurement of blood glucose concentration in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Acierno, Mark J; Mitchell, Mark A; Schuster, Patricia J; Freeman, Diana; Sanchez-Migallon Guzman, David; Tully, Thomas N

    2009-02-01

    To determine the degree of agreement between 3 commercially available point-of-care blood glucose meters and a laboratory analyzer for measurement of blood glucose concentrations in Hispaniolan Amazon parrots (Amazona ventralis). 20 healthy adult Hispaniolan Amazon parrots. A 26-gauge needle and 3-mL syringe were used to obtain a blood sample (approx 0.5 mL) from a jugular vein of each parrot. Small volumes of blood (0.6 to 1.5 microL) were used to operate each of the blood glucose meters, and the remainder was placed into lithium heparin microtubes and centrifuged. Plasma was harvested and frozen at -30 degrees C. Within 5 days after collection, plasma samples were thawed and plasma glucose concentrations were measured by means of the laboratory analyzer. Agreement between pairs of blood glucose meters and between each blood glucose meter and the laboratory analyzer was evaluated by means of the Bland-Altman method, and limits of agreement (LOA) were calculated. None of the results of the 3 blood glucose meters agreed with results of the laboratory analyzer. Each point-of-care blood glucose meter underestimated the blood glucose concentration, and the degree of negative bias was not consistent (meter A bias, -94.9 mg/dL [LOA, -148.0 to -41.7 mg/dL]; meter B bias, -52 mg/dL [LOA, -107.5 to 3.5 mg/dL]; and meter C bias, -78.9 mg/dL [LOA, -137.2 to -20.6 mg/dL]). On the basis of these results, use of handheld blood glucose meters in the diagnosis or treatment of Hispaniolan Amazon parrots and other psittacines cannot be recommended.

  6. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults.

    PubMed

    Magistrelli, Ashley; Chezem, Jo Carol

    2012-11-01

    In healthy normal-weight adults, cinnamon reduces blood glucose concentration and enhances insulin sensitivity. Insulin resistance, resulting in increased fasting and postprandial blood glucose and insulin levels, is commonly observed in obese individuals. The objective of the study was to compare declines in postprandial glycemic response in normal-weight and obese subjects with ingestion of 6 g ground cinnamon. In a crossover study, subjects consumed 50 g available carbohydrate in instant farina cereal, served plain or with 6 g ground cinnamon. Blood glucose concentration, the main outcome measure, was assessed at minutes 0, 15, 30, 45, 60, 90, and 120. Repeated-measures analysis of variance evaluated the effects of body mass index (BMI) group, dietary condition, and time on blood glucose. Paired t-test assessed blood glucose at individual time points and glucose area under the curve (AUC) between dietary conditions. Thirty subjects between the ages of 18 and 30 years, 15 with BMIs between 18.5 and 24.9 and 15 with BMIs of 30.0 or more, completed the study. There was no significant difference in blood glucose between the two BMI groups at any time point. However, in a combined analysis of all subjects, the addition of cinnamon to the cereal significantly reduced 120-minute glucose AUC (P=0.008) and blood glucose at 15 (P=0.001), 30 (P<0.001), 45 (P<0.001), and 60 (P=0.001) minutes. At 120 minutes, blood glucose was significantly higher with cinnamon consumption (P<0.001). These results suggest cinnamon may be effective in moderating postprandial glucose response in normal weight and obese adults. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  7. Altered blood glucose concentration is associated with risk of death among patients with community-acquired Gram-negative rod bacteremia.

    PubMed

    Peralta, Galo; Sánchez, M Blanca; Garrido, J Carlos; Ceballos, Begoña; Mateos, Fátima; De Benito, Inés; Roiz, M Pía

    2010-06-22

    Altered blood glucose concentration is commonly observed in patients with sepsis, even among those without hypoglycemic treatments or history of diabetes mellitus. These alterations in blood glucose are potentially detrimental, although the precise relationship with outcome in patients with bacteremia has not been yet determined. A retrospective cohort study design for analyzing patients with Gram negative rod bacteremia was employed, with the main outcome measure being in-hospital mortality. Patients were stratified in quintiles accordingly deviation of the blood glucose concentration from a central value with lowest mortality. Cox proportional-hazards regression model was used for determining the relationship of same day of bacteremia blood glucose and death. Of 869 patients identified 63 (7.4%) died. Same day of bacteremia blood glucose concentration had a U-shaped relationship with in-hospital mortality. The lowest mortality (2%) was detected in the range of blood glucose concentration from 150 to 160 mg/dL. Greater deviation of blood glucose concentration from the central value of this range (155 mg/dL, reference value) was directly associated with higher risk of death (p = 0.002, chi for trend). The low-risk group (quintile 1) had a mortality of 3.3%, intermediate-risk group (quintiles 2, 3 and 4) a mortality of 7.1%, and the high-risk group (quintile 5) a mortality of 12.05%. In a multivariable Cox regression model, the hazard ratio for death among patients in the intermediate-risk group as compared with that in the low risk group was 2.88 (95% confidence interval, 1.01 to 8.18; P = 0.048), and for the high risk group it was 4.26 (95% confidence interval, 1.41 to 12.94; P = 0.01). Same day of bacteremia blood glucose concentration is related with outcome of patients with Gram-negative rod bacteremia. Lowest mortality is detected in patients with blood glucose concentration in an interval of 150-160 mg/dL. Deviations from these values are associated with an

  8. Altered blood glucose concentration is associated with risk of death among patients with community-acquired Gram-negative rod bacteremia

    PubMed Central

    2010-01-01

    Background Altered blood glucose concentration is commonly observed in patients with sepsis, even among those without hypoglycemic treatments or history of diabetes mellitus. These alterations in blood glucose are potentially detrimental, although the precise relationship with outcome in patients with bacteremia has not been yet determined. Methods A retrospective cohort study design for analyzing patients with Gram negative rod bacteremia was employed, with the main outcome measure being in-hospital mortality. Patients were stratified in quintiles accordingly deviation of the blood glucose concentration from a central value with lowest mortality. Cox proportional-hazards regression model was used for determining the relationship of same day of bacteremia blood glucose and death. Results Of 869 patients identified 63 (7.4%) died. Same day of bacteremia blood glucose concentration had a U-shaped relationship with in-hospital mortality. The lowest mortality (2%) was detected in the range of blood glucose concentration from 150 to 160 mg/dL. Greater deviation of blood glucose concentration from the central value of this range (155 mg/dL, reference value) was directly associated with higher risk of death (p = 0.002, chi for trend). The low-risk group (quintile 1) had a mortality of 3.3%, intermediate-risk group (quintiles 2, 3 and 4) a mortality of 7.1%, and the high-risk group (quintile 5) a mortality of 12.05%. In a multivariable Cox regression model, the hazard ratio for death among patients in the intermediate-risk group as compared with that in the low risk group was 2.88 (95% confidence interval, 1.01 to 8.18; P = 0.048), and for the high risk group it was 4.26 (95% confidence interval, 1.41 to 12.94; P = 0.01). Conclusions Same day of bacteremia blood glucose concentration is related with outcome of patients with Gram-negative rod bacteremia. Lowest mortality is detected in patients with blood glucose concentration in an interval of 150-160 mg/dL. Deviations

  9. Airway diffusing capacity of nitric oxide and steroid therapy in asthma.

    PubMed

    Shin, Hye-Won; Rose-Gottron, Christine M; Cooper, Dan M; Newcomb, Robert L; George, Steven C

    2004-01-01

    Exhaled nitric oxide (NO) concentration is a noninvasive index for monitoring lung inflammation in diseases such as asthma. The plateau concentration at constant flow is highly dependent on the exhalation flow rate and the use of corticosteroids and cannot distinguish airway and alveolar sources. In subjects with steroid-naive asthma (n = 8) or steroid-treated asthma (n = 12) and in healthy controls (n = 24), we measured flow-independent NO exchange parameters that partition exhaled NO into airway and alveolar regions and correlated these with symptoms and lung function. The mean (+/-SD) maximum airway flux (pl/s) and airway tissue concentration [parts/billion (ppb)] of NO were lower in steroid-treated asthmatic subjects compared with steroid-naive asthmatic subjects (1,195 +/- 836 pl/s and 143 +/- 66 ppb compared with 2,693 +/- 1,687 pl/s and 438 +/- 312 ppb, respectively). In contrast, the airway diffusing capacity for NO (pl.s-1.ppb-1) was elevated in both asthmatic groups compared with healthy controls, independent of steroid therapy (11.8 +/- 11.7, 8.71 +/- 5.74, and 3.13 +/- 1.57 pl.s-1.ppb-1 for steroid treated, steroid naive, and healthy controls, respectively). In addition, the airway diffusing capacity was inversely correlated with both forced expired volume in 1 s and forced vital capacity (%predicted), whereas the airway tissue concentration was positively correlated with forced vital capacity. Consistent with previously reported results from Silkoff et al. (Silkoff PE, Sylvester JT, Zamel N, and Permutt S, Am J Respir Crit Med 161: 1218-1228, 2000) that used an alternate technique, we conclude that the airway diffusing capacity for NO is elevated in asthma independent of steroid therapy and may reflect clinically relevant changes in airways.

  10. Plasma glucose, cholesterol, triglyceride, and glycerol concentrations in the postmature rabbit.

    PubMed

    Harlow, A C; Roux, J F; Shapiro, M I

    1980-02-15

    Plasma cholesterol, triglycerides, glycerol, and glucose concentrations were measured in term and postmature rabbits. The data show that the term and postmature mothers have significantly higher glycemia than their fetuses. However, triglyceride and cholesterol concentrations are lower in the postmature mother than in her fetus. Postmature fetuses are characterized by very high plasma triglyceride and cholesterol concentrations. The results demonstrate that postmaturity is accompanied by maternal and fetal lipid metabolic changes related to a decrease in the transfer of maternal fatty acids through the placenta and to a diminution in fetal liver glucose utilization. The postmature fetus is then in a relative state of fasting and must rely on its own supply of fuel (glycogen and lipids) to provide cells for growth and survival. The maternal metabolic changes can possibly be explained by a decreased utilization of maternal substrates by the fetus, the placenta becoming insufficient. The close interrelationship of fetal and maternal lipid metabolism with the activity of the placenta suggests that an accurate knowledge of the metabolic changes taking place in the fetus during alteration of the maternal environment is indispensable to the understanding of the short- and long-term effects of maternal disease on the fetus.

  11. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya

    2012-01-01

    Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.

  12. Effect of delayed serum separation and storage temperature on serum glucose concentration in horse, dog, alpaca, and sturgeon.

    PubMed

    Collicutt, Nancy B; Garner, Bridget; Berghaus, Roy D; Camus, Melinda S; Hart, Kelsey

    2015-03-01

    Although delays between blood sample collection and analysis are common in veterinary medicine, the effect of prolonged serum-clot contact time on serum glucose concentration is not well established and species differences have not been elucidated. The objective was to investigate the effect of storage time and temperature on serum glucose concentration in stored whole blood samples from horse, dog, alpaca, and sturgeon. Whole blood specimens were divided into 7 no-additive tubes and serum was separated from one sample within one hour, serving as the reference sample. The remaining samples were stored at 4°C and 25°C, then centrifuged and serum glucose measured by automated analysis at 2, 4, and 8 hours postcollection. Glucose concentrations were compared using linear mixed models. The decline in serum glucose concentration for all samples stored at 4°C was not statistically significant, except for the 8-hour samples from sturgeon and dog. At 25°C, serum glucose concentration was comparable to reference values at 2 hours in sturgeon and alpaca, but significantly lower at 4 and 8 hours in those species, and at all time points in equine and canine specimens, being most prominent after 8 hours of storage in canine specimens. Storage at 4°C limits serum glucose decline for at least 4 hours in all species tested and up to 8 hours in specimens of horse and alpaca. At 25°C, serum-clot contact time should not exceed 1 hour in equine and canine samples, and 2 hours in specimens from alpaca and sturgeon. © 2014 American Society for Veterinary Clinical Pathology.

  13. Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity.

    PubMed

    Derscheid, Rachel J; van Geelen, Albert; Berkebile, Abigail R; Gallup, Jack M; Hostetter, Shannon J; Banfi, Botond; McCray, Paul B; Ackermann, Mark R

    2014-02-01

    Recent studies have revealed that the human and nonrodent mammalian airway mucosa contains an oxidative host defense system. This three-component system consists of the hydrogen peroxide (H2O2)-producing enzymes dual oxidase (Duox)1 and Duox2, thiocyanate (SCN(-)), and secreted lactoperoxidase (LPO). The LPO-catalyzed reaction between H2O2 and SCN(-) yields the bactericidal hypothiocyanite (OSCN(-)) in airway surface liquid (ASL). Although SCN(-) is the physiological substrate of LPO, the Duox/LPO/halide system can generate hypoiodous acid when the iodide (I(-)) concentration is elevated in ASL. Because hypoiodous acid, but not OSCN(-), inactivates respiratory syncytial virus (RSV) in cell culture, we used a lamb model of RSV to test whether potassium iodide (KI) could enhance this system in vivo. Newborn lambs received KI by intragastric gavage or were left untreated before intratracheal inoculation of RSV. KI treatment led to a 10-fold increase in ASL I(-) concentration, and this I(-) concentration was approximately 30-fold higher than that measured in the serum. Also, expiratory effort, gross lung lesions, and pulmonary expression of an RSV antigen and IL-8 were reduced in the KI-treated lambs as compared with nontreated control lambs. Inhibition of LPO activity significantly increased lesions, RSV mRNA, and antigen. Similar experiments in 3-week-old lambs demonstrated that KI administration was associated with reduced gross lesions, decreased RSV titers in bronchoalveolar lavage fluid, and reduced RSV antigen expression. Overall, these data indicate that high-dose KI supplementation can be used in vivo to lessen the severity of RSV infections, potentially through the augmentation of mucosal oxidative defenses.

  14. Alterations in brain glucose utilization accompanying elevations in blood ethanol and acetate concentrations in the rat.

    PubMed

    Pawlosky, Robert J; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L

    2010-02-01

    Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Rats were infused with solutions of sodium acetate, ethanol, or saline containing (13)C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs' cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of (13)C-glucose into the brain compared to controls and the concentration of brain (13)C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg(2+) in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, alpha-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD(+)]/[NADH] was lower, the free mitochondrial [NAD(+)]/[NADH] and [CoQ]/[CoQH(2)] were oxidized and the DeltaG' of ATP lowered by acetate infusion from -61.4 kJ to -59.9 kJ/mol. Animals with elevated levels of blood ethanol or acetate had decreased (13)C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in (13)C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in DeltaG' of ATP was similar to administration of uncoupling agents indicating that the

  15. Alterations in Brain Glucose Utilization Accompanying Elevations in Blood Ethanol and Acetate Concentrations in the Rat

    PubMed Central

    Pawlosky, Robert J.; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T.; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L.

    2010-01-01

    Background Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Methods Rats were infused with solutions of sodium acetate, ethanol, or saline containing 13C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs’ cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Results Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of 13C-glucose into the brain compared to controls and the concentration of brain 13C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg2+ in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, α-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD+]/[NADH] was lower, the free mitochondrial [NAD+]/[NADH] and [CoQ]/[CoQH2] were oxidized and the ΔG′ of ATP lowered by acetate infusion from −61.4 kJ to −59.9 kJ/mol. Conclusions Animals with elevated levels of blood ethanol or acetate had decreased 13C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in 13C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in ΔG′ of ATP was similar to administration of uncoupling agents

  16. Preserved circadian rhythm of serum insulin concentration at low plasma glucose during fasting in lean and overweight humans.

    PubMed

    Merl, Volker; Peters, Achim; Oltmanns, Kerstin M; Kern, Werner; Hubold, Christian; Hallschmid, Manfred; Born, Jan; Fehm, Horst L; Schultes, Bernd

    2004-11-01

    Circadian rhythms in glucose metabolism are well documented. Most studies, however, evaluated such variations under conditions of continuous glucose supply, either via food intake or glucose infusion. Here we assessed in 30 subjects circadian variations in concentrations of plasma glucose, serum insulin, and C-peptide during a 72-hour fasting period to evaluate rhythms independent from glucose supply. Furthermore we assessed differences in these parameters between normal-weight (n = 20) and overweight (n = 10) subjects. Blood was sampled every 4 hours. During fasting, plasma glucose, serum insulin, and C-peptide levels gradually decreased (all P < .001). While there was no circadian variation in plasma glucose levels after the first day of fasting, serum levels of insulin were constantly higher in the morning (8.00 h) than at night (0.00 h) (P < .001), although the extent of this morning-associated rise in insulin levels decreased with the time spent fasting (P = .001). Also, morning C-peptide concentrations were higher compared to the preceding night (P < .001). The C-peptide/insulin ratio (CIR) decreased during prolonged fasting (P = .030), suggesting a decrease in hepatic insulin clearance. Moreover, CIR was significantly lower in the morning than at the night of day 1 and day 2 of fasting (P = .010 and P = .004, respectively). Compared to normal-weight subjects, overweight subjects had higher plasma glucose, as well as serum insulin and C-peptide levels (all P < .03). Data indicate preserved circadian rhythms in insulin concentrations in the presence of substantially decreased glucose levels in normal-weight and overweight subjects. This finding suggests a central nervous system contribution to the regulation of insulin secretion independent of plasma glucose levels.

  17. A mathematical model of airway and pulmonary arteriole smooth muscle.

    PubMed

    Wang, Inga; Politi, Antonio Z; Tania, Nessy; Bai, Yan; Sanderson, Michael J; Sneyd, James

    2008-03-15

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration.

  18. A Mathematical Model of Airway and Pulmonary Arteriole Smooth Muscle

    PubMed Central

    Wang, Inga; Politi, Antonio Z.; Tania, Nessy; Bai, Yan; Sanderson, Michael J.; Sneyd, James

    2008-01-01

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration. PMID:18065464

  19. Visfatin and retinol-binding protein 4 concentrations in lean, glucose-tolerant women with PCOS.

    PubMed

    Yildiz, Bulent O; Bozdag, Gurkan; Otegen, Umit; Harmanci, Ayla; Boynukalin, Kubra; Vural, Zehra; Kirazli, Serafettin; Yarali, Hakan

    2010-01-01

    Since insulin resistance is accepted to be a common feature of polycystic ovary syndrome (PCOS), the exact molecular mechanism(s) involved in glucose and lipid metabolism have been under investigation in the syndrome. Recently, two novel adipokines, namely visfatin and retinol-binding protein 4 (RBP4), have been suggested to play a role in insulin resistance and diabetes. This study sought to determine whether plasma concentrations of visfatin and RBP4 are altered in PCOS by comparing a total of 27 lean, normal glucose-tolerant PCOS patients with 19 age- and body mass index-matched healthy controls. The mean plasma visfatin concentrations were higher in PCOS patients than those in healthy subjects (37.9+/-18.2 versus 19.8+/-17.5, P<0.01), while RBP4 concentrations were similar between the two. Both adipokines were correlated with each other in the whole (r=0.50, P<0.01) and in PCOS (r=0.52, P<0.01) groups but not in controls. The results suggest that lean, glucose-tolerant women with PCOS have increased circulating visfatin and unaltered RBP4 concentrations compared with healthy lean women. In order to clarify overlapping effects and their potential contribution to the pathophysiology of PCOS, further studies are needed. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  20. Blood glucose concentration and risk of liver cancer: systematic review and meta-analysis of prospective studies.

    PubMed

    Han, Hedong; Zhang, Tianyi; Jin, Zhichao; Guo, Honglei; Wei, Xin; Liu, Yuzhou; Chen, Qi; He, Jia

    2017-07-25

    The question of whether elevated blood glucose is a risk factor for liver cancer has been intensively studied, yet with inconsistent results. To explore the relationship between blood glucose concentration and risk of liver cancer, we conduct a meta-analysis of prospective studies. Literature search was comprehensively performed using database of PubMed, EMBASE and the Cochrane Library through October 2016. Random-effect models were used to combine the effect estimations. Eight articles containing ten studies with a total of 1975 liver cancer cases were included. The pooled RRs demonstrated that elevated fasting blood glucose was associated with increased risk of liver cancer (combined RRs: 1.77; 95% CI: 1.46, 2.13) with mild heterogeneity (I2 = 30.40%, P = 0.17). In sensitivity analysis, the pooled result remained significant (combined RRs: 1.33; 95% CI: 1.12, 1.59; I2 = 33.90%, P = 0.16) when we restricted blood glucose categories in the range of nondiabetic subjects. We also detected a J-shaped non-linear dose-response relationship between blood glucose concentration and risk of liver cancer. There is evidence that elevated blood glucose increases risk of liver cancer across the range of prediabetes and diabetes. Considering the rapidly increasing prevalence of prediabetes and diabetes, controlling blood glucose may lower the risk of liver cancer.

  1. Comparative study of the concentration of salivary and blood glucose in type 2 diabetic patients.

    PubMed

    Vasconcelos, Ana Carolina U; Soares, Maria Sueli M; Almeida, Paulo C; Soares, Teresa C

    2010-06-01

    The objective of the present study was to comparatively evaluate the concentrations of blood and salivary glucose as well as salivary flow and xerostomia in type 2 diabetic and non-diabetic patients. The mean salivary glucose level in diabetic patients was 14.03 +/-16.76 mg/dl and 6.35 +/- 6.02 mg/dl (P = 0.036) in the control group. The mean capillary blood glucose level in diabetic patients was 213 +/- 88 mg/dl, while that in non-diabetic patients was 99 +/- 14 mg/dl (P = 0.000). The mean value for resting salivary flow was 0.21 +/- 0.16 ml/min in diabetic patients and 0.33 +/- 0.20 ml/min in the control group (P = 0.002). The stimulated salivary flow was lower in the group of diabetic patients, with a mean of 0.63 +/- 0.43 ml/min, whereas the control group showed a mean of 1.20 +/- 0.70 ml/min (P = 0.000). Of the diabetic patients, 45% exhibited hyposalivation, in contrast to 2.5% of the non-diabetic patients (P = 0.000). Xerostomia was reported in 12.5% of diabetic patients and 5% of non-diabetic patients (P = 0.23). We can conclude that salivary glucose concentration was significantly higher in the experimental group and that there was no correlation between salivary and blood glucose concentrations in diabetic patients. The total salivary flow was significantly reduced in diabetic patients and there was no significant difference as to the presence of xerostomia in both groups.

  2. Concentrations of nonesterified fatty acids and glucose in blood of periparturient dairy cows are indicative of pregnancy success at first insemination.

    PubMed

    Garverick, H A; Harris, M N; Vogel-Bluel, R; Sampson, J D; Bader, J; Lamberson, W R; Spain, J N; Lucy, M C; Youngquist, R S

    2013-01-01

    Greater blood concentrations of nonesterified fatty acids (NEFA) and lesser blood concentrations of glucose are indicative of the normal process of nutrient partitioning that occurs in early postpartum dairy cows. The objective was to determine the relationship between blood NEFA and glucose concentrations and subsequent conception at first insemination in postpartum dairy cows. Holstein (n=148) and Guernsey (n=8) dairy cows were blood sampled at approximately d 10, 7, and 3 prepartum, on the day of calving and 3, 7, 14, and 21 d postpartum for measurement of NEFA and glucose concentrations. Serum and plasma were harvested and used for measurement of NEFA and glucose concentrations, respectively. Cows were given a presynchronization treatment (2 injections of PGF(2α) 14 d apart) with the second PGF(2α) injection occurring 14 d before the initiation of the timed AI (TAI) protocol. Blood for determination of progesterone concentrations was collected at each presynchronization injection and at the initiation of the TAI protocol that was used for first insemination (74±7 d postpartum). Cows were considered noncycling if serum progesterone concentrations at the 2 presynchronization PGF(2α) injections (d 37 and 51±7 postpartum) and at the initiation of the TAI protocol (d 65±7 postpartum) were ≤1 ng/mL, and there was no indication of ovulation or presence of a corpus luteum by ultrasound examination at the initiation of the TAI protocol. Pregnancy was determined at 33 d and again at 61 d after first insemination by using ultrasound. Across all days, serum NEFA and plasma glucose concentrations were not different between cows that ovulated before the initiation of the TAI program (cycling) compared with those that did not ovulate (noncycling). Serum NEFA concentrations, however, were less and plasma glucose concentrations were greater during the early postpartum period for cows that subsequently became pregnant at first insemination compared with those that failed

  3. Free fatty acids or high-concentration glucose enhances hepatitis A virus replication in association with a reduction in glucose-regulated protein 78 expression.

    PubMed

    Nwe Win, Nan; Kanda, Tatsuo; Nakamura, Masato; Nakamoto, Shingo; Okamoto, Hiroaki; Yokosuka, Osamu; Shirasawa, Hiroshi

    2017-01-29

    Although the interaction between host and hepatitis A virus (HAV) factors could lead to severe hepatitis A, the exact mechanism of acute liver failure caused by HAV infection is not yet fully understood. The effects of metabolic diseases such as dyslipidemia or diabetes mellitus on HAV replication are still unknown. Here, we examined the effects of free fatty acids or high-concentration glucose on HAV replication and the effects on mitogen-activated protein kinase signaling pathway-related genes in human hepatocytes. We discovered a novel effect of free fatty acids or high-concentration glucose on HAV replication in association with a reduction in the expression of glucose-regulated protein 78 (GRP78). We also observed that thapsigargin induced GRP78 expression and inhibited HAV replication. These findings may provide a new interpretation of the relationship between metabolic diseases and severity of hepatitis A and suggest a new understanding of the mechanism of severe HAV infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Short communication: Associations between blood glucose concentration, onset of hyperketonemia, and milk production in early lactation dairy cows.

    PubMed

    Ruoff, J; Borchardt, S; Heuwieser, W

    2017-07-01

    The objectives of this study were to describe the associations between hypoglycemia and the onset of hyperketonemia (HYK) within the first 6 wk of lactation, to evaluate the effects of body condition score at calving on glucose concentration, and to study the effects of hypoglycemia on milk production. A total of 621 dairy cows from 6 commercial dairy farms in Germany were enrolled between 1 and 4 d in milk (DIM). Cows were tested twice weekly using an electronic handheld meter for glucose and β-hydroxybutyrate (BHB), respectively, for a period of 42 d. Hypoglycemia was defined as glucose concentration ≤2.2 mmol/L. Hyperketonemia was defined as a BHB concentration ≥1.2 mmol/L. The onset of HYK was described as early onset (first HYK event within the first 2 wk postpartum) and late onset (first HYK event in wk 3 to 6 postpartum). The effect of ketosis status on blood glucose within 42 DIM was evaluated using a generalized linear mixed model. No effect was observed of HYK on glucose concentration in primiparous cows. Multiparous cows with early-onset HYK had a lower glucose concentration (-0.21 mmol/L) compared with nonketotic cows. Overall, primiparous cows had a lower prevalence and incidence of hypoglycemia than multiparous cows. Hypoglycemia in multiparous cows was associated with higher first test-day milk production and 100 DIM milk production. In conclusion, hypoglycemia mainly occurred in multiparous cows with early-onset HYK, whereas primiparous cows were at a lower risk for hypoglycemia. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations.

    PubMed

    Ng, Tzu Shan; Desa, Mohd Nasir Mohd; Sandai, Doblin; Chong, Pei Pei; Than, Leslie Thian Lung

    2016-06-01

    Glucose is an important fuel source to support many living organisms. Its importance in the physiological fitness and pathogenicity of Candida glabrata, an emerging human fungal pathogen has not been extensively studied. The present study aimed to investigate the effects of glucose on the growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of C. glabrata. In addition, its effect on the expression of a putative high affinity glucose sensor gene, SNF3 was also investigated. Glucose concentrations were found to exert effects on the physiological responses of C. glabrata. The growth rate of the species correlated positively to the amount of glucose. In addition, low glucose environments were found to induce C. glabrata to form biofilm and resist amphotericin B. Conversely, high glucose environments promoted oxidative stress resistance of C. glabrata. The expression of CgSNF3 was found to be significantly up-regulated in low glucose environments. The expression of SNF3 gene in clinical isolates was found to be higher compared to ATCC laboratory strains in low glucose concentrations, which may explain the better survivability of clinical isolates in the low glucose environment. These observations demonstrated the impact of glucose in directing the physiology and virulence fitness of C. glabrata through the possible modulation by SNF3 as a glucose sensor, which in turn aids the species to adapt, survive and thrive in hostile host environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Non-invasive method to detect the changes of glucose concentration in whole blood using photometric technique.

    PubMed

    Rajan, Shiny Amala Priya; Towe, Bruce C

    2014-01-01

    A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds.

  7. Glucose concentrations modulate brain-derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus.

    PubMed

    McIsaac, W; Ferguson, A V

    2017-04-01

    The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L -1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABA a antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L -1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L -1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABA A independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central

  8. Protective effect of insulin and glucose at different concentrations on penicillin-induced astrocyte death on the primer astroglial cell line☆

    PubMed Central

    Özdemir, Mehmet Bülent; Akça, Hakan; Erdoğan, Çağdaş; Tokgün, Onur; Demiray, Aydın; Semin, Fenkçi; Becerir, Cem

    2012-01-01

    Astrocytes perform many functions in the brain and spinal cord. Glucose metabolism is important for astroglial cells and astrocytes are the only cells with insulin receptors in the brain. The common antibiotic penicillin is also a chemical agent that causes degenerative effect on neuronal cell. The aim of this study is to show the effect of insulin and glucose at different concentrations on the astrocyte death induced by penicillin on primer astroglial cell line. It is well known that intracranial penicillin treatment causes neuronal cell death and it is used for experimental epilepsy model commonly. Previous studies showed that insulin and glucose might protect neuronal cell in case of proper concentrations. But, the present study is about the effect of insulin and glucose against astrocyte death induced by penicillin. For this purpose, newborn rat brain was extracted and then mechanically dissociated to astroglial cell suspension and finally grown in culture medium. Clutters were maintained for 2 weeks prior to being used in these experiments. Different concentrations of insulin (0, 1, 3 nM) and glucose (0, 3, 30 mM) were used in media without penicillin and with 2 500 μM penicillin. Penicillin decreased the viability of astroglial cell seriously. The highest cell viability appeared in medium with 3 nM insulin and 3 mM glucose but without penicillin. However, in medium with penicillin, the best cell survival was in medium with 1 nM insulin but without glucose. We concluded that insulin and glucose show protective effects on the damage induced by penicillin to primer astroglial cell line. Interestingly, cell survival depends on concentrations of insulin and glucose strongly. The results of this study will help to explain cerebrovascular pathologies parallel to insulin and glucose conditions of patient after intracranial injuries. PMID:25624816

  9. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows.

    PubMed

    Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M

    2015-08-01

    In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. Journal of Animal Physiology and Animal

  10. The importance of different frequency bands in predicting subcutaneous glucose concentration in type 1 diabetic patients.

    PubMed

    Lu, Yinghui; Gribok, Andrei V; Ward, W Kenneth; Reifman, Jaques

    2010-08-01

    We investigated the relative importance and predictive power of different frequency bands of subcutaneous glucose signals for the short-term (0-50 min) forecasting of glucose concentrations in type 1 diabetic patients with data-driven autoregressive (AR) models. The study data consisted of minute-by-minute glucose signals collected from nine deidentified patients over a five-day period using continuous glucose monitoring devices. AR models were developed using single and pairwise combinations of frequency bands of the glucose signal and compared with a reference model including all bands. The results suggest that: for open-loop applications, there is no need to explicitly represent exogenous inputs, such as meals and insulin intake, in AR models; models based on a single-frequency band, with periods between 60-120 min and 150-500 min, yield good predictive power (error <3 mg/dL) for prediction horizons of up to 25 min; models based on pairs of bands produce predictions that are indistinguishable from those of the reference model as long as the 60-120 min period band is included; and AR models can be developed on signals of short length (approximately 300 min), i.e., ignoring long circadian rhythms, without any detriment in prediction accuracy. Together, these findings provide insights into efficient development of more effective and parsimonious data-driven models for short-term prediction of glucose concentrations in diabetic patients.

  11. Adrenal Demedullation and Oxygen Supplementation Independently Increase Glucose-Stimulated Insulin Concentrations in Fetal Sheep With Intrauterine Growth Restriction

    PubMed Central

    Macko, Antoni R.; Yates, Dustin T.; Chen, Xiaochuan; Shelton, Leslie A.; Kelly, Amy C.; Davis, Melissa A.; Camacho, Leticia E.; Anderson, Miranda J.

    2016-01-01

    In pregnancies complicated by placental insufficiency and intrauterine growth restriction (IUGR), fetal glucose and oxygen concentrations are reduced, whereas plasma norepinephrine and epinephrine concentrations are elevated throughout the final third of gestation. Here we study the effects of chronic hypoxemia and hypercatecholaminemia on β-cell function in fetal sheep with placental insufficiency-induced IUGR that is produced by maternal hyperthermia. IUGR and control fetuses underwent a sham (intact) or bilateral adrenal demedullation (AD) surgical procedure at 0.65 gestation. As expected, AD-IUGR fetuses had lower norepinephrine concentrations than intact-IUGR fetuses despite being hypoxemic and hypoglycemic. Placental insufficiency reduced fetal weights, but the severity of IUGR was less with AD. Although basal plasma insulin concentrations were lower in intact-IUGR and AD-IUGR fetuses compared with intact-controls, glucose-stimulated insulin concentrations were greater in AD-IUGR fetuses compared with intact-IUGR fetuses. Interestingly, AD-controls had lower glucose- and arginine-stimulated insulin concentrations than intact-controls, but AD-IUGR and AD-control insulin responses were not different. To investigate chronic hypoxemia in the IUGR fetus, arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction. Oxygenation of IUGR fetuses enhanced glucose-stimulated insulin concentrations 3.3-fold in intact-IUGR and 1.7-fold in AD-IUGR fetuses but did not lower norepinephrine and epinephrine concentrations. Together these findings show that chronic hypoxemia and hypercatecholaminemia have distinct but complementary roles in the suppression of β-cell responsiveness in IUGR fetuses. PMID:26937714

  12. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate.

    PubMed

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J

    2010-01-01

    Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the

  13. Aluminum Gallium Nitride (GaN)/GaN High Electron Mobility Transistor-Based Sensors for Glucose Detection in Exhaled Breath Condensate

    PubMed Central

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P.; Pearton, Stephen J.

    2010-01-01

    Background Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. Methods HEMT structures, consisting of a 3-μm-thick undoped GaN buffer, 30-Å-thick Al0.3Ga0.7N spacer, and 220-Å-thick silicon-doped Al0.3Ga0.7N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc2O3), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. Results The Sc2O3-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of ∼0.1 pH. A chloride ion detection limit of 10-8 M was achievedt with a HEMT sensor immobilized with the AgCl thin film. The drain–source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 μM. Conclusion There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensingt different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to

  14. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    PubMed

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.

    PubMed

    Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki

    2017-03-01

    Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.

  16. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditionsmore » using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.« less

  17. A Low Frequency Electromagnetic Sensor for Indirect Measurement of Glucose Concentration: In Vitro Experiments in Different Conductive Solutions

    PubMed Central

    Tura, Andrea; Sbrignadello, Stefano; Cianciavicchia, Domenico; Pacini, Giovanni; Ravazzani, Paolo

    2010-01-01

    In recent years there has been considerable interest in the study of glucose-induced dielectric property variations of human tissues as a possible approach for non-invasive glycaemia monitoring. We have developed an electromagnetic sensor, and we tested in vitro its ability to estimate variations in glucose concentration of different solutions with similarities to blood (sodium chloride and Ringer-lactate solutions), differing though in the lack of any cellular components. The sensor was able to detect the effect of glucose variations over a wide range of concentrations (∼78–5,000 mg/dL), with a sensitivity of ∼0.22 mV/(mg/dL). Our proposed system may thus be useful in a new approach for non-invasive and non-contact glucose monitoring. PMID:22219665

  18. Effects of glucose concentration on osteogenic differentiation of type II diabetes mellitus rat bone marrow-derived mesenchymal stromal cells on a nano-scale modified titanium.

    PubMed

    Yamawaki, I; Taguchi, Y; Komasa, S; Tanaka, A; Umeda, M

    2017-08-01

    Diabetes mellitus (DM) is a common disease worldwide. Patients with DM have an increased risk of losing their teeth compared with other individuals. Dental implants are a standard of care for treating partial or full edentulism, and various implant surface treatments have recently been developed to increase dental implant stability. However, some studies have reported that DM reduces osseointegration and the success rate of dental implants. The purpose of this study was to determine the effects of high glucose levels for hard tissue formation on a nano-scale modified titanium surface. Titanium disks were heated at 600°C for 1 h after treatment with or without 10 m NaOH solution. All disks were incubated with type II DM rat bone marrow-derived mesenchymal stromal cells before exposure to one of four concentrations of glucose (5.5, 8.0, 12.0 or 24.0 mm). The effect of different glucose concentrations on bone marrow-derived mesenchymal stromal cell osteogenesis and inflammatory cytokines on the nano-scale modified titanium surface was evaluated. Alkaline phosphatase activity decreased with increasing glucose concentration. In contrast, osteocalcin production and calcium deposition were significantly decreased at 8.0 mm glucose, but increased with glucose concentrations over 8.0 mm. Differences in calcium/phosphate ratio associated with the various glucose concentrations were similar to osteocalcin production and calcium deposition. Inflammatory cytokines were expressed at high glucose concentrations, but the nano-scale modified titanium surface inhibited the effect of high glucose concentrations. High glucose concentration increased hard tissue formation, but the quality of the mineralized tissue decreased. Furthermore, the nano-scale modified titanium surface increased mineralized tissue formation and anti-inflammation, but the quality of hard tissue was dependent on glucose concentration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Characteristics of airborne dust in the return airways of the mechanized longwall face

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueyagueler, T.; Keskin, S.

    1999-07-01

    In this paper the results of a research study on the characterization of airborne dust in the return airway of the mechanized longwall face at Middle Anatolian Lignite Mine, OAL are presented. Dust, temperature, moisture and air velocity measurements are carried out in the return airways of the fully mechanized longwalls. Then the analyses of results on real-time concentration data, mass concentration data, effect of moisture, heat and air velocity on dust concentration are made. It has been found that amount of dust in return airway is directly related to the face activities and to the amount of settled dustmore » on the return airway. Moreover, the relationship between dust deposition rate and distance was studied. Another objective of this study is to determine the reliability of different dust samplers used in sampling. Comparison of results showed that for the lower dust concentration, there is not any significant differences between the measurements of samplers. But as the dust concentration exceeds 15 mg/m{sup 3}, the difference in measurements becomes significant.« less

  20. Mibefradil reduces blood glucose concentration in db/db mice

    PubMed Central

    Lu, Yujie; Long, Min; Zhou, Shiwen; Xu, Zihui; Hu, Fuquan; Li, Ming

    2014-01-01

    OBJECTIVE: Numerous recent studies suggest that abnormal intracellular calcium concentration ([Ca2+]i) is a common defect in diabetic animal models and patients. Abnormal calcium handling is an important mechanism in the defective pancreatic β-cell function in type 2 diabetes. T-type Ca2+ channel antagonists lower blood glucose in type 2 diabetes, but the mechanism remains unknown. METHODS: We examined the effect of the Ca2+ channel antagonist mibefradil on blood glucose in male db/db mice and phenotypically normal heterozygous mice by intraperitoneal injection. RESULTS: Mibefradil (15 mg/kg, i.p., b.i.d.) caused a profound reduction of fasting blood glucose from 430.92±20.46 mg/dl to 285.20±5.74 mg/dl in three days. The hypoglycemic effect of mibefradil was reproduced by NNC 55-0396, a compound structurally similar to mibefradil but more selective for T-type Ca2+ channels, but not by the specific L-type Ca2+ channel blocker nicardipine. Mibefradil did not show such hypoglycemic effects in heterozygous animals. In addition, triglycerides, basal insulin and food intake were significantly decreased by mibefradil treatment in the db/db mice but not in the controls. Western blot analysis, immunohistochemistry and immunofluorescence staining showed a significantly increased expression of T-type Ca2+ channel α-subunits Cav3.1 and Cav3.2 in liver and brain tissues from db/db mice compared to those from heterozygous animals. CONCLUSIONS: Collectively, these results suggest that T-type Ca2+ channels are potential therapeutic targets for antidiabetic drugs. PMID:24473561

  1. Short-term and long-term effects of guar on postprandial plasma glucose, insulin and glucagon-like peptide 1 concentration in healthy rats.

    PubMed

    Prieto, P G; Cancelas, J; Villanueva-Peñacarrillo, M L; Malaisse, W J; Valverde, I

    2006-06-01

    Ingestion of guar gum decreases postprandial glycemia and insulinemia and improves sensitivity to insulin in diabetic patients and several animal models of diabetes. The aim of the present study was to compare the short-term and long-term effects of guar on plasma insulin and glucagon-like peptide 1 concentration in healthy rats. In the short-term experiments, the concomitant intragastric administration of glucose and guar reduced the early increment in plasma glucose, insulin and glucagon-like peptide 1 concentration otherwise induced by glucose alone. Comparable findings were made after twelve days of meal training exposing the rats to either a control or guar-enriched diet for fifteen minutes. Mean plasma glucose concentrations were lower while mean insulin concentrations were higher in the guar group than in the controls according to intragastric glucose tolerance tests conducted in overnight fasted rats maintained for 19 to 36 days on either the control or guar-enriched diet. The intestinal content of glucagon-like peptide 1 at the end of the experiments was also lower in the guar group. Changes in body weight over 62 days of observation were comparable in the control and guar rats. Thus, long-term intake of guar improves glucose tolerance and insulin response to glucose absorption, without improving insulin sensitivity, in healthy rats.

  2. [A comparison of post-surgical plasma glucose levels in patients on fluids with different glucose concentrations].

    PubMed

    Martínez Carapeto, Isabel; López Castilla, José Domingo; Fresneda Gutiérrez, Reyes

    2017-11-11

    To compare plasma glucose levels and incidence of hyperglycaemia in the post-operative period after general surgery using fluids with different glucose. A randomised, open-label, non-blind, clinical trial was conducted on patients admitted to Paediatric Intensive Care Unit after elective surgery. The inclusion criteria were from 6 months to 14 years of age, with a weight greater than 6kg, onset glucose level >60mg/dL, and a signed informed consent, with no oral intake and maintenance intravenous fluid therapy using fluids with 3.3% or 5% glucose. Plasma glucose levels were measured before surgery, on admission, and 8, 24, and 48h, with the mean glucose levels and incidence of hyperglycaemia (glucose level >150mg/dL) in both groups being compared. A total of 60 patients received glucose/saline 1/3 (51mEq/L sodium and 33g/L glucose), and 70 glucose/saline 5/0.9% (154mEq/L sodium and 50g/L glucose). Mean glucose levels were higher in the group receiving glucose 5%, with no statistical difference. There was no significant difference in the incidence of hyperglycaemia; 8h: 26% in the 3.3% group vs. 21.3% in the 5% group (P=.63); 24h: 20% vs. 22.7% (P=.8); and 48h: 19% vs. 23.1% (P=.78). The use of fluids with 3.3% glucose in the post-operative period of general surgery maintains mean glucose levels in a similar range to that of patients receiving fluids with 5% glucose, with no difference in the incidence of hyperglycaemia. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  3. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    PubMed

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  4. Effects of 1 and 3 g cinnamon on gastric emptying, satiety, and postprandial blood glucose, insulin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, and ghrelin concentrations in healthy subjects.

    PubMed

    Hlebowicz, Joanna; Hlebowicz, Anna; Lindstedt, Sandra; Björgell, Ola; Höglund, Peter; Holst, Jens J; Darwiche, Gassan; Almér, Lars-Olof

    2009-03-01

    A previous study of healthy subjects showed that intake of 6 g cinnamon with rice pudding reduced postprandial blood glucose and the gastric emptying rate (GER) without affecting satiety. The objective was to study the effect of 1 and 3 g cinnamon on GER, postprandial blood glucose, plasma concentrations of insulin and incretin hormones [glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1)], the ghrelin response, and satiety in healthy subjects. GER was measured by using real-time ultrasonography after ingestion of rice pudding with and without 1 or 3 g cinnamon. Fifteen healthy subjects were assessed in a crossover trial. The addition of 1 or 3 g cinnamon had no significant effect on GER, satiety, glucose, GIP, or the ghrelin response. The insulin response at 60 min and the area under the curve (AUC) at 120 min were significantly lower after ingestion of rice pudding with 3 g cinnamon (P = 0.05 and P = 0.036, respectively, after Bonferroni correction). The change in GLP-1 response (DeltaAUC) and the change in the maximum concentration (DeltaC(max)) were both significantly higher after ingestion of rice pudding with 3 g cinnamon (P = 0.0082 and P = 0.0138, respectively, after Bonferroni correction). Ingestion of 3 g cinnamon reduced postprandial serum insulin and increased GLP-1 concentrations without significantly affecting blood glucose, GIP, the ghrelin concentration, satiety, or GER in healthy subjects. The results indicate a relation between the amount of cinnamon consumed and the decrease in insulin concentration.

  5. Glucose concentration in the blood of intact and alloxan-treated mice after pretreatment with commercial preparations of Stevia rebaudiana (Bertoni).

    PubMed

    Raskovic, Aleksandar; Gavrilovic, Maja; Jakovljevic, Vida; Sabo, Jan

    2004-01-01

    The study was concerned with the effect of mice pretreatment with two commercial products of Stevia rebaudiana Bertoni on the blood glucose concentration. One group of mice was pretreated four days with 200 mg/kg of Stevita (Stevita Co, INC, Arlington Texas) (stevia) and the other with 20 mg/kg of Clear Steviosides liquid (Stevita Co, INC, Herbal supplement, Brazil) (stevioside), whereas the animals of control group received at the same time physiological solution. Blood glucose concentration was measured before pretreatment and four days after that. The changes in glucose level were provoked by glucose-tolerance test (500 mg/kg, p.o.) and subcutaneous injection of adrenaline (0.2 mg/kg). The same procedure of measuring blood glucose was applied on the mice with alloxan-induced diabetes mellitus (two doses of 100 mg/kg with a 24-hour interval). Blood glucose levels in mice pretreated with stevia and stevioside were lower compared with control (7.82:6.82:8.01). Also, a smaller increase in this parameter compared to control was registered with pretreated mice in the glucose-tolerance test, pretreatment with stevioside being again more effective (8.68:6.36:5.82). Pretreatment with stevioside caused no significant increase in blood glucose concentration after administering adrenaline, which was not the case with the animals pretreated with stevia and control. Pretreatment with stevia, and to a greater extent with stevioside, protected test animals from the toxic action of alloxan compared with controls.

  6. Airway-parenchymal interdependence

    PubMed Central

    Paré, Peter D; Mitzner, Wayne

    2015-01-01

    In this manuscript we discuss the interaction of the lung parenchyma and the airways as well as the physiological and pathophysiological significance of this interaction. These two components of the respiratory organ can be thought of as two independent elastic structures but in fact the mechanical properties of one influence the behavior of the other. Traditionally the interaction has focused on the effects of the lung on the airways but there is good evidence that the opposite is also true, i.e., that the mechanical properties of the airways influence the elastic properties of the parenchyma. The interplay between components of the respiratory system including the airways, parenchyma and vasculature is often referred to as “interdependence.” This interdependence transmits the elastic recoil of the lung to create an effective pressure that dilates the airways as transpulmonary pressure and lung volume increase. By using a continuum mechanics analysis of the lung parenchyma, it is possible to predict the effective pressure between the airways and parenchyma, and these predictions can be empirically evaluated. Normal airway caliber is maintained by this pressure in the adventitial interstitium of the airway, and it counteracts airway compression during forced expiration as well as the ability of airway smooth muscle to narrow airways. Interdependence has physiological and pathophysiological significance. Weakening of the forces of interdependence contributes to airway dysfunction and gas exchange impairment in acute and chronic airway diseases including asthma and emphysema. PMID:23723029

  7. Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection

    NASA Astrophysics Data System (ADS)

    Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem; Hocini, Abdesselam

    2017-02-01

    A Bio-sensing platform based on an infiltrated photonic crystal ring shaped holes cavity-coupled waveguide system is proposed for glucose concentration detection. Considering silicon-on-insulator (SOI) technology, it has been demonstrated that the ring shaped holes configuration provides an excellent optical confinement within the cavity region, which further enhances the light-matter interactions at the precise location of the analyte medium. Thus, the sensitivity and the quality factor (Q) can be significantly improved. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte glucose concentration are analyzed by performing finite-difference time-domain (FDTD) simulations. Accordingly, an improved sensitivity of 462 nm/RIU and a Q factor as high as 1.11х105 have been achieved, resulting in a detection limit of 3.03х10-6 RIU. Such combination of attributes makes the designed structure a promising element for performing label-free biosensing in medical diagnosis and environmental monitoring.

  8. Effect of Glucose Concentration on Electrochemical Corrosion Behavior of Pure Titanium TA2 in Hanks’ Simulated Body Fluid

    PubMed Central

    Liu, Shuyue; Wang, Bing; Zhang, Peirong

    2016-01-01

    Titanium and its alloys have been widely used as implant materials due to their excellent mechanical property and biocompatibility. In the present study, the effect of glucose concentration on corrosion behavior of pure titanium TA2 in Hanks’ simulated body fluid is investigated by the electrochemical impedance spectrum (EIS) and potentiodynamic polarization methods. The range of glucose concentrations investigated in this research includes 5 mmol/L (limosis for healthy people), 7 mmol/L (after diet for healthy people), 10 mmol/L (limosis for hyperglycemia patient), and 12 mmol/L (after diet for hyperglycemia patient), as well as, 15 mmol/L and 20 mmol/L, which represent different body fluid environments. The results indicate that the pure titanium TA2 demonstrates the best corrosion resistance when the glucose concentration is less than 10 mmol/L, which shows that the pure titanium TA2 as implant material can play an effective role in the body fluids with normal and slight high glucose concentrations. Comparatively, the corrosion for the pure titanium implant is more probable when the glucose concentration is over 10 mmol/L due to the premature penetration through passive film on the material surface. Corrosion defects of pitting and crevice exist on the corroded surface, and the depth of corrosion is limited to three microns with a low corrosion rate. The oxidation film on the surface of pure titanium TA2 has a protective effect on the corrosion behavior of the implant inner material. The corrosion behavior of pure titanium TA2 will happen easily once the passive film has been penetrated through. The corrosion rate for TA2 implant will accelerate quickly and a pure titanium implant cannot be used. PMID:28773993

  9. A glucose concentration and temperature sensor based on long period fiber gratings induced by electric-arc discharge

    NASA Astrophysics Data System (ADS)

    Du, Chao; Wang, Qi

    2017-10-01

    As one of the key parameters in biological and chemical reactions, glucose concentration objectively reflects the characteristics of reactions, so the real-time monitoring of glucose concentration is important in the field of biochemical. Meanwhile, the influence from temperature should be considered. The fiber sensors have been studied extensively for decades due to the advantages of small size, immunity to electromagnetic interference and high sensitivity, which are suitable for the application of biochemical sensing. A long period fiber grating (LPFG) sensor induced by electric-arc discharge has been fabricated and demonstrated for simultaneous measurement of glucose concentration and temperature. The proposed sensor was fabricated by inscribing a sing mode fiber (SMF) with periodic electric-arc discharge technology. During the fabrication process, the electric-arc discharge technology was produced by a commercial fusion splicer, and the period of inscribed LPFG was determined by the movement of translation stages. A serials of periodic geometrical deformations would be formed in SMF after the fabrication, and the discharge intensity and discharge time can be adjusted though the fusion splicer settings screen. The core mode can be coupled into the cladding modes at certain wavelength when they satisfy the phase-matching conditions, and there will be several resonance dips in the transmission spectrum in LPFG. The resonance dips formed by the coupling between cladding modes and core mode have different sensitivity responses, so the simultaneous measurement for multi-parameter can be realized by monitoring the wavelength shifts of the resonance dips. Compared with the LPFG based on conventional SMF, the glucose concentration sensitivity has been obviously enhanced by etching the cladding with hydrofluoric acid solution. Based on the independent measured results, a dual-parameter measurement matrix has been built for signal demodulation. Because of the easy

  10. FABP4 induces asthmatic airway epithelial barrier dysfunction via ROS-activated FoxM1.

    PubMed

    Wu, Gaohui; Yang, Liteng; Xu, Yi; Jiang, Xiaohong; Jiang, Xiaomin; Huang, Lisha; Mao, Ling; Cai, Shaoxi

    2018-01-01

    Functional abnormal airway epithelial cells, along with activated inflammatory cells, resulting in chronic airway inflammation, are considered as the characteristic of asthma. Fatty Acid Binding Protein 4 (FABP4) takes part in glucose and lipid homeostasis, and also have an important role in allergic airway inflammation. However, whether FABP4 influence barrier function of airway epithelial cells is unknown. In vivo, a HDM-induced murine model of asthma was obtained to assessed airway inflammation and protein expression of E-cadherin and Forkhead Box M1 (FoxM1). In vitro, 16-HBE was cultured and was treated with hrFABP4, siFABP4, FABPF4 inhibitor BMS, or FoxM1 inhibitor RCM-1. IL-4, IL-5, and IL-13 level was determined by ELISA. Transepithelial electrical resistance (TER), paracellular permeability and E-cadherin-special immunofluorescence were measured to value airway epithelial barrier function. Intracellular ROS production was determined by DCF-DA fluorescence. FABP4 inhibitor BMS alleviate airway inflammation and destruction of E-cad in allergic mouse. Treatment with HDM or hrFABP4 aggravated inflammatory response, damaged airway epithelial barrier, which could be inhibited by siFABP4 and BMS. Treatment with HDM or hrFABP4 also enhanced levels of FoxM1, and Inhibited FoxM1 suppressed HDM- and hrFABP4-induced inflammation and airway epithelial barrier dysfunction. In addition, H 2 O 2 promoted FoxM1 expression, HDM and hrFABP4 induced-FoxM1 could be inhibited by NAC, leading to decreased inflammation and improved airway epithelial barrier. Upregulated ROS induced by FABP4 was of significance in activating FoxM1 leading to airway inflammation and epithelial barrier dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  12. Clinical assessment of blood glucose homeostasis in horses: comparison of a continuous glucose monitoring system with a combined intravenous glucose and insulin test protocol.

    PubMed

    Johnson, P J; Wiedmeyer, C E; LaCarrubba, A; Messer, N T; Dingfelder, H A; Cogswell, A M; Amorim, J R R; Ganjam, V K

    2011-01-01

    The combined glucose-insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Seven mature, obese ponies. Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, i.v.) and insulin (0.1 U/kg, i.v.) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand-held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand-held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  13. Fentanyl reduces desflurane-induced airway irritability following thiopental administration in children.

    PubMed

    Lee, J; Oh, Y; Kim, C; Kim, S; Park, H; Kim, H

    2006-10-01

    Airway irritation is a major drawback of desflurane anesthesia. This study was designed to evaluate the effect of intravenous fentanyl given before thiopental induction on airway irritation caused by a stepwise increase in desflurane in children. Eighty children (2-8 years) were enrolled in a randomized, double-blind study. Forty received saline and 40 received 2 microg/kg of fentanyl intravenously; this was followed by thiopental sodium 5 mg/kg in both groups. Patients were assistant-ventilated with desflurane 1%, which was then increased by 1% every six breaths up to 10%. During this period, cough, secretion, excitation and apnea were graded and the desflurane concentration at which airway irritation symptoms first occurred was recorded. The results were analyzed using Pearson's chi-squared test. The incidence of typical airway irritation events was lower with fentanyl than with saline (cough, 2.5% vs. 42.5%; secretion, 27.5% vs. 82.5%; excitation, 10% vs. 82.5%; apnea, 20% vs. 65%; P < 0.05). The mean expired desflurane concentration at which the first airway irritation symptom occurred was greater with fentanyl than with saline (7.3% vs. 5.5%, P < 0.05). Intravenous fentanyl in children reduces airway complications caused by desflurane.

  14. Insoluble fiber is a major constituent responsible for lowering the post-prandial blood glucose concentration in the pre-germinated brown rice.

    PubMed

    Seki, Taiichiro; Nagase, Ryohei; Torimitsu, Mariko; Yanagi, Megumi; Ito, Yukihiko; Kise, Mitsuo; Mizukuchi, Aya; Fujimura, Naoko; Hayamizu, Kohusuke; Ariga, Toyohiko

    2005-08-01

    The intake of pre-germinated brown rice (PR) instead of white rice (WR) ameliorates the hyperglycemia. To clarify the mechanism(s) to decrease the post-prandial blood glucose concentration, the effect of water-soluble/oil-soluble fraction-depleted PR bran (termed as "DB"; which is destarched and defatted PR bran) on post-prandial blood glucose was compared with that of full-fat PR bran (PB) or WR. The test diets, WR diet, PB diet and DB diet which are containing identical amount of available carbohydrate (1.5 g) were fed to Wistar strain rats. Post-prandial blood glucose concentration and incremental area under the curve (IAUC) for DB diet were lower than those for WR diet, and there was no difference between the DB diet and PB diet. Changes in plasma insulin concentration and the IAUC obtained also revealed the same tendency as those observed in blood glucose concentration. These results indicate that the blood glucose-lowering effect of PB diet may be derived from the properties of PB involving substantially higher content of dietary fiber than WR, and that the potential benefit of intake of PR instead of WR in the prevention of diabetic vascular complications.

  15. Real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentration by electromagnetic sensing.

    PubMed

    Harnsoongnoen, Supakorn; Wanthong, Anuwat

    2017-10-01

    Magnetic sensing at microwave frequencies for real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations is reported. The sensing element was designed based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR), which was fabricated on a DiClad 880 substrate with a thickness of 1.6mm and relative permittivity (ε r ) of 2.2. The magnetic sensor was connected to a Vector Network Analyzer (VNA) and the electromagnetic interaction between the samples and sensor was analyzed. The magnitude of the transmission coefficient (S 21 ) was used as an indicator to detect the solution sample concentrations ranging from 0.04 to 0.20g/ml. The experimental results confirmed that the developed system using microwaves for the real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations gave unique results for each solution type and concentration. Moreover, the proposed sensor has a wide dynamic range, high linearity, fast operation and low-cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  17. Dynamic modeling of the hydrogel molecular filter in a metamaterial biosensing system for glucose concentration estimation.

    PubMed

    Teutsch, T; Mesch, M; Giessen, H; Tarin, C

    2014-01-01

    We present a novel concept for ophthalmic glucose sensing using a biosensing system that consists of plasmonic dipole metamaterial covered by a layer of functionalized hydrogel. The metamaterial together with the hydrogel can be integrated into a contact lens. This optical sensor changes its properties such as reflectivity upon the ambient glucose concentration, which allows in situ measurements in the eye. The functionalization of the sensor with hydrogel allows for a glucose-specific detection, providing both selectivity and sensitivity. As a result of the presented work we derive a dynamic model of the hydrogel that can be used for further simulation studies.

  18. Exhaled particles as markers of small airway inflammation in subjects with asthma.

    PubMed

    Larsson, Per; Lärstad, Mona; Bake, Björn; Hammar, Oscar; Bredberg, Anna; Almstrand, Ann-Charlotte; Mirgorodskaya, Ekaterina; Olin, Anna-Carin

    2017-09-01

    Exhaled breath contains suspended particles of respiratory tract lining fluid from the small airways. The particles are formed when closed airways open during inhalation. We have developed a method called Particles in Exhaled air (PExA ® ) to measure and sample these particles in the exhaled aerosol. Here, we use the PExA ® method to study the effects of birch pollen exposure on the small airways of individuals with asthma and birch pollen allergy. We hypothesized that birch pollen-induced inflammation could change the concentrations of surfactant protein A and albumin in the respiratory tract lining fluid of the small airways and influence the amount of exhaled particles. The amount of exhaled particles was reduced after birch pollen exposure in subjects with asthma and birch pollen allergy, but no significant effect on the concentrations of surfactant protein A and albumin in exhaled particles was found. The reduction in the number of exhaled particles may be due to inflammation in the small airways, which would reduce their diameter and potentially reduce the number of small airways that open and close during inhalation and exhalation. © 2015 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd.

  19. Comparison of high glucose concentration blood and crystalloid cardioplegia in paediatric cardiac surgery: a randomized clinical trial

    PubMed Central

    Mimic, Branko; Ilic, Slobodan; Vulicevic, Irena; Milovanovic, Vladimir; Tomic, Danijela; Mimic, Ana; Stankovic, Sanja; Zecevic, Tatjana; Davies, Ben; Djordjevic, Miroslav

    2016-01-01

    OBJECTIVES This study investigates the effects of high glucose content on patients undergoing cold crystalloid versus cold blood cardioplegia in terms of early clinical results, functional myocardial recovery and ischaemia–reperfusion injury in patients undergoing repair of acyanotic cardiac lesions. METHODS Patients were randomly assigned to receive either crystalloid (n = 31) or blood cardioplegia (n = 31). Early clinical results were assessed. Changes in left ventricular fractional shortening, arterial blood lactate levels, central venous saturation, cardiac Troponin I release and blood glucose concentration were measured during the first 24 h after ischaemia. RESULTS There was no significant difference in clinical outcomes and postoperative complication rates between groups. The postoperative changes in left ventricular function, lactate levels, central venous saturation and Troponin I were not significantly different between groups. The use of crystalloid cardioplegia was associated with significant increases in serum glucose compared with blood cardioplegia. CONCLUSIONS A high glucose content blood cardioplegia does not show any advantage compared with crystalloid cardioplegia in terms of clinical outcomes, functional recovery and the degree of ischaemic injury in infants and children undergoing repair of acyanotic heart lesions. High glucose concentration of the cardioplegic solution might potentiate ischaemia–reperfusion injury and diminish the beneficial effects of blood cardioplegia. PMID:26831677

  20. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    PubMed Central

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  1. Noninvasive Continuous Monitoring of Tear Glucose Using Glucose-Sensing Contact Lenses.

    PubMed

    Ascaso, Francisco J; Huerva, Valentín

    2016-04-01

    : The incidence of diabetes mellitus is dramatically increasing in the developed countries. Tight control of blood glucose concentration is crucial to diabetic patients to prevent microvascular complications. Self-monitoring of blood glucose is widely used for controlling blood glucose levels and usually performed by an invasive test using a portable glucometer. Many technologies have been developed over the past decades with the purpose of obtaining a continuous physiological glycemic monitoring. A contact lens is the ideal vehicle for continuous tear glucose monitoring of glucose concentration in tear film. There are several research groups that are working in the development of contact lenses with embedded biosensors for continuously and noninvasively monitoring tear glucose levels. Although numerous aspects must be improved, contact lens technology is one step closer to helping diabetic subjects better manage their condition, and these contact lenses will be able to measure the level of glucose in the wearer's tears and communicate the information to a mobile phone or computer. This article reviews studies on ocular glucose and its monitoring methods as well as the attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors.

  2. Dietary fructose and glucose differentially affect lipid and glucose homeostasis.

    PubMed

    Schaefer, Ernst J; Gleason, Joi A; Dansinger, Michael L

    2009-06-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at approximately 20-25% of energy over a 4- to 6-wk period, dietary fructose caused significant increases in fasting TG and LDL cholesterol concentrations, whereas dietary glucose did not, but dietary glucose did increase serum glucose and insulin concentrations in the postprandial state whereas dietary fructose did not. When fructose at 30-60 g ( approximately 4-12% of energy) was added to the diet in the free-living state, there were no significant effects on lipid or glucose biomarkers. Sucrose and high-fructose corn syrup (HFCS) contain approximately equal amounts of fructose and glucose and no metabolic differences between them have been noted. Controlled feeding studies at more physiologic dietary intakes of fructose and glucose need to be conducted. In our view, to decrease the current high prevalence of obesity, dyslipidemia, insulin resistance, and diabetes, the focus should be on restricting the intake of excess energy, sucrose, HFCS, and animal and trans fats and increasing exercise and the intake of vegetables, vegetable oils, fish, fruit, whole grains, and fiber.

  3. The effect of antioxidants on ozone-induced airway hyperresponsiveness in dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, S.; Jones, G.L.; Woolley, M.J.

    1991-12-01

    The role of oxygen radicals in causing ozone-induced airway hyperresponsiveness in dogs was examined by pretreating dogs with allopurinol and/or deferoxamine mesylate (desferal), which are inhibitors of oxygen radical generation, before ozone inhalation. Acetylcholine airway responsiveness was measured before and after either air or ozone inhalation (3 ppm for 20 min) on 5 experimental days separated by at least 2 wk. On each day, the dogs were pretreated intravenously with allopurinol (50 mg/kg) followed by inhaled desferal (1,000 mg inhalation) or with allopurinol followed by the diluent for desferal or with the diluent for allopurinol and desferal or with bothmore » diluents. The effect of ozone on acetylcholine airway responsiveness was expressed as the differences in the log-transformed preozone-postozone acetylcholine provocative concentrations. When dogs received both diluents or either treatment alone, ozone inhalation caused airway hyperresponsiveness. The mean log differences for the preozone-postozone acetylcholine provocative concentration were 0.804 (SEM, 0.17) for both diluents, 0.524 (SEM, 0.16) for allopurinol alone, and 0.407 (SEM, 0.22) for desferal alone. However, the combination of allopurinol and desferal significantly inhibited the development of ozone-induced airway hyperresponsiveness, the log difference being 0.195 (SEM, 0.11) (p less than 0.05), without inhibiting ozone-induced neutrophil influx into the airways. The results suggest that the production of oxygen radicals is important in the pathogenesis of ozone-induced airway hyperresponsiveness.« less

  4. Estimating Plasma Glucose from Interstitial Glucose: The Issue of Calibration Algorithms in Commercial Continuous Glucose Monitoring Devices

    PubMed Central

    Rossetti, Paolo; Bondia, Jorge; Vehí, Josep; Fanelli, Carmine G.

    2010-01-01

    Evaluation of metabolic control of diabetic people has been classically performed measuring glucose concentrations in blood samples. Due to the potential improvement it offers in diabetes care, continuous glucose monitoring (CGM) in the subcutaneous tissue is gaining popularity among both patients and physicians. However, devices for CGM measure glucose concentration in compartments other than blood, usually the interstitial space. This means that CGM need calibration against blood glucose values, and the accuracy of the estimation of blood glucose will also depend on the calibration algorithm. The complexity of the relationship between glucose dynamics in blood and the interstitial space, contrasts with the simplistic approach of calibration algorithms currently implemented in commercial CGM devices, translating in suboptimal accuracy. The present review will analyze the issue of calibration algorithms for CGM, focusing exclusively on the commercially available glucose sensors. PMID:22163505

  5. Post-Exposure Antioxidant Treatment in Rats Decreases Airway Hyperplasia and Hyperreactivity Due to Chlorine Inhalation

    PubMed Central

    Bracher, Andreas; Doran, Stephen F.; Squadrito, Giuseppe L.; Fernandez, Solana; Postlethwait, Edward M.; Bowen, Larry; Matalon, Sadis

    2012-01-01

    We assessed the safety and efficacy of combined intravenous and aerosolized antioxidant administration to attenuate chlorine gas–induced airway alterations when administered after exposure. Adult male Sprague-Dawley rats were exposed to air or 400 parts per million (ppm) chlorine (a concentration likely to be encountered in the vicinity of industrial accidents) in environmental chambers for 30 minutes, and returned to room air, and they then received a single intravenous injection of ascorbic acid and deferoxamine or saline. At 1 hour and 15 hours after chlorine exposure, the rats were treated with aerosolized ascorbate and deferoxamine or vehicle. Lung antioxidant profiles, plasma ascorbate concentrations, airway morphology, and airway reactivity were evaluated at 24 hours and 7 days after chlorine exposure. At 24 hours after exposure, chlorine-exposed rats had significantly lower pulmonary ascorbate and reduced glutathione concentrations. Treatment with antioxidants restored depleted ascorbate in lungs and plasma. At 7 days after exposure, in chlorine-exposed, vehicle-treated rats, the thickness of the proximal airways was 60% greater than in control rats, with twice the amount of mucosubstances. Airway resistance in response to methacholine challenge was also significantly elevated. Combined treatment with intravenous and aerosolized antioxidants restored airway morphology, the amount of airway mucosubstances, and airway reactivity to control levels by 7 days after chlorine exposure. Our results demonstrate for the first time, to the best of our knowledge, that severe injury to major airways in rats exposed to chlorine, as characterized by epithelial hyperplasia, mucus accumulation, and airway hyperreactivity, can be reversed in a safe and efficacious manner by the post-exposure administration of ascorbate and deferoxamine. PMID:22162906

  6. Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver.

    PubMed

    Kalsbeek, Andries; La Fleur, Susanne; Van Heijningen, Caroline; Buijs, Ruud M

    2004-09-01

    Daily peak plasma glucose concentrations are attained shortly before awakening. Previous experiments indicated an important role for the biological clock, located in the suprachiasmatic nuclei (SCN), in the genesis of this anticipatory rise in plasma glucose concentrations by controlling hepatic glucose production. Here, we show that stimulation of NMDA receptors, or blockade of GABA receptors in the paraventricular nucleus of the hypothalamus (PVN) of conscious rats, caused a pronounced increase in plasma glucose concentrations. The local administration of TTX in brain areas afferent to the PVN revealed that an important part of the inhibitory inputs to the PVN was derived from the SCN. Using a transneuronal viral-tracing technique, we showed that the SCN is connected to the liver via both branches of the autonomic nervous system (ANS). The combination of a blockade of GABA receptors in the PVN with selective removal of either the sympathetic or parasympathetic branch of the hepatic ANS innervation showed that hyperglycemia produced by PVN stimulation was primarily attributable to an activation of the sympathetic input to the liver. We propose that the daily rise in plasma glucose concentrations is caused by an SCN-mediated withdrawal of GABAergic inputs to sympathetic preautonomic neurons in the PVN, resulting in an increased hepatic glucose production. The remarkable resemblance of the presently proposed control mechanism to that described previously for the control of daily melatonin rhythm suggests that the GABAergic control of sympathetic preautonomic neurons in the PVN is an important pathway for the SCN to control peripheral physiology.

  7. CCL18 synergises with high concentrations of glucose in stimulating fibronectin production in human renal tubuloepithelial cells.

    PubMed

    Montero, Rosa M; Bhangal, Gurjeet; Pusey, Charles D; Frankel, Andrew H; Tam, Frederick W K

    2016-09-29

    Diabetic nephropathy is the leading cause of end stage kidney disease worldwide. The pathogenesis of this disease remains elusive and multiple factors have been implicated. These include the effects of hyperglycaemia, haemodynamic and metabolic factors, and an inflammatory process that stimulates cellular signalling pathways leading to disease progression and severe fibrosis. Fibronectin (Fn) is an important protein of the extracellular matrix that is essential in fibrosis and its presence in increased amounts has been identified in the kidney in diabetic nephropathy. Proximal tubuloepithelial (HK-2) cells were stimulated with high glucose (30 mM D-glucose) or glycated albumin (500 μg/mmol) + 4 mM D-glucose or their controls, Mannitol (26 mM + 4 mM D-glucose) and 4 mM D-glucose, respectively. Following 48 h of stimulation the supernatant was collected and MTT [3-(4,5-dimethylthiazole-2,5-diphenyltetrazolium bromide] assay performed to assess cell viability. HK-2 cells were also stimulated in the above environments with recombinant CCL18 (rCCL18) or MCP-1 (rMCP-1) for 48 h with quantification of Fn levels using ELISA. Co-stimulation of HK-2 cells with high concentrations of glucose and rCCL18 significantly increased Fn (p < 0.001), in comparison to high concentrations of glucose alone. HK-2 cells stimulated with glycated albumin consistently produced Fn and this did not alter following co-stimulation with rCCL18 or rMCP-1. This study demonstrates how stimulation with a specific chemokine CCL18 in high glucose upregulates the production of Fn from proximal tubuloepithelial cells. This may be relevant to the development of renal fibrosis in diabetic nephropathy.

  8. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  9. Effect of thromboxane antagonists on ozone-induced airway responses in dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.L.; Lane, C.G.; O'Byrne, P.M.

    1990-09-01

    Airway hyperresponsiveness after inhaled ozone in dogs may occur as a result of thromboxane release in the airway. In this study, two thromboxane receptor antagonists, L-655,240 and L-670,596, were used in doses that inhibit the response to an inhaled thromboxane mimetic, U-46619, to determine further the role of thromboxane in ozone-induced airway hyperresponsiveness. Dogs were studied on 2 days separated by 1 wk. On each day, the dogs inhaled ozone (3 ppm) for 30 min. On one randomly assigned day, 10 dogs received an infusion of L-655,240 (5 mg.kg-1.h-1) and 5 dogs received an infusion of L-670,596 (1 mg.kg-1.h-1); onmore » the other day dogs received a control infusion. Airway responses to doubling doses of acetylcholine were measured before and after inhalation of ozone and were expressed as the concentration of acetylcholine giving a rise in resistance of 5 cmH2O.l-1.s from baseline (acetylcholine provocation concentration). The development of airway hyperresponsiveness after ozone was not inhibited by the thromboxane antagonists. The mean log difference in the acetylcholine provocative concentration before and after ozone on the L-655,240 treatment day was 0.62 +/- 0.12 (SE) and on the control day was 0.71 +/- 0.12 (P = 0.48); on the L-670,596 treatment day the mean log difference was 0.68 +/- 0.15 (SE) and on the control day it was 0.75 +/- 0.19 (P = 0.45). These results do not support an important role for thromboxane in causing ozone-induced airway hyperresponsiveness.« less

  10. Maintenance of plasma branched-chain amino acid concentrations during glucose infusion directs essential amino acids to extra-mammary tissues in lactating dairy cows.

    PubMed

    Curtis, Richelle V; Kim, Julie J M; Doelman, John; Cant, John P

    2018-05-01

    The objectives of this study were to investigate the effects of branched-chain AA (BCAA) supplementation when glucose is infused postruminally into lactating dairy cows consuming a diet low in crude protein (CP) and to test the hypothesis that low BCAA concentrations are responsible for the poor stimulation of milk protein yield by glucose. Twelve early-lactation Holstein cows were randomly assigned to 15% and 12% CP diets in a switchback design of 6-wk periods. Cows consuming the 12% CP diet received 96-h continuous jugular infusions of saline and 1 kg/d of glucose with 0, 75, or 150 g/d of BCAA in a Latin square sequence of treatments. Compared with saline, glucose infusion did not affect dry matter intake but increased milk yield by 2.2 kg/d and milk protein and lactose yields by 63 and 151 g/d, respectively. Mammary plasma flow increased 36% during glucose infusion compared with saline infusion, possibly because of a 31% decrease in total acetate plus β-hydroxybutyrate concentrations. Circulating concentrations of total essential AA and BCAA decreased 19 and 31%, respectively, during infusion of glucose, yet net mammary uptakes of AA remained unchanged compared with saline infusion. The addition of 75 and 150 g/d of BCAA to glucose infusions increased arterial concentrations of BCAA to 106 and 149%, respectively, of the concentrations in saline-infused cows, but caused a decrease in concentrations of non-branched-chain essential AA in plasma, as well as their mammary uptakes and milk protein yields. Plasma urea concentration was not affected by BCAA infusion, indicating no change in catabolism of AA. The lack of mammary and catabolic effects leads us to suggest that BCAA exerted their effects on plasma concentrations of the other essential AA by stimulating utilization in skeletal muscle for protein accretion. Results indicate that the glucose effect on milk protein yield was not limited by low BCAA concentrations, and that a stimulation of extra-mammary use

  11. The adipocyte fatty acid–binding protein aP2 is required in allergic airway inflammation

    PubMed Central

    Shum, Bennett O.V.; Mackay, Charles R.; Gorgun, Cem Z.; Frost, Melinda J.; Kumar, Rakesh K.; Hotamisligil, Gökhan S.; Rolph, Michael S.

    2006-01-01

    The adipocyte fatty acid–binding protein aP2 regulates systemic glucose and lipid metabolism. We report that aP2, in addition to being abundantly expressed by adipocytes, is also expressed by human airway epithelial cells and shows a striking upregulation following stimulation of epithelial cells with the Th2 cytokines IL-4 and IL-13. Regulation of aP2 mRNA expression by Th2 cytokines was highly dependent on STAT6, a transcription factor with a major regulatory role in allergic inflammation. We examined aP2-deficient mice in a model of allergic airway inflammation and found that infiltration of leukocytes, especially eosinophils, into the airways was highly dependent on aP2 function. T cell priming was unaffected by aP2 deficiency, suggesting that aP2 was acting locally within the lung, and analysis of bone marrow chimeras implicated non-hematopoietic cells, most likely bronchial epithelial cells, as the site of action of aP2 in allergic airway inflammation. Thus, aP2 regulates allergic airway inflammation and may provide a link between fatty acid metabolism and asthma. PMID:16841093

  12. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathingmore » conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.« less

  13. COMPARISON OF WHOLE BLOOD AND PLASMA GLUCOSE CONCENTRATIONS IN GREEN TURTLES ( CHELONIA MYDAS) DETERMINED USING A GLUCOMETER AND A DRY CHEMISTRY ANALYZER.

    PubMed

    Perrault, Justin R; Bresette, Michael J; Mott, Cody R; Stacy, Nicole I

    2018-01-01

    :  We compared glucose concentrations in whole blood and plasma from green turtles ( Chelonia mydas) using a glucometer with plasma glucose analyzed by dry chemistry analyzer. Whole blood glucose (glucometer) and plasma glucose (dry chemistry) had the best agreement ( r s =0.85) and a small negative bias (-0.08 mmol/L).

  14. Loop diuretics inhibit cholinergic and noncholinergic nerves in guinea pig airways.

    PubMed

    Elwood, W; Lötvall, J O; Barnes, P J; Chung, K F

    1991-06-01

    Furosemide, a loop diuretic, is known to inhibit the response to a variety of indirect bronchial challenges in humans but does not inhibit bronchoconstriction induced by inhaled methacholine or histamine. We have investigated the effects of the two loop diuretics, furosemide (10(-6) to 10(-3) M) and bumetanide (10(-7) to 10(-4) M), on airway smooth muscle contraction in vitro induced by electrical field stimulation (EFS), or exogenously applied acetylcholine (ACh) or substance P (SP) in guinea pig tracheal and bronchial smooth muscle strips pretreated with indomethacin (10(-5) M) and propranolol (10(-6) M). Both furosemide and bumetanide caused a concentration-dependent inhibition of cholinergically mediated neural contraction in the trachea. The effect of furosemide was not influenced by the presence of airway epithelium. Furthermore, both furosemide and bumetanide inhibited in a concentration-dependent fashion nonadrenergic, noncholinergic (NANC) contraction induced by electrical field stimulation of bronchi pretreated with atropine (10(-5) M). Neither drug at the highest concentration inhibited the responses to exogenous acetylcholine (10(-8) to 10(-2) M) or substance P (10(-9) to 10(-5) M). Thus loop diuretics inhibit the neurally induced contraction of guinea pig airways without a direct effect on airway smooth muscle. We conclude that loop diuretics inhibit both cholinergic and excitatory NANC neurotransmission in guinea pig airways and that this effect may be related to their inhibitory effects on the sodium-potassium-chloride cotransporter.

  15. Nociceptin effects in the airways.

    PubMed

    Peiser, C; Undem, B J; Fischer, A

    2000-07-01

    The opioid-like heptadecapeptide nociceptin (NC) has the following effects in the airways (investigated in isolated tracheae and bronchi from guinea pig or rat): the electric field stimulation (EFS)-induces release of acetylcholine (ACh), the tachykinin substance P (SP) and calcitonin gene-related peptide (CGRP) is reduced after pretreatment with NC, and EFS-induced tachykinergic nonadrenergic-noncholinergic (NANC) bronchoconstriction is inhibited by NC. Both the NC-mediated inhibition of neurotransmission and of smooth muscle contraction occurred in a concentration-dependent manner. Because these effects were naloxone-insensitive, were blocked by the NC receptor antagonist [F/G]NC(1-13)NH(2), and could be mimicked by the NC analogs, NCNH(2) and NC(1-13)NH(2), it is thought that they are distinct from the classic opioid receptors. That these pharmacological actions of NC are of relevance for airway physiology is highly probable given the presence of NC-immunoreactivity in the nerve fibers of the airways and of opioid-like receptor (ORL-1) transcripts in the jugular ganglia, from where the tachykinin-containing afferents arise.

  16. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  17. Deleterious impact of hyperglycemia on cystic fibrosis airway ion transport and epithelial repair.

    PubMed

    Bilodeau, Claudia; Bardou, Olivier; Maillé, Émilie; Berthiaume, Yves; Brochiero, Emmanuelle

    2016-01-01

    Cystic fibrosis (CF)-related diabetes (CFRD) is associated with faster pulmonary function decline. Thus, we evaluated the impact of hyperglycemia on airway epithelial repair and transepithelial ion transport, which are critical in maintaining lung integrity and function. Non-CF and CF airway epithelial cells were exposed to low (LG) or high (HG) glucose before ion current and wound repair rate measurements. CFTR and K+ currents decreased after HG treatments. HG also reduced the wound healing rates of non-CF and CF cell monolayers. Although CFTR correction with VRT-325 accelerated the healing rates of CF cells monolayers under LG conditions, this improvement was significantly abrogated under HG conditions. Our data highlights a deleterious impact of hyperglycemia on ion transport and epithelial repair functions, which could contribute to the deterioration in lung function in CFRD patients. HG may also interfere with the beneficial effects of CFTR rescue on airway epithelial repair. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  18. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    PubMed

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Luminal glucose concentrations in the gut under normal conditions.

    PubMed

    Ferraris, R P; Yasharpour, S; Lloyd, K C; Mirzayan, R; Diamond, J M

    1990-11-01

    Luminal glucose (Glc) concentrations in the small intestine (SI) are widely assumed to be 50-500 mM. These values have posed problems for interpreting SI luminal osmolality and absorptive capacity, Glc transporter Michaelis-Menten constants (Km), and the physiological role of active Glc transport and its regulation. Hence we measured luminal contents, osmolality, and Glc, Na+, and K+ concentrations in normally feeding rats, rabbits, and dogs. Measured Glc concentrations were compatible with the portion of measured osmolality not accounted for by Na+ and K+ salts, amino acids, and peptides. Mean SI luminal osmolalities were less than or equal to 100 mosmol/kg hypertonic. For animals on the most nearly physiological diets, SI Glc concentrations averaged 0.4-24 mM and ranged with time and SI region from 0.2 to a maximum of 48 mM. The older published very high values are artifacts of direct infusion of concentrated Glc solutions into the gut, nonspecific Glc assays, and failure to test for quantitative recovery or to centrifuge samples in the cold. By storing food after meals and releasing it between meals, rat stomach greatly damps diurnal fluctuations in quantity and osmolality of food reaching the SI and hence also damps fluctuations in absorption rates. These new values for luminal Glc have five important physiological implications: the problem of accounting for apparently very hypertonic SI contents in the face of high osmotic water permeability disappears; the effective Km of the SI Glc transporter is now comparable to prevailing Glc concentrations; the SI no longer appears to have enormous excess absorptive capacity for Glc; regulation of Glc transport by dietary intake now makes functional sense; and the claim that high luminal Glc concentrations permit solvent drag to become the major mode of Glc absorption under normal conditions is undermined.

  1. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    PubMed

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  2. Effect of post-exercise caffeine and green coffee bean extract consumption on blood glucose and insulin concentrations.

    PubMed

    Beam, Jason R; Gibson, Ann L; Kerksick, Chad M; Conn, Carole A; White, Ailish C; Mermier, Christine M

    2015-02-01

    The aim of this study was to investigate the effects of ingesting caffeine and green coffee bean extract on blood glucose and insulin concentrations during a post-exercise oral glucose tolerance test. Ten male cyclists (age: 26 ± 5 y; height: 179.9 ± 5.4 cm; weight: 77.6 ± 13.3 kg; body mass index: 24 ± 4.3 kg/m(2); VO2 peak: 55.9 ± 8.4 mL·kg·min(-1)) participated in this study. In a randomized order, each participant completed three 30-min bouts of cycling at 60% of peak power output. Immediately after exercise, each participant consumed 75 g of dextrose with either 5 mg/kg body weight of caffeine, 10 mg/kg of green coffee bean extract (5 mg/kg chlorogenic acid), or placebo. Venous blood samples were collected immediately before and after exercise during completion of the oral glucose tolerance test. No significant time × treatment effects for blood glucose and insulin were found. Two-h glucose and insulin area under the curve values, respectively, for the caffeine (658 ± 74 mmol/L and 30,005 ± 13,304 pmol/L), green coffee bean extract (637 ± 100 mmol/L and 31,965 ± 23,586 pmol/L), and placebo (661 ± 77 mmol/L and 27,020 ± 12,339 pmol/L) trials were not significantly different (P > 0.05). Caffeine and green coffee bean extract did not significantly alter postexercise blood glucose and insulin concentrations when compared with a placebo. More human research is needed to determine the impact of these combined nutritional treatments and exercise on changes in blood glucose and insulin. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of dihydroxyacetone and pyruvate on plasma glucose concentration and turnover in noninsulin-dependent diabetes mellitus.

    PubMed

    Stanko, R T; Mitrakou, A; Greenawalt, K; Gerich, J

    1990-01-01

    Consumption of dihydroxyacetone and pyruvate (DHP) increases muscle extraction of glucose in normal men. To test the hypothesis that these three-carbon compounds would improve glycemic control in diabetes, we evaluated the effect of DHP on plasma glucose concentration, turnover, recycling, and tolerance in 7 women with noninsulin-dependent diabetes. The subjects consumed a 1,500-calorie diet (55% carbohydrate, 30% fat, 15% protein), randomly containing 13% of the calories as DHP (1/1) or Polycose (placebo; PL), as a drink three times daily for 7 days. On the 8th day, primed continuous infusions of [6-3H]-glucose and [U-14C]-glucose were begun at 05.00 h, and at 09.00 h a 3-hour glucose tolerance test (75 g glucola) was performed. Two weeks later the subjects repeated the study with the other diet. The fasting plasma glucose level decreased by 14% with DHP (DHP = 8.0 +/- 0.9 mmol/l; PL = 9.3 +/- 1.0 mmol/l, p less than 0.05) which accounted for lower postoral glucose glycemia (DHP = 13.1 +/- 0.8 mmol/l, PL = 14.7 +/- 0.8 mmol/l, p less than 0.05). [6-3H]-glucose turnover (DHP = 1.50 +/- 0.19 mg.kg-1.min-1, PL = 1.77 +/- 0.21 mg.kg-1.min-1, p less than 0.05) and glucose recycling, the difference in [6-3H]-glucose and [U-14C]-glucose turnover rates, decreased with DHP (DHP = 0.25 +/- 0.07 mg.kg-1.min-1, PL = 0.54 +/- 0.10 mg.kg-1.min-1, p less than 0.05). Fasting and postoral glucose, plasma insulin, glucagon, and C peptide levels were unaffected by DHP.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  5. Airway stents

    PubMed Central

    Keyes, Colleen

    2018-01-01

    Stents and tubes to maintain the patency of the airways are commonly used for malignant obstruction and are occasionally employed in benign disease. Malignant airway obstruction usually results from direct involvement of bronchogenic carcinoma, or by extension of carcinomas occurring in the esophagus or the thyroid. External compression from lymph nodes or metastatic disease from other organs can also cause central airway obstruction. Most malignant airway lesions are surgically inoperable due to advanced disease stage and require multimodality palliation, including stent placement. As with any other medical device, stents have significantly evolved over the last 50 years and deserve an in-depth understanding of their true capabilities and complications. Not every silicone stent is created equal and the same holds for metallic stents. Herein, we present an overview of the topic as well as some of the more practical and controversial issues surrounding airway stents. We also try to dispel the myths surrounding stent removal and their supposed use only in central airways. At the end, we come to the long-held conclusion that stents should not be used as first line treatment of choice, but after ruling out the possibility of curative surgical resection or repair. PMID:29707506

  6. The Influence of Variation in Time and HCl Concentration to the Glucose Produced from Kepok Banana

    NASA Astrophysics Data System (ADS)

    Widodo M, Rohman; Noviyanto, Denny; RM, Faisal

    2016-01-01

    Kepok banana (Musa paradisiaca) is a plant that has many advantagesfrom its fruit, stems, leaves, flowers and cob. However, we just tend to take benefit from the fruit. We grow and harvest the fruit without taking advantages from other parts. So they would be a waste or detrimental to animal nest if not used. The idea to take the benefit from the banana crop yields, especially cob is rarely explored. This study is an introduction to the use of banana weevil especially from the glucose it contains. This study uses current methods of hydrolysis using HCl as a catalyst with the concentration variation of 0.4 N, 0.6 N and 0.8 N and hydrolysis times variation of 20 minutes, 25 minutes and 30 minutes. The stages in the hydrolysis include preparation of materials, the process of hydrolysis and analysis of test results using Fehling and titrate with standard glucose solution. HCl is used as a catalyst because it is cheaper than the enzyme that has the same function. NaOH 60% is used for neutralizing the pH of the filtrate result of hydrolysis. From the results of analysis, known thatthe biggest yield of glucose is at concentration 0.8 N and at 30 minutes reaction, it contains 6.25 gram glucose / 20 gram dry sampel, and the convertion is 27.22% at 20 gram dry sampel.

  7. Effects of oral administration of levothyroxine sodium on concentrations of plasma lipids, concentration and composition of very-low-density lipoproteins, and glucose dynamics in healthy adult mares.

    PubMed

    Frank, Nicholas; Sommardahl, Carla S; Eiler, Hugo; Webb, Latisha L; Denhart, Joseph W; Boston, Ray C

    2005-06-01

    To evaluate glucose and lipid metabolism in healthy adult horses administered levothyroxine sodium (L-T4). 12 healthy adult mares. 8 horses received an incrementally increasing dosage of L-T4 (24, 48, 72, or 96 mg of L-T4/d) for weeks 1 to 8. Each dose was provide between 7 AM and 8 AM in the morning grain meal for 2 weeks. Four additional horses remained untreated. Serum concentrations of nonesterified fatty acids, triglyceride (TG), total cholesterol (TC), and very-low-density lipoprotein (VLDL) were measured and composition of VLDL examined in samples obtained between 8 AM and 9 AM at weeks 0, 2, 4, 6, and 8. Glucose dynamics were assessed by use of a combined IV glucose-insulin tolerance test (IVGITT) conducted before and at the end of the 8-week treatment period. Data for each combined IVGITT were interpreted by use of the minimal model. Plasma TG, TC, and VLDL concentrations significantly decreased over time in treated horses. At the completion of the 8-week treatment period, mean plasma VLDL concentration was 46% of the mean value for week 0 in treated horses. Insulin sensitivity significantly increased (> 2-fold) in treated horses, but glucose effectiveness and net insulin response were not affected. Levothyroxine sodium significantly increased the rate of insulin disposal. Administration of L-T4 decreases blood lipid concentrations, improves insulin sensitivity, and increases insulin disposal in horses. Levothyroxine sodium may have potential as a treatment for horses with reduced insulin sensitivity.

  8. Comparison of a Point-of-Care Glucometer and a Laboratory Autoanalyzer for Measurement of Blood Glucose Concentrations in Domestic Pigeons ( Columba livia domestica).

    PubMed

    Mohsenzadeh, Mahdieh Sadat; Zaeemi, Mahdieh; Razmyar, Jamshid; Azizzadeh, Mohammad

    2015-09-01

    Biochemical analysis is necessary for diagnosis and monitoring of diseases in birds; however, the small volume of blood that can be safely obtained from small avian species often limits laboratory diagnostic testing. Consequently, a suitable methodology requiring only a small volume of blood must be used. This study was designed to compare blood glucose concentrations in domestic pigeons ( Columba livia domestica) as measured by a commercial, handheld, human glucometer and a standard autoanalyzer. During the first phase of the study, whole blood samples obtained from 30 domestic pigeons were used to measure the blood glucose concentration with a glucometer, the packed cell volume (PCV), and the total erythrocyte count (nRBC). Plasma separated from the each sample was then used to obtain the plasma glucose concentration with the autoanalyzer. During the second phase of the study, 30 pigeons were assigned to 2 equal groups (n = 15). Hypoglycemia or hyperglycemia was induced in each group by intravenous injection of insulin or glucose, respectively. Blood was collected and processed, and glucose concentrations, PCV, and nRBC were measured as previously described. Linear-regression models demonstrated a significant relationship between results measured by the glucometer and autoanalyzer results from normoglycemic (correlation coefficient [R] = 0.43, P = .02), hypoglycemic (R = 0.95; P < .001), and hyperglycemic (R = 0.81; P < .001) birds. The results of this study suggest that we can predict the real blood-glucose concentration of pigeons by using results obtained by a glucometer.

  9. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  10. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.

    PubMed

    Turturice, Benjamin A; McGee, Halvor S; Oliver, Brian; Baraket, Melissa; Nguyen, Brian T; Ascoli, Christian; Ranjan, Ravi; Rani, Asha; Perkins, David L; Finn, Patricia W

    2017-01-01

    Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids. To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics. A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13) were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6) and to themselves after six weeks of treatment with fluticasone propionate (FP). Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing. Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP), termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls. The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to microbiota.

  11. Impact of estrus expression and conceptus presence on plasma and uterine glucose concentrations up until maternal recognition of pregnancy in beef cattle

    USDA-ARS?s Scientific Manuscript database

    Glucose is an essential component of uterine luminal fluid (ULF), it is a major energy source utilized by the conceptus for growth and development. Previously we reported increased concentrations of glucose in the ULF of cows that exhibited estrus, and observed differences in glucose transporter tr...

  12. Blood and urine responses to ingesting fluids of various salt and glucose concentrations. [to combat orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Frey, Mary A.; Riddle, Jeanne; Charles, John B.; Bungo, Michael W.

    1991-01-01

    To compensate for the reduced blood and fluid volumes that develop during weightlessness, the Space Shuttle crewmembers consume salt tablets and water equivalent to 1 l of normal saline, about 2 hrs before landing. This paper compares the effects on blood, urine, and cardiovascular variables of the ingestion of 1 l of normal (0.9 percent) saline with the effects of distilled water, 1 percent glucose, 0.74 percent saline with 1 percent glucose, 0.9 percent saline with 1 percent glucose, and 1.07 percent saline. It was found that the expansion of plasma volume and the concentration of urine were greater 4 hrs after ingestion of 1.07 percent saline solution than after ingestion of normal saline and that the solutions containig glucose did not enhance any variables as compared with normal saline.

  13. Incomplete Spontaneous Recovery from Airway Obstruction During Inhaled Anesthesia Induction: A Computational Simulation.

    PubMed

    Kuo, Alexander S; Vijjeswarapu, Mary A; Philip, James H

    2016-03-01

    Inhaled induction with spontaneous respiration is a technique used for difficult airways. One of the proposed advantages is if airway patency is lost, the anesthetic agent will spontaneously redistribute until anesthetic depth is reduced and airway patency can be recovered. There are little and conflicting clinical or experimental data regarding the kinetics of this anesthetic technique. We used computer simulation to investigate this situation. We used GasMan, a computer simulation of inhaled anesthetic kinetics. For each simulation, alveolar ventilation was initiated with a set anesthetic induction concentration. When the vessel-rich group level reached the simulation specified airway obstruction threshold, alveolar ventilation was set at 0 to simulate complete airway obstruction. The time until the vessel-rich group anesthetic level decreased below the airway obstruction threshold was designated time to spontaneous recovery. We varied the parameters for each simulation, exploring the use of sevoflurane and halothane, airway obstruction threshold from 0.5 to 2 minimum alveolar concentration (MAC), anesthetic induction concentration 2 to 4 MAC sevoflurane and 4 to 6 MAC halothane, cardiac output 2.5 to 10 L/min, functional residual capacity 1.5 to 3.5 L, and relative vessel-rich group perfusion 67% to 85%. In each simulation, there were 3 general phases: anesthetic wash-in, obstruction and overshoot, and then slow redistribution. During the first 2 phases, there was a large gradient between the alveolar and vessel-rich group. Alveolar do not reflect vessel-rich group anesthetic levels until the late third phase. Time to spontaneous recovery varied between 35 and 749 seconds for sevoflurane and 13 and 222 seconds for halothane depending on the simulation parameters. Halothane had a faster time to spontaneous recovery because of the lower alveolar gradient and less overshoot of the vessel-rich group, not faster redistribution. Higher airway obstruction thresholds

  14. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    PubMed

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  15. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  16. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition

    PubMed Central

    HAN, NING; YU, LI; SONG, ZHIDU; LUO, LIFU; WU, YAZHEN

    2015-01-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy. PMID:25816073

  17. Parasympathetic Control of Airway Submucosal Glands: Central Reflexes and the Airway Intrinsic Nervous System

    PubMed Central

    Wine, Jeffrey J.

    2007-01-01

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  18. Effect of Continuous Positive Airway Pressure on Airway Reactivity in Asthma. A Randomized, Sham-controlled Clinical Trial

    PubMed Central

    Sugar, Elizabeth A.; Brown, Robert H.; Drye, Lea T.; Irvin, Charles G.; Schwartz, Alan R.; Tepper, Robert S.; Wise, Robert A.; Yasin, Razan Z.; Busk, Michael F.

    2016-01-01

    Rationale: Studies have demonstrated that application of stress suppresses airway smooth muscle contractility. In animal models of asthma, continuous positive airway pressure (CPAP) reduced airway reactivity. Short-term studies of CPAP in patients with asthma showed reductions in airway reactivity. Objectives: To evaluate whether nocturnal CPAP decreased the provocative concentration of methacholine to reduce FEV1 by 20% (PC20). Methods: One hundred ninety-four individuals with asthma were randomized (1:1:1) to use CPAP with warmed, filtered, humidified air at night at pressures either less than 1 cm H2O (sham) or at 5 cm H2O or 10 cm H2O. The primary outcome was change in PC20 after 12 weeks. Measurements and Main Results: Adherence to CPAP was low in all groups. Regardless, all groups had a significant improvement in PC20, with 12 weeks/baseline PC20 ratios of 2.12, 1.73, and 1.78 for the sham, 5 cm H2O, and 10 cm H2O groups, respectively, and no significant differences between the active and sham groups. Changes in FEV1 and exhaled nitric oxide were minimal in all groups. The sham group had larger improvements in most patient-reported outcomes measuring asthma symptoms and quality of life, as well as sinus symptoms, than the 5 cm H2O group. The 10 cm H2O group showed similar but less consistent improvements in scores, which were not different from improvements in the sham group. Conclusions: Adherence to nocturnal CPAP was low. There was no evidence to support positive pressure as being effective for reducing airway reactivity in people with well-controlled asthma. Regardless, airway reactivity was improved in all groups, which may represent an effect of participating in a study and/or an effect of warm, humid, filtered air on airway reactivity. Clinical trial registered with www.clinicaltrials.gov (NCT01629823). PMID:27398992

  19. Neurogenic airway microvascular leakage induced by toluene inhalation in rats.

    PubMed

    Sakamoto, Tatsuo; Kamijima, Michihiro; Miyake, Mio

    2012-06-15

    Toluene is a representative airborne occupational and domestic pollutant that causes eye and respiratory tract irritation. We investigated whether a single inhalation of toluene elicits microvascular leakage in the rat airway. We also evaluated the effects of CP-99,994, a tachykinin NK(1) receptor antagonist, and ketotifen, a histamine H1 receptor antagonist with mast cell-stabilizing properties, on the airway response. The content of Evans blue dye that extravasated into the tissues was measured as an index of plasma leakage. Toluene (18-450 ppm, 10 min) concentration-dependently induced dye leakage into the trachea and main bronchi of anesthetized and mechanically ventilated rats. Toluene at concentrations of ≥ 50 and ≥ 30 ppm caused significant responses in the trachea and main bronchi, respectively, which both peaked after exposure to 135 ppm toluene for 10 min. This response was abolished by CP-99,994 (5 mg/kg i.v.), but not by ketotifen (1mg/kg i.v.). Nebulized phosphoramidon (1 mM, 1 min), a neutral endopeptidase 24.11 inhibitor, significantly enhanced the response induced by toluene (135 ppm, 10 min) compared with nebulized 0.9% saline (1 min). These results show that toluene can rapidly increase airway plasma leakage that is predominantly mediated by tachykinins endogenously released from airway sensory nerves. However, mast cell activation might not be important in this airway response. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation

    PubMed Central

    Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G

    2007-01-01

    Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839

  1. Smooth muscle in human bronchi is disposed to resist airway distension.

    PubMed

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Antioxidant airway responses following experimental exposure to wood smoke in man

    PubMed Central

    2010-01-01

    Background Biomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 ± 22 μg/m3, and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results Glutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure. PMID:20727160

  3. Glucose Sensing by Time-Resolved Fluorescence of Sol-Gel Immobilized Glucose Oxidase

    PubMed Central

    Esposito, Rosario; Ventura, Bartolomeo Della; De Nicola, Sergio; Altucci, Carlo; Velotta, Raffaele; Mita, Damiano Gustavo; Lepore, Maria

    2011-01-01

    A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM. PMID:22163807

  4. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system.

    PubMed

    Wine, Jeffrey J

    2007-04-30

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  5. A randomized controlled trial: branched-chain amino acid levels and glucose metabolism in patients with obesity and sleep apnea.

    PubMed

    Barceló, Antonia; Morell-Garcia, Daniel; Salord, Neus; Esquinas, Cristina; Pérez, Gerardo; Pérez, Antonio; Monasterio, Carmen; Gasa, Merce; Fortuna, Ana Maria; Montserrat, Josep Maria; Mayos, Mercedes

    2017-12-01

    There is evidence that changes in branched-chain amino acid (BCAA) levels may correlate with the efficacy of therapeutic interventions for affecting improvement in metabolic control. The objective of this study was to evaluate whether serum concentrations of BCAAs (leucine, isoleucine, valine) could mediate in insulin sensitivity and glucose tolerance after continuous positive airway pressure (CPAP) treatment in patients with obstructive sleep apnea (OSA). A prospective randomized controlled trial of OSA patients with morbid obesity was conducted. Eighty patients were randomized into two groups: 38 received conservative treatment and 42 received CPAP treatment for 12 weeks. Plasma levels of BCAA, glucose tolerance and insulin resistance were evaluated at baseline and after treatment. After treatment, significant decreases of leucine levels were observed in both groups when compared with baseline levels (P < 0.005). With respect to patients with normal glucose tolerance (NGT), patients with impaired glucose tolerance (IGT) had higher baseline levels of isoleucine (78 ± 16 versus 70 ± 13 μmol L -1 , P = 0.014) and valine (286 ± 36 versus 268 ± 41 μmol L -1 , P = 0.049), respectively. Changes in levels of leucine and isoleucine after treatment were related negatively to changes in fasting plasma glucose and glycosylated haemoglobin values only in the conservative group (P < 0.05). In summary, we found that the treatment with CPAP for 12 weeks caused similar changes in circulating BCAAs concentrations to conservative treatment and a differential metabolic response of CPAP and conservative treatment was observed between the relationship of BCAAs and glucose homeostasis. Additional studies are needed to determine the interplay between branched-chain amino acids and glucose metabolism in patients with sleep apnea. © 2017 European Sleep Research Society.

  6. Bronchoscopic assessment of airway retention time of aerosolized xylitol

    PubMed Central

    Durairaj, Lakshmi; Neelakantan, Srividya; Launspach, Janice; Watt, Janet L; Allaman, Margaret M; Kearney, William R; Veng-Pedersen, Peter; Zabner, Joseph

    2006-01-01

    Background Human airway surface liquid (ASL) has abundant antimicrobial peptides whose potency increases as the salt concentration decreases. Xylitol is a 5-carbon sugar that has the ability to lower ASL salt concentration, potentially enhancing innate immunity. Xylitol was detected for 8 hours in the ASL after application in airway epithelium in vitro. We tested the airway retention time of aerosolized iso-osmotic xylitol in healthy volunteers. Methods After a screening spirometry, volunteers received 10 ml of nebulized 5% xylitol. Bronchoscopy was done at 20 minutes (n = 6), 90 minutes (n = 6), and 3 hours (n = 5) after nebulization and ASL was collected using microsampling probes, followed by bronchoalveolar lavage (BAL). Xylitol concentration was measured by nuclear magnetic resonance spectroscopy and corrected for dilution using urea concentration. Results All subjects tolerated nebulization and bronchoscopy well. Mean ASL volume recovered from the probes was 49 ± 23 μl. The mean ASL xylitol concentration at 20, 90, and 180 minutes was 1.6 ± 1.9 μg/μl, 0.6 ± 0.6 μg/μl, and 0.1 ± 0.1 μg/μl, respectively. Corresponding BAL concentration corrected for dilution was consistently lower at all time points. The terminal half-life of aerosolized xylitol obtained by the probes was 45 minutes with a mean residence time of 65 minutes in ASL. Corresponding BAL values were 36 and 50 minutes, respectively. Conclusion After a single dose nebulization, xylitol was detected in ASL for 3 hours, which was shorter than our in vitro measurement. The microsampling probe performed superior to BAL when sampling bronchial ASL. PMID:16483382

  7. Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect

    NASA Astrophysics Data System (ADS)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; Garcia, Javier; Zalevsky, Zeev

    2016-06-01

    We experimentally verify a speckle-based technique for noncontact measurement of glucose concentration in the bloodstream. The final device is intended to be a single wristwatch-style device containing a laser, a camera, and an alternating current (ac) electromagnet generated by a solenoid. The experiments presented are performed in vitro as proof of the concept. When a glucose substance is inserted into a solenoid generating an ac magnetic field, it exhibits Faraday rotation, which affects the temporal changes of the secondary speckle pattern distributions. The temporal frequency resulting from the ac magnetic field was found to have a lock-in amplification role, which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  8. Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)

    NASA Astrophysics Data System (ADS)

    Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.

    2013-06-01

    The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.

  9. Discrete wavelength selection for the optical readout of a metamaterial biosensing system for glucose concentration estimation via a support vector regression model.

    PubMed

    Teutsch, T; Mesch, M; Giessen, H; Tarin, C

    2015-01-01

    In this contribution, a method to select discrete wavelengths that allow an accurate estimation of the glucose concentration in a biosensing system based on metamaterials is presented. The sensing concept is adapted to the particular application of ophthalmic glucose sensing by covering the metamaterial with a glucose-sensitive hydrogel and the sensor readout is performed optically. Due to the fact that in a mobile context a spectrometer is not suitable, few discrete wavelengths must be selected to estimate the glucose concentration. The developed selection methods are based on nonlinear support vector regression (SVR) models. Two selection methods are compared and it is shown that wavelengths selected by a sequential forward feature selection algorithm achieves an estimation improvement. The presented method can be easily applied to different metamaterial layouts and hydrogel configurations.

  10. Effect of tachykinins in small human airways.

    PubMed

    Frossard, N; Barnes, J

    1991-07-01

    We have compared the contractile responses of substance P (SP) and neurokinin A (NKA) to that of the non degradable muscarinic agonist, carbachol, in small and large human airways in vitro. We have also investigated the effects of the neutral endopeptidase (NEP) inhibitor, thiorphan (100 microM) on these responses. NKA contracted large and small airways to a different extent (56% vs 92% of carbachol maximal contraction, respectively). NKA was significantly less potent in large vs small bronchi (EC50 = 150 +/- 15 vs 12 +/- 5 nM respectively, p less than 0.05). SP had a lower contractile effect in large (26% carbachol maximum) and small airways (59%) with EC50 values higher than 0.5 microM. The enkephalinase inhibitor thiorphan shifted the concentration-response curve to NKA to the left in large (EC50 = 35.2 +/- 8.2 nM) and small bronchi (EC50 = 2.8 +/- 1.3 nM, p less than 0.02). This shift was associated with an increase in the maximal contraction to NKA (75% in large vs 123% in small bronchi). The amplitude of contraction to SP was also potentiated in large (45%) and in smaller bronchi (101%). In conclusion, we have demonstrated that NKA has a significantly greater constrictor effect than a cholinergic agent in more peripheral human airways in vitro. This suggests that non cholinergic constrictor pathways are more likely to be important in more peripheral airways.

  11. Optoelectronic Apparatus Measures Glucose Noninvasively

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Rovati, Luigi L.

    2003-01-01

    An optoelectronic apparatus has been invented as a noninvasive means of measuring the concentration of glucose in the human body. The apparatus performs polarimetric and interferometric measurements of the human eye to acquire data from which the concentration of glucose in the aqueous humor can be computed. Because of the importance of the concentration of glucose in human health, there could be a large potential market for instruments based on this apparatus.

  12. Comparison of two methods using plasma triglyceride concentration as a surrogate estimate of insulin action in nondiabetic subjects: triglycerides × glucose versus triglyceride/high-density lipoprotein cholesterol.

    PubMed

    Abbasi, Fahim; Reaven, Gerald M

    2011-12-01

    The objective was to compare relationships between insulin-mediated glucose uptake and surrogate estimates of insulin action, particularly those using fasting triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) concentrations. Insulin-mediated glucose uptake was quantified by determining the steady-state plasma glucose (SSPG) concentration during the insulin suppression test in 455 nondiabetic subjects. Fasting TG, HDL-C, glucose, and insulin concentrations were measured; and calculations were made of the following: (1) plasma concentration ratio of TG/HDL-C, (2) TG × fasting glucose (TyG index), (3) homeostasis model assessment of insulin resistance, and (4) insulin area under the curve (insulin-AUC) during a glucose tolerance test. Insulin-AUC correlated most closely with SSPG (r ∼ 0.75, P < .001), with lesser but comparable correlations between SSPG and TG/HDL-C ratio, TyG index, homeostasis model assessment of insulin resistance, and fasting TG and insulin (r ∼ 0.60, P < .001). Calculations of TG/HDL-C ratio and TyG index correlated with SSPG concentration to a similar degree, and the relationships were comparable to estimates using fasting insulin. The strongest relationship was between SSPG and insulin-AUC. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    PubMed

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways. Copyright ©ERS 2015.

  14. The New Perilaryngeal Airway (CobraPLA™)1 Is as Efficient as the Laryngeal Mask Airway (LMA™)2, But Provides Better Airway Sealing Pressures

    PubMed Central

    Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.

    2006-01-01

    The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543

  15. C-reactive protein, glucose and iron concentrations are significantly altered in dogs undergoing open ovariohysterectomy or ovariectomy.

    PubMed

    Moldal, Elena Regine; Kjelgaard-Hansen, Mads Jens; Peeters, Marijke Elisabeth; Nødtvedt, Ane; Kirpensteijn, Jolle

    2018-05-30

    There are relatively few studies about the canine surgical stress response, a sequence of events orchestrated by the body in response to a surgical trauma which is sometimes, as shown in human surgery, deleterious to the patient. There is a need to identify objective markers to quantify this response in order to estimate tissue trauma and use the markers as potential early indicators of surgical complications. The study objective was to investigate the surgical stress response, measured by C-reactive protein (CRP), glucose and iron serum concentrations, to gonadectomy in female dogs, and to compare the response to ovariohysterectomy (OHE) with the response to ovariectomy (OVE). A randomized clinical trial was performed on a sample of 42 female dogs, which were divided into two groups: one group underwent OHE, the other OVE. Blood samples were collected immediately before surgery (T0), and at 1 (T1), 6 (T6), and 24 (T24) h after surgery, and serum frozen and stored at - 80 °C for later analysis. Upon thawing, the serum samples were subjected to measurement of CRP, glucose and iron concentration. Seventeen dogs in the OHE group and 19 dogs in the OVE group were included in the statistical analysis. There was a significant increase in glucose concentration at all time points compared with T0, and an increase of CRP at T6 and T24. Iron concentration was significantly decreased at T6 and T24. Differences between the two groups could not be detected for any of the three variables. The study showed that both OHE and OVE induce a moderate surgical stress response in female dogs, measured by CRP, glucose and iron. A difference between the surgical techniques could not be detected for any of the variables, and hence; with regards to the parameters studied recommendations of one procedure over the other cannot be made and preferred technique remains the surgeon's choice.

  16. Increasing synthetic serum substitute (SSS) concentrations in P1 glucose/phosphate-free medium improves implantation rate: a comparative study.

    PubMed

    Ben-Yosef, D; Yovel, I; Schwartz, T; Azem, F; Lessing, J B; Amit, A

    2001-11-01

    To assess the comparative efficacy of IVF medium (MediCult, with 5.2 mM glucose) and a glucose/phosphate-free medium, P1 (Irvine Scientific), and to investigate the influence of increasing the serum supplementation (synthetic serum substitute; SSS; Irvine Scientific) to P1 on embryo development and implantation. Patients were randomly assigned to IVF medium (Group 1, cycles n = 172) or P1 supplemented with 10% SSS (Group 2, cycles n = 229) according to the medium scheduled for use on the day of oocyte retrieval. Another 555 IVF consequent cycles (Group 3) were performed using increased SSS concentrations (20%) in P1 medium. In this large series of IVF cycles, we herein demonstrate that significantly higher pregnancy and implantation rates were found when embryos were cultured in glucose/phosphate-free medium P1 supplemented with 20% SSS compared to supplementation with the lower SSS concentration and with IVF medium.

  17. Gastric emptying in Type II (non-insulin-dependent) diabetes mellitus before and after therapy readjustment: no influence of actual blood glucose concentration.

    PubMed

    Holzäpfel, A; Festa, A; Stacher-Janotta, G; Bergmann, H; Shnawa, N; Brannath, W; Schernthaner, G; Stacher, G

    1999-12-01

    Hyperglycaemia that is induced short-term slows gastric emptying in healthy subjects and patients with diabetes mellitus. Little information is available on the impact of longer-lasting, naturally occurring blood glucose increases and their reduction to euglycaemic values. We studied the relation between gastric emptying and pre-prandial and postprandial blood glucose concentrations in patients with Type II (non-insulin-dependent) diabetes mellitus and secondary failure to respond to oral hypoglycaemic treatment (a) before readjusting hypoglycaemic therapy and (b) 1 week thereafter. We studied 9 female and 1 male patient (age 60-78 years, BMI 21.9-32.5 kg/m2, diabetes duration 3-33 years, HbA1c 8.8-13.2%). Gastric emptying of a radiolabelled semisolid 1168 kJ meal was recorded scintigraphically. Blood glucose concentration pre-prandial and postprandial was considerably lower subsequent to than before therapy readjustment in all patients (fasting, 7.9 mmol/l+/-1.5 SD vs 11.7+/-1.7 mmol/l; 60 min postprandial, 11.7+/-2.0 vs 15.4+/-2.2 mmol/l). By contrast, gastric emptying was unchanged (residual radioactivity in stomach 50 min postprandial 65.7+/-14.1% vs 66.5+/-12.9%). There was no relation between emptying and either fasting blood glucose concentration or its postprandial increase. The data do not support a major impact of actual, longer-lasting, naturally occurring blood glucose concentrations upon the rate of gastric emptying in patients with Type II diabetes.

  18. Airway surface mycosis in chronic TH2-associated airway disease.

    PubMed

    Porter, Paul C; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-08-01

    Environmental fungi have been linked to TH2 cell-related airway inflammation and the TH2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. To determine the frequency of fungus isolation and fungus-specific immunity in patients with TH2-associated and non-TH2-associated airway disease. Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Filamentous fungi were significantly more commonly cultured in patients with TH2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-TH2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with TH2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with TH2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  20. Pasta supplemented with isolated lupin protein fractions reduces body weight gain and food intake of rats and decreases plasma glucose concentration upon glucose overload trial.

    PubMed

    Capraro, Jessica; Magni, Chiara; Scarafoni, Alessio; Caramanico, Rosita; Rossi, Filippo; Morlacchini, Mauro; Duranti, Marcello

    2014-02-01

    The supplementation of foods with biologically active compounds can be a powerful approach for improving diet and well being. In this study we separately included in pasta matrices a concentrate of γ-conglutin, a glucose-lowering protein from Lupinus albus seeds, an isolate of the other main lupin storage proteins and ovalbumin, at a ratio corresponding to 125 mg of pure protein in 100 g of pasta. With these products we fed rats made hyperglycaemic, for 3 weeks. Among the most relevant changes measured in body and blood parameters were: (i) a significant reduction in food intake of rats fed γ-conglutin concentrate supplemented pasta and a significant limitation in the body weight increase in rats fed α, β and δ-conglutin isolate supplemented pasta, while the food conversion indices were unchanged; (ii) a reduction in glycaemia upon glucose overload trial, especially in the γ-conglutin concentrate supplemented pasta fed animals, at a dose of 45 mg per kg body weight. The correlations among the measured parameters are discussed. Overall, the results evidence the potentiality of supplementing traditional foods with exogenous nutraceutical seed proteins to control body weight gain and glycaemia.

  1. Postprandial glucose response to selected tropical fruits in normal glucose-tolerant Nigerians.

    PubMed

    Edo, A; Eregie, A; Adediran, O; Ohwovoriole, A; Ebengho, S

    2011-01-01

    The glycemic response to commonly eaten fruits in Nigeria has not been reported. Therefore, this study assessed the plasma glucose response to selected fruits in Nigeria. Ten normal glucose-tolerant subjects randomly consumed 50 g carbohydrate portions of three fruits: banana (Musa paradisiaca), pineapple (Ananus comosus), and pawpaw (Carica papaya), and a 50-g glucose load at 1-week intervals. Blood samples were collected in the fasting state and half-hourly over a 2-h period post-ingestion of the fruits or glucose. The samples were analyzed for plasma glucose concentrations. Plasma glucose responses were assessed by the peak plasma glucose concentration, maximum increase in plasma glucose, 2-h postprandial plasma glucose level, and incremental area under the glucose curve and glycemic index (GI). The results showed that the blood glucose response to these three fruits was similar in terms of their incremental areas under the glucose curve, maximum increase in plasma glucose, and glycemic indices (GIs). The 2-h postprandial plasma glucose level of banana was significantly higher than that of pineapple, P < 0.025. The mean ± SEM GI values were as follows: pawpaw; 86 ± 26.8%; banana, 75.1 ± 21.8%; pineapple, 64.5 ± 11.3%. The GI of glucose is taken as 100. The GI of pineapple was significantly lower than that of glucose (P < 0.05). Banana, pawpaw, and pineapple produced a similar postprandial glucose response. Measured portions of these fruits may be used as fruit exchanges with pineapple having the most favorable glycemic response.

  2. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase.

    PubMed

    Li, Xinyu; Zhou, Yunlong; Zheng, Zhaozhu; Yue, Xiuli; Dai, Zhifei; Liu, Shaoqin; Tang, Zhiyong

    2009-06-02

    A blood glucose sensor has been developed based on the multilayer films of CdTe semiconductor quantum dots (QDs) and glucose oxidase (GOD) by using the layer-by-layer assembly technique. When the composite films were contacted with glucose solution, the photoluminescence of QDs in the films was quickly quenched because the enzyme-catalyzed reaction product (H2O2) of GOD and glucose gave rise to the formation of surface defects on QDs. The quenching rate was a function of the concentration of glucose. The linear range and sensitivity for glucose determination could be adjusted by controlling the layers of QDs and GOD. The biosensor was used to successfully determine the concentration of blood glucose in real serum samples without sample pretreatment and exhibited satisfactory reproducibility and accuracy.

  3. Usefulness of the plasma glucose concentration-to-HbA1c ratio in predicting clinical outcomes during acute illness with extreme hyperglycaemia.

    PubMed

    Su, Y-W; Hsu, C-Y; Guo, Y-W; Chen, H-S

    2017-02-01

    To evaluate the correlation between the plasma glucose-to-glycated haemoglobin ratio (GAR) and clinical outcome during acute illness. This retrospective observational cohort study enrolled 661 patients who visited the emergency department of our hospital between 1 July 2008 and 30 September 2010 with plasma glucose concentrations>500mg/dL. Systolic blood pressure, heart rate, white blood cells, neutrophils, haematocrit, blood urea nitrogen, serum creatinine, liver function and plasma glucose concentration were recorded at the initial presentation to the emergency department. Data on glycated haemoglobin over the preceding 6 months were reviewed from our hospital database. The glucose-to-HbA 1c ratio (GAR) was calculated as the plasma glucose concentration divided by glycated haemoglobin. The GAR of those who died was significantly higher than that of the survivors (81.0±25.9 vs 67.6±25.0; P<0.001). There was a trend towards a higher 90-day mortality rate in patients with higher GARs (log-rank test P<0.0001 for trend). On multivariate Cox regression analysis, the GAR was significantly related to 90-day mortality (hazard ratio [HR] for 1 standard deviation [SD] change: 1.41, 95% confidence interval [CI]: 1.22-1.63; P<0.001), but not to plasma glucose (HR: 0.89, 95% CI: 0.70-1.13; P=0.328). Rates of intensive care unit (ICU) admission and mechanical ventilator use were also higher in those with higher GARs. GAR independently predicted 90-day mortality, ICU admission and use of mechanical ventilation. It was also a better predictor of patient outcomes than plasma glucose alone in patients with extremely high glucose levels. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings

    PubMed Central

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-01-01

    We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum. PMID:29675315

  5. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings.

    PubMed

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-04-01

    We propose and demonstrate hydrogen peroxide (H 2 O 2 ) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 10 5 ) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H 2 O 2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H 2 O 2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H 2 O 2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H 2 O 2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H 2 O 2 and glucose detection in human serum.

  6. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  7. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation ofmore » its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.« less

  8. Difficult airway response team: a novel quality improvement program for managing hospital-wide airway emergencies.

    PubMed

    Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A

    2015-07-01

    Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty

  9. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  10. Positive Feedback Amplifies the Response of Mitochondrial Membrane Potential to Glucose Concentration in Clonal Pancreatic Beta Cells

    PubMed Central

    GERENCSER, Akos A.; MOOKERJEE, Shona A.; JASTROCH, Martin; BRAND, Martin D.

    2016-01-01

    Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is complicated by the large number of reactions and interactions in metabolic networks. Metabolic control analysis with appropriate modularization is a powerful method for simplifying and analyzing these networks. To analyze control of cellular energy metabolism in adherent cell cultures of the INS-1 832/13 pancreatic β-cell model we adapted our microscopy assay of absolute mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic control analysis we identified the control properties that generate this sensitive response. Force-flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas proton leak also contribute to the homeostatic control of ΔψM at low glucose. These findings suggest a strong positive feedback loop in the regulation of β-cell energetics, and a possible regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged bioenergetic response of β-cells to glucose. PMID:27771512

  11. Laryngeal mask airway for airway control during percutaneous dilatational tracheostomy.

    PubMed

    Pratt, T; Bromilow, J

    2011-11-01

    Percutaneous dilatational tracheostomy is a common bedside procedure in critical care for patients requiring prolonged mechanical ventilation. The traditional technique requires withdrawal of the endotracheal tube to a proximal position to facilitate tracheostomy insertion, but this carries the risk of inadvertent extubation and does not prevent cuff rupture. Use of a supraglottic airway such as the laryngeal mask airway may avoid these risks and could provide a safe alternative to the endotracheal tube. We present an appraisal of the literature to date. We found reasonable evidence to show improved ventilation and bronchoscopic visualisation with the laryngeal mask airway, but this has not been translated into improved outcome. There is currently insufficient evidence to draw conclusions about the safety of the laryngeal mask airway during percutaneous dilatational tracheostomy.

  12. Serum concentrations of allergen-specific IgE in horses with equine recurrent airway obstruction and healthy controls assessed by ELISA.

    PubMed

    Niedzwiedz, Artur; Jaworski, Zbigniew; Kubiak, Krzysztof

    2015-09-01

    Equine recurrent airway obstruction (RAO), also known as heaves, is one of the most common respiratory problems in older horses. When RAO-affected horses stay pastured or in a dust-free environment for a prolonged time, clinical signs as well as airway inflammation wane. A number of environmental, immunologic, infectious, and genetic factors play an important role in the pathogenesis of RAO, and the immunologic basis of this disease is still poorly understood. The aim of this study was to investigate the concentrations of allergen-specific IgE in the serum of horses suffering from RAO and healthy controls. The study included a group of 14 adult Polish Konik horses, kept in a standardized environment, and divided into 2 groups: 7 horses which did not have any respiratory problems comprised the control group and 7 horses with a history of RAO constituted the study group. A clinical and laboratory evaluation, endoscopic examination, and bronchoalveolar lavage (BAL) were performed in all horses. Sera of all horses were tested against allergens from 9 molds and 3 mites using the Heska Allercept assay. In the serologic tests, a statistically significant difference between both groups was found for specific IgE against mites, wherein Tyrophagus putrescentia correlated most clearly with RAO. There was no difference between groups for IgE specific against molds. On the basis of our observations and results, we conclude that RAO is associated with increased serum concentrations of specific serum IgE against mites, in particular T putrescentia. © 2015 American Society for Veterinary Clinical Pathology.

  13. Airway responsiveness and airway remodeling after chronic exposure to procaterol and fenoterol in guinea pigs in vivo.

    PubMed

    Nishimura, Hideko; Tokuyama, Kenichi; Arakawa, Hirokazu; Ohki, Yasushi; Sato, Akira; Kato, Masahiko; Mochizuki, Hiroyuki; Morikawa, Akihiro

    2002-12-01

    Chronic exposure to fenoterol (FEN), a beta(2)-adrenergic receptor (beta(2)-AR) agonist, was shown to induce both airway hyperresponsiveness and airway remodeling in experimental animals. We wanted to know the effects of chronic exposure to procaterol (PRO), a beta(2)-AR agonist, on airway function and structure, because this agent is widely used as a bronchodilator in Japan. For comparison, the effects of FEN were also examined. Aerosolized PRO (0.1 or 1 mg/ml), FEN (1 mg/ml) or vehicle (0.9% NaCl) was given to guinea pigs 3 times a day for 6 weeks. Sublaryngeal deposition of these agents was calculated using radioisotopes. At 72 h after the last inhalation of PRO, FEN or vehicle, the dose-response relationship between lung resistance (R(L)) and intravenously administered acetylcholine (ACh) was measured. After measuring R(L), histological changes in noncartilaginous airway dimensions were evaluated. The amount of sublaryngeal deposition of 0.1 mg/ml PRO in the present study was speculated to be 100 times larger than that of therapeutic dose. ACh concentrations causing 2-fold, 10-fold and maximal increases in R(L) were not different in 4 groups tested. In the smaller membranous airways (<0.4 mm in diameter), but not the larger ones, thickening of adventitial areas was significantly greater in animals treated with beta(2)-AR agonists than in control animals (23 and 25, and 96% higher in animals treated with 0.1 and 1 mg/ml PRO or 1 mg/ml FEN, respectively). The degree of the increase was significantly less in PRO-treated animals than in FEN-treated animals (p < 0.01). Our results did not provide any evidence that regular inhalation of PRO at the therapeutic dose might induce bronchial hyperresponsiveness. In addition, huge amounts of PRO only caused a mild thickening of the adventitial areas, suggesting that PRO may be a weak inducer of airway remodeling compared with FEN. Copyright 2002 S. Karger AG, Basel

  14. Use of a Novel Airway Kit and Simulation in Resident Training on Emergent Pediatric Airways.

    PubMed

    Melzer, Jonathan M; Hamersley, Erin R S; Gallagher, Thomas Q

    2017-06-01

    Objective Development of a novel pediatric airway kit and implementation with simulation to improve resident response to emergencies with the goal of improving patient safety. Methods Prospective study with 9 otolaryngology residents (postgraduate years 1-5) from our tertiary care institution. Nine simulated pediatric emergency airway drills were carried out with the existing system and a novel portable airway kit. Response times and time to successful airway control were noted with both the extant airway system and the new handheld kit. Results were analyzed to ensure parametric data and compared with t tests. A Bonferroni adjustment indicated that an alpha of 0.025 was needed for significance. Results Use of the airway kit significantly reduced the mean time of resident arrival by 47% ( P = .013) and mean time of successful intubation by 50% ( P = .007). Survey data indicated 100% improved resident comfort with emergent airway scenarios with use of the kit. Discussion Times to response and meaningful intervention were significantly reduced with implementation of the handheld airway kit. Use of simulation training to implement the new kit improved residents' comfort and airway skills. This study describes an affordable novel mobile airway kit and demonstrates its ability to improve response times. Implications for Practice The low cost of this airway kit makes it a tenable option even for smaller hospitals. Simulation provides a safe and effective way to familiarize oneself with novel equipment, and, when possible, realistic emergent airway simulations should be used to improve provider performance.

  15. Glucose-dependent insulinotropic polypeptide directly induces glucose transport in rat skeletal muscle

    PubMed Central

    Snook, Laelie A.; Nelson, Emery M.; Dyck, David J.; Wright, David C.

    2015-01-01

    Several gastrointestinal proteins have been identified to have insulinotropic effects, including glucose-dependent insulinotropic polypeptide (GIP); however, the direct effects of incretins on skeletal muscle glucose transport remain largely unknown. Therefore, the purpose of the current study was to examine the role of GIP on skeletal muscle glucose transport and insulin signaling in rats. Relative to a glucose challenge, a mixed glucose+lipid oral challenge increased circulating GIP concentrations, skeletal muscle Akt phosphorylation, and improved glucose clearance by ∼35% (P < 0.05). These responses occurred without alterations in serum insulin concentrations. In an incubated soleus muscle preparation, GIP directly stimulated glucose transport and increased GLUT4 accumulation on the plasma membrane in the absence of insulin. Moreover, the ability of GIP to stimulate glucose transport was mitigated by the addition of the PI 3-kinase (PI3K) inhibitor wortmannin, suggesting that signaling through PI3K is required for these responses. We also provide evidence that the combined stimulatory effects of GIP and insulin on soleus muscle glucose transport are additive. However, the specific GIP receptor antagonist (Pro3)GIP did not attenuate GIP-stimulated glucose transport, suggesting that GIP is not signaling through its classical receptor. Together, the current data provide evidence that GIP regulates skeletal muscle glucose transport; however, the exact signaling mechanism(s) remain unknown. PMID:26041107

  16. Low Concentrations of Metformin Suppress Glucose Production in Hepatocytes through AMP-activated Protein Kinase (AMPK)*♦

    PubMed Central

    Cao, Jia; Meng, Shumei; Chang, Evan; Beckwith-Fickas, Katherine; Xiong, Lishou; Cole, Robert N.; Radovick, Sally; Wondisford, Fredric E.; He, Ling

    2014-01-01

    Metformin is a first-line antidiabetic agent taken by 150 million people across the world every year, yet its mechanism remains only partially understood and controversial. It was proposed that suppression of glucose production in hepatocytes by metformin is AMPK-independent; however, unachievably high concentrations of metformin were employed in these studies. In the current study, we find that metformin, via an AMP-activated protein kinase (AMPK)-dependent mechanism, suppresses glucose production and gluconeogenic gene expression in primary hepatocytes at concentrations found in the portal vein of animals (60–80 μm). Metformin also inhibits gluconeogenic gene expression in the liver of mice administered orally with metformin. Furthermore, the cAMP-PKA pathway negatively regulates AMPK activity through phosphorylation at Ser-485/497 on the α subunit, which in turn reduces net phosphorylation at Thr-172. Because diabetic patients often have hyperglucagonemia, AMPKα phosphorylation at Ser-485/497 is a therapeutic target to improve metformin efficacy. PMID:24928508

  17. Eicosanoids modulate hyperpnea-induced late phase airway obstruction and hyperreactivity in dogs.

    PubMed

    Davis, Michael S; McCulloch, Sharron; Myers, Teresa; Freed, Arthur N

    2002-01-01

    A canine model of exercise-induced asthma was used to test the hypothesis that the development of a late phase response to hyperventilation depends on the acute production of pro-inflammatory mediators. Peripheral airway resistance, reactivity to hypocapnia and aerosol histamine, and bronchoalveolar lavage fluid (BALF) cell and eicosanoid content were measured in dogs approximately 5 h after dry air challenge (DAC). DAC resulted in late phase obstruction, hyperreactivity to histamine, and neutrophilic inflammation. Both cyclooxygenase and lipoxygenase inhibitors administered in separate experiments attenuated the late phase airway obstruction and hyperreactivity to histamine. Neither drug affected the late phase inflammation nor the concentrations of eicosanoids in the BALF obtained 5 h after DAC. This study confirms that hyperventilation of peripheral airways with unconditioned air causes late phase neutrophilia, airway obstruction, and hyperreactivity. The late phase changes in airway mechanics are related to the hyperventilation-induced release of both prostaglandins and leukotrienes, and appear to be independent of the late phase infiltration of inflammatory cells.

  18. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis.

    PubMed

    Tsukioka, Takuma; Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2016-01-01

    Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh-Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty.

  19. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  20. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    PubMed Central

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  1. Concomitant Exposure to Ovalbumin and Endotoxin Augments Airway Inflammation but Not Airway Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    Mac Sharry, John; Shalaby, Karim H.; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T.; Shanahan, Fergus; Martin, James G.

    2014-01-01

    Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337

  2. Effect of maternal metabolism on fetal supply: Glucose, non-esterified fatty acids and beta-hydroxybutyrate concentrations in canine maternal serum and fetal fluids at term pregnancy.

    PubMed

    Balogh, Orsolya; Bruckmaier, Rupert; Keller, Stefanie; Reichler, Iris Margaret

    2018-06-01

    The progressive adaptations in carbohydrate and lipid metabolism during canine pregnancy are reflected in the concentrations of glucose, non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). The levels of these metabolites in the bitch likely affect fetal concentrations and the composition of amniotic and allantoic fluids (AMF and ALF, respectively). We studied 31 canine parturitions (Cesarean sections) and found that glucose, NEFA and BHB concentrations were significantly higher in maternal serum than in AMF or ALF. Glucose levels in maternal serum, AMF and ALF were closely related (R 2  ≥ 0.821, P < 0.0001) as well as serum and AMF BHB levels (R 2  = 0.661, P < 0.0001). In maternal serum, increases in NEFA were associated with increased BHB, and both were negatively related to glucose (P ≤ 0.010). To estimate the effect of the metabolic burden of pregnancy, we evaluated these variables in relation to the dam's body weight and to the ratio of litter weight to the dam's body weight (LW/BW). Maternal serum glucose was not influenced by LW/BW, but it was lower in small than in large/giant bitches. Small breed dogs and those with >10% LW/BW had significantly higher serum NEFA and BHB concentrations. Glucose in AMF and ALF was independent of LW/BW (P ≥ 0.399). AMF NEFA was lower and BHB higher, if LW/BW was >10% (P ≤ 0.048). In conclusion, the extent of the metabolic load of pregnancy in bitches depends on breed size and on the ratio of litter weight to dam's body weight. Maternal concentrations of glucose, BHB and NEFA determine the concentrations of these metabolites in fetal fluids. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Positive Feedback Amplifies the Response of Mitochondrial Membrane Potential to Glucose Concentration in Clonal Pancreatic Beta Cells.

    PubMed

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2017-05-01

    Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is complicated by the large number of reactions and interactions in metabolic networks. Metabolic control analysis with appropriate modularization is a powerful method for simplifying and analyzing these networks. To analyze control of cellular energy metabolism in adherent cell cultures of the INS-1 832/13 pancreatic β-cell model we adapted our microscopy assay of absolute mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic control analysis we identified the control properties that generate this sensitive response. Force-flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas proton leak also contributes to the homeostatic control of ΔψM at low glucose. These findings suggest a strong positive feedback loop in the regulation of β-cell energetics, and a possible regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged bioenergetic response of β-cells to glucose. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy. Copyright © 2016 Elsevier B.V. All rights

  4. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.

    PubMed

    Kitanovic, Ana; Walther, Thomas; Loret, Marie Odile; Holzwarth, Jinda; Kitanovic, Igor; Bonowski, Felix; Van Bui, Ngoc; Francois, Jean Marie; Wölfl, Stefan

    2009-06-01

    Maintenance and adaptation of energy metabolism could play an important role in the cellular ability to respond to DNA damage. A large number of studies suggest that the sensitivity of cells to oxidants and oxidative stress depends on the activity of cellular metabolism and is dependent on the glucose concentration. In fact, yeast cells that utilize fermentative carbon sources and hence rely mainly on glycolysis for energy appear to be more sensitive to oxidative stress. Here we show that treatment of the yeast Saccharomyces cerevisiae growing on a glucose-rich medium with the DNA alkylating agent methyl methanesulphonate (MMS) triggers a rapid inhibition of respiration and enhances reactive oxygen species (ROS) production, which is accompanied by a strong suppression of glycolysis. Further, diminished activity of pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase upon MMS treatment leads to a diversion of glucose carbon to glycerol, trehalose and glycogen accumulation and an increased flux through the pentose-phosphate pathway. Such conditions finally result in a significant decline in the ATP level and energy charge. These effects are dependent on the glucose concentration in the medium. Our results clearly demonstrate that calorie restriction reduces MMS toxicity through increased respiration and reduced ROS accumulation, enhancing the survival and recovery of cells.

  5. Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect

    NASA Astrophysics Data System (ADS)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev

    2016-03-01

    In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  6. Toward CMOS image sensor based glucose monitoring.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2012-09-07

    Complementary metal oxide semiconductor (CMOS) image sensor is a powerful tool for biosensing applications. In this present study, CMOS image sensor has been exploited for detecting glucose levels by simple photon count variation with high sensitivity. Various concentrations of glucose (100 mg dL(-1) to 1000 mg dL(-1)) were added onto a simple poly-dimethylsiloxane (PDMS) chip and the oxidation of glucose was catalyzed with the aid of an enzymatic reaction. Oxidized glucose produces a brown color with the help of chromogen during enzymatic reaction and the color density varies with the glucose concentration. Photons pass through the PDMS chip with varying color density and hit the sensor surface. Photon count was recognized by CMOS image sensor depending on the color density with respect to the glucose concentration and it was converted into digital form. By correlating the obtained digital results with glucose concentration it is possible to measure a wide range of blood glucose levels with great linearity based on CMOS image sensor and therefore this technique will promote a convenient point-of-care diagnosis.

  7. Placental Glucose Transfer: A Human In Vivo Study

    PubMed Central

    Holme, Ane M.; Roland, Marie Cecilie P.; Lorentzen, Bjørg; Michelsen, Trond M.; Henriksen, Tore

    2015-01-01

    Objectives The placental transfer of nutrients is influenced by maternal metabolic state, placenta function and fetal demands. Human in vivo studies of this interplay are scarce and challenging. We aimed to establish a method to study placental nutrient transfer in humans. Focusing on glucose, we tested a hypothesis that maternal glucose concentrations and uteroplacental arterio-venous difference (reflecting maternal supply) determines the fetal venous-arterial glucose difference (reflecting fetal consumption). Methods Cross-sectional in vivo study of 40 healthy women with uncomplicated term pregnancies undergoing planned caesarean section. Glucose and insulin were measured in plasma from maternal and fetal sides of the placenta, at the incoming (radial artery and umbilical vein) and outgoing vessels (uterine vein and umbilical artery). Results There were significant mean (SD) uteroplacental arterio-venous 0.29 (0.23) mmol/L and fetal venous-arterial 0.38 (0.31) mmol/L glucose differences. The transplacental maternal-fetal glucose gradient was 1.22 (0.42) mmol/L. The maternal arterial glucose concentration was correlated to the fetal venous glucose concentration (r = 0.86, p<0.001), but not to the fetal venous-arterial glucose difference. The uteroplacental arterio-venous glucose difference was neither correlated to the level of glucose in the umbilical vein, nor fetal venous-arterial glucose difference. The maternal-fetal gradient was correlated to fetal venous-arterial glucose difference (r = 0.8, p<0.001) and the glucose concentration in the umbilical artery (r = −0.45, p = 0.004). Glucose and insulin concentrations were correlated in the mother (r = 0.52, p = 0.001), but not significantly in the fetus. We found no significant correlation between maternal and fetal insulin values. Conclusions We did not find a relation between indicators of maternal glucose supply and the fetal venous-arterial glucose difference. Our findings indicate that the maternal

  8. Whole-Body Insulin Sensitivity Rather than Body-Mass-Index Determines Fasting and Post-Glucose-Load Growth Hormone Concentrations

    PubMed Central

    Anderwald, Christian-Heinz; Tura, Andrea; Gessl, Alois; Smajis, Sabina; Bieglmayer, Christian; Marculescu, Rodrig; Luger, Anton; Pacini, Giovanni; Krebs, Michael

    2014-01-01

    Background Obese, non-acromegalic persons show lower growth hormone (GH) concentrations at fasting and reduced GH nadir during an oral glucose tolerance test (OGTT). However, this finding has never been studied with regard to whole-body insulin-sensitivity as a possible regulator. Methods In this retrospective analysis, non-acromegalic (NonACRO, n = 161) and acromegalic (ACRO, n = 35), non-diabetic subjects were subdivided into insulin-sensitive (IS) and –resistant (IR) groups according to the Clamp-like Index (CLIX)-threshold of 5 mg·kg−1·min−1 from the OGTT. Results Non-acromegalic IS (CLIX: 8.8±0.4 mg·kg−1·min−1) persons with similar age and sex distribution, but lower (p<0.001) body-mass-index (BMI = 25±0 kg/m2, 84% females, 56±1 years) had 59% and 70%, respectively, higher (p<0.03) fasting GH and OGTT GH area under the curve concentrations than IR (CLIX: 3.5±0.1 mg·kg−1·min−1, p<0.001) subjects (BMI = 29±1 kg/m2, 73% females, 58±1 years). When comparing on average overweight non-acromegalic IS and IR with similar anthropometry (IS: BMI: 27±0 kg/m2, 82% females, 58±2 years; IR: BMI: 27±0 kg/m2, 71% females, 60±1 years), but different CLIX (IS: 8.7±0.9 vs. IR: 3.8±0.1 mg·kg−1·min−1, p<0.001), the results remained almost the same. In addition, when adjusted for OGTT-mediated glucose rise, GH fall was less pronounced in IR. In contrast, in acromegalic subjects, no difference was found between IS and IR patients with regard to fasting and post-glucose-load GH concentrations. Conclusions Circulating GH concentrations at fasting and during the OGTT are lower in non-acromegalic insulin-resistant subjects. This study seems the first to demonstrate that insulin sensitivity rather than body-mass modulates fasting and post-glucose-load GH concentrations in non-diabetic non–acromegalic subjects. PMID:25517727

  9. Airway management in neuroanesthesiology.

    PubMed

    Aziz, Michael

    2012-06-01

    Airway management for neuroanesthesiology brings together some key principles that are shared throughout neuroanesthesiology. This article appropriately targets the cervical spine with associated injury and the challenges surrounding airway management. The primary focus of this article is on the unique airway management obstacles encountered with cervical spine injury or cervical spine surgery, and unique considerations regarding functional neurosurgery are addressed. Furthermore, topics related to difficult airway management for those with rheumatoid arthritis or pituitary surgery are reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. [The research on the airway hyperresponsiveness and IOS airway resistance index of industrial area resident].

    PubMed

    Xu, Jin; Wang, Zhen; Sun, Hongcun

    2015-09-01

    To study airway reactivity and impulse oscillation (IOS)-measured airway resistance indicators of residents of Zhenhai industrial area in Ningbo city. In the form of follow-up, both. airway reactivity and respiratory functions of populations in Zhenhai industrial zone (n = 215) and urban (n = 203) were measured, comparing difference degree between different regions. Ninty-five of 215 cases in industrial area were identified as suspected airway hyperresponsiveness, but only 43 of 203 cases were in urban areas. Forty-seven of 95 cases (49.5%) in industrial zone were positive, while only 14 cases (32.6%) in urban. The proportions of people in the two regions on different types of airway hyperresponsiveness were significantly different (P < 0.01). All airway resistance indexes of urban populations were significantly lower than that of industrial zone (P < 0.05). The prevalence of airway hyperresponsiveness and IOS airway resistance aspects of industrial area residents was higher than that of urban residents. Monitoring and evaluating the airway diseases, inflammatory lesions and respiratory function in the region were good for understanding the severe pollution in the local area in certain significance.

  11. Sialic acid-to-urea ratio as a measure of airway surface hydration

    PubMed Central

    Hill, David B.; Button, Brian; Shi, Shuai; Jania, Corey; Duncan, Elizabeth A.; Doerschuk, Claire M.; Chen, Gang; Ranganathan, Sarath; Stick, Stephen M.; Boucher, Richard C.

    2017-01-01

    Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r2 = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P < 0.01). Sialic acid-to-urea ratios were elevated in bronchoalveolar lavage fluid (BALF) from β-epithelial sodium channel (ENaC) transgenic mice, known to have reduced mucus hydration, and mice sensitized to house dust mite allergen. In a translational application, elevated sialic acid-to-urea ratios were measured in BALF from young children with CF who had airway infection relative to those who did not (5.5 ± 3.7 vs. 1.9 ± 1.4, P < 0.02) and could be assessed simultaneously with established biomarkers of inflammation. The sialic acid-to-urea ratio performed similarly to percent solids, the gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized. PMID:28062483

  12. Novel Small Airway Bronchodilator Responses to Rosiglitazone in Mouse Lung Slices

    PubMed Central

    Bai, Yan; Donovan, Chantal; Esposito, James G.; Tan, Xiahui; Sanderson, Michael J.

    2014-01-01

    There is a need to identify novel agents that elicit small airway relaxation when β2-adrenoceptor agonists become ineffective in difficult-to-treat asthma. Because chronic treatment with the synthetic peroxisome proliferator activated receptor (PPAR)γ agonist rosiglitazone (RGZ) inhibits airway hyperresponsiveness in mouse models of allergic airways disease, we tested the hypothesis that RGZ causes acute airway relaxation by measuring changes in small airway size in mouse lung slices. Whereas the β-adrenoceptor agonists albuterol (ALB) and isoproterenol induced partial airway relaxation, RGZ reversed submaximal and maximal contraction to methacholine (MCh) and was similarly effective after precontraction with serotonin or endothelin-1. Concentration-dependent relaxation to RGZ was not altered by the β-adrenoceptor antagonist propranolol and was enhanced by ALB. RGZ-induced relaxation was mimicked by other synthetic PPARγ agonists but not by the putative endogenous agonist 15-deoxy-PGJ2 and was not prevented by the PPARγ antagonist GW9662. To induce airway relaxation, RGZ inhibited the amplitude and frequency of MCh-induced Ca2+ oscillations of airway smooth muscle cells (ASMCs). In addition, RGZ reduced MCh-induced Ca2+ sensitivity of the ASMCs. Collectively, these findings demonstrate that acute bronchodilator responses induced by RGZ are PPARγ independent, additive with ALB, and occur by the inhibition of ASMC Ca2+ signaling and Ca2+ sensitivity. Because RGZ continues to elicit relaxation when β-adrenoceptor agonists have a limited effect, RGZ or related compounds may have potential as bronchodilators for the treatment of difficult asthma. PMID:24188042

  13. Effects of Acute Exposure to Increased Plasma Branched-Chain Amino Acid Concentrations on Insulin-Mediated Plasma Glucose Turnover in Healthy Young Subjects

    PubMed Central

    Everman, Sarah; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2015-01-01

    Background Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity. Objective To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans. Methods Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion. Results Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile – 3rd quartile)] between Control and BCAA in either the 40U ([199 (167–278) vs. 186 (94–308)] or 80 U ([491 (414–548) vs. 478 (409–857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P < 0.05) with no differences between Control and BCAA in either of the experiments (P > 0.05). Conclusion Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism. PMID:25781654

  14. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    PubMed

    Everman, Sarah; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2015-01-01

    Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity. To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans. Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion. Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile - 3rd quartile)] between Control and BCAA in either the 40U ([199 (167-278) vs. 186 (94-308)] or 80 U ([491 (414-548) vs. 478 (409-857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P < 0.05) with no differences between Control and BCAA in either of the experiments (P > 0.05). Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  15. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  16. Effects of two commercially available feline diets on glucose and insulin concentrations, insulin sensitivity and energetic efficiency of weight gain.

    PubMed

    Coradini, M; Rand, J S; Morton, J M; Rawlings, J M

    2011-10-01

    A low-carbohydrate, high-protein (LCHP) diet is often recommended for the prevention and management of diabetes in cats; however, the effect of macronutrient composition on insulin sensitivity and energetic efficiency for weight gain is not known. The present study compared the effect in adult cats (n 32) of feeding a LCHP (23 and 47 % metabolisable energy (ME)) and a high-carbohydrate, low-protein (HCLP) diet (51 and 21 % ME) on fasting and postprandial glucose and insulin concentrations, and on insulin sensitivity. Tests were done in the 4th week of maintenance feeding and after 8 weeks of ad libitum feeding, when weight gain and energetic efficiency of each diet were also measured. When fed at maintenance energy, the HCLP diet resulted in higher postprandial glucose and insulin concentrations. When fed ad libitum, the LCHP diet resulted in greater weight gain (P < 0.01), and was associated with higher energetic efficiency. Overweight cats eating the LCHP diet had similar postprandial glucose concentrations to lean cats eating the HCLP diet. Insulin sensitivity was not different between the diets when cats were lean or overweight, but glucose effectiveness was higher after weight gain in cats fed the HCLP diet. According to the present results, LCHP diets fed at maintenance requirements might benefit cats with multiple risk factors for developing diabetes. However, ad libitum feeding of LCHP diets is not recommended as they have higher energetic efficiency and result in greater weight gain.

  17. Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness

    PubMed Central

    Wilson, Rhonda H.; Whitehead, Gregory S.; Nakano, Hideki; Free, Meghan E.; Kolls, Jay K.; Cook, Donald N.

    2009-01-01

    Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant. Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum. Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR). Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR. Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma. PMID:19661246

  18. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  19. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.

    PubMed

    Hu, Yumei; Jiang, Xiaomei; Zhang, Laiying; Fan, Jiao; Wu, Weitai

    2013-10-15

    Noninvasive monitoring of glucose in tears is highly desirable in tight glucose control. The polymerized crystalline colloidal array (PCCA) that can be incorporated into contact lens represents one of the most promising materials for noninvasive monitoring of glucose in tears. However, low sensitivity and slow time response of the PCCA reported in previous arts has limited its clinical utility. This paper presents a new PCCA, denoted as NIR-PCCA, comprising a CCA of glucose-responsive sub-micrometered poly(styrene-co-acrylamide-co-3-acrylamidophenylboronic acid) microgels embedded within a slightly positive charged hydrogel matrix of poly(acrylamide-co-2-(dimethylamino)ethyl acrylate). This newly designed NIR-PCCA can reflect near-infrared (NIR) light, whose intensity (at 1722 nm) would decrease evidently with increasing glucose concentration over the physiologically relevant range in tears. The lowest glucose concentration reliably detectable was as low as ca. 6.1 μg/dL. The characteristic response time τ(sensing) was 22.1±0.2s when adding glucose to 7.5 mg/dL, and the higher the glucose concentration is, the faster the time response. Such a rationally designed NIR-PCCA is well suited for ratiometric NIR sensing of tear glucose under physiological conditions, thereby likely to bring this promising glucose-sensing material to the forefront of analytical devices for diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production.

    PubMed

    Kurosawa, Kazuhiko; Boccazzi, Paolo; de Almeida, Naomi M; Sinskey, Anthony J

    2010-06-01

    Biodiesel, monoalkyl esters of long-chain fatty acids with short-chain alcohols derived from triacylglycerols (TAGs), can be produced from renewable biomass sources. Recently, there has been interest in producing microbial oils from oleaginous microorganisms. Rhodococcus opacus PD630 is known to accumulate large amounts of TAGs. Following on these earlier works we demonstrate that R. opacus PD630 has the uncommon capacity to grow in defined media supplemented with glucose at a concentration of 300 g l(-1) during batch-culture fermentations. We found that we could significantly increase concentrations of both glucose and (NH4)2SO4 in the production medium resulting in a dramatic increase in fatty acid production when pH was controlled. We describe the experimental design protocol used to achieve the culture conditions necessary to obtain both high-cell-density and TAG accumulation; specifically, we describe the importance of the C/N ratio of the medium composition. Our bioprocess results demonstrate that R. opacus PD630 grown in batch-culture with an optimal production medium containing 240 g l(-1) glucose and 13.45 g l(-1) (NH4)2SO4 (C/N of 17.8) yields 77.6 g l(-1) of cell dry weight composed of approximately 38% TAGs indicating that this strain holds great potential as a future source of industrial biodiesel on starchy cellulosic feedstocks that are glucose polymers. 2010 Elsevier B.V. All rights reserved.

  1. Evidence for brain glucose dysregulation in Alzheimer's disease.

    PubMed

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  2. Quantitative reconstruction of refractive index distribution and imaging of glucose concentration by using diffusing light.

    PubMed

    Liang, Xiaoping; Zhang, Qizhi; Jiang, Huabei

    2006-11-10

    We show that a two-step reconstruction method can be adapted to improve the quantitative accuracy of the refractive index reconstruction in phase-contrast diffuse optical tomography (PCDOT). We also describe the possibility of imaging tissue glucose concentration with PCDOT. In this two-step method, we first use our existing finite-element reconstruction algorithm to recover the position and shape of a target. We then use the position and size of the target as a priori information to reconstruct a single value of the refractive index within the target and background regions using a region reconstruction method. Due to the extremely low contrast available in the refractive index reconstruction, we incorporate a data normalization scheme into the two-step reconstruction to combat the associated low signal-to-noise ratio. Through a series of phantom experiments we find that this two-step reconstruction method can considerably improve the quantitative accuracy of the refractive index reconstruction. The results show that the relative error of the reconstructed refractive index is reduced from 20% to within 1.5%. We also demonstrate the possibility of PCDOT for recovering glucose concentration using these phantom experiments.

  3. An axisymmetric single-path model for gas transport in the conducting airways.

    PubMed

    Madasu, Srinath; Borhan, All; Ultman, James S

    2006-02-01

    In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.

  4. Relapsing polychondritis and airway involvement.

    PubMed

    Ernst, Armin; Rafeq, Samaan; Boiselle, Phillip; Sung, Arthur; Reddy, Chakravarthy; Michaud, Gaetane; Majid, Adnan; Herth, Felix J F; Trentham, David

    2009-04-01

    To assess the prevalence and characteristics of airway involvement in relapsing polychondritis (RP). Retrospective chart review and data analysis of RP patients seen in the Rheumatology Clinic and the Complex Airway Center at Beth Israel Deaconess Medical Center from January 2004 through February 2008. RP was diagnosed in 145 patients. Thirty-one patients had airway involvement, a prevalence of 21%. Twenty-two patients were women (70%), and they were between 11 and 61 years of age (median age, 42 years) at the time of first symptoms. Airway symptoms were the first manifestation of disease in 17 patients (54%). Dyspnea was the most common symptom in 20 patients (64%), followed by cough, stridor, and hoarseness. Airway problems included the following: subglottic stenosis (n = 8; 26%); focal and diffuse malacia (n = 15; 48%); and focal stenosis in different areas of the bronchial tree in the rest of the patients. Twelve patients (40%) required and underwent intervention including balloon dilatation, stent placement, tracheotomy, or a combination of the above with good success. The majority of patients experienced improvement in airway symptoms after intervention. One patient died during the follow-up period from the progression of airway disease. The rest of the patients continue to undergo periodic evaluation and intervention. In this largest cohort described in the English language literature, we found symptomatic airway involvement in RP to be common and at times severe. The nature of airway problems is diverse, with tracheomalacia being the most common. Airway intervention is frequently required and in experienced hands results in symptom improvement.

  5. Airway recovery after face transplantation.

    PubMed

    Fischer, Sebastian; Wallins, Joe S; Bueno, Ericka M; Kueckelhaus, Maximilian; Chandawarkar, Akash; Diaz-Siso, J Rodrigo; Larson, Allison; Murphy, George F; Annino, Donald J; Caterson, Edward J; Pomahac, Bohdan

    2014-12-01

    Severe facial injuries can compromise the upper airway by reducing airway volume, obstructing or obliterating the nasal passage, and interfering with oral airflow. Besides the significant impact on quality of life, upper airway impairments can have life-threatening or life-altering consequences. The authors evaluated improvements in functional airway after face transplantation. Between 2009 and 2011, four patients underwent face transplantation at the authors' institution, the Brigham and Women's Hospital. Patients were examined preoperatively and postoperatively and their records reviewed for upper airway infections and sleeping disorders. The nasal mucosa was biopsied after face transplantation and analyzed using scanning electron microscopy. Volumetric imaging software was used to evaluate computed tomographic scans of the upper airway and assess airway volume changes before and after transplantation. Before transplantation, two patients presented an exposed naked nasal cavity and two suffered from occlusion of the nasal passage. Two patients required tracheostomy tubes and one had a prosthetic nose. Sleeping disorders were seen in three patients, and chronic cough was diagnosed in one. After transplantation, there was no significant improvement in sleeping disorders. The incidence of sinusitis increased because of mechanical interference of the donor septum and disappeared after surgical correction. All patients were decannulated after transplantation and were capable of nose breathing. Scanning electron micrographs of the respiratory mucosa revealed viable tissue capable of mucin production. Airway volume significantly increased in all patients. Face transplantation successfully restored the upper airway in four patients. Unhindered nasal breathing, viable respiratory mucosa, and a significant increase in airway volume contributed to tracheostomy decannulation.

  6. Predicting Human Subcutaneous Glucose Concentration in Real Time: A Universal Data-Driven Approach

    DTIC Science & Technology

    2011-09-01

    insulin for at least 12 mo, and had glycated hemoglobin ( HbA1c ) >6.1%. In the Guardian study, subjects were included if they were between 3 and 7 yr...old or between 12 and 18 yr old, had been diagnosed with type 1 diabetes for more than 1 yr, had been using an insulin pump, and had HbA1c ≤ 10.0...oral agents, basal insulin, or both for at least 3 mo, and had HbA1c between 7% and 12%. Predicting Human Subcutaneous Glucose Concentration in

  7. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype.

    PubMed Central

    Heilig, C W; Concepcion, L A; Riser, B L; Freytag, S O; Zhu, M; Cortes, P

    1995-01-01

    An environment of high glucose concentration stimulates the synthesis of extracellular matrix (ECM) in mesangial cell (MC) cultures. This may result from a similar increase in intracellular glucose concentration. We theorized that increased uptake, rather than glucose concentration per se is the major determinant of exaggerated ECM formation. To test this, we compared the effects of 35 mM glucose on ECM synthesis in normal MCs with those of 8 mM glucose in the same cells overexpressing the glucose transporter GLUT1 (MCGT1). Increasing medium glucose from 8 to 35 mM caused normal MCs to increase total collagen synthesis and catabolism, with a net 81-90% increase in accumulation. MCs transduced with the human GLUT1 gene (MCGT1) grown in 8 mM glucose had a 10-fold greater GLUT1 protein expression and a 1.9, 2.1, and 2.5-fold increase in cell myo-inositol, lactate production, and cell sorbitol content, respectively, as compared to control MCs transduced with bacterial beta-galactosidase (MCLacZ). MCGT1 also demonstrated increased glucose uptake (5-fold) and increased net utilization (43-fold), and greater synthesis of individual ECM components than MCLacZ. In addition, total collagen synthesis and catabolism were also enhanced with a net collagen accumulation 111-118% greater than controls. Thus, glucose transport activity is an important modulator of ECM formation by MCs; the presence of high extracellular glucose concentrations is not necessarily required for the stimulation of matrix synthesis. Images PMID:7560072

  8. Effect of upper airway CO2 pattern on ventilatory frequency in tegu lizards.

    PubMed

    Ballam, G O; Coates, E L

    1989-07-01

    Nasal CO2-sensitive receptors are reported to depress ventilatory frequency in several reptilian species in response to constant low levels of inspired CO2. The purpose of this study was to determine the influence of phasic patterns of CO2 in the upper airways on ventilation. Awake lizards (Tupinambis nigropunctatus) breathed through an endotracheal tube from an isolated gas source. A second gas mixture was forced at constant flow into the external nares. A concentration of 4% CO2 was intermittently pulsed through the nares in a square-wave pattern with a frequency of 60, 12, 6, 4.2, 1.8, and 0.6 cycles/min. Concentrations of 2, 3, 4, and 6% CO2 were also pulsed through the nares at 12 cycles/min and compared with sustained levels of 1, 1.5, 2, and 3%. Additionally, 0 or 3% CO2 was forced through the upper airways with a servo system designed to mimic normal ventilatory flow and gas concentrations. No changes in breathing pattern were noted during any of the pulsing protocols, although a significant breathing frequency depression was present with sustained levels of CO2 of comparable mean concentrations. We conclude that ventilatory control is selectively responsive to sustained levels of environmental CO2 but not to phasic changes in upper airway CO2 concentration.

  9. [Quality assurance in airway management: education and training for difficult airway management].

    PubMed

    Kaminoh, Yoshiroh

    2006-01-01

    Respiratory problem is one of the main causes of death or severe brain damage in perioperative period. Three major factors of respiratory problem are esophageal intubation, inadequate ventilation, and difficult airway. The wide spread of pulse oximeter and capnograph reduced the incidences of esophageal intubation and inadequate ventilation, but the difficult airway still occupies the large portion in the causes of adverse events during anesthesia. "Practice guideline for management of the difficult airway" was proposed by American Society of Anesthesiologists (ASA) in 1992 and 2002. Improvement of knowledge, technical skills, and cognitive skills are necessary for the education and training of the difficult airway management. "The practical seminar of difficult airway management (DAM practical seminar)" has been cosponsored by the Japanese Association of Medical Simulation (JAMS) in the 51 st and 52 nd annual meetings of Japanese Society of Anesthesiologists and the 24th annual meeting of Japanese Society for Clinical Anesthesia. The DAM practical seminar is composed of the lecture session for ASA difficult airway algorithm, the hands-on training session for technical skills, and the scenario-based training session for cognitive skills. Ninty six Japanese anesthesiologists have completed the DAM practical seminar in one year. "The DAM instructor course" should be immediately prepared to organize the seminar more frequently.

  10. Glucose determination with fiber optic spectrometers

    NASA Astrophysics Data System (ADS)

    Starke, Eva; Kemper, Ulf; Barschdorff, Dieter

    1999-05-01

    Noninvasive blood glucose monitoring is the aim of research activities concerning the detection of small glucose concentrations dissolved in water and blood plasma. One approach for these measurements is the exploitation of absorption bands in the near infrared. However, the strong absorption of water represents a major difficulty. Transmission measurements of glucose dissolved in water and in blood plasma in the spectral region around 1600 nm with one- beam spectrometers and a FT-IR spectrometer are discussed. The evaluation of the data is carried out using a two-layer Lambert-Beer model and neural networks. In order to reduce the dimensions of a potential measuring device, an integrated acousto-optic tunable filter (AOTF) with an Erbium doped fiber amplifier as a radiation source is used. The fiber optic components are examined concerning their suitability. The smallest concentrations of glucose dissolved in water that can be separated are approximately 50 mg/dl. In the range of 50 mg/dl to 1000 mg/dl a correlation coefficient of 0.98 between real and estimated glucose concentrations is achieved using neural networks. In blood plasma so far glucose concentrations of about 100 mg/dl can be distinguished with good accuracy.

  11. Influence of abdominal surgical trauma and intra-operative infusion of glucose on splanchnic glucose metabolism in man.

    PubMed

    Stjernström, H; Jorfeldt, L; Wiklund, L

    1981-10-01

    Abdominal surgery increases blood glucose concentration and peripheral release and splanchnic uptake of gluconeogenic substrates, including alanine. During trauma or sepsis, infusion of glucose fails to depress alanine conversion to glucose. The effect of intra-operative glucose infusion on splanchnic metabolism was examined in the present study. In eight patients undergoing elective cholecystectomy, splanchnic glucose metabolism was investigated before, during and immediately after surgery. Glucose was infused at a constant rate of 1 mmol/min. Splanchnic blood flow and arterio-hepatic venous differences of oxygen, glucose, lactate, glycerol, 3-hydroxybutyrate and alanine were measured. Eight other patients, who received saline instead of glucose, served as a control group. Infusion of glucose resulted in total inhibition of splanchnic glucose release before as well as during and immediately after surgery. This was observed, even before surgery, at an arterial glucose level which was lower than that in the control group at the end of and immediately after surgery, at which no decrease of the splanchnic glucose release was recorded. changes in neuronal and hormonal factors due to the surgical trauma are considered responsible for this difference in glucose homeostasis. Splanchnic alanine uptake increased during surgery in both groups, but tended to be somewhat lower in the glucose group. The arterial glycerol concentration and splanchnic uptake, as well as the arterial concentration and splanchnic release of 3-hydroxybutyrate, were reduced. It is concluded that an intravenous infusion of glucose at the rate of 1 mmol/min during abdominal surgery (a) increases the arterial blood glucose level and abolishes splanchnic glucose release, (b) reduces, but does not totally prevent the increase in splanchnic uptake of gluconeogenic substrates, and (c) diminishes lipolysis and the formation of 3-hydroxybutyrate.

  12. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  13. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  14. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments. © 2013 Wiley Periodicals, Inc.

  15. Glucose turnover and defense of blood glucose levels in Arctic fox (Alopex lagopus).

    PubMed

    Tallas, P G; White, R G

    1988-01-01

    1. Glucose utilization was assessed in fed and fasted arctic fox, maintained on a diet similar in composition to food available in the wild. 2. Fasted (24 hr) glucose concentration was not significantly different from the fed level (134 mg/dl). 3. Fasting was associated with a significant reduction in glucose space, pool size, total entry rate, and irreversible loss which suggests a decline in gluconeogenesis. 4. Glucose recycling was not significantly different between the fed and fasted states. 5. We suggest that, in the arctic fox, the mechanism for defending blood glucose levels during fasting is based on restricting blood glucose to tissues with a high glucose dependency.

  16. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    PubMed Central

    Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.

    2001-01-01

    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807

  17. Extraglottic airway devices: technology update.

    PubMed

    Sharma, Bimla; Sahai, Chand; Sood, Jayashree

    2017-01-01

    Extraglottic airway devices (EADs) have revolutionized the field of airway management. The invention of the laryngeal mask airway was a game changer, and since then, there have been several innovations to improve the EADs in design, functionality, safety and construction material. These have ranged from changes in the shape of the mask, number of cuffs and material used, like rubber, polyvinylchloride and latex. Phthalates, which were added to the construction material in order to increase device flexibility, were later omitted when this chemical was found to have serious adverse reproductive outcomes. The various designs brought out by numerous companies manufacturing EADs resulted in the addition of several devices to the airway market. These airway devices were put to use, many of them with inadequate or no evidence base regarding their efficacy and safety. To reduce the possibility of compromising the safety of the patient, the Difficult Airway Society (DAS) formed the Airway Device Evaluation Project Team (ADEPT) to strengthen the evidence base for airway equipment and vet the new extraglottic devices. A preuse careful analysis of the design and structure may help in better understanding of the functionality of a particular device. In the meantime, the search for the ideal EAD continues.

  18. Airway Protective Mechanisms

    PubMed Central

    Pitts, Teresa

    2014-01-01

    Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e inspiration or swallow) or the reverse (i.e expiration reflex or vomiting).These vital mechanisms have not been evaluated in clinical conditions, but could be impaired in many neurodegenerative diseases leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations. PMID:24297325

  19. Insulin hypersecretion together with high luteinizing hormone concentration augments androgen secretion in oral glucose tolerance test in women with polycystic ovarian disease.

    PubMed

    Anttila, L; Koskinen, P; Jaatinen, T A; Erkkola, R; Irjala, K; Ruutiainen, K

    1993-08-01

    Female hyperandrogenism is often associated with hyperinsulinaemia and insulin resistance. We evaluated the hormone responses in an oral glucose tolerance test to investigate the interactions of gonadotrophins, insulin, C-peptide and androgens in women with polycystic ovarian disease (PCOD). In 28 patients with ultrasonographically diagnosed PCOD, hyperinsulinaemia and insulin resistance were mainly associated with obesity. Both basal and cumulative sum of insulin to C-peptide ratios were high in obese subjects, suggesting decreasing hepatic removal of insulin caused by obesity. Nevertheless, in some lean PCOD women, despite normal fasting insulin concentrations, insulin hypersecretion existed. The mean concentration of testosterone decreased significantly during the oral glucose tolerance test both in PCOD and control women, and of androstenedione in the PCOD patients only. However, an increase in androgen responses was found in a subgroup of PCOD patients, who had both elevated luteinizing hormone (LH) concentrations and hyperinsulinaemic response to oral glucose. In the remaining PCOD patients an inverse correlation between LH and insulin was found. The patients with hyperinsulinaemia together with LH hypersecretion may represent a subgroup of PCOD with deranged regulation of androgen secretion.

  20. Effect of Perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    Infants exposed to second hand smoke (SHS) experience more problems with wheezing. This study was designed to determine if perinatal SHS exposure increases intrinsic and/or in vivo airway responsiveness to methacholine and whether potential structural/cellular alterations in the airway might explain the change in responsiveness. Pregnant rhesus monkeys were exposed to filtered air (FA) or SHS (1 mg/m{sup 3} total suspended particulates) for 6 h/day, 5 days/week starting at 50 days gestational age. The mother/infant pairs continued the SHS exposures postnatally. At 3 months of age each infant: 1) had in vivo lung function measurements in response to inhaled methacholine,more » or 2) the right accessory lobe filled with agarose, precision-cut to 600 {mu}m slices, and bathed in increasing concentrations of methacholine. The lumenal area of the central airway was determined using videomicrometry followed by fixation and histology with morphometry. In vivo tests showed that perinatal SHS increases baseline respiratory rate and decreases responsiveness to methacholine. Perinatal SHS did not alter intrinsic airway responsiveness in the bronchi. However in respiratory bronchioles, SHS exposure increased airway responsiveness at lower methacholine concentrations but decreased it at higher concentrations. Perinatal SHS did not change eosinophil profiles, epithelial volume, smooth muscle volume, or mucin volume. However it did increase the number of alveolar attachments in bronchi and respiratory bronchioles. In general, as mucin increased, airway responsiveness decreased. We conclude that perinatal SHS exposure alters in vivo and intrinsic airway responsiveness, and alveolar attachments.« less

  1. The effect of body weight on distal airway function and airway inflammation.

    PubMed

    van de Kant, Kim D G; Paredi, Paolo; Meah, Sally; Kalsi, Harpal S; Barnes, Peter J; Usmani, Omar S

    Obesity is a global health problem that adversely influences the respiratory system. We assessed the effects of body mass index (BMI) on distal airway function and airway inflammation. Impulse oscillometry (IOS) as a measure of distal airway function, together with spirometry, were assessed in adults with a range of different BMIs. Airway inflammation was assessed with the fraction of exhaled nitric oxide (FeNO) and participants exhaled at various exhalation flows to determine alveolar and bronchial NO. In total 34 subjects were enrolled in the study; 19 subjects had a normal BMI (18.50-24.99), whilst 15 subjects were overweight (BMI 25.00-29.99), or obese (BMI ≥30). All subjects had normal spirometry. However, IOS measures of airway resistance (R) at 5Hz, 20Hz and frequency dependence (R 5-20 ) were elevated in overweight/obese individuals, compared to subjects with a normal BMI (median (interquartile range)); 5Hz: 0.41 (0.37, 0.45) vs. 0.32 (0.30, 0.37)kPa/l/s; 20Hz: 0.34 (0.30, 0.37) vs. 0.30 (0.26, 0.33)kPa/l/s; R 5-20 : 0.06 (0.04, 0.11) vs. 0.03 (0.01, 0.05)kPa/l/s; p<0.05), whereas airway reactance at 20Hz was decreased in overweight/obese individuals (20Hz: 0.07 (0.03, 0.09) vs. 0.10 (0.07, 0.13)kPa/l/s, p=0.009; 5Hz: -0.12 (-0.15, -0.10) vs. -0.10 (-0.13, -0.09)kPa/l/s, p=0.07). In contrast, within-breath IOS measures (a sign of expiratory flow limitation) and FeNO inflammatory measures, did not differ between groups (p>0.05). Being overweight has significant effects on distal and central airway function as determined by IOS, which is not detected by spirometry. Obesity does not influence airway inflammation as measured by FeNO. IOS is a reliable technique to identify airway abnormalities in the presence of normal spirometry in overweight people. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  2. Smooth muscle in the maintenance of increased airway resistance elicited by methacholine in humans.

    PubMed

    Chapman, David G; Pascoe, Chris D; Lee-Gosselin, Audrey; Couture, Christian; Seow, Chun Y; Paré, Peter D; Salome, Cheryl M; King, Gregory G; Bossé, Ynuk

    2014-10-15

    Airway narrowing is maintained for a prolonged period after acute bronchoconstriction in humans in the absence of deep inspirations (DIs). To determine whether maintenance of airway smooth muscle (ASM) shortening is responsible for the persistence of airway narrowing in healthy subjects following transient methacholine (MCh)-induced bronchoconstriction. On two separate visits, five healthy subjects underwent MCh challenges until respiratory system resistance (Rrs) had increased by approximately 1.5 cm H2O/L/s. Subjects took a DI either immediately after or 30 minutes after the last dose. The extent of renarrowing following the bronchodilator effect of DI was used to assess the continued action of MCh (calculated as percent change in Rrs from the pre-DI Rrs). We then used human bronchial rings to determine whether ASM can maintain shortening during a progressive decrease of carbachol concentration. The increased Rrs induced by MCh was maintained for 30 minutes despite waning of MCh concentration over that period, measured as attenuated renarrowing when the DI was taken 30 minutes after compared with immediately after the last dose (7 min post-DI, -36.2 ± 11.8 vs. 14.4 ± 13.2%; 12 min post-DI, -39.5 ± 9.8 vs. 15.2 ± 17.8%). Ex vivo, ASM shortening was largely maintained during a progressive decrease of carbachol concentration, even down to concentrations that would not be expected to induce shortening. The maintenance of airway narrowing despite MCh clearance in humans is attributed to an intrinsic ability of ASM to maintain shortening during a progressive decrease of contractile stimulation.

  3. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    NASA Astrophysics Data System (ADS)

    Ally, Javed; Roa, Wilson; Amirfazli, A.

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  4. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.

    PubMed

    Sode, Koji; Loew, Noya; Ohnishi, Yosuke; Tsuruta, Hayato; Mori, Kazushige; Kojima, Katsuhiro; Tsugawa, Wakako; LaBelle, Jeffrey T; Klonoff, David C

    2017-01-15

    In this study, a novel fungus FAD dependent glucose dehydrogenase, derived from Aspergillus niger (AnGDH), was characterized. This enzyme's potential for the use as the enzyme for blood glucose monitor enzyme sensor strips was evaluated, especially by investigating the effect of the presence of xylose during glucose measurements. The substrate specificity of AnGDH towards glucose was investigated, and only xylose was found as a competing substrate. The specific catalytic efficiency for xylose compared to glucose was 1.8%. The specific activity of AnGDH for xylose at 5mM concentration compared to glucose was 3.5%. No other sugars were used as substrate by this enzyme. The superior substrate specificity of AnGDH was also demonstrated in the performance of enzyme sensor strips. The impact of spiking xylose in a sample with physiological glucose concentrations on the sensor signals was investigated, and it was found that enzyme sensor strips using AnGDH were not affected at all by 5mM (75mg/dL) xylose. This is the first report of an enzyme sensor strip using a fungus derived FADGDH, which did not show any positive bias at a therapeutic level xylose concentration on the signal for a glucose sample. This clearly indicates the superiority of AnGDH over other conventionally used fungi derived FADGDHs in the application for SMBG sensor strips. The negligible activity of AnGDH towards xylose was also explained on the basis of a 3D structural model, which was compared to the 3D structures of A. flavus derived FADGDH and of two glucose oxidases. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Definitive airway management after pre-hospital supraglottic airway insertion: Outcomes and a management algorithm for trauma patients.

    PubMed

    Hernandez, Matthew C; Aho, Johnathon M; Zielinski, Martin D; Zietlow, Scott P; Kim, Brian D; Morris, David S

    2018-01-01

    Prehospital airway management increasingly involves supraglottic airway insertion and a paucity of data evaluates outcomes in trauma populations. We aim to describe definitive airway management in traumatically injured patients who necessitated prehospital supraglottic airway insertion. We performed a single institution retrospective review of multisystem injured patients (≥15years) that received prehospital supraglottic airway insertion during 2009 to 2016. Baseline demographics, number and type of: supraglottic airway insertion attempts, definitive airway and complications were recorded. Primary outcome was need for tracheostomy. Univariate and multivariable statistics were performed. 56 patients met inclusion criteria and were reviewed, 78% were male. Median age [IQR] was 36 [24-56] years. Injuries comprised blunt (94%), penetrating (4%) and burns (2%). Median ISS was 26 [22-41]. Median number of prehospital endotracheal intubation (PETI) attempts was 2 [1-3]. Definitive airway management included: (n=20, 36%, tracheostomy), (n=10, 18%, direct laryngoscopy), (n=6, 11%, bougie), (n=9, 15%, Glidescope), (n=11, 20%, bronchoscopic assistance). 24-hour mortality was 41%. Increasing number of PETI was associated with increasing facial injury. On regression, increasing cervical and facial injury patterns as well as number of PETI were associated with definitive airway control via surgical tracheostomy. After supraglottic airway insertion, operative or non-operative approaches can be utilized to obtain a definitive airway. Patients with increased craniofacial injuries have an increased risk for airway complications and need for tracheostomy. We used these factors to generate an evidence based algorithm that requires prospective validation. Level IV - Retrospective study. Retrospective single institution study. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips.

    PubMed

    Dowie, Jackson; Ansell, Thomas K; Noble, Peter B; Donovan, Graham M

    2016-01-01

    Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Glucose, fructose and sucrose increase the solubility of protein-tannin complexes and at high concentration, glucose and sucrose interfere with bisulphite bleaching of wine pigments.

    PubMed

    Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O

    2013-05-01

    Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Glucose absorption in acute peritoneal dialysis.

    PubMed

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  9. Simulation and qualitative analysis of glucose variability, mean glucose, and hypoglycemia after subcutaneous insulin therapy for stress hyperglycemia.

    PubMed

    Strilka, Richard J; Stull, Mamie C; Clemens, Michael S; McCaver, Stewart C; Armen, Scott B

    2016-01-27

    The critically ill can have persistent dysglycemia during the "subacute" recovery phase of their illness because of altered gene expression; it is also not uncommon for these patients to receive continuous enteral nutrition during this time. The optimal short-acting subcutaneous insulin therapy that should be used in this clinical scenario, however, is unknown. Our aim was to conduct a qualitative numerical study of the glucose-insulin dynamics within this patient population to answer the above question. This analysis may help clinicians design a relevant clinical trial. Eight virtual patients with stress hyperglycemia were simulated by means of a mathematical model. Each virtual patient had a different combination of insulin resistance and insulin deficiency that defined their unique stress hyperglycemia state; the rate of gluconeogenesis was also doubled. The patients received 25 injections of subcutaneous regular or Lispro insulin (0-6 U) with 3 rates of continuous nutrition. The main outcome measurements were the change in mean glucose concentration, the change in glucose variability, and hypoglycemic episodes. These end points were interpreted by how the ultradian oscillations of glucose concentration were affected by each insulin preparation. Subcutaneous regular insulin lowered both mean glucose concentrations and glucose variability in a linear fashion. No hypoglycemic episodes were noted. Although subcutaneous Lispro insulin lowered mean glucose concentrations, glucose variability increased in a nonlinear fashion. In patients with high insulin resistance and nutrition at goal, "rebound hyperglycemia" was noted after the insulin analog was rapidly metabolized. When the nutritional source was removed, hypoglycemia tended to occur at higher Lispro insulin doses. Finally, patients with severe insulin resistance seemed the most sensitive to insulin concentration changes. Subcutaneous regular insulin consistently lowered mean glucose concentrations and glucose

  10. Sub-chronic inhalation of high concentrations of manganese sulfate induces lower airway pathology in rhesus monkeys

    PubMed Central

    Dorman, David C; Struve, Melanie F; Gross, Elizabeth A; Wong, Brian A; Howroyd, Paul C

    2005-01-01

    lung manganese concentrations and small airway inflammatory changes in the absence of observable clinical signs. Subchronic exposure to manganese sulfate at exposure concentrations (≤0.3 mg Mn/m3) similar to the current 8-hr occupational threshold limit value established for inhaled manganese was not associated with pulmonary pathology. PMID:16242036

  11. Engineering of a Novel Saccharomyces cerevisiae Wine Strain with a Respiratory Phenotype at High External Glucose Concentrations

    PubMed Central

    Henricsson, C.; de Jesus Ferreira, M. C.; Hedfalk, K.; Elbing, K.; Larsson, C.; Bill, R. M.; Norbeck, J.; Hohmann, S.; Gustafsson, L.

    2005-01-01

    The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Δ strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Δ strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain. PMID:16204537

  12. Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations.

    PubMed

    Henricsson, C; de Jesus Ferreira, M C; Hedfalk, K; Elbing, K; Larsson, C; Bill, R M; Norbeck, J; Hohmann, S; Gustafsson, L

    2005-10-01

    The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.

  13. LASER APPLICATIONS IN MEDICINE: Effect of glucose concentration in a model light-scattering suspension on propagation of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Popov, A. P.; Priezzhev, A. V.; Myllylä, Risto

    2005-11-01

    The propagation of laser pulses in the 2% aqueous solution of intralipid — a suspension of lipid particles with optical properties close to those of the human skin, is numerically simulated at different glucose concentrations. The temporal profiles of 820-nm laser pulses diffusely backscattered from a flat, 2-mm thick solution layer are simulated. The laser pulse profiles are detected by fibreoptic detectors of diameter 0.3 mm with the numerical apertures 0.19, 0.29, and 0.39. It is shown that this method can be used to detect changes in the glucose level in the physiological concentration range (100-500 mg dL-1) by monitoring variations in the peak intensity and area of the laser pulse temporal profile (pulse energy).

  14. Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus.

    PubMed

    Whitehead, N; White, H

    2013-04-01

    Compounds other than macronutrients have been shown to influence blood glucose concentrations and insulin sensitivity in people with diabetes, with caffeine being one such substance. The present study systematically reviewed the evidence of the effects of caffeine on blood glucose concentrations and/or insulin sensitivity in people with diabetes. Four databases, including MEDLINE and EMBASE, were searched up to 1 February 2012. Randomised controlled trials (RCTs) investigating the effects of caffeine on blood glucose and/or insulin sensitivity in humans, diagnosed with type I, type II or gestational diabetes mellitus (GDM), were included. Quality assessment and data extraction were conducted and agreed by both authors. Of 253 articles retrieved, nine trials (134 participants) were identified. Trials in people with type II diabetes demonstrated that the ingestion of caffeine (approximately 200-500 mg) significantly increased blood glucose concentrations by 16-28% of the area under the curve (AUC) and insulin concentrations by 19-48% of the AUC when taken prior to a glucose load, at the same time as decreasing insulin sensitivity by 14-37%. In type I diabetes, trials indicated enhanced recognition and a reduced duration of hypoglycaemic episodes following ingestion of 400-500 mg caffeine, without altering glycated haemoglobin. In GDM, a single trial demonstrated that approximately 200 mg of caffeine induced a decrease in insulin sensitivity by 18% and a subsequent increase in blood glucose concentrations by 19% of the AUC. Evidence indicates a negative effect of caffeine intake on blood glucose control in individuals with type II diabetes, as replicated in a single trial in GDM. Larger-scale RCTs of longer duration are needed to determine the effects of timing and dose. Early indications of a reduced duration and an improved awareness of hypoglycaemia in type I diabetes require further confirmation. © 2013 The Authors Journal of Human Nutrition and Dietetics

  15. Critical Airway Team: A Retrospective Study of an Airway Response System in a Pediatric Hospital.

    PubMed

    Sterrett, Emily C; Myer, Charles M; Oehler, Jennifer; Das, Bobby; Kerrey, Benjamin T

    2017-12-01

    Objective Study the performance of a pediatric critical airway response team. Study Design Case series with chart review. Setting Freestanding academic children's hospital. Subjects and Methods A structured review of the electronic medical record was conducted for all activations of the critical airway team. Characteristics of the activations and patients are reported using descriptive statistics. Activation of the critical airway team occurred 196 times in 46 months (March 2012 to December 2015); complete data were available for 162 activations (83%). For 49 activations (30%), patients had diagnoses associated with difficult intubation; 45 (28%) had a history of difficult laryngoscopy. Results Activation occurred at least 4 times per month on average (vs 3 per month for hospital-wide codes). The most common reasons for team activation were anticipated difficult intubation (45%) or failed intubation attempt (20%). For 79% of activations, the team performed an airway procedure, most commonly direct laryngoscopy and tracheal intubation. Bronchoscopy was performed in 47% of activations. Surgical airway rescue was attempted 4 times. Cardiopulmonary resuscitation occurred in 41 activations (25%). Twenty-nine patients died during or following team activation (18%), including 10 deaths associated with the critical airway event. Conclusion Critical airway team activation occurred at least once per week on average. Direct laryngoscopy, tracheal intubation, and bronchoscopic procedures were performed frequently; surgical airway rescue was rare. Most patients had existing risk factors for difficult intubation. Given our rate of serious morbidity and mortality, primary prevention of critical airway events will be a focus of future efforts.

  16. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration.

    PubMed

    Roma, L P; Pascal, S M; Duprez, J; Jonas, J-C

    2012-08-01

    Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS. Apoptosis, oxidative stress-response gene mRNA expression and glucose-induced stimulation of mitochondrial metabolism, intracellular Ca(2+) concentration and insulin secretion were measured in male Wistar rat islets cultured for 1 week in RPMI medium containing 5-10 mmol/l glucose with or without manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) or N-acetyl-L-: cysteine (NAC). Oxidative stress was measured in islet cell clusters cultured under similar conditions using cytosolic and mitochondrial redox-sensitive green fluorescent protein (roGFP1/mt-roGFP1). Prolonged culture in 5 vs 10 mmol/l glucose increased mt-roGFP1 (but not roGFP1) oxidation followed by beta cell apoptosis and loss of GSIS resulting from reduced insulin content, mitochondrial metabolism, Ca(2+) influx and Ca(2+)-induced secretion. Tolbutamide-induced, but not high K(+)-induced, Ca(2+) influx was also suppressed. Under these conditions, MnTBAP, but not NAC, triggered parallel ~50-70% reductions in mt-roGFP1 oxidation and beta cell apoptosis, but failed to protect against the loss of GSIS despite significant improvement in glucose-induced and tolbutamide-induced Ca(2+) influx. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects during culture in a low glucose concentration. Thus, targeting beta cell survival may not be sufficient to restore insulin secretion when beta cells suffer from prolonged mitochondrial oxidative stress, e.g. in the context of reduced glucose metabolism.

  17. A 4-Week Model of House Dust Mite (HDM) Induced Allergic Airways Inflammation with Airway Remodeling.

    PubMed

    Woo, L N; Guo, W Y; Wang, X; Young, A; Salehi, S; Hin, A; Zhang, Y; Scott, J A; Chow, C W

    2018-05-02

    Animal models of allergic airways inflammation are useful tools in studying the pathogenesis of asthma and potential therapeutic interventions. The different allergic airways inflammation models available to date employ varying doses, frequency, duration and types of allergen, which lead to the development of different features of asthma; showing varying degrees of airways inflammation and hyper-responsiveness (AHR) and airways remodeling. Models that also exhibit airway remodeling, a key feature of asthma, in addition to AHR and airway inflammation typically require 5-12 weeks to develop. In this report, we describe a 4-week mouse model of house dust mite (HDM)-induced allergic airways inflammation, and compare the phenotypic features of two different doses of HDM exposures (10 µg and 25 µg) for 5 days/week with a well-characterized 8-week chronic HDM model. We found that 4 weeks of intranasal HDM (25 µg in 35 µl saline; 5 days/week) resulted in AHR, airway inflammation and airway remodeling that were comparable to the 8-week model. We conclude that this new 4-week HDM model is another useful tool in studies of human asthma that offers advantages of shorter duration for development and decreased costs when compared to other models that require longer durations of exposure (5-12 weeks) to develop.

  18. TNFα enhances force generation in airway smooth muscle

    PubMed Central

    Han, Young-Soo; Delmotte, Philippe

    2017-01-01

    Airway inflammation is a hallmark of asthma, triggering airway smooth muscle (ASM) hyperreactivity and airway remodeling. TNFα increases both agonist-induced cytosolic Ca2+ concentration ([Ca2+]cyt) and force in ASM. The effects of TNFα on ASM force may also be due to an increase in Ca2+ sensitivity, cytoskeletal remodeling, and/or changes in contractile protein content. We hypothesized that 24 h of exposure to TNFα increases ASM force by changing actin and myosin heavy chain (MyHC) content and/or polymerization. Porcine ASM strips were permeabilized with 10% Triton X-100, and force was measured in response to increasing concentrations of Ca2+ (pCa 9.0 to 4.0) in control and TNFα-treated groups. Relative phosphorylation of the regulatory myosin light chain (p-MLC) and total actin, MLC, and MyHC concentrations were quantified at pCa 9.0, 6.1, and 4.0. Actin polymerization was quantified by the ratio of filamentous to globular actin at pCa 9.0 and 4.0. For determination of total cross-bridge formation, isometric ATP hydrolysis rate at pCa 4.0 was measured using an enzyme-coupled NADH-linked fluorometric technique. Exposure to TNFα significantly increased force across the range of Ca2+ activation but did not affect the intrinsic Ca2+ sensitivity of force generation. The TNFα-induced increase in ASM force was associated with an increase in total actin, MLC, and MyHC content, as well as an increase in actin polymerization and an increase in maximum isometric ATP hydrolysis rate. The results of this study support our hypothesis that TNFα increases force generation in ASM by increasing the number of contractile units (actin-myosin content) contributing to force generation. PMID:28385814

  19. On-line prediction of the glucose concentration of CHO cell cultivations by NIR and Raman spectroscopy: Comparative scalability test with a shake flask model system.

    PubMed

    Kozma, Bence; Hirsch, Edit; Gergely, Szilveszter; Párta, László; Pataki, Hajnalka; Salgó, András

    2017-10-25

    In this study, near-infrared (NIR) and Raman spectroscopy were compared in parallel to predict the glucose concentration of Chinese hamster ovary cell cultivations. A shake flask model system was used to quickly generate spectra similar to bioreactor cultivations therefore accelerating the development of a working model prior to actual cultivations. Automated variable selection and several pre-processing methods were tested iteratively during model development using spectra from six shake flask cultivations. The target was to achieve the lowest error of prediction for the glucose concentration in two independent shake flasks. The best model was then used to test the scalability of the two techniques by predicting spectra of a 10l and a 100l scale bioreactor cultivation. The NIR spectroscopy based model could follow the trend of the glucose concentration but it was not sufficiently accurate for bioreactor monitoring. On the other hand, the Raman spectroscopy based model predicted the concentration of glucose in both cultivation scales sufficiently accurately with an error around 4mM (0.72g/l), that is satisfactory for the on-line bioreactor monitoring purposes of the biopharma industry. Therefore, the shake flask model system was proven to be suitable for scalable spectroscopic model development. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterization of airway and vascular responses in murine lungs

    PubMed Central

    Held, Heinz-Dieter; Martin, Christian; Uhlig, Stefan

    1999-01-01

    We characterized the responses of murine airways and pulmonary vessels to a variety of endogenous mediators in the isolated perfused and ventilated mouse lung (IPL) and compared them with those in precision-cut lung slices. Airways: The EC50 (μM) for contractions of airways in IPL/slices was methacholine (Mch), 6.1/1.5>serotonin, 0.7/2.0>U46619 (TP-receptor agonist), 0.1/0.06>endothelin-1, 0.1/0.05. In the IPL, maximum increase in airway resistance (RL) was 0.6, 0.4, 0.8 and 11 cmH2O s ml−1, respectively. Adenosine (⩽1 mM), bombesin (⩽100 μM), histamine (⩽10 mM), LTC4 (⩽1 μM), PAF (0.25 μM) and substance P (⩽100 μM) had only weak effects (<5% of Mch) on RL. Vessels: The EC50 (μM) for vasoconstriction in the IPL was LTC4, 0.06>U46619, 0.05concentrations (10 nM) reduced the EC50 to 0.6 μM. In the IPL, U46619 raised the maximum airway response to Mch 5 fold and the maximum PAF-induced vasoconstriction 4 fold. Conclusion: Murine precision-cut lung slices maintain important characteristics of the whole organ. The maximum reagibility of murine airways to endogenous mediators is serotoninairway and vessel hyperreactivity induced by U46619 raises the possibility that thromboxane contributes directly to airway hyperresponsiveness in various experimental and clinical settings. PMID:10205008

  1. Swine confinement buildings: effects of airborne particles and settled dust on airway smooth muscles.

    PubMed

    Demanche, Annick; Bonlokke, Jakob; Beaulieu, Marie-Josee; Assayag, Evelyne; Cormier, Yvon

    2009-01-01

    Swine confinement workers are exposed to various contaminants. These agents can cause airway inflammation and bronchoconstriction. This study was undertaken to evaluate if the bronchoconstrictive effects of swine barn air and settled dust are mediated by endotoxin, and if these effects are directly mediated on airway smooth muscles. Mouse tracheas where isolated and mounted isometrically in organ baths. Tracheas, with or without epithelium, were attached to a force transducer and tension was recorded. Concentrated swine building air at 68 EU/ml or settled dust extract at 0.01 g/ml were added for 20 minutes and tracheal smooth muscle contraction was measured. Direct role of LPS was assessed by removing it from air concentrates with an endotoxin affinity resin. Swine barn air and settled dust extract caused contraction of tracheal smooth muscle by 26 and 20%, respectively, of the maximal induced by methacholine. Removal of epithelium did not affect the contractile effects. LPS alone and LPS with peptidoglycans did not induce contraction. However, when endotoxin was removed from swine barn air concentrates, it lost 24% of its contractile effect. Concentrated swine barn air and settled dust have direct effects on airway smooth muscles. This effect is partially due to LPS but a synergy with other components of the environment of swine confinement buildings is required.

  2. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  3. Calibration in dogs of a subcutaneous miniaturized glucose sensor using a glucose meter for blood glucose determination.

    PubMed

    Poitout, V; Moatti-Sirat, D; Reach, G

    1992-01-01

    The feasibility of calibrating a glucose sensor by using a wearable glucose meter for blood glucose determination and moderate variations of blood glucose concentration was assessed. Six miniaturized glucose sensors were implanted in the subcutaneous tissue of conscious dogs, and the parameters used for the in vivo calibration of the sensor (sensitivity coefficient and extrapolated current in the absence of glucose) were determined from values of blood glucose and sensor response obtained during glucose infusion. (1) Venous plasma glucose level and venous total blood glucose level were measured simultaneously on the same sample, using a Beckman analyser and a Glucometer II, respectively. The regression between plasma glucose (x) and whole blood glucose (y) was y = 1.12x-0.08 mM (n = 114 values, r = 0.96, p = 0.0001). The error grid analysis indicated that the use of a Glucometer II for blood glucose determination was appropriate in dogs. (2) The in vivo sensitivity coefficients were 0.57 +/- 0.11 nA mM-1 when determined from plasma glucose, and 0.51 +/- 0.07 nA mM-1 when determined from whole blood glucose (t = 1.53, p = 0.18, n.s.). The background currents were 0.88 +/- 0.57 nA when determined from plasma glucose, and 0.63 +/- 0.77 nA when determined from whole blood glucose (t = 0.82, p = 0.45, n.s.). (3) The regression equation of the estimation of the subcutaneous glucose level obtained from the two methods was y = 1.04x + 0.56 mM (n = 171 values, r = 0.98, p = 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  5. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  6. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2004-01-01

    A wealth of clinical observation has suggested that stress and asthma morbidity are associated. We have previously established a mouse model of stress-exacerbated allergic airway inflammation, which reflects major clinical findings. The aim of the current study was to investigate the role of the neurokinin- (NK-)1 receptor in the mediation of stress effects in allergic airway inflammation. BALB/c mice were systemically sensitized with ovalbumin (OVA) on assay days 1, 14, and 21 and repeatedly challenged with OVA aerosol on days 26 and 27. Sound stress was applied to the animals for 24 hours, starting with the first airway challenge. Additionally, one group of stressed and one group of nonstressed mice received the highly specific NK-1 receptor antagonist RP 67580. Bronchoalveolar lavage fluid was obtained, and cell numbers and differentiation were determined. Airway hyperreactivity was measured in vitro by electrical field stimulation of tracheal smooth-muscle elements. Application of stress in sensitized and challenged animals resulted in a significant increase in leukocyte number in the bronchoalveolar lavage fluid. Furthermore, stressed animals showed enhanced airway reactivity. The increase of inflammatory cells and airway reactivity was blocked by treatment of animals with the NK-1 receptor antagonist. These data indicate that the NK-1 receptor plays an important role in mediating stress effects in allergen-induced airway inflammation.

  7. Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue.

    PubMed

    Moatti-Sirat, D; Capron, F; Poitout, V; Reach, G; Bindra, D S; Zhang, Y; Wilson, G S; Thévenot, D R

    1992-03-01

    A miniaturized amperometric, enzymatic, glucose sensor (outer diameter 0.45 mm) was evaluated after implantation in the subcutaneous tissue of normal rats. A simple experimental procedure was designed for the long-term assessment of the sensor's function which was performed by recording the current during an intraperitoneal glucose load. The sensor was calibrated by accounting for the increase in the current during the concomitant increase in plasma glucose concentration, determined in blood sampled at the tail vein. This made it possible to estimate the glucose concentration in subcutaneous tissue. During the glucose load, the change in subcutaneous glucose concentration followed that in blood with a lag time consistently shorter than 5 min. The estimations of subcutaneous glucose concentration during these tests were compared to the concomitant plasma glucose concentrations by using a grid analysis. Three days after implantation (n = 6 experiments), 79 estimations were considered accurate, except for five which were in the acceptable zone. Ten days after implantation (n = 5 experiments), 101 estimations were accurate, except for one value, which was still acceptable. The sensitivity was around 0.5 nA.mmol-1.l-1 on day 3 and day 10. A longitudinal study on seven sensors tested on different days demonstrated a relative stability of the sensor's sensitivity. Finally, histological examination of the zone around the implantation site revealed a fibrotic reaction containing neocapillaries, which could explain the fast response of the sensor to glucose observed in vivo, even on day 10. We conclude that this miniaturized glucose sensor, whose size makes it easily implanted, works for at least ten days after implantation into rat subcutaneous tissue.

  8. Glucose diffusion in pancreatic islets of Langerhans.

    PubMed Central

    Bertram, R; Pernarowski, M

    1998-01-01

    We investigate the time required for glucose to diffuse through an isolated pancreatic islet of Langerhans and reach an equilibrium. This question is relevant in the context of in vitro electrophysiological studies of the response of an islet to step changes in the bath glucose concentration. Islet cells are electrically coupled by gap junctions, so nonuniformities in islet glucose concentration may be reflected in the activity of cells on the islet periphery, where electrical recordings are made. Using a mathematical model of hindered glucose diffusion, we investigate the effects of the islet porosity and the permeability of a surrounding layer of acinar cells. A major factor in the determination of the equilibrium time is the transport of glucose into islet beta-cells, which removes glucose from the interstitial spaces where diffusion occurs. This transport is incorporated by using a model of the GLUT-2 glucose transporter. We find that several minutes are required for the islet to equilibrate to a 10 mM change in bath glucose, a typical protocol in islet experiments. It is therefore likely that in electrophysiological islet experiments the glucose distribution is nonuniform for several minutes after a step change in bath glucose. The delay in glucose penetration to the inner portions of the islet may be a major contributing factor to the 1-2-min delay in islet electrical activity typically observed after bath application of a stimulatory concentration of glucose. PMID:9545035

  9. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  10. The contribution of Ca2+ signaling and Ca2+ sensitivity to the regulation of airway smooth muscle contraction is different in rats and mice.

    PubMed

    Bai, Yan; Sanderson, Michael J

    2009-06-01

    To determine the relative contributions of Ca(2+) signaling and Ca(2+) sensitivity to the contractility of airway smooth muscle cells (SMCs), we compared the contractile responses of mouse and rat airways with the lung slice technique. Airway contraction was measured by monitoring changes in airway lumen area with phase-contrast microscopy, whereas changes in intracellular calcium concentration ([Ca(2+)](i)) of the SMCs were recorded with laser scanning microscopy. In mice and rats, methacholine (MCh) or serotonin induced concentration-dependent airway contraction and Ca(2+) oscillations in the SMCs. However, rat airways demonstrated greater contraction compared with mice, in response to agonist-induced Ca(2+) oscillations of a similar frequency. Because this indicates that rat airway SMCs have a higher Ca(2+) sensitivity compared with mice, we examined Ca(2+) sensitivity with Ca(2+)-permeabilized airway SMCs in which the [Ca(2+)](i) was experimentally controlled. In the absence of agonists, high [Ca(2+)](i) induced a sustained contraction in rat airways but only a transient contraction in mouse airways. This sustained contraction of rat airways was relaxed by Y-23672, a Rho kinase inhibitor, but not affected by GF-109203X, a PKC inhibitor. The subsequent exposure of Ca(2+)-permeabilized airway SMCs, with high [Ca(2+)](i), to MCh elicited a further contraction of rat airways and initiated a sustained contraction of mouse airways, without changing the [Ca(2+)](i) of the SMCs. Collectively, these results indicate that airway SMCs of rats have a substantially higher innate Ca(2+) sensitivity than mice and that this strongly influences the transduction of the frequency of Ca(2+) oscillations into the contractility of airway SMCs.

  11. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    NASA Astrophysics Data System (ADS)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  12. Glucose dispersion measurement using white-light LCI

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Bagherzadeh, Morteza; Hitzenberger, Christoph K.; Pircher, Michael; Zawadzki, Robert; Fercher, Adolf F.

    2003-07-01

    We measured second order dispersion of glucose solution using a Michelson Low Coherent Interferometer (LCI). Three different glucose concentrations: 20mg/dl (hypoglycemia), 100mg/dl (normal level), and 500mg/dl (hyperglycemia) are investigated over the wavelength range 0.5μm to 0.85μm, and the investigation shows that different concentrations are associated with different second-order dispersions. The second-order dispersions for wavelengths from 0.55μm to 0.8μm are determined by Fourier analysis of the interferogram. This approach can be applied to measure the second-order dispersion for distinguishing the different glucose concentrations. It can be considered as a potentially noninvasive method to determine glucose concentration in human eye. A brief discussion is presented in this poster as well.

  13. The shape of the glucose concentration curve during an oral glucose tolerance test predicts risk for type 1 diabetes.

    PubMed

    Ismail, Heba M; Xu, Ping; Libman, Ingrid M; Becker, Dorothy J; Marks, Jennifer B; Skyler, Jay S; Palmer, Jerry P; Sosenko, Jay M

    2018-01-01

    We aimed to examine: (1) whether specific glucose-response curve shapes during OGTTs are predictive of type 1 diabetes development; and (2) the extent to which the glucose-response curve is influenced by insulin secretion. Autoantibody-positive relatives of people with type 1 diabetes whose baseline OGTT met the definition of a monophasic or biphasic glucose-response curve were followed for the development of type 1 diabetes (n = 2627). A monophasic curve was defined as an increase in OGTT glucose between 30 and 90 min followed by a decline of ≥ 0.25 mmol/l between 90 and 120 min. A biphasic response curve was defined as a decrease in glucose after an initial increase, followed by a second increase of ≥ 0.25 mmol/l. Associations of type 1 diabetes risk with glucose curve shapes were examined using cumulative incidence curve comparisons and proportional hazards regression. C-peptide responses were compared with and without adjustments for potential confounders. The majority of participants had a monophasic curve at baseline (n = 1732 [66%] vs n = 895 [34%]). The biphasic group had a lower cumulative incidence of type 1 diabetes (p < 0.001), which persisted after adjustments for age, sex, BMI z score and number of autoantibodies (p < 0.001). Among the monophasic group, the risk of type 1 diabetes was greater for those with a glucose peak at 90 min than for those with a peak at 30 min; the difference persisted after adjustments (p < 0.001). Compared with the biphasic group, the monophasic group had a lower early C-peptide (30-0 min) response, a lower C-peptide index (30-0 min C-peptide/30-0 min glucose), as well as a greater 2 h C-peptide level (p < 0.001 for all). Those with biphasic glucose curves have a lower risk of progression to type 1 diabetes than those with monophasic curves, and the risk among the monophasic group is increased when the glucose peak occurs at 90 min than at 30 min. Differences in glucose curve shapes between

  14. [Carbohydrate and lipid metabolism following heart bypass operations. The effect of the intravenous hypocaloric administration of glucose versus glucose xylitol (1:1)].

    PubMed

    Gross, G; Schricker, T; Hilpert, W; Braun, G; von der Emde, J; Georgieff, M

    1992-10-30

    The effect of glucose-xylitol infusion on carbohydrate and lipid metabolism was investigated in 18 metabolically normal men (mean age 56.1 [35-65] years) with coronary heart disease after they had undergone a coronary artery bypass operation. During the first postoperative hours, group I (n = 6) received glucose only (2 mg/kg.min), group II (n = 6) glucose+xylitol (1 mg/kg.min each), and group II a glucose-containing electrolyte solution (0.83 mg/kg.min glucose). Blood glucose and insulin concentrations during the infusion period were significantly (P < 0.05) lower in groups II and III than I (glucose after 6 h: group I 21.5 [15.3-26.8] mmol/l; group II 14.2 [11.2-18.1] mmol/l; group III 12.6 [6.8-16.0] mmol/l). The highest lactate concentrations were reached in group I, 6 hours after the operation. Palmitine and stearine, as well as oleic and linoleic acid concentrations were significantly lower 12 hours postoperatively in group I than groups II and III (P < 0.05). These data indicate that energy-ineffective high glucose concentrations were avoided and endogenous lactate production reduced by the postoperative infusion of glucose+xylitol. In addition, it achieved a higher supply of free fatty acids as energy source to the myocardium without reaching toxic concentrations in the postischaemic myocardium.

  15. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  16. Airway management in cervical spine injury

    PubMed Central

    Austin, Naola; Krishnamoorthy, Vijay; Dagal, Arman

    2014-01-01

    To minimize risk of spinal cord injury, airway management providers must understand the anatomic and functional relationship between the airway, cervical column, and spinal cord. Patients with known or suspected cervical spine injury may require emergent intubation for airway protection and ventilatory support or elective intubation for surgery with or without rigid neck stabilization (i.e., halo). To provide safe and efficient care in these patients, practitioners must identify high-risk patients, be comfortable with available methods of airway adjuncts, and know how airway maneuvers, neck stabilization, and positioning affect the cervical spine. This review discusses the risks and benefits of various airway management strategies as well as specific concerns that affect patients with known or suspected cervical spine injury. PMID:24741498

  17. Propofol preferentially relaxes neurokinin receptor-2-induced airway smooth muscle contraction in guinea pig trachea.

    PubMed

    Gleason, Neil R; Gallos, George; Zhang, Yi; Emala, Charles W

    2010-06-01

    Propofol is the anesthetic of choice for patients with reactive airway disease and is thought to reduce intubation- or irritant-induced bronchoconstriction by decreasing the cholinergic component of vagal nerve activation. However, additional neurotransmitters, including neurokinins, play a role in irritant-induced bronchoconstriction. We questioned the mechanistic assumption that the clinically recognized protective effect of propofol against irritant-induced bronchoconstriction during intubation was due to attenuation of airway cholinergic reflexes. Muscle force was continuously recorded from isolated guinea pig tracheal rings in organ baths. Rings were subjected to exogenous contractile agonists (acetylcholine, histamine, endothelin-1, substance P, acetyl-substance P, and neurokinin A) or to electrical field stimulation (EFS) to differentiate cholinergic or nonadrenergic, noncholinergic nerve-mediated contraction with or without cumulatively increasing concentrations of propofol, thiopental, etomidate, or ketamine. Propofol did not attenuate the cholinergic component of EFS-induced contraction at clinically relevant concentrations. In contrast, propofol relaxed nonadrenergic, noncholinergic-mediated EFS contraction at concentrations within the clinical range (20-100 mum, n = 9; P < 0.05), and propofol was more potent against an exogenous selective neurokinin-2 receptor versus neurokinin-1 receptor agonist contraction (n = 6, P < 0.001). Propofol, at clinically relevant concentrations, relaxes airway smooth muscle contracted by nonadrenergic, noncholinergic-mediated EFS and exogenous neurokinins but not contractions elicited by the cholinergic component of EFS. These findings suggest that the mechanism of protective effects of propofol against irritant-induced bronchoconstriction involves attenuation of tachykinins released from nonadrenergic, noncholinergic nerves acting at neurokinin-2 receptors on airway smooth muscle.

  18. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  19. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis.

    PubMed

    Li, Zong Ming; Wu, Gang; Han, Xin Wei; Ren, Ke Wei; Zhu, Ming

    2014-01-01

    We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy.

  20. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis

    PubMed Central

    Li, Zong-Ming; Wu, Gang; Han, Xin-Wei; Ren, Ke-Wei; Zhu, Ming

    2014-01-01

    PURPOSE We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. MATERIALS AND METHODS This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. RESULTS The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. CONCLUSION Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy. PMID:24808434

  1. Biosensing of DNA oxidative damage: a model of using glucose meter for non-glucose biomarker detection.

    PubMed

    Zhu, Xuena; Sarwar, Mehenur; Yue, Qiaoli; Chen, Chunying; Li, Chen-Zhong

    2017-01-01

    Non-glucose biomarker-DNA oxidative damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) has been successfully detected using a smartphone-enabled glucose meter. Through a series of immune reactions and enzymatic reactions on a solid lateral flow platform, 8-OHdG concentration has been converted to a relative amount of glucose, and therefore can be detected by conventional glucose meter directly. The device was able to detect 8-OHdG concentrations in phosphate buffer saline as low as 1.73 ng mL -1 with a dynamic range of 1-200 ng mL -1 . Considering the inherent advantages of the personal glucose meter, the demonstration of this device, therefore, should provide new opportunities for the monitoring of a wide range of biomarkers and various target analytes in connection with different molecular recognition events.

  2. Glucose-dependent and Glucose-sensitizing Insulinotropic Effect of Nateglinide: Comparison to Sulfonylureas and Repaglinide

    PubMed Central

    Wang, Shuya; Dunning, Beth E.

    2001-01-01

    Nateglinide, a novel D-phenylalanine derivative, stimulates insulin release via closure of KATP channels in pancreatic β-cell, a primary mechanism of action it shares with sulfonylureas (SUs) and repaglinide. This study investigated (1) the influence of ambient glucose levels on the insulinotropic effects of nateglinide, glyburide and repaglinide, and (2) the influence of the antidiabetic agents on glucose-stimulated insulin secretion (GSIS) in vitro from isolated rat islets. The EC50 of nateglinide to stimulate insulin secretion was 14 μM in the presence of 3mM glucose and was reduced by 6-fold in 8mM glucose and by 16-fold in 16mM glucose, indicating a glucose-dependent insulinotropic effect. The actions of glyburide and repaglinide failed to demonstrate such a glucose concentration-dependent sensitization. When tested at fixed and equipotent concentrations (~2x EC50 in the presence of 8mM glucose) nateglinide and repaglinide shifted the EC50s for GSIS to the left by 1.7mM suggesting an enhancement of islet glucose sensitivity, while glimepiride and glyburide caused, respectively, no change and a right shift of the EC50. These data demonstrate that despite a common basic mechanism of action, the insulinotropic effects of different agents can be influenced differentially by ambient glucose and can differentially influence the islet responsiveness to glucose. Further, the present findings suggest that nateglinide may exert a more physiologic effect on insulin secretion than comparator agents and thereby have less propensity to elicit hypoglycemia in vivo. PMID:12369728

  3. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    NASA Astrophysics Data System (ADS)

    Kajisa, Taira; Sakata, Toshiya

    2017-12-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  4. Molecular Pathophysiology of Hepatic Glucose Production

    PubMed Central

    Sharabi, Kfir; Tavares, Clint D. J.; Rines, Amy K.; Puigserver, Pere

    2015-01-01

    Maintaining blood glucose concentration within a relatively narrow range through periods of fasting or excess nutrient availability is essential to the survival of the organism. This is achieved through an intricate balance between glucose uptake and endogenous glucose production to maintain constant glucose concentrations. The liver plays a major role in maintaining normal whole body glucose levels by regulating the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis), thus controlling the levels of hepatic glucose release. Aberrant regulation of hepatic glucose production (HGP) can result in deleterious clinical outcomes, and excessive HGP is a major contributor to the hyperglycemia observed in Type 2 diabetes mellitus (T2DM). Indeed, adjusting glycaemia as close as possible to a non-diabetic range is the foremost objective in the medical treatment of patients with T2DM and is currently achieved in the clinic primarily through suppression of HGP. Here, we review the molecular mechanisms controlling HGP in response to nutritional and hormonal signals and discuss how these signals are altered in T2DM. PMID:26549348

  5. Glucose kinetics in infants of diabetic mothers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowett, R.M.; Susa, J.B.; Giletti, B.

    1983-08-01

    Glucose kinetic studies were performed to define the glucose turnover rate with 78% enriched D-(U-13C) glucose by the prime constant infusion technique at less than or equal to 6 hours of age in nine infants of diabetic mothers (four insulin-dependent and five chemical diabetic patients) at term. Five normal infants were studied as control subjects. All infants received 0.9% saline intravenously during the study with the tracer. Fasting plasma glucose, insulin, and glucose13/12C ratios were measured during the steady state, and the glucose turnover rate was derived. The average plasma glucose concentration was similar during the steady state in themore » infants of the diabetic mothers and in the control infants, and the glucose turnover rate was not significantly different among the groups: 2.3 +/- 0.6 mg . kg-1 min-1 in infants of insulin-dependent diabetic patients; 2.4 +/- 0.4 mg . kg-1 min-1 in infants of chemical diabetic patients; and 3.2 +/- 0.3 mg . kg-1 min-1 in the control subjects. Good control of maternal diabetes evidenced by the normal maternal hemoglobin A1c and plasma glucose concentration at delivery and cord plasma glucose concentration resulted in glucose kinetic values in the infants of diabetic mothers that were indistinguishable from those of control subjects. The data further support the importance of good control of the diabetic state in the pregnant woman to minimize or prevent neonatal hypoglycemia.« less

  6. Inflammatory bowel disease and airway diseases.

    PubMed

    Vutcovici, Maria; Brassard, Paul; Bitton, Alain

    2016-09-14

    Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact.

  7. Administration of SIN-1 induces guinea pig airway hyperresponsiveness through inactivation of airway neutral endopeptidase.

    PubMed

    Kanazawa, H; Hirata, K; Yoshikawa, J

    1999-12-01

    Peroxynitrite plays an important role in the pathogenesis of airway inflammation. We have already found that peroxynitrite may contribute to decreased beta(2)-adrenoceptor responses in airway smooth muscle. However, it is not known whether peroxynitrite can alter neutral endopeptidase (EC 3.4.24.11; NEP) activity in the airways. This study was designed to determine whether peroxynitrite induces airway hyperresponsiveness to substance P (SP) and endothelin-1 (ET-1) through the inactivation of airway NEP. We examined whether the administration of S-morpholinosydnonimine (SIN-1), a compound that releases peroxynitrite, increased bronchoconstrictor responses to SP and ET-1 in anesthetized guinea pigs. In addition, we assayed NEP activity in the airways of SIN-1-exposed guinea pigs. Though SIN-1 (10(-7) M) alone had no effect on pulmonary resistance, pretreatment with SIN-1 significantly enhanced SP- and ET-1-induced bronchoconstriction. Pretreatment with phosphoramidon, an NEP inhibitor, also enhanced SP- and ET-1-induced bronchoconstriction. However, simultaneous administration of phosphoramidon and SIN-1 had no additive effect on SP- and ET-1-induced bronchoconstriction. Peroxynitrite formation by SIN-1 was completely inhibited by N-acetylcysteine (NAC) and glutathione (GSH) in vitro, and pretreatment with NAC and GSH significantly reversed the potentiation by SIN-1 of SP-induced bronchoconstriction. In addition, the NEP activity of the trachea after SIN-1 exposure was significantly reduced compared to the level in control guinea pigs (solvent for SIN-1: 30.0+/-4.2 fmol.min(-1).mg tissue(-1); 10(-7) M SIN-1; 15.5+/-4.5 fmol.min(-1).mg tissue(-1), p<0.05). These findings suggest that peroxynitrite induces airway hyperresponsiveness to SP and ET-1 through the inactivation of airway NEP, and that peroxynitrite is an important mediator of the alterations in airway functions.

  8. ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor.

    PubMed

    Sarangi, Sachindra Nath; Nozaki, Shinji; Sahu, Surendra Nath

    2015-06-01

    The highly sensitive, interference-free and non-enzymatic optical sensing of glucose has been made possible for the first time using the hydrothermally synthesized ZnO nanorods. The UV irradiation of glucose-treated ZnO nanorods decomposes glucose into hydrogen peroxide (H2O2) and gluconic acid by UV oxidation. The ZnO nanorods play the role of a catalyst similar to the oxidase used in the enzymatic glucose sensors. The photoluminescence (PL) intensity of the near-band edge emission of the ZnO nanorods linearly decreased with the increased concentration of H2O2. Therefore, the glucose concentration is monitored over the wide range of 0.5-30 mM, corresponding to 9-540 mg/dL. The concentration range of the linear region in the calibration curve is suitable for its clinical use as a glucose sensor, because the glucose concentration of human serum is typically in the range of 80-120 mg/dL. In addition, the optical glucose sensor made of the ZnO nanorods is free from interference by bovin serum albumin, ascorbic acid or uric acid, which are also present in human blood. The non-enzymatic ZnO-nanorod sensor has been demonstrated with human serum samples from both normal persons and diabetic patients. There is a good agreement between the glucose concentrations measured by the PL quenching and standard clinical methods.

  9. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos; Bang, Ole

    2017-03-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3.5, which is only 11.6% from the predicted value. Earlier state-of-the-art fabrication of the CPC-shaped tip by fiber tapering was of so poor quality that the actual improvement was 43% lower than the predicted improvement of the ideal CPC shape.

  10. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors

    NASA Astrophysics Data System (ADS)

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos; Bang, Ole

    2017-03-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3.5, which is only 11.6% from the predicted value. Earlier state-of-the-art fabrication of the CPC-shaped tip by fiber tapering was of so poor quality that the actual improvement was 43% lower than the predicted improvement of the ideal CPC shape.

  11. Airway extravasation induced by increasing airway temperature in ovalbumin-sensitized rats

    PubMed Central

    Hsu, Chun-Chun; Tapia, Reyno J.; Lee, Lu-Yuan

    2015-01-01

    This study was carried out to determine whether hyperventilation of humidified warm air (HWA) induced airway extravasation in ovalbumin (Ova)-sensitized rats. Our results showed: 1) After isocapnic hyperventilation with HWA for 2 min, tracheal temperature (Ttr) was increased to 40.3°C, and the Evans blue contents in major airways and lung tissue were elevated to 651% and 707%, respectively, of that after hyperventilation with humidified room air in Ova-sensitized rats; this striking effect of HWA was absent in control rats. 2) The HWA-induced increase in Evans blue content in sensitized rats was completely prevented by a pretreatment with either L-732138, a selective antagonist of neurokinin type 1 (NK-1) receptor, or formoterol, a selective agonist of β2 adrenoceptor. This study demonstrated that an increase in airway temperature induced protein extravasation in the major airways and lung tissue of sensitized rats, and an activation of the NK-1 receptor by tachykinins released from bronchopulmonary C-fiber nerve endings was primarily responsible. PMID:25864799

  12. Effects of obesity on lung function and airway reactivity in healthy dogs.

    PubMed

    Manens, J; Bolognin, M; Bernaerts, F; Diez, M; Kirschvink, N; Clercx, C

    2012-07-01

    The present study investigated the effects of bodyweight (BW) gain on respiratory function and airway responsiveness in healthy Beagles using barometric whole body plethysmography (BWBP). Six adult dogs were examined before and after a fattening diet. The high-energy diet induced a mean increase in BW of 41±6%. BWBP basal parameters were recorded prior to airway reactivity testing (using increasing concentrations of histamine nebulisations). An airway responsiveness index (H-Penh300) was calculated as the histamine concentration necessary to reach 300% of basal enhanced pause (Penh, bronchoconstriction index). The same dogs underwent a doxapram hydrochloride (Dxp) stimulation testing 2 weeks later. Basal measurements showed that obese dogs had tidal volume per kg (TV/BW) that was significantly decreased whilst respiratory rate (RR) increased significantly. H-Penh300 decreased significantly in obese Beagles, indicating increased bronchoreactivity. Dxp administration induced a significant increase in TV/BW, minute volume per kg (MV/BW), peak inspiratory and expiratory flows per kg (PIF/BW and PEF/BW) in both normal and obese dogs although the TV/BW increase was significantly less marked in the obese group. In conclusion, obesity induced changes in basal respiratory parameters, increased bronchoreactivity and a blunted response to Dxp-induced respiratory stimulation. This combination of basal respiratory parameters, bronchoreactivity testing and pharmacological stimulation testing using non-invasive BWBP can help characterize pulmonary function and airway responsiveness in obese dogs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Evaluation of glucose response to 3 types of insulin using a continuous glucose monitoring system in healthy alpacas.

    PubMed

    Byers, S R; Beemer, O M; Lear, A S; Callan, R J

    2014-01-01

    Persistent hyperglycemia is common in alpacas and typically requires insulin administration for resolution; however, little is known about alpacas' response to different insulin formulations. To evaluate the effects of 3 insulin formulations on blood glucose concentrations and the use of a continuous glucose monitoring (CGM) system in alpacas. Six healthy alpacas. The CGM was installed in the left paralumbar fossa at the start of this crossover study and recorded data every 5 minutes. Regular insulin, NPH insulin, insulin glargine, and dextrose were administered to each alpaca over a 2-week period. Blood samples were collected for glucose testing at 0, 1, 2, 4, 6, 8, and 12 hours, and then every 6 hours after each administration of insulin or dextrose. Data were compared by using method comparison techniques, error grid plots, and ANOVA. Blood glucose concentrations decreased most rapidly after regular insulin administration when administered IV or SC as compared to the other formulations. The NPH insulin produced the longest suppression of blood glucose. The mean CGM interstitial compartment glucose concentrations were typically lower than the intravascular compartment glucose concentrations. The alpacas had no adverse reactions to the different insulin formulations. The NPH insulin might be more appropriate for long-term use in hyperglycemic alpacas because of its extended duration of action. A CGM is useful in monitoring glucose trends and reducing blood collection events, but it should not be the sole method for determining treatment protocols. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  14. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma.

    PubMed

    Green, Benjamin J; Wiriyachaiporn, Surasa; Grainge, Christopher; Rogers, Geraint B; Kehagia, Valia; Lau, Laurie; Carroll, Mary P; Bruce, Kenneth D; Howarth, Peter H

    2014-01-01

    Molecular microbiological analysis of airway samples in asthma has demonstrated an altered microbiome in comparison to healthy controls. Such changes may have relevance to treatment-resistant severe asthma, particularly those with neutrophilic airway inflammation, as bacteria might be anticipated to activate the innate immune response, a process that is poorly steroid responsive. An understanding of the relationship between airway bacterial presence and dominance in severe asthma may help direct alternative treatment approaches. We aimed to use a culture independent analysis strategy to describe the presence, dominance and abundance of bacterial taxa in induced sputum from treatment resistant severe asthmatics and correlate findings with clinical characteristics and airway inflammatory markers. Induced sputum was obtained from 28 stable treatment-resistant severe asthmatics. The samples were divided for supernatant IL-8 measurement, cytospin preparation for differential cell count and Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling for bacterial community analysis. In 17/28 patients, the dominant species within the airway bacterial community was Moraxella catarrhalis or a member of the Haemophilus or Streptococcus genera. Colonisation with these species was associated with longer asthma disease duration (mean (SD) 31.8 years (16.7) vs 15.6 years (8.0), p = 0.008), worse post-bronchodilator percent predicted FEV1 (68.0% (24.0) vs 85.5% (19.7), p = 0.025) and higher sputum neutrophil differential cell counts (median (IQR) 80% (67-83) vs 43% (29-67), p = 0.001). Total abundance of these organisms significantly and positively correlated with sputum IL-8 concentration and neutrophil count. Airway colonisation with potentially pathogenic micro-organisms in asthma is associated with more severe airways obstruction and neutrophilic airway inflammation. This altered colonisation may have a role in the development of an asthma phenotype that

  15. Foetal airway motor tone in prenatal lung development of the pig.

    PubMed

    Sparrow, M P; Warwick, S P; Mitchell, H W

    1994-08-01

    The terminal airways from embryonic lung in situ or as explants exhibit rhythmic spontaneous contractions. Our objective was to see whether narrowing responses of the airways occurred throughout the bronchial tree in the first trimester foetus and, if so, to characterize them. The bronchial tree was freed of vasculature and parenchyma from the lungs of 20-35 g pig foetuses (44-48 days gestation). The airway lumen was visualized directly with transmitted light, and narrowing was recorded in real time by video-imaging microscopy. From the main stem bronchi to the terminal regions of late generation branches (20-35 microns i.d.) strong bronchoconstrictor responses to micromolar concentrations of acetylcholine (ACh), histamine, substance P and K+ depolarizing solution were seen, whilst inhibition of narrowing with beta-adrenoceptor agonists was evidence of beta-receptors on the smooth muscle. Moreover, strong narrowing responses to electrical field stimulation, which were blocked by atropine, indicated that functional cholinergic nerves were present. A remarkable display of spontaneous narrowing in the airways of many of the bronchial tree preparations caused the movement of lung liquid to and fro. We speculate that the bronchomotor tone and associated spontaneous activity, which move the lung fluid along the airways, serve to maintain an even positive pressure in localized areas of the bronchial tree which is essential to provide the stimulus for continued growth of the lung.

  16. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices.

    PubMed

    Mair, B; Drillich, M; Klein-Jöbstl, D; Kanz, P; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2016-02-24

    Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood sampling techniques have been introduced in which small amounts of blood are rapidly analysed using electronic hand-held devices. The objective of this study was to evaluate the suitability of capillary blood for blood glucose measurement in dairy cows using the hand-held devices FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini) and the WellionVet GLUCO CALEA, (WGC, MED TRUST). In total, 240 capillary blood samples were obtained from dry and fresh lactating Holstein-Friesian cows. Blood was collected from the skin of the exterior vulva by using a lancet. For method comparison, additional blood samples were taken from a coccygeal vessel and analyzed in a laboratory. Glucose concentrations measured by a standard laboratory method were defined as the criterion standard. The Pearson correlation coefficients between the glucose concentrations analyzed in capillary blood with the devices and the reference were 73% for the FSP, 81% for the GLX and 41% for the WGC. Bland-Altman plots showed biases of -18.8 mg/dL for the FSP, -11.2 mg/dL for the GLX and +20.82 mg/dL for the WGC. The optimized threshold determined by a Receiver Operating Characteristics analysis to detect hyperglycemia using the FSP was 43 mg/dL with a sensitivity (Se) and specificity (Sp) of 76 and 80%. Using the GLX and WGC optimized thresholds were 49 mg/dL (Se = 92%, Sp = 85%) and 95 mg/dL (Se = 39%, Sp = 92%). The results of this study demonstrate good performance characteristics for the GLX

  17. Thresholds of whole-blood β-hydroxybutyrate and glucose concentrations measured with an electronic hand-held device to identify ovine hyperketonemia.

    PubMed

    Pichler, M; Damberger, A; Schwendenwein, I; Gasteiner, J; Drillich, M; Iwersen, M

    2014-03-01

    Metabolic disorders, especially hyperketonemia, are very common in dairy sheep. The whole-blood concentrations of β-hydroxybutyrate (BHBA) and glucose can be determined by commercially available electronic hand-held devices, which are used in human medicine and for the detection of ketosis in dairy cows. The aim of this study was to evaluate the suitability of the hand-held device Precision Xceed (PX; Abbott Diabetes Care Inc., Abbott Park, IL) to detect hyperketonemia in ewes. An additional objective of this study was to evaluate the agreement between samples obtained by minimal invasive venipuncture of an ear vein and measurements of whole-blood samples from the jugular vein (vena jugularis, v. jug.). Blood samples taken from the v. jug. were collected from 358 ewes on 4 different farms. These samples and a blood drop obtained from an ear vein were analyzed simultaneously on farm with the PX. For method comparison, the samples obtained from the v. jug. were also analyzed by standard methods, which served as the gold standard at the Central Laboratory of the University of Veterinary Medicine Vienna, Austria. The correlation coefficients between the serum BHBA concentration and the concentrations measured with the hand-held meter in the whole blood from an ear vein and the v. jug. were 0.94 and 0.96, respectively. The correlation coefficients of plasma and whole-blood glucose concentration were 0.68 for the v. jug. and 0.47 for the ear vein. The mean glucose concentration was significantly lower in animals classified as hyperketonemic (BHBA ≥ 1.6 mmol/L) compared with healthy ewes. Whole-blood concentrations of BHBA and glucose measured with the PX from v. jug. showed a constant negative bias of 0.15 mmol/L and 8.4 mg/dL, respectively. Hence, a receiver operating characteristic analysis was performed to determine thresholds for the PX to detect hyperketonemia in ewes. This resulted in thresholds for moderate ketosis of BHBA concentrations of 0.7 mmol/L in blood

  18. Interleukin-1beta-induced airway hyperresponsiveness enhances substance P in intrinsic neurons of ferret airway.

    PubMed

    Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D

    2002-11-01

    Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.

  19. Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring.

    PubMed

    Badugu, Ramachandram; Reece, Edward Albert; Lakowicz, Joseph R

    2018-05-01

    Accurate and reliable monitoring of blood glucose is needed for the treatment of diabetes, which has many challenges, including lack of patient compliance. Measuring tear glucose is an alternative to traditional finger-stick tests used to track blood sugar levels, but glucose sensing using tears has yet to be achieved. We report a methodology for possible tear glucose monitoring using glucose-sensitive silicone hydrogel (SiHG) contact lenses, the primary type of lenses available in today's market. Initially, we assessed the interpenetrating polymer network, with nearly pure silicone and water regions, existing in the SiHGs using a polarity-sensitive probe Prodan. We then synthesized a glucose-sensitive fluorophore Quin-C18 with a hydrophobic side chain for localization of probe at the interfacial region. Using our glucose-sensing contact lens, we were able to measure varying concentrations of glucose in an in-vitro system. The Quin-C18 strongly bound to the lenses with insignificant leaching even after multiple rinses. The lenses displayed a similar response to glucose after three months of storage in water. This study demonstrates that it may be possible to develop a contact lens for continuous glucose monitoring in the near term, using our concept of fluorophore binding at the silicone-water interface. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Neurokinin-neurotrophin interactions in airway smooth muscle

    PubMed Central

    Meuchel, Lucas W.; Stewart, Alecia; Smelter, Dan F.; Abcejo, Amard J.; Thompson, Michael A.; Zaidi, Syed I. A.; Martin, Richard J.

    2011-01-01

    Neurally derived tachykinins such as substance P (SP) play a key role in modulating airway contractility (especially with inflammation). Separately, the neurotrophin brain-derived neurotrophic factor (BDNF; potentially derived from nerves as well as airway smooth muscle; ASM) and its tropomyosin-related kinase receptor, TrkB, are involved in enhanced airway contractility. In this study, we hypothesized that neurokinins and neurotrophins are linked in enhancing intracellular Ca2+ concentration ([Ca2+]i) regulation in ASM. In rat ASM cells, 24 h exposure to 10 nM SP significantly increased BDNF and TrkB expression (P < 0.05). Furthermore, [Ca2+]i responses to 1 μM ACh as well as BDNF (30 min) effects on [Ca2+]i regulation were enhanced by prior SP exposure, largely via increased Ca2+ influx (P < 0.05). The enhancing effect of SP on BDNF signaling was blunted by the neurokinin-2 receptor antagonist MEN-10376 (1 μM, P < 0.05) to a greater extent than the neurokinin-1 receptor antagonist RP-67580 (5 nM). Chelation of extracellular BDNF (chimeric TrkB-Fc; 1 μg/ml), as well as tyrosine kinase inhibition (100 nM K252a), substantially blunted SP effects (P < 0.05). Overnight (24 h) exposure of ASM cells to 50% oxygen increased BDNF and TrkB expression and potentiated both SP- and BDNF-induced enhancement of [Ca2+]i (P < 0.05). These results suggest a novel interaction between SP and BDNF in regulating agonist-induced [Ca2+]i regulation in ASM. The autocrine mechanism we present here represents a new area in the development of bronchoconstrictive reflex response and airway hyperreactive disorders. PMID:21515660

  1. Airway Obstruction Due to Bronchial Vascular Injury after Sulfur Mustard Analog Inhalation

    PubMed Central

    Veress, Livia A.; O'Neill, Heidi C.; Hendry-Hofer, Tara B.; Loader, Joan E.; Rancourt, Raymond C.; White, Carl W.

    2010-01-01

    Rationale: Sulfur mustard (SM) is a frequently used chemical warfare agent, even in modern history. SM inhalation causes significant respiratory tract injury, with early complications due to airway obstructive bronchial casts, akin to those seen after smoke inhalation and in single-ventricle physiology. This process with SM is poorly understood because animal models are unavailable. Objectives: To develop a rat inhalation model for airway obstruction with the SM analog 2-chloroethyl ethyl sulfide (CEES), and to investigate the pathogenesis of bronchial cast formation. Methods: Adult rats were exposed to 0, 5, or 7.5% CEES in ethanol via nose-only aerosol inhalation (15 min). Airway microdissection and confocal microscopy were used to assess cast formation (4 and 18 h after exposure). Bronchoalveolar lavage fluid (BALF) retrieval and intravascular dye injection were done to evaluate vascular permeability. Measurements and Main Results: Bronchial casts, composed of abundant fibrin and lacking mucus, occluded dependent lobar bronchi within 18 hours of CEES exposure. BALF contained elevated concentrations of IgM, protein, and fibrin. Accumulation of fibrin-rich fluid in peribronchovascular regions (4 h) preceded cast formation. Monastral blue dye leakage identified bronchial vessels as the site of leakage. Conclusions: After CEES inhalation, increased permeability from damaged bronchial vessels underlying damaged airway epithelium leads to the appearance of plasma proteins in both peribronchovascular regions and BALF. The subsequent formation of fibrin-rich casts within the airways then leads to airways obstruction, causing significant morbidity and mortality acutely after exposure. PMID:20639443

  2. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-10-30

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.

  3. THE EFFECTS OF VARIATIONS IN THE CONCENTRATION OF OXYGEN AND OF GLUCOSE ON DARK ADAPTATION

    PubMed Central

    McFarland, R. A.; Forbes, W. H.

    1940-01-01

    In this study we have analyzed the effects of variations in the concentrations of oxygen and of blood sugar on light sensitivity; i.e. dark adaptation. The experiments were carried out in an air-conditioned light-proof chamber where the concentrations of oxygen could be changed by dilution with nitrogen or by inhaling oxygen from a cylinder. The blood sugar was lowered by the injection of insulin and raised by the ingestion of glucose. The dark adaptation curves were plotted from data secured with an apparatus built according to specifications outlined by Hecht and Shlaer. During each experiment, observations were first made in normal air with the subject under basal conditions followed by one, and in most instances two, periods under the desired experimental conditions involving either anoxia or hyper- or hypoglycemia or variations in both the oxygen tension and blood sugar at the same time. 1. Dark adaptation curves were plotted (threshold against time) in normal air and compared with those obtained while inhaling lowered concentrations of oxygen. A decrease in sensitivity was observed with lowered oxygen tensions. Both the rod and cone portions of the curves were influenced in a similar way. These effects were counteracted by inhaling oxygen, the final rod thresholds returning to about the level of the normal base line in air or even below it within 2 to 3 minutes. The impairment was greatest for those with a poorer tolerance for low O2. Both the inter- and intra-individual variability in thresholds increased significantly at the highest altitude. 2. In a second series of tests control curves were obtained in normal air. Then while each subject remained dark adapted, the concentrations of oxygen were gradually decreased. The regeneration of visual purple was apparently complete during the 40 minutes of dark adaptation, yet in each case the thresholds continued to rise in direct proportion to the degree of anoxia. The inhalation of oxygen from a cylinder quickly

  4. A 'Good' muscle in a 'Bad' environment: the importance of airway smooth muscle force adaptation to airway hyperresponsiveness.

    PubMed

    Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M

    2011-12-15

    Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Mechanotransduction, asthma, and airway smooth muscle

    PubMed Central

    Fabry, Ben; Fredberg, Jeffrey J.

    2008-01-01

    Excessive force generation by airway smooth muscle is the main culprit in excessive airway narrowing during an asthma attack. The maximum force the airway smooth muscle can generate is exquisitely sensitive to muscle length fluctuations during breathing, and is governed by complex mechanotransduction events that can best be studied by a hybrid approach in which the airway wall is modeled in silico so as to set a dynamic muscle load comparable to that experienced in vivo. PMID:18836522

  6. Cardiovascular causes of airway compression.

    PubMed

    Kussman, Barry D; Geva, Tal; McGowan, Francis X

    2004-01-01

    Compression of the paediatric airway is a relatively common and often unrecognized complication of congenital cardiac and aortic arch anomalies. Airway obstruction may be the result of an anomalous relationship between the tracheobronchial tree and vascular structures (producing a vascular ring) or the result of extrinsic compression caused by dilated pulmonary arteries, left atrial enlargement, massive cardiomegaly, or intraluminal bronchial obstruction. A high index of suspicion of mechanical airway compression should be maintained in infants and children with recurrent respiratory difficulties, stridor, wheezing, dysphagia, or apnoea unexplained by other causes. Prompt diagnosis is required to avoid death and minimize airway damage. In addition to plain chest radiography and echocardiography, diagnostic investigations may consist of barium oesophagography, magnetic resonance imaging (MRI), computed tomography, cardiac catheterization and bronchoscopy. The most important recent advance is MRI, which can produce high quality three-dimensional reconstruction of all anatomic elements allowing for precise anatomic delineation and improved surgical planning. Anaesthetic technique will depend on the type of vascular ring and the presence of any congenital heart disease or intrinsic lesions of the tracheobronchial tree. Vascular rings may be repaired through a conventional posterolateral thoracotomy, or utilizing video-assisted thoracoscopic surgery (VATS) or robotic endoscopic surgery. Persistent airway obstruction following surgical repair may be due to residual compression, secondary airway wall instability (malacia), or intrinsic lesions of the airway. Simultaneous repair of cardiac defects and vascular tracheobronchial compression carries a higher risk of morbidity and mortality.

  7. Identification of essential genes of Pseudomonas aeruginosa for its growth in airway mucus.

    PubMed

    Alrahman, Mohammed Abd; Yoon, Sang Sun

    2017-01-01

    Pseudomonas aeruginosa has been identified as an important causative agent of airway infection, mainly in cystic fibrosis. This disease is characterized by defective mucociliary clearance induced in part by mucus hyper-production. Mucin is a major component of airway mucus and is heavily O-glycosylated, with a protein backbone. Airway infection is known to be established with bacterial adhesion to mucin. However, the genes involved in mucin degradation or utilization remain elusive. In this study, we sought to provide a genetic basis of P. aeruginosa airway growth by identifying those genes. First, using RNASeq analyses, we compared genome-wide expression profiles of PAO1, a prototype P. aeruginosa laboratory strain, grown in M9-mucin (M9M) and M9-glucose (M9G) media. Additionally, a PAO1 transposon (Tn) insertion mutants library was screened for mutants defective in growth in M9M medium. One mutant with a Tn insertion in the xcpU gene (PA3100) was determined to exhibit faulty growth in M9M medium. This gene contributes to the type II secretion system, suggesting that P. aeruginosa uses this secretion system to produce a number of proteins to break down and assimilate the mucin molecule. Furthermore, we screened the PAO1 genome for genes with protease activity. Of 13 mutants, one with mutation in PA3247 gene exhibited defective growth in M9M, suggesting that the PA3247-encoded protease plays a role in mucin utilization. Further mechanistic dissection of this particular process will reveal new drug targets, the inhibition of which could control recalcitrant P. aeruginosa infections.

  8. Time-dependent Mechanisms in Beta-cell Glucose Sensing

    PubMed Central

    Vagn Korsgaard, Thomas

    2006-01-01

    The relation between plasma glucose and insulin release from pancreatic beta-cells is not stationary in the sense that a given glucose concentration leads to a specific rate of insulin secretion. A number of time-dependent mechanisms appear to exist that modify insulin release both on a short and a longer time scale. Typically, two phases are described. The first phase, lasting up to 10 min, is a pulse of insulin release in response to fast changes in glucose concentration. The second phase is a more steady increase of insulin release over minutes to hours, if the elevated glucose concentration is sustained. The paper describes the glucose sensing mechanism via the complex dynamics of the key enzyme glucokinase, which controls the first step in glucose metabolism: phosphorylation of glucose to glucose-6-phosphate. Three time-dependent phenomena (mechanisms) are described. The fastest, corresponding to the first phase, is a delayed negative feedback regulating the glucokinase activity. Due to the delay, a rapid glucose increase will cause a burst of activity in the glucose sensing system, before the glucokinase is down-regulated. The second mechanism corresponds to the translocation of glucokinase from an inactive to an active form. As the translocation is controlled by the product(s) of the glucokinase reaction rather than by the substrate glucose, this mechanism gives a positive, but saturable, feedback. Finally, the release of the insulin granules is assumed to be enhanced by previous glucose exposure, giving a so-called glucose memory to the beta-cells. The effect depends on the insulin release of the cells, and this mechanism constitutes a second positive, saturable feedback system. Taken together, the three phenomena describe most of the glucose sensing behaviour of the beta-cells. The results indicate that the insulin release is not a precise function of the plasma glucose concentration. It rather looks as if the beta-cells just increase the insulin

  9. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper airway...

  10. Awake Craniotomy: A New Airway Approach.

    PubMed

    Sivasankar, Chitra; Schlichter, Rolf A; Baranov, Dimitry; Kofke, W Andrew

    2016-02-01

    Awake craniotomies have been performed regularly at the University of Pennsylvania since 2004. Varying approaches to airway management are described for this procedure, including intubation with an endotracheal tube and use of a laryngeal mask airway, simple facemask, or nasal cannula. In this case series, we describe the successful use (i.e., no need for endotracheal intubation related to inadequate gas exchange) of bilateral nasopharyngeal airways in 90 patients undergoing awake craniotomies. The use of nasopharyngeal airways can ease the transition between the asleep and awake phases of the craniotomy without the need to stimulate the airway. Our purpose was to describe our experience and report adverse events related to this technique.

  11. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis.

    PubMed

    Evans, Rebecca A; Frese, Michael; Romero, Julio; Cunningham, Judy H; Mills, Kerry E

    2017-08-01

    Background: Conflicting evidence exists on the effects of fructose consumption in people with type 1 and type 2 diabetes mellitus. No systematic review has addressed the effect of isoenergetic fructose replacement of glucose or sucrose on peak postprandial glucose, insulin, and triglyceride concentrations. Objective: The objective of this study was to review the evidence for postprandial glycemic and insulinemic responses after isoenergetic replacement of either glucose or sucrose in foods or beverages with fructose. Design: We searched the Cochrane Library, MEDLINE, EMBASE, the WHO International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov The date of the last search was 26 April 2016. We included randomized controlled trials measuring peak postprandial glycemia after isoenergetic replacement of glucose, sucrose, or both with fructose in healthy adults or children with or without diabetes. The main outcomes analyzed were peak postprandial blood glucose, insulin, and triglyceride concentrations. Results: Replacement of either glucose or sucrose by fructose resulted in significantly lowered peak postprandial blood glucose, particularly in people with prediabetes and type 1 and type 2 diabetes. Similar results were obtained for insulin. Peak postprandial blood triglyceride concentrations did not significantly increase. Conclusions: Strong evidence exists that substituting fructose for glucose or sucrose in food or beverages lowers peak postprandial blood glucose and insulin concentrations. Isoenergetic replacement does not result in a substantial increase in blood triglyceride concentrations. © 2017 American Society for Nutrition.

  12. Airway structure and function in Eisenmenger's syndrome.

    PubMed

    McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L

    1998-10-01

    The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.

  13. The utility of blood glucose meters in biotechnological applications.

    PubMed

    FitzGerald, Jennifer; Vermerris, Wilfred

    2005-06-01

    Most methods used to measure glucose concentrations in biotechnological settings are labour-intensive and/or expensive. With this in mind we have investigated the possibility of employing blood glucose meters, the use of which has the benefit of being fast, convenient and inexpensive, for this purpose. Accu-Chek Advantage (Roche Diagnostics, Indianapolis, IN, U.S.A.) and Precision QID (Medisense, Abbott Laboratories, Indianapolis, IN, U.S.A.) meters were tested using glucose samples of known concentration, at pH 7.5 and 4.8. The Accu-Chek Advantage meter uses strips containing the enzyme glucose dehydrogenase. This meter showed a linear response for glucose concentrations between 0.50 and 6.0 g/litre, and the effect of pH was small. The Precision QID meter uses strips containing the enzyme glucose oxidase and is more sensitive to pH. The displayed glucose concentrations at low pH values were consistently lower than at higher pH values. At both pH values the response curve reached a plateau, which limited the effective range of this meter to a range of 0.30-2.5 g/litre. Unlike the Precision QID meter, the Accu-Chek Advantage meter also responded to xylose and arabinose. A synergistic effect of combining sugars was observed when a mixture of sugars consisting of glucose and arabinose, or glucose and xylose, was applied: the displayed concentrations were consistently higher than was expected on the basis of the individual calibration curves. The use of glucose meters is a fast and convenient alternative to existing methods and may be of particular use for screening purposes where a high degree of accuracy is not crucial. The choice of meter should depend on the application, and in this respect the pH, expected concentration range and the presence of other sugars are among the factors that should be considered.

  14. A meta-analysis of prehospital airway control techniques part II: alternative airway devices and cricothyrotomy success rates.

    PubMed

    Hubble, Michael W; Wilfong, Denise A; Brown, Lawrence H; Hertelendy, Attila; Benner, Randall W

    2010-01-01

    Airway management is a key component of prehospital care for seriously ill and injured patients. Oral endotracheal intubation (OETI) is the definitive airway of choice in most emergency medical services (EMS) systems. However, OETI may not be an approved skill for some clinicians or may prove problematic in certain patients because of anatomic abnormalities, trauma, or inadequate relaxation. In these situations alternative airways are frequently employed. However, the reported success rates for these devices vary widely, and established benchmarks are lacking. We sought to determine pooled estimates of the success rates of alternative airway devices (AADs) and needle cricothyrotomy (NCRIC) and surgical cricothyrotomy (SCRIC) placement through a meta-analysis of the literature. We performed a systematic literature search for all English-language articles reporting success rates for AADs, SCRIC, and NCRIC. Studies of field procedures performed by prehospital personnel from any nation were included. All titles were reviewed independently by two authors using prespecified inclusion criteria. Pooled estimates of success rates for each airway technique were calculated using a random-effects meta-analysis model. Of 2,005 prehospital airway titles identified, 35 unique studies were retained for analysis of AAD success rates, encompassing a total of 10,172 prehospital patients. The success rates for SCRIC and NCRIC were analyzed across an additional 21 studies totaling 512 patients. The pooled estimates (and 95% confidence intervals [CIs]) for intervention success across all clinicians and patients were as follows: esophageal obturator airway-esophageal gastric tube airway (EOA-EGTA) 92.6% (90.1%-94.5%); pharyngeotracheal lumen airway (PTLA) 82.1% (74.0%-88.0%); esophageal-tracheal Combitube (ETC) 85.4% (77.3%-91.0%); laryngeal mask airway (LMA) 87.4% (79.0%-92.8%); King Laryngeal Tube airway (King LT) 96.5% (71.2%-99.7%); NCRIC 65.8% (42.3%-83.59%); and SCRIC 90.5% (84

  15. Glucose-lowering effect of BTS 67 582.

    PubMed

    Page, T; Bailey, C J

    1997-12-01

    1. The hypoglycaemic effect of BTS 67 582 (1,1-dimethyl-2(2-morpholinophenyl) guanidine fumarate) was studied in normal rats. 2. BTS 67 582 (100 mg kg(-1), p.o.) acutely lowered basal plasma glucose concentrations: onset within 1 h, maximum decrease of >40% at 2-3 h, and partial return to euglycaemia by 5 h. Plasma insulin concentrations were increased: onset within 30 min, maximum increase 3 fold at 1-2 h; returning to normal by 5 h. 3. BTS 67 582 (100 mg kg(-1)) increased (by 56%) the rate of disappearance of plasma glucose during an intravenous glucose tolerance test, accompanied by a 51% increase in insulin concentrations. 4. During hyperglycaemic clamp studies BTS 67 582 (100 mg kg(-1)) increased glucose utilization 3 fold. This was associated with a 3 fold increase in insulin concentrations, even in the presence of adrenaline at a dosage which inhibits glucose-induced insulin release. 5. When the insulin-releasing effect of BTS 67 582 (100 mg kg(-1)) was inhibited by infusion of somatostatin, there was no effect on glycaemia. 6. Insulin-dependent diabetic BB/S rats, which do not produce endogenous insulin, showed no effect of BTS 67 582 (100 mg kg(-1)) on plasma glucose concentrations in the presence or absence of exogenous insulin. 7. The results demonstrate an acute hypoglycaemic effect of BTS 67 582 which appears to result mainly from its potent insulin-releasing action.

  16. Modification of beta-cell response to different postprandial blood glucose concentrations by prandial repaglinide and combined acarbose/repaglinide application.

    PubMed

    Rosak, C; Hofmann, U; Paulwitz, O

    2004-06-01

    This study was designed to compare the effects of repaglinide plus acarbose combination treatment to repaglinide alone on postprandial glucose, serum insulin, C-peptide and proinsulin concentrations. A total of 40 patients with Type 2 diabetes (T2DM) (fasting blood glucose: 120-180 mg/dl; postprandial blood glucose: 140-240 mg/dl) were included in this single-centre, controlled, randomised, single-dose, cross-over study. On two consecutive days, patients either received 2 mg repaglinide 15 min before breakfast followed by 100 mg acarbose with breakfast or repaglinide alone. Two fasting (7.30 h, 8.00 h) and five postprandial blood samples (from 8.30 h to 12.00 h) were taken for blood glucose, serum insulin, C-peptide and proinsulin determination. Repaglinide plus acarbose treatment significantly reduced the mean increase in postprandial blood glucose levels (24.2+/-18.2 mg/dl) compared to repaglinide alone (51.1+/-29.0 mg/dl; p<0.001). Serum insulin, C-peptide and proinsulin levels [mean area under the curve (AUC7.30-12.00h)] were significantly lower than those observed with repaglinide monotherapy (e.g. insulin: 1089.2+/-604.5 hr x pmol/l and 1596.8+/-1080.6 hr x pmol/l, resp., p<0.001), suggesting that acarbose modifies the rapid insulin release induced by repaglinide. Prandial treatment with a combination of acarbose and repaglinide results in an additive glucose lowering effect and modified insulin secretion compared to repaglinide alone. Postprandial hyperglycaemia is not abolished by rapid stimulation of insulin release induced by repaglinide. Additional reduction of postprandial blood glucose by acarbose modifies the stimulation of insulin release.

  17. Coexistence of insulin resistance and increased glucose tolerance in pregnant rats: a physiological mechanism for glucose maintenance.

    PubMed

    Carrara, Marcia Aparecida; Batista, Márcia Regina; Saruhashi, Tiago Ribeiro; Felisberto, Antonio Machado; Guilhermetti, Marcio; Bazotte, Roberto Barbosa

    2012-06-06

    The contribution of insulin resistance (IR) and glucose tolerance to the maintenance of blood glucose levels in non diabetic pregnant Wistar rats (PWR) was investigated. PWR were submitted to conventional insulin tolerance test (ITT) and glucose tolerance test (GTT) using blood sample collected 0, 10 and 60 min after intraperitoneal insulin (1 U/kg) or oral (gavage) glucose (1g/kg) administration. Moreover, ITT, GTT and the kinetics of glucose concentration changes in the fed and fasted states were evaluated with a real-time continuous glucose monitoring system (RT-CGMS) technique. Furthermore, the contribution of the liver glucose production was investigated. Conventional ITT and GTT at 0, 7, 14 and 20 days of pregnancy revealed increased IR and glucose tolerance after 20 days of pregnancy. Thus, this period of pregnancy was used to investigate the kinetics of glucose changes with the RT-CGMS technique. PWR (day 20) exhibited a lower (p<0.05) glucose concentration in the fed state. In addition, we observed IR and increased glucose tolerance in the fed state (PWR-day 20 vs. day 0). Furthermore, our data from glycogenolysis and gluconeogenesis suggested that the liver glucose production did not contribute to these changes in insulin sensitivity and/or glucose tolerance during late pregnancy. In contrast to the general view that IR is a pathological process associated with gestational diabetes, a certain degree of IR may represent an important physiological mechanism for blood glucose maintenance during fasting. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  19. Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol.

    PubMed

    Cancado, Jose E; Mendes, Eliana S; Arana, Johana; Horvath, Gabor; Monzon, Maria E; Salathe, Matthias; Wanner, Adam

    2015-04-02

    In vitro and animal experiments have shown that the transport and signaling of β2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic β2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (ΔQ̇aw) were assessed. Mean ± SE EBC pH (units) and ΔQ̇aw (μl.min(-1).mL(-1)) were 6.4 ± 0.1 and 16.8 ± 1.9 during quiet breathing, 6.3 ± 0.1 and 14.5 ± 2.4 during eucapnic hyperventilation, 6.6 ± 0.2 and -0.2 ± 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 ± 0.1 and 2.0 ± 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). Albuterol responsiveness in the airway as assessed by ΔQ̇aw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic β2-adrenergic agonists during airway disease exacerbations associated with changes in pH. Registered at clinicaltrials.gov: NCT01216748 .

  20. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    PubMed

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  1. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  2. Sequential Stenting for Extensive Malignant Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Tei, Keiko; Yamamoto, Ryoji

    2014-01-01

    Purpose: Malignant airway stenosis extending from the bronchial bifurcation to the lower lobar orifice was treated with airway stenting. We herein examine the effectiveness of airway stenting for extensive malignant airway stenosis. Methods: Twelve patients with extensive malignant airway stenosis underwent placement of a silicone Dumon Y stent (Novatech, La Ciotat, France) at the tracheal bifurcation and a metallic Spiral Z-stent (Medico’s Hirata, Osaka, Japan) at either distal side of the Y stent. We retrospectively analyzed the therapeutic efficacy of the sequential placement of these silicone and metallic stents in these 12 patients. Results: The primary disease was lung cancer in eight patients, breast cancer in two patients, tracheal cancer in one patient, and thyroid cancer in one patient. The median survival period after airway stent placement was 46 days. The Hugh–Jones classification and performance status improved in nine patients after airway stenting. One patient had prolonged hemoptysis and died of respiratory tract hemorrhage 15 days after the treatment. Conclusion: Because the initial disease was advanced and aggressive, the prognosis after sequential airway stent placement was significantly poor. However, because respiratory distress decreased after the treatment in most patients, this treatment may be acceptable for selected patients with extensive malignant airway stenosis. PMID:25273272

  3. Malignant central airway obstruction

    PubMed Central

    Mudambi, Lakshmi; Miller, Russell

    2017-01-01

    This review comprehensively describes recent advances in the management of malignant central airway obstruction (CAO). Malignant CAO can be a dramatic and devastating manifestation of primary lung cancer or metastatic disease. A variety of diagnostic modalities are available to provide valuable information to plan a therapeutic intervention. Clinical heterogeneity in the presentation of malignant CAO provides opportunities to adapt and utilize endoscopic technology and tools in many ways. Mechanical debulking, thermal tools, cryotherapy and airway stents are methods and instruments used to rapidly restore airway patency. Delayed bronchoscopic methods, such as photodynamic therapy (PDT) and brachytherapy can also be utilized in specific non-emergent situations to establish airway patency. Although data regarding the success and complications of therapeutic interventions are retrospective and characterized by clinical and outcome measure variability, the symptoms of malignant CAO can often be successfully palliated. Assessment of risks and benefits of interventions in each individual patient during the decision-making process forms the critical foundation of the management of malignant CAO. PMID:29214067

  4. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia.

  5. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control.

    PubMed

    Kotz, Kaylee; Cinar, Ali; Mei, Yong; Roggendorf, Amy; Littlejohn, Elizabeth; Quinn, Laurie; Rollins, Derrick K

    2014-11-26

    The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.

  6. Early pregnancy fasting plasma glucose and lipid concentrations in pregnancy and association to offspring size: a retrospective cohort study.

    PubMed

    Liu, Bin; Geng, Huizhen; Yang, Juan; Zhang, Ying; Deng, Langhui; Chen, Weiqing; Wang, Zilian

    2016-03-17

    Hyperlipidemia and high fasting plasma glucose levels at the first prenatal visit (First Visit FPG) are both related to gestational diabetes mellitus, maternal obesity/overweight and fetal overgrowth. The purpose of the present study is to investigate the correlation between First Visit FPG and lipid concentrations, and their potential association with offspring size at delivery. Pregnant women that received regular prenatal care and delivered in our center in 2013 were recruited for the study. Fasting plasma glucose levels were tested at the first prenatal visit (First Visit FPG) and prior to delivery (Before Delivery FPG). HbA1c and lipid profiles were examined at the time of OGTT test. Maternal and neonatal clinical data were collected for analysis. Data was analyzed by independent sample t test, Pearson correlation, and Chi-square test, followed by partial correlation and multiple linear regression analyses to confirm association. Statistical significance level was α =0.05. Analyses were based on 1546 mother-baby pairs. First Visit FPG was not correlated with any lipid parameters after adjusting for maternal pregravid BMI, maternal age and gestational age at First Visit FPG. HbA1c was positively correlated with triglyceride and Apolipoprotein B in the whole cohort and in the NGT group after adjusting for maternal age and maternal BMI at OGTT test. Multiple linear regression analyses showed neonatal birth weight, head circumference and shoulder circumference were all associated with First Visit FPG and triglyceride levels. Fasting plasma glucose at first prenatal visit is not associated with lipid concentrations in mid-pregnancy, but may influence fetal growth together with triglyceride concentration.

  7. Postnatal airway growth in cystic fibrosis piglets.

    PubMed

    Adam, Ryan J; Abou Alaiwa, Mahmoud H; Bouzek, Drake C; Cook, Daniel P; Gansemer, Nicholas D; Taft, Peter J; Powers, Linda S; Stroik, Mallory R; Hoegger, Mark J; McMenimen, James D; Hoffman, Eric A; Zabner, Joseph; Welsh, Michael J; Meyerholz, David K; Stoltz, David A

    2017-09-01

    Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis. NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis. Copyright © 2017 the American Physiological Society.

  8. The effect of high concentration potassium permanganate on protein contamination from metallic and synthetic rubber airway equipment.

    PubMed

    Laupu, W; Brimacombe, J

    2007-08-01

    We tested the hypothesis that supplementary cleaning using potassium permanganate 8 mg.l(-1) eliminates protein deposits from the reusable metallic and synthetic rubber airway equipment. Twenty Macintosh laryngoscope blades (surgical steel), 20 pairs of Magill's forceps (surgical steel) and 20 Guedel airways (synthetic rubber) were allocated to two groups for supplementary cleaning. In group A, the device was immersed in potassium permanganate 8 mg.l(-1). In group B (controls), the device was immersed in sterile water. The devices were then immersed in a protein staining solution, rinsed and the severity of staining was scored. In addition, the devices were inspected for tissue and then tested for occult blood. Protein contamination was lower in the potassium permanganate group for all devices (each device: p < 0.0001). There was no staining detected in the permanganate group. In the permanganate group, dried tissue was detected in the teeth of one pair of forceps, which was not detected following supplementary cleaning. Additionally, occult blood was detected on two pairs of forceps and a laryngoscope blade, which was not detected following supplementary cleaning. In the control group, no tissue was detected but one pair of forceps and two laryngoscope blades tested positive for occult blood before and after supplementary cleaning. We conclude that supplementary cleaning using potassium permanganate 8 mg.l(-1) eliminates protein deposits from re-usable metallic and synthetic rubber airway equipment.

  9. Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li

    2011-08-01

    The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.

  10. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.

    PubMed

    Tian, Lin; Shang, Yidan; Chen, Rui; Bai, Ru; Chen, Chunying; Inthavong, Kiao; Tu, Jiyuan

    2017-07-12

    Exposure to nanoparticles in the workplace is a health concern to occupational workers with increased risk of developing respiratory, cardiovascular, and neurological disorders. Based on animal inhalation study and human lung tumor risk extrapolation, current authoritative recommendations on exposure limits are either on total mass or number concentrations. Effects of particle size distribution and the implication to regional airway dosages are not elaborated. Real time production of particle concentration and size distribution in the range from 5.52 to 98.2 nm were recorded in a wire-cut electrical discharge machine shop (WEDM) during a typical working day. Under the realistic exposure condition, human inhalation simulations were performed in a physiologically realistic nasal and upper airway replica. The combined experimental and numerical study is the first to establish a realistic exposure condition, and under which, detailed dose metric studies can be performed. In addition to mass concentration guided exposure limit, inhalation risks to nano-pollutant were reexamined accounting for the actual particle size distribution and deposition statistics. Detailed dosimetries of the inhaled nano-pollutants in human nasal and upper airways with respect to particle number, mass and surface area were discussed, and empirical equations were developed. An astonishing enhancement of human airway dosages were detected by current combined experimental and numerical study in the WEDM machine shop. Up to 33 folds in mass, 27 folds in surface area and 8 folds in number dosages were detected during working hours in comparison to the background dosimetry measured at midnight. The real time particle concentration measurement showed substantial emission of nano-pollutants by WEDM machining activity, and the combined experimental and numerical study provided extraordinary details on human inhalation dosimetry. It was found out that human inhalation dosimetry was extremely sensitive

  11. New insights into urea and glucose handling by the kidney, and the urine concentrating mechanism.

    PubMed

    Bankir, Lise; Yang, Baoxue

    2012-06-01

    The mechanism by which urine is concentrated in the mammalian kidney remains incompletely understood. Urea is the dominant urinary osmole in most mammals and may be concentrated a 100-fold above its plasma level in humans and even more in rodents. Several facilitated urea transporters have been cloned. The phenotypes of mice with deletion of the transporters expressed in the kidney have challenged two previously well-accepted paradigms regarding urea and sodium handling in the renal medulla but have provided no alternative explanation for the accumulation of solutes that occurs in the inner medulla. In this review, we present evidence supporting the existence of an active urea secretion in the pars recta of the proximal tubule and explain how it changes our views regarding intrarenal urea handling and UT-A2 function. The transporter responsible for this secretion could be SGLT1, a sodium-glucose cotransporter that also transports urea. Glucagon may have a role in the regulation of this secretion. Further, we describe a possible transfer of osmotic energy from the outer to the inner medulla via an intrarenal Cori cycle converting glucose to lactate and back. Finally, we propose that an active urea transporter, expressed in the urothelium, may continuously reclaim urea that diffuses out of the ureter and bladder. These hypotheses are all based on published findings. They may not all be confirmed later on, but we hope they will stimulate further research in new directions.

  12. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolidemore » significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.« less

  13. Effect of hypothyroidism on insulin sensitivity and glucose tolerance in dogs.

    PubMed

    Hofer-Inteeworn, Natalie; Panciera, David L; Monroe, William E; Saker, Korinn E; Davies, Rebecca Hegstad; Refsal, Kent R; Kemnitz, Joseph W

    2012-04-01

    To determine the effects of hypothyroidism on insulin sensitivity, glucose tolerance, and concentrations of hormones counter-regulatory to insulin in dogs. 8 anestrous mixed-breed bitches with experimentally induced hypothyroidism and 8 euthyroid control dogs. The insulin-modified frequently sampled IV glucose tolerance test and minimal model analysis were used to determine basal plasma insulin and glucose concentrations, acute insulin response to glucose, insulin sensitivity, glucose effectiveness, and disposition index. Growth hormone response was assessed by stimulation and suppression tests. Additionally, basal serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1) concentrations and urine cortisol-to-creatinine concentration ratios were measured and dual energy x-ray absorptiometry was performed to evaluate body composition. Insulin sensitivity was lower in the hypothyroid group than in the euthyroid group, whereas acute insulin response to glucose was higher. Glucose effectiveness and disposition index were not different between groups. Basal serum GH and IGF-1 concentrations as well as abdominal fat content were high in hypothyroid dogs, but urine cortisol-to-creatinine concentration ratios were unchanged. Hypothyroidism appeared to negatively affect glucose homeostasis by inducing insulin resistance, but overall glucose tolerance was maintained by increased insulin secretion in hypothyroid dogs. Possible factors affecting insulin sensitivity are high serum GH and IGF-1 concentrations and an increase in abdominal fat. In dogs with diseases involving impaired insulin secretion such as diabetes mellitus, concurrent hypothyroidism can have important clinical implications.

  14. Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows.

    PubMed

    Vernay, M C M B; Wellnitz, O; Kreipe, L; van Dorland, H A; Bruckmaier, R M

    2012-05-01

    The metabolic load during periods of high milk production in dairy cows causes a variety of changes of metabolite blood concentrations including dramatically decreased glucose levels. These changes supposedly impair the immune system. The goal of this study was, therefore, to evaluate adaptations of the cow's immune system in response to an intramammary lipopolysaccharide (LPS) stimulation during a 3-d modification of plasma glucose and insulin induced by different clamp infusions. Seventeen midlactating dairy cows received a hypoglycemic hyperinsulinemic clamp induced by insulin infusion (HypoG; n=5), a euglycemic hyperinsulinemic clamp induced by insulin and glucose infusion (EuG; n=6), or infusion of saline solution (NaCl; n=6) for 56 h. At 48 h of infusion, 2 udder quarters were challenged with 200 μg of Escherichia coli LPS. At 48 h of infusion (immediately before LPS challenge), tumor necrosis factor α, lactoferrin, and serum amyloid A (SAA) mRNA abundance was increased in HypoG and Il-1β mRNA abundance was decreased in EuG. After LPS challenge, plasma glucose concentration did not decrease, although plasma insulin increased simultaneously in all groups either due to enhanced endogenous release (NaCl) or due to increased insulin infusion rate (HypoG; EuG). Plasma cortisol, rectal temperatures, and milk somatic cell count of challenged quarters increased, whereas plasma nonesterified fatty acid concentrations were similarly decreased across treatments. In mammary biopsies, increased mRNA expression of tumor necrosis factor α, IL-1β, IL-8, and IL-10, and SAA were observed in LPS-treated quarters of all groups, with a more pronounced increase in IL-1β, IL-10, and SAA expression in EuG. Nuclear factor-κB mRNA expression was upregulated in NaCl and EuG but not in HypoG in response to LPS. Lactoferrin, toll-like receptor 4, and cyclooxygenase-2 mRNA expression was increased in LPS-treated quarters of EuG only, and 5-lipoxygenase mRNA expression was decreased

  15. Associations between self-reported sleep duration and sleeping disorder with concentrations of fasting and 2-h glucose, insulin, and glycosylated hemoglobin among adults without diagnosed diabetes.

    PubMed

    Ford, Earl S; Wheaton, Anne G; Chapman, Daniel P; Li, Chaoyang; Perry, Geraldine S; Croft, Janet B

    2014-07-01

    There is limited information from population-based investigations of the associations between sleep duration and sleep disorders and parameters of glucose homeostasis. The objective of the present study was to examine cross-sectional associations between sleep duration and sleep disordered breathing with concentrations of insulin, fasting and 2-h glucose, and HbA1c. Data from 11 815 adults aged ≥20 years without diagnosed diabetes (5002 with an oral glucose tolerance test) from the National Health and Nutrition Examination Survey 2005-2010 were used. Information about sleep duration (2005-2010) and sleep apnea and sleep-disordered breathing (2005-2008) was obtained via questionnaire. An estimated 36.0% of participants reported sleeping ≤6 h/night, 62.0% reported sleeping 7-9 h/night, and 2.0% reported sleeping ≥10 h/night. In 2005-2008, 33.0% reported snoring ≥5 nights per week, 5.9% reported they snorted, gasped, or stopped breathing ≥5 nights/week, and 4.2% reported sleep apnea. Sleep duration was significantly associated with fasting concentrations of insulin and concentrations of HbA1c only in models that did not adjust for body mass index (BMI). Concentrations of fasting and 2-h glucose were significantly associated with sleep duration in models that adjusted only for age. Snoring frequency was positively associated with concentrations of insulin and HbA1c. Frequency of snorting or stopping breathing and sleep apnea status were associated with concentrations of insulin and of HbA1c only when BMI was not accounted for. In a representative sample of US adults, concentrations of insulin and HbA1c were significantly associated with short sleep duration, possibly mediated by BMI. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. Phosphoinositide 3-kinase gamma regulates airway smooth muscle contraction by modulating calcium oscillations.

    PubMed

    Jiang, Haihong; Abel, Peter W; Toews, Myron L; Deng, Caishu; Casale, Thomas B; Xie, Yan; Tu, Yaping

    2010-09-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kgamma can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kgamma protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kgamma inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 muM. In contrast, inhibitors of PI3Kalpha, PI3Kbeta, or PI3Kdelta, at concentrations 40-fold higher than their reported IC(50) values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kgamma inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kgamma-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca(2+) transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca(2+) oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kgamma directly controls contractility of airways through regulation of Ca(2+) oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kgamma inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness.

  17. Phosphoinositide 3-Kinase γ Regulates Airway Smooth Muscle Contraction by Modulating Calcium Oscillations

    PubMed Central

    Jiang, Haihong; Abel, Peter W.; Toews, Myron L.; Deng, Caishu; Casale, Thomas B.; Xie, Yan

    2010-01-01

    Phosphoinositide 3-kinase γ (PI3Kγ) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kγ can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kγ protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kγ inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 μM. In contrast, inhibitors of PI3Kα, PI3Kβ, or PI3Kδ, at concentrations 40-fold higher than their reported IC50 values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kγ inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kγ-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca2+ transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca2+ oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kγ directly controls contractility of airways through regulation of Ca2+ oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kγ inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness. PMID:20501633

  18. Evaluation of Different Disinfectants on the Performance of an On-Meter Dosed Amperometric Glucose-Oxidase-Based Glucose Meter

    PubMed Central

    Sarmaga, Don; DuBois, Jeffrey A; Lyon, Martha E

    2011-01-01

    Background Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. Method The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). Results No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). Conclusion The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. PMID:22226263

  19. Evaluation of different disinfectants on the performance of an on-meter dosed amperometric glucose-oxidase-based glucose meter.

    PubMed

    Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E

    2011-11-01

    Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.

  20. Prospective Study of Fasting Blood Glucose and Intracerebral Hemorrhagic Risk.

    PubMed

    Jin, Cheng; Li, Guohong; Rexrode, Kathryn M; Gurol, Mahmut E; Yuan, Xiaodong; Hui, Ying; Ruan, Chunyu; Vaidya, Anand; Wang, Yanxiu; Wu, Shouling; Gao, Xiang

    2018-01-01

    Although diabetes mellitus is an established independent risk factor for ischemic stroke, the association between fasting blood glucose and intracerebral hemorrhage (ICH) is limited and inconsistent. The objective of the current study was to examine the potential impact of long-term fasting blood glucose concentration on subsequent risk of ICH. This prospective study included 96 110 participants of the Kailuan study, living in Kailuan community, Tangshan city, China, who were free of cardiovascular diseases and cancer at baseline (2006). Fasting blood glucose concentration was measured in 2006, 2008, 2010, and 2012. Updated cumulative average fasting blood glucose concentration was used as primary exposure of the current study. Incident ICH from 2006 to 2015 was confirmed by review of medical records. During 817 531 person-years of follow-up, we identified 755 incident ICH cases. The nadir risk of ICH was observed at fasting blood glucose concentration of 5.3 mmol/L. The adjusted hazard ratios and their 95% confidence intervals (CIs) of ICH were 1.59 (95% CI, 1.26-2.02) for diabetes mellitus or fasting blood glucose ≥7.00 mmol/L, 1.31 (95% CI, 1.02-1.69) for impaired fasting blood glucose (fasting blood glucose, 6.10-6.99 mmol/L), 0.98 (95% CI, 0.78-1.22) for fasting blood glucose 5.60 to 6.09 mmol/L, and 2.04 (95% CI, 1.23-3.38) for hypoglycemia (fasting blood glucose, <4.00 mmol/L), comparing with normal fasting blood glucose 4.00 to 5.59 mmol/L. The results persisted after excluding individuals who used hypoglycemic, aspirin, antihypertensive agents, or anticoagulants, and those with intracerebral hemorrhagic cases occurred in the first 2 years of follow-up. In this large community-based cohort, low (<4.0 mmol/L) and high (≥6.1 mmol/L) fasting blood glucose concentrations were associated with higher risk of incident ICH, relative to fasting blood glucose concentrations of 4.00 to 6.09 mmol/L. © 2017 American Heart Association, Inc.

  1. Transcutaneous blood glucose monitoring system based on an ISFET glucose sensor and studies on diabetic patients.

    PubMed

    Ito, N; Saito, A; Kayashima, S; Kimura, J; Kuriyama, T; Nagata, N; Arai, T; Kikuchi, M

    1995-01-01

    A transcutaneous blood glucose monitoring system consists of an ion-sensitive field-effect transistor (ISFET) glucose sensor unit and a suction effusion fluid (SEF) collecting unit. The SEF is directly collected by a weak suction (400 mmHg absolute pressure) through the skin from which the corneum layer of the epidermis has been previously removed. An ISFET glucose sensor unit is able to measure glucose concentrations in a microliter order sampling volume. The system was applied to three diabetic patients during a 75 g oral glucose tolerance test for monitoring blood glucose levels. During the experiments, glucose changes in the SEF followed actual blood glucose levels with 10 min delays. Results suggest the feasibility of utilizing quasi-continuous, transcutaneous blood glucose monitoring for individual patients with various diabetic histories or diabetic complications.

  2. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  3. The Development and Application of Airway Devices in China

    PubMed Central

    Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong

    2017-01-01

    Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485

  4. High Glucose Concentrations Suppress the Proliferation of Human Periodontal Ligament Stem Cells and Their Differentiation Into Osteoblasts.

    PubMed

    Kato, Hirohito; Taguchi, Yoichiro; Tominaga, Kazuya; Kimura, Daisuke; Yamawaki, Isao; Noguchi, Masahiro; Yamauchi, Nobuhiro; Tamura, Isao; Tanaka, Akio; Umeda, Makoto

    2016-04-01

    Diabetes mellitus (DM) is a major risk factor for periodontal disease and affects various cellular functions. Periodontal ligament stem cells (PDLSCs) play an important role in periodontal tissue regeneration; however, the effect of hyperglycemia on PDLSCs is unclear. The aim of this study is to investigate whether hyperglycemia affects periodontal tissue regeneration, using human PDLSCs and high-glucose medium as a model of DM. PDLSCs were obtained from healthy adult human mandibular third molars. Cell proliferation, osteoblastic differentiation, and proinflammatory cytokine expression were investigated by culturing PDLSCs in media supplemented with four different glucose concentrations representative of control patients (5.5 mM), patients with postprandial or controlled DM (8.0 mM), and patients with uncontrolled DM (12.0 and 24.0 mM). The molecular effects of hyperglycemia on PDLSC physiology were examined with a focus on the nuclear factor (NF)-(κB signaling pathway. The involvement of NF-κB was investigated with a specific NF-κB inhibitor in PDLSCs under hyperglycemic conditions. High glucose levels inhibited PDLSC proliferation and differentiation into osteoblasts but induced NF-κB activation and subsequent interleukin (IL)-6 and IL-8 expression. Treatment with an NF-κB inhibitor rescued the defects in cell proliferation and osteoblastic differentiation and inhibited the IL-6 expression caused by the high-glucose environment. The results of this study demonstrate that hyperglycemia inhibits human PDLSC proliferation and osteoblastic differentiation.

  5. Prenatal tolbutamide treatment alters plasma glucose and insulin concentrations and negatively affects the postnatal performance of chickens.

    PubMed

    Franssens, L; Lesuisse, J; Wang, Y; De Ketelaere, B; Willems, E; Koppenol, A; Guo, X; Buyse, J; Decuypere, E; Everaert, N

    2015-07-01

    To examine the relationship of insulin and glucose, broiler embryos were subjected to acute or prolonged hypoglycemia during the late embryonic phase by, respectively, injecting once (at embryonic day [ED] 16 or 17) or on 3 consecutive days (ED 16, 17, and 18) with tolbutamide (80 μg/g embryo weight), a substance that stimulates insulin secretion from the pancreas. After 1 tolbutamide injection, a prolonged (32 h) decrease of plasma glucose and a profound acute increase in plasma insulin were observed. The 3 consecutive tolbutamide injections induced hypoglycemia for 4 days (from ED 16 to ED 19). The postnatal performance after 3 consecutive tolbutamide injections in broiler embryos was also investigated. Body weight was lower in tolbutamide-treated chickens from hatch to 42 d compared with sham (P = 0.001) and control (P < 0.001) chickens. Feed intake was lower in the tolbutamide group from hatch to 42 d as compared with sham (P = 0.007) and control (P = 0.017) animals. In addition, at 42 d, plasma glucose concentrations, after an insulin injection challenge (50 μg/kg body weight), were higher in tolbutamide-treated chickens compared with the sham and the control group as were their basal glucose levels (P value of group effect <0.001). In conclusion, tolbutamide treatment during the late embryonic development in broilers resulted in prolonged hypoglycemia in this period and negatively influenced the posthatch performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    PubMed

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 <11.1 mmol/L), and none with diabetes. Using the continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and <11.1 mmol/L (IGT) in 9 children (69%) and >11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of <2.7 mmol/L (hypoglycemia). No glycemic abnormality was detected using HbA1C (5.7 ± 0.3%). 11/13 patients had HOMA values >2.6 and QUICKI values <0.35 denoting insulin resistance. Beta cell mass percent (B %) = 200 ± 94.8% and insulin sensitivity values (IS)=50.4 ± 45.5% denoted insulin resistance with hyper-insulinaemia and preserved beta cell mass. In obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  7. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase.

    PubMed

    Palod, Pragya Agar; Singh, Vipul

    2015-10-01

    In this paper a novel enzymatic glucose biosensor has been reported in which platinum coated alumina membranes (Anodisc™s) have been employed as templates for the growth of polypyrrole (PPy) nanotube arrays using electrochemical polymerization. The PPy nanotube arrays were grown on Anodisc™s of pore diameter 100 nm using potentiostatic electropolymerization. In order to optimize the polymerization time, immobilization of glucose oxidase (GOx) was first performed using physical adsorption followed by measuring its biosensing response which was examined amperometrically for increasing concentrations of glucose. In order to further improve the sensing performance of the biosensor fabricated for optimum polymerization duration, enzyme immobilization was carried out using cross-linking with glutaraldehyde and bovine serum albumin (BSA). Approximately six fold enhancement in the sensitivity was observed in the fabricated electrodes. The biosensors also showed a wide range of linear operation (0.2-13 mM), limit of detection of 50 μM glucose concentration, excellent selectivity for glucose, notable reliability for real sample detection and substantially improved shelf life. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Flow enthalpimetric determination of glucose, based on oxidation by 1,4-benzoquinone and use of an immobilized glucose oxidase column.

    PubMed

    Kiba, N; Tomiyasu, T; Furusawa, M

    1984-02-01

    A flow enthalpimetric method for the determination of glucose is presented. The method is based on the reaction of glucose with 1,4-benzoquinone in the presence of immobilized glucose oxidase. d-Glucose concentrations ranging from 0.02 to 75mM can be determined. The method is applicable to the determination of glucose in soft drinks, wines, beers, jams and serum.

  9. Evaluation of MOSFET-type glucose sensor using platinum electrode with glucose oxidase

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Hamamoto, Yasutaro; Hirano, Yoshiaki

    2005-02-01

    As the population ages, health management will be one of the important issues. The development of a safe medical machine based on MEMS technologies for the human body will be the primary research project in the future. We have developed the glucose sensor, as one of the medical based devices, for use in the Health Monitoring System (HMS). HMS is the device that continuously monitors human health conditions. For example, blood is the monitoring target of HMS. The glucose sensor specifically detects the glucose levels of the blood and monitors the glucose concentration as the blood sugar level. This glucose sensor has a "separated Au electrode", which immobilizes GOx. In our previous work, GOx was immobilized onto Au electrode by the SAMs (Self-Assembled Monolayer) method, and the sensor, using this working electrode, detected the glucose concentration of an aqueous glucose solution. In this report, we used a Pt electrode, which immobilized GOx, as a working electrode. Au electrode, which was used previously, was dissolved by the application of current in the presence of chloride ions. Based on the above-mentioned fact, a new working electrode, which immobilized GOx, was produced using Pt, which did not possess such characteristics. These Pt working electrodes were produced using the covalent binding method and the cross-link method, and both the electrodes displayed a good sensing property. In addition, the electrode using glutaraldehyde (GA) and bovine serum albumin (BSA) as crosslinking agents was produced, and it displayed better characteristics as compared with those displayed by the electrode that used only GA. Based on the above-mentioned techniques, the improvement in performance of the sensor was confirmed.

  10. Characterization of the intravenous glucose tolerance test and the combined glucose-insulin test in donkeys.

    PubMed

    Mendoza, F J; Aguilera-Aguilera, R; Gonzalez-De Cara, C A; Toribio, R E; Estepa, J C; Perez-Ecija, A

    2015-12-01

    Glucose-insulin dynamic challenges such as the intravenous glucose tolerance test (IVGTT) and combined glucose-insulin test (CGIT) have not been described in donkeys. The objectives of this study were (1) to characterize the IVGTT and CGIT in healthy adult donkeys, and (2) to establish normal glucose-insulin proxies. Sixteen donkeys were used and body morphometric variables obtained each. For the IVGTT, glucose (300 mg/kg) was given IV. For the CGIT, glucose (150 mg/kg) followed by recombinant insulin (0.1 IU/kg) were administered IV. Blood samples for glucose and insulin determinations were collected over 300 min. In the IVGTT the positive phase lasted 160.9 ± 13.3 min, glucose concentration peaked at 323.1 ± 9.2 mg/dL and declined at a rate of 1.28 ± 0.15 mg/dL/min. The glucose area under the curve (AUC) was 21.4 ± 1.9 × 10(3) mg/dL/min and the insulin AUC was 7.2 ± 0.9 × 10(3) µIU/mL/min. The positive phase of the CGIT curve lasted 44 ± 3 min, with a glucose clearance rate of 2.01 ± 0.18 mg/dL/min. The negative phase lasted 255.9 ± 3 min, decreasing glucose concentration at rate of -0.63 ± 0.06 mg/dL/min, and reaching a nadir (33.1 ± 3.6 mg/dL) at 118.3 ± 6.3 min. The glucose and insulin AUC values were 15.2 ± 0.9 × 10(3) mg/dL/min and 13.2 ± 0.9 × 10(3) µIU/mL/min. This is the first study characterizing CGIT and IVGTT, and glucose-insulin proxies in healthy adult donkeys. Distinct glucose dynamics, when compared with horses, support the use of species-specific protocols to assess endocrine function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Anatomic and physiopathologic changes affecting the airway of the elderly patient: implications for geriatric-focused airway management

    PubMed Central

    Johnson, Kathleen N; Botros, Daniel B; Groban, Leanne; Bryan, Yvon F

    2015-01-01

    There are many anatomical, physiopathological, and cognitive changes that occur in the elderly that affect different components of airway management: intubation, ventilation, oxygenation, and risk of aspiration. Anatomical changes occur in different areas of the airway from the oral cavity to the larynx. Common changes to the airway include tooth decay, oropharyngeal tumors, and significant decreases in neck range of motion. These changes may make intubation challenging by making it difficult to visualize the vocal cords and/or place the endotracheal tube. Also, some of these changes, including but not limited to, atrophy of the muscles around the lips and an edentulous mouth, affect bag mask ventilation due to a difficult face-mask seal. Physiopathologic changes may impact airway management as well. Common pulmonary issues in the elderly (eg, obstructive sleep apnea and COPD) increase the risk of an oxygen desaturation event, while gastrointestinal issues (eg, achalasia and gastroesophageal reflux disease) increase the risk of aspiration. Finally, cognitive changes (eg, dementia) not often seen as related to airway management may affect patient cooperation, especially if an awake intubation is required. Overall, degradation of the airway along with other physiopathologic and cognitive changes makes the elderly population more prone to complications related to airway management. When deciding which airway devices and techniques to use for intubation, the clinician should also consider the difficulty associated with ventilating the patient, the patient’s risk of oxygen desaturation, and/or aspiration. For patients who may be difficult to bag mask ventilate or who have a risk of aspiration, a specialized supralaryngeal device may be preferable over bag mask for ventilation. Patients with tumors or decreased neck range of motion may require a device with more finesse and maneuverability, such as a flexible fiberoptic broncho-scope. Overall, geriatric-focused airway

  12. The Difficult Airway Society 'ADEPT' guidance on selecting airway devices: the basis of a strategy for equipment evaluation.

    PubMed

    Pandit, J J; Popat, M T; Cook, T M; Wilkes, A R; Groom, P; Cooke, H; Kapila, A; O'Sullivan, E

    2011-08-01

    Faced with the concern that an increasing number of airway management devices were being introduced into clinical practice with little or no prior evidence of their clinical efficacy or safety, the Difficult Airway Society formed a working party (Airway Device Evaluation Project Team) to establish a process by which the airway management community within the profession could itself lead a process of formal device/equipment evaluation. Although there are several national and international regulations governing which products can come on to the market and be legitimately sold, there has hitherto been no formal professional guidance relating to how products should be selected (i.e. purchased). The Airway Device Evaluation Project Team's first task was to formulate such advice, emphasising evidence-based principles. Team discussions led to a definition of the minimum level of evidence needed to make a pragmatic decision about the purchase or selection of an airway device. The Team concluded that this definition should form the basis of a professional standard, guiding those with responsibility for selecting airway devices. We describe how widespread adoption of this professional standard can act as a driver to create an infrastructure in which the required evidence can be obtained. Essential elements are that: (i) the Difficult Airway Society facilitates a coherent national network of research-active units; and (ii) individual anaesthetists in hospital trusts play a more active role in local purchasing decisions, applying the relevant evidence and communicating their purchasing decisions to the Difficult Airway Society. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  13. Multi-stage surgery for airway patency after metallic stent removal in benign laryngotracheal airway disease in two adolescents.

    PubMed

    Coordes, Annekatrin; Todt, Ingo; Ernst, Arne; Seidl, Rainer O

    2013-05-01

    Laryngotracheal stents may damage the highly complex laryngeal structures, impair voice and swallowing functions and cause tissue ingrowths, thereby necessitating airway patency interventions. In benign airway disease, the number of adolescents with laryngotracheal stents is therefore limited. We present two cases of laryngeal metallic stent placement following benign airway disease. Two adolescents presented with severe dyspnea and self-expandable metallic stent placement after benign laryngotracheal stenoses. Granulation tissue ingrowths required additional surgical interventions every 6-8 weeks to recanalize the stent lumen. We performed multi-stage surgery including removal of the embedded stent, segmental resection of the stenotic area, end-to-end-anastomosis and laryngotracheal reconstruction respectively, to achieve patent airway without tracheal cannulation. Montgomery T-tubes were temporarily inserted to bridge the complex reconstructions. In both adolescents, we achieved successful removal of the embedded stent and patent airway. Bilateral vocal fold paralysis required additional surgery to improve the final airway patency and vocal rehabilitation. Stent removal, segmental resection and laryngotracheal reconstruction provide the achievement of patent airway and allow decannulation. Temporary Montgomery T-tubes bridge complex laryngotracheal reconstructions. In benign laryngeal airway disease, stent placement should be avoided, especially in adolescents. Transfer to a specialist center should be considered prior to metallic stent implantation. In general, self-expanding tracheobronchial stents can be placed in selected patients where surgical interventions are limited. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  15. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations.

    PubMed

    Salgueiro, Andréia C F; Leal, Carina Q; Bianchini, Matheus C; Prado, Ianeli O; Mendez, Andreas S L; Puntel, Robson L; Folmer, Vanderlei; Soares, Félix A; Avila, Daiana S; Puntel, Gustavo O

    2013-06-21

    Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Assessment of upper airway mechanics during sleep.

    PubMed

    Farré, Ramon; Montserrat, Josep M; Navajas, Daniel

    2008-11-30

    Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

  17. Nanostructured biosensor using bioluminescence quenching technique for glucose detection.

    PubMed

    Chen, Longyan; Chen, Longyi; Dotzert, Michelle; Melling, C W James; Zhang, Jin

    2017-08-22

    Most methods for monitoring glucose level require an external energy source which may limit their application, particularly in vivo test. Bioluminescence technique offers an alternative way to provide emission light without external energy source by using bioluminescent proteins found from firefly or marine vertebrates and invertebrates. For quick and non-invasive detection of glucose, we herein developed a nanostructured biosensor by applying the bioluminescence technique. Luciferase bioluminescence protein (Rluc) is conjugated with β-cyclodextrin (β-CD). The bioluminescence intensity of Rluc can be quenched by 8 ± 3 nm gold nanoparticles (Au NPs) when Au NPs covalently bind to β-CD. In the presence of glucose, Au NPs are replaced and leave far from Rluc through a competitive reaction, which results in the restored bioluminescence intensity of Rluc. A linear relationship is observed between the restored bioluminescence intensity and the logarithmic glucose concentration in the range of 1-100 µM. In addition, the selectivity of this designed sensor has been evaluated. The performance of the senor for determination of the concentration of glucose in the blood of diabetic rats is studied for comparison with that of the concentration of glucose in aqueous. This study demonstrates the design of a bioluminescence sensor for quickly detecting the concentration of glucose sensitively.

  18. Amperometric biosensor system for simultaneous determination of adenosine-5'-triphosphate and glucose.

    PubMed

    Kucherenko, Ivan S; Didukh, Daria Yu; Soldatkin, Oleksandr O; Soldatkin, Alexei P

    2014-06-03

    The majority of biosensors for adenosine-5'-triphosphate (ATP) determination are based on cascades of enzymatic reactions; therefore, they are sensitive to glucose or glycerol (depending on the enzymatic system) as well as to ATP. The presence of unknown concentrations of these substances in the sample greatly complicates the determination of ATP. To overcome this disadvantage of known biosensors, we developed a biosensor system consisting of two biosensors: the first one is based on glucose oxidase and is intended for measuring glucose concentration, and the second one is based on glucose oxidase and hexokinase and is sensitive toward both glucose and ATP. Using glucose concentration measured by the first biosensor, we can analyze the total response to glucose and ATP obtained by the second biosensor. Platinum disc electrodes were used as amperometric transducers. The polyphenilenediamine membrane was deposited onto the surface of platinum electrodes to avoid the response to electroactive substances. The effect of glucose concentration on biosensor determination of ATP was studied. The reproducibility of biosensor responses to glucose and ATP during a day was tested (relative standard deviation, RSD, of responses to glucose was 3-6% and to ATP was 8-12%) as well as storage stability of the biosensors (no decrease of glucose responses and 43% drop of ATP responses during 50 days). The measurements of ATP and glucose in pharmaceutical vials (including mixtures of ATP and glucose) were carried out. It was shown that the developed biosensor system can be used for simultaneous analysis of glucose and ATP concentrations in water solutions.

  19. Effects of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in bovine mammary epithelial cells.

    PubMed

    Liu, Hongyun; Zhao, Ke; Liu, Jianxin

    2013-01-01

    As the main precursor for lactose synthesis, large amounts of glucose are required by lactating dairy cows. Milk yield greatly depends on mammary lactose synthesis due to its osmoregulatory property for mammary uptake of water. Thus, glucose availability to the mammary gland could be a potential regulator of milk production. In the present study, the effect of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in vitro was investigated. Bovine mammary epithelial cells (BMEC) were treated for 12 h with various concentrations of glucose (2.5, 5, 10 or 20 mmol/L). The higher concentrations of glucose (10-20 mmol/L) did not affect the mRNA expression of acetyl-CoA carboxylase, diacyl glycerol acyl transferase, glycerol-3 phosphate acyl transferase and α-lactalbumin, whereas fatty acid synthase, sterol regulatory element binding protein-1 and beta-1, 4-galactosyl transferase mRNA expression increased at 10 mmol/L and then decreased at 20 mmol/L. The content of lactose synthase increased with increasing concentration of glucose, with addition of highest value at 20 mmol/L of glucose. Moreover, the increased glucose concentration stimulated the activities of pyruvate kinase and glucose-6-phosphate dehydrogenase, and elevated the energy status of the BMEC. Therefore, it was deduced that after increasing glucose availability, the extra absorbed glucose was partitioned to entering the synthesis of milk fat and lactose by the regulation of the mRNA expression of key genes, promoting glucose metabolism by glycolysis and pentose phosphate pathway as well as energy status. These results indicated that the sufficient availability of glucose in BMEC may promote glucose metabolism, and affect the synthesis of milk composition.

  20. Breath Formate Is a Marker of Airway S-Nitrosothiol Depletion in Severe Asthma

    PubMed Central

    Greenwald, Roby; Fitzpatrick, Anne M.; Gaston, Benjamin; Marozkina, Nadzeya V.; Erzurum, Serpil; Teague, W. Gerald

    2010-01-01

    Background Children with severe asthma have poor symptom control and elevated markers of airway oxidative and nitrosative stress. Paradoxically, they have decreased airway levels of S-nitrosothiols (SNOs), a class of endogenous airway smooth muscle relaxants. This deficiency results from increased activity of an enzyme that both reduces SNOs to ammonia and oxidizes formaldehyde to formic acid, a volatile carboxylic acid that is more easily detected in exhaled breath condensate (EBC) than SNOs. We therefore hypothesize that depletion of airway SNOs is related to asthma pathology, and breath formate concentration may be a proxy measure of SNO catabolism. Methods and Findings We collected EBC samples from children and adolescents, including 38 with severe asthma, 46 with mild-to-moderate asthma and 16 healthy adolescent controls, and the concentration of ionic constituents was quantified using ion chromatography. The concentrations of EBC components with volatile conjugates were log-normally distributed. Formate was the principal ion that displayed a significant difference between asthma status classifications. The mean EBC formate concentration was 40% higher in samples collected from all asthmatics than from healthy controls (mean = 5.7 µM, mean±standard deviation = 3.1−10.3 µM vs. 4.0, 2.8−5.8 µM, p = 0.05). EBC formate was higher in severe asthmatics than in mild-to-moderate asthmatics (6.8, 3.7−12.3 µM vs. 4.9, 2.8−8.7 µM, p = 0.012). In addition, formate concentration was negatively correlated with methacholine PC20 (r = −0.39, p = 0.002, asthmatics only), and positively correlated with the NO-derived ion nitrite (r = 0.46, p<0.0001) as well as with total serum IgE (r = 0.28, p = 0.016, asthmatics only). Furthermore, formate was not significantly correlated with other volatile organic acids nor with inhaled corticosteroid dose. Conclusions We conclude that EBC formate concentration is significantly higher in

  1. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  2. RANTES release by human airway smooth muscle: effects of prostaglandin E(2) and fenoterol.

    PubMed

    Lazzeri, N; Belvisi, M G; Patel, H J; Chung, K F; Yacoub, M H; Mitchell, J A

    2001-12-21

    In human airway smooth muscle cells, the levels of RANTES were increased upon stimulation with interleukin-1beta together with tumour necrosis factor-alpha (TNF-alpha) (10 ng ml(-1) for each). In this study, we have assessed the effects of prostaglandin E(2) and the beta(2)-adrenoceptor agonist, fenoterol on RANTES (regulated upon activation, normal T cell expressed and secreted) release by these cells. The levels of RANTES released by human airway smooth muscle cells were measured after 24 h of treatment. Prostaglandin E(2) and fenoterol, only in presence of a cyclo-oxygenase inhibitor indomethacin (10(-6) M), provoked a concentration-dependent reduction in RANTES release. These data suggest that, in settings where cyclo-oxygenase activity is low, both drugs may relieve the symptoms of airway diseases by reducing RANTES production.

  3. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    PubMed

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  4. [Small airway diseases and immune deficiency].

    PubMed

    Burgel, P-R; Bergeron, A; Knoop, C; Dusser, D

    2016-02-01

    Innate or acquired immune deficiency may show respiratory manifestations, often characterized by small airway involvement. The purpose of this article is to provide an overview of small airway disease across the major causes of immune deficiency. In patients with common variable immune deficiency, recurrent lower airway infections may lead to bronchiolitis and bronchiectasis. Follicular and/or granulomatous bronchiolitis of unknown origin may also occur. Bronchiolitis obliterans is the leading cause of death after the first year in patients with lung transplantation. Bronchiolitis obliterans also occurs in patients with allogeneic haematopoietic stem cell transplantation, especially in the context of systemic graft-versus-host disease. Small airway diseases have different clinical expression and pathophysiology across various causes of immune deficiency. A better understanding of small airways disease pathogenesis in these settings may lead to the development of novel targeted therapies. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  5. Effects of the tripeptide substance P antagonist, FR113680, on airway constriction and airway edema induced by neurokinins in guinea-pigs.

    PubMed

    Murai, M; Morimoto, H; Maeda, Y; Fujii, T

    1992-06-24

    FR113680 is a newly developed tripeptide substance P (SP) receptor antagonist. The effects of FR113680 on airway constriction and airway edema induced by neurokinins were investigated in guinea-pigs. In in vitro experiments, FR113680 inhibited the contraction of isolated guinea-pig trachea induced by SP and neurokinin A (NKA) in a dose-dependent manner with IC50 values of 2.3 x 10(-6) and 1.5 x 10(-5) M, respectively. The tracheal contraction induced by histamine and acetylcholine was not affected by FR113680. FR113680 (5 x 10(-5) M) also significantly inhibited the atropine-resistant contraction of isolated guinea-pig bronchi induced by electrical field stimulation. In in vivo experiments, FR113680 given i.v. inhibited SP-induced airway constriction in guinea-pigs at doses of 1 and 10 mg kg-1. However, FR113680 only inhibited NKA- and capsaicin-induced airway constriction by 40-50% even at a dose of 10 mg kg-1. FR113680 also inhibited SP-induced airway edema in guinea-pigs with the same potency as it inhibited SP-induced airway constriction. Histamine-induced airway constriction and airway edema were not affected at a dose of 10 mg kg-1. These results suggest that FR113680 preferentially inhibits responses induced by NK1 receptor activation (SP-induced airway constriction and airway edema), but is less effective on a NK2 receptor-induced response (airway constriction by NKA and neurogenic stimulation).

  6. How anaesthesiologists understand difficult airway guidelines-an interview study.

    PubMed

    Knudsen, Kati; Pöder, Ulrika; Nilsson, Ulrica; Högman, Marieann; Larsson, Anders; Larsson, Jan

    2017-11-01

    In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. A qualitative phenomenographic design was chosen to explore anaesthesiologists' views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts' consensus, a set of scientifically based guidelines for handling the difficult airway. The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently.

  7. Single Cell "Glucose Nanosensor" Verifies Elevated Glucose Levels in Individual Cancer Cells.

    PubMed

    Nascimento, Raphael A S; Özel, Rıfat Emrah; Mak, Wai Han; Mulato, Marcelo; Singaram, Bakthan; Pourmand, Nader

    2016-02-10

    Because the transition from oxidative phosphorylation to anaerobic glycolytic metabolism is a hallmark of cancer progression, approaches to identify single living cancer cells by their unique glucose metabolic signature would be useful. Here, we present nanopipettes specifically developed to measure glucose levels in single cells with temporal and spatial resolution, and we use this technology to verify the hypothesis that individual cancer cells can indeed display higher intracellular glucose levels. The nanopipettes were functionalized as glucose nanosensors by immobilizing glucose oxidase (GOx) covalently to the tip so that the interaction of glucose with GOx resulted in a catalytic oxidation of β-d-glucose to d-gluconic acid, which was measured as a change in impedance due to drop in pH of the medium at the nanopipette tip. Calibration studies showed a direct relationship between impedance changes at the tip and glucose concentration in solution. The glucose nanosensor quantified single cell intracellular glucose levels in human fibroblasts and the metastatic breast cancer lines MDA-MB-231 and MCF7 and revealed that the cancer cells expressed reproducible and reliable increases in glucose levels compared to the nonmalignant cells. Nanopipettes allow repeated sampling of the same cell, as cells remain viable during and after measurements. Therefore, nanopipette-based glucose sensors provide an approach to compare changes in glucose levels with changes in proliferative or metastatic state. The platform has great promise for mechanistic investigations, as a diagnostic tool to distinguish cancer cells from nonmalignant cells in heterogeneous tissue biopsies, as well as a tool for monitoring cancer progression in situ.

  8. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  9. Comparison of glucose fluctuations between day- and night-time measured using a continuous glucose monitoring system in diabetic dogs.

    PubMed

    Mori, Akihiro; Kurishima, Miyuki; Oda, Hitomi; Saeki, Kaori; Arai, Toshiro; Sako, Toshinori

    2013-01-31

    Monitoring of blood glucose concentration is important to evaluate the diabetic status of dogs. Continuous glucose monitoring systems (CGMS) have been applied in veterinary medicine for glucose monitoring in diabetic dogs. The purpose of the study was to evaluate the daily glycemic profiles obtained with CGMS and compare glucose fluctuations between day- and night-time in diabetic dogs. Five diabetic dogs were used in this study and were treated with either NPH insulin or insulin detemir. For data analyses, day-time was defined as 9:00 am-9:00 pm and night-time as 9:00 pm-9:00 am. Using glucose profiles, we determined the mean glucose concentrations (1- and 12-hr intervals), and times spent in hyperglycemia >200 mg/dl or hypoglycemia <60 mg/dl. None of the parameters differed significantly between day-time and night-time in dogs treated with NPH insulin or insulin detemir. In conclusion, this study confirmed, using CGMS, that there are no differences in glucose fluctuations between day- and night-time, in diabetic dogs on a similar feeding regimen and insulin administration.

  10. Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals.

    PubMed

    Dusser, D J; Djokic, T D; Borson, D B; Nadel, J A

    1989-09-01

    We examined the effects of acute exposure to cigarette smoke on the airway responses to substance P in anesthetized guinea pigs and on the activity of airway neutral endopeptidase (NEP). After exposure to air or to cigarette smoke we measured the change in total pulmonary resistance (RL) induced by increasing concentrations of aerosolized substance P in the absence or presence of the NEP inhibitor phosphoramidon. In the absence of phosphramidon the bronchoconstrictor responses to substance P were greater in cigarette smoke-exposed guinea pigs than in air-exposed animals. Phosphoramidon did not further potentiate the responses to substance P in smoke-exposed guinea pigs, whereas it did so in air-exposed animals. In the presence of phosphoramidon, bronchoconstrictor responses to substance P in animals exposed to air or to cigarette smoke were not different. Aerosols of SOD delivered before cigarette smoke exposures dramatically reduced smoke-induced hyperresponsiveness to substance P, whereas heat-inactivated SOD had no effect on smoke-induced hyper-responsiveness to substance P. Cigarette smoke solution inhibited NEP activity from tracheal homogenate in a concentration-dependent fashion, an inhibitory effect that was mostly due to the gas phase of the smoke, but not to nicotine. The mild chemical oxidant N-chlorosuccinimide mimicked the concentration-dependent inhibitory effect of smoke solution on airway NEP activity. We conclude that cigarette smoke causes enhanced airway responsiveness to substance P in vivo by inactivating airway NEP. We suggest that cigarette smoke-induced inhibition of airway NEP is due to effects of free radicals.

  11. Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals.

    PubMed Central

    Dusser, D J; Djokic, T D; Borson, D B; Nadel, J A

    1989-01-01

    We examined the effects of acute exposure to cigarette smoke on the airway responses to substance P in anesthetized guinea pigs and on the activity of airway neutral endopeptidase (NEP). After exposure to air or to cigarette smoke we measured the change in total pulmonary resistance (RL) induced by increasing concentrations of aerosolized substance P in the absence or presence of the NEP inhibitor phosphoramidon. In the absence of phosphramidon the bronchoconstrictor responses to substance P were greater in cigarette smoke-exposed guinea pigs than in air-exposed animals. Phosphoramidon did not further potentiate the responses to substance P in smoke-exposed guinea pigs, whereas it did so in air-exposed animals. In the presence of phosphoramidon, bronchoconstrictor responses to substance P in animals exposed to air or to cigarette smoke were not different. Aerosols of SOD delivered before cigarette smoke exposures dramatically reduced smoke-induced hyperresponsiveness to substance P, whereas heat-inactivated SOD had no effect on smoke-induced hyper-responsiveness to substance P. Cigarette smoke solution inhibited NEP activity from tracheal homogenate in a concentration-dependent fashion, an inhibitory effect that was mostly due to the gas phase of the smoke, but not to nicotine. The mild chemical oxidant N-chlorosuccinimide mimicked the concentration-dependent inhibitory effect of smoke solution on airway NEP activity. We conclude that cigarette smoke causes enhanced airway responsiveness to substance P in vivo by inactivating airway NEP. We suggest that cigarette smoke-induced inhibition of airway NEP is due to effects of free radicals. PMID:2474576

  12. Visual food cues decrease postprandial glucose concentrations in lean and obese men without affecting food intake and related endocrine parameters.

    PubMed

    Brede, Swantje; Sputh, Annika; Hartmann, Ann-Christin; Hallschmid, Manfred; Lehnert, Hendrik; Klement, Johanna

    2017-10-01

    The abundance of highly palatable food items in our environment represents a possible cause of overconsumption. Neuroimaging studies in humans have demonstrated that watching pictures of food increases activation in brain areas involved in homeostatic and hedonic food cue processing. Nevertheless, the impact of food cues on actual food intake and metabolic parameters has not been systematically investigated. We tested the hypothesis that watching high-calorie food cues increases food intake and modifies anticipatory blood parameters in lean and especially in obese men. In 20 normal-weight and 20 obese healthy fasted men, we assessed the effects of watching pictures of high-calorie food items versus neutral contents on food intake measured during a standardized test buffet and subsequent snacking as well as on glucose homeostasis and endocrine parameters. Compared to neutral pictures, viewing food pictures reduced postprandial blood glucose concentrations in lean (p = 0.016) and obese (p = 0.044) subjects, without any differences in insulin or C-peptide concentrations (all p > 0.4). Viewing food pictures did not affect total calorie intake during the buffet (all p > 0.5) and snack consumption (all p > 0.4). Concentrations of ghrelin, adrenocorticotropic hormone (ACTH), cortisol, and glucagon also remained unaffected (all p > 0.08). These data indicate that preprandial processing of food cues curbs postprandial blood glucose excursions, without immediately affecting eating behavior in normal-weight and obese men. Findings indicate that exposure to food cues does not acutely trigger calorie overconsumption but rather improves the glucoregulatory response to food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Potential Roles of GLUT12 for Glucose Sensing and Cellular Migration in MCF-7 Human Breast Cancer Cells Under High Glucose Conditions.

    PubMed

    Matsui, Chihiro; Takatani-Nakase, Tomoka; Maeda, Sachie; Nakase, Ikuhiko; Takahashi, Koichi

    2017-12-01

    Recent reports have indicated that hyperglycaemia is associated with breast cancer progression. High glucose conditions corresponding to hyperglycaemia significantly promote migration of MCF-7 human breast cancer cells, however, little is known about the mechanisms of glucose sensing for the acquisition of migratory properties by MCF-7 cells. This study investigated glucose sensing and mediation, which are responsible for the high motility of MCF-7 cells. We evaluated the migration of MCF-7 cells cultured in high glucose-containing medium and essential regulatory factors from the perspective of the glucose transport system. We demonstrated that glucose transporter 12 (GLUT12) protein level increased in MCF-7 cells and co-localized with actin organization under high glucose conditions. Moreover, GLUT12-knockdown completely abrogated high glucose-induced migration, indicating that GLUT12 functionally participates in sensing high glucose concentrations. GLUT12 plays a critical role in the model of breast cancer progression through high glucose concentrations. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. New Insights into Cytosolic Glucose Levels during Differentiation of 3T3-L1 Fibroblasts into Adipocytes*

    PubMed Central

    Kovacic, Petra Brina; Chowdhury, Helena H.; Velebit, Jelena; Kreft, Marko; Jensen, Jørgen; Zorec, Robert

    2011-01-01

    Cytosolic glucose concentration reflects the balance between glucose entry across the plasma membrane and cytosolic glucose utilization. In adipocytes, glucose utilization is considered very rapid, meaning that every glucose molecule entering the cytoplasm is quickly phosphorylated. Thus, the cytosolic free glucose concentration is considered to be negligible; however, it was never measured directly. In the present study, we monitored cytosolic glucose dynamics in 3T3-L1 fibroblasts and adipocytes by expressing a fluorescence resonance energy transfer (FRET)-based glucose nanosensor: fluorescent indicator protein FLIPglu-600μ. Specifically, we monitored cytosolic glucose responses by varying transmembrane glucose concentration gradient. The changes in cytosolic glucose concentration were detected in only 56% of 3T3-L1 fibroblasts and in 14% of 3T3-L1 adipocytes. In adipocytes, the resting cytosolic glucose concentration was reduced in comparison with the one recorded in fibroblasts. Membrane permeabilization increased cytosolic glucose concentration in adipocytes, and glycolytic inhibitor iodoacetate failed to increase cytosolic glucose concentration, indicating low adipocyte permeability for glucose at rest. We also examined the effects of insulin and adrenaline. Insulin significantly increased cytosolic glucose concentration in adipocytes by a factor of 3.6; however, we recorded no effect on delta ratio (ΔR) in fibroblasts. Adrenaline increased cytosolic glucose concentration in fibroblasts but not in adipocytes. However, in adipocytes in insulin-stimulated conditions, glucose clearance was significantly faster following adrenaline addition in comparison with controls (p < 0.001). Together, these results demonstrate that during differentiation, adipocytes develop more efficient mechanisms for maintaining low cytosolic glucose concentration, predominantly with reduced membrane permeability for glucose. PMID:21349852

  15. Prevention of hypoglycemia using risk assessment with a continuous glucose monitoring system.

    PubMed

    Choleau, Carine; Dokladal, Petr; Klein, Jean-Claude; Ward, W Kenneth; Wilson, George S; Reach, Gérard

    2002-11-01

    Due to the lag between sugar intake and the beginning of recovery from hypoglycemia, it is necessary to intervene in an anticipatory way if one wants to prevent, not only detect, hypoglycemia. This article presents the principle of a hypoglycemia prevention system based on risk assessment. The risk situation can be defined as the moment when the system estimates that the glucose concentration is expected to reach a hypoglycemia threshold in less than a given time (e.g., 20 min). Since there are well-known discrepancies between blood and interstitial glucose concentrations, the aim of this experimental study performed in nondiabetic rats was first to validate this strategy, and second to determine whether it can work when the glucose concentration is estimated by a glucose sensor in subcutaneous tissue rather than in blood. We used a model of controlled decrease in blood glucose concentration. A glucose infusion, the profile of which mimicked the appearance of glucose from an intragastric load, was administered either when hypoglycemia was detected or on the basis of risk recognition. Despite the lag between the beginning of the load and that of the increase in blood glucose concentration, which was in all experiments 15-20 min, hypoglycemia was fully prevented without overshoot hyperglycemia in the groups of rats in which the glucose load was started when the hypoglycemia risk was detected, on the basis of either blood or interstitial glucose concentration. This was, of course, not the case when the same glucose load was infused at the detection of the hypoglycemia threshold.

  16. Effect of pH and glucose on cultured human peritoneal mesothelial cells.

    PubMed

    Shao, J C; Yorioka, N; Nishida, Y; Yamakido, M

    1999-08-01

    We investigated the effects of various pH and glucose concentrations on the growth of human peritoneal mesothelial cells and on coagulation and fibrinolytic factors. Cells were cultured at various pH values in Ham's F-12 medium containing 1.0% foetal calf serum and supplemented with D-glucose or D-mannitol at various concentrations. After 4-48 h, cell proliferation and 3H-thymidine incorporation were determined. Coagulation and fibrinolytic factors were measured after 48 h. Glucose caused concentration-dependent inhibition of cell growth at all pH values, but the deleterious effect of low pH on cell proliferation was faster and stronger than that of high glucose. At a similar osmolality, mannitol caused less inhibition of cell proliferation than glucose. There was a glucose concentration-dependent increase of thrombin-antithrombin III complex production at all pH values. At pH 5.2, tissue-type plasminogen activator production was far lower than at higher pH values, and production of the plasminogen activator inhibitor showed a glucose concentration-dependent increase. At pH 6.5 or 7.3, however, the plasminogen activator inhibitor production decreased and tissue-type plasminogen activator production increased in a glucose concentration-dependent manner. Low pH and/or high glucose culture medium had an inhibitory effect on peritoneal mesothelial cells, with the effect of high glucose being partially related to hyperosmolality. These cells may modulate peritoneal coagulant and fibrinolytic activity, with the balance between coagulation and fibrinolysis being disturbed by low pH and/or high glucose.

  17. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride.

    PubMed

    Zhang, Lei; Chen, Chao; Zhou, Nan; Fu, Yuming; Cheng, Xingbo

    2017-11-03

    Asprosin has been identified as a novel hormone enriched in white adipose tissue and is pathologically increased in insulin-resistant mice and humans. However, information regarding the role of asprosin in type 2 diabetes mellitus (T2DM) remains unavailable. Via conducting a hospital-based study, we purposed to ascertain the potential relationship between circulating asprosin concentrations and T2DM. The study recruited 84 adults with T2DM and 86 controls with normal glucose tolerance. They matched in age, body mass index (BMI), and sex. Serum asprosin concentrations were measured via ELISA method. Compared to the controls, serum asprosin concentrations were significantly increased in the T2DM adults (P<0.001). As asprosin concentrations increased across its tertiles, the percentage of T2DM increased (39.28, 37.50, and 70.68%; P value for trend <0.001). Multivariate logistic regression models demonstrated that compared with the 1st tertile of asprosin, the odds ratio of T2DM was 3.278(95% CI 1.053-10.200, P=0.040) for the 3rd tertile after adjustment for potential confounders. Area under ROC curve of asprosin (sex and age adjusted) for predicting the presence of T2DM was 0.707[95% CI 0.628-0.786]. Finally, multiple stepwise regression analysis indicated that fasting glucose and triglyceride were independently associated with serum asprosin in T2DM. Asprosin concentrations are increased in adults with T2DM. The results suggest that asprosin might serve as a risk factor associated with the pathogenesis of T2DM, but not an ideal biomarker for predicting T2DM. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [14C]deoxyglucose: Progress, Pitfalls, and Discovery of Intracellular Glucose Compartmentation.

    PubMed

    Dienel, Gerald A; Cruz, Nancy F; Sokoloff, Louis; Driscoll, Bernard F

    2017-01-01

    2-Deoxy-D-[ 14 C]glucose ([ 14 C]DG) is commonly used to determine local glucose utilization rates (CMR glc ) in living brain and to estimate CMR glc in cultured brain cells as rates of [ 14 C]DG phosphorylation. Phosphorylation rates of [ 14 C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [ 14 C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMR glc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [ 14 C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [ 14 C]DG distribution space fell at the lowest glucose levels. Calculated CMR glc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [ 14 C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.

  19. Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans.

    PubMed

    Nomura, Sadahiro; Fujii, Masami; Inoue, Takao; He, Yeting; Maruta, Yuichi; Koizumi, Hiroyasu; Suehiro, Eiichi; Imoto, Hirochika; Ishihara, Hideyuki; Oka, Fumiaki; Matsumoto, Mishiya; Owada, Yuji; Yamakawa, Takeshi; Suzuki, Michiyasu

    2014-05-01

    Recently, focal brain cooling (FBC) was proposed as a method for treating refractory epilepsy. However, the precise influence of cooling on the molecular basis of epilepsy has not been elucidated. Thus the aim of this study was to assess the effect of FBC on glutamate (Glu) concentration, cerebral blood flow (CBF), and glucose metabolism in patients with intractable epilepsy. Nine patients underwent FBC at 15°C for 30 min prior to cortical resection (n = 6) or hippocampectomy (n = 3). Measurement of metabolites and CBF, as well as electrocorticography (ECoG), was performed. Epileptic discharge (ED), as observed by ECoG, disappeared in the cooling period and reappeared in the rewarming period. Glu concentrations were high during the precooling period and were reduced to 51.2% during the cooling period (p = 0.025). Glycerol levels showed a similar decrease (p = 0.028). Lactate concentration was high during the precooling period and was reduced during the cooling period (21.3% decrease; p = 0.005). Glucose and pyruvate levels were maintained throughout the procedure. Changes in CBF were parallel to those observed by ECoG. FBC reduced EDs and concentrations of Glu and glycerol. This demonstrates the neuroprotective effect of FBC. Our findings confirm that FBC is a reasonable and optimal treatment option for patients with intractable epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  20. Are new supraglottic airway devices, tracheal tubes and airway viewing devices cost-effective?

    PubMed

    Slinn, Simon J; Froom, Stephen R; Stacey, Mark R W; Gildersleve, Christopher D

    2015-01-01

    Over the past two decades, a plethora of new airway devices has become available to the pediatric anesthetist. While all have the laudable intention of improving patient care and some have proven clinical benefits, these devices are often costly and at times claims of an advantage over current equipment and techniques are marginal. Supraglottic airway devices are used in the majority of pediatric anesthetics delivered in the U.K., and airway-viewing devices provide an alternative for routine intubation as well as an option in the management of the difficult airway. Yet hidden beneath the convenience of the former and the technology of the latter, the impact on basic airway skills with a facemask and the lack of opportunities to fine-tune the core skill of intubation represent an unrecognised and unquantifiable cost. A judgement on this value must be factored into the absolute purchase cost and any potential benefits to the quality of patient care, thus blurring any judgement on cost-effectiveness that we might have. An overall value on cost-effectiveness though not in strict monetary terms can then be ascribed. In this review, we evaluate the role of these devices in the care of the pediatric patient and attempt to balance the advantages they offer against the cost they incur, both financial and environmental, and in any quality improvement they might offer in clinical care. © 2014 John Wiley & Sons Ltd.

  1. How anaesthesiologists understand difficult airway guidelines—an interview study

    PubMed Central

    Knudsen, Kati; Nilsson, Ulrica; Larsson, Anders; Larsson, Jan

    2017-01-01

    Background In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. Methods A qualitative phenomenographic design was chosen to explore anaesthesiologists’ views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Results Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts’ consensus, a set of scientifically based guidelines for handling the difficult airway. Conclusions The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently. PMID:29299973

  2. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    PubMed

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  3. Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones.

    PubMed

    Parmar, Hamendra Singh; Kar, Anand

    2008-06-01

    Peel extracts from Citrus sinensis, Punica granatum, and Musa paradisiaca were investigated for their effects on tissue lipid peroxidation (LPO) and on the concentration of thyroid hormones, insulin, and glucose in male rats. In vitro inhibition of H(2)O(2)-induced LPO in red blood cells of rats by 0.25, 0.50, 1.0, and 2.0 microg/mL C. sinensis, P. granatum, and M. paradisiaca peel extracts was observed in a dose-specific manner. Maximum inhibition was observed at 0.50 microg/mL C. sinensis, 2.0 microg/mL P. granatum, and 1.0 microg/mL M. paradisiaca. In the in vivo investigation, out of four different concentrations of each peel extract, 25, 200, and 100 mg/kg C. sinensis, P. granatum, and M. paradisiaca, respectively, were found to maximally inhibit hepatic LPO. The most effective doses were further evaluated for effects on serum triiodothyronine (T(3)), thyroxine (T(4)), insulin, and glucose concentrations. C. sinensis exhibited antithyroidal, hypoglycemic, and insulin stimulatory activities, in addition to inhibition of LPO, as it significantly decreased the serum T(4) (P < .05) and glucose (P < .001) concentrations with a concomitant increase in insulin levels (P < .05). P. granatum decreased LPO in hepatic, cardiac, and renal tissues (P < .01, P < .001, and P < .05, respectively) and serum glucose concentration (P < .01). M. paradisiaca strongly inhibited the serum level of thyroid hormones (P < .01 for both T(3) and T(4)) but increased the level of glucose (P < .05). These findings reveal the hitherto unknown potential of the tested peel extracts in the regulation of thyroid function and glucose metabolism. Besides antiperoxidative activity, C. sinensis extract has antithyroidal, hypoglycemic, and insulin stimulatory properties, which suggest its potential to ameliorate both hyperthyroidism and diabetes mellitus.

  4. Trichostatin A Abrogates Airway Constriction, but Not Inflammation, in Murine and Human Asthma Models

    PubMed Central

    Trivedi, Chinmay M.; Damera, Gautam; Jiang, Meiqi; Jester, William; Hoshi, Toshinori; Epstein, Jonathan A.; Panettieri, Reynold A.

    2012-01-01

    Histone deacetylase (HDAC) inhibitors may offer novel approaches in the treatment of asthma. We postulate that trichostatin A (TSA), a Class 1 and 2 inhibitor of HDAC, inhibits airway hyperresponsiveness in antigen-challenged mice. Mice were sensitized and challenged with Aspergillus fumigatus antigen (AF) and treated with TSA, dexamethasone, or vehicle. Lung resistance (RL) and dynamic compliance were measured, and bronchial alveolar lavage fluid (BALF) was analyzed for numbers of leukocytes and concentrations of cytokines. Human precision-cut lung slices (PCLS) were treated with TSA and their agonist-induced bronchoconstriction was measured, and TSA-treated human airway smooth muscle (ASM) cells were evaluated for the agonist-induced activation of Rho and intracellular release of Ca2+. The activity of HDAC in murine lungs was enhanced by antigen and abrogated by TSA. TSA also inhibited methacholine (Mch)-induced increases in RL and decreases in dynamic compliance in naive control mice and in AF-sensitized and -challenged mice. Total cell counts, concentrations of IL-4, and numbers of eosinophils in BALF were unchanged in mice treated with TSA or vehicle, whereas dexamethasone inhibited the numbers of eosinophils in BALF and concentrations of IL-4. TSA inhibited the carbachol-induced contraction of PCLS. Treatment with TSA inhibited the intracellular release of Ca2+ in ASM cells in response to histamine, without affecting the activation of Rho. The inhibition of HDAC abrogates airway hyperresponsiveness to Mch in both naive and antigen-challenged mice. TSA inhibits the agonist-induced contraction of PCLS and mobilization of Ca2+ in ASM cells. Thus, HDAC inhibitors demonstrate a mechanism of action distinct from that of anti-inflammatory agents such as steroids, and represent a promising therapeutic agent for airway disease. PMID:22298527

  5. Nerve growth factor-enhanced airway responsiveness involves substance P in ferret intrinsic airway neurons.

    PubMed

    Wu, Z-X; Dey, R D

    2006-07-01

    Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.

  6. Air-Q intubating laryngeal airway: A study of the second generation supraglottic airway device.

    PubMed

    Attarde, Viren Bhaskar; Kotekar, Nalini; Shetty, Sarika M

    2016-05-01

    Air-Q intubating laryngeal mask airway (ILA) is used as a supraglottic airway device and as a conduit for endotracheal intubation. This study aims to assess the efficacy of the Air-Q ILA regarding ease of insertion, adequacy of ventilation, rate of successful intubation, haemodynamic response and airway morbidity. Sixty patients presenting for elective surgery at our Medical College Hospital were selected. Following adequate premedication, baseline vital parameters, pulse rate and blood pressure were recorded. Air-Q size 3.5 for patients 50-70 kg and size 4.5 for 70-100 kg was selected. After achieving adequate intubating conditions, Air-Q ILA was introduced. Confirming adequate ventilation, appropriate sized endotracheal tube was advanced through the Air-Q blindly to intubate the trachea. Placement of the endotracheal tube in trachea was confirmed. Air-Q ILA was successfully inserted in 88.3% of patients in first attempt and 11.7% patients in second attempt. Ventilation was adequate in 100% of patients. Intubation was successful in 76.7% of patients with Air-Q ILA. 23.3% of patients were intubated by direct laryngoscopy following failure with two attempts using Air-Q ILA. Post-intubation the change in heart rate was statistically significant (P < 0.0001). 10% of patients were noted to have a sore throat and 5% of patients had mild airway trauma. Air-Q ILA is a reliable device as a supraglottic airway ensuring adequate ventilation as well as a conduit for endotracheal intubation. It benefits the patient by avoiding the stress of direct laryngoscopy and is also superior alternative device for use in a difficult airway.

  7. Ceylon cinnamon does not affect postprandial plasma glucose or insulin in subjects with impaired glucose tolerance.

    PubMed

    Wickenberg, Jennie; Lindstedt, Sandra; Berntorp, Kerstin; Nilsson, Jan; Hlebowicz, Joanna

    2012-06-01

    Previous studies on healthy subjects have shown that the intake of 6 g Cinnamomum cassia reduces postprandial glucose and that the intake of 3 g C. cassia reduces insulin response, without affecting postprandial glucose concentrations. Coumarin, which may damage the liver, is present in C. cassia, but not in Cinnamomum zeylanicum. The aim of the present study was to study the effect of C. zeylanicum on postprandial concentrations of plasma glucose, insulin, glycaemic index (GI) and insulinaemic index (GII) in subjects with impaired glucose tolerance (IGT). A total of ten subjects with IGT were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with placebo or C. zeylanicum capsules. Finger-prick capillary blood samples were taken for glucose measurements and venous blood for insulin measurements, before and at 15, 30, 45, 60, 90, 120, 150 and 180 min after the start of the OGTT. The ingestion of 6 g C. zeylanicum had no significant effect on glucose level, insulin response, GI or GII. Ingestion of C. zeylanicum does not affect postprandial plasma glucose or insulin levels in human subjects. The Federal Institute for Risk Assessment in Europe has suggested the replacement of C. cassia by C. zeylanicum or the use of aqueous extracts of C. cassia to lower coumarin exposure. However, the positive effects seen with C. cassia in subjects with poor glycaemic control would then be lost.

  8. Airway and alveolar nitric oxide production, lung function, and pulmonary blood flow in sickle cell disease.

    PubMed

    Lunt, Alan; Ahmed, Na'eem; Rafferty, Gerrard F; Dick, Moira; Rees, David; Height, Sue; Thein, Swee Lay; Greenough, Anne

    2016-02-01

    Children with sickle cell disease (SCD) often have obstructive lung function abnormalities which could be due to asthma or increased pulmonary blood volume; it is important to determine the underlying mechanism to direct appropriate treatment. In asthmatics, exhaled nitric oxide (FeNO) is elevated. FeNO, however, can also be raised due to increased alveolar production. Our aim, therefore, was to determine if airway or alveolar NO production differed between SCD children and ethnic and age-matched controls. Lung function, airway NO flux and alveolar NO production, and effective pulmonary blood flow were assessed in 18 SCD children and 18 ethnic and age-matched controls. The SCD children compared to the controls had a higher respiratory system resistance (P = 0.0008), alveolar NO production (P = 0.0224), and pulmonary blood flow (P < 0.0001), but not airway NO flux. There was no significant correlation between FeNO and respiratory system resistance in either group, but in the SCD children, there were correlations between alveolar NO production (P = 0.0006) and concentration (P < 0.0001) and pulmonary blood flow. Airway NO flux was not elevated in the SCD children nor correlated with airways obstruction, suggesting that airways obstruction, at least in some SCD children, is not due to asthma.

  9. Use of a Supraglottic Airway to Relieve Ventilation-Impeding Gastric Insufflation During Emergency Airway Management in an Infant.

    PubMed

    Dodd, Kenneth W; Strobel, Ashley M; Driver, Brian E; Reardon, Robert F

    2016-10-01

    Positive-pressure bag-valve-mask ventilation during emergency airway management often results in significant gastric insufflation, which may impede adequate ventilation and oxygenation. Current-generation supraglottic airways have beneficial features, such as channels for gastric decompression while ventilation is ongoing. A 5-week-old female infant required resuscitation for hypoxemic respiratory failure caused by rhinovirus with pneumonia. Bag-valve-mask ventilation led to gastric insufflation that compromised ventilation, thereby interfering with intubation because of precipitous oxygen desaturation during laryngoscopy. A current-generation supraglottic airway (LMA Supreme; Teleflex Inc, Morrisville, NC) was used to facilitate gastric decompression while ventilation and oxygenation was ongoing. After gastric decompression, ventilation was markedly improved and the pulse oxygen saturation improved to 100%. Intubation was successful on the next attempt, without oxygen desaturation. Current-generation supraglottic airways have 3 distinct advantages compared with first-generation supraglottic airways, which make them better devices for emergency airway management: gastric decompression ports, conduits for intubation, and higher oropharyngeal leak pressures. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  10. Glucose Sensing for Diabetes Monitoring: Recent Developments

    PubMed Central

    Bruen, Danielle; Delaney, Colm; Florea, Larisa

    2017-01-01

    This review highlights recent advances towards non-invasive and continuous glucose monitoring devices, with a particular focus placed on monitoring glucose concentrations in alternative physiological fluids to blood. PMID:28805693

  11. Baicalein Reduces Airway Injury in Allergen and IL-13 Induced Airway Inflammation

    PubMed Central

    Mabalirajan, Ulaganathan; Ahmad, Tanveer; Rehman, Rakhshinda; Leishangthem, Geeta Devi; Dinda, Amit Kumar; Agrawal, Anurag; Ghosh, Balaram; Sharma, Surendra Kumar

    2013-01-01

    Background Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. Methodology/Principal Findings In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA), treated with baicalein (10 mg/kg, ip) or a vehicle control, either during (preventive use) or after OVA challenge (therapeutic use). In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR), histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-β1, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. Conclusion/Significance Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function. PMID:23646158

  12. Responses of lung parenchyma and airways to tachykinin peptides in piglets.

    PubMed

    Dreshaj, I A; Martin, R J; Miller, M J; Haxhiu, M A

    1994-07-01

    The tachykinin peptides substance P (SP) and neurokinin A (NKA) have been shown to induce tracheal smooth muscle contraction in piglets, and the enzyme neutral endopeptidase has been shown to modulate this effect. In these studies, we compared the SP and NKA responsiveness of piglet airways and lung parenchymal tissues in anesthetized paralyzed open-chest piglets 2-3 wk old, partitioning total lung resistance (RL) into airway resistance (Raw) and tissue resistance (Rti). During tidal breathing, pressure was measured at the trachea and in two alveolar regions by means of alveolar capsules. Intravenous administration of SP caused concentration-dependent increases in Rti and Raw and a decrease in dynamic lung compliance. Under baseline conditions, Rti contributed 74.6 +/- 1.9% (SE) of RL, and at any level of constriction, Rti accounted for > 50% of RL. The responses of Rti and Raw to NKA were negligible and were always significantly weaker than those to SP. These results indicate that both central airways and tissue contractile elements respond vigorously to SP, but not to NKA, in maturing piglets.

  13. Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors.

    PubMed

    Kiyatkin, Eugene A; Wakabayashi, Ken T

    2015-01-21

    Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between "active" and "passive" glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the "neuronal" hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism.

  14. Definitive airway management of patients presenting with a pre-hospital inserted King LT(S)-D laryngeal tube airway: a historical cohort study.

    PubMed

    Subramanian, Arun; Garcia-Marcinkiewicz, Annery G; Brown, Daniel R; Brown, Michael J; Diedrich, Daniel A

    2016-03-01

    The King LT(S)-D laryngeal tube (King LT) has gained popularity as a bridge airway for pre-hospital airway management. In this study, we retrospectively reviewed the use of the King LT and its associated airway outcomes at a single Level 1 trauma centre. The data on all adult patients presenting to the Mayo Clinic in Rochester, Minnesota with a King LT in situ from July 1, 2007 to October 10, 2012 were retrospectively evaluated. Data collected and descriptively analyzed included patient demographics, comorbidities, etiology of respiratory failure, airway complications, subsequent definitive airway management technique, duration of mechanical ventilation, and status at discharge. Forty-eight adult patients met inclusion criteria. The most common etiology for respiratory failure requiring an artificial airway was cardiac arrest [28 (58%) patients] or trauma [9 (19%) patients]. Four of the nine trauma patients had facial trauma. Surgical tracheostomy was the definitive airway management technique in 14 (29%) patients. An airway exchange catheter, direct laryngoscopy, and video laryngoscopy were used in 11 (23%), ten (21%), and ten (21%) cases, respectively. Seven (78%) of the trauma patients underwent surgical tracheostomy compared with seven (18%) of the medical patients. Adverse events associated with King LT use occurred in 13 (27%) patients, with upper airway edema (i.e., tongue engorgement and glottic edema) being most common (19%). In this study of patients presenting to a hospital with a King LT, the majority of airway exchanges required an advanced airway management technique beyond direct laryngoscopy. Upper airway edema was the most common adverse observation associated with King LT use.

  15. A self-powered glucose biosensing system.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2016-04-15

    A self-powered glucose biosensor (SPGS) system is fabricated and in vitro characterization of the power generation and charging frequency characteristics in glucose analyte are described. The bioelectrodes consist of compressed network of three-dimensional multi-walled carbon nanotubes with redox enzymes, pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and laccase functioning as the anodic and cathodic catalyst, respectively. When operated in 45 mM glucose, the biofuel cell exhibited an open circuit voltage and power density of 681.8 mV and 67.86 µW/cm(2) at 335 mV, respectively, with a current density of 202.2 µA/cm(2). Moreover, at physiological glucose concentration (5mM), the biofuel cell exhibits open circuit voltage and power density of 302.1 mV and 15.98 µW/cm(2) at 166.3 mV, respectively, with a current density of 100 µA/cm(2). The biofuel cell assembly produced a linear dynamic range of 0.5-45 mM glucose. These findings show that glucose biofuel cells can be further investigated in the development of a self-powered glucose biosensor by using a capacitor as the transducer element. By monitoring the capacitor charging frequencies, which are influenced by the concentration of the glucose analyte, a linear dynamic range of 0.5-35 mM glucose is observed. The operational stability of SPGS is monitored over a period of 63 days and is found to be stable with 15.38% and 11.76% drop in power density under continuous discharge in 10mM and 20mM glucose, respectively. These results demonstrate that SPGSs can simultaneously generate bioelectricity to power ultra-low powered devices and sense glucose. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection.

    PubMed

    Wu, Chao; Sun, Huihui; Li, Yufei; Liu, Xueying; Du, Xiaoyu; Wang, Xia; Xu, Ping

    2015-04-15

    Promoting the electrocatalytic oxidation of glucose is crucial in glucose biosensor design. In this study, nanoporous gold (NPG) was selected for glucose oxidase (GOx) immobilization and glucose biosensor fabrication because of its open, highly conductive, biocompatible, and interconnected porous structure, which also facilitates the electrocatalytic oxidation of glucose. The electrochemical reaction on the surface of the resulting GOx/NPG/GCE bioelectrode was attributed to the co-catalysis effect of GOx and NPG. A surface-confined reaction in a phosphate buffer solution was observed at the bioelectrode during cyclic voltammetry experiments. Linear responses were observed for large glucose concentrations ranging from 50μM to 10mM, with a high sensitivity of 12.1μAmM(-1)cm(-2) and a low detection limit of 1.02μM. Furthermore, the GOx/NPG/GCE bioelectrode presented strong anti-interference capability against cholesterol, urea, tributyrin, ascorbic acid, and uric acid, along with a long shelf-life. For the detection of glucose in human serum, the data generated by the GOx/NPG/GCE bioelectrode were in good agreement with those produced by an automatic biochemical analyzer. These unique properties make the GOx/NPG/GCE bioelectrode an excellent choice for the construction of a glucose biosensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) study.

    PubMed

    Fesinmeyer, Megan D; Meigs, James B; North, Kari E; Schumacher, Fredrick R; Bůžková, Petra; Franceschini, Nora; Haessler, Jeffrey; Goodloe, Robert; Spencer, Kylee L; Voruganti, Venkata Saroja; Howard, Barbara V; Jackson, Rebecca; Kolonel, Laurence N; Liu, Simin; Manson, JoAnn E; Monroe, Kristine R; Mukamal, Kenneth; Dilks, Holli H; Pendergrass, Sarah A; Nato, Andrew; Wan, Peggy; Wilkens, Lynne R; Le Marchand, Loic; Ambite, José Luis; Buyske, Steven; Florez, Jose C; Crawford, Dana C; Hindorff, Lucia A; Haiman, Christopher A; Peters, Ulrike; Pankow, James S

    2013-09-25

    Multiple genome-wide association studies (GWAS) within European populations have implicated common genetic variants associated with insulin and glucose concentrations. In contrast, few studies have been conducted within minority groups, which carry the highest burden of impaired glucose homeostasis and type 2 diabetes in the U.S. As part of the 'Population Architecture using Genomics and Epidemiology (PAGE) Consortium, we investigated the association of up to 10 GWAS-identified single nucleotide polymorphisms (SNPs) in 8 genetic regions with glucose or insulin concentrations in up to 36,579 non-diabetic subjects including 23,323 European Americans (EA) and 7,526 African Americans (AA), 3,140 Hispanics, 1,779 American Indians (AI), and 811 Asians. We estimated the association between each SNP and fasting glucose or log-transformed fasting insulin, followed by meta-analysis to combine results across PAGE sites. Overall, our results show that 9/9 GWAS SNPs are associated with glucose in EA (p = 0.04 to 9 × 10-15), versus 3/9 in AA (p= 0.03 to 6 × 10-5), 3/4 SNPs in Hispanics, 2/4 SNPs in AI, and 1/2 SNPs in Asians. For insulin we observed a significant association with rs780094/GCKR in EA, Hispanics and AI only. Generalization of results across multiple racial/ethnic groups helps confirm the relevance of some of these loci for glucose and insulin metabolism. Lack of association in non-EA groups may be due to insufficient power, or to unique patterns of linkage disequilibrium.

  18. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    PubMed

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Transport and deposition of cohesive pharmaceutical powders in human airway

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Chu, Kaiwei; Yu, Aibing

    2017-06-01

    Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD) and discrete element method (DEM). The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.

  20. Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia

    PubMed Central

    Raju, Sammeta V.; Wang, Guoshun

    2012-01-01

    Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections. PMID:22442662

  1. Amperometric Glucose Sensor Using Thermostable Co-Factor Binding Glucose Dehydrogenase

    NASA Astrophysics Data System (ADS)

    Nakazawa, Yukie; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    A thermostable mediator-type enzyme glucose sensor was constructed. The electrode was fabricated using chemically cross-linked thermostable co-factor binding glucose dehydrogenase (GDH) from thermophilic bacteria in carbon paste matrix. The electrode responded directly proportional to D-glucose concentration from 0.01 mM to 3 mM in stirred buffer containing 1 mM 1-methoxyphenazinemethosulfate as a mediator with the steady-state mode. The storage stability was examined by incubating the enzyme electrode at 50oC during the measurement. The cross-linked GDH immobilized electrode showed good storage stability. Ninety percent of its initial response was retained after incubation in buffer solution for 9 days at 50oC. The flow injection analysis (FIA) glucose sensing system was also constructed by immobilizing the cross-linked GDH and ferrocene as a mediator in the carbon paste matrix. The FIA system was able to measure 600 samples for 100 h.

  2. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.

    The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosedmore » as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.« less

  3. Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea-pigs: the effect of anti-asthma drugs.

    PubMed Central

    Sanjar, S.; Aoki, S.; Kristersson, A.; Smith, D.; Morley, J.

    1990-01-01

    1. Guinea-pigs were sensitized with 3 injections of ovalbumin (OA) (1 or 10 micrograms per animal) using Al(OH)3 and pertussis vaccine as adjuvants at two week intervals. 2. Sensitized guinea-pigs were challenged with an aerosol of OA (0.1%) over a one hour period and both airway reactivity and cellular content of bronchoalveolar lavage (BAL) fluid were assessed at intervals for up to 7 days. 3. Guinea-pigs sensitized with 1 microgram of ovalbumin responded to an aerosol of OA with increased pulmonary airway eosinophilia, which was evident 1 day after challenge and was present for up to 7 days. Airway hyperreactivity was not detectable in these animals. 4. Guinea-pigs sensitized with 10 micrograms of ovalbumin responded to an aerosol of OA with increased pulmonary airway neutrophilia and eosinophilia and with increased airway reactivity which was maximal between 8 and 24 h after exposure to OA. 5. Depletion of circulating platelets or neutrophils, by use of selective antisera, did not alter either the magnitude of eosinophilia or the intensity of airway reactivity in sensitized guinea-pigs (10 micrograms) exposed to an aerosol of OA. 6. Pretreatment of sensitized guinea-pigs (10 micrograms) for 6 days with AH 21-132, aminophylline, dexamethasone or ketotifen inhibited pulmonary airway eosinophilia, but did not diminish airway hyperreactivity. Neither eosinophil accumulation nor development of airway hyperreactivity was influenced by treatment with mepyramine or salbutamol over a 6 day period before OA inhalation. 7. Although eosinophilia may occur in association with increased airway reactivity in this animal model, there is no evidence of a causal relationship. PMID:2361168

  4. FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots.

    PubMed

    Zhu, Qingdong; Wang, Li; Dong, Qianli; Chang, Shu; Wen, Kexin; Jia, Shenghua; Chu, Zhilin; Wang, Hanmeng; Gao, Ping; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2017-08-01

    Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu-2μ∆13 and FLIPglu-600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K 0.5 value for FLIPglu-2μΔ13 was approximately 10.05μM, and that for FLIPglu-600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu-2μΔ13 in a stimulus-specific manner, but not in FLIPglu-600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2-20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.

    PubMed

    Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping

    2016-10-01

    Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.

  6. [Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation].

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation.

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Glucose biosensors with enzyme entrapped in polymer coating.

    PubMed

    Yang, S; Atanasov, P; Wilkins, E

    1995-01-01

    The pursuit of reliable biosensors for measuring glucose levels has been ongoing for decades. Their importance lies partly in the development of the implantable artificial pancrease, which can be used to deliver insulin to diabetics without the need to test glucose levels externally, with automatic delivery based on physiologic demand. Glucose sensors can also be used in short-term monitoring of glucose levels in hospitals and clinical laboratories. Three types of glucose biosensors were studied. All were based on a two-electrode system: an insulated platinum wire as a hydrogen peroxide electrode, and a silver wire twisted around the platinum wire as both a reference and a counter electrode. Each was coated with the enzyme glucose oxidase entrapped in a polymer matrix of cellulose acetate (CA) or poly 2-hydroxyethyl methacrylate (HEMA), then dip-coated by an additional polymer coating of polyvinylchloride (PVC), polyurethane (PU), or HEMA. The experiments were designed mainly to study the effectiveness of polymer coatings as diffusion-limiting membranes. The effect of each coating on the linear response to glucose concentration was examined. It was shown that additional (multiple) coatings can increase the linearity of the sensor response. The best results were obtained when the sensor was PVC-dip-coated three times. This preparation had a linear response up to 600 mg/DL glucose concentration. The sensors coated with PU and HEMA have linearity up to 280 and 240 mg/DL glucose concentrations, respectively. It was also shown that the coatings reduce interference from certain body chemicals.

  9. The Tulip GT® airway versus the facemask and Guedel airway: a randomised, controlled, cross-over study by Basic Life Support-trained airway providers in anaesthetised patients.

    PubMed

    Shaikh, A; Robinson, P N; Hasan, M

    2016-03-01

    We performed a randomised, controlled, cross-over study of lung ventilation by Basic Life Support-trained providers using either the Tulip GT® airway or a facemask with a Guedel airway in 60 anaesthetised patients. Successful ventilation was achieved if the provider produced an end-tidal CO2 > 3.5 kPa and a tidal volume > 250 ml in two of the first three breaths, within 60 sec and within two attempts. Fifty-seven (95%) providers achieved successful ventilation using the Tulip GT compared with 35 (58%) using the facemask (p < 0.0001). Comparing the Tulip GT and facemask, the mean (SD) end-tidal CO2 was 5.0 (0.7) kPa vs 2.5 (1.5) kPa, tidal volume was 494 (175) ml vs 286 (186) ml and peak inspiratory pressure was 18.3 (3.4) cmH2 O vs 13.6 (7) cmH2 O respectively (all p < 0.0001). Forty-seven (78%) users favoured the Tulip GT airway. These results are similar to a previous manikin study using the same protocol, suggesting a close correlation between human and manikin studies for this airway device. We conclude that the Tulip GT should be considered as an adjunct to airway management both within and outside hospitals when ventilation is being undertaken by Basic Life Support-trained airway providers. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  10. Cell-to-cell diffusion of glucose in the mammalian heart is disrupted by high glucose. Implications for the diabetic heart.

    PubMed

    De Mello, Walmor C

    2015-06-10

    The cell-to-cell diffusion of glucose in heart cell pairs isolated from the left ventricle of adult Wistar Kyoto rats was investigated. For this, fluorescent glucose was dialyzed into one cell of the pair using the whole cell clamp technique, and its diffusion from cell-to-cell was investigated by measuring the fluorescence in the dialyzed as well as in non-dialyzed cell as a function of time. The results indicated that: 1) glucose flows easily from cell-to-cell through gap junctions; 2) high glucose solution (25 mM) disrupted chemical communication between cardiac cells and abolished the intercellular diffusion of glucose; 3) the effect of high glucose solution on the cell-to-cell diffusion of glucose was drastically reduced by Bis-1 (10(-9)M) which is a PKC inhibitor; 4) intracellular dialysis of Ang II (100 nM) or increment of intracellular calcium concentration (10(-8)M) also inhibited the intercellular diffusion of glucose; 5) high glucose enhances oxidative stress in heart cells; 6) calculation of gap junction permeability (Pj) (cm/s) indicated a value of 0.74±0.08×10(-4) cm/s (5 animals) for the controls and 0.4±0.001×10(-5) cm/s; n=35 (5 animals) (P<0.05) for cells incubated with high glucose solution for 24h; 7) measurements of Pj for cell pairs treated with high glucose plus Bis-1 (10(-9)M) revealed no significant change of Pj (P>0.05); 8) increase of intracellular Ca(2+) concentration (10(-8)M) drastically decreased Pj (Pj=0.3±0.003×10(-5) cm/s). Conclusions indicate that: 1) glucose flows from cell-to-cell in the heart through gap junctions; 2) high glucose (25 mM) inhibited the intercellular diffusion of glucose-an effect significantly reduced by PKC inhibition; 3) high intracellular Ca(2+) concentration abolished the cell-to-cell diffusion of glucose; 4) intracellular Ang II (100 nM) inhibited the intercellular diffusion of glucose indicating that intracrine Ang II, in part activated by high glucose, severely impairs the exchange of glucose

  11. Predictive models of glucose control: roles for glucose-sensing neurones.

    PubMed

    Kosse, C; Gonzalez, A; Burdakov, D

    2015-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate

  12. A disposable tear glucose biosensor--part 3: assessment of enzymatic specificity.

    PubMed

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-09-01

    A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10(-7) versus -3.11 × 10(-7) A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0-30 versus 0-10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or hyperglycemia in blood. © 2011 Diabetes

  13. A Disposable Tear Glucose Biosensor—Part 3: Assessment of Enzymatic Specificity

    PubMed Central

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-01-01

    Background A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Methods Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Results Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10-7 versus -3.11 × 10-7 A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0–30 versus 0–10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Conclusion Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or

  14. Airway obstruction in children with infectious mononucleosis.

    PubMed

    Wohl, D L; Isaacson, J E

    1995-09-01

    Epstein-Barr Virus (EBV) infection generally has a benign clinical course. Upper airway obstruction is a known complication requiring the otolaryngologist's attention. EBV is usually associated with adolescence but has been increasingly documented in younger children. We review 36 pediatric admissions for infectious mononucleosis over a 12-year period at our institution, 11 of which required consultation for airway obstruction. Airway management was based on clinical severity and ranged from monitored observation, with or without nasopharyngeal stenting, to prolonged intubation or emergent tonsilloadenoidectomy. A rare case of a four-year-old with near total upper airway obstruction secondary to panpharyngeal and transglottic inflammatory edema prompted this review and is reported. The otolaryngologist must recognize the potential severity of EBV-related airway compromise and be prepared to manage it.

  15. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation.

    PubMed

    Sverrild, A; Bergqvist, A; Baines, K J; Porsbjerg, C; Andersson, C K; Thomsen, S F; Hoffmann, H J; Gibson, P; Erjefält, J S; Backer, V

    2016-02-01

    Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. Airway hyperresponsiveness to inhaled mannitol was measured in 23 non-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. The proportion of submucosal MCTC was higher in asthmatic individuals with AHR to mannitol compared with asthmatic individuals without AHR (median: 40.3% vs. 18.7%, P = 0.03). Increased submucosal MCTC numbers were associated with increased levels of mRNA for thymic stromal lymphopoietin (TSLP) and CPA3 in asthmatics. Reactivity to mannitol correlated significantly with eosinophils in submucosa (r(s): 0.56, P = 0.01). Airway hyperresponsiveness to inhaled mannitol is associated with an altered submucosal mast cell profile in asthmatic individuals. This mast cell profile is associated with increased levels of TSLP and CPA3. The degree of AHR to mannitol is correlated with the degree of eosinophilic inflammation in the airway submucosa. © 2015 John Wiley & Sons Ltd.

  16. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism

    PubMed Central

    McClain, Donald A.; Abuelgasim, Khadega A.; Nouraie, Mehdi; Salomon-Andonie, Juan; Niu, Xiaomei; Miasnikova, Galina; Polyakova, Lydia A.; Sergueeva, Adelina; Okhotin, Daniel J.; Cherqaoui, Rabia; Okhotin, David; Cox, James E.; Swierczek, Sabina; Song, Jihyun; Simon, M.Celeste; Huang, Jingyu; Simcox, Judith A.; Yoon, Donghoon; Prchal, Josef T.; Gordeuk, Victor R.

    2012-01-01

    In Chuvash polycythemia, a homozygous 598C>T mutation in the von Hippel-Lindau gene (VHL) leads to an R200W substitution in VHL protein, impaired degradation of α-subunits of hypoxia inducible factor (HIF)-1 and HIF-2, and augmented hypoxic responses during normoxia. Chronic hypoxia of high altitude is associated with decreased serum glucose and insulin concentrations. Other investigators reported that HIF-1 promotes cellular glucose uptake by increased expression of GLUT1 and increased glycolysis by increased expression of enzymes such as PDK. On the other hand, inactivation of Vhl in murine liver leads to hypoglycemia associated with a HIF-2-related decrease in the expression of the gluconeogenic enzymes genes Pepck, G6pc, and Glut2. We therefore hypothesized that glucose concentrations are decreased in individuals with Chuvash polycythemia. We found that 88 Chuvash VHLR200W homozygotes had lower random glucose and glycosylated hemoglobin A1c levels than 52 Chuvash subjects with wildtype VHL alleles. Serum metabolomics revealed higher glycerol and citrate levels in the VHLR200W homozygotes. We expanded these observations in VHLR200W homozygote mice and found that they had lower fasting glucose values and lower glucose excursions than wild-type control mice but no change in fasting insulin concentrations. Hepatic expression of Glut2 and G6pc but not Pdk2 was decreased and skeletal muscle expression of Glut1, Pdk1 and Pdk4 was increased. These results suggest that both decreased hepatic gluconeogenesis and increased skeletal uptake and glycolysis contribute to the decreased glucose concentrations. Further study is needed to determine whether pharmacologically manipulating HIF expression might be beneficial for treatment of diabetic patients. PMID:23015148

  17. Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements.

    PubMed

    Yeh, Shu-Jen; Hanna, Charles F; Khalil, Omar S

    2003-06-01

    Most proposed noninvasive methods for glucose measurements do not consider the physiologic response of the body to changes in glucose concentration. Rather than consider the body as an inert matrix for the purpose of glucose measurement, we exploited the possibility that noninvasive measurements of glucose can be approached by investigating their effects on the skin's thermo-optical response. Glucose concentrations in humans were correlated with temperature-modulated localized reflectance signals at wavelengths between 590 and 935 nm, which do not correspond to any near-infrared glucose absorption wavelengths. Optical signal was collected while skin temperature was modulated between 22 and 38 degrees C over 2 h to generate a periodic set of cutaneous vasoconstricting and vasodilating events, as well as a periodic change in skin light scattering. The method was tested in a series of modified meal tolerance tests involving carbohydrate-rich meals and no-meal or high-protein/no-carbohydrate meals. The optical data correlated with glucose values. Changes in glucose concentrations resulting from a carbohydrate-rich meal were predicted with a model based on a carbohydrate-meal calibration run. For diabetic individuals, glucose concentrations were predicted with a standard error of prediction <1.5 mmol/L and a prediction correlation coefficient 0.73 in 80% of the cases. There were run-to-run differences in predicted glucose concentrations. Non-carbohydrate meals showed a high degree of scatter when predicted by a carbohydrate meal calibration model. Blood glucose concentrations alter thermally modulated optical signals, presumably through physiologic and physical effects. Temperature changes drive cutaneous vascular and refractive index responses in a way that mimics the effect of changes in glucose concentration. Run-to-run differences are attributable to site-to-site structural differences.

  18. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a devic...

  19. Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model

    PubMed Central

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Background Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. Methods To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Results Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Conclusions Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases. PMID:22802943

  20. Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model.

    PubMed

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases.

  1. Sea Cucumber Lipid-Soluble Extra Fraction Prevents Ovalbumin-Induced Allergic Airway Inflammation.

    PubMed

    Lee, Da-In; Kang, Shin Ae; Md, Anisuzzaman; Jeong, U-Cheol; Jin, Feng; Kang, Seok-Joong; Lee, Jeong-Yeol; Yu, Hak Sun

    2018-01-01

    In a previous study, our research group demonstrated that sea cucumber (Apostichopus japonicus) extracts ameliorated allergic airway inflammation through CD4 + CD25 + Foxp3 + T (regulatory T; Treg) cell activation and recruitment to the lung. In this study, we aimed to determine which components of sea cucumber contribute to the amelioration of airway inflammation. We used n-hexane fractionation to separate sea cucumber into three phases (n-hexane, alcohol, and solid) and evaluated the ability of each phase to elevate Il10 expression in splenocytes and ameliorate symptoms in mice with ovalbumin (OVA)/alum-induced asthma. Splenocytes treated with the n-hexane phase showed a significant increase in Il10 expression. In the n-hexane phase, 47 fatty acids were identified. Individual fatty acids that comprised at least 5% of the total fatty acids were 16:0, 16:1n-7, 18:0, 18:1n-7, 20:4n-6, and 20:5n-3 (eicosapentaenoic acid). After administering the n-hexane phase to mice with OVA/alum-induced asthma, their asthma symptoms were ameliorated. Several immunomodulatory effects were observed in the n-hexane phase-pretreated group, compared with a vehicle control group. First, eosinophil infiltration and goblet cell hyperplasia were significantly reduced around the airways. Second, the concentrations of Th2-related cytokines (IL-4, IL-5, and IL-13) and Th17-related cytokines (IL-17) were significantly decreased in the spleen and bronchoalveolar lavage fluid (BALF). Finally, the concentrations of TGF-β and IL-10, which are associated with Treg cells, were significantly increased in the BALF and splenocyte culture medium. In conclusion, a fatty acid-rich fraction (n-hexane phase) of sea cucumber extract ameliorated allergic airway inflammation in a mouse model.

  2. Nedocromil sodium modulates nonadrenergic, noncholinergic bronchoconstrictor nerves in guinea pig airways in vitro.

    PubMed

    Verleden, G M; Belvisi, M G; Stretton, C D; Barnes, P J

    1991-01-01

    Nonadrenergic, noncholinergic (NANC) neural bronchoconstrictor responses in guinea pig airways are due to the release of tachykinins from sensory nerves. We have performed an in vitro study using electrical field stimulation (EFS; 40 V, 0.5 ms, 8 Hz for 20 s) in guinea pig bronchi to investigate the effect of nedocromil sodium (NS) on NANC bronchoconstrictor responses. NS inhibited NANC bronchoconstriction in bronchi in a concentration-dependent manner, with a maximum inhibition of 40 +/- 4% (p less than 0.001, n = 6) at 100 microM. Cromolyn sodium, however, produced only 9 +/- 8% inhibition at the same molar concentration (p less than 0.05). NS did not affect the contractile response to substance P, nor did it modulate the cholinergic bronchoconstrictor response to EFS in tracheal smooth muscle. These results indicate that NS may modulate the release of tachykinins from airway sensory nerves.

  3. Noninvasive and Painless Urine Glucose Detection by Using Computer-based Polarimeter

    NASA Astrophysics Data System (ADS)

    Sutrisno; Laksono, Y. A.; Hidayat, N.

    2017-05-01

    Diabetes kills millions of people worldwide each year. It challenges us as researchers to give contribution in early diagnosis to ensure a healthy life. As a matter of fact, common glucose testing devices that have been widely used so far are, at least, glucose meter and urine glucose test strip. The glucose meter ordinarily requires blood taken from patient’s finger. The glucose test strip uses patient’s urine but records unspecific urine glucose level, since the strip only provides the glucose level in some particular ranges. Instead of detecting the glucose level in blood and using the non-specific technique, a noninvasive and painless technique that can detect glucose level accurately will provide a more feasible approach for diabetes diagnosis. The noninvasive and painless urine glucose level monitoring by means of computer-based polarimeter is presented in this paper. The instrument consisted of a power source, a sample box, a light sensor, a polarizer, an analyzer, an analog to digital converter (ADC), and a computer. The concentration of urine glucose concentration was evaluated from the curve of the change in detected optical rotation angle and output potential by the computer-based polarimeter. Statistical analyses by means of Gaussian fitting and linear regression were applied to investigate the rotation angle and urine glucose concentration, respectively. From our experiment, the urine glucose level, measured by glucose test strips, of the normal patient was 100 mg/dl, and the diabetic patient was 500 mg/dl. Our polarimeter even read more precise values for the urine glucose concentrations of those normal and diabetic of the same patients, i.e. 50.61 mg/dl and 502.41 mg/dl, respectively. In other words, the results showed that our polarimeter was able to quantitatively measure the urine glucose level more accurate than urine glucose test strips. Hence, this computer-based polarimeter could be used as an alternative for early detection of urine

  4. Tracking Polymicrobial Metabolism in Cystic Fibrosis Airways: Pseudomonas aeruginosa Metabolism and Physiology Are Influenced by Rothia mucilaginosa-Derived Metabolites.

    PubMed

    Gao, Bei; Gallagher, Tara; Zhang, Ying; Elbadawi-Sidhu, Mona; Lai, Zijuan; Fiehn, Oliver; Whiteson, Katrine L

    2018-04-25

    Due to a lack of effective immune clearance, the airways of cystic fibrosis patients are colonized by polymicrobial communities. One of the most widespread and destructive opportunistic pathogens is Pseudomonas aeruginosa ; however, P. aeruginosa does not colonize the airways alone. Microbes that are common in the oral cavity, such as Rothia mucilaginosa , are also present in cystic fibrosis patient sputum and have metabolic capacities different from those of P. aeruginosa Here we examine the metabolic interactions of P. aeruginosa and R. mucilaginosa using stable-isotope-assisted metabolomics. Glucose-derived 13 C was incorporated into glycolysis metabolites, namely, lactate and acetate, and some amino acids in R. mucilaginosa grown aerobically and anaerobically. The amino acid glutamate was unlabeled in the R. mucilaginosa supernatant but incorporated the 13 C label after P. aeruginosa was cross-fed the R. mucilaginosa supernatant in minimal medium and artificial-sputum medium. We provide evidence that P. aeruginosa utilizes R. mucilaginosa -produced metabolites as precursors for generation of primary metabolites, including glutamate. IMPORTANCE Pseudomonas aeruginosa is a dominant and persistent cystic fibrosis pathogen. Although P. aeruginosa is accompanied by other microbes in the airways of cystic fibrosis patients, few cystic fibrosis studies show how P. aeruginosa is affected by the metabolism of other bacteria. Here, we demonstrate that P. aeruginosa generates primary metabolites using substrates produced by another microbe that is prevalent in the airways of cystic fibrosis patients, Rothia mucilaginosa These results indicate that P. aeruginosa may get a metabolic boost from its microbial neighbor, which might contribute to its pathogenesis in the airways of cystic fibrosis patients.

  5. Recurrent airway obstructions in a patient with benign tracheal stenosis and a silicone airway stent: a case report

    PubMed Central

    Sriram, KB; Robinson, PC

    2008-01-01

    Airway stents (silicone and metal stents) are used to treat patients with benign tracheal stenosis, who are symptomatic and in whom tracheal surgical reconstruction has failed or is not appropriate. However airway stents are often associated with complications such as migration, granuloma formation and mucous hypersecretion, which cause significant morbidity, especially in patients with benign tracheal stenosis and relatively normal life expectancy. We report a patient who had frequent critical airway obstructions over 8 years due to granuloma and mucus hypersecretion in a silicone airway stent. The problem was resolved when the silicone stent was removed and replaced with a covered self expanding metal stent. PMID:18840299

  6. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    PubMed Central

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  7. CMOS image sensors as an efficient platform for glucose monitoring.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo; Choi, Cheol Soo

    2013-10-07

    Complementary metal oxide semiconductor (CMOS) image sensors have been used previously in the analysis of biological samples. In the present study, a CMOS image sensor was used to monitor the concentration of oxidized mouse plasma glucose (86-322 mg dL(-1)) based on photon count variation. Measurement of the concentration of oxidized glucose was dependent on changes in color intensity; color intensity increased with increasing glucose concentration. The high color density of glucose highly prevented photons from passing through the polydimethylsiloxane (PDMS) chip, which suggests that the photon count was altered by color intensity. Photons were detected by a photodiode in the CMOS image sensor and converted to digital numbers by an analog to digital converter (ADC). Additionally, UV-spectral analysis and time-dependent photon analysis proved the efficiency of the detection system. This simple, effective, and consistent method for glucose measurement shows that CMOS image sensors are efficient devices for monitoring glucose in point-of-care applications.

  8. A mainstream monitoring system for respiratory CO2 concentration and gasflow.

    PubMed

    Yang, Jiachen; Chen, Bobo; Burk, Kyle; Wang, Haitao; Zhou, Jianxiong

    2016-08-01

    Continuous respiratory gas monitoring is an important tool for clinical monitoring. In particular, measurement of respiratory [Formula: see text] concentration and gasflow can reflect the status of a patient by providing parameters such as volume of carbon dioxide, end-tidal [Formula: see text] respiratory rate and alveolar deadspace. However, in the majority of previous work, [Formula: see text] concentration and gasflow have been studied separately. This study focuses on a mainstream system which simultaneously measures respiratory [Formula: see text] concentration and gasflow at the same location, allowing for volumetric capnography to be implemented. A non-dispersive infrared monitor is used to measure [Formula: see text] concentration and a differential pressure sensor is used to measure gasflow. In developing this new device, we designed a custom airway adapter which can be placed in line with the breathing circuit and accurately monitor relevant respiratory parameters. Because the airway adapter is used both for capnography and gasflow, our system reduces mechanical deadspace. The finite element method was used to design the airway adapter which can provide a strong differential pressure while reducing airway resistance. Statistical analysis using the coefficient of variation was performed to find the optimal driving voltage of the pressure transducer. Calibration between variations and flows was used to avoid pressure signal drift. We carried out targeted experiments using the proposed device and confirmed that the device can produce stable signals.

  9. Parsing Glucose Entry into the Brain: Novel Findings Obtained with Enzyme-Based Glucose Biosensors

    PubMed Central

    2015-01-01

    Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between “active” and “passive” glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the “neuronal” hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism. PMID:25490002

  10. Glucose and pyruvate metabolism in preimplantation blastocysts from normal and diabetic rats.

    PubMed

    Dufrasnes, E; Vanderheyden, I; Robin, D; Delcourt, J; Pampfer, S; De Hertogh, R

    1993-05-01

    Glucose metabolism was analysed in day-5 rat blastocysts incubated in the presence of [5-3H]-, [6-14C]- or [U-14C]glucose. Glycolysis, quantified by 3H2O recovery rate, was the main pathway of glucose utilization by fresh (11.5 +/- 0.36 pmol per embryo h-1) or cultured (24 h) blastocysts (20.4 +/- 0.6 pmol per embryo h-1). Glucose consumption rate was almost saturated at a medium glucose concentration of 0.28 mmol l-1 (Km: 0.17 mmol l-1; Vmax: 23 pmol per embryo h-1). A further 10% increase in glucose utilization was obtained with a tenfold higher glucose concentration (3 mmol l-1). Phloretin completely abolished the rapid component of glucose utilization kinetics, suggesting the existence of a Na(+)-independent glucose transport system. Less than 1% of [6-14C]glucose consumed by cultured blastocysts was oxidized through the Krebs cycle. [1-14C]pyruvate, however, was oxidized at a rate of 2 pmol per embryo h-1 by fresh blastocysts. The pentose-phosphate pathway accounted for about 2% of glucose utilization. One to two per cent of the total glucose metabolized in 24 h was retained in macromolecules. Insulin had no effect on glucose uptake, utilization, incorporation and turnover, or on pyruvate oxidation. Blastocysts from diabetic mothers utilized glucose at a rate similar to that of normal blastocysts. These results show that glucose is actively taken up by rat blastocysts and utilized mainly through the Embden-Meyerhof pathway, which is rapidly saturated at low glucose concentrations. Retention of glucose-derived products in macromolecules, although relatively small, may modulate the effect of high glucose concentrations on embryo growth.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  12. Development and testing of a fluorescence biosensor for glucose sensing

    NASA Astrophysics Data System (ADS)

    Aloraefy, Mamdouh; Pfefer, Joshua; Ramella-Roman, Jessica; Sapsford, Kim

    2012-06-01

    Rapid, accurate, and minimally-invasive biosensors for glucose measurement have the potential to enhance management of diabetes mellitus and improve patient outcome in intensive care settings. Recent studies have indicated that implantable biosensors based on Förster Resonance Energy Transfer (FRET) can provide high sensitivity in quantifying glucose concentrations. However, standard approaches for determining the potential for interference from other biological constituents have not been established. The aim of this work was to design and optimize a FRET-based glucose sensor and assess its specificity to glucose. A sensor based on competitive binding between concanavalin A and dextran, labeled with long-wavelength acceptor and donor fluorophores, was developed. This process included optimization of dextran molecular weight and donor concentration, acceptor to donor ratio, and hydrogel concentration, as well as the number of polymer layers for encapsulation. The biosensor performance was characterized in terms of its response to clinically relevant glucose concentrations. The potential for interference and the development of test methods to evaluate this effect were studied using a potential clinical interferent, maltose. Results indicated that our biosensor had a prediction accuracy of better than 11% and that the robustness to maltose was highly dependent on glucose level.

  13. Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals.

    PubMed

    Freckmann, Guido; Hagenlocher, Sven; Baumstark, Annette; Jendrike, Nina; Gillen, Ralph C; Rössner, Katja; Haug, Cornelia

    2007-09-01

    This study investigated continuous glucose profiles in nondiabetic subjects. Continuous interstitial glucose measurement was performed under everyday life conditions (2 days) and after ingestion of four meals with standardized carbohydrate content (50 grams), but with different types of carbohydrates and variable protein and fat content. Twenty-four healthy volunteers (12 female, 12 male, age 27.1 +/- 3.6 years) participated in the study. Each subject wore two microdialysis devices (SCGM1, Roche Diagnostics) simultaneously. The mean 24-hour interstitial glucose concentration under everyday life conditions was 89.3 +/- 6.2 mg/dl (mean +/- SD, n = 21), and mean interstitial glucose concentrations at daytime and during the night were 93.0 +/- 7.0 and 81.8 +/- 6.3 mg/dl, respectively. The highest postprandial glucose concentrations were observed after breakfast: 132.3 +/- 16.7 mg/dl (range 101-168 mg/dl); peak concentrations after lunch and dinner were 118.2 +/- 13.4 and 123.0 +/- 16.9 mg/dl, respectively. Mean time to peak glucose concentration was between 46 and 50 minutes. After ingestion of standardized meals with fast absorption characteristics, peak interstitial glucose concentrations were 133.2 +/- 14.4 and 137.2 +/- 21.1 mg/dl, respectively. Meals with a higher fiber, protein, and fat content induced a smaller increase and a slower decrease of postprandial glucose concentrations with peak values of 99.2 +/- 10.5 and 122.1 +/- 20.4 mg/dl, respectively. This study provided continuous glucose profiles in nondiabetic subjects and demonstrated that differences in meal composition are reflected in postprandial interstitial glucose concentrations. Regarding the increasing application of continuous glucose monitoring in diabetic patients, these data suggest that detailed information about the ingested meals is important for adequate interpretation of postprandial glucose profiles.

  14. Effects of conventional tobacco smoke and nicotine-free cigarette smoke on airway inflammation, airway remodelling and lung function in a triple allergen model of severe asthma.

    PubMed

    Tilp, C; Bucher, H; Haas, H; Duechs, M J; Wex, E; Erb, K J

    2016-07-01

    Patients with asthma who smoke have reduced lung function, increased exacerbation rates and increased steroid resistance compared to non-smoking asthmatics. In mice, cigarette smoke has been reported to have both pro- and anti-Th2 response effects. We hypothesized that combining tobacco cigarette smoke (tCS) with allergen exposure increases inflammation, airway remodelling and lung function in mice. To test this hypothesis, we combined a severe triple allergen model with tCS exposure and investigated whether effects were due to Toll-like receptor 4 signalling and/or nicotine and also observed when nicotine-free cigarettes were used. Mice were sensitized with ovalbumin, cockroach and house dust mite allergen in alum followed by intratracheal challenges with allergen twice a week for 6 weeks or additionally exposed to tCS during the allergen challenge period. Nicotine or nicotine-free herbal cigarette smoke was also applied to allergen challenged mice. tCS significantly reduced eosinophil numbers, IL-4 and IL-5 concentrations in the lung, total and allergen-specific IgE in serum, improved lung function and reduced collagen I levels. With the exception of collagen I all parameters reduced by tobacco cigarette smoke were also reduced in Toll-like receptor 4-deficient mice. Nicotine-free cigarette smoke also had significant anti-inflammatory effects on eosinophils, IL-4 and IL-5 concentrations in the lung and reduced airway hyperreactivity, albeit weaker than tobacco smoke. Applying nicotine alone also reduced Th2 cytokine levels and eosinophil numbers in the airways. Our experiments show that tCS exposure reduces allergen-induced Th2 response in the lung and associated collagen I production and development of airway hyperreactivity. With the exception on collagen I formation, these effects were not dependent on Toll-like receptor 4. The observed anti-Th2 effects of both nicotine and nicotine-free herbal cigarette smoke together suggests that tCS reduces the Th2

  15. Pressure-volume behavior of the upper airway.

    PubMed

    Fouke, J M; Teeter, J P; Strohl, K P

    1986-09-01

    The study was performed to investigate the relationship between force generation and upper airway expansion during respiratory efforts by upper airway muscles. In 11 anesthetized dogs we isolated the upper airway (nasal, oral, pharyngeal, and laryngeal regions) by transecting the cervical trachea and sealing the nasal and oral openings. During spontaneous respiratory efforts the pressure within the sealed upper airway, used as an index of dilating force, decreased during inspiration. On alternate breaths the upper airway was opened to a pneumotachograph, and an increase in volume occurred, also during inspiration. Progressive hyperoxic hypercapnia produced by rebreathing increased the magnitude of change in pressure and volume. At any level of drive, peak pressure or volume occurred at the same point during inspiration. At any level of drive, volume and pressure changes increased with end-expiratory occlusion of the trachea. The force-volume relationship determined from measurements during rebreathing was compared with pressure-volume curves performed by passive inflation of the airway while the animal was apneic. The relationship during apnea was 1.06 +/- 0.55 (SD) ml/cmH2O, while the force-volume relationship from rebreathing trials was -1.09 +/- 0.45 ml/cmH2O. We conclude that there is a correspondence between force production and volume expansion in the upper airway during active respiratory efforts.

  16. Exercise-induced bronchoconstriction alters airway nitric oxide exchange in a pattern distinct from spirometry.

    PubMed

    Shin, Hye-Won; Schwindt, Christina D; Aledia, Anna S; Rose-Gottron, Christine M; Larson, Jennifer K; Newcomb, Robert L; Cooper, Dan M; George, Steven C

    2006-12-01

    Exhaled nitric oxide (NO) is altered in asthmatic subjects with exercise-induced bronchoconstriction (EIB). However, the physiological interpretation of exhaled NO is limited because of its dependence on exhalation flow and the inability to distinguish completely proximal (large airway) from peripheral (small airway and alveolar) contributions. We estimated flow-independent NO exchange parameters that partition exhaled NO into proximal and peripheral contributions at baseline, postexercise challenge, and postbronchodilator administration in steroid-naive mild-intermittent asthmatic subjects with EIB (24-43 yr old, n = 9) and healthy controls (20-31 yr old, n = 9). The mean +/- SD maximum airway wall flux and airway diffusing capacity were elevated and forced expiratory flow, midexpiratory phase (FEF(25-75)), forced expiratory volume in 1 s (FEV(1)), and FEV(1)/forced vital capacity (FVC) were reduced at baseline in subjects with EIB compared with healthy controls, whereas the steady-state alveolar concentration of NO and FVC were not different. Compared with the response of healthy controls, exercise challenge significantly reduced FEV(1) (-23 +/- 15%), FEF(25-75) (-37 +/- 18%), FVC (-12 +/- 12%), FEV(1)/FVC (-13 +/- 8%), and maximum airway wall flux (-35 +/- 11%) relative to baseline in subjects with EIB, whereas bronchodilator administration only increased FEV(1) (+20 +/- 21%), FEF(25-75) (+56 +/- 41%), and FEV(1)/FVC (+13 +/- 9%). We conclude that mild-intermittent steroid-naive asthmatic subjects with EIB have altered airway NO exchange dynamics at baseline and after exercise challenge but that these changes occur by distinct mechanisms and are not correlated with alterations in spirometry.

  17. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle

    PubMed Central

    Santiago, Ammy M.; Clegg, Deborah J.; Routh, Vanessa H.

    2016-01-01

    Objective 17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). Methods These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. Results The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. Conclusion

  18. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle.

    PubMed

    Santiago, Ammy M; Clegg, Deborah J; Routh, Vanessa H

    2016-12-01

    17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. These data suggest that physiological

  19. Optical coherence tomography for blood glucose monitoring through signal attenuation

    NASA Astrophysics Data System (ADS)

    De Pretto, Lucas R.; Yoshimura, Tania M.; Ribeiro, Martha S.; de Freitas, Anderson Z.

    2016-03-01

    Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work, we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose. Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was observed between all groups (p<0.001). This work opens the possibility towards a non-invasive diagnostic modality using OCT for glycemic control, which eliminates the use of analytes and/or test strips, as in the case with commercially available glucometers.

  20. Durability of Silicone Airway Stents in the Management of Benign Central Airway Obstruction.

    PubMed

    Karush, Justin M; Seder, Christopher W; Raman, Anish; Chmielewski, Gary W; Liptay, Michael J; Warren, William H; Arndt, Andrew T

    2017-10-01

    The literature is devoid of a comprehensive analysis of silicone airway stenting for benign central airway obstruction (BCAO). With the largest series in the literature to date, we aim to demonstrate the safety profile, pattern of re-intervention, and duration of silicone airway stents. An institutional database was used to identify patients with BCAO who underwent rigid bronchoscopy with dilation and silicone stent placement between 2002 and 2015 at Rush University Medical Center. During the study period, 243 stents were utilized in 63 patients with BCAO. Pure tracheal stenosis was encountered in 71% (45/63), pure tracheomalacia in 11% (7/63), and a hybrid of both in 17% (11/63). Median freedom from re-intervention was 104 (IQR 167) days. Most common indications for re-intervention include mucus accumulation (60%; 131/220), migration (28%; 62/220), and intubation (8%; 18/220). The most common diameters of stent placed were 12 mm (94/220) and 14 mm (96/220). The most common lengths utilized were 30 mm (60/220) and 40 mm (77/220). Duration was not effected by stent size when placed for discrete stenosis. However, 14 mm stents outperformed 12 mm when tracheomalacia was present (157 vs. 37 days; p = 0.005). Patients with a hybrid stenosis fared better when longer stents were used (60 mm stents outlasted 40 mm stents 173 vs. 56 days; p = 0.05). Rigid bronchoscopy with silicone airway stenting is a safe and effective option for the management of benign central airway obstruction. Our results highlight several strategies to improve stent duration.

  1. Topical airway anesthesia for awake fiberoptic intubation: Comparison between airway nerve blocks and nebulized lignocaine by ultrasonic nebulizer

    PubMed Central

    Gupta, Babita; Kohli, Santvana; Farooque, Kamran; Jalwal, Gopal; Gupta, Deepak; Sinha, Sumit; Chandralekha

    2014-01-01

    Overview: Awake fiberoptic bronchoscope (FOB) guided intubation is the gold standard of airway management in patients with cervical spine injury. It is essential to sufficiently anesthetize the upper airway before the performance of awake FOB guided intubation in order to ensure patient comfort and cooperation. This randomized controlled study was performed to compare two methods of airway anesthesia, namely ultrasonic nebulization of local anesthetic and performance of airway blocks. Materials and Methods: A total of 50 adult patients with cervical spine injury were randomly allocated into two groups. Group L received airway anesthesia through ultrasonic nebulization of 10 ml of 4% lignocaine and Group NB received airway blocks (bilateral superior laryngeal and transtracheal recurrent laryngeal) each with 2 ml of 2% lignocaine and viscous lignocaine gargles. FOB guided orotracheal intubation was then performed. Hemodynamic variables at baseline and during the procedure, patient recall, vocal cord visibility, ease of intubation, coughing/gagging episodes, and signs of lignocaine toxicity were noted. Results: The observations did not reveal any significant differences in demographics or hemodynamic parameters at any time during the study. However, the time taken for intubation was significantly lower in Group NB as compared with the Group L. Group L had an increased number of coughing/gagging episodes as compared with Group NB. Vocal cord visibility and ease of intubation were better in patients who received airway blocks and hence the amount of supplemental lignocaine used was less in this group. Overall patient comfort was better in Group NB with fewer incidences of unpleasant recalls as compared with Group L. Conclusion: Upper airway blocks provide better quality of anesthesia than lignocaine nebulization as assessed by patient recall of procedure, coughing/gagging episodes, ease of intubation, vocal cord visibility, and time taken to intubate. PMID:25538514

  2. Post-glucose load changes of plasma key metabolite and insulin concentrations during pregnancy and lactation in ewes with different susceptibility to pregnancy toxaemia.

    PubMed

    Duehlmeier, R; Fluegge, I; Schwert, B; Ganter, M

    2013-10-01

    Insulin resistance during late gestation may act as a predisposing factor of ovine pregnancy toxaemia (OPT). To evaluate the insulin action on energy metabolism in ewes with different susceptibilities to OPT, intravenous glucose tolerance tests (1 mmol glucose/kg body weight) were performed in 5.6 ± 0.7 year old, slightly underfed German Blackheaded Mutton ewes [high-risk (HR) ewes] and 2.5 year old, overnourished Finnish Landrace ewes [low-risk (LR) ewes] during mid and late pregnancy, during early lactation and during the dry period. Plasma samples were analysed for glucose, insulin, non-esterified fatty acids (NEFA) and β-hydroxybutyrate (β-HB). The glucose elimination rate and the glucose-stimulated first-phase insulin secretion were significantly (p < 0.05) lower in the HR, in relation to the LR group combining the data of all gestational stages. The basal rate of lipolysis was significantly increased in the HR ewes during late pregnancy, but the NEFA clearance after the glucose load was similar in both groups during all reproductive stages. Plasma β-HB concentrations decreased only in the LR ewes after the glucose load during late pregnancy. Results indicate an insulin resistance in the HR ewes regarding the glucose utilization and the ketone body formation during late pregnancy. The insulin resistance in the HR ewes may represent one predisposing factor responsible for the susceptibility to OPT. Further scientific work is necessary to elucidate whether this insulin resistance was due to breed, age or nutritional state. © 2012 Blackwell Verlag GmbH.

  3. Impaired brain energy gain upon a glucose load in obesity.

    PubMed

    Wardzinski, Ewelina K; Kistenmacher, Alina; Melchert, Uwe H; Jauch-Chara, Kamila; Oltmanns, Kerstin M

    2018-03-06

    There is evidence that the brain's energy status is lowered in obesity despite of chronic hypercaloric nutrition. The underlying mechanisms are unknown. We hypothesized that the brain of obese people does not appropriately generate energy in response to a hypercaloric supply. Glucose was intravenously infused in 17 normal weights and 13 obese participants until blood glucose concentrations reached the postprandial levels of 7 mmol/L and 10 mmol/L. Changes in cerebral adenosine triphosphate (ATP) and phosphocreatine (PCr) content were measured by 31 phosphorus magnetic resonance spectroscopy and stress hormonal measures regulating glucose homeostasis were monitored. Because vitamin C is crucial for a proper neuronal energy synthesis we determined circulating concentrations during the experimental testing. Cerebral high-energy phosphates were increased at blood glucose levels of 7 mmol/L in normal weights, which was completely missing in the obese. Brain energy content moderately raised only at blood glucose levels of 10 mmol/L in obese participants. Vitamin C concentrations generally correlated with the brain energy content at blood glucose concentrations of 7 mmol/L. Our data demonstrate an inefficient cerebral energy gain upon a glucose load in obese men, which may result from a dysfunctional glucose transport across the blood-brain barrier or a downregulated energy synthesis in mitochondrial oxidation processes. Our finding offers an explanation for the chronic neuroenergetic deficiency and respectively missing satiety perception in obesity. Copyright © 2018. Published by Elsevier Inc.

  4. Airway basement membrane perimeter in human airways is not a constant; potential implications for airway remodeling in asthma.

    PubMed

    McParland, Brent E; Paré, Peter D; Johnson, Peter R A; Armour, Carol L; Black, Judith L

    2004-08-01

    Many studies that demonstrate an increase in airway smooth muscle in asthmatic patients rely on the assumption that bronchial internal perimeter (P(i)) or basement membrane perimeter (P(bm)) is a constant, i.e., not affected by fixation pressure or the degree of smooth muscle shortening. Because it is the basement membrane that has been purported to be the indistensible structure, this study examines the assumption that P(bm) is not affected by fixation pressure. P(bm) was determined for the same human airway segment (n = 12) fixed at distending pressures of 0 cmH(2)O and 21 cmH(2)O in the absence of smooth muscle tone. P(bm) for the segment fixed at 0 cmH(2)O was determined morphometrically, and the P(bm) for the same segment, had the segment been fixed at 21 cmH(2)O, was predicted from knowing the luminal volume and length of the airway when distended to 21 cmH(2)O (organ bath-derived P(i)). To ensure an accurate transformation of the organ bath-derived P(i) value to a morphometry-derived P(bm) value, had the segment been fixed at 21 cmH(2)O, the relationship between organ bath-derived P(i) and morphometry-derived P(bm) was determined for five different bronchial segments distended to 21 cmH(2)O and fixed at 21 cmH(2)O (r(2) = 0.99, P < 0.0001). Mean P(bm) for bronchial segments fixed at 0 cmH(2)O was 9.4 +/- 0.4 mm, whereas mean predicted P(bm), had the segments been fixed at 21 cmH(2)O, was 14.1 +/- 0.5 mm (P < 0.0001). This indicates that P(bm) is not a constant when isolated airway segments without smooth muscle tone are fixed distended to 21 cmH(2)O. The implication of these results is that the increase in smooth muscle mass in asthma may have been overestimated in some previous studies. Therefore, further studies are required to examine the potential artifact using whole lungs with and without abolition of airway smooth muscle tone and/or inflation.

  5. Microdialysis of glucose in subcutaneous adipose tissue up to 3 weeks in healthy volunteers.

    PubMed

    Wientjes, K J; Vonk, P; Vonk-van Klei, Y; Schoonen, A J; Kossen, N W

    1998-09-01

    To measure possible changes in dialysate glucose concentrations over time, to validate the diffusional model for glucose transport from tissue to the probe, and to evaluate the actual glucose concentration in adipose tissue. Glucose concentrations in the subcutaneous adipose tissue of five healthy subjects (age 25 +/- 2.7 years, BMI 23.2 +/- 2.3 kg/m2 [mean +/- SD]) were measured by the microdialysis technique and compared with blood glucose. We applied microdialysis probes with hollow fibers of various membrane length (10-35 mm), used eight perfusion flow rates (0.5-20 microl/min), and perfused four glucose solutions (0.0, 2.8, 8.3, 11.1 mmol/l). After implantation, a substantial decrease in glucose recovery to the lowest value of 26 +/- 10% of the final plateau value was noted during the first few hours (n = 4). Recovery increased and stabilized after 5-9 days at 84.0 +/- 7.4% of capillary blood glucose when a flow rate of 0.5 microl/min was applied. According to the zero net-flux method, the glucose concentration in equilibrium, Cequi, with the surrounding tissue can be obtained. This concentration also decreases; however, 1 h after recovery, Cequi increases again over 1 or 2 days to a stable value that is not significantly different from the measured capillary blood glucose (P < 0.05). Using various perfusion flow rates and probes (membrane length 10-35 mm), it is shown that diffusion is the rate-limiting process for glucose transport through tissue. Insertion of the microdialysis probes causes damage to the adipose cells and the vascular bed around the probe. Glucose recovery decreases because of a lower blood supply. In 5-9 days, glucose recovery increases; apparently, this time is needed to repair the microstructure of tissue around the probe. After stabilization of the recovery, no loss of probe permeability, which is due to biocompatibility problems, was seen. The change during the 2 days in equilibrium concentration is probably caused by an inflammation

  6. Substance P released from intrinsic airway neurons contributes to ozone-enhanced airway hyperresponsiveness in ferret trachea.

    PubMed

    Wu, Zhong-Xin; Satterfield, Brian E; Dey, Richard D

    2003-08-01

    Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.

  7. Airway fires during surgery: Management and prevention

    PubMed Central

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires. PMID:27006554

  8. Airway fires during surgery: Management and prevention.

    PubMed

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires.

  9. Association between glucose intolerance and bacterial colonisation in an adult population with cystic fibrosis, emergence of Stenotrophomonas maltophilia.

    PubMed

    Lehoux Dubois, C; Boudreau, V; Tremblay, F; Lavoie, A; Berthiaume, Y; Rabasa-Lhoret, R; Coriati, A

    2017-05-01

    Diabetes is common in cystic fibrosis (CF). Glucose can be detected in the airway when the blood glucose is elevated, which favours bacterial growth. We investigated the relationship between dysglycemia and lung pathogens in CF. Cross-sectional and prospective analysis of CF patients (N=260) who underwent a 2h-oral glucose tolerance test. Clinical data was collected. Stenotrophomonas maltophilia (S. maltophilia) was the sole bacteria increased in dysglycemic (AGT: 20.2%, CFRD: 21.6%) patients compared to normotolerants (NGT: 8.7%). S. maltophilia positive patients with dysglycemia had more pulmonary exacerbation events compared to NGTs (1.22 vs 0.63, P=0.003). The interaction between S. maltophilia colonisation and glucose tolerance status significantly increases the risk of lower lung function (P=0.003). Its growth was not affected by the evolution of the glucose tolerance after three years follow-up. Prevalence of S. maltophilia was higher in dysglycemic patients, supporting the idea that S. maltophilia is a marker of disease severity in CF. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  10. Airway somatosensory deficits and dysphagia in Parkinson's disease.

    PubMed

    Hammer, Michael J; Murphy, Caitlin A; Abrams, Trisha M

    2013-01-01

    Individuals with Parkinson's disease (PD) often experience substantial impairment of swallow control, and are typically unaware of the presence or severity of their impairments suggesting that these individuals may also experience airway sensory deficits. However, the degree to which impaired swallow function in PD may relate to airway sensory deficits has yet to be formally tested. The purpose of this study was to examine whether airway sensory function is associated with swallow impairment in PD. Eighteen PD participants and 18 healthy controls participated in this study and underwent endoscopic assessment of airway somatosensory function, endoscopic assessment of swallow function, and clinical ratings of swallow and disease severity. PD participants exhibited abnormal airway somatosensory function and greater swallow impairment compared with healthy controls. Swallow and sensory deficits in PD were correlated with disease severity. Moreover, PD participants reported similar self-rated swallow function as healthy controls, and swallow deficits were correlated with sensory function suggesting an association between impaired sensory function and poor self-awareness of swallow deficits in PD. These results suggest that control of swallow is influenced by airway somatosensory function, that swallow-related deficits in PD are related to abnormal somatosensation, and that swallow and airway sensory function may degrade as a function of disease severity. Therefore, the basal ganglia and related neural networks may play an important role to integrate airway sensory input for swallow-related motor control. Furthermore, the airway deficits observed in PD suggest a disintegration of swallow-related sensory and motor control.

  11. Improving the safety of remote site emergency airway management.

    PubMed

    Wijesuriya, Julian; Brand, Jonathan

    2014-01-01

    Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications

  12. Simulation of an enzyme-based glucose sensor

    NASA Astrophysics Data System (ADS)

    Sha, Xianzheng; Jablecki, Michael; Gough, David A.

    2001-09-01

    An important biosensor application is the continuous monitoring blood or tissue fluid glucose concentration in people with diabetes. Our research focuses on the development of a glucose sensor based on potentiostatic oxygen electrodes and immobilized glucose oxidase for long- term application as an implant in tissues. As the sensor signal depends on many design variables, a trial-and-error approach to sensor optimization can be time-consuming. Here, the properties of an implantable glucose sensor are optimized by a systematic computational simulation approach.

  13. Resistin modulates glucose uptake and glucose transporter-1 (GLUT-1) expression in trophoblast cells.

    PubMed

    Di Simone, Nicoletta; Di Nicuolo, Fiorella; Marzioni, Daniela; Castellucci, Mario; Sanguinetti, Maurizio; D'lppolito, Silvia; Caruso, Alessandro

    2009-02-01

    The adipocytokine resistin impairs glucose tolerance and insulin sensitivity. Here, we examine the effect of resistin on glucose uptake in human trophoblast cells and we demonstrate that transplacental glucose transport is mediated by glucose transporter (GLUT)-1. Furthermore, we evaluate the type of signal transduction induced by resistin in GLUT-1 regulation. BeWo choriocarcinoma cells and primary cytotrophoblast cells were cultured with increasing resistin concentrations for 24 hrs. The main outcome measures include glucose transport assay using [(3)H]-2-deoxy glucose, GLUT-1 protein expression by Western blot analysis and GLUT-1 mRNA detection by quantitative real-time RT-PCR. Quantitative determination of phospho(p)-ERK1/2 in cell lysates was performed by an Enzyme Immunometric Assay and Western blot analysis. Our data demonstrate a direct effect of resistin on normal cytotrophoblastic and on BeWo cells: resistin modulates glucose uptake, GLUT-1 messenger ribonucleic acid (mRNA) and protein expression in placental cells. We suggest that ERK1/2 phosphorylation is involved in the GLUT-1 regulation induced by resistin. In conclusion, resistin causes activation of both the ERK1 and 2 pathway in trophoblast cells. ERK1 and 2 activation stimulated GLUT-1 synthesis and resulted in increase of placental glucose uptake. High resistin levels (50-100 ng/ml) seem able to affect glucose-uptake, presumably by decreasing the cell surface glucose transporter.

  14. Airway management after maxillectomy with free flap reconstruction.

    PubMed

    Brickman, Daniel S; Reh, Douglas D; Schneider, Daniel S; Bush, Ben; Rosenthal, Eben L; Wax, Mark K

    2013-08-01

    Maxillectomy defects require complex 3-dimensional reconstructions often best suited to microvascular free tissue transfer. Postoperative airway management during this procedure has little discussion in the literature and is often dictated by surgical dogma. The purpose of this article was to review our experience in order to evaluate the effect of airway management on perioperative outcomes in patients undergoing maxillectomy with free flap reconstruction. A retrospective chart review was performed on patients receiving maxillectomy with microvascular reconstruction at 2 institutions between 1999 and 2011. Patient's airways were managed with or without elective tracheotomy at the surgical team's discretion and different perioperative outcomes were measured. The primary outcome was incidence of airway complication including pneumonia and need for further airway intervention. Secondary outcome was measured as factors leading to perioperative performance of the tracheotomy. Seventy-nine of 143 patients received elective tracheotomy perioperatively. The incidence of airway complication was equivalent between groups (10.1% vs 9.4%; p = .89). Patients with cardiopulmonary comorbidities were more likely to receive perioperative tracheotomy (74.1% vs 50.9%; p = .03) without a difference in airway complications. Other patient cofactors did not have an impact on perioperative tracheotomy or airway complication rate. Elective tracheotomy may safely be avoided in a subset of patients undergoing maxillectomy with microvascular reconstruction. Elective tracheotomy should be considered in patients with cardiopulmonary risk factors. Copyright © 2012 Wiley Periodicals, Inc.

  15. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults.

    PubMed

    Riby, Leigh M; McLaughlin, Jennifer; Riby, Deborah M; Graham, Cheryl

    2008-11-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addition, risk factors associated with the development of poor glucose regulation in middle-aged adults were considered. In a repeated measures design, thirty-three middle-aged adults (aged 35-55 years) performed a battery of memory and non-memory tasks after either 25 g or 50 g glucose or a sweetness matched placebo drink. To assess the impact of individual differences in glucose regulation, blood glucose measurements were taken on four occasions during testing. A lifestyle and diet questionnaire was also administered. Consistent with previous research, episodic memory ability benefited from glucose ingestion when task demands were high. Blood glucose concentration was also found to predict performance across a number of cognitive domains. Interestingly, the risk factors associated with poor glucose regulation were linked to dietary impacts traditionally associated with poor health, e.g. the consumption of high-sugar sweets and drinks. The research replicates earlier work suggesting that task demands are critical to the glucose facilitation effect. Importantly, the data demonstrate clear associations between elevated glycaemia and relatively poor cognitive performance, which may be partly due to the effect of dietary and lifestyle factors.

  16. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells.

    PubMed

    Bai, Yan; Edelmann, Martin; Sanderson, Michael J

    2009-08-01

    The relative contribution of inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) and ryanodine receptors (RyRs) to agonist-induced Ca(2+) signaling in mouse airway smooth muscle cells (SMCs) was investigated in lung slices with phase-contrast or laser scanning microscopy. At room temperature (RT), methacholine (MCh) or 5-hydroxytryptamine (5-HT) induced Ca(2+) oscillations and an associated contraction in small airway SMCs. The subsequent exposure to an IP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB), inhibited the Ca(2+) oscillations and induced airway relaxation in a concentration-dependent manner. 2-APB also inhibited Ca(2+) waves generated by the photolytic release of IP(3). However, the RyR antagonist ryanodine had no significant effect, at any concentration, on airway contraction or agonist- or IP(3)-induced Ca(2+) oscillations or Ca(2+) wave propagation. By contrast, a second RyR antagonist, tetracaine, relaxed agonist-contracted airways and inhibited agonist-induced Ca(2+) oscillations in a concentration-dependent manner. However, tetracaine did not affect IP(3)-induced Ca(2+) release or wave propagation nor the Ca(2+) content of SMC Ca(2+) stores as evaluated by Ca(2+)-release induced by caffeine. Conversely, both ryanodine and tetracaine completely blocked agonist-independent slow Ca(2+) oscillations induced by KCl. The inhibitory effects of 2-APB and absence of an effect of ryanodine on MCh-induced airway contraction or Ca(2+) oscillations of SMCs were also observed at 37 degrees C. In Ca(2+)-permeable SMCs, tetracaine inhibited agonist-induced contraction without affecting intracellular Ca(2+) levels indicating that relaxation also resulted from a reduction in Ca(2+) sensitivity. These results indicate that agonist-induced Ca(2+) oscillations in mouse small airway SMCs are primary mediated via IP(3)Rs and that tetracaine induces relaxation by both decreasing Ca(2+) sensitivity and inhibiting agonist-induced Ca(2+) oscillations via an IP(3

  17. Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of prehospital cardiac arrest (REVIVE-Airways): a feasibility study research protocol.

    PubMed

    Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew

    2013-01-01

    Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. ISRCTN: 18528625.

  18. Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of prehospital cardiac arrest (REVIVE-Airways): a feasibility study research protocol

    PubMed Central

    Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew

    2013-01-01

    Introduction Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. Methods and analysis The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Ethics and dissemination Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. Trial

  19. PROINFLAMMATORY OXIDANT HYPOCHLOROUS ACID (HOCL) INDUCES DUAL SIGNALING PATHWAYS IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    In the airway of inflammatory diseases such as bacterial infection, cystic fibrosis and COPD, high level of HOCL (local concentration of up to 5mM) can be generated through a reaction catalyzed by leukocyte granule enzyme- Myeloperoxidase (MPO). HOCL is a very potent oxidative ag...

  20. Safety and Efficacy of Thoracic External Beam Radiotherapy After Airway Stenting in Malignant Airway Obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochet, Nathalie, E-mail: nrochet@partners.org; Hauswald, Henrik; Schmaus, Martina

    Purpose: We retrospectively evaluated the outcome and toxicity of external beam radiotherapy (EBRT) after airway stents were placed in patients treated for malignant airway obstruction. Methods and Materials: Between 2004 and 2009, we performed airway stenting followed by EBRT in 43 patients for symptomatic primary lung cancer (n = 31) or other thoracic malignancies (n = 12). The median time interval between stent placement and first irradiation was 14 days. A median total dose of 50 Gy was delivered. Sixty-seven percent of the patients had reduced performance status (Karnofsky performance score, {<=}70). Results: EBRT had to be stopped prematurely inmore » 16 patients (37%), at a median total dose of 17 Gy, for various reasons. In this group of patients, the survival was poor, with a median overall survival (OS) of only 21 days. Twenty-seven patients (63%) completed radiotherapy as planned, with a median OS of 8.4 months. Fourteen of 43 patients (33%) developed at least one Common Terminology Criteria for Adverse Event of grade 3 to 5. The most common event was a malignant restenosis of the stent leading to asphyxia (n = 7), followed by fistula formation (n = 4), necrosis (n = 3), mediastinitis with abscess (n = 1), secondary nonmalignant airway stenosis (n = 1), and hemoptysis (n = 1). With the exception of one event, all events were associated with a local progression of the tumor. Conclusions: Although the long-term prognosis for patients with malignant airway obstruction is poor, airway stenting combined with EBRT offers a possible therapeutic option, achieving fast relief of acute respiratory distress with an associated antitumor effect, resulting in a potential survival benefit. However, due to local advanced tumor growth, increased rates of adverse events are to be expected, necessitating careful monitoring.« less