Science.gov

Sample records for airway nitric oxide

  1. Airway nitric oxide in microgravity

    NASA Astrophysics Data System (ADS)

    Linnarsson, D.; Gustafsson, L.; Hemmingsson, Tryggve; Frostell, C.; Paiva, M.

    2005-10-01

    Nitric Oxide (NO), a molecule with a wide range of biological effects, is found in exhaled gas. Elevation of expired NO is an early sign of airway inflammation in asthma and dust inhalation. Animal experiments have demonstrated a marked increase of expired NO after venous gas emboli (bubbles, VGE), which may occur after decompression in conjunction with extravehicular activity (EVA). For this MAP project, astronauts will perform a simple inhalation-exhalation procedure weekly during their flights, and before and after EVA. Furthermore, the microgravity environment offers a possibility to gain new insights into how and where NO is formed in the lungs and what local effects NO may have there. The planned experiments have been made possible by recent developments of new techniques by the team's industrial partners; Aerocrine has developed a highly compact and accurate NO analyser, and Linde Gas Theapeutics has developed a highly compact device for NO administration in the inhaled air.

  2. Arginase Inhibition in Airways from Normal and Nitric Oxide Synthase 2-Knockout Mice Exposed to Ovalbumin

    PubMed Central

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; O’Roark, Erin M.; Kenyon, Nicholas J.; Last, Jerold A.

    2011-01-01

    Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyper-reactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2−/−) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyper-reactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyper-reactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2−/− mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyper-reactivity in all treatment groups. NOS2−/− mice had a significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2−/− mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyper-reactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be

  3. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin.

    PubMed

    Bratt, Jennifer M; Franzi, Lisa M; Linderholm, Angela L; O'Roark, Erin M; Kenyon, Nicholas J; Last, Jerold A

    2010-01-01

    Arginase1 and nitric oxide synthase2 (NOS2) utilize l-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N(omega)-hydroxy-nor-l-arginine (nor-NOHA) significantly increased total l-arginine content in the airway compartment. We hypothesized that such an increase in l-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that l-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2, which

  4. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin

    SciTech Connect

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; O'Roark, Erin M.; Kenyon, Nicholas J.; Last, Jerold A.

    2010-01-01

    Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N{sup o}mega-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2

  5. Characterizing airway and alveolar nitric oxide exchange during tidal breathing using a three-compartment model.

    PubMed

    Condorelli, Peter; Shin, Hye-Won; George, Steven C

    2004-05-01

    Exhaled nitric oxide (NO) may be a useful marker of lung inflammation, but the concentration is highly dependent on exhalation flow rate due to a significant airway source. Current methods for partitioning pulmonary NO gas exchange into airway and alveolar regions utilize multiple exhalation flow rates or a single-breath maneuver with a preexpiratory breath hold, which is cumbersome for children and individuals with compromised lung function. Analysis of tidal breathing data has the potential to overcome these limitations, while still identifying region-specific parameters. In six healthy adults, we utilized a three-compartment model (two airway compartments and one alveolar compartment) to identify two potential flow-independent parameters that represent the average volumetric airway flux (pl/s) and the time-averaged alveolar concentration (parts/billion). Significant background noise and distortion of the signal from the sampling system were compensated for by using a Gaussian wavelet filter and a series of convolution integrals. Mean values for average volumetric airway flux and time-averaged alveolar concentration were 2,500 +/- 2,700 pl/s and 3.2 +/- 3.4 parts/billion, respectively, and were strongly correlated with analogous parameters determined from vital capacity breathing maneuvers. Analysis of multiple tidal breaths significantly reduced the standard error of the parameter estimates relative to the single-breath technique. Our initial assessment demonstrates the potential of utilizing tidal breathing for noninvasive characterization of pulmonary NO exchange dynamics. PMID:14729729

  6. Induction by inhibitors of nitric oxide synthase of hyperresponsiveness in the human nasal airway

    PubMed Central

    Turner, P J; Maggs, J R L; Foreman, J C

    2000-01-01

    The effects of inhibitors of nitric oxide synthase (NOS) on the responsiveness of the human nasal airway were investigated, by measuring the nasal response to histamine and bradykinin. Repeated intranasal administration of NG-nitro-L-arginine methyl ester (L-NAME) or NG-monomethyl-L-arginine (L-NMMA), 1 μmol per nostril every 30 min for 6 h, increased the nasal obstruction induced by histamine, 50–500 μg, and bradykinin, 200 μg per nostril. A single administration of L-NAME, 1 μmol per nostril did not induce hyperresponsiveness to histamine. Pretreatment with L-arginine, 30 μmol, abolished the hyperresponsiveness to histamine caused by L-NAME, 1 μmol. Pretreatment with NG-nitro-D-arginine methyl ester (D-NAME), 1 μmol, did not induce hyperresponsiveness to histamine. Repeated administration of L-NAME, 1 μmol, caused a significant reduction in the amount of nitric oxide measured in the nasal cavity. Neither L-NMMA, 1 μmol, nor L-arginine, 30 μmol, altered the nasal hyperresponsiveness induced by platelet activating factor (PAF), 60 μg. PAF did not alter the levels of nitric oxide in the nasal cavity. The results suggest that inhibition of nitric oxide synthase induces a hyperresponsiveness in the human nasal airway, and that this occurs by a mechanism different from that involved in PAF-induced hyperresponsiveness. PMID:10991932

  7. Vest Chest Physiotherapy Airway Clearance is Associated with Nitric Oxide Metabolism

    PubMed Central

    Sisson, Joseph H.; Wyatt, Todd A.; Pavlik, Jacqueline A.; Sarna, Pawanjit S.; Murphy, Peter J.

    2013-01-01

    Background. Vest chest physiotherapy (VCPT) enhances airway clearance in cystic fibrosis (CF) by an unknown mechanism. Because cilia are sensitive to nitric oxide (NO), we hypothesized that VCPT enhances clearance by changing NO metabolism. Methods. Both normal subjects and stable CF subjects had pre- and post-VCPT airway clearance assessed using nasal saccharin transit time (NSTT) followed by a collection of exhaled breath condensate (EBC) analyzed for NO metabolites (NOx). Results. VCPT shorted NSTT by 35% in normal and stable CF subjects with no difference observed between the groups. EBC NOx concentrations decreased 68% in control subjects after VCPT (before = 115 ± 32 μM versus after = 37 ± 17 μM; P < 0.002). CF subjects had a trend toward lower EBC NOx. Conclusion. We found an association between VCPT-stimulated clearance and exhaled NOx levels in human subjects. We speculate that VCPT stimulates clearance via increased NO metabolism. PMID:24349778

  8. Attenuation of human nasal airway responses to bradykinin and histamine by inhibitors of nitric oxide synthase.

    PubMed Central

    Dear, J. W.; Ghali, S.; Foreman, J. C.

    1996-01-01

    1. The effects of inhibitors of nitric oxide synthase and local anaesthetics were studied on changes in human nasal airway patency and albumin extravasation in response to bradykinin and histamine, in vivo. 2. Compared with the action of the vasoconstrictor, ephedrine, 2.5 mumol, NG-nitro-L-arginine methyl ester (L-NAME), 1 mumol alone, did not change the resting value of the minimal cross-sectional area (A min) of the human nasal airway. L-NAME, 0.1 to 10 mumol, produced a dose-related inhibition of the reduction in A min caused by bradykinin, 300 micrograms. NG-monomethyl-L-arginine (L-NMMA), 1 mumol, similarly reduced the effect of bradykinin, 300 micrograms, on A min, but NG-nitro-D-arginine methyl ester (D-NAME), had no effect. L-NAME, 0.1 to 10 mumol, or L-NMMA, 10 mumol, failed to inhibit the effect of histamine, 300 micrograms on A min. 3. The inhibition by L-NAME, 1 mumol of the action of bradykinin, 300 micrograms on A min was maximal between 15 and 30 min after pretreatment with L-NAME. 4. L-NAME, 1 and 10 mumol, inhibited the extravasation of albumin into the nasal cavity induced by bradykinin, 300 micrograms, and also by histamine, 300 micrograms. D-NAME, 1 and 10 mumol had no effect on the extravasation of albumin in response to bradykinin or histamine. 5. L-Arginine, 30 mumol, reversed the effect of L-NAME, 1 mumol, on the bradykinin- and histamine-induced albumin extravasation into the nasal airway. 6. Local anaesthesia of the nasal airway with lignocaine, 10 mg, or benzocaine, 10 mg, failed to inhibit the reduction in A min or the albumin extravasation induced by either bradykinin, 300 micrograms, and histamine, 300 micrograms. 7. We conclude that the extravasation of plasma albumin caused by bradykinin and by histamine involves the generation of nitric oxide. The nasal blockage induced by bradykinin involves nitric oxide generation but the nasal blockage induced by histamine does not. PMID:8818341

  9. Diagnostic significance of nitric oxide concentrations in exhaled air from the airways in allergic rhinitis patients

    PubMed Central

    Krzych-Fałta, Edyta; Samoliński, Bolesław K; Zalewska, Marta

    2016-01-01

    Introduction The effect of nitric oxide (NO) on the human body is very important due its physiological regulation of the following functions of airways: modulation of ciliary movement and maintenance of sterility in sinuses. Aim To evaluate the diagnostic significance of NO concentrations in exhaled air from the upper and lower airways in patients diagnosed with allergic rhinitis (AR). Material and methods The subjects included in the study were a group of 30 people diagnosed with sensitivity to environmental allergens and a control group consisting of 30 healthy subjects. The measurement of NO in the air exhaled from the lower and upper airways was performed using an on-line method by means of Restricted Exhaled Breath (REB), as well as using the measurement procedure (chemiluminescence) set out in the guidelines prepared in 2005 by the American Thoracic Society and the European Respiratory Society. Results In the late phase of the allergic reaction, higher values of the level of exhaled NO concentration from the lower airways were observed in the groups of subjects up to the threshold values of 25.17 ppb in the group of subjects with year-round allergic rhinitis and 21.78 ppb in the group with diagnosed seasonal allergic rhinitis. The difference in the concentration of NO exhaled from the lungs between the test group and the control group in the 4th h of the test was statistically significant (p = 0.045). Conclusions Exhaled NO should be considered as a marker of airway inflammation. It plays an important role in the differential diagnosis of allergy. PMID:27279816

  10. Nitric Oxide and Airway Epithelial Barrier Function: Regulation of Tight Junction Proteins and Epithelial Permeability

    PubMed Central

    Olson, Nels; Greul, Anne-Katrin; Hristova, Milena; Bove, Peter F.; Kasahara, David I.; van der Vliet, Albert

    2008-01-01

    Acute airway inflammation is associated with enhanced production of nitric oxide (NO•) and altered airway epithelial barrier function, suggesting a role of NO• or its metabolites in epithelial permeability. While high concentrations of S-nitrosothiols disrupted transepithelial resistance (TER) and increased permeability in 16HBE14o- cells, no significant barrier disruption was observed by NONOates, in spite of altered distribution and expression of some TJ proteins. Barrier disruption of mouse tracheal epithelial (MTE) cell monolayers in response to inflammatory cytokines was independent of NOS2, based on similar effects in MTE cells from NOS2-/- mice and a lack of effect of the NOS2-inhibitor 1400W. Cell pre-incubation with LPS protected MTE cells from TER loss and increased permeability by H2O2, which was independent of NOS2. However, NOS2 was found to contribute to epithelial wound repair and TER recovery after mechanical injury. Overall, our results demonstrate that epithelial NOS2 is not responsible for epithelial barrier dysfunction during inflammation, but may contribute to restoration of epithelial integrity. PMID:19100237

  11. ARGINASE ENZYMES IN ISOLATED AIRWAYS FROM NORMAL AND NITRIC OXIDE SYNTHASE 2-KNOCKOUT MICE EXPOSED TO OVALBUMIN

    PubMed Central

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; Last, Michael S.; Kenyon, Nicholas J.; Last, Jerold A.

    2009-01-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, L-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses---inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration--were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the NOS2

  12. Arginase enzymes in isolated airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin.

    PubMed

    Bratt, Jennifer M; Franzi, Lisa M; Linderholm, Angela L; Last, Michael S; Kenyon, Nicholas J; Last, Jerold A

    2009-02-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, l-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses - inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration - were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nomega-hydroxy-nor-l-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the

  13. Arginase enzymes in isolated airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin

    SciTech Connect

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; Last, Michael S.; Kenyon, Nicholas J. Last, Jerold A.

    2009-02-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, L-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses - inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration - were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, N{omega}-hydroxy-nor-L-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the

  14. Involvement of Syk kinase in TNF-induced nitric oxide production by airway epithelial cells

    SciTech Connect

    Ulanova, Marina . E-mail: marina.ulanova@normed.ca; Marcet-Palacios, Marcelo; Munoz, Samira; Asfaha, Samuel; Kim, Moo-Kyung; Schreiber, Alan D.; Befus, A. Dean

    2006-12-15

    We have recently found that Syk is widely expressed in lung epithelial cells (EC) and participates in {beta}1 integrin signaling. In this study, we assessed the role of Syk in regulation of NO production. Stimulation of human bronchial EC line HS-24 by TNF caused an increased expression of inducible nitric oxide synthase (iNOS). Inhibition of Syk using siRNA or piceatannol down-regulated the iNOS expression and reduced NO production. This effect occurred in EC simultaneously stimulated via {beta}1 integrins, suggesting that TNF and {beta}1 integrins provide co-stimulatory signals. Inhibition of Syk down-regulated TNF-induced p38 and p44/42 MAPK phosphorylation and nuclear translocation of p65 NF-{kappa}B. Thus, TNF-induced activation of pro-inflammatory signaling in EC leading to enhanced expression of iNOS and NO production was dependent on Syk. Syk-mediated signaling regulates NO production at least partly via activating the MAPK cascade. Understanding the role of Syk in airway EC may help in developing new therapeutic tools for inflammatory lung disorders.

  15. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    PubMed Central

    Bratt, Jennifer M.; Williams, Keisha; Rabowsky, Michelle F.; Last, Michael S.; Franzi, Lisa M.; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Objectives and Design. The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia. PMID:20953358

  16. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro.

    PubMed Central

    Ward, J K; Belvisi, M G; Fox, A J; Miura, M; Tadjkarimi, S; Yacoub, M H; Barnes, P J

    1993-01-01

    Human airway smooth muscle possesses an inhibitory nonadrenergic noncholinergic neural bronchodilator response mediated by nitric oxide (NO). In guinea pig trachea both endogenous NO and vasoactive intestinal peptide (VIP) modulate cholinergic neural contractile responses. To identify whether endogenous NO or VIP can modulate cholinergic contractile responses in human airways in vitro, we studied the effects of specific NO synthase inhibitors and the peptidase alpha-chymotrypsin on contractile responses evoked by electrical field stimulation (EFS) at three airway levels. Endogenous NO, but not VIP, was shown to inhibit cholinergic contractile responses at all airway levels but this inhibition was predominantly in trachea and main bronchus and less marked in segmental and subsegmental bronchi. To elucidate the mechanism of this modulation we then studied the effects of endogenous NO on acetylcholine (ACh) release evoked by EFS from tracheal smooth muscle strips. We confirmed that release was neural in origin, frequency dependent, and that endogenous NO did not affect ACh release. These findings show that endogenous NO, but not VIP, evoked by EFS can inhibit cholinergic neural responses via functional antagonism of ACh at the airway smooth muscle and that the contribution of this modulation is less marked in lower airways. PMID:8349813

  17. Randomized placebo controlled assessment of airway inflammation due to racemic albuterol and levalbuterol via exhaled nitric oxide testing

    PubMed Central

    Freiler, John F; Arora, Rajiv; Kelley, Thomas C; Hagan, Larry; Allan, Patrick F

    2006-01-01

    Study Objectives The S-stereoisomer found in racemic albuterol may have associated proinflammatory properties. We tested the hypothesis that airway inflammation as assessed by exhaled nitric oxide is no different in patients with COPD when using racemic albuterol relative to levalbuterol or placebo. Measurements Twelve mild to moderate COPD patients were assigned to five days each of nebulized racemic albuterol, levalbuterol, and saline placebo. Before and after each course of treatment, airway inflammation was assessed via exhaled nitric oxide breath testing. Secondary functional outcomes that were measured included spirometry, a functional assessment utilizing a six-minute walk, and symptoms score using the University of California, San Diego Shortness of Breath Questionnaire. Results There was no statistically significant difference in pre and post FeNO levels within and between treatment groups (p = 0.121). There were also no significant differences within or between treatment groups for the secondary outcome measurements of FEV1 (p = 0.913), functional assessment utilizing a six-minute walk (p = 0.838) and the symptom scores using Shortness of Breath Questionnaire (p = 0.500). Conclusion We found no difference in mild to moderate COPD patients treated with racemic albuterol, levalbuterol or placebo for measurement of exhaled nitric oxide or the secondary outcomes that were measured. PMID:18044102

  18. Mean airway pressure and response to inhaled nitric oxide in neonatal and pediatric patients.

    PubMed

    Hoffman, George M; Nelin, Leif D

    2005-01-01

    Inhaled nitric oxide (iNO) can improve oxygenation and ventilation-perfusion (V/Q) matching by reduction of shunt (Qs/Qt) in patients with hypoxemic lung disease. Because the improvement in V/Q matching must occur by redistribution of pulmonary blood flow, and because high airway pressure (Paw) increases physiologic dead space (Vd/Vt), we hypothesized that high Paw may limit the improvement in V/Q matching during iNO treatment. iNO 0-50 ppm was administered during mechanical ventilation. Mechanical ventilator settings were at the discretion of the attending physician. Qs/Qt and Vd/Vt were derived from a tripartite lung model with correction for shunt-induced dead space. Data from 62 patients during 153 trials were analyzed for effects of Paw and iNO on Qs/Qt and Vd/Vt. Baseline Qs/Qt was slightly increased at Paw 16-23 cmH2O (p < 0.05), while Vd/Vt increased progressively with higher Paw (p < 0.002). Therapy with iNO significantly reduced Qs/Qt (p < 0.001) at all levels of mean Paw, reaching a maximum reduction at 16-23 cmH2O (p < 0.05), such that Qs/Qt during iNO treatment was similar at all levels of Paw. During iNO treatment, a reduction in Vd/Vt occurred only at Paw of 8-15 cmH2O (p < 0.05), and the positive relationship between Vd/Vt and Paw was maintained. These differential effects on Qs/Qt and Vd/Vt suggest that both high and low Paw may limit improvement in gas exchange with iNO. Analysis of gas exchange using this corrected tripartite lung model may help optimize ventilatory strategies during iNO therapy. PMID:16465603

  19. Long-Term Continuous Positive Airway Pressure Therapy Normalizes High Exhaled Nitric Oxide Levels in Obstructive Sleep Apnea

    PubMed Central

    Chua, Ai-Ping; Aboussouan, Loutfi S.; Minai, Omar A.; Paschke, Kelly; Laskowski, Daniel; Dweik, Raed A.

    2013-01-01

    Study Objectives: Upper airway inflammation and oxidative stress have been implicated in the pathogenesis of obstructive sleep apnea (OSA) and may be linked to cardiovascular consequences. We prospectively examined fraction of exhaled nitric oxide (FENO), a surrogate marker of upper airway inflammation using a portable nitric oxide analyzer (NIOX MINO). Design: In consecutive adult nonsmokers with suspected OSA, FENO was measured immediately before and after polysomnographic studies, and within 1-3 months following continuous positive airway pressure (CPAP) therapy. Measurement and Results: FENO levels were increased in the 75 patients with OSA compared to the 29 controls, both before sleep (13.4 ± 6.5 ppb vs. 6.5 ± 3.5; p < 0.001) and after sleep (19.0 ± 7.7 ppb vs. 6.9 ± 3.7; p < 0.001). Furthermore, in patients with OSA, FENO levels were significantly higher post-sleep than pre-sleep (19.0 ± 7.7 ppb vs. 13.4 ± 6.5; p < 0.001), while there was no significant overnight change in patients without OSA. The rise in FENO correlated with the apnea-hypopnea index (r = 0.65, p < 0.001), nadir oxygen saturation (r = 0.54, p < 0.001), and arousal index (r = 0.52, p < 0.001). Thirty-seven of these patients underwent CPAP titration and treatment. Successful titration was associated with a lower overnight increase in FENO (7.2 ± 3.3 vs. 11.0 ± 4.3, p = 0.02). FENO levels declined after 1-3 months of CPAP therapy (11.7 ± 4.4 ppb, p < 0.001). Conclusions: FENO levels are elevated in OSA, correlate with severity, and decrease after positive pressure therapy. This study supports the role of upper airway inflammation in OSA pathogenesis and a possible role for FENO in monitoring CPAP therapy. Citation: Chua AP; Aboussouan LS; Minai OA; Paschke K; Laskowski D; Dweik RA. Long-term continuous positive airway pressure therapy normalizes high exhaled nitric oxide levels in obstructive sleep apnea. J Clin Sleep Med 2013;9(6):529-535. PMID:23772184

  20. Endotoxin-induced nitric oxide production rescues airway growth and maturation in atrophic fetal rat lung explants

    SciTech Connect

    Rae, C.; Cherry, J.I.; Land, F.M.; Land, S.C. . E-mail: s.c.land@dundee.ac.uk

    2006-10-13

    Inflammation induces premature maturation of the fetal lung but the signals causing this effect remain unclear. We determined if nitric oxide (NO) synthesis, evoked by Escherichia coli lipopolysaccharide (LPS, 2 {mu}g ml{sup -1}), participated in this process. Fetal rat lung airway surface complexity rose 2.5-fold over 96 h in response to LPS and was associated with increased iNOS protein expression and activity. iNOS inhibition by N6-(1-iminoethyl)-L-lysine-2HCl (L-NIL) abolished this and induced airway atrophy similar to untreated explants. Surfactant protein-C (SP-C) expression was also induced by LPS and abolished by L-NIL. As TGF{beta} suppresses iNOS activity, we determined if feedback regulation modulated NO-dependent maturation. LPS induced TGF{beta}1 release and SMAD4 nuclear translocation 96 h after treatment. Treatment of explants with a blocking antibody against TGF{beta}1 sustained NO production and airway morphogenesis whereas recombinant TGF{beta}1 antagonized these effects. Feedback regulation of NO synthesis by TGF{beta} may, thus, modulate airway branching and maturation of the fetal lung.

  1. Nitric oxide

    Integrated Risk Information System (IRIS)

    Nitric oxide ; CASRN 10102 - 43 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  2. A new nitrosyl ruthenium complex nitric oxide donor presents higher efficacy than sodium nitroprusside on relaxation of airway smooth muscle.

    PubMed

    Castro, Patrícia F S; Pereira, Amanda de C; Rogrigues, Gerson J; Batista, Aline C; da Silva, Roberto S; Bendhack, Lusiane M; Rocha, Matheus L

    2011-08-17

    Nitric oxide (NO) has been demonstrated to be the primary agent in relaxing airways in humans and animals. We investigated the mechanisms involved in the relaxation induced by NO-donors, ruthenium complex [Ru(terpy)(bdq)NO(+)](3+) (TERPY) and sodium nitroprusside (SNP) in isolated trachea of rats contracted with carbachol in an isolated organs chamber. For instance, we verified the contribution of K(+) channels, the importance of sGC/cGMP pathway, the influence of the extra and intracellular Ca(2+) sources and the contribution of the epithelium on the relaxing response. Additionally, we have used confocal microscopy in order to analyze the action of the NO-donors on cytosolic Ca(2+) concentration. The results demonstrated that both compounds led to the relaxation of trachea in a dependent-concentration way. However, the maximum effect (E(max)) of TERPY is higher than the SNP. The relaxation induced by SNP (but not TERPY) was significantly reduced by pretreatment with ODQ (sGC inhibitor). Only TERPY-induced relaxation was reduced by tetraethylammonium (K(+) channels blocker) and by pre-contraction with 75mM KCl (membrane depolarization). The response to both NO-donors was not altered by the presence of thapsigargin (sarcoplasmic reticulum Ca(2+)-ATPase inhibitor). The epithelium removal has reduced the relaxation only to SNP, and it has no effect on TERPY. The both NO-donors reduced the contraction evoked by Ca(2+) influx, while TERPY have shown a higher inhibitory effect on contraction. Moreover, the TERPY was more effective than SNP in reducing the cytosolic Ca(2+) concentration measured by confocal microscopy. In conclusion, these results show that TERPY induces airway smooth muscle relaxation by cGMP-independent mechanisms, it involves the fluxes of Ca(2+) and K(+) across the membrane, it is more effective in reducing cytosolic Ca(2+) concentration and inducing relaxation in the rat trachea than the standard drug, SNP. PMID:21605670

  3. Nitric oxide inhibition strategies

    PubMed Central

    Wong, Vivian (Wai Chong); Lerner, Ethan

    2015-01-01

    Nitric oxide is involved in many physiologic processes. There are efforts, described elsewhere in this volume, to deliver nitric oxide to tissues as a therapy. Nitric oxide also contributes to pathophysiologic processes. Inhibiting nitric oxide or its production can thus also be of therapeutic benefit. This article addresses such inhibitory strategies. PMID:26634146

  4. Evaluation of Airway Inflammation in Compost Workers Exposed to Bioaerosols Using Exhaled Breath Condensate and Fractional Exhaled Nitric Oxide.

    PubMed

    Hoffmeyer, F; van Kampen, V; Deckert, A; Neumann, H-D; Buxtrup, M; Willer, E; Felten, C; Brüning, T; Raulf, M; Bünger, J

    2015-01-01

    Occupational bioaerosol exposures are capable to cause respiratory diseases. We studied the relationship between exposure to bioaerosols and biomarkers' concentration in exhaled breath condensate (EBC) and fractional exhaled nitric oxide (FeNO) in 119 bioaerosol-exposed compost workers taking into account atopy and smoking habits. Atopy was classified according to specific IgE concentrations to common inhalant allergens (sx1). Bioaerosol exposure was estimated according to job title, duration of employment, results of ambient monitoring at the workplaces, and shift time worked under protection of filtered air supply. Concentrations of 8-iso-prostaglandin F2α (8-iso-PGF2α), prostaglandin E2 (PGE2), leukotriene B4 (LTB4), and acid-base balance (pH) in EBC and FeNO were assessed in 59 never-smoking (NS) and 60 smoking (S) compost workers. We found that atopic subjects were equally distributed among NS and S (n=16 each). Levels of 8-iso-PGF2α were significantly higher in workers considered highly exposed to bioaerosols than in low exposed workers (86.6 (66.1; 128.8) pg/mL vs. 74.4 (56.3; 96.7) pg/mL, p=0.047). No associations could be observed between exposures and biomarkers concerning compost workers in total, but there were some in atopic workers (duration of employment and FeNO: r=0.376, p=0.041; filtered air supply and FeNO: r=-0.335, p=0.071). Smokers had significantly lower pH values compared to NS (non-atopic, p=0.041; atopic p=0.050). In conclusion, EBC and FeNO might be useful tools for monitoring of inflammation due to bioaerosol exposures, especially in atopic subjects. Besides smoking also atopy should be considered when investigating airway inflammation. PMID:25786401

  5. Nitric Oxide Nanoparticle Technology

    PubMed Central

    Englander, Laura

    2010-01-01

    Staphylococcus aureus infections account for the majority of skin and soft tissue infections in the United States. Staphylococcus aureus is rapidly evolving resistance to contemporary topical as well as systemic antibiotics. Alternatives to current treatment options for skin and soft tissue infections are needed for more effective treatment now and in the future. Nitric oxide's proven roles in both wound repair and as an antimicrobial agent make it an excellent candidate for the treatment of skin infections. Recent attempts at novel nitric oxide therapies, in the form of nitric oxide donors, have shown limited potential in treating cutaneous infection. However, more recent developments in nitric oxide delivery, using nitric oxide nanoparticle technology, demonstrate substantial promise in the promotion of wound repair and eradication of skin and soft tissue infections. PMID:20725551

  6. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity.

    PubMed

    Ibba, Salome' V; Ghonim, Mohamed A; Pyakurel, Kusma; Lammi, Matthew R; Mishra, Anil; Boulares, A Hamid

    2016-01-01

    Although expression of inducible NO synthase (iNOS) in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR) and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose) polymerase (PARP) activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs) of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM) in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma. PMID:27524861

  7. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity

    PubMed Central

    Ghonim, Mohamed A.; Pyakurel, Kusma; Mishra, Anil

    2016-01-01

    Although expression of inducible NO synthase (iNOS) in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR) and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose) polymerase (PARP) activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs) of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM) in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma. PMID:27524861

  8. Inhaled nitric oxide in chronic obstructive lung disease

    SciTech Connect

    Tiihonen, J.; Hakola, P.; Paanila, J.; Turtiainen . Dept. of Forensic Psychiatry)

    1993-01-30

    During an investigation of the effect of nitric oxide on the pulmonary circulation the authors had the opportunity to give nitric oxide to a patient with longstanding obstructive airway disease, with successful results. A 72-year-old man with chronic obstructive pulmonary disease was referred to the institution for assessment of pulmonary vascular reactivity to acetylcholine and nitric oxide. Acetylcholine was infused into the main pulmonary artery followed 15 min later by an inhalation of 80 parts per million (ppm) nitric oxide. Heart rate and systemic arterial and pulmonary arterial pressures were continuously monitored. Throughout the study the inspired oxygen concentration was kept constant at 98%. Nitrogen dioxide and nitric oxide concentrations were monitored while nitric oxide was delivered. The infusion of acetylcholine resulted in a small increase in pulmonary artery pressure and pulmonary vascular resistance. Nitric oxide produced a substantial fall in pulmonary artery pressure and pulmonary vascular resistance with a concomitant increase in systemic arterial oxygen tension. These results suggest that endothelium-dependent relaxation of the pulmonary vasculature was impaired in the patient and that exogenous nitric oxide was an effective pulmonary vasodilator. In-vitro investigation of explanted airways disease suggests not only that endothelium-dependent pulmonary artery relaxation is impaired but also that the dysfunction is related to pre-existing hypoxemia and hypercapnia. Nitric oxide inhibits proliferation of cultured vascular smooth muscle cells and might alter the pulmonary vascular remodeling characteristic of patients with chronic obstructive airways disease.

  9. Nitric oxide and cardiovascular disease.

    PubMed Central

    McIntyre, M.; Dominiczak, A. F.

    1997-01-01

    Endothelium-derived nitric oxide is an important regulatory molecule in cardiovascular function. Reduced availability of nitric oxide has been implicated in the pathogenesis of hypertension and atherosclerosis. PMID:9497971

  10. Exhaled nitric oxide in children after accidental exposure to chlorine gas.

    PubMed

    Grasemann, Hartmut; Tschiedel, Eva; Groch, Manuela; Klepper, Jörg; Ratjen, Felix

    2007-08-01

    Chronic exposure to chlorine gas has been shown to cause occupational asthma. Acute inhalation of chlorine is known to cause airway inflammation and induce airway nitric oxide formation. Exhaled nitric oxide may therefore be a marker of airway damage after chlorine gas exposure. After accidental chlorine gas exposure in a swimming pool, exhaled nitric oxide and pulmonary function were repeatedly measured in 18 children over a 1-mo period. Symptomatic children with impaired pulmonary function had higher nitric oxide levels on the day after the exposure compared to day 8 and day 28. Differences in exhaled nitric oxide were more pronounced at a higher exhalation flow compared to lower flow, suggesting peripheral rather than central airway damage. This was in accordance with the observed changes in pulmonary function. No changes in exhaled nitric oxide were seen in asymptomatic children. These data suggest that acute chlorine gas exposure results in a mild increase of exhaled nitric oxide in symptomatic children. PMID:17687720

  11. Tropospheric nitric oxide measurements

    NASA Technical Reports Server (NTRS)

    Torres, A. L.

    1988-01-01

    Nitric oxide (NO) plays a key role in tropospheric photo-chemistry. The photochemical oxidation of hydrocarbons, for example, can serve as either a source or a sink for ozone, depending on the local abundance of NO. Nitric oxide also helps govern atmospheric concentrations of the hydroxyl (OH) radical. The OH radical is the single most important player in photochemical transformations because it controls the atmospheric lifetimes of so many chemical species. Although NO serves as a very effective catalyst in many important chemical processes, its concentration is low enough to normally be expressed in units of parts per trillion by volume (pptv). Consequently, commercially available detectors for NO (with detection limits of about one part per billion) have proven to be unsuitable for use anywhere except in urban areas and near other local pollution sources. Under the sponsorship of NASA's Global Tropospheric Experiment (GTE), Wallops has developed an extremely sensitive detector with a detection limit of a few pptv. The system was specifically designed for aircraft use, with the objective of applying it in global aircraft studies of tropospheric chemistry. Studies with the detector are examined.

  12. Demystified … Nitric oxide

    PubMed Central

    Stuart-Smith, K

    2002-01-01

    The discovery of nitric oxide (NO) demonstrated that cells could communicate via the manufacture and local diffusion of an unstable lipid soluble molecule. Since the original demonstration of the vascular relaxant properties of endothelium derived NO, this fascinating molecule has been shown to have multiple, complex roles within many biological systems. This review cannot hope to cover all of the recent advances in NO biology, but seeks to place the discovery of NO in its historical context, and show how far our understanding has come in the past 20 years. The role of NO in mitochondrial respiration, and consequently in oxidative stress, is described in detail because these processes probably underline the importance of NO in the development of disease. PMID:12456772

  13. Airway oxidative stress in chronic cough

    PubMed Central

    2013-01-01

    Background The mechanisms of chronic cough are unclear. Many reactive oxygen species affect airway sensory C-fibres which are capable to induce cough. Several chronic lung diseases are characterised by cough and oxidative stress. In asthma, an association between the cough severity and airway oxidative stress has been demonstrated. The present study was conducted to investigate whether airway oxidative stress is associated with chronic cough in subjects without chronic lung diseases. Methods Exhaled breath condensate samples were obtained in 43 non-smoking patients with chronic cough and 15 healthy subjects. Exclusion criteria included a doctor’s diagnosis of any lung disorders and any abnormality in lung x-ray. The concentration of 8-isoprostane was measured. In addition, the patients filled in Leicester Cough Questionnaire and underwent hypertonic saline cough provocation test, spirometry, ambulatory peak flow monitoring, nitric oxide measurement, and histamine airway challenge. In a subgroup of patients the measurements were repeated during 12 weeks’ treatment with inhaled budesonide, 800 ug/day. Results The 8-isoprostane concentrations were higher in the cough patients than in the healthy subjects (24.6 ± 1.2 pg/ml vs. 10.1 ± 1.7 pg/ml, p = 0.045). The 8-isoprostane concentration was associated with the Leicester Cough Questionnaire total score (p = 0.044) but not with the cough sensitivity to saline or other tests. Budesonide treatment did not affect the 8-isoprostane concentrations. Conclusions Chronic cough seems to be associated with airway oxidative stress in subjects with chronic cough but without chronic lung diseases. This finding may help to develop novel antitussive drugs. Trial registration The study was registered in ClinicalTrials.gov database (KUH5801112), identifier NCT00859274. PMID:24294924

  14. Biotransformation of nitric oxide.

    PubMed Central

    Yoshida, K; Kasama, K

    1987-01-01

    Previous investigations into the health effects of nitrogen oxides (NOx) have mostly been conducted with special reference to nitrogen dioxide (NO2) and its direct effects on the respiratory system, while the study of nitric oxide (NO) has been disregarded. We carried out a study on NO by exposing rats and mice to 15NO or administering 15N-nitrite and 15N-nitrate to these animals by IP injection in order to elucidate the metabolic fate of NO. The results of our study and previous findings led us to assume that the major metabolic path of inhaled NO is as follows: inhaled NO reacts with hemoglobin, forming nitrosyl-hemoglobin (NOHb), and from NOHb, nitrite (NO2-) and nitrate (NO3-) are generated. Major quantities of NO3- are discharged into the urine and a certain amount is discharged into the oral cavity through the salivary glands and transformed to NO2-. Part of this NO2- is converted to N2 gas in the stomach. Nitrate in the intestine is partly reduced to ammonia (NH3) through NO2-, reabsorbed into the body, and converted to urea. Most of the metabolites of inhaled NO are excreted rapidly from the body within 48 hr. PMID:3665863

  15. Chemiluminescence of nitric oxide

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Rusch, D. W.

    1981-01-01

    Measurements of the intensities of the delta and gamma bands of nitric oxide in the nighttime terrestrial thermosphere are presented and used to infer the rate coefficient for the transition from the C 2 Pi to the A 2 Sigma + states. The nightglow spectrum was observed between 1900 and 2300 A at a resolution of 15 A by a rocket-borne scanning 1/4-m spectrometer pointing north at an apogee of 150 km. Progressions of the delta, gamma and epsilon bands are identified on the spectra by the construction of synthetic spectra, and the contributions of resonance fluorescence to the total band intensities are calculated. Finally, the ratio of the sum of the gamma bands for v-prime = 0 to the sum of the delta bands for v-prime = 0 is used to derive a branching ratio of 0.21 + or - 0.04 to the A 2 Sigma + state, which yields a probability for the C-A transition of 5.6 + or - 1.5 x to the 6th/sec.

  16. Nitric oxide as an antioxidant

    SciTech Connect

    Kanner, J.; Harel, S.; Granit, R. )

    1991-08-15

    Benzoate monohydroxy compounds, and in particular salicylate, were produced during interaction of ferrous complexes with hydrogen peroxide (Fenton reaction) in a N2 environment. These reactions were inhibited when Fe complexes were flushed, prior to the addition in the model system, by nitric oxide. Methionine oxidation to ethylene by Fenton reagents was also inhibited by nitric oxide. Myoglobin in several forms such as metmyoglobin, oxymyoglobin, and nitric oxide-myoglobin were interacted with an equimolar concentration of hydrogen peroxide. Spectra changes in the visible region and the changes in membrane (microsomes) lipid peroxidation by the accumulation of thiobarbituric acid-reactive substances (TBA-RS) were determined. The results showed that metmyoglobin and oxymyoglobin were activated by H2O2 to ferryl myoglobin, which initiates membrane lipid peroxidation; but not nitric oxide-myoglobin, which, during interaction with H2O2, did not form ferryl but metmyoglobin which only poorly affected lipid peroxidation. It is assumed that nitric oxide, liganded to ferrous complexes, acts to prevent the prooxidative reaction of these complexes with H2O2.

  17. An electrogenic nitric oxide reductase.

    PubMed

    Al-Attar, Sinan; de Vries, Simon

    2015-07-22

    Nitric oxide reductases (Nors) are members of the heme-copper oxidase superfamily that reduce nitric oxide (NO) to nitrous oxide (N₂O). In contrast to the proton-pumping cytochrome oxidases, Nors studied so far have neither been implicated in proton pumping nor have they been experimentally established as electrogenic. The copper-A-dependent Nor from Bacillus azotoformans uses cytochrome c₅₅₁ as electron donor but lacks menaquinol activity, in contrast to our earlier report (Suharti et al., 2001). Employing reduced phenazine ethosulfate (PESH) as electron donor, the main NO reduction pathway catalyzed by Cu(A)Nor reconstituted in liposomes involves transmembrane cycling of the PES radical. We show that Cu(A)Nor reconstituted in liposomes generates a proton electrochemical gradient across the membrane similar in magnitude to cytochrome aa₃, highlighting that bacilli using Cu(A)Nor can exploit NO reduction for increased cellular ATP production compared to organisms using cNor. PMID:26149211

  18. [Nitric oxide production in plants].

    PubMed

    Małolepsza, Urszula

    2007-01-01

    There are still many controversial observations and opinions on the cellular/subcellular localization and sources of endogenous nitric oxide synthesis in plant cells. NO can be produced in plants by non-enzymatic and enzymatic systems depending on plant species, organ or tissue as well as on physiological state of the plant and changing environmental conditions. The best documented reactions in plant that contribute to NO production are NO production from nitrite as a substrate by cytosolic (cNR) and membrane bound (PM-NR) nitrate reductases (NR), and NO production by several arginine-dependent nitric oxide synthase-like activities (NOS). The latest papers indicate that mitochondria are an important source of arginine- and nitrite-dependent NO production in plants. There are other potential enzymatic sources of NO in plants including xanthine oxidoreductase, peroxidase, cytochrome P450. PMID:18399354

  19. Nitric oxide function in atherosclerosis

    PubMed Central

    Matthys, K. E.

    1997-01-01

    Atherosclerosis is a chronic inflammatory process in the intima of conduit arteries, which disturbs the endothelium-dependent regulation of the vascular tone by the labile liposoluble radical nitric oxide (NO) formed by the constitutive endothelial nitric oxide synthase (eNOS). This defect predisposes to coronary vasospasm and cardiac ischaemia, with anginal pain as the typical clinical manifestation. It is now appreciated that endothelial dysfunction is an early event in atherogenesis and that it may also involve the microcirculation, in which atherosclerotic lesions do not develop. On the other hand, the inflammatory environment in atherosclerotic plaques may result in the expression of the inducible NO synthase (iNOS) isozyme. Whether the dysfunction in endothelial NO production is causal to, or the result of, atherosclerotic lesion formation is still highly debated. Most evidence supports the hypothesis that constitutive endothelial NO release protects against atherogenesis e.g. by preventing smooth muscle cell proliferation and leukocyte adhesion. Nitric oxide generated by the inducible isozyme may be beneficial by replacing the failing endothelial production but excessive release may damage the vascular wall cells, especially in combination with reactive oxygen intermediates. PMID:18472828

  20. Partitioned Exhaled Nitric Oxide to Non-Invasively Assess Asthma

    PubMed Central

    Puckett, James L.; George, Steven C.

    2008-01-01

    Asthma is a chronic inflammatory disease of the lungs, characterized by airway hyperresponsiveness. Chronic repetitive bouts of acute inflammation lead to airway wall remodeling and possibly the sequelae of fixed airflow obstruction. Nitric oxide (NO) is a reactive molecule synthesized by NO synthases (NOS). NOS are expressed by cells within the airway wall and functionally, two NOS isoforms exist: constitutive and inducible. In asthma, the inducible isoform is over expressed, leading to increased production of NO, which diffuses into the airway lumen, where it can be detected in the exhaled breath. The exhaled NO signal can be partitioned into airway and alveolar components by measuring exhaled NO at multiple flows and applying mathematical models of pulmonary NO dynamics. The airway NO flux and alveolar NO concentration can be elevated in adults and children with asthma and have been correlated with markers of airway inflammation and airflow obstruction in cross-sectional studies. Longitudinal studies which specifically address the clinical potential of partitioning exhaled NO for diagnosis, managing therapy, and predicting exacerbation are needed. PMID:18718562

  1. Inducible nitric oxide synthase and inflammation.

    PubMed

    Salvemini, D; Marino, M H

    1998-01-01

    Nitric oxide (NO), derived from L-arginine (L-Arg) by the enzyme nitric oxide synthase (NOS), is involved in acute and chronic inflammatory events. In view of the complexity associated with the inflammatory response, the dissection of possible mechanisms by which NO modulates this response will be profitable in designing novel and more efficacious NOS inhibitors. In this review we describe the consequences associated with the induction of inducible nitric oxide synthase (iNOS) and its therapeutic implications. PMID:15991919

  2. Nitric oxide and nitric oxide synthase in Huntington's disease.

    PubMed

    Deckel, A W

    2001-04-15

    Nitric oxide (NO) is a biologically active inorganic molecule produced when the semiessential amino acid l-arginine is converted to l-citrulline and NO via the enzyme nitric oxide synthase (NOS). NO is known to be involved in the regulation of many physiological processes, such as control of blood flow, platelet adhesion, endocrine function, neurotransmission, neuromodulation, and inflammation, to name only a few. During neuropathological conditions, the production of NO can be either protective or toxic, dependent on the stage of the disease, the isoforms of NOS involved, and the initial pathological event. This paper reviews the properties of NO and NOS and the pathophysiology of Huntington's disease (HD). It discusses ways in which NO and NOS may interact with the protein product of HD and reviews data implicating NOS in the neuropathology of HD. This is followed by a synthesis of current information regarding how NO/NOS may contribute to HD-related pathology and identification of areas for potential future research. PMID:11288139

  3. Study of Atmospheric Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.

    1998-01-01

    We investigated the contribution of energetic nitrogen atoms to the production of nitric oxide in the thermosphere and their influence on the infrared emission spectrum. The nitric oxide molecules are important contributors to the cooling of the atmosphere. We first pointed out that in determining the energy distribution of the nitrogen atoms, it is important to take into account the thermal motion of the atmospheric gases. It had been ignored in all earlier studies. The source spectra are broadened considerably by the center of mass motion of the reactants. We worked out the consequences for the production of nitric oxide at night, using as sources of energetic N atoms, NO(+) + e yield N + O, N(D-2) + O yield N + O. The high energy tail is enhanced by orders of magnitude. We had earlier suggested (Sharma et al. 1993) that the reaction of energetic nitrogen atoms with O2 was responsible for the rotationally enhanced NO identified in the infrared spectrum. Our calculations provided quantitative confirmation of the suggestion. We proceeded to explore the validity of another approximation used in earlier analyses, the hard sphere approximation for the energy loss in elastic collisions. We carried out precise quantum mechanical calculations of the elastic 2 differential scattering of nitrogen atoms in collisions with oxygen atoms and showed that although the hard sphere approximation was nowhere of high precision, reasonable results could be obtained with an effective cross section of 6 x 10(exp 15)sq cm. We also initiated a program to include inelastic energy loss processes in the determination of the energy distribution function. We began a calculation of the rotation and vibrational excitation cross sections of molecular nitrogen and nitrogen atoms and developed a method for including inelastic energy loss as a function of scattering angle in the Boltzmann equation. A procedure for obtaining the solution of the Boltzman equation was worked out.

  4. Novel effects of nitric oxide

    NASA Technical Reports Server (NTRS)

    Davis, K. L.; Martin, E.; Turko, I. V.; Murad, F.

    2001-01-01

    Nitric oxide (NO), a simple free radical gas, elicits a surprisingly wide range of physiological and pathophysiological effects. NO interacts with soluble guanylate cyclase to evoke many of these effects. However, NO can also interact with molecular oxygen and superoxide radicals to produce reactive nitrogen species that can modify a number of macromolecules including proteins, lipids, and nucleic acids. NO can also interact directly with transition metals. Here, we have reviewed the non--3',5'-cyclic-guanosine-monophosphate-mediated effects of NO including modifications of proteins, lipids, and nucleic acids.

  5. Nitric oxide as a mediator of oxidant lung injury due to paraquat.

    PubMed Central

    Berisha, H I; Pakbaz, H; Absood, A; Said, S I

    1994-01-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either NG-nitro-L-arginine methyl ester or N omega-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury. PMID:7519778

  6. Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat

    NASA Astrophysics Data System (ADS)

    Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.

    1994-08-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.

  7. Increased amount of nitric oxide in exhaled air of asthmatics.

    PubMed

    Alving, K; Weitzberg, E; Lundberg, J M

    1993-10-01

    The presence of nitric oxide (NO) in the exhaled air of humans has recently been described. We wanted to assess at what level exhaled NO originates in normal airways, and to determine whether airway inflammation induces changes in the levels of exhaled NO. Exhaled NO was continuously measured by chemiluminescence technique during normal tidal breathing through the nose or mouth, with a detection limit of 1 part per billion (ppb). Twelve control subjects were compared to eight patients with mild atopic asthma and rhinitis caused by occupational allergen. In control subjects, the major part of NO in exhaled air (up to 30 ppb) seemed to originate in the nasal airways, with only minor contribution from the lower airways and the oral cavity. However, in mild asthmatics, the level of exhaled NO during oral breathing, indicating the involvement of the lower airways, was increased 2-3 fold. Since increased production of NO in the lower airways may involve activated macrophages or neutrophils, we suggest that exhaled NO may be used to instantly monitor ongoing bronchial inflammation, at least when involving inducible NO synthase. PMID:7507065

  8. Two Dimensional Polymer That Generates Nitric Oxide.

    DOEpatents

    McDonald, William F.; Koren, Amy B.

    2005-10-04

    A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.

  9. Nanocarriers for Nitric Oxide Delivery

    PubMed Central

    Saraiva, Juliana; Marotta-Oliveira, Samantha S.; Cicillini, Simone Aparecida; Eloy, Josimar de Oliveira; Marchetti, Juliana Maldonado

    2011-01-01

    Nitric oxide (NO) is a promising pharmaceutical agent that has vasodilative, antibacterial, and tumoricidal effects. To study the complex and wide-ranging roles of NO and to facilitate its therapeutic use, a great number of synthetic compounds (e.g., nitrosothiols, nitrosohydroxyamines, N-diazeniumdiolates, and nitrosyl metal complexes) have been developed to chemically stabilize and release NO in a controlled manner. Although NO is currently being exploited in many biomedical applications, its use is limited by several factors, including a short half-life, instability during storage, and potential toxicity. Additionally, efficient methods of both localized and systemic in vivo delivery and dose control are needed. One strategy for addressing these limitations and thus increasing the utility of NO donors is based on nanotechnology. PMID:21869934

  10. Nitric oxide in liver diseases.

    PubMed

    Iwakiri, Yasuko; Kim, Moon Young

    2015-08-01

    Nitric oxide (NO) and its derivatives play important roles in the physiology and pathophysiology of the liver. Despite its diverse and complicated roles, certain patterns of the effect of NO on the pathogenesis and progression of liver diseases are observed. In general, NO derived from endothelial NO synthase (eNOS) in liver sinusoidal endothelial cells (LSECs) is protective against disease development, while inducible NOS (iNOS)-derived NO contributes to pathological processes. This review addresses the roles of NO in the development of various liver diseases with a focus on recently published articles. We present here two recent advances in understanding NO-mediated signaling - nitrated fatty acids (NO2-FAs) and S-guanylation - and conclude with suggestions for future directions in NO-related studies on the liver. PMID:26027855

  11. Analytical Chemistry of Nitric Oxide

    PubMed Central

    Hetrick, Evan M.

    2013-01-01

    Nitric oxide (NO) is the focus of intense research, owing primarily to its wide-ranging biological and physiological actions. A requirement for understanding its origin, activity, and regulation is the need for accurate and precise measurement techniques. Unfortunately, analytical assays for monitoring NO are challenged by NO’s unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span pM to µM in physiological milieu, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with special focus on the fundamentals behind each technique and approaches that have been coupled with modern analytical measurement tools or exploited to create novel NO sensors. PMID:20636069

  12. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  13. Comparison of a thermospheric photochemical model with Student Nitric Oxide Explorer (SNOE) observations of nitric oxide

    NASA Astrophysics Data System (ADS)

    Barth, C. A.; Bailey, S. M.

    2004-03-01

    A time-dependent thermospheric model has been used to calculate the nitric oxide density in the lower thermosphere for a 935-day period, 11 March 1998 to 30 September 2000. This model uses daily values of the observed solar soft X-ray irradiance (2-7 nm) as an energy input parameter. The model does not include an energy input from auroral electron precipitation. The results of the model calculation of nitric oxide density at 110 km were compared with observations of nitric oxide density made with the Student Nitric Oxide Explorer (SNOE) for the 935-day period. At the equator the model calculations and the observations agree very well with a linear correlation coefficient of 0.876. The correlation coefficient remains high for the altitude region 107-117 km, the region where solar soft X-rays (2-7 nm) are the major source of nitric oxide production. The comparison of the model calculations with the observations as a function of latitude show that there is excess nitric oxide poleward of 30°N and S latitude particularly during the fall-winter season. We believe that the source of this excess nitric oxide is the nitric oxide that is produced in the auroral region (65°-75°N and S geomagnetic latitude) by precipitating auroral electrons. We believe that aurorally produced nitric oxide is transported equatorward by horizontal winds. At midlatitudes the excess nitric oxide decays to about half of its initial value in one day. At times of large geomagnetic storms we believe that aurorally produced nitric oxide is transported all the way to the equator by horizontal winds. The excellent correlation of the model calculations and the SNOE observations of nitric oxide at 110 km between 30°S and 30°N support the hypothesis that solar soft X-rays are the source of the variability of nitric oxide in the thermosphere at low latitudes.

  14. Sampling nitric oxide from combustion gases.

    NASA Technical Reports Server (NTRS)

    England, C.; Houseman, J.; Teixeira, D. P.

    1973-01-01

    Experimental study of several sampling tube and probe material compositions and designs aimed at preventing nitric oxide reduction when sampling nitric oxide from combustion gases. A 250,000 Btu/h furnace fired with technical grade methane was used for testing the sampling probes over a wide range of air-fuel mixtures. The results obtained include the finding that the use of stainless steel in probes creates inaccuracies in near-stoichiometric and fuel-rich sampling in hydrocarbon flames. For very fuel-rich flames, water cooling is needed even in quartz probes to prevent significant reduction of nitric oxide.-

  15. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitric oxide administration apparatus. 868.5165... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to...

  16. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitric oxide administration apparatus. 868.5165... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to...

  17. Application of nitric oxide measurements in clinical conditions beyond asthma

    PubMed Central

    Malinovschi, Andrei; Ludviksdottir, Dora; Tufvesson, Ellen; Rolla, Giovanni; Bjermer, Leif; Alving, Kjell; Diamant, Zuzana

    2015-01-01

    Fractional exhaled nitric oxide (FeNO) is a convenient, non-invasive method for the assessment of active, mainly Th2-driven, airway inflammation, which is sensitive to treatment with standard anti-inflammatory therapy. Consequently, FeNO serves as a valued tool to aid diagnosis and monitoring in several asthma phenotypes. More recently, FeNO has been evaluated in several other respiratory, infectious, and/or immunological conditions. In this short review, we provide an overview of several clinical studies and discuss the status of potential applications of NO measurements in clinical conditions beyond asthma. PMID:26672962

  18. Fractional exhaled nitric oxide-measuring devices: technology update

    PubMed Central

    Maniscalco, Mauro; Vitale, Carolina; Vatrella, Alessandro; Molino, Antonio; Bianco, Andrea; Mazzarella, Gennaro

    2016-01-01

    The measurement of exhaled nitric oxide (NO) has been employed in the diagnosis of specific types of airway inflammation, guiding treatment monitoring by predicting and assessing response to anti-inflammatory therapy and monitoring for compliance and detecting relapse. Various techniques are currently used to analyze exhaled NO concentrations under a range of conditions for both health and disease. These include chemiluminescence and electrochemical sensor devices. The cost effectiveness and ability to achieve adequate flexibility in sensitivity and selectivity of NO measurement for these methods are evaluated alongside the potential for use of laser-based technology. This review explores the technologies involved in the measurement of exhaled NO. PMID:27382340

  19. Reversibility of heme-nitric oxide reactions for use in an inhaled nitric oxide sensor

    NASA Astrophysics Data System (ADS)

    Parikh, Bhairavi R.; Soller, Babs R.; Rencus, Tal

    1997-06-01

    Nitric Oxide is a simple gaseous compound which serves as a regulatory molecule in a number of physiological processes. Due to its biological role as a potent local vasodilator,there has been widespread interest in the therapeutic use of gaseous nitric oxide a selective pulmonary vasodilator. Our goal is the development of a sensor for the direct and continuous measurement of inhaled nitric oxide concentrations. This study evaluated the reversibility of potential sensing compounds upon reaction with nitric oxide. Previously, absorption spectroscopy was used to study the sensitivity of the Fe II, Fe III and oxygenated forms of three biologically active hemes known to rapidly react with NO: hemoglobin, myoglobin, and cytochrome-c. This study focused on the photo-reversibility of the hem's reaction with nitric oxide. Hemoglobin, myoglobin and cytochrome-c in the Fe III state reversibly reacted with nitric oxide. Hemoglobin and myoglobin in the Fe II state non-reversibly reacted with nitric oxide to form an unstable product. Cytochrome-c (FeII) does not react with nitric oxide. The oxy forms of hemoglobin and myoglobin react with nitric oxide to form their respective met forms, unreversible via photolysis. For all reversible reactions, photolysis was gradual and complete within five minutes.

  20. Nitric Oxide Homeostasis in Neurodegenerative Diseases.

    PubMed

    Hannibal, Luciana

    2016-01-01

    The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases. PMID:26391043

  1. Neural mechanisms in nitric-oxide-deficient hypertension

    NASA Technical Reports Server (NTRS)

    Sander, M.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.

  2. The Effect of Nitric Oxide on Bacteria

    PubMed Central

    Shank, J. L.; Silliker, J. H.; Harper, R. H.

    1962-01-01

    Nitric oxide, as well as several other oxides of nitrogen, were assayed for their antibacterial action. It is shown that nitric oxide has virtually no effect on bacteria, whereas both NaNO3 and NaNO2 appear to have either neutral or stimulatory effects. It is suggested that the formation of nitrous acid is mainly responsible for the quantitative as well as the qualitative changes that occur in the bacterial flora of cured meat. A pH-dependent “nitrite cycle” is presented to account for the production of nitrous acid in cured meat systems. PMID:13911227

  3. Arginase activity and nitric oxide levels in patients with obstructive sleep apnea syndrome

    PubMed Central

    Yüksel, Meral; Okur, Hacer Kuzu; Pelin, Zerrin; Öğünç, Ayliz Velioğlu; Öztürk, Levent

    2014-01-01

    OBJECTIVE: Obstructive sleep apnea syndrome is characterized by repetitive obstruction of the upper airways, and it is a risk factor for cardiovascular diseases. There have been several studies demonstrating low levels of nitric oxide in patients with obstructive sleep apnea syndrome compared with healthy controls. In this study, we hypothesized that reduced nitric oxide levels would result in high arginase activity. Arginase reacts with L-arginine and produces urea and L-ornithine, whereas L-arginine is a substrate for nitric oxide synthase, which produces nitric oxide. METHODS: The study group consisted of 51 obstructive sleep apnea syndrome patients (M/F: 43/8; mean age 49±10 years of age) and 15 healthy control subjects (M/F: 13/3; mean age 46±14 years of age). Obstructive sleep apnea syndrome patients were divided into two subgroups based on the presence or absence of cardiovascular disease. Nitric oxide levels and arginase activity were measured via an enzyme-linked immunosorbent assay of serum samples. RESULTS: Serum nitric oxide levels in the control subjects were higher than in the obstructive sleep apnea patients with and without cardiovascular diseases (p<0.05). Arginase activity was significantly higher (p<0.01) in obstructive sleep apnea syndrome patients without cardiovascular diseases compared with the control group. Obstructive sleep apnea syndrome patients with cardiovascular diseases had higher arginase activity than the controls (p<0.001) and the obstructive sleep apnea syndrome patients without cardiovascular diseases (p<0.05). CONCLUSION: Low nitric oxide levels are associated with high arginase activity. The mechanism of nitric oxide depletion in sleep apnea patients suggests that increased arginase activity might reduce the substrate availability of nitric oxide synthase and thus could reduce nitric oxide levels. PMID:24714832

  4. Effects of nitric acid on carbachol reactivity of the airways in normal and allergic sheep

    SciTech Connect

    Abraham, W.M.; Kim, C.S.; King, M.M.; Oliver, W. Jr.; Yerger, L.

    1982-01-01

    The airway effects of a 4-hr exposure (via a Plexiglas hood) to 1.6 ppm nitric acid vapor were evaluated in seven normal and seven allergic sheep, i.e., animals that have a history of reacting with bronchospasm to inhalation challenge with Ascaris suum antigen. The nitric acid vapor was generated by ultrasonic nebulization of a 2% nitric acid solution. Airway effects were assessed by measuring the change in specific pulmonary flow resistance before and after a standard inhalation challenge with 2.5% carbachol aerosol. Nitric acid exposure did not produce bronchoconstriction in either group. Pre-exposure increases in specific pulmonary flow resistance after carbachol inhalation were 68% (SD+/- 13%) and 82% (SD+/- 35%) for the normal and allergic sheep, respectively. Within 24 hr, the largest post-exposure increases in specific pulmonary flow resistance for the normal and allergic sheep were 108% (SD+/- 51%(P<.06)) and 175% (SD+/- 87% (p<.02)), respectively. We conclude that a short-term exposure to nitric acid vapor at levels below the industrial threshold limit (2 ppm), produces airway hyperreactivity to aerosolized carbachol in allergic sheep.

  5. Air contamination with nitric oxide: effect on exhaled nitric oxide response.

    PubMed

    Therminarias, A; Flore, P; Favre-Juvin, A; Oddou, M F; Delaire, M; Grimbert, F

    1998-03-01

    This study examines the response of exhaled nitric oxide (NO) concentration (ECNO) and quantity of exhaled NO over time (EVNO) in 10 healthy subjects breathing into five polyethylene bags, one in which synthetic air was free of NO and four in which NO was diluted to concentrations of 20 +/- 0.6, 49 +/- 0.8, 98 +/- 2, and 148 +/- 2 ppb, respectively. Each subject was connected to each bag for 10 min at random. Minute ventilation and ECNO were measured continuously, and EVNO was calculated continuously. ECNO and EVNO values were significantly higher for an inhaled NO concentration of 20 ppb than for NO-free air. Above 20 ppb, ECNO and EVNO increased linearly with inhaled NO concentration. It is reasonable to assume that a share of the quantity of inspired NO over time (InspVNO) because of air contamination by pollution is rejected by the ventilatory pathway. Insofar as InspVNO does not affect endogenous production or the metabolic fate of NO in the airway, this share may be estimated as being approximately one third of InspVNO, the remainder being taken by the endogenous pathway. Thus, air contamination by the NO resulting from pollution greatly increases the NO response in exhaled air. PMID:9517592

  6. [Exhaled nitric oxide in pediatric asthma].

    PubMed

    Alvarez Caro, Francisco; Pérez Guirado, Alejandro; Ruiz Del Árbol Sánchez, Paloma; de Miguel Mallén, Angeles; Alvarez Berciano, Francisco

    2010-12-01

    Exhaled nitric oxide has become a new diagnostic tool in pediatric daily practice. It provides valuable information on the nature of the underlying inflammation, being useful to establish the diagnosis and to differentiate which patients could benefit more from the anti-inflammatory treatment. As well, it can be useful in predicting asthmatic exacerbations and be used as a guide to make therapeutic modifications. Taking everything to account, the pediatrician has to know its interpretation and its applications. This manuscript reviews the main applications of exhaled nitric oxide in pediatric asthma. PMID:21132252

  7. Arginine metabolism: nitric oxide and beyond.

    PubMed Central

    Wu, G; Morris, S M

    1998-01-01

    Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes. PMID:9806879

  8. BIOGENIC NITRIC OXIDE EMISSIONS FROM CROPLAND SOILS

    EPA Science Inventory

    Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates ...

  9. 49 CFR 173.337 - Nitric oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitric oxide. 173.337 Section 173.337 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation...

  10. Nitric oxide. Novel biology with clinical relevance.

    PubMed Central

    Billiar, T R

    1995-01-01

    OBJECTIVE: The author provides the reader with a view of the regulation and function of nitric oxide (NO), based on the three distinct enzyme isoforms that synthesize NO. SUMMARY BACKGROUND DATA: Nitric oxide is a short-lived molecule exhibiting functions as diverse as neurotransmission and microbial killing. Recent advances in the characterization of the enzymes responsible for NO synthesis and in the understanding of how NO interacts with targets have led to new insights into the many facets of this diverse molecule. METHODS: Nitric oxide is produced by one of three enzyme isoforms of NO synthesis. These enzymes vary considerably in their distribution, regulation, and function. Accordingly, the NO synthesis or lack of NO production will have consequences unique to that isoform. Therefore, this review summarizes the regulation and function of NO generated by each of the three isoforms. RESULTS: Nitric oxide exhibits many unique characteristics that allow this molecule to perform so many functions. The amount, duration, and location of the NO synthesis will depend on the isoform of NO synthase expressed. For each isoform, there probably are disease processes in which deficiency states exist. For induced NO synthesis, states of overexpression exist. CONCLUSIONS: Understanding the regulation and function of the enzymes that produce NO and the unique characteristics of each enzyme isoform is likely to lead to therapeutic approaches to prevent or treat a number of diseases. PMID:7537035

  11. Electron-impact excitation of nitric oxide.

    NASA Technical Reports Server (NTRS)

    Stone, E. J.; Zipf, E. C.

    1972-01-01

    The absolute cross sections for the excitation of the nitrosyl cation Baer-Miescher bands, two nitric oxide bands, and several atomic nitrogen multiplets in the vacuum UV by electron impact on NO have been measured over an energy range extending from threshold to 300 eV. The variation of the dipole transition moment for the nitrosyl cation band system was also determined.

  12. Nitric oxide methods in seed biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) is a gaseous, free radical that is involved in many aspects of plant growth, development, and responses to the environment. Compelling evidence points to a central role for NO in the loss of seed dormancy. NO is highly reactive, toxic at high concentrations, and unstable. Methods f...

  13. Copper deficiency attenuates endothelial nitric oxide release

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The attenuation of endothelium-dependent nitric oxide (NO)-mediated vasodilation is a consistent finding in both conduit and resistance vessels during dietary copper deficiency. While the effect is well established, evidence for the mechanism is still circumstantial. This study was designed to deter...

  14. Effect of Inhaled β2-Agonist on Exhaled Nitric Oxide in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Amer, Mostafa; Cowan, Jan; Gray, Andrew; Brockway, Ben

    2016-01-01

    The fractional exhaled nitric oxide measured at an expiratory flow of 50mL/s (FENO50) is a marker of airway inflammation, and high levels are associated with greater response to steroid treatment. In asthma, FENO50 increases with bronchodilation and decreases with bronchoconstriction, the latter potentially causing an underestimate of the degree of airway inflammation when asthma worsens. It is unknown whether the same effect occurs in chronic obstructive lung disease (COPD). Likewise, it is not known whether changes in airway calibre in COPD patients alter flow-independent parameters describing pulmonary nitric oxide exchange, such as the maximal flux of nitric oxide (NO) from the proximal airway compartment (J’awNO) and the distal airway/alveolar concentration of NO (CANO). We recruited 24 patients with COPD and performed FENO analysis at multiple expiratory flows before and after treatment with inhaled β2-agonist bronchodilator therapy. For the 21 patients analysed, FENO50 rose from 17.1 (1.4) ppb (geometric mean (geometric SD)) at baseline, to 19.3 (1.3) ppb after bronchodilator therapy, an increase of 2.2 ppb (95% CI, 0.7–3.6; P = 0.005). There were non-significant changes in flow-independent NO parameters. The change in FENO50 correlated positively with the change in J’awNO (rs = 0.67, P < 0.001; rs = 0.62, P = 0.002 before and after correction for axial back-diffusion respectively) following bronchodilation. Inhaled bronchodilator therapy can increase exhaled nitric oxide measurements in COPD. The standardisation of inhaled bronchodilator therapy before FENO analysis in COPD patients should therefore be considered in both research and clinical settings. PMID:27258087

  15. Are exhaled nitric oxide measurements using the portable NIOX MINO repeatable?

    PubMed Central

    2010-01-01

    Background Exhaled nitric oxide is a non-invasive marker of airway inflammation and a portable analyser, the NIOX MINO (Aerocrine AB, Solna, Sweden), is now available. This study aimed to assess the reproducibility of the NIOX MINO measurements across age, sex and lung function for both absolute and categorical exhaled nitric oxide values in two distinct groups of children and teenagers. Methods Paired exhaled nitric oxide readings were obtained from 494 teenagers, aged 16-18 years, enrolled in an unselected birth cohort and 65 young people, aged 6-17 years, with asthma enrolled in an interventional asthma management study. Results The birth cohort participants showed a high degree of variability between first and second exhaled nitric oxide readings (mean intra-participant difference 1.37 ppb, 95% limits of agreement -7.61 to 10.34 ppb), although there was very close agreement when values were categorised as low, normal, intermediate or high (kappa = 0.907, p < 0.001). Similar findings were seen in subgroup analyses by sex, lung function and asthma status. Similar findings were seen in the interventional study participants. Conclusions The reproducibility of exhaled nitric oxide is poor for absolute values but acceptable when values are categorised as low, normal, intermediate or high in children and teenagers. One measurement is therefore sufficient when using categorical exhaled nitric oxide values to direct asthma management but a mean of at least two measurements is required for absolute values. PMID:20416092

  16. Nitric oxide, S-nitrosylation and neurodegeneration.

    PubMed

    Chung, K K K; Dawson, T M; Dawson, V L

    2005-09-01

    Nitric oxide is a critically important signaling molecule, controlling a wide range of pathways and biological processes. Highly reactive nitric oxide mediates its function through reaction with different molecules directly or indirectly. One of these modifications is the S-nitrosylation of cysteine residues in proteins. S-nitrosylation is emerging as an important redox signaling mechanism and has been found to regulate a broad range of biologic, physiologic and cellular functions. One of the major findings in this area recently is the linkage of nitrosative stress to various neurodegenerative disorders. Oxidative stress has long been regarded as a prime mediator in the development of neurodegeneration as various indices of oxidative stress are readily observed in postmortem studies. A causative role for nitrosative stress in neurodegeneration is just now being appreciated. The direct connection of S-nitrosylation to the pathogenesis of Parkinson's disease in recent studies further provide insights into how imbalance in nitric oxide metabolism can contribute to the development of selective injury and disease. PMID:16191392

  17. Asthmatic cough and airway oxidative stress.

    PubMed

    Koskela, Heikki O; Purokivi, Minna K; Nieminen, Riina M; Moilanen, Eeva

    2012-05-31

    The mechanisms of cough in asthma are unclear. Asthma is associated with an oxidative stress. Many reactive oxygen species sensitize or activate sensory C-fibers which are capable to induce cough. It was hypothesized that oxidative stress in the airways might contribute to the cough severity in asthma. Exhaled breath condensate samples were collected in ten healthy and 26 asthmatic subjects. The concentration of 8-isoprostane was measured. In addition, the subjects filled in Leicester Cough Questionnaire and underwent cough provocation tests with dry air hyperpnoea and hypertonic saline, among other measurements. Among the asthmatic subjects, high 8-isoprostane was associated with severe cough response to hyperpnoea (p=0.001), low Leicester Cough Questionnaire values (indicating severe subjective cough, p=0.02), and usage of combination asthma drugs (p=0.03-0.04). However, the 8-isoprostane concentrations did not differ significantly between the healthy and the asthmatic subjects. Airway oxidative stress may be associated with experienced cough severity and measured cough sensitivity in asthma. PMID:22546340

  18. Global observations of nitric oxide in the thermosphere

    NASA Astrophysics Data System (ADS)

    Barth, C. A.; Mankoff, K. D.; Bailey, S. M.; Solomon, S. C.

    2003-01-01

    Nitric oxide density in the lower thermosphere (97-150 km) has been measured from the polar-orbiting Student Nitric Oxide Explorer (SNOE) satellite as a function of latitude, longitude, and altitude for the 2 1/2 year period from 11 March 1998 until 30 September 2000. The observations show that the maximum density occurs near 106-110 km and that the density is highly variable. The nitric oxide density at low latitudes correlates well with the solar soft X-ray irradiance (2-7 nm), indicating that it is the solar X-rays that produce thermospheric nitric oxide at low and midlatitudes. Nitric oxide is produced at auroral latitudes (60°-70° geomagnetic) by the precipitation of electrons (1-10 keV) into the thermosphere. During high geomagnetic activity, increased nitric oxide may be present at midlatitudes as the result of meridional winds that carry the nitric oxide equatorward.

  19. A selective nanosensing probe for nitric oxide

    NASA Astrophysics Data System (ADS)

    Gouma, P. I.; Kalyanasundaram, K.

    2008-12-01

    Measurement of NO gas in exhaled human breath may be used to monitor oxidative stress and pulmonary diseases. Until now, only bulk, expensive, chemiluminescence-based NO monitors have been available to medicine. A nanosensing probe based on WO3 selectively detecting minute nitric oxide gas concentrations in the presence of interfering volatile compounds is presented. This is possible due to the chemical affinity of rhenium trioxide based phases to oxidizing gases. The NO nanoprobe is expected to lead to portable and affordable, noninvasive, single breath sampling, NO diagnostics.

  20. Fine Particulate Matter Constituents, Nitric Oxide Synthase DNA Methylation and Exhaled Nitric Oxide.

    PubMed

    Chen, Renjie; Qiao, Liping; Li, Huichu; Zhao, Yan; Zhang, Yunhui; Xu, Wenxi; Wang, Cuicui; Wang, Hongli; Zhao, Zhuohui; Xu, Xiaohui; Hu, Hui; Kan, Haidong

    2015-10-01

    It remains unknown how fine particulate matter (PM2.5) constituents affect differently the fractional concentration of exhaled nitric oxide (FeNO, a biomarker of airway inflammation) and the DNA methylation of its encoding gene (NOS2A). We aimed to investigate the short-term effects of PM2.5 constituents on NOS2A methylation and FeNO. We designed a longitudinal study among chronic obstructive pulmonary disease (COPD) patients with six repeated health measurements in Shanghai, China. We applied linear mixed-effect models to evaluate the associations. We observed that the inverse association between PM2.5 and methylation at position 1 was limited within 24 h, and the positive association between PM2.5 and FeNO was the strongest at lag 1 day. Organic carbon, element carbon, NO3(-) and NH4(+) were robustly and significantly associated with decreased methylation and elevated FeNO. An interquartile range increase in total PM2.5 and the four constituents was associated with decreases of 1.19, 1.63, 1.62, 1.17, and 1.14 in percent methylation of NOS2A, respectively, and increases of 13.30%,16.93%, 8.97%, 18.26%, and 11.42% in FeNO, respectively. Our results indicated that organic carbon, element carbon, NO3(-) and NH4(+) might be mainly responsible for the effects of PM2.5 on the decreased NOS2A DNA methylation and elevated FeNO in COPD patients. PMID:26372312

  1. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells. PMID:26390975

  2. Traffic-related air pollution and alveolar nitric oxide in southern California children.

    PubMed

    Eckel, Sandrah P; Zhang, Zilu; Habre, Rima; Rappaport, Edward B; Linn, William S; Berhane, Kiros; Zhang, Yue; Bastain, Theresa M; Gilliland, Frank D

    2016-05-01

    Mechanisms for the adverse respiratory effects of traffic-related air pollution (TRAP) have yet to be established. We evaluated the acute effects of TRAP exposure on proximal and distal airway inflammation by relating indoor nitric oxide (NO), a marker of TRAP exposure in the indoor microenvironment, to airway and alveolar sources of exhaled nitric oxide (FeNO).FeNO was collected online at four flow rates in 1635 schoolchildren (aged 12-15 years) in southern California (USA) breathing NO-free air. Indoor NO was sampled hourly and linearly interpolated to the time of the FeNO test. Estimated parameters quantifying airway wall diffusivity (DawNO) and flux (J'awNO) and alveolar concentration (CANO) sources of FeNO were related to exposure using linear regression to adjust for potential confounders.We found that TRAP exposure indoors was associated with elevated alveolar NO. A 10 ppb higher indoor NO concentration at the time of the FeNO test was associated with 0.10 ppb higher average CANO (95% CI 0.04-0.16) (equivalent to a 7.1% increase from the mean), 4.0% higher J'awNO (95% CI -2.8-11.3) and 0.2% lower DawNO (95% CI -4.8-4.6).These findings are consistent with an airway response to TRAP exposure that was most marked in the distal airways. PMID:26797034

  3. Nitric oxide-induced calcium release

    PubMed Central

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1. PMID:23247505

  4. Exhaled nitric oxide levels in childhood asthma: a more reliable indicator of asthma severity than lung function measurement?

    PubMed

    Piacentini, G L; Suzuki, Y; Bodini, A

    2000-04-01

    The level of exhaled nitric oxide (NO) has been demonstrated to reflect the degree of airway inflammation in patients with asthma and to be related to the severity of asthma, as well as to the efficacy of treatment. In contrast, lung function tests provide information about airway volumes and flows reflecting the level of airway obstruction, but do not allow any direct information about the degree of airway inflammation. Several studies have evaluated the relationships between the level of airway inflammation assessed by exhaled NO and the levels of airway obstruction and/or bronchial hyperresponsiveness in asthmatic adults and children. These studies highlight the complex pathophysiology of asthma and suggest that exhaled NO may have a promising role in addition to lung function measurement in the evaluation of asthma severity in children. PMID:18034534

  5. Biological nitric oxide signalling: chemistry and terminology

    PubMed Central

    Heinrich, Tassiele A; da Silva, Roberto S; Miranda, Katrina M; Switzer, Christopher H; Wink, David A; Fukuto, Jon M

    2013-01-01

    Biological nitrogen oxide signalling and stress is an area of extreme clinical, pharmacological, toxicological, biochemical and chemical research interest. The utility of nitric oxide and derived species as signalling agents is due to their novel and vast chemical interactions with a variety of biological targets. Herein, the chemistry associated with the interaction of the biologically relevant nitrogen oxide species with fundamental biochemical targets is discussed. Specifically, the chemical interactions of nitrogen oxides with nucleophiles (e.g. thiols), metals (e.g. hemeproteins) and paramagnetic species (e.g. dioxygen and superoxide) are addressed. Importantly, the terms associated with the mechanisms by which NO (and derived species) react with their respective biological targets have been defined by numerous past chemical studies. Thus, in order to assist researchers in referring to chemical processes associated with nitrogen oxide biology, the vernacular associated with these chemical interactions is addressed. PMID:23617570

  6. [Nitric oxide and the kidneys].

    PubMed

    Dzúrik, R; Spustová, V

    2001-02-01

    Nitrogen oxide (NO) is one of the crucial modulators of the vascular tonus. Apart from its effect on the cardiovascular system it exerts an effect also on other types of cells and ensures their functions.Specially comprehensive is its synthesis and action in the kidneys: NO is formed in the endothelial cells due to the activity of constitutional endothelial synthase (eNOS), in mesangial cells of inductive synthase (iNOS), in smooth muscle cells (vsmNOS), in tubular cells neuronal NOS (nNOS) and iNOS and in the macula densa nNOS. By modulation of the v.afferens it influences the blood flow through the glomeruli and filtration pressure in the glomeruli. It participates in the tubuloglomerular feedback: the cells of the macula densa produce NO via nNOS, the genetic transcription and translation of which as well as the kationic translation system ensure the transport of the L-arginine precursor and regulate very sensitively NO formation. The latter diffuses via the extraglomerular mesangium into the iuxtaglomerular apparatus where renin is forned.NO reduces proteinuria and renal proliferation. During renal insufficiency NO production is inhibited and in diabetes NO production is increased. Diabetic hyperfiltration and hypertrophy are ascribed to produced NO. Experimental studies contributed substantially to the knowledge of renal effects of NO. At present intensive clinical research has been started which, no doubt, will influence medical practice. PMID:15635855

  7. Nitric Oxide Oxidation Products are Increased in the Epithelial Lining Fluid of Children with Persistent Asthma

    PubMed Central

    Fitzpatrick, Anne M.; Brown, Lou Ann S.; Holguin, Fernando; Teague, W. Gerald

    2009-01-01

    Background Children with severe allergic asthma have persistent airway inflammation and oxidant stress. Objectives We hypothesized that children with severe allergic asthma would have increased concentrations of the NO oxidation products nitrite, nitrate, and nitrotyrosine in the proximal and distal airway epithelial lining fluid (ELF). We further hypothesized that NO oxidation products would be associated with higher exhaled nitric oxide (FENO), greater allergic sensitization, and lower pulmonary function. Methods Bronchoalveolar lavage (BAL) was obtained from 15 children with mild-to-moderate asthma, 30 children with severe allergic asthma, 5 non-asthmatic children and 20 non-smoking adults. The BAL was divided into proximal and distal portions and nitrite, nitrate, and nitrotyrosine were quantified. Results Children with mild-to-moderate and severe allergic asthma had increased concentrations of nitrite (adult control: 15 ± 3; pediatric control: 23 ± 4; mild-to-moderate asthma: 56 ± 26; severe asthma: 74 ± 18 µM), nitrate (37 ± 13 vs. 145 ± 38 vs. 711 ± 155 vs. 870 ± 168 µM) and nitrotyrosine (2 ± 1 vs. 3 ± 1 vs. 9 ± 3 vs. 10 ± 4 µM) in the proximal ELF. Similar results were seen in the distal ELF although the concentrations were significantly lower (p < 0.05 for each). Although univariate analyses revealed no associations between NO oxidation products and clinical features, multivariate analyses revealed FENO to be a significant predictor of NO oxidation in asthmatic children. Conclusions NO oxidation products are increased in the ELF of asthmatic children. The relationship between FENO and airway nitrosative stress is complicated and requires further study. PMID:19895987

  8. Processes regulating nitric oxide emissions from soils.

    PubMed

    Pilegaard, Kim

    2013-07-01

    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission. PMID:23713124

  9. Nitric oxide regulates vascular adaptive mitochondrial dynamics.

    PubMed

    Miller, Matthew W; Knaub, Leslie A; Olivera-Fragoso, Luis F; Keller, Amy C; Balasubramaniam, Vivek; Watson, Peter A; Reusch, Jane E B

    2013-06-15

    Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover. PMID:23585138

  10. Nitric oxide and asthma: a review.

    PubMed

    Ashutosh, K

    2000-01-01

    Nitric oxide (NO) is synthesized from the amino acid arginine by enzymes called nitric oxide synthases. NO has an important physiologic role in the regulation of vascular tone, response to vascular injury, and hemostasis. It also acts as a neurotransmitter for the nonadrenergic noncholinergic nerves and has important antimicrobial, immunologic, and proinflammatory activities. The lung is rich in nitric oxide synthases, and NO is normally present in the exhaled air. Use of NO in the treatment of asthma has not withstood the test of time and is not recommended. With the advent of analyzers capable of measuring NO rapidly and reliably, however, the analysis of NO in exhaled air is being increasingly recognized as a potential noninvasive test for the evaluation of the inflammatory component of the pathology of patients with asthma. An increase in the exhaled NO has been shown to accompany eosinophilic inflammation and to correlate with other indices of inflammation in asthma. Exhaled NO increases during exacerbation and decreases with recovery in patients with asthma. As exhaled NO is not increased during bronchospasm in the absence of coexisting inflammation, it could serve to differentiate between the inflammatory and bronchospastic components in asthma, thereby guiding therapy with steroids and other anti-inflammatory medications. Levels of NO also can be increased in certain other conditions, for example, allergic rhinitis and adult respiratory distress syndrome, but these can be clinically differentiated from asthma and do not lessen the diagnostic value of exhaled NO. Measurements of exhaled NO are influenced by several physiologic and technical variables, which results in a wide variation in the levels reported from the different laboratories. Standardization of technique, a better understanding of the confounding effects of physiologic and environmental variables, and establishment of the normal range and variability of exhaled NO are needed before its

  11. Role of oxidative stress and nitric oxide in atherothrombosis

    PubMed Central

    Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph

    2008-01-01

    During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590

  12. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  13. Vascular nitric oxide: Beyond eNOS.

    PubMed

    Zhao, Yingzi; Vanhoutte, Paul M; Leung, Susan W S

    2015-10-01

    As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis. PMID:26499181

  14. Nitric oxide rescues thalidomide mediated teratogenicity

    PubMed Central

    Siamwala, Jamila H.; Veeriah, Vimal; Priya, M. Krishna; Rajendran, Saranya; Saran, Uttara; Sinha, Swaraj; Nagarajan, Shunmugam; T, Pradeep; Chatterjee, Suvro

    2012-01-01

    Thalidomide, a sedative drug given to pregnant women, unfortunately caused limb deformities in thousands of babies. Recently the drug was revived because of its therapeutic potential; however the search is still ongoing for an antidote against thalidomide induced limb deformities. In the current study we found that nitric oxide (NO) rescues thalidomide affected chick (Gallus gallus) and zebrafish (Danio rerio) embryos. This study confirms that NO reduced the number of thalidomide mediated limb deformities by 94% and 80% in chick and zebrafish embryos respectively. NO prevents limb deformities by promoting angiogenesis, reducing oxidative stress and inactivating caspase-3 dependent apoptosis. We conclude that NO secures angiogenesis in the thalidomide treated embryos to protect them from deformities. PMID:22997553

  15. Melatonin and its precursors scavenge nitric oxide

    SciTech Connect

    Noda, Y.; Mori, A.; Liburdy, R.; Packer, L.

    1998-12-01

    Nitric oxide (NO) scavenging activity of melatonin, N-acetyl-5-hydroxytryptamine, serotonin, 5-hydroxytryptophan and L-tryptophan was examined by the Griess reaction using flow injection analysis. 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene(NOC-7) was used as NO generator. The Griess reagent stoichiometrically reacts with NO2-, which was converted by a cadmium-copper reduction column from the stable end products of NO oxidation. Except for tryptophan, all the compounds examined scavenged NO in a dose-dependent manner. Melatonin, which has a methoxy group in the 5-position and an acetyl side chain, exhibited the most potent scavenging activity among the compounds tested. Serotonin, N-acetyl-5-hydroxytryptamine, and 5-hydroxytryptophan, respectively, showed moderate scavenging activity compared to melatonin. Tryptophan, which has neither a methoxy nor a hydroxyl group in the 5-position, exhibited the least NO scavenging activity.

  16. Modeling of the Nitric Oxide Transport in the Human Lungs

    PubMed Central

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  17. Nitric Oxide--Some Old and New Perspectives.

    ERIC Educational Resources Information Center

    Ainscough, Eric W.; Brodie, Andrew M.

    1995-01-01

    Because of the role it plays in physiology and neurobiology, there is a rebirth of interest in nitric oxide. It can affect enzyme and immune system regulation and cytotoxicity. Nitric oxide may represent a new class of signaling molecules--gases that pass through cells and vanish. Overactive neurons produce large amounts of NO which may be linked…

  18. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitric oxide administration apparatus. 868.5165 Section 868.5165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5165 Nitric oxide...

  19. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitric oxide administration apparatus. 868.5165 Section 868.5165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5165 Nitric oxide...

  20. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer....

  1. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer....

  2. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitric oxide administration apparatus. 868.5165 Section 868.5165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5165 Nitric oxide...

  3. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer....

  4. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer....

  5. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer....

  6. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  7. Reduction of nitric oxide emissions from a combustor

    NASA Technical Reports Server (NTRS)

    Craig, R. A.; Pritchard, H. O. (Inventor)

    1980-01-01

    A turbojet combustor and method for controlling nitric oxide emissions by employing successive combustion zones is described. After combustion of an initial portion of the fuel in a primary combustion zone, the combustion products of the primary zone are combined with the remaining portion of fuel and additional plenum air and burned in a secondary combustion zone under conditions that result in low nitric oxide emissions. Low nitric oxide emissions are achieved by a novel turbojet combustor arrangement which provides flame stability by allowing stable combustion to be accompanied by low nitric oxide emissions resulting from controlled fuel-lean combustion (ignited by the emission products from the primary zone) in a secondary combustion zone at a lower combustion temperature resulting in low emission of nitric oxide.

  8. Nitric oxide protects endothelium from cadmium mediated leakiness.

    PubMed

    Nagarajan, Shunmugam; Rajendran, Saranya; Saran, Uttara; Priya, M Krishna; Swaminathan, Akila; Siamwala, Jamila H; Sinha, Swaraj; Veeriah, Vimal; Sonar, Punam; Jadhav, Vivek; Jaffar Ali, B M; Chatterjee, Suvro

    2013-05-01

    Cadmium targets the vascular endothelium causing endothelial dysfunction and leakiness of endothelial barrier. Nitric oxide plays a major role in mediating endothelial functions including angiogenesis, migration and permeability. The present study investigates the nitric oxide effects on cadmium induced endothelial leakiness. Results of ex vivo and in vitro permeability assays showed that even a sub-lethal dose of cadmium chloride (1 µM) was sufficient to induce leakiness of endothelial cells. Cadmium drastically altered the actin polymerisation pattern and membrane tension of these cells compared to controls. Addition of nitric oxide donor Spermine NONOate (SP) significantly blunted cadmium-mediated effects and recover endothelial cells integrity. Cadmium-induced cytoskeletal rearrangements and membrane leakiness are associated with the low nitric oxide availability and high reactive oxygen species generation. In brief, we show the protective role of nitric oxide against cadmium-mediated endothelial leakiness. PMID:23404577

  9. Pharmacology of endothelium-derived nitric oxide and nitrovasodilators.

    PubMed Central

    Ignarro, L. J.; Ross, G.; Tillisch, J.

    1991-01-01

    Nitric oxide is the active chemical species responsible for the vasodilator action of nitroglycerin, nitroprusside, and related nitrovasodilators. The most potent vasodilator and inhibitor of platelet aggregation known, nitric oxide was recently discovered to occur endogenously as the endothelium-derived relaxing factor. The pharmacology of endothelium-derived nitric oxide is virtually identical to that of the clinically used nitrovasodilators. Although endothelium-derived relaxing factor or endothelium-derived nitric oxide seems to be important in animals, its significance in humans still needs to be shown. We review the recent discoveries in the identification, biosynthesis, metabolism, and biologic actions of endothelium-derived nitric oxide, its significance in humans, and its relation to the clinically used nitrovasodilators. PMID:1902612

  10. Nitric oxide modulators: an emerging class of medicinal agents.

    PubMed

    Deshpande, S R; Satyanarayana, K; Rao, M N A; Pai, K V

    2012-11-01

    Nitric oxide, a unique messenger in biological system, is ubiquitously present virtually in all tissues revealing its versatile nature of being involved in diverse physiological functions such as vascular tone, inhibition of platelet aggregation, cell adhesion, neurotransmission and enzyme and immune regulation. The tremendous advancements made in the past few decades in this area suggests that the nitric oxide modulation either by its exogenous release through nitric oxide donors or inhibition of its synthesis by nitric oxide synthase inhibitors in physiological milieu may provide newer clinical strategies for the treatment of some diseases. In this review, an attempt is made to document and understand the biological chemistry of different classes of nitric oxide modulators that would prove to be a fruitful area in the years to come. PMID:23798773

  11. Nitric oxide scavengers as a therapeutic approach to nitric oxide mediated disease.

    PubMed

    Fricker, S P

    1999-08-01

    The essential role of nitric oxide (NO) in normal physiology and its involvement in the pathophysiology of a variety of diseases render the compound an attractive therapeutic target. NO donor drugs are used in the treatment of hypotension and angina where abnormalities in the L-arginine-nitric oxide pathway have been implicated. Overproduction of NO has been associated with a number of disease states including septic shock, inflammatory diseases, diabetes, ischaemia-reperfusion injury, adult respiratory distress syndrome, neurodegenerative diseases and allograft rejection. NO is produced by a group of enzymes, the nitric oxide synthases. Selective inhibition of the inducible isoform is one approach to the treatment of diseases where there is an overproduction of NO; an alternative approach is to scavenge or remove excess NO. A number of NO scavenger molecules have demonstrated pharmacological activity in disease models, particularly models of septic shock. These include organic molecules such as PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), haemoglobin derivatives such as the pyridoxalated haemoglobin polyoxyethylene conjugate (PHP), low molecular weight iron compounds of diethylenetriaminepentaacetic acid and diethyldithiocarbamate and ruthenium polyaminocarboxylate complexes. The data suggest a potential role for NO scavengers in the treatment of NO mediated disease. PMID:15992146

  12. Effect of Continuous Positive Airway Pressure on Airway Inflammation and Oxidative Stress in Patients with Obstructive Sleep Apnea

    PubMed Central

    Tichanon, Promsrisuk; Sopida, Santamit; Orapin, Pasurivong; Watchara, Boonsawat; Banjamas, Intarapoka

    2016-01-01

    Background. Airway inflammation and oxidative stress may be linked in obstructive sleep apnea (OSA) patients. We determined the effectiveness of continuous positive airway pressure (CPAP) therapy in reducing fractional exhaled nitric oxide (FeNO) and malondialdehyde (MDA) levels in OSA patients. Methods. Thirteen patients with OSA and 13 normal controls were recruited. FeNO and MDA levels were measured in the controls and in OSA patients before and after three months of CPAP therapy. Results. FeNO and MDA levels were higher in the patients compared to the age and gender matched controls (FeNO: 25.9 ± 5.0 versus 17.5 ± 5.9 ppb, P < 0.001; MDA: 14.6 ± 7.8 versus 2.1 ± 0.3 μmol/L, P < 0.001). FeNO and MDA levels were lower post-CPAP compared to pre-CPAP (FeNO: 25.9 ± 5.0 versus 17.0 ± 2.3 ppb, P < 0.001; MDA: 14.6 ± 7.8 versus 10.0 ± 6.4 μmol/L, P < 0.01). Apnea-hypopnea index (15.9 ± 6.6 versus 4.1 ± 2.1/h, P < 0.001) and mean arterial pressure (P < 0.01) decreased following CPAP treatment. Daytime mean SpO2 (P < 0.05) increased. Conclusion. Our study demonstrates that CPAP therapy yields clinical benefits by reducing upper airway inflammation and oxidative stress in OSA patients. PMID:27445526

  13. Remote sensing of nitric oxide emissions from planes, trains and automobiles

    NASA Astrophysics Data System (ADS)

    Popp, Peter John

    Remote sensing has been proven as an effective method for measuring in-use mobile source emissions. This document describes the development of a remote sensor for mobile source nitric oxide, based on an instrument previously developed at the University of Denver for measuring carbon monoxide and hydrocarbon emissions. The new remote sensor makes use of a high-speed ultraviolet spectrometer to quantify nitric oxide by absorption spectroscopy at 226 nm in the ultraviolet region. The high-speed spectrometer is coupled to an existing FEAT remote sensor, for the simultaneous measurement of CO, CO2 and hydrocarbons by non-dispersive infrared absorption spectroscopy. The utility of the instrument was demonstrated in the measurement of nitric oxide emissions from automobiles, commercial aircraft, and railroad locomotives. The remote sensor was used to measure nitric oxide emissions from motor vehicles in Chicago in 1997 and 1998, as part of a five-year study to characterize motor vehicle emissions and deterioration in that city. Emissions data were collected for over 19,000 vehicles in 1997 and almost 23,000 vehicles in 1998. All of these records contained valid measurements for carbon monoxide and hydrocarbons, in addition to nitric oxide. In September of 1997, a study was conducted with the cooperation of British Airways and the British Airports Authority to demonstrate the capability of the remote sensor in measuring nitric oxide emissions from in-use commercial aircraft. In two days of sampling at London Heathrow Airport, a total of 122 measurements were made of 90 different aircraft, ranging in size from Gulfstream executive jets to Boeing 747-400s. The measured nitric oxide emission indices were not inconsistent with commercial aircraft emission indices published by the International Civil Aviation Organization. The utility of the remote sensor in measuring nitric oxide emissions from railroad locomotives was demonstrated in January of 1999, in a study conducted with

  14. Plant pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) is a potent intercellular signal for defense, development and metabolism in animals and plants. In mammals, highly regulated nitric oxide synthases (NOSs) generate NO. NOS homologs exist in some prokaryotes, but direct evidence for NO production by these proteins has been lacking...

  15. Attenuation of contractions to acetylcholine in canine bronchi by an endogenous nitric oxide-like substance.

    PubMed Central

    Gao, Y.; Vanhoutte, P. M.

    1993-01-01

    1. The involvement was assessed of an endogenous nitric oxide-like substance in contractions of canine bronchi to acetylcholine. 2. Canine third order bronchial rings, in some of which the epithelium was removed mechanically, were suspended in organ chambers and isometric tension was recorded. In some experiments, the content of guanosine 3',5'-cyclic monophosphate (cyclic GMP) of the bronchi was also measured. 3. Acetylcholine induced concentration-dependent contractions. The contractions were potentiated by nitro-L-arginine (an inhibitor of the synthesis of nitric oxide), oxyhaemoglobin (a scavenger of nitric oxide), and methylene blue (an inhibitor of soluble guanylate cyclase). The magnitude of the potentiation to acetylcholine-induced contractions by these inhibitors were not significantly different between tissues with and without epithelium. 4. Acetylcholine induced a concentration-dependent increase in intracellular content of cyclic GMP, which was similar in bronchi with and without epithelium. These increases were abolished by nitro-L-arginine and methylene blue. 5. During contractions to acetylcholine, exogenous nitric oxide relaxed the canine bronchi. The relaxations were not affected by nitro-L-arginine, but were augmented by superoxide dismutase plus catalase, and were abolished by methylene blue. 6. These observations suggest that, during contraction evoked by acetylcholine, the production of an endogenous nitric oxide-like substance increases and in turn attenuates the response of the airways to the muscarinic agonist. However, the endogenous nitric oxide-like substance does not play a major role in the epithelium-dependent attenuation of the contraction to acetylcholine in canine bronchi. PMID:8395301

  16. Nitric oxide-releasing porous silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J.; McInnes, Steven JP; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H.

    2014-07-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  17. The emerging multifaceted roles of nitric oxide.

    PubMed Central

    Kuo, P C; Schroeder, R A

    1995-01-01

    Nitric oxide (NO) is a highly reactive free radical with a multitude of organ specific regulatory functions. Since 1985, NO has been the subject of numerous research efforts and as a result, has been found to play a major role in the cardiovascular, pulmonary, gastrointestinal, immune, and central nervous systems. In addition, deranged NO synthesis is the basis for a number of pathophysiologic states, such as atherosclerosis, pulmonary hypertension, pyloric stenosis, and the hypertension associated with renal failure. Traditional NO donors such as sodium nitroprusside and new pharmacologic NO adducts such as S-nitrosothiols may serve as exogenous sources of NO for the treatment of NO-deficient pathologic states. This review is an attempt to acquaint the surgical community with the fundamentals of NO biochemistry and physiology. Increased knowledge of its functions in normal homeostasis and pathologic states will enable physicians to better understand these disease processes and utilize new pharmacologic therapies. PMID:7717775

  18. Nitric oxide-releasing porous silicon nanoparticles

    PubMed Central

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment. PMID:25114633

  19. Nitric oxide and mitochondria in metabolic syndrome

    PubMed Central

    Litvinova, Larisa; Atochin, Dmitriy N.; Fattakhov, Nikolai; Vasilenko, Mariia; Zatolokin, Pavel; Kirienkova, Elena

    2015-01-01

    Metabolic syndrome (MS) is a cluster of metabolic disorders that collectively increase the risk of cardiovascular disease. Nitric oxide (NO) plays a crucial role in the pathogeneses of MS components and is involved in different mitochondrial signaling pathways that control respiration and apoptosis. The present review summarizes the recent information regarding the interrelations of mitochondria and NO in MS. Changes in the activities of different NO synthase isoforms lead to the formation of metabolic disorders and therefore are highlighted here. Reduced endothelial NOS activity and NO bioavailability, as the main factors underlying the endothelial dysfunction that occurs in MS, are discussed in this review in relation to mitochondrial dysfunction. We also focus on potential therapeutic strategies involving NO signaling pathways that can be used to treat patients with metabolic disorders associated with mitochondrial dysfunction. The article may help researchers develop new approaches for the diagnosis, prevention and treatment of MS. PMID:25741283

  20. Nitric oxide and plant iron homeostasis.

    PubMed

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. PMID:25612116

  1. An intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.; Gregory, G. L.; Mcdougal, D. S.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.

    1985-01-01

    Results from an intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted at Wallops Island, VA, in July 1983. Instruments intercompared included a laser-induced fluorescence system and two chemiluminescence instruments. The intercomparisons were performed with ambient air at NO mixing ratios ranging from 10 to 60 pptv and NO-enriched ambient air at mixing ratios from 20 to 170 pptv. All instruments sampled from a common manifold. The techniques exhibited a high degree of correlation among themselves and with changes in the NO mixing ratio. Agreement among the three techniques was placed at approximately + or - 30 percent. Within this level of agreement, no artifacts or species interferences were identified.

  2. Nitric oxide generating/releasing materials

    PubMed Central

    Liang, Hongying; Nacharaju, Parimala; Friedman, Adam; Friedman, Joel M

    2015-01-01

    Harnessing the impressive therapeutic potential of nitric oxide (NO) remains an ongoing challenge. This paper describes several of the current strategies both with respect to the underlying chemistry and physics and to the applications where they have shown promise. Included in this overview are molecular systems such as NONOates that release NO through chemical reactions and delivery vehicles such as nanoparticles that can generate, store, transport and deliver NO and related bioactive forms of NO such as nitrosothiols. Although there has been much positive movement, it is clear that we are only at the early stages of knowing how to precisely produce, transport and deliver to targeted sites therapeutic levels of NO and related molecules. PMID:26855790

  3. Nitric Oxide Signaling in the Microcirculation

    PubMed Central

    Buerk, Donald G.; Barbee, Kenneth A.; Jaron, Dov

    2013-01-01

    Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO. PMID:22196161

  4. Nitric oxide flow tagging in unseeded air.

    PubMed

    Dam, N; Klein-Douwel, R J; Sijtsema, N M; Meulen, J J

    2001-01-01

    A scheme for molecular tagging velocimetry is presented that can be used in air flows without any kind of seeding. The method is based on the local and instantaneous creation of nitric oxide (NO) molecules from N(2) and O(2) in the waist region of a focused ArF excimer laser beam. This NO distribution is advected by the flow and can be visualized any time later by laser-induced fluorescence in the gamma bands. The creation of NO is confirmed by use of an excitation spectrum. Two examples of the application of the new scheme for air-flow velocimetry are given in which single laser pulses are used for creation and visualization of NO. PMID:18033499

  5. Nitric Oxide Release Part II. Therapeutic Applications

    PubMed Central

    Carpenter, Alexis W.; Schoenfisch, Mark H.

    2012-01-01

    Summary A wide range of nitric oxide (NO)-releasing materials have emerged as potential therapeutics that exploit NO’s vast biological roles. Macromolecular NO-releasing scaffolds are particularly promising due to their ability to store and deliver larger NO payloads in a more controlled and effective manner compared to low molecular weight NO donors. While a variety of scaffolds (e.g., particles, dendrimers, and polymers/films) have been cleverly designed, the ultimate clinical utility of most NO-releasing macromolecules remains unrealized. Although not wholly predictive of clinical success, in vitro and in vivo investigations have enabled a preliminary evaluation of the therapeutic potential of such materials. Herein, we review the application of macromolecular NO therapies for cardiovascular disease, cancer, bacterial infections, and wound healing. PMID:22362384

  6. Nitric Oxide and Respiratory Helminthic Diseases

    PubMed Central

    Muro, Antonio; Pérez-Arellano, José-Luís

    2010-01-01

    Nitric oxide (NO) is a very simple molecule that displays very important functions both in helminths (mainly those involved in respiratory pathology) and in mammalian hosts. In this paper we review four issues related to interaction of NO and lung helminthic diseases. Firstly, we evaluated data available on the NO synthesis and release by helminths and their biological role. Next, we summarized the effect of antigens obtained from different phases of the biological cycle on NO production by host mammalian cells (mainly from human sources). Thirdly, we revised the evaluation of NO on the biological activities and/or the viability of respiratory helminths. Lastly, the deleterious consequences of increased production of NO during helminthic human infection are detailed. PMID:20169170

  7. Nitric oxide, stomatal closure, and abiotic stress.

    PubMed

    Neill, Steven; Barros, Raimundo; Bright, Jo; Desikan, Radhika; Hancock, John; Harrison, Judith; Morris, Peter; Ribeiro, Dimas; Wilson, Ian

    2008-01-01

    Various data indicate that nitric oxide (NO) is an endogenous signal in plants that mediates responses to several stimuli. Experimental evidence in support of such signalling roles for NO has been obtained via the application of NO, usually in the form of NO donors, via the measurement of endogenous NO, and through the manipulation of endogenous NO content by chemical and genetic means. Stomatal closure, initiated by abscisic acid (ABA), is effected through a complex symphony of intracellular signalling in which NO appears to be one component. Exogenous NO induces stomatal closure, ABA triggers NO generation, removal of NO by scavengers inhibits stomatal closure in response to ABA, and ABA-induced stomatal closure is reduced in mutants that are impaired in NO generation. The data indicate that ABA-induced guard cell NO generation requires both nitric oxide synthase-like activity and, in Arabidopsis, the NIA1 isoform of nitrate reductase (NR). NO stimulates mitogen-activated protein kinase (MAPK) activity and cGMP production. Both these NO-stimulated events are required for ABA-induced stomatal closure. ABA also stimulates the generation of H2O2 in guard cells, and pharmacological and genetic data demonstrate that NO accumulation in these cells is dependent on such production. Recent data have extended this model to maize mesophyll cells where the induction of antioxidant defences by water stress and ABA required the generation of H2O2 and NO and the activation of a MAPK. Published data suggest that drought and salinity induce NO generation which activates cellular processes that afford some protection against the oxidative stress associated with these conditions. Exogenous NO can also protect cells against oxidative stress. Thus, the data suggest an emerging model of stress responses in which ABA has several ameliorative functions. These include the rapid induction of stomatal closure to reduce transpirational water loss and the activation of antioxidant defences

  8. Nitric oxide regulates blastocyst hatching in mice

    PubMed Central

    Pan, Xiaoyan; Wang, Xuenan; Wang, Xiyan; Sun, Zhanxuan; Zhang, Xue; Liang, Xuanxuan; Li, Zhixin; Dou, Zhaohua

    2015-01-01

    Objective: This study is to determine the regulatory role of nitric oxide in mouse blastocyst hatching. Methods: Kunming female mice were superovulated and then mated with mature male mice. On day 2.5 of their pregnancy, the pregnant mice were killed and morulae were flushed from their uterine horns with culture media. Morulae were cultured in media with different concentrations of N-nitro-L arginine methyl ester (L-NAME), sodium nitroprusside (SNP), 8-Br-3’-5’-cyclic guanosine monophosphate (8-Br-cGMP) or the combination of L-NAME with SNP or 8-Br-cGMP for 48 h. The hatched blastocysts were examined on day 5 and the expressions of epithelial nitric oxide synthase (eNOS) and active cysteinyl aspartate specific proteinase 3 (caspase 3) were observed under confocal laser scanning microscope. Results: L-NAME significantly reduced the expression of eNOS in blastocyst cells. With the increase of the concentrations of L-NAME, SNP or 8-Br-cGMP, blastocyst hatching rate was significantly lowered. In addition, 5 mM L-NAME, 2 μM SNP and 2 μM 8-Br-cGMP completely inhibited blastocyst hatching. Low concentrations of SNP or 8-Br-cGMP in culture media containing 5 mM L-NAME significantly reversed the inhibition of blastocyst hatching and promoted hatching development. Moreover, 5 mM L-NAME and 2 μM 8-Br-cGMP had no significant influence on the expression of active caspase 3 in blastocyst cells. SNP (> 500 nM) significantly increased the expression of active caspase 3 in blastocyst cells. Conclusions: NO/cGMP pathway plays an important role in mouse blastocyst hatching. Excessive or depleted NO can interrupt blastocyst hatching. Excessive NO leads to apoptosis of blastocyst cells. PMID:26221236

  9. Nasal nitric oxide in children with recurrent acute otitis media.

    PubMed

    Torretta, S; Marchisio, P; Capaccio, P; Pignataro, L

    2016-01-01

    Recently, reduced Nasal nitric oxide (nNO) nNO levels have been reported in children with adenoidal hypertrophy predisposing to chronic nasosinusal inflammation. Given the strict anatomic and physiopathologic link between the nasopharyngeal and middle ear compartments, and considering the high prevalence of otitis prone children among those affected with chronic adenoiditis, we designed a study aimed to test any possible difference in nNO levels between non-allergic children with and without recurrent acute otitis media (RAOM) associated with chronic adenoiditis. The study involved 54 children with RAOM (44.4% males; mean age= 7.5±3.5 years) and 51 children without RAOM (47.4% males; mean age= 7.0±3.8 years). nNO levels were significantly reduced in children with RAOM compared to children without RAOM (676.9±250.7 ppb vs 831.8±320.4 ppb, respectively; p= 0.02). Our results could be related to reduced NO production by the ciliated paranasal, nasopharyngeal and middle ear epithelium and the impaired sinusal ostial and Eustachian tube patency due to chronic inflammation, and seem to confirm the involvement of NO pathway in recurrent upper airway infections related to impaired ciliated respiratory mucosa. PMID:27049104

  10. Nitric oxide synthase promotes distension-induced tracheal venular leukocyte adherence.

    PubMed

    Moldobaeva, Aigul; Rentsendorj, Otgonchimeg; Jenkins, John; Wagner, Elizabeth M

    2014-01-01

    The process of leukocyte recruitment to the airways in real time has not been extensively studied, yet airway inflammation persists as a major contributor to lung pathology. We showed previously in vivo, that neutrophils are recruited acutely to the large airways after periods of airway distension imposed by the application of positive end-expiratory pressure (PEEP). Given extensive literature implicating products of nitric oxide synthase (NOS) in lung injury after ventilatory over-distension, we questioned whether similar mechanisms exist in airway post-capillary venules. Yet, endothelial nitric oxide has been shown to be largely anti-inflammatory in other systemic venules. Using intravital microscopy to visualize post-capillary tracheal venules in anesthetized, ventilated mice, the number of adherent leukocytes was significantly decreased in eNOS-/- mice under baseline conditions (2±1 cell/60 min observation) vs wild type (WT) C57BL/6 mice (7±2 cells). After exposure to PEEP (8 cmH2O for 1 min; 5 times), adherent cells increased significantly (29±5 cells) in WT mice while eNOS-/- mice demonstrated a significantly decreased number of adherent cells (11±4 cells) after PEEP. A similar response was seen when thrombin was used as the pro-inflammatory stimulus. In addition, mouse tracheal venular endothelial cells studied in vitro after exposure to cyclic stretch (18% elongation) or thrombin both demonstrated increased p-selectin expression that was significantly attenuated by NG-nitro-L-arginine methyl ester, N-acetylcysteine amide (NACA) and excess BH4. In vivo treatment with the ROS inhibitor NACA or co-factor BH4 abolished completely the PEEP-induced leukocyte adherence. These results suggest that pro-inflammatory stimuli cause leukocyte recruitment to tracheal endothelium in part due to eNOS uncoupling. PMID:25181540

  11. Nitric Oxide Synthase Promotes Distension-Induced Tracheal Venular Leukocyte Adherence

    PubMed Central

    Moldobaeva, Aigul; Rentsendorj, Otgonchimeg; Jenkins, John; Wagner, Elizabeth M.

    2014-01-01

    The process of leukocyte recruitment to the airways in real time has not been extensively studied, yet airway inflammation persists as a major contributor to lung pathology. We showed previously in vivo, that neutrophils are recruited acutely to the large airways after periods of airway distension imposed by the application of positive end-expiratory pressure (PEEP). Given extensive literature implicating products of nitric oxide synthase (NOS) in lung injury after ventilatory over-distension, we questioned whether similar mechanisms exist in airway post-capillary venules. Yet, endothelial nitric oxide has been shown to be largely anti-inflammatory in other systemic venules. Using intravital microscopy to visualize post-capillary tracheal venules in anesthetized, ventilated mice, the number of adherent leukocytes was significantly decreased in eNOS-/- mice under baseline conditions (2±1 cell/60 min observation) vs wild type (WT) C57BL/6 mice (7±2 cells). After exposure to PEEP (8 cmH2O for 1 min; 5 times), adherent cells increased significantly (29±5 cells) in WT mice while eNOS-/- mice demonstrated a significantly decreased number of adherent cells (11±4 cells) after PEEP. A similar response was seen when thrombin was used as the pro-inflammatory stimulus. In addition, mouse tracheal venular endothelial cells studied in vitro after exposure to cyclic stretch (18% elongation) or thrombin both demonstrated increased p-selectin expression that was significantly attenuated by NG-nitro-L-arginine methyl ester, N-acetylcysteine amide (NACA) and excess BH4. In vivo treatment with the ROS inhibitor NACA or co-factor BH4 abolished completely the PEEP-induced leukocyte adherence. These results suggest that pro-inflammatory stimuli cause leukocyte recruitment to tracheal endothelium in part due to eNOS uncoupling. PMID:25181540

  12. Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea.

    PubMed

    Huang, Jinming; Sommers, Erin M; Kim-Shapiro, Daniel B; King, S Bruce

    2002-04-01

    Hydroxyurea represents an approved treatment for sickle cell anemia and a number of cancers. Chemiluminescence and electron paramagnetic resonance spectroscopic studies show horseradish peroxidase catalyzes the formation of nitric oxide from hydroxyurea in the presence of hydrogen peroxide. Gas chromatographic headspace analysis and infrared spectroscopy also reveal the production of nitrous oxide in this reaction, which provides evidence for nitroxyl, the one-electron reduced form of nitric oxide. These reactions also generate carbon dioxide, ammonia, nitrite, and nitrate. None of these products form within 1 h in the absence of hydrogen peroxide or horseradish peroxidase. Electron paramagnetic resonance spectroscopy and trapping studies show the intermediacy of a nitroxide radical and a C-nitroso species during this reaction. Absorption spectroscopy indicates that both compounds I and II of horseradish peroxidase act as one-electron oxidants of hydroxyurea. Nitroxyl, generated from Angeli's salt, reacts with ferric horseradish peroxidase to produce a ferrous horseradish peroxidase-nitric oxide complex. Electron paramagnetic resonance experiments with a nitric oxide specific trap reveal that horseradish peroxidase is capable of oxidizing nitroxyl to nitric oxide. A mechanistic model that includes the observed nitroxide radical and C-nitroso compound intermediates has been forwarded to explain the observed product distribution. These studies suggest that direct nitric oxide producing reactions of hydroxyurea and peroxidases may contribute to the overall pharmacological properties of this drug. PMID:11916434

  13. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  14. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representativeNitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway. PMID:26946536

  15. The Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-02

    Hydrazine nitrate-nitric acid solutions are used in the ion exchange process for separating Pu-238 and Np-237 and have been found to dissolve plutonium metal in a manner advantageous to SRP metal recovery operations. Laboratory tests on the stability of hydrazine in nitric acid solutions were performed to obtain accurate data, and the results of these tests are reported here. These tests provide sufficient information to specify temperature control for hydrazine-nitric acid solutions in plant processes.

  16. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  17. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  18. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  19. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  20. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  1. Calculated Effects of Nitric Oxide Flow Contamination on Scramjet Performance

    NASA Technical Reports Server (NTRS)

    Fischer, Karen E.; Rock, Kenneth E.

    1995-01-01

    The level of nitric oxide contamination in the test gas of the NASA Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. The study was conducted for standard facility conditions corresponding to Mach 6, 7, and 8 flight simulations. The analytically determined levels of nitric oxide produced in the facility are compared with experimentally measured levels. Results of the analysis indicate that nitric oxide levels range from one to three mole percent, which corroborates the measured levels. A three-stream combustor code with finite rate chemistry was used to investigate how nitric oxide affects scramjet performance in terms of combustor pressure rise, heat release, and thrust performance. Results indicate minimal effects on engine performance for the test conditions of this investigation.

  2. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways.

    PubMed Central

    Gaston, B; Reilly, J; Drazen, J M; Fackler, J; Ramdev, P; Arnelle, D; Mullins, M E; Sugarbaker, D J; Chee, C; Singel, D J

    1993-01-01

    Recent discoveries suggesting essential bioactivities of nitric oxide (NO.) in the lung are difficult to reconcile with the established pulmonary cytotoxicity of this common air pollutant. These conflicting observations suggest that metabolic intermediaries may exist in the lung to modulate the bioactivity and toxicity of NO.. We report that S-nitrosothiols (RS-NO), predominantly the adduct with glutathione, are present at nano- to micromolar concentrations in the airways of normal subjects and that their levels vary in different human pathophysiologic states. These endogenous RS-NO are long-lived, potent relaxants of human airways under physiological O2 concentrations. Moreover, RS-NO form in high concentrations upon administration of NO. gas. Nitrite (10-20 microM) is found in airway lining fluid in concentrations linearly proportional to leukocyte counts, suggestive of local NO. metabolism. NO. itself was not detected either free in solution or in complexes with transition metals. These observations may provide insight into the means by which NO. is packaged in biological systems to preserve its bioactivity and limit its potential O2-dependent toxicity and suggest an important role for NO. in regulation of airway luminal homeostasis. PMID:8248198

  3. Postnatal exposure history and airways: oxidant stress responses in airway explants.

    PubMed

    Murphy, Shannon R; Schelegle, Edward S; Edwards, Patricia C; Miller, Lisa A; Hyde, Dallas M; Van Winkle, Laura S

    2012-12-01

    Postnatally, the lung continues to grow and differentiate while interacting with the environment. Exposure to ozone (O(3)) and allergens during postnatal lung development alters structural elements of conducting airways, including innervation and neurokinin abundance. These changes have been linked with development of asthma in a rhesus monkey model. We hypothesized that O(3) exposure resets the ability of the airways to respond to oxidant stress and that this is mediated by changes in the neurokinin-1 receptor (NK-1R). Infant rhesus monkeys received episodic exposure to O(3) biweekly with or without house dust mite antigen (HDMA) from 6 to 12 months of age. Age-matched monkeys were exposed to filtered air (FA). Microdissected airway explants from midlevel airways (intrapulmonary generations 5-8) for four to six animals in each of four groups (FA, O(3), HDMA, and HDMA+O(3)) were tested for NK-1R gene responses to acute oxidant stress using exposure to hydrogen peroxide (1.2 mM), a lipid ozonide (10 μM), or sham treatment for 4 hours in vitro. Airway responses were measured using real-time quantitative RT-PCR of NK-1R and IL-8 gene expression. Basal NK-1R gene expression levels were not different between the exposure groups. Treatment with ozonide or hydrogen peroxide did not change NK-1R gene expression in animals exposed to FA, HDMA, or HDMA+O(3). However, treatment in vitro with lipid ozonide significantly increased NK-1R gene expression in explants from O(3)-exposed animals. We conclude that a history of prior O(3) exposure resets the steady state of the airways to increase the NK-1R response to subsequent acute oxidant stresses. PMID:22962062

  4. Treatment of severe status asthmaticus with nitric oxide.

    PubMed

    Rishani, R; El-Khatib, M; Mroueh, S

    1999-12-01

    The paper reports on a 13-year-old girl with chronic asthma who presented in acute respiratory failure following an exacerbation of her disease. Nitric oxide was added to the ventilator circuit at 7 ppm and then 15 ppm after the patient failed to respond to bronchodilators and steroids. This was followed by rapid improvement in respiratory mechanics and blood gases with no adverse effects. Nitric oxide appears to have a direct relaxing effect on the bronchial smooth muscle. PMID:10587422

  5. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Hogg, Neil

    2010-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems. PMID:20304044

  6. Nitric Oxide Inhibits Coxiella burnetii Replication and Parasitophorous Vacuole Maturation

    PubMed Central

    Howe, Dale; Barrows, Lorraine F.; Lindstrom, Nicole M.; Heinzen, Robert A.

    2002-01-01

    Nitric oxide is a recognized cytotoxic effector against facultative and obligate intracellular bacteria. This study examined the effect of nitric oxide produced by inducible nitric oxide synthase (iNOS) up-regulated in response to cytokine stimulation, or by a synthetic nitric oxide donor, on replication of obligately intracellular Coxiella burnetii in murine L-929 cells. Immunoblotting and nitrite assays revealed that C. burnetii infection of L-929 cells augments expression of iNOS up-regulated in response to gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Infection in the absence of cytokine stimulation did not result in demonstrable up-regulation of iNOS expression or in increased nitrite production. Nitrite production by cytokine-treated cells was significantly inhibited by the iNOS inhibitor S-methylisothiourea (SMT). Treatment of infected cells with IFN-γ and TNF-α or the synthetic nitric oxide donor 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (DETA/NONOate) had a bacteriostatic effect on C. burnetii replication. Inhibition of replication was reversed upon addition of SMT to the culture medium of cytokine-treated cells. Microscopic analysis of infected cells revealed that nitric oxide (either cytokine induced or donor derived) inhibited formation of the mature (large) parasitophorous vacuole that is characteristic of C. burnetii infection of host cells. Instead, exposure of infected cells to nitric oxide resulted in the formation of multiple small, acidic vacuoles usually containing one C. burnetii cell. Removal of nitrosative stress resulted in the coalescence of small vacuoles to form a large vacuole harboring multiple C. burnetii cells. These experiments demonstrate that nitric oxide reversibly inhibits replication of C. burnetii and formation of the parasitophorous vacuole. PMID:12183564

  7. [Inhaled nitric oxide: one modality in the treatment of ARDS].

    PubMed

    Carrillo-Esper, R; Ramírez-Hernández, J M; Gargallo-Hernández, J J; Hernández-Vásquez, R; Domínguez-Rodríguez, M I; Alemán-Alarcón, C E; Gallegos-Rodríguez, G

    1999-01-01

    We describe a patient with acute respiratory distress syndrome (ARDS), refractory to treatment with conventional mechanical ventilation. The hemodynamic parameters showed severe pulmonary hypertension with increased intrapulmonary shunt. Inhaled nitric oxide was administered and we observed a diminishing in pulmonary hypertension and intrapulmonary shunt with an important increase of oxygen exchange. We reviewed the literature and make a suggestion concerning use of inhaled nitric oxide in patients with ARDS. PMID:10491897

  8. Hemoglobin: A Nitric-Oxide Dioxygenase

    PubMed Central

    Gardner, Paul R.

    2012-01-01

    Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry. PMID:24278729

  9. Nitric oxide releasing material adsorbs more fibrinogen.

    PubMed

    Lantvit, Sarah M; Barrett, Brittany J; Reynolds, Melissa M

    2013-11-01

    One mechanism of the failure of blood-contacting devices is clotting. Nitric oxide (NO) releasing materials are seen as a viable solution to the mediation of surface clotting by preventing platelet activation; however, NO's involvement in preventing clot formation extends beyond controlling platelet function. In this study, we evaluate NO's effect on factor XII (fibrinogen) adsorption and activation, which causes the initiation of the intrinsic arm of the coagulation cascade. This is done by utilizing a model plasticized poly(vinyl) chloride (PVC), N-diazeniumdiolate system and looking at the adsorption of fibrinogen, an important clotting protein, to these surfaces. The materials have been prepared in such a way to eliminate changes in surface properties between the control (plasticized PVC) and composite (NO-releasing) materials. This allows us to isolate NO release and determine the effect on the adsorption of fibrinogen, to the material surface. Surprisingly, it was found that an NO releasing material with a surface flux of 17.4 ± 0.5 × 10(-10) mol NO cm(-2) min(-1) showed a significant increase in the amount of fibrinogen adsorbed to the material surface compared to one with a flux of 13.0 ± 1.6 × 10(-10) mol NO cm(-2) min(-1) and the control (2334 ± 496, 226 ± 99, and 103 ±31% fibrinogen adsorbed of control, respectively). This study suggests that NO's role in controlling clotting is extended beyond platelet activation. PMID:23554300

  10. Tapentadol and nitric oxide synthase systems.

    PubMed

    Bujalska-Zadrożny, Magdalena; Wolińska, Renata; Gąsińska, Emilia; Nagraba, Łukasz

    2015-04-01

    Tapentadol, a new analgesic drug with a dual mechanism of action (μ-opioid receptor agonism and norepinephrine reuptake inhibition), is indicated for the treatment of moderate to severe acute and chronic pain. In this paper, the possible additional involvement of the nitric oxide synthase (NOS) system in the antinociceptive activity of tapentadol was investigated using an unspecific inhibitor of NOS, L-NOArg, a relatively specific inhibitor of neuronal NOS, 7-NI, a relatively selective inhibitor of inducible NOS, L-NIL, and a potent inhibitor of endothelial NOS, L-NIO. Tapentadol (1-10 mg/kg, intraperitoneal) increased the threshold for mechanical (Randall-Selitto test) and thermal (tail-flick test) nociceptive stimuli in a dose-dependent manner. All four NOS inhibitors, administered intraperitoneally in the dose range 0.1-10 mg/kg, potentiated the analgesic action of tapentadol at a low dose of 2 mg/kg in both models of pain. We conclude that NOS systems participate in tapentadol analgesia. PMID:25485639

  11. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  12. Nitric oxide transport in an axisymmetric stenosis

    PubMed Central

    Liu, Xiao; Fan, Yubo; Xu, X. Yun; Deng, Xiaoyan

    2012-01-01

    To test the hypothesis that disturbed flow can impede the transport of nitric oxide (NO) in the artery and hence induce atherogenesis, we used a lumen–wall model of an idealized arterial stenosis with NO produced at the blood vessel–wall interface to study the transport of NO in the stenosis. Blood flows in the lumen and through the arterial wall were simulated by Navier–Stokes equations and Darcy's Law, respectively. Meanwhile, the transport of NO in the lumen and the transport of NO within the arterial wall were modelled by advection–diffusion reaction equations. Coupling of fluid dynamics at the endothelium was achieved by the Kedem–Katchalsky equations. The results showed that both the hydraulic conductivity of the endothelium and the non-Newtonian viscous behaviour of blood had little effect on the distribution of NO. However, the blood flow rate, stenosis severity, red blood cells (RBCs), RBC-free layer and NO production rate at the blood vessel–wall interface could significantly affect the transport of NO. The theoretical study revealed that the transport of NO was significantly hindered in the disturbed flow region distal to the stenosis. The reduced NO concentration in the disturbed flow region might play an important role in the localized genesis and development of atherosclerosis. PMID:22593099

  13. Nitric oxide and cancer: a review

    PubMed Central

    2013-01-01

    Nitric oxide (NO), is a ubiquitous, water soluble, free radical gas, which plays key role in various physiological as well as pathological processes. Over past decades, NO has emerged as a molecule of interest in carcinogenesis and tumor growth progression. However, there is considerable controversy and confusion in understanding its role in cancer biology. It is said to have both tumoricidal as well as tumor promoting effects which depend on its timing, location, and concentration. NO has been suggested to modulate different cancer-related events including angiogenesis, apoptosis, cell cycle, invasion, and metastasis. On the other hand, it is also emerging as a potential anti-oncogenic agent. Strategies for manipulating in vivo production and exogenous delivery of this molecule for therapeutic gain are being investigated. However, further validation and experimental/clinical trials are required for development of novel strategies based on NO for cancer treatment and prevention. This review discusses the range of actions of NO in cancer by performing an online MEDLINE search using relevant search terms and a review of the literature. Various mechanisms by which NO acts in different cancers such as breast, cervical, gastric,colorectal, and head and neck cancers are addressed. It also offers an insight into the dichotomous nature of NO and discusses its novel therapeutic applications for cancer prevention and treatment. PMID:23718886

  14. [Inhalation of nitric oxide - dependence: case report

    PubMed

    Carvalho, W B; Matsumoto, T; Horita, S M; Almeida, N M; Martins, F R

    2000-01-01

    OBJECTIVE: Describe the hemodynamic response with rebound of pulmonary hypertension after withdrawal of inhaled nitric oxide (NO) in a pediatric patient with acute respiratory distress syndrome (ARDS). METHODS: Case report of a child with ARDS and pulmonary hypertension evaluated through ecocardiografic with dopller, receiving inhaled NO for a period of 21 days. RESULTS: There was a decrease of the pulmonary artery pressure (PAP) from 52 mmHg to 44 mmHg after the initial titulation of NO inhalation dose. After the withdrawal of inhaled NO an elevation of PAP was observed (55 mmHg). It was necessary to reinstall the inhaled NO to obtain a more appropriate value (34 mmHg). A new attempt of interruption of the inhaled NO after prolonged inhalation (20 days) resulted in a new clinic worsening and increase of PAP, with the indication to reinstall the inhaled NO. In the 24th day of permanence in the intensive care unit the patient died due to multiple organ dysfunction. CONCLUSIONS: The possibility of pulmonary hypertension rebound after withdrawal of inhaled NO is a complication that may have important clinical implications for patients who need a prolonged treatment with NO. This case report emphasizes these implications. PMID:14647690

  15. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  16. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health.

    PubMed

    Bondonno, Catherine P; Croft, Kevin D; Hodgson, Jonathan M

    2016-09-01

    Emerging evidence strongly suggests that dietary nitrate, derived in the diet primarily from vegetables, could contribute to cardiovascular health via effects on nitric oxide (NO) status. NO plays an essential role in cardiovascular health. It is produced via the classical L-arginine-NO-synthase pathway and the recently discovered enterosalivary nitrate-nitrite-NO pathway. The discovery of this alternate pathway has highlighted dietary nitrate as a candidate for the cardioprotective effect of a diet rich in fruit and vegetables. Clinical trials with dietary nitrate have observed improvements in blood pressure, endothelial function, ischemia-reperfusion injury, arterial stiffness, platelet function, and exercise performance with a concomitant augmentation of markers of NO status. While these results are indicative of cardiovascular benefits with dietary nitrate intake, there is still a lingering concern about nitrate in relation to methemoglobinemia, cancer, and cardiovascular disease. It is the purpose of this review to present an overview of NO and its critical role in cardiovascular health; to detail the observed vascular benefits of dietary nitrate intake through effects on NO status as well as to discuss the controversy surrounding the possible toxic effects of nitrate. PMID:25976309

  17. Modulation of nitric oxide bioavailability by erythrocytes

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Tse; Han, Tae H.; Hyduke, Daniel R.; Vaughn, Mark W.; van Herle, Helga; Hein, Travis W.; Zhang, Cuihua; Kuo, Lih; Liao, James C.

    2001-09-01

    Nitric oxide (NO) activates soluble guanylyl cyclase in smooth muscle cells to induce vasodilation in the vasculature. However, as hemoglobin (Hb) is an effective scavenger of NO and is present in high concentrations inside the red blood cell (RBC), the bioavailability of NO would be too low to elicit soluble guanylyl cyclase activation in the presence of blood. Therefore, NO bioactivity must be preserved. Here we present evidence suggesting that the RBC participates in the preservation of NO bioactivity by reducing NO influx. The NO uptake by RBCs was increased and decreased by altering the degree of band 3 binding to the cytoskeleton. Methemoglobin and denatured hemoglobin binding to the RBC membrane or cytoskeleton also were shown to contribute to reducing the NO uptake rate of the RBC. These alterations in NO uptake by the RBC, hence the NO bioavailability, were determined to correlate with the vasodilation of isolated blood vessels. Our observations suggest that RBC membrane and cytoskeleton associated NO-inert proteins provide a barrier for NO diffusion and thus account for the reduction in the NO uptake rate of RBCs.

  18. Association of expired nitric oxide with occupational particulate exposure.

    PubMed Central

    Kim, Jee Young; Wand, Matthew P; Hauser, Russ; Mukherjee, Sutapa; Herrick, Robert F; Christiani, David C

    2003-01-01

    Particulate air pollution has been associated with adverse respiratory health effects. This study assessed the utility of expired nitric oxide to detect acute airway responses to metal-containing fine particulates. Using a repeated-measures study design, we investigated the association between the fractional concentration of expired nitric oxide (F(E)NO) and exposure to particulate matter with an aerodynamic mass median diameter of less than or equal to 2.5 micro m (PM(2.5)) in boilermakers exposed to residual oil fly ash and metal fumes. Subjects were monitored for 5 days during boiler repair overhauls in 1999 (n = 20) or 2000 (n = 14). The Wilcoxon median baseline F(E)NO was 10.6 ppb [95% confidence interval (CI): 9.1, 12.7] in 1999 and 7.4 ppb (95% CI: 6.7, 8.0) in 2000. The Wilcoxon median PM(2.5) 8-hr time-weighted average was 0.56 mg/m(3) (95% CI: 0.37, 0.93) in 1999 and 0.86 mg/m(3) (95% CI: 0.65, 1.07) in 2000. F(E)NO levels during the work week were significantly lower than baseline F(E)NO in 1999 (p < 0.001). A significant inverse exposure-response relationship between log-transformed F(E)NO and the previous workday's PM(2.5) concentration was found in 1999, after adjusting for smoking status, age, and sampling year. With each 1 mg/m(3) incremental increase in PM(2.5) exposure, log F(E)NO decreased by 0.24 (95% CI: -0.38, -0.10) in 1999. The lack of an exposure-response relationship between PM(2.5) exposure and F(E)NO in 2000 could be attributable to exposure misclassification resulting from the use of respirators. In conclusion, occupational exposure to metal-containing fine particulates was associated with significant decreases in F(E)NO in a survey of workers with limited respirator usage. PMID:12727593

  19. Nitric oxide in adaptation to altitude

    PubMed Central

    Laskowski, Daniel; Erzurum, Serpil C.

    2012-01-01

    This review summarizes published information on levels of nitric oxide gas (NO) in the lungs and NO-derived liquid phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24–48 hours with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma and/or red blood cells fell within three hours, but then returned toward baseline or slightly higher by 48 hours, and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell associated nitrogen oxides were more than two hundred times higher. Other highland populations had generally higher levels although not to the degree showed by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors’ and the Tibetans’ high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function

  20. Nitric oxide synthase in ferret brain: localization and characterization.

    PubMed Central

    Matsumoto, T.; Mitchell, J. A.; Schmidt, H. H.; Kohlhaas, K. L.; Warner, T. D.; Förstermann, U.; Murad, F.

    1992-01-01

    1. In the present study, we have investigated the distribution of nitric oxide synthase in the ferret brain. Nitric oxide synthase was determined biochemically and immunochemically. 2. In the rat brain, the highest nitric oxide synthase activity has been detected in the cerebellum. However, in the ferret brain, the highest activity was found in the striatum and the lowest in the cerebellum and cerebral cortex. The enzymatic activity was localized predominantly in the cytosolic fractions, it was dependent on NADPH and Ca2+, and inhibited by NG-nitro-L-arginine or NG-methyl-L-arginine. 3. Western blot analysis revealed that all regions of the ferret brain contained a 160 kD protein crossreacting with an antibody to nitric oxide synthase purified from the rat cerebellum, and the levels of relative intensity of staining by the antibody correlated with the distribution of nitric oxide synthase activity. 4. These results indicate that the ferret brain contains a nitric oxide synthase similar to the rat brain, but the distribution of enzymatic activity in the ferret brain differs markedly from the rat brain. Images Figure 1 PMID:1282076

  1. Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide

    NASA Astrophysics Data System (ADS)

    Yang, Changyuan; Li, Huichu; Chen, Renjie; Xu, Wenxi; Wang, Cuicui; Tse, Lap Ah; Zhao, Zhuohui; Kan, Haidong

    2016-07-01

    Nitrogen dioxide and ozone are two interrelated oxidative pollutants in the atmosphere. Few studies have evaluated the health effects of combined oxidant capacity (O x ). We investigated the short-term effects of O x on fractional exhaled nitric oxide (FeNO), a well-established biomarker for airway inflammation, in a group of chronic obstructive pulmonary disease patients. Real-time concentrations of O x were obtained by calculating directly the sum of nitrogen dioxide and ozone. Linear mixed-effect models were applied to explore the acute effects of O x on FeNO levels. Short-term exposure to Ox was significantly associated with elevated FeNO. This effect was strongest in the first 24 h after exposure, and was robust to the adjustment of PM2.5. A 10 μg m‑3 increase in 24 h average concentrations of O x was associated with 4.28% (95% confidence interval: 1.19%, 7.37%) increase in FeNO. The effect estimates were statistically significant only among males, elders, and those with body mass index ≥24 kg m‑2, a comorbidity, higher educational attainment, or moderate airflow limitation. This analysis demonstrated an independent effect of O x on respiratory inflammation, and suggested that a single metric O x might serve as a preferable indicator of atmospheric oxidative capacity in further air pollution epidemiological studies.

  2. Nitric Oxide, Oxidative Stress and Inflammation in Pulmonary Arterial Hypertension

    PubMed Central

    Crosswhite, Patrick; Sun, Zhongjie

    2010-01-01

    Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by a persistent elevation of pulmonary artery pressure accompanied by right ventricular hypertrophy (RVH). The current treatment for pulmonary hypertension is limited and only provides symptomatic relief due to unknown etiology and pathogenesis of the disease. Both vasoconstriction and structural remodeling (enhanced proliferation of VSMC) of the pulmonary arteries contribute to the progressive course of PAH, irrespective of different underlying causes. The exact molecular mechanism of PAH, however, is not fully understood. The purpose of this review is to provide recent advances in the mechanistic investigation of PAH. Specifically, this review focuses on nitric oxide (NO), oxidative stress and inflammation and how these factors contribute to the development and progression of PAH. This review also discusses recent and potential therapeutic advancements for the treatment of PAH. PMID:20051913

  3. Observations of Lower Thermospheric Nitric Oxide from the Student Nitric Oxide Explorer

    NASA Astrophysics Data System (ADS)

    Bailey, S. M.

    2004-12-01

    The production of nitric oxide is a key response of the upper atmosphere to solar energy deposition. NO plays a strong role in the thermospheric energy balance as it emits efficiently in the infrared, it is the terminal ion in the lower ionosphere, and if transported to lower altitudes will catalytically destroy ozone. NO is primarily produced through the reaction of excited atomic nitrogen with molecular oxygen. One of the primary loss mechanisms of NO is photodissociation by solar ultraviolet irradiance. In order to produce the excited atomic nitrogen atom, the strong N2 molecular bond must be broken. At low latitudes, solar soft X-ray irradiance is the energy source that leads to NO. At high latitudes, auroral electrons and the energetic secondary electrons provide the source of energy that leads to the large amounts of NO observed there. Coupling between latitude regions may occur as high latitude NO is transported by winds to lower latitude. In this talk we describe observations of NO from the Student Nitric Oxide Explorer (SNOE). SNOE observed fluorescently scattered sunlight by NO at 215 and 237 nm to obtain global concentrations of NO in the lower thermosphere daily from February 1998 through December 2003. We will present case studies of the observed response to large auroral storms. In particular, the effects of the large storms of April 2002 and November 2003 will be presented. The SNOE observations show that auroral energy deposition produces a significant global effect on the upper atmosphere.

  4. Role of nitric oxide in parasitic infections.

    PubMed Central

    James, S L

    1995-01-01

    Nitric oxide is produced by a number of different cell types in response to cytokine stimulation and thus has been found to play a role in immunologically mediated protection against a growing list of protozoan and helminth parasites in vitro and in animal models. The biochemical basis of its effects on the parasite targets appears to involve primarily inactivation of enzymes crucial to energy metabolism and growth, although it has other biologic activities as well. NO is produced not only by macrophages and macrophage-like cells commonly associated with the effector arm of cell-mediated immune reactivity but also by cells commonly considered to lie outside the immunologic network, such as hepatocytes and endothelial cells, which are intimately involved in the life cycle of a number of parasites. NO production is stimulated by gamma interferon in combination with tumor necrosis factor alpha or other secondary activation signals and is regulated by a number of cytokines (especially interleukin-4, interleukin-10, and transforming growth factor beta) and other mediators, as well as through its own inherent inhibitory activity. The potential for design of prevention and/or intervention approaches against parasitic infection (e.g., vaccination or combination chemo- and immunotherapy strategies) on the basis of induction of cell-mediated immunity and NO production appears to be great, but the possible pathogenic consequences of overproduction of NO must be taken into account. Moreover, more research on the role and regulation of NO in human parasitic infection is needed before its possible clinical relevance can be determined. PMID:8531884

  5. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  6. SOIL NITROUS OXIDE, NITRIC OXIDE, AND AMMONIA EMISSIONS FROM A RECOVERING RIPARIAN ECOSYSTEM IN SOUTHERN APPALACHIA

    EPA Science Inventory

    The paper presents two years of seasonal nitric oxide, ammonia, and nitrous oxide trace gas fluxes measured in a recovering riparian zone with cattle excluded and in an adjacent riparian zone grazed by cattle. In the recovering riparian zone, average nitric oxide, ammonia, and ni...

  7. Role of exhaled nitric oxide as a predictor of atopy

    PubMed Central

    2013-01-01

    Background The fractional exhaled nitric oxide (FeNO) is a quantitative, noninvasive and safe measure of airways inflammation that may complement the assessment of asthma. Elevations of FeNO have recently been found to correlate with allergic sensitization. Therefore, FeNO may be a useful predictor of atopy in the general population. We sought to determine the diagnostic accuracy of FeNO in predicting atopy in a population-based study. Methods We conducted a cross-sectional study in an age- and sex- stratified random sample of 13 to 15 year-olds in two communities in Peru. We asked participants about asthma symptoms, environmental exposures and sociodemographics, and underwent spirometry, assessment of FeNO and an allergy skin test. We used multivariable logistic regression to model the odds of atopy as a function of FeNO, and calculated area-under-the-curves (AUC) to determine the diagnostic accuracy of FeNO as a predictor of atopy. Results Of 1441 recruited participants, 1119 (83%) completed all evaluations. Mean FeNO was 17.6 ppb (SD=0.6) in atopics and 11.6 ppb (SD=0.8) in non-atopics (p<0.001). In multivariable analyses, a FeNO>20 ppb was associated with an increase in the odds of atopy in non-asthmatics (OR=5.3, 95% CI 3.3 to 8.5) and asthmatics (OR=16.2, 95% CI 3.4 to 77.5). A FeNO>20 ppb was the best predictor for atopy with an AUC of 68% (95% CI 64% to 69%). Stratified by asthma, the AUC was 65% (95% CI 61% to 69%) in non-asthmatics and 82% (95% CI 71% to 91%) in asthmatics. Conclusions FeNO had limited accuracy to identify atopy among the general population; however, it may be a useful indicator of atopic phenotype among asthmatics. PMID:23639047

  8. Microgravity decreases and hypergravity increases exhaled nitric oxide.

    PubMed

    Karlsson, Lars L; Kerckx, Yannick; Gustafsson, Lars E; Hemmingsson, Tryggve E; Linnarsson, Dag

    2009-11-01

    Inhalation of toxic dust during planetary space missions may cause airway inflammation, which can be monitored with exhaled nitric oxide (NO). Gravity will differ from earth, and we hypothesized that gravity changes would influence exhaled NO by altering lung diffusing capacity and alveolar uptake of NO. Five subjects were studied during microgravity aboard the International Space Station, and 10 subjects were studied during hypergravity in a human centrifuge. Exhaled NO concentrations were measured during flows of 50 (all gravity conditions), 100, 200, and 500 ml/s (hypergravity). During microgravity, exhaled NO fell from a ground control value of 12.3 +/- 4.7 parts/billion (mean +/- SD) to 6.6 +/- 4.4 parts/billion (P = 0.016). In the centrifuge experiments and at the same flow, exhaled NO values were 16.0 +/- 4.3, 19.5 +/- 5.1, and 18.6 +/- 4.7 parts/billion at one, two, and three times normal gravity, where exhaled NO in hypergravity was significantly elevated compared with normal gravity (P

  9. Inhaled nitric oxide to prevent bronchopulmonary dysplasia in preterm neonates.

    PubMed

    Mercier, Jean-Christophe; Olivier, Paul; Loron, Gauthier; Fontaine, Romain; Maury, Laure; Baud, Olivier

    2009-02-01

    Bronchopulmonary dysplasia is a chronic lung disease that affects premature infants and contributes to their morbidity and mortality. With the advent of prenatal steroids and postnatal exogenous surfactant and less aggressive respiratory support, premature infants can develop chronic oxygen dependency without even acute respiratory distress. This 'new bronchopulmonary dysplasia' could be the result of impaired postnatal growth. Several experimental studies have suggested a possible role of the vascular endothelial growth factor/nitric oxide (VEGF/NO) pathway in restoring pulmonary angiogenesis and enhancing distal lung growth. The results of the clinical studies are, however, inconclusive, and it is currently unclear which subsets of premature infants might benefit from inhaled nitric oxide. Besides, severe intracranial haemorrhage and/or cystic periventricular leucomalacia may affect the most immature babies, many of whom are spared from severe initial respiratory disease. Recently, inhaled nitric oxide was shown to significantly decrease the incidence of these neurological events, and to improve the long-term outcome in a few clinical trials. At times neuroprotective, at times neurotoxic, nitric oxide is capable of divergent effects depending upon the extent of cerebral damage, the redox state of the cell, and the experimental model used. Recently, our group found that inhaled nitric oxide had remote effects including angiogenesis and maturation on the developing brain in rodent pups. Thus, we await the results of the recently completed randomised clinical trial of inhaled nitric oxide to prevent bronchopulmonary dysplasia (the European Nitric Oxide or 'EUNO' trial) where, besides the primary endpoint of chronic oxygen dependency reduction at 36 weeks' postconceptional age, long-term lung and brain will be followed-up until 7 years of age. PMID:18986855

  10. Racial Differences in Nitric Oxide-Dependent Vasorelaxation

    PubMed Central

    Mata-Greenwood, Eugenia; Chen, Dong-Bao

    2008-01-01

    Along with the growing heterogeneity of the American population, ethnic/racial disparity is becoming a clear health issue in the United States. The awareness of ethnic/racial disparities has been growing because of considerable data gathered from recent clinical and epidemiological studies. These studies have highlighted the importance of addressing these differences in the diagnosis and treatment of various diseases potentially according to race. It is becoming particularly clear that there is a 2- to 3-fold racial difference in certain cardiovascular diseases (eg, preeclampsia) associated with dysfunctional nitric oxide–mediated vasodilation. In this review, the authors summarize the current literature on racial disparities in nitric oxide–mediated vasodilation in relation to cardiovascular health with an emphasis on vascular nitric oxide bioavailability as a balance between production via endothelial nitric oxide synthase and degradation through reactive oxygen species. The major hypotheses postulated on the biological basis of these differences are also highlighted. PMID:18212350

  11. The Nitric Acid Oxidation of Selected Alcohols and Ketones.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1985-01-01

    Shows that nitric acid can be used as a rapid, versatile, and economical oxidant for selected organic substances. The experiments (with background information, procedures, and results provided) require one three-hour laboratory period but could serve as open-ended projects since substrates not described could be oxidized. (JN)

  12. Nitric Oxide in Astrocyte-Neuron Signaling

    SciTech Connect

    Nianzhen Li

    2002-06-27

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca{sup 2+} elevations in response to neurotransmitters. A Ca{sup 2+} elevation can propagate to adjacent astrocytes as a Ca{sup 2+} wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca{sup 2+}-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca{sup 2+} signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca{sup 2+}-dependent NO production. To test the roles of NO in astrocytic Ca{sup 2+} signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca{sup 2+}, possibly through store-operated Ca{sup 2+} channels. The NO-induced Ca{sup 2+} signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca{sup 2+} change. The consequence of this NO-induced Ca{sup 2+} influx was assessed by simultaneously monitoring of cytosolic and internal store Ca{sup 2+} using fluorescent Ca{sup 2+} indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca{sup 2+} release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca{sup 2+} elevation in the stimulated astrocyte and a subsequent Ca{sup 2+} wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC

  13. Nitric oxide and platelet energy metabolism.

    PubMed

    Tomasiak, Marian; Stelmach, Halina; Rusak, Tomasz; Wysocka, Jolanta

    2004-01-01

    This study was undertaken to determine whether nitric oxide (NO) can affect platelet responses through the inhibition of energy production. It was found that NO donors: S-nitroso-N-acetylpenicyllamine, SNAP, (5-50 microM) and sodium nitroprusside, SNP, (5-100 microM) inhibited collagen- and ADP-induced aggregation of porcine platelets. The corresponding IC50 values for SNAP and SNP varied from 5 to 30 microM and from 9 to 75 microM, respectively. Collagen- and thrombin-induced platelet secretion was inhibited by SNAP (IC50 = 50 microM) and by SNP (IC50 = 100 microM). SNAP (20-100 microM), SNP (10-200 microM) and collagen (20 microg/ml) stimulated glycolysis in intact platelets. The degree of glycolysis stimulation exerted by NO donors was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or uncouplers (2,4-dinitrophenol). Neither the NO donors nor the respiratory chain blockers affected glycolysis in platelet homogenate. SNAP (20-100 microM) and SNP (50-200 microM) inhibited oxygen consumption by platelets. The effect of SNP and SNAP on glycolysis and respiration was not reduced by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-stimulated guanylate cyclase. SNAP (5-100 microM) and SNP (10-300 microM) inhibited the activity of platelet cytochrome oxidase and had no effect on NADH:ubiquinone oxidoreductase and succinate dehydrogenase. Blocking of the mitochondrial energy production by antimycin A slightly affected collagen-evoked aggregation and strongly inhibited platelet secretion. The results indicate that: 1) in porcine platelets NO is able to diminish mitochondrial energy production through the inhibition of cytochrome oxidase, 2) the inhibitory effect of NO on platelet secretion (but not aggregation) can be attributed to the reduction of mitochondrial energy production. PMID:15448739

  14. Role of nitric oxide on motor behavior.

    PubMed

    Del Bel, E A; Guimarães, F S; Bermúdez-Echeverry, M; Gomes, M Z; Schiaveto-de-souza, A; Padovan-Neto, F E; Tumas, V; Barion-Cavalcanti, A P; Lazzarini, M; Nucci-da-Silva, L P; de Paula-Souza, D

    2005-03-01

    The present review paper describes results indicating the influence of nitric oxide (NO) on motor control. Our last studies showed that systemic injections of low doses of inhibitors of NO synthase (NOS), the enzyme responsible for NO formation, induce anxiolytic effects in the elevated plus maze whereas higher doses decrease maze exploration. Also, NOS inhibitors decrease locomotion and rearing in an open field arena. These results may involve motor effects of this compounds, since inhibitors of NOS, NG-nitro-L-arginine (L-NOARG), N(G)-nitro-L-arginine methylester (L-NAME), N(G)-monomethyl-L-arginine (L-NMMA), and 7-Nitroindazole (7-NIO), induced catalepsy in mice. This effect was also found in rats after systemic, intracebroventricular or intrastriatal administration. Acute administration of L-NOARG has an additive cataleptic effect with haloperidol, a dopamine D2 antagonist. The catalepsy is also potentiated by WAY 100135 (5-HT1a receptor antagonist), ketanserin (5HT2a and alfal adrenergic receptor antagonist), and ritanserin (5-HT2a and 5HT2c receptor antagonist). Atropine sulfate and biperiden, antimuscarinic drugs, block L-NOARG-induced catalepsy in mice. L-NOARG subchronic administration in mice induces rapid tolerance (3 days) to its cataleptic effects. It also produces cross-tolerance to haloperidol-induced catalepsy. After subchronic L-NOARG treatment there is an increase in the density NADPH-d positive neurons in the dorsal part of nucleus caudate-putamen, nucleus accumbens, and tegmental pedunculupontinus nucleus. In contrast, this treatment decreases NADPH-d neuronal number in the substantia nigra compacta. Considering these results we suggest that (i) NO may modulate motor behavior, probably by interfering with dopaminergic, serotonergic, and cholinergic neurotransmission in the striatum; (ii) Subchronic NO synthesis inhibition induces plastic changes in NO-producing neurons in brain areas related to motor control and causes cross-tolerance to the

  15. Light activated nitric oxide releasing materials

    NASA Astrophysics Data System (ADS)

    Muizzi Casanas, Dayana Andreina

    The ability to control the location and dosage of biologically active molecules inside the human body can be critical to maximizing effective treatment of cardiovascular diseases like angina. The current standard of treatment relies on the metabolism of organonitrate drugs into nitric oxide (NO), which are not specific, and also show problems with densitization with long-term use. There is a need then to create a treatment method that gives targeted release of NO. Metal-nitrosyl (M-NO) complexes can be used for delivery of NO since the release of NO can be controlled with light. However, the NO-releasing drug must be activated with red light to ensure maximum penetration of light through tissue. However, the release of NO from M-NO complexes with red-light activation is a significant challenge since the energy required to break the metal-NO bond is usually larger than the energy provided by red light. The goal of this project was to create red- sensitive, NO-releasing materials based on Ru-salen-nitrosyl compounds. Our approach was to first modify Ru salen complexes to sensitize the photochemistry for release of NO after red light irradiation. Next, we pursued polymerization of the Ru-salen complexes. We report the synthesis and quantitative photochemical characterization of a series of ruthenium salen nitrosyl complexes. These complexes were modified by incorporating electron donating groups in the salen ligand structure at key locations to increase electron density on the Ru. Complexes with either an --OH or --OCH3 substituent showed an improvement in the quantum yield of release of NO upon blue light irradiation compared to the unmodified salen. These --OH and --OCH3 complexes were also sensitized for NO release after red light activation, however the red-sensitive complexes were unstable and showed ligand substitution on the order of minutes. The substituted complexes remained sensitive for NO release, but only after blue light irradiation. The Ru

  16. Regulation of neuronal nitric oxide synthase and identification of novel nitric oxide signaling pathways.

    PubMed

    Dawson, T M; Sasaki, M; Gonzalez-Zulueta, M; Dawson, V L

    1998-01-01

    Neuronal nitric oxide synthase (nNOS) participate in a variety of physiologic and pathologic processes in the nervous system. nNOS was originally felt to be a constitutively expressed enzyme, but recent observations suggest that its levels are dynamically controlled in response to neuronal development, plasticity and injury. nNOS expression is regulated through alternative promoter usage through alternative mRNA splicing and it is likely that this plays an important role in the inducibility of gene expression in response to extracellular stimuli. Emerging data also suggests that NO may be the key mediator linking activity to gene expression and long-lasting neuronal responses through NO activating p21Ras through redox-sensitive modulation. PMID:9932430

  17. Cardiovascular roles of nitric oxide: A review of insights from nitric oxide synthase gene disrupted mice†

    PubMed Central

    Liu, Victor W.T.; Huang, Paul L.

    2009-01-01

    Nitric oxide (NO) is a gaseous molecule that plays many key roles in the cardiovascular system. Each of the enzymes that generate NO—neuronal, inducible and endothelial NO synthase—has been genetically disrupted in mice. This review discusses the cardiovascular phenotypes of each of the NO synthase (NOS) gene knockout mice, and the insights gained into the roles of NO in the cardiovascular system. Mice lacking the endothelial isoform are hypertensive, have endothelial dysfunction and show a more severe outcome in response to vascular injury, to stroke and cerebral ischaemia, and to diet-induced atherosclerosis. Mice lacking the neuronal isoform show a less severe outcome in response to stroke and cerebral ischaemia but have increased diet-induced atherosclerosis. Mice lacking the inducible isoform show reduced hypotension to septic shock. Together, NOS gene knockout mice have been useful tools that complement our other approaches to studying the multiple roles of NO in the cardiovascular system. PMID:17658499

  18. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling.

    PubMed Central

    García-Cardeña, G; Oh, P; Liu, J; Schnitzer, J E; Sessa, W C

    1996-01-01

    The membrane association of endothelial nitric oxide synthase (eNOS) plays an important role in the biosynthesis of nitric oxide (NO) in vascular endothelium. Previously, we have shown that in cultured endothelial cells and in intact blood vessels, eNOS is found primarily in the perinuclear region of the cells and in discrete regions of the plasma membrane, suggesting trafficking of the protein from the Golgi to specialized plasma membrane structures. Here, we show that eNOS is found in Triton X-100-insoluble membranes prepared from cultured bovine aortic endothelial cells and colocalizes with caveolin, a coat protein of caveolae, in cultured bovine lung microvascular endothelial cells as determined by confocal microscopy. To examine if eNOS is indeed in caveolae, we purified luminal endothelial cell plasma membranes and their caveolae directly from intact, perfused rat lungs. eNOS is found in the luminal plasma membranes and is markedly enriched in the purified caveolae. Because palmitoylation of eNOS does not significantly influence its membrane association, we next examined whether this modification can affect eNOS targeting to caveolae. Wild-type eNOS, but not the palmitoylation mutant form of the enzyme, colocalizes with caveolin on the cell surface in transfected NIH 3T3 cells, demonstrating that palmitoylation of eNOS is necessary for its targeting into caveolae. These data suggest that the subcellular targeting of eNOS to caveolae can restrict NO signaling to specific targets within a limited microenvironment at the cell surface and may influence signal transduction through caveolae. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692835

  19. Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide.

    PubMed

    Katakam, Prasad V G; Dutta, Somhrita; Sure, Venkata N; Grovenburg, Samuel M; Gordon, Angellica O; Peterson, Nicholas R; Rutkai, Ibolya; Busija, David W

    2016-05-01

    The diverse signaling events following mitochondrial depolarization in neurons are not clear. We examined for the first time the effects of mitochondrial depolarization on mitochondrial function, intracellular calcium, neuronal nitric oxide synthase (nNOS) activation, and nitric oxide (NO) production in cultured neurons and perivascular nerves. Cultured rat primary cortical neurons were studied on 7-10 days in vitro, and endothelium-denuded cerebral arteries of adult Sprague-Dawley rats were studied ex vivo. Diazoxide and BMS-191095 (BMS), activators of mitochondrial KATP channels, depolarized mitochondria in cultured neurons and increased cytosolic calcium levels. However, the mitochondrial oxygen consumption rate was unaffected by mitochondrial depolarization. In addition, diazoxide and BMS not only increased the nNOS phosphorylation at positive regulatory serine 1417 but also decreased nNOS phosphorylation at negative regulatory serine 847. Furthermore, diazoxide and BMS increased NO production in cultured neurons measured with both fluorescence microscopy and electron spin resonance spectroscopy, which was sensitive to inhibition by the selective nNOS inhibitor 7-nitroindazole (7-NI). Diazoxide also protected cultured neurons against oxygen-glucose deprivation, which was blocked by NOS inhibition and rescued by NO donors. Finally, BMS induced vasodilation of endothelium denuded, freshly isolated cerebral arteries that was diminished by 7-NI and tetrodotoxin. Thus pharmacological depolarization of mitochondria promotes activation of nNOS leading to generation of NO in cultured neurons and endothelium-denuded arteries. Mitochondrial-induced NO production leads to increased cellular resistance to lethal stress by cultured neurons and to vasodilation of denuded cerebral arteries. PMID:26945078

  20. Nitric oxide production and the expression of two nitric oxide synthases in the avian retina.

    PubMed

    Tekmen-Clark, Merve; Gleason, Evanna

    2013-05-01

    Nitric oxide (NO) is known to exert multiple effects on the function of many retinal neurons and their synapses. Therefore, it is equally important to understand the potential sources of NO within the retina. To explore this, we employ a combination of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) based NO detection and immunohistochemistry for the NO synthetic enzymes, neuronal and endothelial nitric oxide synthase (nNOS and eNOS). We find DAF signals in photoreceptors, horizontal cells, amacrine cells, efferent synapses, Müller cells, and cells in the ganglion cell layer (GCL). nNOS immunoreactivity was consistent with the DAF signal with the exception that horizontal cells and Müller cells were not clearly labeled. eNOS-like immunoreactivity (eNOS-LI) was more widespread with photoreceptors, horizontal cells, occasional bipolar cells, amacrine cells, Müller cells, and cells in the GCL all showing labeling. Double labeling with antibodies raised against calretinin, syntaxin, and glutamine synthetase confirmed that horizontal cells, amacrine cells, and Müller cells (respectively) were expressing eNOS-LI. Although little or no nNOS labeling is observed in horizontal cells or Müller cells, the expression of eNOS-LI is consistent with the ability of these cells to produce NO. Together these results suggest that the capability to produce NO is widespread in the chicken retina. We propose that multiple forms of regulation for nNOS and eNOS play a role in the patterning of NO production in the chicken retina. PMID:23721886

  1. Parameters controlling nitric oxide emissions from gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Mikus, T.

    1973-01-01

    Nitric oxide forms in the primary zone of gas turbine combustors where the burnt gas composition is close to stoichiometric and gas temperatures are highest. It was found that combustor air inlet conditions, mean primary zone fuel-air ratio, residence time, and the uniformity of the primary zone are the most important variables affecting nitric oxide emissions. Relatively simple models of the flow in a gas turbine combustor, coupled with a rate equation for nitric oxide formation via the Zeldovich mechanism are shown to correlate the variation in measured NOx emissions. Data from a number of different combustor concepts are analyzed and shown to be in reasonable agreement with predictions. The NOx formation model is used to assess the extent to which an advanced combustor concept, the NASA swirl can, has produced a lean well-mixed primary zone generally believed to be the best low NOx emissions burner type.

  2. Nitric Oxide Catalysis of Diazene E/Z Isomerization.

    PubMed

    Bohle, D Scott; Rosadiuk, Kristopher A

    2015-08-01

    Nitric oxide is an efficient catalyst for the cis-trans (E/Z) isomerization of diazenes. We compare the effect of room temperature solutions bearing low concentrations of nitric oxide, nitrogen dioxide, or oxygen on the rate of cis-trans isomerization, CTI, of the alkene bond in stilbene and on the azo double bond in azobenzene, as well as in four azo derivatives as measured by UV-vis spectroscopy. These rate enhancements can be as large as 3 orders of magnitude for azobenzene in solution. A mechanism is proposed where catalysis is promoted by the interaction of the nitric oxide with the diazene nitrogen lone pairs. Density functional theory, B3LYP/6-311++g** suggests that the binding of NO to the diazene should be weak and reversible but that its NO adduct has an E/Z isomerization barrier of 7.5 kcal/mol. PMID:26200101

  3. [Level of nitric oxide in the kidneys during apoptosis activation].

    PubMed

    Komarievtseva, I O; Orlova, O A; Blahodarenko, Ie A

    2002-01-01

    The content of nitric oxide stable metabolites in a tissue of kidneys of rats in conditions of activation of apoptosis was investigated. Research was carried out in two models: acute renal failure and a hypertrophy of a unique kidney after a unilateral nephrectomy. Detection of apoptosis was carried out by definition of DNA fragmentation. Substantial increase of the nitric oxide stable metabolites contents is revealed at activation of apoptosis in both models. Change of a ratio of the contents of nitrite--anions in relation to the general contents of NO2- + NO3- is revealed, indicating the role of peroxide processes in effect of nitric oxide and its metabolites on the cell. PMID:14964872

  4. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury.

    PubMed

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F; Aggarwal, Saurabh; Emala, Charles W; Stober, Vandy P; Trempus, Carol S; Garantziotis, Stavros; Matalon, Sadis

    2015-05-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  5. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  6. [Study on the altered nitric oxide metabolism in experimental diabetes].

    PubMed

    Tábi, Tamási; Soltész, Zsuzsa; Magyar, Kálmán; Szöko, Eva

    2006-01-01

    Decreased biological action of nitric oxide (NO) and increased oxidative stress are established to be involved in the development of endothelium dysfunction, early sign of diabetic angiopathy. In the present study, increased nitric oxide synthase (NOS) enzyme activity in the aorta and decreased activity in the kidney tissue of streptozotocin-induced diabetic rats has been found in the early phase of the disease. Augmentation of oxidative transformation of NO in the kidney and heart of the diabetic animals has been demonstrated by the measurement of the stable end-products of NO and other reactive nitrogen species. Insulin treatment was found effective to reduce the intensified oxidative metabolism of NO without increasing its production. Reduced biological effects of NO observed in endothelial dysfunction, is thus probably the consequence of its increased oxidative inactivation. PMID:17094672

  7. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    PubMed

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p < 0.001) and returned to baseline by 180 min, whereas H(2)O(2) increased at 120 min and remained increased at 240 min (p = 0.001). No changes in exhaled NO and NO(2)/NO(3) were observed, while decreases in FEV(1) (p < 0.001) and FEV(1)/FVC (p < 0.001) were observed after exposure and returned to baseline by 180 min. A 1-h exposure to secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. PMID:23218453

  8. Thyroid disorders and nitric oxide in cardiovascular adaptation to hypovolemia.

    PubMed

    Ogonowski, Natalia; Piro, Giselle; Pessah, Déborah; Arreche, Noelia; Puchulu, Bernardita; Balaszczuk, Ana M; Fellet, Andrea L

    2016-08-01

    This study aimed to investigate whether nitric oxide participates in the cardiovascular function and haemodynamic adaptation to acute haemorrhage in animals with thyroid disorders. Sprague-Dawley rats aged 2months old treated with T3 (hyper, 20μg/100g body weight) or 0.02% methimazole (hypo, w/v) during 28days were pre-treated with N(G) nitro-l-arginine methyl ester (L-NAME) and submitted to 20% blood loss. Heart function was evaluated by echocardiography. Measurements of arterial blood pressure, heart rate, nitric oxide synthase activity and protein levels were performed. We found that hypo decreased fractional shortening and ejection fraction and increased left ventricle internal diameter. Hyper decreased ventricle diameter and no changes in cardiac contractility. Haemorrhage elicited a hypotension of similar magnitude within 10min. Then, this parameter was stabilized at about 30-40min and maintained until finalized, 120min. L-NAME rats showed that the immediate hypotension would be independent of nitric oxide. Nitric oxide synthase inhibition blunted the changes of heart rate induced by blood loss. Hyper and hypo had lower atrial enzyme activity associated with a decreased enzyme isoform in hypo. In ventricle, hyper and hypo had a higher enzyme activity, which was not correlated with changes in protein levels. Haemorrhage induced an increased heart nitric oxide production. We concluded that thyroid disorders were associated with hypertrophic remodelling which impacted differently on cardiac function and its adaptation to a hypovolemia. Hypovolemia triggered a nitric oxide synthase activation modulating the heart function to maintain haemodynamic homeostasis. This involvement depends on a specific enzyme isoform, cardiac chamber and thyroid state. PMID:27270898

  9. Nitric oxide synthase in macula densa regulates glomerular capillary pressure.

    PubMed Central

    Wilcox, C S; Welch, W J; Murad, F; Gross, S S; Taylor, G; Levi, R; Schmidt, H H

    1992-01-01

    Tubular-fluid reabsorption by specialized cells of the nephron at the junction of the ascending limb of the loop of Henle and the distal convoluted tubule, termed the macula densa, releases compounds causing vasoconstriction of the adjacent afferent arteriole. Activation of this tubuloglomerular feedback response reduces glomerular capillary pressure of the nephron and, hence, the glomerular filtration rate. The tubuloglomerular feedback response functions in a negative-feedback mode to relate glomerular capillary pressure to tubular-fluid delivery and reabsorption. This system has been implicated in renal autoregulation, renin release, and longterm body fluid and blood-pressure homeostasis. Here we report that arginine-derived nitric oxide, generated in the macula densa, is an additional intercellular signaling molecule that is released during tubular-fluid reabsorption and counters the vasoconstriction of the afferent arteriole. Antibody to rat cerebellar constitutive nitric oxide synthase stained rat macula densa cells specifically. Microperfusion of the macula densa segment of single nephrons with N omega-methyl-L-arginine (an inhibitor of nitric oxide synthase) or with pyocyanin (a lipid-soluble inhibitor of endothelium-derived relaxation factor) showed that generation of nitric oxide can vasodilate the afferent arteriole and increase glomerular capillary pressure; this effect was blocked by drugs that prevent tubular-fluid reabsorption. We conclude that nitric oxide synthase in macula densa cells is activated by tubular-fluid reabsorption and mediates a vasodilating component to the tubuloglomerular feedback response. These findings imply a role for arginine-derived nitric oxide in body fluid-volume and blood-pressure homeostasis, in addition to its established roles in modulation of vascular tone by the endothelium and in neurotransmission. Images PMID:1281548

  10. Novel antileukemic agents derived from tamibarotene and nitric oxide donors.

    PubMed

    Bian, Haiyong; Feng, Jinhong; Li, Minyong; Xu, Wenfang

    2011-12-01

    A series of novel nitric oxide-releasing tamibarotene derivatives were synthesized by coupling nitric oxide (NO) donors with tamibarotene via various spacers, and were evaluated for their antiproliferative activities against human leukemic HL-60, NB4 and K562 cell lines in vitro. The test results showed that three compounds (7g, 9a and 9e) exhibited more potent antileukemic activity than the control tamibarotene. Furthermore, the preliminary structure-activity analysis revealed that amino acids serving as spacers could bring about significantly improved biological activities of NO donor hybrids. These interesting results could provide new insights into the development of NO-based antileukemic agents. PMID:22014829

  11. Nitroaromatic amino acids as inhibitors of neuronal nitric oxide synthase.

    PubMed

    Cowart, M; Kowaluk, E A; Daanen, J F; Kohlhaas, K L; Alexander, K M; Wagenaar, F L; Kerwin, J F

    1998-07-01

    Nitric oxide (NO.) is an important biomodulator of many physiological processes. The inhibition of inappropriate production of NO. by the isoforms of nitric oxide synthase (NOS) has been proposed as a therapeutic approach for the treatment of stroke, inflammation, and other processes. In this study, certain 2-nitroaryl-substituted amino acid analogues were discovered to inhibit NOS. Analogues bearing a 5-methyl substituent on the aromatic ring demonstrated maximal inhibitory potency. For two selected inhibitors, investigation of the kinetics of the enzyme showed the inhibition to be competitive with l-arginine. Additionally, functional NOS inhibition in tissue preparations was demonstrated. PMID:9651169

  12. Inhibitors of nitric oxide synthase in inflammatory arthritis.

    PubMed

    Boughton-Smith, N K; Tinker, A C

    1998-07-01

    There is considerable evidence that excessive nitric oxide (NO) synthesized from L-arginine by inducible nitric oxide synthase (iNOS) plays an important pathological role in inflammatory arthritis. Since NO synthesized by constitutive isoforms of NOS has a physiological role, a great deal of activity has been directed at identifying inhibitors of NOS that are selective for the induced isoform. The major chemical areas that have been described so far in the search for such selective iNOS inhibitors and the activity of some of these compounds in animal models of arthritis are reviewed. PMID:18465556

  13. Nitric oxide and biopterin in depression and stress.

    PubMed

    van Amsterdam, J G; Opperhuizen, A

    1999-01-18

    Depression has been hypothesized to be related to the reduced biosynthesis of neurotransmitters such as serotonin, noradrenalin and dopamine. Much past research has also been devoted to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in depression. The present article reviews the evidence linking tetrahydrobiopterin, a co-factor in the biosynthesis of neurotransmitters, and nitric oxide, an apparent neuroendocrine modulator of the HPA axis, to the immune system and to neuronal control within affective disorder and stress. On the basis of this review, it is suggested that future psychoneuroimmunological research should more fully explore the possible role of tetrahydrobiopterin and nitric oxide in depressive disorders. PMID:10195314

  14. [Nitric oxide and anti-protozoan chemotherapy].

    PubMed

    Gradoni, L; Ascenzi, P

    2004-06-01

    Constitutive nitric oxide (NO) is generated by constitutively expressed types of NO-synthase enzymes (NOS-I and -III), being involved in physiological processes such as nervous transmission and vasodilatation. Inducible NO, synthesized by the NO-synthase isoform NOS-II, is an anti-pathogen and tumoricidal agent. However, inducible NO production requires a tight control because of cytotoxic and immune-modulation activity. NO produced by human and canine macrophages has long been demonstrated to be involved in the intracellular killing of Leishmania. Mechanisms of parasite survival and persistence in the host have been throughly investigated, and include suppression of NOS-II and the parasite entry into NOS-II negative cells. Both intracellular and extracellular morphotypes of Trypanosoma cruzi are killed by NO in vitro and in vivo, although a role of NO in the pathogenesis of heart disease has been reported. Killing of extracellular protozoa such as Trichomonas vaginalis and Naegleria fowleri by activated macrophages is also mediated by NO. The main control of Plasmodium spp infection in human and murine hepatocytes, and in human monocytes is achieved by NO-mediated mechanisms. Protection from severe malaria in African children has been found associated with polymorphisms of the NOS-II promoter; however, a pathogenic role of endogenous NO has been documented in cerebral malaria. Although several macromolecules are putative NO targets, recent experimental work has shown that NO-releasing compounds inhibit cysteine proteases (CP) of P. falciparum, T. cruzi and L. infantum in a dose-dependent manner. CPs are present in a wide range of parasitic protozoa and appear to be relevant in several aspects of the life cycle and of the parasite-host relationships. Comparative analysis of 3-D amino acid sequence models of CPs from a broad range of living organisms, from viruses to mammals, suggests that the Sy atom of the Cys catalytic residue undergoes NO-dependent chemical

  15. Cadmium attenuates bradykinin-driven nitric oxide production by interplaying with the localization pattern of endothelial nitric oxide synthase.

    PubMed

    Majumder, Syamantak; Gupta, Ravi; Reddy, Himabindu; Sinha, Swaraj; Muley, Ajit; Kolluru, Gopi Krishna; Chatterjee, Suvro

    2009-08-01

    Cadmium, a ubiquitous heavy metal, interferes with endothelial functions and angiogenesis. Bradykinin is a Ca-mobilizing soluble peptide that acts via nitric oxide to promote vasodilation and capillary permeability. The objective of the present study was to explore the Cd implications in bradykinin-dependent endothelial functions. An egg yolk angiogenesis model was employed to evaluate the effect of Cd on bradykinin-induced angiogenesis. The results demonstrate that 100 nmol/L Cd attenuated bradykinin-dependent angiogenesis. The results of the in vitro wound healing and tube formation assays by using EAhy 926, a transformed endothelial cell line, suggest that Cd blocked bradykinin-mediated endothelial migration and tube formation by 38% and 67%, respectively, while nitric oxide supplementation could reverse the effect of Cd on bradykinin-induced endothelial migration by 94%. The detection of nitric oxide by using a DAF-2DA fluorescent probe, Griess assay, and ultrasensitive electrode suggests that Cd blocked bradykinin-induced nitric oxide production. Fluorescence imaging of eNOS-GFP transfected endothelial cells, immunofluorescence, and Western blot studies of Cd and bradykinin-treated cells show that Cd interfered with the localization pattern of eNOS, which possibly attenuates nitric oxide production in part. Additionally, Ca imaging of Cd- and bradykinin-treated cells suggests that Cd blocked bradykinin-dependent Ca influx into the cells, thus partially blocking Ca-dependent nitric oxide production in endothelial cells. The results of this study conclude that Cd blunted the effect of bradykinin by interfering with the Ca-associated NOS activity specifically by impeding subcellular trafficking of eNOS. PMID:19767824

  16. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.

    PubMed

    Carr, G J; Page, M D; Ferguson, S J

    1989-02-15

    1. A Clark-type electrode that responds to nitric oxide has been used to show that cytoplasmic membrane vesicles of Paracoccus denitrificans have a nitric-oxide reductase activity. Nitrous oxide is the reaction product. NADH, succinate or isoascorbate plus 2,3,5,6-tetramethyl-1,4-phenylene diamine can act as reductants. The NADH-dependent activity is resistant to freezing of the vesicles and thus the NADH:nitric-oxide oxidoreductase activity of stored frozen vesicles provides a method for calibrating the electrode by titration of dissolved nitric oxide with NADH. The periplasmic nitrite reductase and nitrous-oxide reductase enzymes are absent from the vesicles which indicates that nitric-oxide reductase is a discrete enzyme associated with the denitrification process. This conclusion was supported by the finding that nitric-oxide reductase activity was absent from both membranes prepared from aerobically grown P. denitrificans and bovine heart submitochondrial particles. 2. The NADH: nitric-oxide oxidoreductase activity was inhibited by concentrations of antimycin or myxothiazol that were just sufficient to inhibit the cytochrome bc1 complex of the ubiquinol--cytochrome-c oxidoreductase. The activity was deduced to be proton translocating by the observations of: (a) up to 3.5-fold stimulation upon addition of an uncoupler; and (b) ATP synthesis with a P:2e ratio of 0.75. 3. Nitrite reductase of cytochrome cd1 type was highly purified from P. denitrificans in a new, high-yield, rapid two- or three-step procedure. This enzyme catalysed stoichiometric synthesis of nitric oxide. This observation, taken together with the finding that the maximum rate of NADH:nitric-oxide oxidoreductase activity catalysed by the vesicles was comparable with that of NADH:nitrate-oxidoreductase, is consistent with a role for nitric-oxide reductase in the physiological conversion of nitrate or nitrite to dinitrogen gas. 4. Intact cells of P. denitrificans also reduced nitric oxide in an

  17. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel

    PubMed Central

    Delfino, Ralph J.; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel L.; Schauer, James J.; Shafer, Martin M.

    2014-01-01

    Airborne particulate matter (PM) components from fossil fuel combustion can induce oxidative stress initiated by reactive oxygen species (ROS). Reported associations between worsening asthma and PM2.5 mass could be related to PM oxidative potential to induce airway oxidative stress and inflammation (hallmarks of asthma pathology). We followed 45 schoolchildren with persistent asthma in their southern California homes daily over 10 days with offline fractional exhaled nitric oxide (FENO), a biomarker of airway inflammation. Ambient exposures included daily average PM2.5, PM2.5 elemental and organic carbon (EC, OC), NO2, O3, and endotoxin. We assessed PM2.5 oxidative potential using both an abiotic and an in vitro bioassay on aqueous extracts of daily particle filters: (1) dithiothreitol (DTT) assay (abiotic), representing chemically produced ROS; and (2) ROS generated intracellularly in a rat alveolar macrophage model using the fluorescent probe 2′7′-dicholorohidroflourescin diacetate. We analyzed relations of FENO to air pollutants in mixed linear regression models. FENO was significantly positively associated with lag 1-day and 2-day averages of traffic-related markers (EC, OC, and NO2), DTT and macrophage ROS, but not PM2.5 mass. DTT associations were nearly twice as strong as other exposures per interquartile range: median FENO increased 8.7–9.9% per 0.43 nmole/min/m3 DTT. Findings suggest that future research in oxidative stress-related illnesses such as asthma and PM exposure would benefit from assessments of PM oxidative potential and composition. PMID:23673461

  18. Oxidant-mediated ciliary dysfunction. Possible role in airway disease

    SciTech Connect

    Burman, W.J.; Martin, W.J. 2d.

    1986-03-01

    The effects of reactive species of oxygen on the airway are not well known. This study examined the effects of hydrogen peroxide (H2O2) on the structure and function of the airway epithelium. Tracheal rings were prepared from 200 g male rats. Damage to the airway epithelium was assayed by monitoring the ciliary beat frequency, the release of 51Cr, and histology. H2O2 at concentrations of 1.0 mM and above caused a very rapid decrease in ciliary beat frequency. After ten minutes' exposure to 1.0 mM, the ciliary beat frequency was 72 +/- 20 percent of control. Release of 51Cr was a less sensitive measure with significant release occurring after four hours of exposure to ciliotoxic concentrations of H2O2. Histologic changes were not evident within the experimental time period. All toxic effects of H2O2 were completely blocked by catalase. This study shows that H2O2 causes a rapid decline in ciliary activity and suggests that oxidant-mediated ciliary dysfunction could play a role in the pathogenesis of airway disease. The ciliary beat frequency provides a sensitive, physiologically relevant parameter for the in vitro study of these diseases.

  19. Endothelial cell nitric oxide production in acute chest syndrome.

    PubMed

    Hammerman, S I; Klings, E S; Hendra, K P; Upchurch, G R; Rishikof, D C; Loscalzo, J; Farber, H W

    1999-10-01

    Acute chest syndrome (ACS) is the most common form of acute pulmonary disease associated with sickle cell disease. To investigate the possibility that alterations in endothelial cell (EC) production and metabolism of nitric oxide (NO) products might be contributory, we measured NO products from cultured pulmonary EC exposed to red blood cells and/or plasma from sickle cell patients during crisis. Exposure to plasma from patients with ACS caused a 5- to 10-fold increase in S-nitrosothiol (RSNO) and a 7- to 14-fold increase in total nitrogen oxide (NO(x)) production by both pulmonary arterial and microvascular EC. Increases occurred within 2 h of exposure to plasma in a concentration-dependent manner and were associated with increases in endothelial nitric oxide synthase (eNOS) protein and eNOS enzymatic activity, but not with changes in nitric oxide synthase (NOS) III or NOS II transcripts, inducible NOS (iNOS) protein nor iNOS enzymatic activity. RSNO and NO(x) increased whether plasma was obtained from patients with ACS or other forms of vasoocclusive crisis. Furthermore, an oxidative state occurred and oxidative metabolites of NO, particularly peroxynitrite, were produced. These findings suggest that altered NO production and metabolism to damaging oxidative molecules contribute to the pathogenesis of ACS. PMID:10516198

  20. Nitric oxide as a potent fumigant for postharvest pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a great demand for safe and effective alternative fumigants to replace methyl bromide and other toxic fumigants for pest control. Nitric oxide, a common signal molecule in biological systems, was found to be effective and safe to control insects under ultralow oxygen conditions. Fumigatio...

  1. Nitric oxide inhibition sustains vasopressin-induced vasoconstriction.

    PubMed Central

    Dworkin, M. J.; Carnochan, P.; Allen-Mersh, T. G.

    1995-01-01

    Hepatic parenchymal vasoconstriction increases cytotoxic drug uptake into hepatic metastases by increasing the tumour to liver blood flow ratio. Prolonged infusion of the vasoconstrictor vasopressin does not result in sustained vasoconstriction, and this may limit the benefit of vasopressin in infusional chemotherapy. We have assessed whether loss of vasopressin-induced vasoconstriction is mediated by nitric oxide. Hepatic and tumour blood flow were continuously monitored, in an animal hepatic tumour model, by laser Doppler flowmetry. The response to regionally infused vasopressin and the nitric oxide inhibitor N-nitro-L-arginine methyl ester (L-NAME) were assessed over a 30 min infusion period. The vasopressin-induced vasoconstrictor effect diminished after 15 min despite continued infusion. Vasoconstriction was significantly prolonged when L-NAME was infused in addition to vasopressin. The increase in tumour to normal blood flow ratio was greater over the infusion period when L-NAME was co-administered with vasopressin. Our results suggest that the loss of vasopressin-induced vasoconstriction seen in liver parenchyma after regional infusion is prevented by the nitric oxide synthase inhibitor L-name and may be mediated by nitric oxide. PMID:7734317

  2. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase.

    PubMed

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng; Cui, Jianxiu

    2016-09-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10(-8)~10(-6) mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10(-9) mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  3. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    PubMed Central

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  4. Nitric oxide emissions from a central California dairy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrations of nitric oxide (NO) were monitored downwind from a central California dairy facility during 2011 and 2012. NO concentrations at the dairy were significantly higher than the background levels during August 2011, but were indistinguishable from upwind concentrations during January, Apr...

  5. Estimates of nitric oxide production for lifting spacecraft reentry

    NASA Technical Reports Server (NTRS)

    Park, C.

    1971-01-01

    The amount of nitric oxide which may be produced by heating of air during an atmospheric reentry of a lifting spacecraft is estimated by three different methods. Two assume nitrogen fixation by the process of sudden freezing, and the third is a computer calculation using chemical rate equations.

  6. Nitric oxide and almitrine: the definitive answer for hypoxemia.

    PubMed

    Payen, D M; Muret, J

    1999-02-01

    Hypoxia-induced by acute lung injury results from abnormal ventilation/perfusion ratio distribution towards shunt or low ventilation/perfusion zones. Pharmacological modification of pulmonary blood flow distribution improving ventilation/perfusion ratio should correct hypoxia. The development of inhaled nitric oxide therapy had confirmed this concept, but with a relatively high proportion of 'non responders'. Then development of other drugs used alone or in association with nitric oxide may reinforce the benefit of nitric oxide. This has been tested with almitrine bismesylate, a lipophilic drug that reinforce hypoxic pulmonary vasoconstriction. Using inhaled nitric oxide in combination with almitrine, several studies in adult respiratory distress syndrome or acute lung injury patients have shown spectacular results in term of PaO2 and pulmonary shunt reduction. Moreover, the proportion of responders to this combination seems largely great than those observed for each drug alone. In conclusion, pulmonary blood flow manipulation improving ventilation/perfusion mismatching is one of the major strategies to correct severe hypoxia. PMID:17013295

  7. Absorptivity of nitric oxide in the fundamental vibrational band

    NASA Astrophysics Data System (ADS)

    Holland, R. F.; Vasquez, M. C.; Beattie, W. H.; McDowell, R. S.

    1983-05-01

    From observations of the spectral absorbance of mixtures of nitric oxide in nitrogen at room temperature, an integrated absorptivity for the NO fundamental band of 137.3 + or - 4.6 per(sq cm atm) at 0 C is derived. The indicated uncertainty is the estimated maximum error.

  8. Arginine, citrulline and nitric oxide metabolism in sepsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  9. Apple fruit responses following exposure to nitric oxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exogenous nitric oxide (.NO) applied as gas or generated from .NO releasing compounds has physiological activity in cut apple fruit tissues. Studies were conducted to characterize .NO production by whole fruit as well as to assess responses of whole fruit to exogenous .NO. .NO and ethylene product...

  10. Oscillations of nitric oxide concentration in the perturbed denitrification pathway of Paracoccus denitrificans.

    PubMed Central

    Kucera, I

    1992-01-01

    The metabolism of nitric oxide in Paracoccus denitrificans has been studied using a Clark-type electrode. The uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) and the SH reagent N-ethylmaleimide, both of which released nitric oxide from cells respiring nitrite, were found to be efficient inhibitors of nitric oxide reductase activity. Control experiments with another uncoupler, pentachlorophenol, showed that the inhibitory effect of CCCP was not the result of a decrease in membrane potential. The denitrification pathway in cells with partly inhibited nitric oxide reductase, or in a reconstituted system containing purified nitric reductase and membrane vesicles, exhibited marked sustained oscillations of nitric oxide concentration. The occurrence of the oscillations was strictly dependent on the initial concentration of nitrite. The observed oscillatory kinetics is considered to reflect two regulatory signals destabilizing the denitrification pathway, namely the inhibition of nitric oxide reductase by nitric oxide and/or by nitrite. PMID:1325776

  11. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    PubMed

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12. PMID:11429613

  12. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    NASA Astrophysics Data System (ADS)

    Na, Young Ho; Kumar, Naresh; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup

    2015-03-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development.

  13. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds.

    PubMed

    Pereira, A C; Paulo, M; Araújo, A V; Rodrigues, G J; Bendhack, L M

    2011-09-01

    During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO) as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC) modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP) production, which in turn leads to protein kinase G (PKG) activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca(2+) signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS) activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described. PMID:21755266

  14. NOSTRIN: A protein modulating nitric oxide release and subcellular distribution of endothelial nitric oxide synthase

    PubMed Central

    Zimmermann, Kirstin; Opitz, Nils; Dedio, Jürgen; Renné, Christoph; Müller-Esterl, Werner; Oess, Stefanie

    2002-01-01

    Activity and localization of endothelial nitric oxide synthase (eNOS) is regulated in a remarkably complex fashion, yet the complex molecular machinery mastering stimulus-induced eNOS translocation and trafficking is poorly understood. In a search by the yeast two-hybrid system using the eNOS oxygenase domain as bait, we have identified a previously uncharacterized eNOS-interacting protein, dubbed NOSTRIN (for eNOS traffic inducer). NOSTRIN contains a single polypeptide chain of 506-aa residues of 58 kDa with an N-terminal cdc15 domain and a C-terminal SH3 domain. NOSTRIN mRNA is abundant in highly vascularized tissues such as placenta, kidney, lung, and heart, and NOSTRIN protein is expressed in vascular endothelial cells. Coimmunoprecipitation experiments demonstrated the eNOS–NOSTRIN interaction in vitro and in vivo, and NOSTRIN's SH3 domain was essential and sufficient for eNOS binding. NOSTRIN colocalized extensively with eNOS at the plasma membrane of confluent human umbilical venous endothelial cells and in punctate cytosolic structures of CHO-eNOS cells. NOSTRIN overexpression induced a profound redistribution of eNOS from the plasma membrane to vesicle-like structures matching the NOSTRIN pattern and at the same time led to a significant inhibition of NO release. We conclude that NOSTRIN contributes to the intricate protein network controlling activity, trafficking, and targeting of eNOS. PMID:12446846

  15. Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component?

    PubMed Central

    Sears, Claire E; Ashley, Euan A; Casadei, Barbara

    2004-01-01

    Nitric oxide (NO) has been shown to regulate cardiac function, both in physiological conditions and in disease states. However, several aspects of NO signalling in the myocardium remain poorly understood. It is becoming increasingly apparent that the disparate functions ascribed to NO result from its generation by different isoforms of the NO synthase (NOS) enzyme, the varying subcellular localization and regulation of NOS isoforms and their effector proteins. Some apparently contrasting findings may have arisen from the use of non-isoform-specific inhibitors of NOS, and from the assumption that NO donors may be able to mimic the actions of endogenously produced NO. In recent years an at least partial explanation for some of the disagreements, although by no means all, may be found from studies that have focused on the role of the neuronal NOS (nNOS) isoform. These data have shown a key role for nNOS in the control of basal and adrenergically stimulated cardiac contractility and in the autonomic control of heart rate. Whether or not the role of nNOS carries implications for cardiovascular disease remains an intriguing possibility requiring future study. PMID:15306414

  16. Rate of Nitric Oxide Scavenging by hemoglobin bound to haptoglobin

    PubMed Central

    Azarov, Ivan; He, Xiaojun; Jeffers, Anne; Basu, Swati; Ucer, Burak; Hantgan, Roy R.; Levy, Andrew; Kim-Shapiro, Daniel B.

    2008-01-01

    Cell-free hemoglobin, released from the red cell, may play a major role in regulating the bioavailability of nitric oxide. The abundant serum protein haptoglobin, rapidly binds to free hemoglobin forming a stable complex accelerating its clearance. The haptoglobin gene is polymorphic with two classes of alleles denoted 1 and 2. We have previously demonstrated that the haptoglobin 1 protein-hemoglobin complex is cleared twice as fast as the haptoglobin 2 protein-hemoglobin complex. In this report we explored whether haptoglobin binding to hemoglobin reduces the rate of nitric oxide scavenging using time-resolved absorption spectroscopy. We found that both the haptoglobin 1 and haptoglobin 2 protein complexes react with nitric oxide at the same rate as unbound cell-free hemoglobin. To confirm these results we developed a novel assay where free hemoglobin and hemoglobin bound to haptoglobin competed in the reaction with NO. The relative rate of the NO reaction was then determined by examining the amount of reacted species using analytical ultracentrifugation. Since complexation of hemoglobin with haptoglobin does not reduce NO scavenging, we propose that the haptoglobin genotype may influence nitric oxide bioavailability by determining the clearance rate of the haptoglobin-hemoglobin complex. We provide computer simulations showing that a two-fold difference in the rate of uptake of the haptoglobin hemoglobin complex by macrophages significantly affects nitric oxide bioavailability thereby providing a plausible explanation for why there is more vasospasm after subarachnoid hemorrhage in individuals and transgenic mice homozygous for the Hp 2 allele. PMID:18364244

  17. Process for combined control of mercury and nitric oxide.

    SciTech Connect

    Livengood, C. D.; Mendelsohn, M. H.

    1999-11-03

    Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less than $5,000/ton removed, while for Hg{sup 0} oxidation it

  18. HBOC Vasoactivity: Interplay Between Nitric Oxide Scavenging and Capacity to Generate Bioactive Nitric Oxide Species

    PubMed Central

    Friedman, Joel M.

    2013-01-01

    Abstract Significance: Despite many advances in blood substitute research, the development of materials that are effective in maintaining blood volume and oxygen delivery remains a priority for emergency care and trauma. Clinical trials on hemoglobin (Hb)-based oxygen carriers (HBOCs) have not provided information on the mechanism of toxicity, although all commercial formulations have safety concerns. Specifically, it is important to reconcile the different hypotheses of Hb toxicity, such as nitric oxide (NO) depletion and oxidative reactions, to provide a coherent molecular basis for designing a safe HBOC. Recent Advances: HBOCs with different sizes often exhibit differences in the degree of HBOC-induced vasoactivity. This has been attributed to differences in the degree of NO scavenging and in the extent of Hb extravasation. Additionally, it is appears that Hb can undergo reactions that compensate for NO scavenging by generating bioactive forms of NO. Critical Issues: Engineering modifications to enhance bioactive NO production can result in diminished oxygen delivery by virtue of increased oxygen affinity. This strategy can prevent the HBOC from fulfilling the intended goal on preserving oxygenation; however, the NO production effects will increase perfusion and oxygen transport. Future Directions: Hb modifications influence NO scavenging and the capacity of certain HBOCs to compensate for NO scavenging through nitrite-mediated reactions that generate bioactive NO. Based on the current understanding of these NO-related factors, possible synthetic strategies are presented that address how HBOC formulations can be prepared that: (i) effectively deliver oxygen, (ii) maintain tissue perfusion, and (iii) limit/reverse underlying inflammation within the vasculature. Antioxid. Redox Signal. 18, 2284–2297. PMID:23249305

  19. Detection of nitric oxide in exhaled air using cavity enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Medrzycki, R.; Wojtas, J.; Rutecka, B.; Bielecki, Z.

    2013-07-01

    The article describes an application one of the most sensitive optoelectronic method - Cavity Enhanced Absorption Spectroscopy in investigation of nitric oxide in exhaled breath. Measurement of nitric oxide concentration in exhaled breath is a quantitative, non-invasive, simple, and safe method of respiratory inflammation and asthma diagnosis. For detection of nitric oxide by developed optoelectronic sensor the vibronic molecular transitions were used. The wavelength ranges of these transitions are situated in the infrared spectral region. A setup consists of the optoelectronic nitric oxide sensor integrated with sampling and sample conditioning unit. The constructed detection system provides to measure nitric oxide in a sample of 0-97% relative humidity.

  20. [Determining asthma treatment in children by monitoring fractional exhaled nitric oxide, sputum eosinophils and leukotriene B₄].

    PubMed

    Vizmanos-Lamotte, G; Cruz, M J; Gómez-Ollés, S; Muñoz, X; de Mir Messa, I; Moreno-Galdó, A

    2015-01-01

    Sputum eosinophils and exhaled fractional nitric oxide (FENO) are markers of airway inflammation in asthma. Cytokines, cysteinyl-leukotrienes and leukotriene B4 (LTB4) are responsible for this inflammation. The aim of this study is to determine the usefulness of these markers in monitoring asthma treatment in children. FENO, sputum eosinophils, and LTB4 in induced sputum were performed in 10 children (9-15 years old). These determinations were repeated four months later, after the beginning or an increase in the treatment. FENO values tended to decrease (P=.15), pulmonary function tended to improve (P=.10), and sputum eosinophils decreased (P=.003) compared to the first determination. There were no differences in LTB4 concentrations (P=.88). Sputum eosinophils seem to be more precise than FENO in the monitoring of inflammation in asthmatic children. PMID:24857428

  1. An Overview of Fractional Exhaled Nitric Oxide and Children with Asthma.

    PubMed

    Rao, Devika R; Phipatanakul, Wanda

    2016-05-01

    Asthma is the most common pediatric chronic disease and is characterized by lung inflammation. Fractional exhaled nitric oxide (FeNO) is thought to reflect the presence of eosinophilic airway inflammation, and is an easy, non-invasive test that has held promise in providing additional objective data. However, not all studies have shown a clinical benefit in the use of FeNO to guide management of asthma in children. This review will describe the results of the most recent studies examining the use of FeNO in the diagnosis and treatment of asthma in infants, preschool-aged children and in school-aged children. It will aid the clinician in providing a clinical context in which FeNO may be most useful in treating pediatric asthma. PMID:26757849

  2. Measurement of exhaled nitric oxide in beef cattle using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Roller, C. B.; Holland, B. P.; McMillen, G.; Step, D. L.; Krehbiel, C. R.; Namjou, K.; McCann, P. J.

    2007-03-01

    Measurement of nitric oxide (NO) in the expired breath of crossbred calves received at a research facility was performed using tunable diode laser absorption spectroscopy. Exhaled NO (eNO) concentrations were measured using NO absorption lines at 1912.07 cm-1 and employing background subtraction. The lower detection limit and measurement precision were determined to be ˜330 parts in 1012 per unit volume. A custom breath collection system was designed to collect lower airway breath of spontaneously breathing calves while in a restraint chute. Breath was collected and analyzed from calves upon arrival and periodically during a 42 day receiving period. There was a statistically significant relationship between eNO, severity of bovine respiratory disease (BRD) in terms of number of times treated, and average daily weight gain over the first 15 days postarrival. In addition, breathing patterns and exhaled CO2 showed a statistically significant relationship with BRD morbidity.

  3. Reduction in exhaled nitric oxide immediately after methacholine challenge in asthmatic children

    PubMed Central

    Piacentini, G; Bodini, A; Peroni, D; Del Giudice, M M.; Costella, S; Boner, A

    2002-01-01

    Background: The measurement of exhaled nitric oxide (NO) has recently been proposed as a useful technique for the evaluation of airway inflammation in asthma. The purpose of this study was to determine the effect of methacholine bronchial provocation on the levels of exhaled NO in asthmatic children. Method: Exhaled NO was measurement immediately before and after methacholine provocation in 51 children with mild to moderate asthma. Results: A significant decrease occurred in the level of exhaled NO (p<0.0001) after methacholine bronchial provocation which was not correlated with the percentage fall in forced expiratory volume in 1 second (FEV1). Conclusions: The methacholine test should not be used immediately before measurement of exhaled NO in children with asthma. PMID:12200520

  4. An Overview of Fractional Exhaled Nitric Oxide and Children with Asthma

    PubMed Central

    Rao, Devika R.; Phipatanakul, Wanda

    2016-01-01

    SUMMARY Asthma is the most common pediatric chronic disease and is characterized by lung inflammation. Fractional exhaled nitric oxide (FeNO) is thought to reflect the presence of eosinophilic airway inflammation, and is an easy, non-invasive test that has held promise in providing additional objective data. However, not all studies have shown a clinical benefit in the use of FeNO to guide management of asthma in children. This review will describe the results of the most recent studies examining the use of FeNO in the diagnosis and treatment of asthma in infants, pre-school-aged children and in school-aged children. It will aid the clinician in providing a clinical context in which FeNO may be most useful in treating pediatric asthma. PMID:26757849

  5. Nitric Oxide Loaded Echogenic Liposomes for Nitric Oxide Delivery and Inhibition of Intimal Hyperplasia

    PubMed Central

    Huang, Shao-Ling; Kee, Patrick H.; Kim, Hyunggun; Moody, Melanie R.; Chrzanowski, Stephen M.; MacDonald, Robert C.; McPherson, David D.

    2011-01-01

    Objective To develop a new bioactive gas delivery method using echogenic liposomes (ELIP) as the gas carrier. Background Nitric oxide (NO) is a bioactive gas with potent therapeutic effects. Bioavailability of NO by systemic delivery is low with potential systemic effects. Methods Liposomes containing phospholipids and cholesterol were prepared using a new freezing under pressure method. The encapsulation and release profile of NO from NO containing-ELIP (NO-ELIP) or a mixture of NO/Argon (NO/Ar-ELIP was studied. Uptake of NO from NO-ELIP by cultured vascular smooth muscle cells (VSMC) both in the absence and presence of hemoglobin was determined. The effect of NO-ELIP delivery to attenuate intimal hyperplasia in a balloon-injured artery was determined. Results Coencapsulation of NO with argon (Ar) enabled the adjustment the amount of encapsulated NO. A total of 10 µl of gas can be encapsulated into 1 mg liposomes. The release profile of NO from NO-ELIP demonstrated an initial rapid release followed by a slower release over 8 hours. Sixty-eight percent of cells remained viable when incubated with 80 µg/ml of NO/Ar-ELIP for 4 hours. NO delivery to VSMC using NO/Ar-ELIP was 7-fold higher than unencapsulated NO. NO/Ar-ELIP remained effective NO delivery to VSMC even in the presence of hemoglobin. Local NO-ELIP administration to balloon-injured carotid arteries attenuated the development of intimal hyperplasia and reduced arterial wall thickening by 41±9%. Conclusions Liposomes can protect and deliver a bioactive gas to target tissues with the potential for both visualization of gas delivery and controlled therapeutic gas release. PMID:19660697

  6. Protein kinase Cδ regulates endothelial nitric oxide synthase expression via Akt activation and nitric oxide generation

    PubMed Central

    Sud, Neetu; Wedgwood, Stephen; Black, Stephen M.

    2008-01-01

    In this study, we explore the roles of the delta isoform of PKC (PKCδ) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCδ with either rottlerin or with the peptide, δV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCδ inhibition using either rottlerin or the overexpression of a dominant negative PKCδ mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCδ inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCδ is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCδ-mediated Akt activation and NO generation in maintaining eNOS expression. PMID:18192589

  7. Interleukin-12 gene-expression of macrophages is regulated by nitric oxide.

    PubMed

    Rothe, H; Hartmann, B; Geerlings, P; Kolb, H

    1996-07-01

    Interleukin-12 is a heterodimeric cytokine, mainly produced by macrophages. In our present study we demonstrate that interleukin-12 expression is regulated by nitric oxide. Incubation of the macrophage cell line IC 21 with interferon-gamma gave rise to both interleukin-12 p40 mRNA and nitric oxide production. The concurrent addition of the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine inhibited nitrite production and in parallel completely suppressed interleukin-12 p40 mRNA formation. This indicated that endogenous nitric oxide synthase activity was required for IL-12 p40 gene expression. Exposure of the cells towards the nitric oxide generating compounds nitroprusside or S-nitroso-N-acetyl-penicillamine induced interleukin-12 p40 mRNA. Maximal mRNA levels were induced with nitric oxide donors at 1 microM concentration. We conclude that nitric oxide may exert an autoregulatory and paracrine control of interleukin-12 gene expression. PMID:8694804

  8. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice.

    PubMed

    Huang, Kuo-Liang; Lee, Yi-Hsin; Chen, Hau-Inh; Liao, Huang-Shen; Chiang, Bor-Luen; Cheng, Tsun-Jen

    2015-10-30

    Zinc oxide nanoparticles (ZnO NPs) have been widely used in industry. The metal composition of PM2.5 might contribute to the higher prevalence of asthma. To investigate the effects of ZnO NPs on allergic airway inflammation, mice were first exposed to different concentrations of ZnO NPs (0.1 mg/kg, 0.5 mg/kg) or to a combination of ZnO NPs and chicken egg ovalbumin (OVA) by oropharyngeal aspiration on day 0 and day 7 and then were sacrificed 5 days later. The subsequent time course of airway inflammation in the mice after ZnO NPs exposure was evaluated on days 1, 7, and 14. To further determine the role of zinc ions, ZnCl2 was also administered. The inflammatory cell count, cytokine levels in the bronchoalveolar lavage fluid (BALF), and lung histopathology were examined. We found significant neutrophilia after exposure to high-dose ZnO NPs on day 1 and significant eosinophilia in the BALF at 7 days. However, the expression levels of the T helper 2 (Th2) cytokines IL-4, IL-5, and IL-13 increased significantly after 24h of exposure to only ZnO NPs and then decreased gradually. These results suggested that ZnO NPs could cause eosinophilic airway inflammation in the absence of allergens. PMID:26010476

  9. Exhaled nitric oxide as a marker of lung involvement in Crohn's disease.

    PubMed

    Malerba, M; Ragnoli, B; Buffoli, L; Radaeli, A; Ricci, C; Lanzarotto, F; Lanzini, A

    2011-01-01

    Crohn's disease is an inflammatory bowel disease associated with a variety of systemic manifestations, including large and small airway involvement. The latter is most often a subclinical one, and requires expensive and invasive diagnostic approaches. Nitric oxide (NO) can be detected non-invasively in the exhaled air (eNO) and be considered as a surrogate marker of airway inflammation. eNO tested at multiple expiratory flows can be used to distinguish the alveolar concentration of NO (CalvNO) from the total amount of fractional eNO (FeNO). The aim of our study is to compare FeNO and concentration of alveolar nitric oxide (CalvNO) levels and to assess their relationship with pulmonary involvement in Crohn's patients differing in clinical stage and therapeutic regimens versus a group of healthy subjects. Thirty Crohn's patients not showing clinical evidence of pulmonary diseases and 21 non-smoking, non-atopic healthy controls were enrolled. FeNO (14.9±10.2 ppb vs 10.1±6.3 ppb, p=0.049) and CalvNO (4.4±2.2 ppb vs 2.6±1.9; p=0.006) values were found to be significantly higher in Crohn's patients than in healthy controls. Both FeNO and CalvNO correlated positively with the Crohn's Disease Activity Index. In conclusion, our results for FeNO and CalvNO confirm the presence of subclinical pulmonary involvement in Crohn's disease. eNO measurement may be of clinical value in the follow-up of Crohn's patients. PMID:22230422

  10. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  11. Effect of Nanoparticles Exposure on Fractional Exhaled Nitric Oxide (FENO) in Workers Exposed to Nanomaterials

    PubMed Central

    Wu, Wei-Te; Liao, Hui-Yi; Chung, Yu-Teh; Li, Wan-Fen; Tsou, Tsui-Chun; Li, Lih-Ann; Lin, Ming-Hsiu; Ho, Jiune-Jye; Wu, Trong-Neng; Liou, Saou-Hsing

    2014-01-01

    Fractional exhaled nitric oxide (FENO) measurement is a useful diagnostic test of airway inflammation. However, there have been few studies of FENO in workers exposed to nanomaterials. The purpose of this study was to examine the effect of nanoparticle (NP) exposure on FENO and to assess whether the FENO is increased in workers exposed to nanomaterials (NM). In this study, both exposed workers and non-exposed controls were recruited from NM handling plants in Taiwan. A total of 437 subjects (exposed group = 241, non-exposed group = 196) completed the FENO and spirometric measurements from 2009–2011. The authors used a control-banding (CB) matrix to categorize the risk level of each participant. In a multivariate linear regression analysis, this study found a significant association between risk level 2 of NP exposure and FENO. Furthermore, asthma, allergic rhinitis, peak expiratory flow rate (PEFR), and NF-κB were also significantly associated with FENO. When the multivariate logistic regression model was adjusted for confounders, nano-TiO2 in all of the NM exposed categories had a significantly increased risk in FENO > 35 ppb. This study found associations between the risk level of NP exposure and FENO (particularly noteworthy for Nano-TiO2). Monitoring FENO in the lung could open up a window into the role nitric oxide (NO) may play in pathogenesis. PMID:24413755

  12. Cyclooxygenase-inhibiting nitric oxide donators for osteoarthritis.

    PubMed

    Wallace, John L; Viappiani, Serena; Bolla, Manlio

    2009-03-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) remain the most commonly used medications for the treatment of the symptoms of many chronic inflammatory diseases, including osteoarthritis. Unfortunately, the toxicity of NSAIDs substantially limits their long-term use. Some newer NSAIDs, namely selective cyclooxygenase (COX)-2 inhibitors, exhibit greater gastrointestinal safety, and concomitant use of anti-secretory drugs can also reduce NSAID-induced gastropathy. However, NSAIDs also adversely affect the cardiovascular system. A new class of anti-inflammatory drugs, COX-inhibiting nitric oxide donators (CINODs), has been designed to exert similar anti-inflammatory effects as NSAIDs, but with an improved safety profile. CINODs release nitric oxide, providing protective effects in the gastrointestinal tract and attenuating the detrimental effects on blood pressure normally associated with NSAIDs. We provide an outline of the rationale for CINODs and their activity, in addition to an overview of the pre-clinical and clinical profile of the most advanced CINOD, naproxcinod. PMID:19230986

  13. Nitric Oxide Scavenging by Hemoglobin in Health, Disease, and Therapeutics

    NASA Astrophysics Data System (ADS)

    Kim-Shapiro, Daniel

    2007-11-01

    Nitric oxide (NO) is the endothelium-derived relaxing factor (EDRF). It is made in endothelial cells lining blood vessels and diffuses to smooth muscle cells where it leads to muscle relaxation, vessel dilatation, and increased blood flow and also plays a large role in controlling platelet aggregation and inflammation. Hemoglobin (Hb), the oxygen carrying molecule in the blood, reacts at nearly diffusion limited rates with nitric oxide to (in some reactions) form nitrate ands thereby destroy NO activity. The presence of such large amounts of such a potent NO scavenger in the blood challenges the idea that NO is indeed the EDRF. Encapsulation in red blood cells in healthy individuals limits NO scavenging by Hb. Biophysical experiments will be described exploring and evaluating these mechanisms. Other studies will be described discussing how red cells break open (lyse) in pathological situations and the cell-free Hb reduces NO bioavailability. Finally, methods to restore NO bioavailability through therapeutics will be discussed.

  14. Existence of nitric oxide synthase in rat hippocampal pyramidal cells.

    PubMed Central

    Wendland, B; Schweizer, F E; Ryan, T A; Nakane, M; Murad, F; Scheller, R H; Tsien, R W

    1994-01-01

    It has been proposed that nitric oxide (NO) serves as a key retrograde messenger during long-term potentiation at hippocampal synapses, linking induction of long-term potentiation in postsynaptic CA1 pyramidal cells to expression of long-term potentiation in presynaptic nerve terminals. However, nitric oxide synthase (NOS), the proposed NO-generating enzyme, has not yet been detected in the appropriate postsynaptic cells. We here demonstrate specific NOS immunoreactivity in the CA1 region of hippocampal sections by using an antibody specific for NOS type I and relatively gentle methods of fixation. NOS immunoreactivity was found in dendrites and cell bodies of CA1 pyramidal neurons. Cultured hippocampal pyramidal cells also displayed specific immunostaining. Control experiments showed no staining with preimmune serum or immune serum that was blocked with purified NOS. These results demonstrate that CA1 pyramidal cells contain NOS, as required were NO involved in retrograde signaling during hippocampal synaptic plasticity. Images PMID:7510887

  15. Nitric oxide in the upper stratosphere - Measurements and geophysical interpretation

    NASA Technical Reports Server (NTRS)

    Harvath, J. J.; Frederick, J. E.; Orsini, N.; Douglass, A. R.

    1983-01-01

    A rocket-borne parachute-deployed chemiluminescence instrument has obtained seven new measurements of atmospheric nitric oxide for altitudes between 30 and 50 km at mid-latitudes. These results, when combined with profiles measured by an earlier version of the instrument, cover all four seasons and provide a more comprehensive picture of upper stratospheric nitric oxide than has been available previously. At the highest altitudes studied, the vertical gradient in mixing ratio displays positive and negative values during different observations, with the largest values tending to appear at the greatest heights in summer. Examination of the differences among the profiles, which exceed a factor of 3 near the stratopause, suggests that they arise from the action of transport processes which carry air into the mid-latitude upper stratosphere from regions of the atmosphere that contain widely different odd-nitrogen abundances.

  16. The role of nitric oxide in prostaglandin biology; update

    PubMed Central

    Kim, Sangwon F.

    2011-01-01

    The biosynthesis of nitric oxide (NO) and prostaglandin share many similarities. Two major forms of nitric oxide synthase (NOS) and cyclooxygenase (COX) have been identified: constitutive vs inducible. In general, the constitutive form functions in housekeeping and physiologic roles whereas the inducible form is up-regulated by mitogenic or inflammatory stimuli and is responsible for pathophysiological responses. The cross talk between the COX and NOS pathways was initially reported 1993 and since then, numerous studies have been undertaken to delineate the functional consequences of this interaction as well as the potential mechanism by which each pathway interacts. This review will focus in particular on recent advances in this field that extend our understanding of these two pathways under various systems. PMID:21820072

  17. Effect of fuel/air nonuniformity on nitric oxide emissions

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1979-01-01

    A flame tube combustor holding jet A fuel was used in experiments performed at a pressure of .3 Mpa and a reference velocity of 25 meters/second for three inlet air temperatures of 600, 700, and 800 K. The gas sample measurements were taken at locations 18 cm and 48 cm downstream of the perforated plate flameholder. Nonuniform fuel/air profiles were produced using a fuel injector by separately fueling the inner five fuel tubes and the outer ring of twelve fuel tubes. Six fuel/air profiles were produced for nominal overall equivalence ratios of .5 and .6. An example of three of three of these profiles and their resultant nitric oxide NOx emissions are presented. The uniform fuel/air profile cases produced uniform and relatively low profile levels. When the profiles were either center-peaked or edge-peaked, the overall mass-weighted nitric oxide levels increased.

  18. Nitric oxide: a regulator of eukaryotic initiation factor 2 kinases.

    PubMed

    Tong, Lingying; Heim, Rachel A; Wu, Shiyong

    2011-06-15

    Generation of nitric oxide (NO(•)) can upstream induce and downstream mediate the kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α), which plays a critical role in regulating gene expression. There are four known eIF2α kinases (EIF2AKs), and NO(•) affects each one uniquely. Whereas NO(•) directly activates EIF2AK1 (HRI), it indirectly activates EIF2AK3 (PERK). EIF2AK4 (GCN2) is activated by depletion of l-arginine, which is used by nitric oxide synthase (NOS) during the production of NO(•). Finally EIF2AK2 (PKR), which can mediate inducible NOS expression and therefore NO(•) production, can also be activated by NO(•). The production of NO(•) and activation of EIF2AKs coordinately regulate physiological and pathological events such as innate immune response and cell apoptosis. PMID:21463677

  19. 49 CFR 173.337 - Nitric oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... oxide in a DOT 3AL is cylinder is authorized only by highway and rail. (2) UN cylinder. In a UN cylinder... UN tubes and MEGCs is not authorized. (3) Valves. Cylinders must be equipped with a stainless steel... be equipped with pressure relief devices of any type. (b) Each UN cylinder must be cleaned...

  20. 49 CFR 173.337 - Nitric oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... oxide in a DOT 3AL is cylinder is authorized only by highway and rail. (2) UN cylinder. In a UN cylinder... UN tubes and MEGCs is not authorized. (3) Valves. Cylinders must be equipped with a stainless steel... be equipped with pressure relief devices of any type. (b) Each UN cylinder must be cleaned...

  1. 49 CFR 173.337 - Nitric oxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... oxide in a DOT 3AL is cylinder is authorized only by highway and rail. (2) UN cylinder. In a UN cylinder... UN tubes and MEGCs is not authorized. (3) Valves. Cylinders must be equipped with a stainless steel... be equipped with pressure relief devices of any type. (b) Each UN cylinder must be cleaned...

  2. 49 CFR 173.337 - Nitric oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... oxide in a DOT 3AL is cylinder is authorized only by highway and rail. (2) UN cylinder. In a UN cylinder... UN tubes and MEGCs is not authorized. (3) Valves. Cylinders must be equipped with a stainless steel... be equipped with pressure relief devices of any type. (b) Each UN cylinder must be cleaned...

  3. Application of a Nitric Oxide Sensor in Biomedicine

    PubMed Central

    Saldanha, Carlota; Lopes de Almeida, José Pedro; Silva-Herdade, Ana Santos

    2014-01-01

    In the present study, we describe the biochemical properties and effects of nitric oxide (NO) in intact and dysfunctional arterial and venous endothelium. Application of the NO electrochemical sensor in vivo and in vitro in erythrocytes of healthy subjects and patients with vascular disease are reviewed. The electrochemical NO sensor device applied to human umbilical venous endothelial cells (HUVECs) and the description of others NO types of sensors are also mentioned. PMID:25587407

  4. Tutorial Review: Electrochemical Nitric Oxide Sensors for Physiological Measurements

    PubMed Central

    Privett, Benjamin J.; Shin, Jae Ho; Schoenfisch, Mark H.

    2013-01-01

    Summary The important biological roles of nitric oxide (NO) have prompted the development of analytical techniques capable of sensitive and selective detection of NO. Electrochemical sensing, more than any other NO-detection method, embodies the parameters necessary for quantifying NO in challenging physiological environments such as blood and the brain. Herein, we provide a broad overview of the field of electrochemical NO sensors, including design, fabrication, and analytical performance characteristics. Both electrochemical sensors and biological applications are detailed. PMID:20502795

  5. A Dirofilaria immitis Polyprotein Up-Regulates Nitric Oxide Production

    PubMed Central

    Tezuka, Hiroyuki; Imai, Shinjiro; Tsukidate, Setsuko; Fujita, Koichiro

    2002-01-01

    We investigated the effect of recombinant Dirofilaria immitis polyprotein (rDiAg) on nitric oxide (NO) production by peritoneal macrophages. rDiAg induced NO production by macrophages from wild-type and lipopolysaccharide-hyporesponsive C3H/HeJ, but not CD40−/−, mice. These results suggest that CD40 is involved in rDiAg-driven NO production by murine macrophages. PMID:12183583

  6. Microwave torch as a plasmachemical generator of nitric oxides

    SciTech Connect

    Gritsinin, S. I.; Knyazev, V. Yu.; Kossyi, I. A.; Popov, N. A.

    2006-06-15

    The possibility of using a microwave coaxial plasmatron (a microwave torch) as an efficient plasmachemical generator of nitric oxides in an air jet has been studied experimentally. A plasmachemical model of the generator is developed. Results of calculations by this model do not contradict experimental results. A conclusion about the mechanisms governing NO{sub x} production in a plasma torch is drawn by comparing the experimental and calculated results.

  7. Nitric oxide in atherosclerosis: vascular protector or villain?

    PubMed

    Dusting, G J; Fennessy, P; Yin, Z L; Gurevich, V

    1998-11-01

    1. Nitric oxide (NO) has important roles in physiological vasodilatation, cytotoxicity and vascular disease. Nitric oxide and prostacyclin (PGI2), both released from the endothelium, act synergistically to inhibit platelet aggregation and adhesion. These autacoids also inhibit the adhesion and migration of leucocytes and, in some arteries, they synergize in terms of vasodilation. 2. The development of atherosclerosis and hyperlipaemia per se is accompanied by impairment of endothelium-dependent vasodilation. 3. Atherosclerosis is associated with marked changes in the activity of isoforms of NO synthase (NOS) in the artery wall, including increased expression of the NOS2 (inducible) isoform in complex human lesions as well as in the neointima of experimental animal models. 4. Failure of NO release from the endothelium with normal physiological stimuli, which has been attributed to a defect in the operation of the endothelial NOS (NOS3), provides conditions propitious for leucocyte adhesion, vasospasm, thrombosis and, in addition, may promote increased proliferation of intimal cells. 5. Nitric oxide and superoxide anions generated by inflammatory cells in atherosclerosis react to form cytodestructive peroxynitrite radicals, potentially causing injury to the endothelium and myocytes, and this may be a factor in apoptosis of cells leading to plaque rupture. 6. We have been able to reverse these NO defects with therapeutic agents, including angiotensin-converting enzyme inhibitors, antagonists of platelet-activating factor and NO donor compounds, all offering promise in protecting against some manifestations of vascular disease. PMID:9809190

  8. Sensor materials for an intravascular fiber optic nitric oxide sensor

    NASA Astrophysics Data System (ADS)

    Soller, Babs R.; Parikh, Bhairavi R.; Stahl, Russell F.

    1996-04-01

    Nitric oxide (NO) is an important regulatory molecule in physiological processes including neurotransmission and the control of blood pressure. It is produced in excess during septic shock, the profound hypotensive state which accompanies severe infections. In-vivo measurement of NO would enhance the understanding of its varied biological roles. Our goal is the development of an intravascular fiber-optic sensor for the continuous measurement of NO. This study evaluated nitric oxide sensitive compounds as potential sensing materials in the presence and absence of oxygen. Using absorption spectroscopy we studied both the Fe II and Fe III forms of three biologically active hemes known to rapidly react with NO: hemoglobin, myoglobin, and cytochrome-c. The Fe II forms of hemoglobin and myoglobin and the Fe III form of cytochrome-c were found to have the highest sensitivity to NO. Cytochrome c (Fe III) is selective for NO even at high oxygen levels, while myoglobin is selective only under normal oxygen levels. NO concentrations as low as 1 (mu) M can be detected with our fiber-optic spectrometer using cytochrome c, and as low as 300 nM using myoglobin. Either of these materials would be adequate to monitor the increase in nitric oxide production during the onset of septic shock.

  9. The Role of Nitric Oxide Synthase Uncoupling in Tumor Progression

    PubMed Central

    Rabender, Christopher S.; Alam, Asim; Sundaresan, Gobalakrishnan; Cardnell, Robert J.; Yakovlev, Vasily A.; Mukhopadhyay, Nitai D.; Graves, Paul; Zweit, Jamal; Mikkelsen, Ross B.

    2015-01-01

    Here evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast to normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on HPLC analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin: dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid and head and neck tumors compared to normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling including increased cGMP-dependent protein kinase (PKG) activity, decreased β-catenin expression and TCF4 promoter activity, and reduced NF-κB promoter activity. Sepiapterin inhibited breast tumor cell growth in vitro and in vivo as measured by clonogenic assay, Ki67 staining and 18F-deoxyglucose positron emission tomography (FDG-PET). In summary, using diverse tumor types, it is demonstrated that the BH4:BH2 ratio is lower in tumor tissues and as a consequence nitric oxide synthase activity generates more peroxynitrite and superoxide anion than nitric oxide resulting in important tumor growth promoting and anti-apoptotic signaling properties. Implications The synthetic BH4, Kuvan®, is used to elevate BH4:BH2 in some phenylketonuria patients and to treat diseases associated with endothelial dysfunction suggesting a novel, testable approach for correcting an abnormality of tumor metabolism to control tumor growth. PMID:25724429

  10. The response of thermospheric nitric oxide to an auroral storm

    SciTech Connect

    Siskind, D.E.

    1988-01-01

    The response of thermospheric nitric oxide (NO) to the auroral storm of September 19, 1984 is analyzed. Measurements of nitric oxide from the Solar Mesosphere Explorer (SME) ultraviolet spectrometer are compared with the calculations of a one-dimensional photochemical model of the lower thermosphere. The NCAR Thermospheric General Circulation Model (TGCM) is used to calculate the response of the background neutral atmosphere to auroral forcings such as Joule and particle heating. The output of the TGCM is used as input to the photochemical model. The time history of the auroral energy input is assessed using particle data from the NOAA 6 and 7 satellites. The SME NO measurements were made from 100 km to 140 km along two orbital tracks: one over the United States and one over Europe. The observations show a factor of 3 increase in NO at auroral latitudes for both orbits as a result of the storm. Nitric oxide at mid-latitudes also increased by a factor of 3 but only over the United States. Calculations of the mid-latitude NO response show that temperature increases which result from Joule heating lead to NO enhancements. A larger response is initially seen for altitudes greater than 120 km.