Sample records for akt inhibitor ly294002

  1. PI3K/Akt inhibitor LY294002 potentiates homoharringtonine antimyeloma activity in myeloma cells adhered to stromal cells and in SCID mouse xenograft.

    PubMed

    Chen, Ping; Wen, Xiaofang; Wang, Bin; Hou, Diyu; Zou, Hong; Yuan, Qin; Yang, Hui; Xie, Jieqiong; Huang, Huifang

    2018-05-01

    Homoharringtonine (HHT) is a known anti-leukemia drug that inhibits multiple myeloma (MM) cells both in vitro and in vivo. Our prior study demonstrated that the potency of HHT in MM cells was compromised significantly when myeloma cells were co-cultured with BM stromal cells. This study aimed to investigate whether PI3K/Akt inhibitor LY294002 could potentiate the antimyeloma activity of HHT against MM cells adhered to BM stromal cells and in vivo xenograft models. A co-culture system composed of MM cells and human stromal cells was employed to mimic MM cells in bone marrow niche. The inhibitory and pro-apoptotic effect of HHT and LY294002 was determined by CCK-8 assay or flow cytometry. Expression of PI3K/Akt signaling molecules and anti-apoptotic protein myeloid cell leukemia-1 (Mcl-1) was assessed by western blot analysis and/or reverse transcription real-time quantitative PCR (RT-qPCR). MM xenografts were used to evaluate antitumor effect of combined therapy with HHT and LY294002. Adhesion to BM stromal cells rendered MM cells resistant to HHT whereas silencing Mcl-1 partly reversed the resistance. LY294002 induced apoptosis in MM cells and potentiated the antimyeloma effects of HHT by inhibiting the PI3K/Akt signal pathway which was abnormally activated during adhesion. LY294002 also enhanced the antimyeloma effect of HHT in in vivo xenograft models. These findings suggest that activation of PI3K/Akt signal pathway was responsible for the resistance to HHT in MM cells adhered to stromal cells. LY294002 can potentiate the antimyeloma activity of HHT both in vitro and in vivo, which may represent a new clinical treatment in MM.

  2. Synergistic Lethality of Mifepristone and LY294002 in Ovarian Cancer Cells

    PubMed Central

    Wempe, Stacy L.; Gamarra-Luques, Carlos D.; Telleria, Carlos M.

    2013-01-01

    We have previously shown that the antiprogestin and antiglucocorticoid mifepristone inhibits the growth of ovarian cancer cells. In this work, we hypothesized that cellular stress caused by mifepristone is limited to cytostasis and that cell killing is avoided as a consequence of the persistent activity of the PI3K/Akt survival pathway. To investigate the role of this pathway in mifepristone-induced growth inhibition, human ovarian cancer cells of various histological subtypes and genetic backgrounds were exposed to cytostatic doses of mifepristone in the presence or absence of the PI3K inhibitor, LY294002. The activation of Akt in ovarian cancer cells, as marked by its phosphorylation on Ser473, was not modified by cytostatic concentrations of mifepristone, but it was blocked upon treatment with LY294002. The combination mifepristone/LY294002, but not the individual drugs, killed ovarian cancer cells via apoptosis, as attested by genomic DNA fragmentation and cleavage of caspase-3, and the concomitant downregulation of antiapoptotic proteins Bcl-2 and XIAP. From a pharmacological standpoint, when assessing cell growth inhibition using a median-dose analysis algorithm, the interaction between mifepristone and LY294002 was synergistic. The lethality caused by the combination mifepristone/LY294004 in 2-dimensional cell cultures was recapitulated in organized, 3-dimensional spheroids. This study demonstrates that mifepristone and LY294002 when used individually cause cell growth arrest; yet, when combined, they cause lethality. PMID:23420486

  3. The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation.

    PubMed

    Rudner, Justine; Ruiner, Carola-Ellen; Handrick, René; Eibl, Hans-Jörg; Belka, Claus; Jendrossek, Verena

    2010-11-16

    The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is frequently deregulated in prostate cancer and associated with neoplastic transformation, malignant progression, and enhanced resistance to classical chemotherapy and radiotherapy. Thus, it is a promising target for therapeutic intervention. In the present study, the cytotoxic action of the Akt inhibitor Erufosine (ErPC3) was analyzed in prostate cancer cells and compared to the cytotoxicity of the PI3K inhibitor LY294002. Moreover, the efficacy of combined treatment with Akt inhibitors and ionizing radiation in prostate cancer cells was examined. Prostate cancer cell lines PC3, DU145, and LNCaP were treated with ErPC3 (1-100 µM), LY294002 (25-100 µM), irradiated (0-10 Gy), or subjected to combined treatments. Cell viability was determined by the WST-1 assay. Apoptosis induction was analyzed by flow cytometry after staining with propidium iodide in a hypotonic citrate buffer, and by Western blotting using antibodies against caspase-3 and its substrate PARP. Akt activity and regulation of the expression of Bcl-2 family members and key downstream effectors involved in apoptosis regulation were examined by Western blot analysis. The Akt inhibitor ErPC3 exerted anti-neoplastic effects in prostate cancer cells, however with different potency. The anti-neoplastic action of ErPC3 was associated with reduced phosphoserine 473-Akt levels and induction of apoptosis. PC3 and LNCaP prostate cancer cells were also sensitive to treatment with the PI3K inhibitor LY294002. However, the ErPC3-sensitive PC3-cells were less susceptible to LY294002 than the ErPC3-refractory LNCaP cells. Although both cell lines were largely resistant to radiation-induced apoptosis, both cell lines showed higher levels of apoptotic cell death when ErPC3 was combined with radiotherapy. Our data suggest that constitutive Akt activation and survival are controlled by different different molecular mechanisms in the two prostate cancer cell lines

  4. 17β-estradiol activates mTOR in chondrocytes by AKT-dependent and AKT-independent signaling pathways

    PubMed Central

    Tao, Yulei; Sun, Haibiao; Sun, Hongyan; Qiu, Xianxing; Xu, Changbo; Shi, Changxiu; Du, Jiahui

    2015-01-01

    To confirm whether 17β-estradiol (E2) activates mammalian target of rapamycin (mTOR) signaling pathway in chondrocytes and in what way activates mTOR. Human immortalized chondrocytes cell lines TC28a2 and C28/I2 were subjected to incubate with or without E2, LY294002 (the inhibitor of PI3K), rapamycin (the inhibitor of mTOR), or E2 in combination with LY294002 or rapamycin. Thereafter, protein levels of S6K1, p-S6K1, protein kinase B (AKT), and p-AKT were determined by Western blot analysis. Matrix metallopeptidase (MMP) 3 or MMP13 mRNA levels were evaluated by quantitative real-time PCR (qRT-PCR). Co-immunoprecipitation and Western blot analysis were performed to verify the interaction between ERα and mTOR. Both p-S6K1 and p-AKT protein levels in TC28a2 and C28/I2E2 cells were significantly increased by incubation with E2 (0.5 h and 1 h) (P < 0.05). Rapamycin did not affect the levels of p-AKT, but were significantly reduced by LY294002 or E2 in combination with LY294002. The levels of p-S6K1 were significantly decreased by incubation with LY294002, but the effect could be reversed by E2 in combination with LY294002. Rabbit anti-mTOR antibody was able to immunoprecipitate ERα after incubation with E2. Moreover, E2 inhibited the mRNA levels of MMP3 and MMP13 by mTOR pathway. E2 actives mTOR in chondrocytes through AKT-dependent and independent ways. PMID:26884863

  5. The effect of PI3K inhibitor LY294002 and gemcitabine hydrochloride combined with ionizing radiation on the formation of vasculogenic mimicry of Panc-1 cells in vitro and in vivo.

    PubMed

    Bai, R; Ding, T; Zhao, J; Liu, S; Zhang, L; Lan, X; Yu, Y; Yin, L

    2016-01-01

    This research's purpose was to explore the existence of vasculogenic mimicry (VM) in both 3-D matrices of Panc-1 cells in vitro and orthotopic Panc-1 xenografts in vivo and to test the hypothesis that PI3K inhibitor LY294002 and gemcitabine hydrochloride would offer clear treatment benefit when integrated into ionizing radiation (IR) therapeutic regimens for treatment of pancreatic cancer. We explored the existence of VM in both 3-D matrices of Panc-1 cells and orthotopic Panc-1 xenografts. We subsequently investigated the activation of the PI3K/MMPs/Ln-5γ2 signaling pathway in response to IR. LY294002 and gemcitabine hydrochloride were then evaluated for their radiosensitizing effect solely and in combination. We found that VM existed in both 3-D matrices of Panc-1 cells in vitro and orthotopic Panc-1 xenografts in vivo. The expressions of p-Akt and MMP- 2 were found to increase in response to IR. LY294002 and gemcitabine hydrochloride combined with IR better inhibited cell migration, VM formation and MMP-2 mRNA expression of Panc-1 cells in vitro, and we also proved that the novel therapeutic regimen better inhibited tumor growth, tumor metastasis and VM formation of orthotopic Panc-1 xenografts by suppressing the PI3K/MMPs/Ln-5γ2 signaling pathway in vivo. Our present study is among the first to prove the VM formation in orthotopic Panc-1 xenografts. Furthermore, our current study is also among the first to provide preliminary evidence for the use of the novel therapeutic regimen LY294002 and gemcitabine hydrochloride combined with IR for treatment of pancreatic cancer.

  6. LY294002 enhances expression of proteins encoded by recombinant replication-defective adenoviruses via mTOR- and non-mTOR-dependent mechanisms.

    PubMed

    Shepelev, Mikhail V; Korobko, Elena V; Vinogradova, Tatiana V; Kopantsev, Eugene P; Korobko, Igor V

    2013-03-04

    Adenovirus-based drugs are efficient when combined with other anticancer treatments. Here we show that treatment with LY294002 and LY303511 upregulates expression of recombinant proteins encoded by replication-defective adenoviruses, including expression of therapeutically valuable combination of herpes simplex virus thymidine kinase controlled by human telomerase reverse transcriptase promoter (Ad-hTERT-HSVtk). In line with this, treatment with LY294002 synergized with Ad-hTERT-HSVtk infection in the presence of gancyclovir prodrug on Calu-I lung cancer cell death. The effect of LY294002 and LY303511 on adenovirus-delivered transgene expression was demonstrated in 4 human lung cancer cell lines. LY294002-induced upregulation of adenovirally delivered transgene is mediated in part by direct inhibition of mTOR protein kinase in mTORC2 signaling complex thus suggesting that anticancer drugs targeting mTOR will also enhance expression of transgenes delivered with adenoviral vectors. As both LY294002 and LY303511 are candidate prototypic anticancer drugs, and many mTOR inhibitors for cancer treatment are under development, our results have important implication for development of future therapeutic strategies with adenoviral gene delivery.

  7. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation.

    PubMed

    Diez, Héctor; Benitez, Ma José; Fernandez, Silvia; Torres-Aleman, Ignacio; Garrido, Juan José; Wandosell, Francisco

    2016-11-01

    PI3K proteins family have multiple and essential functions in most cellular events. This family is composed of class I, class II and class III PI3Ks, which upstream and downstream elements are not completely elucidated. Previous studies using the broad PI3K inhibitor, LY294002 allowed to propose that PI3 kinase>Akt pathway is a key element in the determination of axonal polarity in hippocampal neurons. Recently, new inhibitors with a higher selectivity for class I PI3K have been characterized. In the present study we have examined this widely accepted theory using a new class I PI3K inhibitor (GDC-0941), as well as Akt inhibitors, and PTEN phosphatase constructs to reduce PIP3 levels. Our present data show that both, class I PI3K inhibitor and Akt inhibitor did not alter axon specification in hippocampal neurons, but greatly reduced axon length. However, in the same experiments LY294002 effectively impeded axonal polarization, as previously reported. Our biochemical data show that both, class I PI3K and Akt inhibitors, effectively block downstream elements from Akt to S6K1 activity. Both inhibitors are stable in culture medium along the time period analysed, maintaining the inhibition better than LY294002. Besides, we found evidence that LY294002 directly inhibits mTORC1. However, further analysis using an mTORC1 inhibitor showed no change in neuron polarity. Same result was obtained using a general class III PI3K inhibitor. Interestingly, we found that either, wild-type PTEN, or a phosphatase-dead form of PTEN, disrupted axonal polarization, strongly suggesting that the role of PTEN in axonal polarity can be independent of PIP3. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression.more » LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.« less

  9. H2O2 treatment or serum deprivation induces autophagy and apoptosis in naked mole-rat skin fibroblasts by inhibiting the PI3K/Akt signaling pathway.

    PubMed

    Zhao, Shanmin; Li, Li; Wang, Shiyong; Yu, Chenlin; Xiao, Bang; Lin, Lifang; Cong, Wei; Cheng, Jishuai; Yang, Wenjing; Sun, Wei; Cui, Shufang

    2016-12-20

    Naked mole-rats (NMR; Heterocephalus glaber) display extreme longevity and resistance to cancer. Here, we examined whether autophagy contributes to the longevity of NMRs by assessing the effects of the PI3K/Akt pathway inhibitor LY294002 and the autophagy inhibitor chloroquine (CQ) on autophagy and apoptosis in NMR skin fibroblasts. Serum starvation, H2O2 treatment, and LY294002 treatment all increased the LC3-II/LC3-I ratio and numbers of double-membraned autophagosomes and autophagic vacuoles, and decreased levels of p70S6K, p-AktSer473, and p-AktThr308. By contrast, CQ treatment decreased p70S6K, AktSer473, and AktThr308 levels. The Bax/Bcl-2 ratio increased after 12 h of exposure to LY294002 or CQ. These data show that inhibiting the Akt pathway promotes autophagy and apoptosis in NMR skin fibroblasts. Furthermore, LY294002 or CQ treatment decreased caspase-3, p53, and HIF1-α levels, suggesting that serum starvation or H2O2 treatment increase autophagy and apoptosis in NMR skin fibroblasts by inhibiting the PI3K/Akt pathway. CQ-induced inhibition of late autophagy stages also prevented Akt activation and induced apoptosis. Finally, the HIF-1α and p53 pathways were involved in serum starvation- or H2O2-induced autophagy in NMR skin fibroblasts.

  10. Activation of Telomerase by Ionizing Radiation: Differential Response to the Inhibition of DNA Double-Strand Break Repair by Abrogation of Poly(ADP-ribosyl)ation, by LY294002, or by Wortmannin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhof, Dirk; Zwicker, Felix; Kuepper, Jan-Heiner

    2007-11-01

    Purpose: Telomerase activity represents a radiation-inducible function, which may be targeted by a double-strand break (DSB)-activated signal transduction pathway. Therefore, the effects of DNA-PK inhibitors (Wortmannin and LY294002) on telomerase upregulation after irradiation were studied. In addition, the role of trans-dominant inhibition of poly(ADP-ribosyl)ation, which strongly reduces DSB rejoining, was assessed in comparison with 3-aminobenzamide. Methods and Materials: COM3 rodent cells carry a construct for the dexamethasone-inducible overexpression of the DNA-binding domain of PARP1 and exhibit greatly impaired DSB rejoining after irradiation. Telomerase activity was measured using polymerase chain reaction ELISA 1 h after irradiation with doses up to 10more » Gy. Phosphorylation status of PKB/Akt and of PKC{alpha}/{beta}{sub II} was assessed by western blotting. Results: No telomerase upregulation was detectable for irradiated cells with undisturbed DSB rejoining. In contrast, incubation with LY294002 or dexamethasone yielded pronounced radiation induction of telomerase activity that could be suppressed by Wortmannin. 3-Aminobenzamide not only was unable to induce telomerase activity but also suppressed telomerase upregulation upon incubation with LY294002 or dexamethasone. Phospho-PKB was detectable independent of irradiation or dexamethasone pretreatment, but was undetectable upon incubations with LY294002 or Wortmannin, whereas phospho-PKC rested detectable. Conclusions: Telomerase activation postirradiation was triggered by different treatments that interfere with DNA DSB processing. This telomerase upregulation, however, was not reflected by the phosporylation status of the putative mediators of TERT activation, PKB and PKC. Although an involvement of PKB in TERT activation is not supported by the present findings, a respective role of PKC isoforms other than {alpha}/{beta}{sub II} cannot be ruled out.« less

  11. Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Yazdankhah, Meysam; Ai, Jafar; Khakbiz, Mehrdad; Faghihi, Faezeh; Tajerian, Roksana; Bayat, Neda

    2017-05-01

    Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.

  12. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway.

    PubMed

    Nan, Yang; Guo, Liyun; Song, Yunpeng; Wang, Le; Yu, Kai; Huang, Qiang; Zhong, Yue

    2017-08-01

    Glioblastoma is a highly invasive and challenging tumor of the central nervous system. The mutation/deletion of the tumor suppressor phosphatase and tensin homolog (PTEN) gene is the main genetic change identified in glioblastomas. PTEN plays a critical role in tumorigenesis and has been shown to be an important therapeutic target. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 is commonly used to inhibit glioma cell growth via regulation of the PI3K/AKT signaling pathway. In this study, we examined the growth inhibitory effects of a combinatorial therapy of adenoviral-mediated PTEN (Ad-PTEN) and LY294002 on LN229 and U251 glioma cells in vitro and on tumor xenografts in vivo. In vitro, LN229 and U251 glioma cells were treated by combinatorial therapy with Ad-PTEN and LY294002. The growth ability was determined by MTT assay. The cell cycle distribution was analyzed by flow cytometry. Cell invasive ability was analyzed by transwell invasion assay and cell apoptosis analysis via FITC-Annexin V analysis. In vivo, U251 subcutaneous glioblastoma xenograft was used to assay anti-tumor effect of combinatorial therapy with Ad-PTEN and LY294002 by mean volume of tumors, immunohistochemistry and TUNEL method. The combinatorial treatment clearly suppressed cell proliferation, arrested the cell cycle, reduced cell invasion and promoted cell apoptosis compared with the Ad-PTEN or LY294002 treatment alone. The treatment worked by inhibiting the PI3K/AKT pathway. In addition, the growth of U251 glioma xenografts treated with the combination of Ad-PTEN and LY294002 was significantly inhibited compared with those treated with Ad-PTEN or LY294002 alone. Our data indicated that the combination of Ad-PTEN and LY294002 effectively suppressed the malignant growth of human glioma cells in vitro and in tumor xenografts, suggesting a promising new approach for glioma gene therapy that warrants further investigation.

  13. Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation.

    PubMed

    Sadidi, Mahdieh; Lentz, Stephen I; Feldman, Eva L

    2009-05-01

    Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) are involved in many cellular processes that positively and negatively regulate cell fate. H(2)O(2), acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H(2)O(2) was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H(2)O(2)-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.

  14. A Novel Oncolytic Herpes Simplex Virus that Synergizes with Phosphatidylinositol 3-Kinase/Akt Pathway Inhibitors to Target Glioblastoma Stem Cells

    PubMed Central

    Kanai, Ryuichi; Wakimoto, Hiroaki; Martuza, Robert L.; Rabkin, Samuel D.

    2011-01-01

    Purpose To develop a new oncolytic herpes simplex virus (oHSV) for glioblastoma therapy that will be effective in glioblastoma stem cells (GSCs), an important and untargeted component of glioblastoma. One approach to enhance oHSV efficacy is by combination with other therapeutic modalities. Experimental design MG18L, containing a US3 deletion and an inactivating LacZ insertion in UL39, was constructed for the treatment of brain tumors. Safety was evaluated after intracerebral injection in HSV-susceptible mice. The efficacy of MG18L in human GSCs and glioma cell lines in vitro was compared to other oHSVs, alone or in combination with PI3K/Akt inhibitors (LY294002, triciribine, GDC-0941, BEZ235). Cytotoxic interactions between MG18L and PI3K/Akt inhibitors were determined using Chou-Talalay analysis. In vivo efficacy studies were performed using a clinically relevant mouse model of GSC-derived glioblastoma. Results MG18L was severely neuroattenuated in mice, replicated well in GSCs, and had anti-glioblastoma activity in vivo. PI3K/Akt inhibitors displayed significant but variable anti-proliferative activities in GSCs, while their combination with MG18L synergized in killing GSCs and glioma lines, but not human astrocytes, through enhanced induction of apoptosis. Importantly, synergy was independent of inhibitor sensitivity. In vivo, the combination of MG18L and LY294002 significantly prolonged survival of mice, as compared to either agent alone, achieving 50% long-term survival in glioblastoma-bearing mice. Conclusions This study establishes a novel therapeutic strategy: oHSV manipulation of critical oncogenic pathways to sensitize cancer cells to molecularly-targeted drugs. MG18L is a promising agent for the treatment of glioblastoma, being especially effective when combined with PI3K/Akt pathway-targeted agents. PMID:21505062

  15. Urinary bladder organ hypertrophy is partially regulated by Akt1-mediated protein synthesis pathway.

    PubMed

    Qiao, Li-Ya; Xia, Chunmei; Shen, Shanwei; Lee, Seong Ho; Ratz, Paul H; Fraser, Matthew O; Miner, Amy; Speich, John E; Lysiak, Jeffrey J; Steers, William D

    2018-05-15

    The present study aims to investigate the role of Akt in the regulation of urinary bladder organ hypertrophy caused by partial bladder outlet obstruction (pBOO). Male rats were surgically induced for pBOO. Real-time PCR and western blot were used to examine the levels of mRNA and protein. A phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was used to inhibit the activity of endogenous Akt. The urinary bladder developed hypertrophy at 2 weeks of pBOO. The protein but not mRNA levels of type I collagen and α-smooth muscle actin (αSMA) were increased in pBOO bladder when compared to sham control. The phosphorylation (activation) levels of Akt1 (p-Ser 473 ), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E-BP1 were also increased in pBOO bladder. LY294002 treatment reduced the phosphorylation levels of Akt1 and 4E-BP1, and the protein levels of type I collagen and αSMA in pBOO bladder. The mRNA and protein levels of proliferating cell nuclear antigen (PCNA) were increased in pBOO bladder, and PCNA up-regulation occurred in urothelial not muscular layer. LY294002 treatment had no effect on the mRNA and protein levels of PCNA in pBOO bladder. LY294002 treatment partially reduced the bladder weight caused by pBOO. pBOO-induced urinary bladder hypertrophy is attributable to fibrosis, smooth muscle cellular hypertrophy, and urothelium cell hyper-proliferation. Akt1-mediated protein synthesis in pBOO bladder contributes to type I collagen and αSMA but not PCNA up-regulation. Target of Akt1 is necessary but not sufficient in treatment of urinary bladder hypertrophy following pBOO. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Combination of PI3K/Akt/mTOR inhibitors and PDT in endothelial and tumor cells

    NASA Astrophysics Data System (ADS)

    Fateye, Babasola; Chen, Bin

    2011-02-01

    The PI3/Akt/mTOR kinase signaling pathway is a major signaling pathway in eukaryotic cells, and dysregulation of this signaling pathway has been implicated in tumorigenesis and malignancy in several cancers including prostate cancer. We assessed the effects of combination PI3K pathway inhibition on the efficacy of PDT in human prostate tumor cell line (PC3) and SV40-transformed mouse endothelial cell line (SVEC-40). Combination of PDT and BEZ 235 (BEZ), a pan-PI3/ mTOR kinase inhibitor additively enhanced efficacy of sub-lethal PDT in both cell lines. The combination of the pan-PI3/ mTOR kinase inhibitor LY294002 (LY) with PDT also enhanced efficacy of PDT in PC3 in an additive manner but synergistically in SVEC. In order to determine the mechanism of enhancement of efficacy, we assessed apoptosis and autophagy following PDT. PDT-mediated apoptosis was enhanced in endothelial cells, by both BEZ and LY rapidly after treatment. Compared to SVEC, PC3 cells are apoptosis-deficient and apoptosis was not significantly enhanced by either LY or BEZ. However, lethal PDT of PC3 cells induced a delayed autophagic response which may be enhanced by combination, depending on PI3K inhibitor and dose.

  17. Atorvastatin enhances neurite outgrowth in cortical neurons in vitro via up-regulating the Akt/mTOR and Akt/GSK-3β signaling pathways

    PubMed Central

    Jin, Ying; Sui, Hai-juan; Dong, Yan; Ding, Qi; Qu, Wen-hui; Yu, Sheng-xue; Jin, Ying-xin

    2012-01-01

    Aim: To investigate whether atorvastatin can promote formation of neurites in cultured cortical neurons and the signaling mechanisms responsible for this effect. Methods: Cultured rat cerebral cortical neurons were incubated with atorvastatin (0.05–10 μmol/L) for various lengths of time. For pharmacological experiments, inhibitors were added 30 min prior to addition of atorvastatin. Control cultures received a similar amount of DMSO. Following the treatment period, phase-contrast digital images were taken. Digital images of neurons were analyzed for total neurite branch length (TNBL), neurite number, terminal branch number, and soma area by SPOT Advanced Imaging software. After incubation with atorvastatin for 48 h, the levels of phosphorylated 3-phosphoinoside-dependent protein kinase-1 (PDK1), phospho-Akt, phosphorylated mammalian target of rapamycin (mTOR), phosphorylated 4E-binding protein 1 (4E-BP1), p70S6 kinase (p70S6K), and glycogen synthase kinase-3β (GSK-3β) in the cortical neurons were evaluated using Western blotting analyses. Results: Atorvastatin (0.05–10 μmol/L) resulted in dose-dependent increase in neurite number and length in these neurons. Pretreatment of the cortical neurons with phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 (30 μmol/L) and wortmannin (5 μmol/L), Akt inhibitor tricribine (1 μmol/L) or mTOR inhibitor rapamycin (100 nmol/L) blocked the atorvastatin-induced increase in neurite outgrowth, suggesting that atorvastatin promoted neurite outgrowth via activating the PI3K/Akt/mTOR signaling pathway. Atorvastatin (10 μmol/L) significantly increased the levels of phosphorylated PDK1, Akt and mTOR in the cortical neurons, which were prevented by LY294002 (30 μmol/L). Moreover, atorvastatin (10 μmol/L) stimulated the phosphorylation of 4E-BP1 and p70S6K, the substrates of mTOR, in the cortical neurons. In addition, atorvastatin (10 μmol/L) significantly increased the phosphorylated GSK-3β level in the cortical

  18. Regulation of Akt and Wnt signaling by the group II metabotropic glutamate receptor antagonist LY341495 and agonist LY379268.

    PubMed

    Sutton, Laurie P; Rushlow, Walter J

    2011-06-01

    Metabotropic glutamate receptors 2/3 (mGlu(2/3)) have been implicated in schizophrenia and as a novel treatment target for schizophrenia. The current study examined whether mGlu(2/3) regulates Akt (protein kinase B) and Wnt (Wingless/Int-1) signaling, two cascades associated with schizophrenia and modified by antipsychotics. Western blotting revealed increases in phosphorylated Akt (pAkt) and phosphorylated glycogen synthase kinase-3 (pGSK-3) following acute and repeated treatment of LY379268 (mGlu(2/3) agonist), whereas increases in dishevelled-2 (Dvl-2), dishevelled-3 (Dvl-3), GSK-3 and β-catenin were only observed following repeated treatment. LY341495 (mGlu(2/3) antagonist) induced the opposite response compared with LY379268. Co-immunoprecipitation experiments showed an association between the mGlu(2/3) complex and Dvl-2 providing a possible mechanism to explain how the mGlu(2/3) can mediate changes in Wnt signaling. However, there was no association between the mGlu(2/3) complex and Akt suggesting that changes in Akt signaling following LY341495 and LY379268 treatments may not be directly mediated by the mGlu(2/3) . Finally, an increase in locomotor activity induced by LY341495 treatment correlated with increased pAkt and pGSK-3 levels and was attenuated by the administration of the GSK-3 inhibitor, SB216763. Overall, the results suggest that mGlu(2/3) regulates Akt and Wnt signaling and LY379268 treatment has overlapping effects with D(2) dopamine receptor antagonists (antipsychotic drugs). © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  19. Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin.

    PubMed

    Tureckova, J; Wilson, E M; Cappalonga, J L; Rotwein, P

    2001-10-19

    The differentiation and maturation of skeletal muscle require interactions between signaling pathways activated by hormones and growth factors and an intrinsic regulatory network controlled by myogenic transcription factors. Insulin-like growth factors (IGFs) play key roles in muscle development in the embryo and in regeneration in the adult. To study mechanisms of IGF action in muscle, we developed a myogenic cell line that overexpresses IGF-binding protein-5. C2BP5 cells remain quiescent in low serum differentiation medium until the addition of IGF-I. Here we use this cell line to identify signaling pathways controlling IGF-mediated differentiation. Induction of myogenin by IGF-I and myotube formation were prevented by the phosphatidylinositol (PI) 3-kinase inhibitor, LY294002, even when included 2 days after growth factor addition, whereas expression of active PI 3-kinase could promote differentiation in the absence of IGF-I. Differentiation also was induced by myogenin but was blocked by LY294002. The differentiation-promoting effects of IGF-I were mimicked by a modified membrane-targeted inducible Akt-1 (iAkt), and iAkt was able to stimulate differentiation of C2 myoblasts and primary mouse myoblasts incubated with otherwise inhibitory concentrations of LY294002. These results show that an IGF-regulated PI 3-kinase-Akt pathway controls muscle differentiation by mechanisms acting both upstream and downstream of myogenin.

  20. Phosphoinositide 3-kinase/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress.

    PubMed

    Lim, Jeong A; Woo, Joo Hong; Kim, Hye Sun

    2008-09-01

    In this study, it was found that undifferentiated myoblasts were more vulnerable to menadione-induced oxidative stress than differentiated myotubes. Cell death occurred with a relatively low concentration of menadione in myoblasts compared to myotubes. With the same concentration of menadione, the Bcl-2/Bax ratio decreased and nuclei containing condensed chromatin were observed in myoblasts to a greater extent than in myotubes. However, myotubes became increasingly susceptible to menadione when phosphoinositide 3-kinase (PI3-K) was blocked by pre-incubation with LY294002, a PI3-K inhibitor. Actually, PI3-K activity was reduced by menadione in myoblasts but not in myotubes. In addition, the phosphorylation of Akt, a downstream effector of PI3-K, was inhibited in myoblasts by menadione but increased in myotubes. Both LY294002 and API-2, an Akt inhibitor, decreased the Bcl-2/Bax ratio in menadione-exposed myotubes. These results suggest that the differential activity of PI3-K/Akt signalling is responsible for the differential susceptibility of myoblasts and myotubes to menadione-induced oxidative stress.

  1. PI3-K/Akt/JNK/NF-κB is essential for MMP-9 expression and outgrowth in human limbal epithelial cells on intact amniotic membrane.

    PubMed

    Cheng, Ching-Yi; Hsieh, Hsi-Lung; Hsiao, Li-Der; Yang, Chuen-Mao

    2012-07-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in the outgrowth of expanded human limbal epithelial cells on intact amniotic membranes (AM). The mechanisms of MMP-9 expression and cell outgrowth remain unknown. Here, we demonstrated that MMP-9 is preferentially expressed at the leading edge of limbal epithelial outgrowth. Treatment with the inhibitors of PI3-K (LY294002), Akt (SH-5), MEK1/2 (U0126), and JNK1/2 (SP600125) attenuated the outgrowth area, indicating that PI3-K/Akt, p42/p44 MAPK, and JNK1/2 are involved in the outgrowth of intact AM-expanded limbal epithelial cells. However, MMP-9 expression at both transcriptional and translational levels was attenuated by treatment with SP600125, LY294002, or SH-5, not by U0126 and SB202190, suggesting that JNK1/2 and PI3-K/Akt participate in MMP-9 expression. Moreover, NF-κB phosphorylation and nuclear translocation was especially noted at the leading edge, which was attenuated by treatment with SP600125 or LY294002. Helenalin, a selective NF-κB inhibitor, reduced both the limbal epithelial outgrowth and MMP-9 expression. Finally, the data reveal that PI3-K/Akt is an upstream component of the JNK1/2 pathway in MMP-9 expression. Thus, both MAPKs and PI3-K/Akt are required for limbal epithelial outgrowth on intact AM, only the PI3-K/Akt/JNK is essential for MMP-9 expression mediated through activation of transcriptional factor NF-κB in this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Roles of methyltrienolone (R1881) in AKTs and AR expression patterns of cultured granulosa-lutein cells.

    PubMed

    Nekoonam, Saeid; Naji, Mohammad; Mortezaee, Keywan; Amidi, Fardin

    2018-05-11

    AR-mediated androgen signaling plays a key role in female reproductive system. Granulosa-lutein cells (GCs) are the main sites for expression of androgen receptor (AR). There is also a close relation between AKT signaling and AR. Here, we assayed the role for a synthetic AR ligand methyltrienolone (R1881) in expressions of AKTs and AR. Controlled ovarian hyperstimulation (COH) was performed in 20 normal women. Mural GCs were isolated by filtration method, cultured, and passaged. Then, the cells were starved for 48 h with 10% charcoal stripped FBS. The cells were then treated with R1881, bicalutamide (AR blocker), LY294002 (PI3K/AKT pathway blocker), and combination of them for 48 h. Finally, GCs were evaluated for quantitative real-time PCR analysis of AKT1, AKT2, AKT3, and AR, and also Western blot assessment of total AKT and phosphorylated AKT (p-AKT) [Ser473 and Thr308]. Addition of R1881 to the GCs culture showed high expressions of AKT1, AKT2, and AKT3 (P ≤ 0.05 vs LY294002 group and bicalutamide group). Expressions of AKT1 and AKT2 were decreased in the GCs under exposure to bicalutamide or LY294002 (P ≤ 0.05 vs R1881). AKT1, AKT2, and AKT3 showed decreased rates of expressions in the LY294002 + bicalutamide group (P ≤ 0.05 vs R1881). AR, total AKT and p-AKT showed no significant differences between groups. Our findings indicate that 46 h exposure with R1881 could affect AKTs expressions in the GCs of pre-ovulatory phase, but it cannot promote AR expression and AKTs activation. © 2018 Wiley Periodicals, Inc.

  3. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.

    PubMed

    Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan

    2018-04-06

    Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549 cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549 cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549 cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549 cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549 cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Activation of the PI3K-Akt pathway promotes neuroprotection of the δ-opioid receptor agonist against cerebral ischemia-reperfusion injury in rat models.

    PubMed

    Lv, Mei-Rong; Li, Bin; Wang, Ming-Guang; Meng, Fan-Guo; Yu, Jian-Jun; Guo, Feng; Li, Ye

    2017-09-01

    The central objective was to identify the role of the PI3K-Akt activation pathway on the neuroprotection of δ-opioid receptor agonist (DADLE) against cerebral ischemia-reperfusion (I/R) injury in a rat model. Fifty-five male Sprague-Dawley (SD) rats were included to establish a middle cerebral artery occlusion (MCAO) model which were then divided into the sham, MCAO, LY294002 (MCAO+DADLE+LY294002 [inhibitor of PI3K-Akt pathway]), DADLE (MCAO+DADLE) and DMSO (MCAO+DADLE+DMSO [dimethyl sulphoxide]) groups. The cerebral infarction (CI) volume and nerve cell apoptosis was determined using TTC and TUNEL staining. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry staining were applied for the expressions of Bad, Bax, Bcl-2 and cleaved caspase-3. The MCAO group showed higher CI volume, nerve cell apoptosis and cleaved caspase-3 expressions than the DADLE and DMSO groups, which were also higher in the LY294002 group than the DADLE group. Compared with the MCAO group, the mRNA and protein expressions of PI3K and Bcl-2, and the protein expressions of p-Akt and p-Bad were elevated, while the mRNA and protein expressions of Bax were decreased in the DADLE and DMSO groups. Decreased mRNA and protein expressions of PI3K and Bcl-2, reduced protein expressions of p-Akt and p-Bad and elevated mRNA and protein expressions of Bax exhibited in the LY294002 group than the DADLE group. These results indicate that activation of PI3K-Akt pathway promotes the neuroprotection of DADLE against cerebral I/R injury in a rat model by decreasing nerve cells apoptosis. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Over-activation of AKT signaling leading to 5-Fluorouracil resistance in SNU-C5/5-FU cells

    PubMed Central

    Kim, Eun-Ji; Kang, Gyeoung-Jin; Kang, Jung-Il; Boo, Hye-Jin; Hyun, Jin Won; Koh, Young Sang; Chang, Weon-Young; Kim, Young Ree; Kwon, Jung-Mi; Maeng, Young Hee; Yoo, Eun-Sook; Lee, Chang Hoon; Kang, Hee-Kyoung

    2018-01-01

    Here, we investigated whether over-activation of AKT pathway is important in the resistance to 5-fluorouracil (5-FU) in SNU-C5/5-FU cells, 5-FU-resistant human colon cancer cells. When compared to wild type SNU-C5 cells (WT), SNU-C5/5-FU cells showed over-activation of PI3K/AKT pathway, like increased phosphorylation of AKT, mTOR, and GSK-3β, nuclear localization of β-catenin, and decreased E-cadherin. Moreover, E-cadherin level was down-regulated in recurrent colon cancer tissues compared to primary colon cancer tissues. Gene silencing of AKT1 or treatment of LY294002 (PI3 kinase inhibitor) increased E-cadherin, whereas decreased phospho-GSK-3β. LY294002 also reduced protein level of β-catenin with no influence on mRNA level. PTEN level was higher in SNU-C5/WT than SNU-C5/5-FU cells, whereas the loss of PETN in SNU-C5/WT cells induced characteristics of SNU-C5/5-FU cells. In SNU-C5/5-FU cells, NF-κB signaling was activated, along with the overexpression of COX-2 and stabilization of survivin. However, increased COX-2 contributed to the stabilization of survivin, which directly interacts with cytoplasmic procaspase-3, while the inhibition of AKT reduced this cascade. We finally confirmed that combination treatment with 5-FU and LY294002 or Vioxx could induce apoptosis in SNU-C5/5-FU cells. These data suggest that inhibition of AKT activation may overcome 5-FU-resistance in SNU-C5/5-FU cells. These findings provide evidence that over-activation of AKT is crucial for the acquisition of resistance to anticancer drugs and AKT pathway could be a therapeutic target for cancer treatment. PMID:29731993

  6. Cervical spinal erythropoietin induces phrenic motor facilitation via ERK and Akt signaling

    PubMed Central

    Dale, Erica A.; Satriotomo, Irawan; Mitchell, Gordon S.

    2012-01-01

    Erythropoietin (EPO) is typically known for its role in erythropoiesis, but is also a potent neurotrophic/neuroprotective factor for spinal motor neurons. Another trophic factor regulated by Hypoxia-Inducible Factor-1, vascular endothelial growth factor (VEGF), signals via ERK and Akt activation to elicit long-lasting phrenic motor facilitation (pMF). Since EPO also signals via ERK and Akt activation, we tested the hypothesis that EPO elicits similar pMF. Using retrograde labeling and immunohistochemical techniques, we demonstrate in adult, male, Sprague-Dawley rats that EPO and its receptor, EPO-R, are expressed in identified phrenic motor neurons. Intrathecal EPO at C4 elicits long-lasting pMF; integrated phrenic nerve burst amplitude increased >90 min post-injection (63±12% baseline 90 min post-injection; p<0.001). EPO increased phosphorylation (and presumed activation) of ERK (1.6 fold vs controls; p<0.05) in phrenic motor neurons; EPO also increased pAkt (1.6 fold vs controls; p<0.05). EPO-induced pMF was abolished by the MEK/ERK inhibitor U0126 and the PI3 kinase/Akt inhibitor LY294002, demonstrating that ERK MAP kinases and Akt are both required for EPO-induced pMF. Pre-treatment with U0126 and LY294002 decreased both pERK and pAkt in phrenic motor neurons (p<0.05), indicating a complex interaction between these kinases. We conclude that EPO elicits spinal plasticity in respiratory motor control. Since EPO expression is hypoxia-sensitive, it may play a role in respiratory plasticity in conditions of prolonged or recurrent low oxygen. PMID:22539857

  7. Down-regulation of Akt by methanol extracts of Impatiens balsamina L. promotes apoptosis in human oral squamous cell carcinoma cell lines.

    PubMed

    Shin, Ji-Ae; Ryu, Mi Heon; Kwon, Ki-Han; Choi, BuYoung; Cho, Sung-Dae

    2015-07-01

    The apoptotic activity of methanol extracts of Impatiens balsamina L. (MEIB) and related mechanisms in human oral squamous cell carcinoma (OSCC) cells have been systematically investigated. The effects of MEIB on human OSCC cell lines were investigated using trypan blue exclusion assay, MTS assay, Western blot, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead assay, Immunohistochemistry, reverse transcription-polymerase chain reaction, and promoter assay. MEIB decreased cell viability and induced apoptosis in HSC-4 cells. Higher levels of p-Akt expression were observed in OSCC than in normal oral mucosa (NOM), and it correlated with poor survival of the patients. MEIB dephosphorylated p-Akt and decreased Akt expression through proteasome-dependent degradation. LY294002 (PI3K inhibitor) decreased p-Akt and Akt, resulting in enhancing MEIB-induced apoptosis. MEIB down-regulated the expression level of survivin protein at the transcriptional level and YM155 (survivin inhibitor) decreased survivin, which facilitated MEIB-induced apoptosis. MEIB and LY294002 significantly increased Bax, thereby inducing the conformational change, mitochondrial translocation, and oligomerization. In addition, MEIB-induced growth inhibition and apoptosis in OSC-20, another human OSCC cells were mediated by regulating Akt and it downstream targets, survivin and Bax. These results suggest that MEIB may serve as a potential drug candidate for the treatment of human OSCC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylationmore » of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.« less

  9. Insulin induces drug resistance in melanoma through activation of the PI3K/Akt pathway

    PubMed Central

    Chi, Mengna; Ye, Yan; Zhang, Xu Dong; Chen, Jiezhong

    2014-01-01

    Introduction There is currently no curative treatment for melanoma once the disease spreads beyond the original site. Although activation of the PI3K/Akt pathway resulting from genetic mutations and epigenetic deregulation of its major regulators is known to cause resistance of melanoma to therapeutic agents, including the conventional chemotherapeutic drug dacarbazine and the Food and Drug Administration-approved mutant BRAF inhibitors vemurafenib and dabrafenib, the role of extracellular stimuli of the pathway, such as insulin, in drug resistance of melanoma remains less understood. Objective To investigate the effect of insulin on the response of melanoma cells to dacarbazine, and in particular, the effect of insulin on the response of melanoma cells carrying the BRAFV600E mutation to mutant BRAF inhibitors. An additional aim was to define the role of the PI3K/Akt pathway in the insulin-triggered drug resistance. Methods The effect of insulin on cytotoxicity induced by dacarbazine or the mutant BRAF inhibitor PLX4720 was tested by pre-incubation of melanoma cells with insulin. Cytotoxicity was determined by the MTS assay. The role of the PI3K/Akt pathway in the insulin-triggered drug resistance was examined using the PI3K inhibitor LY294002 and the PI3K and mammalian target of rapamycin dual inhibitor BEZ-235. Activation of the PI3K/Akt pathway was monitored by Western blot analysis of phosphorylated levels of Akt. Results Recombinant insulin attenuated dacarbazine-induced cytotoxicity in both wild-type BRAF and BRAFV600E melanoma cells, whereas it also reduced killing of BRAFV600E melanoma cells by PLX4720. Nevertheless, the protective effect of insulin was abolished by the PI3K and mTOR dual inhibitor BEZ-235 or the PI3K inhibitor LY294002. Conclusion Insulin attenuates the therapeutic efficacy of dacarbazine and PLX4720 in melanoma cells, which is mediated by activation of the PI3K/Akt pathway and can be overcome by PI3K inhibitors. PMID:24600206

  10. 5-AIQ inhibits H{sub 2}O{sub 2}-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun

    2013-04-01

    Poly(adenosine 5′-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H{sub 2}O{sub 2}-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxidemore » dismutase and catalase accompanied the protective effect of 5-AIQ on H{sub 2}O{sub 2}-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H{sub 2}O{sub 2}-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H{sub 2}O{sub 2}-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. - Highlights: ► 5-AIQ, a PARP inhibitor, decreased H{sub 2}O{sub 2}-induced H9c2 cell death and apoptosis. ► 5-AIQ upregulated antioxidant Mn-SOD and catalase, while decreasing ROS production. ► 5-AIQ decreased H{sub 2}O{sub 2}-induced increase in cleaved caspase-3 and Bax and decrease in Bcl2. ► 5-AIQ activated Akt and

  11. Critical role of PI3-kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemia-reperfusion.

    PubMed

    Kovacs, Krisztina; Toth, Ambrus; Deres, Peter; Kalai, Tamas; Hideg, Kalman; Gallyas, Ferenc; Sumegi, Balazs

    2006-02-14

    Poly(ADP-ribose) polymerase (PARP) inhibitors protect hearts from ischemia-reperfusion (IR)-induced damages by limiting nicotinamide adenine dinucleotide (NAD+) and ATP depletion, and by other, not yet elucidated mechanisms. Our preliminary data suggested that PARP catalyzed ADP-ribosylations may affect signaling pathways in cardiomyocytes. To clarify this possibility, we studied the effect of a well-characterized (4-hydroxyquinazoline) and a novel (carboxaminobenzimidazol-derivative) PARP inhibitor on the activation of phosphatidylinositol-3-kinase (PI3-kinase)/Akt pathway in Langendorff-perfused hearts. PARP inhibitors promoted the restoration of myocardial energy metabolism (assessed by 31P nuclear magnetic resonance spectroscopy) and cardiac function compared to untreated hearts. PARP inhibitors also attenuated the infarct size and reduced the IR-induced lipid peroxidation, protein oxidation and total peroxide concentration. Moreover, PARP inhibitors facilitated Akt phosphorylation and activation, as well as the phosphorylation of its downstream target glycogen synthase kinase-3beta (GSK-3beta) in normoxia and, more robustly, during IR. Blocking PI3-kinase by wortmannin or LY294002 reduced the PARP inhibitor-elicited robust Akt and GSK-3beta phosphorylation upon ischemia-reperfusion, and significantly diminished the recovery of ATP and creatine phosphate showing the importance of Akt activation in the recovery of energy metabolism. In addition, inhibition of PI3-kinase/Akt pathway decreased the protective effect of PARP inhibitors on infarct size and the recovery of heart functions. All these data suggest that contrary to the original view, which considered preservation of NAD+ and consequently ATP pools as the exclusive underlying mechanism for the cytoprotective effect of PARP inhibitors, the activation of PI3-kinase/Akt pathway and related processes are at least equally important in the cardioprotective effects of PARP inhibitors during ischemia-reperfusion.

  12. CD147 induces up-regulation of vascular endothelial growth factor in U937-derived foam cells through PI3K/AKT pathway.

    PubMed

    Zong, JiaXin; Li, YunTian; Du, DaYong; Liu, Yang; Yin, YongJun

    2016-11-01

    Intraplaque angiogenesis has been recognized as an important risk factor for the rupture of advanced atherosclerotic plaques in recent years. CD147, also called Extracellular Matrix Metalloproteinase Inducer, has been found the ability to promote angiogenesis in many pathological conditions such as cancer diseases and rheumatoid arthritis via the up-regulation of vascular endothelial growth factor (VEGF), a critical mediator of angiogenesis. We investigated whether CD147 would also induce the up-regulation of VEGF in the foam cells formation process and explored the probable signaling pathway. The results showed the expression of CD147 and VEGF was significantly higher in U937-derived foam cells. After CD147 stealth siRNA transfection treatment, the production of VEGF was reduced depended on the inhibition efficiency of CD147 siRNAs.The special signaling pathway inhibitors LY294002, SP600125, SB203580 and U0126 were added to cultures respectively and the results showed LY294002 dose-dependently inhibited the expression of VEGF. The reduction of phospho-Akt was observed in both LY294002 and siRNA groups, suggested that the phosphatidylinositol 3-kinase/Akt pathway may be the probable signaling pathway underlying CD147 induced up-regulation of VEGF in U937-derived foam cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Activation of Akt by Advanced Glycation End Products (AGEs): Involvement of IGF-1 Receptor and Caveolin-1

    PubMed Central

    Yang, Su-Jung; Chen, Chen-Yu; Chang, Geen-Dong; Wen, Hui-Chin; Chen, Ching-Yu; Chang, Shi-Chuan; Liao, Jyh-Fei; Chang, Chung-Ho

    2013-01-01

    Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3

  14. Id-1 activation of PI3K/Akt/NFkappaB signaling pathway and its significance in promoting survival of esophageal cancer cells.

    PubMed

    Li, Bin; Cheung, Pak Yan; Wang, Xianghong; Tsao, Sai Wah; Ling, Ming Tat; Wong, Yong Chuan; Cheung, Annie L M

    2007-11-01

    Inhibitor of differentiation or DNA binding (Id-1) is a helix-loop-helix protein that is over-expressed in many types of cancer including esophageal cancer. This study aims to investigate its effects on the phosphatidylinositol-3-kinase (PI3K)/Akt/ nuclear factor kappa B (NFkappaB) signaling pathway and the significance in protecting esophageal cancer cells against apoptosis. We found elevated expression of phosphorylated forms of Akt, glycogen synthase kinase 3beta and inhibitor of kappa B, as well as increased nuclear translocation of NFkappaB subunit p65 and NFkappaB DNA-binding activity, in esophageal cancer cells with stable ectopic Id-1 expression. Transient transfection of Id-1 into HEK293 cells confirmed activation of PI3K/Akt/NFkappaB signaling and the effects were counteracted by the PI3K inhibitor LY294002. Treatment with tumor necrosis factor-alpha (TNF-alpha) elicited a significantly weaker apoptotic response, following a marked and sustained activation of Akt and NFkappaB in the Id-1-over-expressing cells, compared with the vector control. The effects of Id-1 on the PI3K/Akt/NFkappaB signaling pathway and apoptosis were reversed in esophageal cancer cells transfected with siRNA against Id-1. In addition, inhibition of PI3K or NFkappaB signaling using the PI3K inhibitor LY294002 or the NFkappaB inhibitor Bay11-7082 increased the sensitivity of Id-1-over-expressing esophageal cancer cells to TNF-alpha-induced apoptosis. Our results provide the first evidence that Id-1 induces the activation of PI3K/Akt/NFkappaB signaling pathway, and protects esophageal cancer cells from TNF-alpha-induced apoptosis in vitro. Inactivation of Id-1 may provide us with a novel strategy to improve the treatment and survival of patients with esophageal cancer.

  15. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death.

    PubMed

    Hu, Ping; Han, Zhang; Couvillon, Anthony D; Exton, John H

    2004-11-19

    Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of many diseases and in cancer therapy. Although the unfolded protein response is known to alleviate ER stress by reducing the accumulation of misfolded proteins, the exact survival elements and their downstream signaling pathways that directly counteract ER stress-stimulated apoptotic signaling remain elusive. Here, we have shown that endogenous Akt and ERK are rapidly activated and act as downstream effectors of phosphatidylinositol 3-kinase in thapsigargin- or tunicamycin-induced ER stress. Introduction of either dominant-negative Akt or MEK1 or the inhibitors LY294002 and U0126 sensitized cells to ER stress-induced cell death in different cell types. Reverse transcription-PCR analysis of gene expression during ER stress revealed that cIAP-2 and XIAP, members of the IAP family of potent caspase suppressors, were strongly induced. Transcription of cIAP-2 and XIAP was up-regulated by the phosphatidylinositol 3-kinase/Akt pathway as shown by its reversal by dominant-negative Akt or LY294002. Ablation of these IAPs by RNA interference sensitized cells to ER stress-induced death, which was reversed by the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone. The protective role of IAPs in ER stress coincided with Smac release from mitochondria to the cytosol. Furthermore, it was shown that mTOR was not required for Akt-mediated survival. These results represent the first demonstration that activation of endogenous Akt/IAPs and MEK/ERK plays a critical role in controlling cell survival by resisting ER stress-induced cell death signaling.

  16. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Ursolic Acid Attenuates Diabetic Mesangial Cell Injury through the Up-Regulation of Autophagy via miRNA-21/PTEN/Akt/mTOR Suppression

    PubMed Central

    Lu, Xinxing; Fan, Qiuling; Xu, Li; Li, Lin; Yue, Yuan; Xu, Yanyan; Su, Yan; Zhang, Dongcheng; Wang, Lining

    2015-01-01

    Objective To investigate the effect of ursolic acid on autophagy mediated through the miRNA-21-targeted phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in rat mesangial cells cultured under high glucose (HG) conditions. Methods Rat glomerular mesangial cells were cultured under normal glucose, HG, HG with the PI3K inhibitor LY294002 or HG with ursolic acid conditions. Cell proliferation and hypertrophy were assayed using an MTT assay and the ratio of total protein to cell number, respectively. The miRNA-21 expression was detected using RT-qPCR. The expression of phosphatase and tensin homolog (PTEN)/AKT/mTOR signaling signatures, autophagy-associated protein and collagen I was detected by western blotting and RT-qPCR. Autophagosomes were observed using electron microscopy. Results Compared with mesangial cells cultured under normal glucose conditions, the cells exposed to HG showed up-regulated miRNA-21 expression, down-regulated PTEN protein and mRNA expression, up-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and down-regulated LC3II expression. Ursolic acid and LY294002 inhibited HG-induced mesangial cell hypertrophy and proliferation, down-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and up-regulated LC3II expression. However, LY294002 did not affect the expression of miRNA-21 and PTEN. Ursolic acid down-regulated miRNA-21 expression and up-regulated PTEN protein and mRNA expression. Conclusions Ursolic acid inhibits the glucose-induced up-regulation of mesangial cell miRNA-21 expression, up-regulates PTEN expression, inhibits the activation of PI3K/Akt/mTOR signaling pathway, and enhances autophagy to reduce the accumulation of the extracellular matrix and ameliorate cell hypertrophy and proliferation. PMID:25689721

  18. Diallyl trisulfide exerts cardioprotection against myocardial ischemia-reperfusion injury in diabetic state, role of AMPK-mediated AKT/GSK-3β/HIF-1α activation

    PubMed Central

    Yu, Liming; Di, Wencheng; Dong, Xue; Li, Zhi; Xue, Xiaodong; Zhang, Jian; Wang, Qi; Xiao, Xiong; Han, Jinsong; Yang, Yang; Wang, Huishan

    2017-01-01

    Diallyl trisulfide (DATS), the major active ingredient in garlic, has been reported to confer cardioprotective effects. However, its effect on myocardial ischemia-reperfusion (MI/R) injury in diabetic state and the underlying mechanism are still unknown. We hypothesize that DATS reduces MI/R injury in diabetic state via AMPK-mediated AKT/GSK-3β/HIF-1α activation. Streptozotocin-induced diabetic rats received MI/R surgery with or without DATS (20mg/kg) treatment in the presence or absence of Compound C (Com.C, an AMPK inhibitor, 0.25mg/kg) or LY294002 (a PI3K inhibitor, 5mg/kg). We found that DATS significantly improved heart function and reduced myocardial apoptosis. Additionally, in cultured H9c2 cells, DATS (10μM) also attenuated simulated ischemia-reperfusion injury. We found that AMPK and AKT/GSK-3β/HIF-1α signaling were down-regulated under diabetic condition, while DATS markedly increased the phosphorylation of AMPK, ACC, AKT and GSK-3β as well as HIF-1α expression in MI/R-injured myocardium. However, these protective actions were all blunted by Com.C administration. Additionally, LY294002 abolished the stimulatory effect of DATS on AKT/GSK-3β/HIF-1α signaling without affecting AMPK signaling. While 2-methoxyestradiol (a HIF-1α inhibitor) reduced HIF-1α expression without affecting AKT/GSK-3β signaling. Taken together, these data showed that DATS protected against MI/R injury in diabetic state by attenuating cellular apoptosis via AMPK-mediated AKT/GSK-3β/HIF-1α signaling. Its cardioprotective effect deserves further study. PMID:29088824

  19. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells.

    PubMed

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways.

  20. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells

    PubMed Central

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways. PMID:27143997

  1. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway.

    PubMed

    Bezerra, Maria É S; Barberino, Ricássio S; Menezes, Vanúzia G; Gouveia, Bruna B; Macedo, Taís J S; Santos, Jamile M S; Monte, Alane P O; Barros, Vanessa R P; Matos, Maria H T

    2018-05-30

    We investigated the effects of insulin-like growth factor 1 (IGF-1) on the morphology and follicular activation of ovine preantral follicles cultured in situ and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway is involved in IGF-1 action in the sheep ovary. Ovine ovarian fragments were fixed for histological and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) analyses (fresh control) or cultured in supplemented alpha-minimum essential medium (α-MEM+; control) or α-MEM+ with IGF-1 (1, 10, 50, 100 or 200ngmL-1) for 7 days. Follicles were classified as normal or atretic, primordial or growing and the oocyte and follicle diameters were measured. DNA fragmentation was evaluated by TUNEL assay. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was performed on the fresh control, α-MEM+ and 100ngmL-1 IGF-1 samples. Inhibition of PI3K activity was performed through pretreatment with the PI3K inhibitor LY294002 and phosphorylated AKT (pAKT) expression was analysed after culture in the absence or presence of LY294002. IGF-1 at 100ngmL-1 increased (P<0.05) follicular activation compared with α-MEM+ and decreased TUNEL-positive cells (P<0.05) compared with other treatments. PCNA-positive cells also increased (P<0.05) in 100ngmL-1 IGF-1. LY294002 significantly inhibited follicular activation stimulated by α-MEM+ and 100ngmL-1 IGF-1 and reduced pAKT expression in follicles. Overall, IGF-1 at 100ngmL-1 promoted primordial follicle activation, cell proliferation and reduced DNA fragmentation after in situ culture through the PI3K/AKT pathway.

  2. Anti-inflammatory effects of fimasartan via Akt, ERK, and NFκB pathways on astrocytes stimulated by hemolysate.

    PubMed

    Yang, Xiu-Li; Kim, Chi Kyung; Kim, Tae Jung; Sun, Jing; Rim, Doeun; Kim, Young-Ju; Ko, Sang-Bae; Jang, Hyunduk; Yoon, Byung-Woo

    2016-02-01

    The aim of this study was to investigate whether fimasartan, a novel angiotensin II receptor blocker, modulates hemolysate-induced inflammation in astrocytes. We stimulated astrocytes with hemolysate to induce hemorrhagic inflammation in vitro. Astrocytes were pretreated with fimasartan and then incubated with hemolysate at different durations. Anti-inflammatory cell signaling molecules including Akt, extracellular signal regulated kinase (ERK), NFκB and cyclooxygenase-2 (COX-2) were assessed by western blotting. Pro-inflammatory mediators were evaluated by real-time RT-PCR and ELISA. The stimulation by hemolysate generated a robust activation of inflammatory signaling pathways in astrocytes. Hemolysate increased the phosphorylation of Akt at 1 h, and ERK1/2 at 20 min compared with the control group and promoted the degradation of IκBα. Pretreated fimasartan significantly decreased hemolysate-induced phosphorylation of Akt and ERK1/2. In addition, fimasartan also suppressed NFκB-related inflammatory pathways induced by hemolysate, including reduction of the gene expression of NFκB, and decreased nuclear translocation of NFκB and degradation of IκB. This reduction of inflammatory upstream pathways decreased the expression of inflammatory end-products: COX-2 and interleukin-1 (IL-1β). Furthermore, the expression of COX-2 was attenuated by both Akt inhibitor (LY294002) and ERK inhibitor (U0126), and IκBα degradation was suppressed by LY294002. These results demonstrate that pretreatment with fimasartan to astrocytes suppresses the inflammatory responses induced by hemolysate. Akt, ERK and NFκB were associated with hemolysate-induced COX-2 and IL-1β expression. Based on these mechanisms, fimasartan could be a candidate anti-inflammatory regulator for the treatment of intracerebral hemorrhage.

  3. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    PubMed

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  4. Icariin Prevents Amyloid Beta-Induced Apoptosis via the PI3K/Akt Pathway in PC-12 Cells

    PubMed Central

    Zhang, Dongdong; Wang, Zhe; Sheng, Chenxia; Peng, Weijun; Hui, Shan; Gong, Wei; Chen, Shuai

    2015-01-01

    Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum that exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer's disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ 25–35) induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreased Aβ 25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 in Aβ 25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer's disease. PMID:25705234

  5. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    PubMed

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Pirfenidone Induces G1 Arrest in Human Tenon's Fibroblasts In Vitro Involving AKT and MAPK Signaling Pathways.

    PubMed

    Guo, Xiujuan; Yang, Yangfan; Liu, Liling; Liu, Xiaoan; Xu, Jiangang; Wu, Kaili; Yu, Minbin

    2017-06-01

    To investigate the underlying mechanism by which pirfenidone blocks the transition from the G1 to S phase in primary human Tenon's fibroblasts. Primary human Tenon's fibroblasts were characterized by immunocytofluorescence staining with vimentin, fibroblast surface protein, and cytokeratin. After treating Tenon's fibroblasts with pirfenidone under proliferation conditions (10% fetal bovine serum), cell proliferation was measured using a WST-1 assay. Progression through the cell cycle was analyzed by flow cytometry. The expression of CDK2, CDK6, cyclinD1, cyclinD3, and cyclinE and the phosphorylation of AKT, ERK1/2/MAPK, JNK/MAPK, and p38 MAPK were estimated using western blot analysis. Under proliferative conditions, pirfenidone inhibited Tenon's fibroblasts proliferation and arrested the cell cycle at the G1 phase; decreased the phosphorylation of AKT, GSK3β, ERK1/2/MAPK, and JNK/MAPK; increased the phosphorylation of p38 MAPK; and inhibited CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E in a dose-dependent manner. Inhibitors of AKT (LY294002), ERK1/2 (U0126), and JNK (SP600125) arrested the G1/S transition, similar to the effect of pirfenidone. The p38 inhibitor (SB202190) decreased the G1-blocking effect of pirfenidone. The expression of CDK2, CDK6, cyclin D1, and cyclin D3 were inhibited by LY294002, U0126, and SP600125. SB202190 attenuated the pirfenidone-induced reduction of CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E. Pirfenidone inhibited HTFs proliferation and induced G1 arrest by downregulating CDKs and cyclins involving the AKT/GSK3β and MAPK signaling pathways.

  7. Gastrin-releasing peptide and its receptor increase arthritis fibroblast-like synoviocytes invasiveness through activating the PI3K/AKT pathway.

    PubMed

    Clarimundo, Vanessa Schuck; Farinon, Mirian; Pedó, Renata Ternus; Teixeira, Vivian Oliveira Nunes; Nör, Carolina; Gulko, Percio S; Xavier, Ricardo Machado; de Oliveira, Patricia Gnieslaw

    2017-09-01

    Rheumatoid arthritis (RA) is an autoimmune disease that leads to joint destruction. The fibroblast-like synoviocytes (FLS) has a central role on the disease pathophysiology. The present study aimed to examine the role of gastrin-releasing peptide (GRP) and its receptor (GRPR) on invasive behavior of mice fibroblast-like synoviocytes (FLS), as well as to evaluate GRP-induced signaling on PI3K/AKT pathway. The expression of GRPR in FLS was investigated by immunocytochemistry, western blot (WB) and qRT-PCR. The proliferation and invasion were assessed by SRB and matrigel-transwell assay after treatment with GRP and/or RC-3095 (GRPR antagonist), and/or Ly294002 (inhibitor of PI3K/AKT pathway). Finally, AKT phosphorylation was assessed by WB. GRPR protein was detected in FLS and the exposure to GRP increased FLS invasion by nearly two-fold, compared with untreated cells (p<0.05), while RC-3095 reversed that effect (p<0.001). GRP also increased phosphorylated AKT expression in FLS. When Ly294002 was added with GRP, it prevented the GRP-induced increased cell invasiveness (p<0.001). These data suggest that GRPR expression in FLS and that exogenous GRP are able to activate FLS invasion. This effect occurs at least in part through the AKT activation. Therefore, understanding of the GRP/GRPR pathway could be relevant in the development of FLS-targeted therapy for RA. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Activation of ERK1/2 and PI3K/Akt by IGF-1 on GAP-43 expression in DRG neurons with excitotoxicity induced by glutamate in vitro.

    PubMed

    Liu, Zhen; Cai, Heng; Zhang, Ping; Li, Hao; Liu, Huaxiang; Li, Zhenzhong

    2012-03-01

    Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 influences growth-associated protein 43 (GAP-43) expression and activates the extracellular signal-regulated protein kinase (ERK1/2) and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in DRG neurons with excitotoxicity induced by glutamate (Glu) remains unknown. In this study, embryonic 15-day-old rat DRG explants were cultured for 48 h and then exposed to IGF-1, Glu, Glu + IGF-1, Glu + IGF-1 + PD98059, Glu + IGF-1 + LY294002, Glu + IGF-1 + PD98059 + LY294002 for additional 12 h. The DRG explants were continuously exposed to growth media as control. The levels of GAP-43 mRNA were detected by real time-PCR analysis. The protein levels of GAP-43, phosphorylated ERK1/2, phosphorylated Akt, total ERK1/2, and total Akt were detected by Western blot assay. GAP-43 expression in situ was determined by immunofluorescent labeling. Apoptotic cell death was monitored by Hoechst 33342 staining. IGF-1 alone increased GAP-43 and its mRNA levels in the absence of Glu. The decreased GAP-43 and its mRNA levels caused by Glu could be partially reversed by the presence of IGF-1. IGF-1 rescued neuronal cell death caused by Glu. Neither the ERK1/2 inhibitor PD98059 nor the PI3K inhibitor LY294002 blocked the effect of IGF-1, but both inhibitors together were effective. To validate the impact of GAP-43 expression by IGF-1, GAP-43 induction was blocked by administration of dexamethasone (DEX). IGF-1 partially rescued the decrease of GAP-43 and its mRNA levels induced by DEX. DEX induced an increase of cell apoptosis. IGF-1 may play an important role in neuroprotective effects on DRG neurons through regulating GAP-43 expression with excitotoxicity induced by Glu and the process was involved in both ERK1/2 and PI3K/Akt signaling pathways.

  9. SMAD-PI3K-Akt-mTOR Pathway Mediates BMP-7 Polarization of Monocytes into M2 Macrophages

    PubMed Central

    Rocher, Crystal; Singla, Dinender K.

    2013-01-01

    Previously we demonstrated that bone morphogenetic protein-7 (BMP-7) treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM) was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p<0.05) decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-α and MCP-1; (p<0.05). Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p<0.05) decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p<0.05) increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p<0.05) increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway. PMID:24376781

  10. Tea polyphenol epigallocatechin 3-gallate impedes the anti-apoptotic effects of low-grade repetitive stress through inhibition of Akt and NFkappaB survival pathways.

    PubMed

    Sen, Prosenjit; Chakraborty, Prabir Kumar; Raha, Sanghamitra

    2006-01-09

    V79 Chinese Hamster lung fibroblasts were subjected to repetitive low-grade stress through multiple exposures to 30 microM H2O2 in culture for 4 weeks. Akt/protein kinase B became phosphorylated at serine473 and threonine308 during this period of repetitive stress. Concurrent exposure of the cells to LY294002 (5 microM), a phosphoinositide-3 kinase inhibitor or 4.5 microM epigallocatechin 3-gallate (EGCG), a tea polyphenol almost completely blocked Akt activation by repetitive stress. Phosphorylation of I kappa B kinase (IKK) and transcriptional activity driven by nuclear factor kappa B (NFkappaB) were significantly enhanced by repetitive oxidative stress. These increases were largely abolished by simultaneous exposure to EGCG. The repetitively stressed cells demonstrated a significant resistance to apoptosis by subsequent acute stress in the form of ultraviolet radiation at 5 J/m2 or H2O2 (7.5 mM). The resistance to apoptosis conferred by repetitive stress was drastically reduced (>80%) by constant exposure to EGCG during the stress period while the presence of LY294002 or the NFkappaB inhibitor SN50 brought about a relatively moderate effect (about 50-65%). Our data indicate that activation of Akt and NFkappaB pro-survival pathways by repetitive low-grade stress results in a strong inhibition of the normal apoptotic response after subsequent acute stress. The tea polyphenol EGCG impedes the activation of both Akt and NFkappaB by repetitive stress and as a result preserves the normal apoptotic response during subsequent acute stress.

  11. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis

    PubMed Central

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2010-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-triphosphate (PIP3) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP3 and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis. PMID:20875857

  12. Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3K/AKT pathway under diabetic conditions.

    PubMed

    Li, Xiang; Ma, Xiang-Yu; Feng, Ya-Fei; Ma, Zhen-Sheng; Wang, Jian; Ma, Tian-Cheng; Qi, Wei; Lei, Wei; Wang, Lin

    2015-01-01

    Chitosan coated porous titanium alloy implant (CTI) is demonstrated a promising approach to improve osseointegration capacity of pure porous titanium alloy implant (TI). Since chitosan has been demonstrated to exhibit antioxidant activity, we propose CTI may ameliorate the ROS overproduction, thus reverse the poor osseointegration under diabetic conditions, and investigate the underlying mechanisms. Primary rat osteoblasts incubated on the TI and the CTI were subjected to normal serum (NS), diabetic serum (DS), DS + NAC (a potent ROS inhibitor) and DS + LY294002 (a PI3K/AKT-specific inhibitor). In vivo study was performed on diabetic sheep implanted with TI or CTI into the bone defects on crista iliaca. Results showed that diabetes-induced ROS overproduction led to osteoblast dysfunction and apoptosis, concomitant with the inhibition of AKT in osteoblasts on the TI substrate. While CTI stimulated AKT phosphorylation through ROS attenuation, thus reversed osteoblast dysfunction evidenced by improved osteoblast adhesion, increased proliferation and ALP activity, and decreased cytotoxicity and apoptotic rate, which exerted same effect to NAC treatment on the TI. These effects were further confirmed by the improved osseointegration within the CTI in vivo evidenced by Micro-CT and histological examinations. In addition, the aforementioned promotive effects afforded by CTI were abolished by blocking PI3K/AKT pathway with addition of LY294002. These results demonstrate that the chitosan coating markedly ameliorates diabetes-induced impaired bio-performance of TI via ROS-mediated reactivation of PI3K/AKT pathway, which elicits a new surface functionalization strategy for better clinical performance of titanium implant in diabetic patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.

    2008-04-15

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2,more » or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.« less

  14. Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells.

    PubMed

    Kou, Yu; Li, Lei; Li, Hong; Tan, Yuhui; Li, Bin; Wang, Kun; Du, Biaoyan

    2016-10-14

    Berberine is a natural compound extracted from Coptidis rhizoma, and accumulating proof has shown its potent anti-tumor properties with diverse action on melanoma cells, including inhibiting cancer viability, blocking cell cycle and migration. However, the mechanisms of berberine have not been fully clarified. In this study, we identified that berberine reduced the migration and invasion capacities of B16 cells, and notably altered pluripotency of epithelial to mesenchymal transition associated factors. We found that berberine also downregulation the expression level of p-PI3K, p-AKT and retinoic acid receptor α (RARα) and upregulation the expression level of retinoic acid receptor β and γ (RARβ and RARγ). These effects of PI3 kinase inhibitor LY294002 treatment mimicked Berberine treatment except the expression level of RARγ. Moreover, Western blot analysis showed that the decreased PI3K and AKT phosphorylation, increased the epithelial maker E-cadherin, and upregulation level of RARβ while decreased the mesenchymal markers N-cadherin and downregulation level of RARα by incubation with LY294002 in mouse melanoma B16 cells. In conclusion, Our study reveal that berberine can reverse the epithelial to mesenchymal transition of mouse melanoma B16 cells and may be a useful adjuvant therapeutic agent in the treatment of melanoma through the PI3K/Akt pathway and inactivation PI3K/AKT could regulate RARα/RARβ expression. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    PubMed

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-03

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury.

    PubMed

    Deng, Wang; Li, Chang-Yi; Tong, Jin; Zhang, Wei; Wang, Dao-Xin

    2012-03-30

    Stimulation of epithelial sodium channel (ENaC) increases Na(+) transport, a driving force of alveolar fluid clearance (AFC) to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI). It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo. A model of ALI (LPS at a dose of 5.0 mg/kg) with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF), total lung water content(TLW), and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. In vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway. Our study demonstrated that insulin alleviated pulmonary edema and

  17. Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway.

    PubMed

    Qi, Yun; Chen, Li; Zhang, Lei; Liu, Wen-Bo; Chen, Xiao-Yan; Yang, Xin-Guang

    2013-02-01

    Crocin is a pharmacologically active component of Crocus sativus L. (saffron) and has been reported to be useful in the treatment of neuronal damage. In the present study, we investigated the neuroprotective effect of crocin on retinal ganglion cells (RGCs) after retinal ischaemia/reperfusion (IR) injury, and our results show that crocin acts through the PI3K/AKT signalling pathway. Retinal IR injury was induced by raising the intraocular pressure of Sprague-Dawley rats to 110 mmHg for 60 min. The neuroprotective effect of crocin was determined by quantifying the surviving RGCs and apoptotic RGCs following IR injury by means of retrograde labelling and TUNEL staining, respectively. The phosphorylated AKT protein level was determined by western blot and immunohistochemical analysis. To determine the extent to which the PI3K/AKT pathway contributes to the neuroprotective effect of crocin, experiments were also performed using the PI3K inhibitor LY294002. Compared with the IR + vehicle group, crocin (50 mg/kg) treatment enhanced RGC survival by approximately 36% and decreased RGC apoptosis by 44% after retinal IR injury. Western blot and immunohistochemical analysis demonstrated that the PI3K/AKT pathway was activated by crocin in the ganglion cell layer after retinal IR injury. Intravitreal injection of LY294002 blocked the neuroprotective effect of crocin on IR-induced RGC death. In conclusion, crocin prevents retinal IR-induced apoptosis of RGCs by activating the PI3K/AKT signalling pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Oxidized LDL at low concentration promotes in-vitro angiogenesis and activates nitric oxide synthase through PI3K/Akt/eNOS pathway in human coronary artery endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shan; Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong; Wong, Siu Ling

    Research highlights: {yields} Low-concentration oxidized LDL enhances angiogenesis through nitric oxide (NO). {yields} Oxidized LDL increases intracellular NO levels via eNOS phosphorylation. {yields} Akt/PI3K signaling mediates oxidized LDL-induced eNOS phosphorylation. -- Abstract: It has long been considered that oxidized low-density lipoprotein (oxLDL) causes endothelial dysfunction and is remarkably related to the development of atherosclerosis. However, the effect of oxLDL at very low concentration (<10 {mu}g/ml) on the endothelial cells remains speculative. Nitric oxide (NO) has a crucial role in the endothelial cell function. In this study, we investigated the effect of oxLDL at low concentration on NO production and proliferation,more » migration, tube formation of the human coronary artery endothelial cells (HCAEC). Results showed that oxLDL at 5 {mu}g/ml enhanced HCAEC proliferation, migration and tube formation. These phenomena were accompanied by an increased intracellular NO production. L-NAME (a NOS inhibitor), LY294002 and wortmannin (PI3K inhibitors) could abolish oxLDL-induced angiogenic effects and prevent NO production in the HCAEC. The phosphorylation of Akt, PI3K and eNOS were up-regulated by oxLDL, which was attenuated by LY294002. Our results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC.« less

  19. Hydrogen protects against hyperoxia-induced apoptosis in type II alveolar epithelial cells via activation of PI3K/Akt/Foxo3a signaling pathway.

    PubMed

    Wu, Dan; Liang, Mulin; Dang, Hongxing; Fang, Fang; Xu, Feng; Liu, Chengjun

    2018-01-08

    Oxidative stress is regarded as a key regulator in the pathogenesis of prolonged hyperoxia-induced lung injury, which causes injury to alveolar epithelial cells and eventually leads to development of bronchopulmonary dysplasia (BPD). Many studies have shown that hydrogen has a protective effect in a variety of cells. However, the mechanisms by which hydrogen rescues cells from damage due to oxidative stress in BPD remains to be fully elucidated. This study sought to evaluate the effects of hydrogen on hyperoxia-induced lung injury and to investigate the underlying mechanism. Primary type II alveolar epithelial cells (AECIIs) were divided into four groups: control (21% oxygen), hyperoxia (95% oxygen), hyperoxia + hydrogen, and hyperoxia + hydrogen + LY294002 (a PI3K/Akt inhibitor). Proliferation and apoptosis of AECIIs were assessed using MTS assay and flow cytometry (FCM), respectively. Gene and protein expression were detected by quantitative polymerase chain reaction (q-PCR) and western blot analysis. Stimulation with hyperoxia decreased the expression of P-Akt, P- FoxO3a, cyclinD1 and Bcl-2. Hyperoxic conditions increased levels of Bim, Bax, and Foxo3a, which induced proliferation restriction and apoptosis of AECIIs. These effects of hyperoxia were reversed with hydrogen pretreatment. Furthermore, the protective effects of hydrogen were abrogated by PI3K/Akt inhibitor LY294002. The results indicate that hydrogen protects AECIIs from hyperoxia-induced apoptosis by inhibiting apoptosis factors and promoting the expression of anti-apoptosis factors. These effects were associated with activation of the PI3K/Akt/FoxO3a pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway.

    PubMed

    Zhao, Yingshuai; Wang, Liuyi; He, Shanshan; Wang, Xiaoyan; Shi, Weili

    2017-05-20

    Valsartan (VAL), an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO). In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs). Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L) were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L), VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L), and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L) groups. The NO content in the VAL-treated HUVEC line (EA.hy926) was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05) and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.

  1. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuqin; Zheng, Lin; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Aktmore » pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.« less

  2. Protective effects of 6-Gingerol on vascular endothelial cell injury induced by high glucose via activation of PI3K-AKT-eNOS pathway in human umbilical vein endothelial cells.

    PubMed

    Liu, Dan; Wu, Mengqing; Lu, Yi; Xian, Tao; Wang, Yupeng; Huang, Bowei; Zeng, Guohua; Huang, Qiren

    2017-09-01

    6-Gingerol (6-Gin), an active constituent of Zingiber officinale, has been reported to have anti-inflammatory, anti-oxidative, anti-cancerous etc. bioactivities. However, little is known about its endothelial protective effects and the underlying mechanisms. In this study, our purpose was to investigate the protective effects of 6-Gin and its underlying mechanisms. HUVECs were exposed to high glucose (HG, 33mM glucose) for 48h, followed by 50μM 6-Gin with or without LY294002 (10μM), AKT inhibitor IV (0.5μM) or L-NAME (5mM) for another 24h. Cell viability, levels of NO, LDH and ROS were detected. In addition, the expression levels of IKK, IRS-1, PI3K, AKT, eNOS and their phosphorylated proteins were measured by western blots. Compared with the control, HUVECs were significantly impaired by HG, characterized by decreased levels of the cell viability, NO, pY458-PI3K, pS473-AKT and pS1177-eNOS while increased levels of LDH, pS176-IKK, and p-S312-IRS-1. Conversely, 6-Gin remarkably protected HUVECs against HG-induced injury in a concentration- and time-dependent manner. However, the protective effects of 6-Gin were abolished by co-treatment with LY294002, AKT inhibitor IV or L-NAME at the HG state. Collectively, 6-Gin attenuated the injury of HUVECs induced by HG through the activation of PI3K-AKT-eNOS signal pathway. The findings provide a novel potential for 6-Gin to prevent and treat the angiopathy resulting from diabetes mellitus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Serine 1179 phosphorylation of endothelial nitric oxide synthase caused by 2,4,6-trinitrotoluene through PI3K/Akt signaling in endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yang; Sumi, Daigo; Kumagai, Yoshito

    2006-07-01

    Although 2,4,6-trinitrotoluene (TNT) has been found to uncouple nitric oxide synthase (NOS), thereby leading to reactive oxygen species (ROS), cellular response against TNT still remains unclear. Exposure of bovine aortic endothelial cells (BAECs) to TNT (100 {mu}M) resulted in serine 1179 phosphorylation of endothelial NOS (eNOS). With specific inhibitors (wortmannin and LY294002), we found that PI3K/Akt signaling participated in the eNOS phosphorylation caused by TNT, whereas the ERK pathway did not. ROS were generated following exposure of BAECs to TNT. However, TNT-mediated phosphorylation of either eNOS or Akt was drastically blocked by NAC and PEG-CAT. Interestingly, pretreatment with apocynin, amore » specific inhibitor for NADPH oxidase, diminished the phosphorylation of eNOS and Akt. These results suggest that TNT affects NADPH oxidase, thereby generating hydrogen peroxide, which is capable of activating PI3K/Akt signaling associated with eNOS Ser 1179 phosphorylation.« less

  4. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells: Importance of ERK1/2 and AKT Signaling Pathways.

    PubMed

    Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu; Cui, Jiuwei; Li, Wei

    2016-01-01

    Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3' -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy.

  5. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated bymore » hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt

  6. Pharmacologic Profiling of Phosphoinositide 3-Kinase Inhibitors as Mitigators of Ionizing Radiation–Induced Cell Death

    PubMed Central

    Sharlow, Elizabeth R.; Epperly, Michael W.; Lira, Ana; Leimgruber, Stephanie; Skoda, Erin M.; Wipf, Peter; Greenberger, Joel S.

    2013-01-01

    Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after

  7. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells

    PubMed Central

    de Oliveira, Jessica Silva Santos; Santos, Gabriela da Silva; Moraes, João Alfredo; Saliba, Alessandra Mattos; Barja-Fidalgo, Thereza Christina; Mattos-Guaraldi, Ana Luíza; Nagao, Prescilla Emy

    2018-01-01

    BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis. PMID:29641644

  8. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells.

    PubMed

    Oliveira, Jessica Silva Santos de; Santos, Gabriela da Silva; Moraes, João Alfredo; Saliba, Alessandra Mattos; Barja-Fidalgo, Thereza Christina; Mattos-Guaraldi, Ana Luíza; Nagao, Prescilla Emy

    2018-01-01

    BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.

  9. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogenmore » synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.« less

  10. 5-AIQ inhibits H2O2-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes.

    PubMed

    Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun; Jang, Yong Chang; Yi, Kyu Yang; Chung, Hun-Jong; Park, Jong Seok; Kim, Bokyung; Feng, Zhong-Ping; Shin, Hwa-Sup

    2013-04-01

    Poly(adenosine 5'-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H2O2-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxide dismutase and catalase accompanied the protective effect of 5-AIQ on H2O2-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H2O2-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H2O2-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. High glucose induces alternative activation of macrophages via PI3K/Akt signaling pathway.

    PubMed

    Wang, Jie; Liu, Jingjing; Wang, Yuying; Lin, Minghui; Tian, Wei; Zhou, Lingling; Ye, Xiaoyin; Lin, Lihang

    2017-08-01

    It has been proved that lactate-4.25% dialysate could result in peritoneal fibrosis by inducing alternative activation of macrophages in our previous study, but the mechanism of high glucose-induced alternative activation has not been elucidated. This study was, therefore, to investigate the mechanism by high glucose stimuli. In this study, Raw264.7 (murine macrophage cell line) cells were cultured and stimulated by 4.25% glucose medium, and mannitol medium was used as osmotic pressure control. Cells were harvested at 0 h, 4 h, 8 h, and 12 h to examine the expression of Arg-1, CD206, and p-Akt. After blocking PI3K by LY294002, the expression of Arg-1, CD206, and p-Akt was examined again. The expression of Arg-1 and CD206 was increased in a time-dependent manner induced by high glucose medium. On the contrary, there was mainly no Agr-1 or CD206 expressed in cells cultured in the mannitol medium with the same osmotic pressure. What's more, Akt was phosphorylated at the eighth hour stimulated by high glucose medium, and LY294002 inhibited the expression of Arg-1 and CD206 by blocking the phosphorylation of Akt. Our study indicated that high glucose rather than high osmotic pressure induced M2 phenotype via PI3K/Akt signaling pathway.

  12. Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Li; Wang, Jing; Xiao, Haifang

    Isoorientin (ISO) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum; however, its biological activity remains poorly understood. The present study investigated the effects and putative mechanism of apoptosis induced by ISO in human hepatoblastoma cancer (HepG2) cells. The results showed that ISO induced cell death in a dose-dependent manner in HepG2 cells, but no toxicity in human liver cells (HL-7702) and buffalo rat liver cells (BRL-3A) treated with ISO at the indicated concentrations. ISO-induced cell death included apoptosis which characterized by the appearance of nuclear shrinkage, the cleavagemore » of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. ISO significantly (p < 0.01) increased the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), increased the release of cytochrome c, activated caspase-3, and enhanced intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO). In addition, ISO effectively inhibited the phosphorylation of Akt and increased FoxO4 expression. The PI3K/Akt inhibitor LY294002 enhanced the apoptosis-inducing effect of ISO. However, LY294002 markedly quenched ROS and NO generation and diminished the protein expression of heme peroxidase enzyme (HO-1) and inducible nitric oxide synthase (iNOS). Furthermore, the addition of a ROS inhibitor (N-acetyl cysteine, NAC) or iNOS inhibitor (N-[3-(aminomethyl) benzyl] acetamidine, dihydrochloride, 1400W) significantly diminished the apoptosis induced by ISO and also blocked the phosphorylation of Akt. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells and indicate that this apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway, and has no toxicity in normal liver cells, suggesting that ISO may have good potential as a therapeutic and chemopreventive agent for liver cancer

  13. [Role of PI3K/Akt pathway in endoplasmic reticulum stress and apoptosis induced by saturated fatty acid in human steatotic hepatocytes].

    PubMed

    Qu, Mei; Shen, Wei

    2015-03-01

    To investigate the roles of PI3K/Akt signaling in the unfolded protein response (UPR) and non-UPR signaling pathways of endoplasmic reticulum stress and apoptosis in hepatocytes under conditions of saturated fatty acid-induced steatosis. A steatosis model of hepatocytes (L02 cell and HepG2 cell line) was induced by palmitate sodium saturated fatty acids.The hepatocytes were divided into normal control group,experimental group (treated with palmitate sodium) and intervention group (treated with palmitate sodium and LY294002, a PI3K/Akt inhibitor). Cell apoptosis was detected by flow cytometry with Annexin V/PI double-staining.Western blot analysis was used to examine the protein expression of GRP78, PI3K, P-PI3K,Akt, P-Akt, CHOP and Bax.The F test and t-test were used in statistical analyses. Flow cytometry showed that palmitate sodium induced cell apoptosis in steatotic hepatocytes;moreover, a significant increase in cell apoptosis was observed in the palmitate sodium-induced steatotic hepatocytes in the presence of LY294002.For the normal control group, the experimental group and the intervention group, the apoptosis ratios of L02 cells were 4.41 ± 0.78% vs. 6.01 ± 1.49% vs. 19.50 ± 2.53% after 24 hours of treatment,and 12.56 ± 2.78% vs. 29.72 ± 6.39% vs. 44.60 ± 4.17% after 48 hours of treatment in respectively (all P < 0.05),and of HepG2 cells were 11.16 ± 1.15% vs. 17.50 ± 6.83% vs. 30.41 ± 3.62% after 24 hours of treatment, and 22.37 ± 1.24% vs. 33.85 ± 5.79% vs. 48.56 ± 4.21% after 48 hours of treatment (all P < 0.05). Western blot analysis showed that expression of GRP78 was significantly upregulated in the palmitate sodium-induced steatosis hepatocytes, indicating activation of endoplasmic reticulum stress. In addition, the palmitate sodium treatment also activated the PI3K/Akt pathway,induced expression of CHOP and Bax of the UPR and non-UPR signaling pathways respectively. Moreover, Pretreatment with LY294002 inhibited the palmitate sodium

  14. Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone.

    PubMed

    Liu, Weidong; Mao, Li; Ji, Feng; Chen, Fengli; Wang, Shouguo; Xie, Yue

    2017-01-10

    The potential effect of icariside II on dexamethasone-induced osteoblast cell damages was evaluated here. In MC3T3-E1 osteoblastic cells and the primary murine osteoblasts, co-treatment with icariside II dramatically attenuated dexamethasone- induced cell death and apoptosis. Icariside II activated Akt signaling, which is required for its actions in osteoblasts. Akt inhibitors (LY294002, perifosine and MK-2206) almost abolished icariside II-induced osteoblast cytoprotection against dexamethasone. Further studies showed that icariside II activated Nrf2 signaling, downstream of Akt, to inhibit dexamethasone-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary osteoblasts. On the other hand, Nrf2 shRNA knockdown inhibited icariside II-induced anti-dexamethasone cytoprotection in MC3T3-E1 cells. Finally, we showed that icariside II induced heparin-binding EGF (HB-EGF) production and EGFR trans-activation in MC3T3-E1 cells. EGFR inhibition, via anti-HB-EGF antibody, EGFR inhibitor AG1478 or EGFR shRNA knockdown, almost blocked icariside II-induced Akt-Nrf2 activation in MC3T3-E1 cells. Collectively, we conclude that icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone. Icariside II might have translational value for the treatment of dexamethasone-associated osteoporosis/osteonecrosis.

  15. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells

    PubMed Central

    Sheng, Lingling; Mao, Xiyuan; Yu, Qingxiong; Yu, Dong

    2017-01-01

    Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has been demonstrated to be an effective way of augmenting angiogenesis of ischemic tissue. The low oxygen conditions in ischemic tissue directly affect the biological behavior of engrafted cells. However, to date, the mechanism through which hypoxia regulates self-renewal, differentiation and paracrine function of BM-MSCs remains unclear. Clarification of this mechanism would be beneficial to the use of stem cell-based therapy. The PI3K/AKT pathway has been extensively investigated for its role in cell proliferation, cell transformation, paracrine function and angiogenesis. The present study aimed to analyze the role of PI3K/AKT pathway in hypoxia-induced proliferation of BM-MSCs and their differentiation into endothelial cells in vitro by the application of LY294002, a PI3K/AKT pathway inhibitor, with cells cultured in normoxia serving as a control. The results showed that rat BM-MSCs at passage 3 and 4 displayed only few phenotypical differences in the expression of surface antigens as detected by flow cytometry. When compared with the cells treated in normoxia, the proliferation of BM-MSCs in hypoxia was promoted, a greater number of cells expressed CD31 and a higher expression of vascular endothelial growth factor was observed after culture in hypoxic conditions. However, by inhibiting with LY294002, these changes induced by hypoxia were partly inhibited. In conclusion, the present study showed that the PI3K/AKT pathway served an important role in hypoxia-enhanced in vitro proliferation of BM-MSCs and their differentiation into endothelial cells and paracrine vascular endothelial growth factor. PMID:28123468

  16. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: role of protein kinase B/Akt signaling.

    PubMed

    Feng, Jianhua; Fischer, Gregor; Lucchinetti, Eliana; Zhu, Min; Bestmann, Lukas; Jegger, David; Arras, Margarete; Pasch, Thomas; Perriard, Jean-Claude; Schaub, Marcus C; Zaugg, Michael

    2006-05-01

    Postinfarct remodeled myocardium exhibits numerous structural and biochemical alterations. So far, it is unknown whether postconditioning elicited by volatile anesthetics can also provide protection in the remodeled myocardium. Myocardial infarct was induced in male Wistar rats by ligation of the left anterior descending coronary artery. Six weeks later, hearts were buffer-perfused and exposed to 40 min of ischemia followed by 90 min of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane. In some experiments, LY294002 (15 microM), a phosphatidylinositol 3-kinase inhibitor, was coadministered with isoflurane. Masson's trichrome staining, immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction served to confirm remodeling. In buffer-perfused hearts, functional recovery was recorded, and acute infarct size was measured using 1% triphenyltetrazolium chloride staining and lactate dehydrogenase release during reperfusion. Western blot analysis was used to determine phosphorylation of reperfusion injury salvage kinases including protein kinase B/Akt and its downstream targets after 15 min of reperfusion. Infarct hearts exhibited typical macroscopic and molecular changes of remodeling. Isoflurane postconditioning improved functional recovery and decreased acute infarct size, as determined by triphenyltetrazolium (35 +/- 5% in unprotected hearts vs. 8 +/- 3% in anesthetic postconditioning; P < 0.05) and lactate dehydrogenase release. This protection was abolished by LY294002, which inhibited phosphorylation of protein kinase B/Akt and its downstream targets glycogen synthase kinase 3beta, endothelial nitric oxide synthase, and p70S6 kinase. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning via protein kinase B/Akt signaling. This is the first time to demonstrate that anesthetic postconditioning retains its marked protection in diseased myocardium.

  17. Akt interaction with PLC(gamma) regulates the G(2)/M transition triggered by FGF receptors from MDA-MB-231 breast cancer cells.

    PubMed

    Browaeys-Poly, Edith; Perdereau, Dominique; Lescuyer, Arlette; Burnol, Anne-Françoise; Cailliau, Katia

    2009-12-01

    Estrogen-independent breast cancer cell growth is under the control of fibroblast growth factors receptors (FGFRs), but the role of phospholipase C gamma (PLC(gamma)) and Akt, the downstream effectors activated by FGFRs, in cell proliferation is still unresolved. FGFRs from highly invasive MDA-MB-231 cells were expressed in Xenopus oocyte, a powerful model system to assess the G(2)/M checkpoint regulation. Under FGF1 stimulation, an analysis of the progression in the M-phase of the cell cycle and of the Akt signaling cascades were performed using the phosphatidylinositol-3-kinase inhibitor, LY294002, and a mimetic peptide of the SH3 domain of PLC(gamma). Activated Akt binds and phosphorylates PLC(gamma) before Akt targets the tumor suppressor Chfr. Disruption of the Akt-PLC(gamma) interaction directs Akt binding to Chfr and accelerates the alleviation of the G(2)/M checkpoint. The PLC(gamma)-Akt interaction, triggered by FGF receptors from estrogen-independent breast cancer cells MDA-MB-231, regulates progression in the M-phase of the cell cycle.

  18. Characterization of LY3023414, a Novel PI3K/mTOR Dual Inhibitor Eliciting Transient Target Modulation to Impede Tumor Growth.

    PubMed

    Smith, Michele C; Mader, Mary M; Cook, James A; Iversen, Philip; Ajamie, Rose; Perkins, Everett; Bloem, Laura; Yip, Yvonne Y; Barda, David A; Waid, Philip P; Zeckner, Douglas J; Young, Debra A; Sanchez-Felix, Manuel; Donoho, Gregory P; Wacheck, Volker

    2016-10-01

    The PI3K/AKT/mTOR pathway is among the most frequently altered pathways in cancer cell growth and survival. LY3023414 is a complex fused imidazoquinolinone with high solubility across a wide pH range designed to inhibit class I PI3K isoforms and mTOR kinase. Here, we describe the in vitro and in vivo activity of LY3023414. LY3023414 was highly soluble at pH 2-7. In biochemical testing against approximately 266 kinases, LY3023414 potently and selectively inhibited class I PI3K isoforms, mTORC1/2, and DNA-PK at low nanomolar concentrations. In vitro, inhibition of PI3K/AKT/mTOR signaling by LY3023414 caused G 1 cell-cycle arrest and resulted in broad antiproliferative activity in cancer cell panel screens. In vivo, LY3023414 demonstrated high bioavailability and dose-dependent dephosphorylation of PI3K/AKT/mTOR pathway downstream substrates such as AKT, S6K, S6RP, and 4E-BP1 for 4 to 6 hours, reflecting the drug's half-life of 2 hours. Of note, equivalent total daily doses of LY3023414 given either once daily or twice daily inhibited tumor growth to similar extents in multiple xenograft models, indicating that intermittent target inhibition is sufficient for antitumor activity. In combination with standard-of-care drugs, LY3023414 demonstrated additive antitumor activity. The novel, orally bioavailable PI3K/mTOR inhibitor LY3023414 is highly soluble and exhibits potent in vivo efficacy via intermittent target inhibition. It is currently being evaluated in phase I and II trials for the treatment of human malignancies. Mol Cancer Ther; 15(10); 2344-56. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Resveratrol Reduces Prostate Cancer Growth and Metastasis by Inhibiting the Akt/MicroRNA-21 Pathway

    PubMed Central

    Sheth, Sandeep; Jajoo, Sarvesh; Kaur, Tejbeer; Mukherjea, Debashree; Sheehan, Kelly; Rybak, Leonard P.; Ramkumar, Vickram

    2012-01-01

    The consumption of foods containing resveratrol produces significant health benefits. Resveratrol inhibits cancer by reducing cell proliferation and metastasis and by inducing apoptosis. These actions could be explained by its ability to inhibit (ERK-1/2), Akt and suppressing the levels of estrogen and insulin growth factor -1 (IGF-1) receptor. How these processes are manifested into the antitumor actions of resveratrol is not clear. Using microarray studies, we show that resveratrol reduced the expression of various prostate-tumor associated microRNAs (miRs) including miR-21 in androgen-receptor negative and highly aggressive human prostate cancer cells, PC-3M-MM2. This effect of resveratrol was associated with reduced cell viability, migration and invasiveness. Additionally, resveratrol increased the expression of tumor suppressors, PDCD4 and maspin, which are negatively regulated by miR-21. Short interfering (si) RNA against PDCD4 attenuated resveratrol’s effect on prostate cancer cells, and similar effects were observed following over expression of miR-21 with pre-miR-21 oligonucleotides. PC-3M-MM2 cells also exhibited high levels of phospho-Akt (pAkt), which were reduced by both resveratrol and LY294002 (a PI3-kinase inhibitor). MiR-21 expression in these cells appeared to be dependent on Akt, as LY294002 reduced the levels of miR-21 along with a concurrent increase in PDCD4 expression. These in vitro findings were further corroborated in a severe combined immunodeficient (SCID) mouse xenograft model of prostate cancer. Oral administration of resveratrol not only inhibited the tumor growth but also decreased the incidence and number of metastatic lung lesions. These tumor- and metastatic-suppressive effects of resveratrol were associated with reduced miR-21 and pAkt, and elevated PDCD4 levels. Similar anti-tumor effects of resveratrol were observed in DU145 and LNCaP prostate cancer cells which were associated with suppression of Akt and PDCD4, but

  20. Arctigenin, a Natural Lignan Compound, Induces Apoptotic Death of Hepatocellular Carcinoma Cells via Suppression of PI3-K/Akt Signaling.

    PubMed

    Jiang, Xiaoxin; Zeng, Leping; Huang, Jufang; Zhou, Hui; Liu, Yubin

    2015-04-28

    In this study, we explored the cytotoxic effects of arctigenin, a natural lignan compound, on human hepatocellular carcinoma (HCC) cells and check the involvement of phosphatidylinositol 3-kinase (PI3-K)/Akt signaling. HCC cells were treated with different concentrations of arctigenin and cell viability and apoptosis were assessed. Manipulating Akt signaling was used to determine its role in the action of arctigenin. Arctigenin significantly inhibited the viability of HCC cells in a concentration-dependent manner. Arctigenin induced apoptosis and activation of caspase-9 and -3. Overexpression of a constitutively active Akt mutant blocked arctigenin-induced apoptosis. Combinational treatment with arctigenin and the PI3-K inhibitor LY294002 significantly enhanced apoptosis. Arctigenin reduced the expression of Bcl-xL, Mcl-1, and survivin and the phosphorylation of mTOR and S6K, which were significantly reversed by overexpression of constitutively active Akt. This is the first report about the anticancer activity of arctigenin in HCC cells, which is mediated by inactivation of PI3-K/Akt signaling. © 2015 Wiley Periodicals, Inc.

  1. Akt phosphorylation and NFkappaB activation are counterregulated under conditions of oxidative stress.

    PubMed

    Taylor, Juliet M; Crack, Peter J; Gould, Jodee A; Ali, Uğur; Hertzog, Paul J; Iannello, Rocco C

    2004-11-01

    This study was designed to elucidate the mechanisms involved in elevated cell death arising from an altered endogenous oxidant state. Increased levels of cell death were detected in cells lacking Gpx1 following the addition of exogenous H2O2. This increased apoptosis correlated with a down-regulation in the activation of the PI(3)K-Akt survival pathway. The importance of this pathway in protecting against H2O2-induced cell death was highlighted by the increased susceptibility of wild-type cells to apoptosis when treated with the PI(3)K inhibitor, LY294002. Activation of the oxidative stress sensitive transcription factor, NFkappaB, was elevated in the Gpx1-/- cells. Significantly, NFkappaB activation could be increased in wild-type cells through the addition of dominant-negative Akt. Therefore, our results suggest that the increased susceptibility of Gpx1-/- cells to H2O2-induced apoptosis can be attributed in part to diminished activation of Akt despite an up-regulation in the activation of the prosurvival NFkappaB. Thus, the PI(3)K-Akt and NFkappaB pathways can act independently of each other in an endogenous model of oxidative stress.

  2. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT.

    PubMed

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M; Manteufel, Edward J; Goldspink, Paul H; Levick, Scott P; Janicki, Joseph S

    2015-08-15

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. Copyright © 2015 the American Physiological Society.

  3. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT

    PubMed Central

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M.; Manteufel, Edward J.; Goldspink, Paul H.; Levick, Scott P.

    2015-01-01

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. PMID:26071541

  4. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by amore » Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.« less

  5. Cross regulation between cGMP-dependent protein kinase and Akt in vasodilatation of porcine pulmonary artery.

    PubMed

    Liu, Juan; Liu, Huixia; Li, Yanjing; Xu, Xiaojian; Chen, Zhengju; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng; Dou, Dou

    2014-11-01

    cGMP-dependent protein kinase (PKG) plays a crucial role in vasodilatation induced by cGMP-elevating agents. Akt has been demonstrated to be involved in modulating vasoreactivity. The present study was to determine the interaction between PKG and Akt and their influences on nitric oxide (NO)-induced vasodilatation. Isolated fourth-generation porcine pulmonary arteries were dissected from the lung and cut into rings in ice-cold modified Krebs-Ringer bicarbonate buffer. The relaxant responses of vessels were determined by organ chamber technique, cGMP was assayed by using enzyme-linked immunosorbent assay kit, the protein levels of phosphorylated Akt were examined by Western blotting, and the activity of phosphodiesterase type 5 (PDE5) was assayed by measuring the rate of cGMP degradation. Incubation with DETA NONOate (a stable NO donor) and 8-Br-cGMP (a cell membrane permeable analog of cGMP) attenuated Akt phosphorylation at Ser-473, which was prevented by Rp-8-Br-PET-cGMPS (a specific inhibitor of PKG) and calyculin A (an inhibitor of protein phosphatase 1 and 2A) but not by okadaic acid (a selective inhibitor of protein phosphatase 2A). Inhibition of Akt enhanced the relaxation and cGMP elevation of porcine pulmonary arteries induced by DETA NONOate or sodium nitroprusside, which was prevented by zaprinast, a specific inhibitor of PDE5. Incubation with LY294002 or Akt inhibitor reduced PDE5 activity in porcine pulmonary arteries. The present study indicates that PKG may attenuate Akt phosphorylation through protein phosphatase 1, which leads to an augmented cGMP elevation by inhibition of PDE5. The increased cGMP in turn activates PKG. Such a positive feedback may play an important role in NO-induced pulmonary vasodilatation.

  6. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    PubMed

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  7. Insulin-mediated inhibition of p38 mitogen-activated protein kinase protects cardiomyocytes in severe burns.

    PubMed

    Lv, Gen-fa; Dong, Mao-long; Hu, Da-hai; Zhang, Wan-fu; Wang, Yun-chuan; Tang, Chao-wu; Zhu, Xiong-xiang

    2011-01-01

    Thermal injury inhibits Akt activation and upregulates p38 mitogen-activated protein kinase, which in turn induces inflammation and increases apoptosis. This study aimed to elucidate the mechanism underlying the cytoprotective role of insulin in severe burns by examining the effects of insulin on inflammation and apoptosis mediated by p38 mitogen-activated protein kinase in burn serum-challenged cardiomyocytes. Neonatal rat cardiomyocytes were exposed to burn serum for 6 hours in the presence or absence of insulin and pretreated with inhibitors to p38 mitogen-activated protein kinase (SB203580) and Akt (LY294002). The authors examined expression of myocardial tumor necrosis factor-alpha, cardiac myofilament proteins caspase-3 and Bcl2, and apoptosis. Burn serum-induced upregulation of tumor necrosis factor was inhibited by both SB203580 and insulin. LY294002 reversed insulin-mediated downregulation of tumor necrosis factor. Both SB203580 and insulin inhibited apoptosis, resulting in fewer pyknotic nuclei and inhibition of caspase-3 activation and Bcl2 downregulation. LY294002 reversed insulin-mediated inhibition of apoptosis. Insulin decreases inflammatory cytokine expression and apoptosis via PI3K/Akt-mediated inhibition of p38 mitogen-activated protein kinase. The cytoprotective role of insulin suggests that it may have a potential role in strategies for treating thermal injuries.

  8. Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart.

    PubMed

    Ravingerová, Tána; Matejíková, Jana; Neckár, Jan; Andelová, Eva; Kolár, Frantisek

    2007-03-01

    Endogenous cardiac protection against prolonged ischemic insult can be achieved by repeated brief episodes of ischemia (hypoxia) or by cardiac adaptation to various stresses such as chronic hypoxia. Activation of phosphatidylinositol 3-kinase (PI3K)/Akt is involved in antiapoptotic effects, however, it is not clear whether it is required for overall heart salvage including protection against myocardial infarction and arrhythmias. We focussed on the potential common role of PI3K/Akt in anti-infarct protection, in the experimental settings of long-term adaptation to chronic intermittent hypobaric hypoxia (IHH; 8 h/day, 25-30 exposures, in vivo rats) and acute ischemic preconditioning (IP; Langendorff-perfused hearts). In addition, we explored the role of PI3K/Akt in susceptibility to ischemic ventricular arrhythmias. In normoxic open-chest rats, PI3K/Akt inhibitor LY294002 (LY; 0.3 mg/kg) given 5 min before test occlusion/reperfusion (I/R) did not affect infarct size (IS) normalized to the size of area at risk (AR). In hypoxic rats, LY partially attenuated IS-limiting effect of IHH (IS/AR 59.7 +/- 4.1% vs. 51.8 +/- 4.4% in the non-treated rats; p > 0.05) and increased IS/AR to its value in normoxic rats (64.9 +/- 5.1%). In the isolated hearts, LY (5 muM) applied 15 min prior to I/R completely abolished anti-infarct protection by IP (IS/AR 55.0 +/- 4.9% vs. 15.2 +/- 1.2% in the non-treated hearts and 42.0 +/- 5.5% in the non-preconditioned controls; p < 0.05). In the non-preconditioned hearts, PI3K/Akt inhibition did not modify IS/AR, on the other hand, it markedly suppressed arrhythmias. In the LY-treated isolated hearts, the total number of ventricular premature beats and the incidence of ventricular tachycardia (VT) was reduced from 518 +/- 71 and 100% in the controls to 155 +/- 15 and 12.5%, respectively (p < 0.05). Moreover, bracketing of IP with LY did not reverse antiarrhythmic effect of IP. These results suggest that activation of PI3K/Akt cascade plays a role

  9. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our datamore » demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T

  10. Akt/protein kinase B activation by adenovirus vectors contributes to NFkappaB-dependent CXCL10 expression.

    PubMed

    Liu, Qiang; White, Lindsay R; Clark, Sharon A; Heffner, Daniel J; Winston, Brent W; Tibbles, Lee Anne; Muruve, Daniel A

    2005-12-01

    In gene therapy, the innate immune system is a significant barrier to the effective application of adenovirus (Ad) vectors. In kidney epithelium-derived (REC) cells, serotype 5 Ad vectors induce the expression of the chemokine CXCL10 (IP-10), a response that is dependent on NFkappaB. Compared to the parental vector AdLuc, transduction with the RGD-deleted vector AdL.PB resulted in reduced CXCL10 activation despite increasing titers, implying that RGD-alpha(V) integrin interactions contribute to adenovirus induction of inflammatory genes. Akt, a downstream effector of integrin signaling, was activated within 10 min of transduction with Ad vectors in a dose-dependent manner. Akt activation was not present following transduction with AdL.PB, confirming the importance of capsid-alpha(V) integrin interactions in Ad vector Akt activation. Inhibition of the phosphoinositide-3-OH kinase/Akt pathway by Wortmannin or Ly294002 compounds decreased Ad vector induction of CXCL10 mRNA. Similarly, adenovirus-mediated overexpression of the dominant negative AktAAA decreased CXCL10 mRNA expression compared to the reporter vector AdLacZ alone. The effect of Akt on CXCL10 mRNA expression occurred via NFkappaB-dependent transcriptional activation, since AktAAA overexpression and Ly294002 both inhibited CXCL10 and NFkappaB promoter activation in luciferase reporter experiments. These results show that Akt plays a role in the Ad vector activation of NFkappaB and CXCL10 expression. Understanding the mechanism underlying the regulation of host immunomodulatory genes by adenovirus vectors will lead to strategies that will improve the efficacy and safety of these agents for clinical use.

  11. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway

    PubMed Central

    Wu, Jingxian; Li, Qiong; Wang, Xiaoyan; Yu, Shanshan; Li, Lan; Wu, Xuemei; Chen, Yanlin; Zhao, Jing; Zhao, Yong

    2013-01-01

    Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage. PMID:23555802

  12. Carvedilol protects bone marrow stem cells against hydrogen peroxide-induced cell death via PI3K-AKT pathway.

    PubMed

    Chen, Meihui; Chen, Shudong; Lin, Dingkun

    2016-03-01

    Carvedilol, a nonselective β-adrenergic receptor blocker, has been reported to exert potent anti-oxidative activities. In the present study, we aimed to investigate the effects of carvedilol against hydrogen peroxide (H2O2)-induced bone marrow-derived mesenchymal stem cells (BMSCs) death, which imitate the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. Carvedilol significantly reduced H2O2-induced reactive oxygen species production, apoptosis and subsequent cell death. LY294002, the PI3K inhibitor, blocked the protective effects and up-regulation of Akt phosphorylation of carvedilol. Together, our results showed that carvedilol protects H2O2-induced BMSCs cell death partly through PI3K-Akt pathway, suggesting carvedilol could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling.

    PubMed

    Namkoong, Seung; Kim, Chun-Ki; Cho, Young-Lai; Kim, Ji-Hee; Lee, Hansoo; Ha, Kwon-Soo; Choe, Jongseon; Kim, Pyeung-Hyeun; Won, Moo-Ho; Kwon, Young-Geun; Shim, Eun Bo; Kim, Young-Myeong

    2009-06-01

    Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI.Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation,but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERKactivation and PI3K/Akt/eNOS/NO signaling.

  14. NCOA5 promotes proliferation, migration and invasion of colorectal cancer cells via activation of PI3K/AKT pathway

    PubMed Central

    Xie, Yufeng; He, Yang; Wang, Zhenxin; Qin, Lei

    2017-01-01

    The nuclear receptor coactivator 5 (NCOA5) displays both coactivator and corepressor functions. Previous studies showed that alteration of NCOA5 participates in carcinogenesis and progression. However, its roles in colorectal cancer (CRC) remain unknown. Herein, we demonstrated that expression of NCOA5 in human CRC tissues was notably higher than that in adjacent tissues, which significantly correlated with clinicopathological features such as length of tumor, regional lymph node staging and cancer staging. Knockdown of NCOA5 markedly suppressed proliferation, migration and invasion of SW620 high malignant CRC cells. Silencing of NCOA5 also inhibited in vivo growth of SW620 CRC subcutaneously xenografted tumors in athymic BALB/c nude mice. Meanwhile, Overexpression of NCOA5 facilitated these processes in SW480 low malignant CRC cells. Furthermore, knockdown of NCOA5 induced cell cycle G1 phase arrest in SW620 cells, whereas overexpression of NCOA5 promoted G1 to S phase transition in SW480 cells. Mechanistic studies revealed that NCOA5 upregulated phospho-protein kinase B (p-PKB/AKT), Cyclin D1 and matrix metalloproteinase 9 (MMP9) as well as downregulated P27 in CRC cells. Notably, PI3K inhibitor LY294002 obviously attenuated the effects of NCOA5 on p-AKT, Cyclin D1, P27 and MMP9. Moreover, LY294002 and knockdown of Cyclin D1 or MMP9 remarkably blocked the tumor-promoting activity of NCOA5. Collectively, NCOA5 promoted CRC cell proliferation, migration and invasion by upregulating Cyclin D1 and MMP9 while downregulating P27 to a great extent via activating PI3K/AKT signaling pathway. These findings suggested that NCOA5 exhibits an oncogenic effect in human CRC and represents a novel therapeutic target for CRC. PMID:29296214

  15. Agmatine Protects Against 6-OHDA-Induced Apoptosis, and ERK and Akt/GSK Disruption in SH-SY5Y Cells.

    PubMed

    Amiri, Esmat; Ghasemi, Rasoul; Moosavi, Maryam

    2016-08-01

    6-Hydroxydopamine (6-OHDA), a metabolite of dopamine is known to induce dopaminergic cell toxicity which makes that a suitable agent inducing an experimental model of Parkinson's disease (PD). Agmatine has been shown to protect against some cellular and animal PD models. This study was aimed to assess whether agmatine prevents 6-OHDA-induced SH-SY5Y cell death and if yes, then how it affects Akt/glycogen synthesis kinase-3β (GSK-3β) and extracellular signal-regulated kinases (ERK) signals. The cells were treated with different drugs, and their viability was examined via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay and morphological observation. Western blot studies were done to assess cleaved caspase-3, Akt/GSK-3β, and ERK proteins. 6-OHDA-induced cell death and caspase-3 cleavage, while agmatine prevented those changes. 6-OHDA also decreased the amount of phosphorylated Akt (pAkt)/Akt while increased GSK-3β activity which was prevented by agmatine. Additionally, this toxin increased pERK/ERK ratio which was averted again by agmatine. The PI3/Akt inhibitor, LY294002, impeded the changes induced by agmatine, while ERK inhibitor (PD98059) did not disturb the effects of agmatine, and by itself, it preserved the cells against 6-OHDA toxicity. This study revealed that agmatine is protective in 6-OHDA model of PD and affects Akt/GSK-3β and ERK pathways.

  16. PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/granulin-epithelin precursor) protein expression in human ovarian cancer cell lines.

    PubMed

    Diaz-Cueto, Laura; Arechavaleta-Velasco, Fabian; Diaz-Arizaga, Adriana; Dominguez-Lopez, Pablo; Robles-Flores, Martha

    2012-07-01

    Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.

  17. Lithium ions attenuate serum-deprivation-induced apoptosis in PC12 cells through regulation of the Akt/FoxO1 signaling pathways.

    PubMed

    Zeng, Zhiwen; Wang, Haitao; Shang, Fu; Zhou, Lihua; Little, Peter J; Quirion, Remi; Zheng, Wenhua

    2016-03-01

    Lithium is currently used in the treatment of mental illness. We have previously reported that lithium stimulated the protein kinase B/Forkhead box O1 (Akt/FoxO1) pathway in rats. However, little information is available regarding its neuroprotective role of this pathway and underlying mechanisms. PC12 cells treated with serum deprivation were used as a toxicity model to study the protective effect of lithium and its underlying mechanisms. Cell viability was determined by methyl thiazolyl tetrazolium assay and Hoechst staining. FoxO1 subcellular location and its overexpression were used to study the underlying mechanisms. Various pathway inhibitors were used to investigate the possible pathways, while the phosphorylation of Akt and FoxO1 was analyzed by Western blot. Lithium pretreatment dose-dependently reduced PC12 cell apoptosis induced by serum starvation. The protective effect of lithium was abolished by LY294002, a PI3K-specific inhibitor, and Akt inhibitor Akt inhibitor VIII, whereas mitogen-activated protein kinase kinase (MEK kinase) inhibitor U0126 had no effect. Lithium induced the phosphorylation of Akt and FoxO1 in a time- and concentration-dependent manner. Lithium-induced phosphorylation of Akt and FoxO1 is mediated by the PI3K/Akt pathway. Serum deprivation caused nuclear translocation of FoxO1 while application of lithium reversed the effect of serum deprivation. Moreover, overexpression of FoxO1 enhanced cell apoptosis induced by serum withdrawal. Finally, lithium was found to reduce the exogenous and endogenous FoxO1 protein levels in PC12 cells in a concentration-dependent fashion. The protective effect of lithium against serum starvation cell death is mediated by the PI3K/Akt/FoxO1 pathway.

  18. Phosphorylated Akt/PKB controls cell growth and apoptosis in intraductal papillary-mucinous tumor and invasive ductal adenocarcinoma of the pancreas.

    PubMed

    Semba, Shuho; Moriya, Toshiyuki; Kimura, Wataru; Yamakawa, Mitsunori

    2003-04-01

    Akt/PKB promotes cell proliferation and rescues cells from apoptosis. To evaluate the role of Akt/PKB, a key molecule in phosphatidylinositol 3-OH kinase (PI3K) signaling, during the development of pancreatic duct neoplasias such as intraductal papillary-mucinous tumor (IPMT) and invasive ductal adenocarcinoma (IDAC) of the pancreas. In PK-45H pancreatic cancer cells, the growth-inhibitory and apoptosis-inducing effects of LY294002, a PI3K inhibitor, were detected in a concentration-dependent manner, followed by the reduction of phosphorylated Akt levels. Immunohistochemical analyses revealed that frequent overexpression of phosphorylated Akt (Ser473) was detected in 10 (63%) of 16 IPMTs and 14 (70%) of 20 IDACs. It is interesting that the incidence of Akt phosphorylation closely correlated with Ki-67 immunoreactivity and had an inverse association with the number of cases of apoptotic bodies in both IPMT and IDAC. Although there was no good correlation with other clinicopathologic parameters, the two patients with recurrent IPMT had high levels of phosphorylated Akt. Our findings suggest that activation of Akt plays an important role during the progression of these pancreatic duct neoplasias at the early stage. Furthermore, inhibition of the PI3K-Akt/PKB pathway may have therapeutic potential in the treatment of pancreatic duct tumors.

  19. A Phosphatidylinositol 3-kinase-regulated Akt-independent signaling promotes cigarette smoke-induced FRA-1 expression.

    PubMed

    Zhang, Qin; Adiseshaiah, Pavan; Kalvakolanu, Dhananjaya V; Reddy, Sekhar P

    2006-04-14

    The FRA-1 proto-oncogene is overexpressed in a variety of human tumors and is known to up-regulate the expression of genes involved in tumor progression and invasion. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway is also known to regulate these cellular processes. More importantly, respiratory toxicants and carcinogens activate both the PI3K-Akt pathway and FRA-1 expression in human bronchial epithelial (HBE) cells. In this study we investigated a potential link between the PI3K-Akt pathway and the cigarette smoke (CS)-stimulated epidermal growth factor receptor-mediated FRA-1 induction in non-oncogenic HBE cells. Treatment of cells with LY294002, an inhibitor of the PI3K-Akt pathway, completely blocked CS-induced FRA-1 expression. Surprisingly pharmacological inhibition of Akt had no significant effect on CS-induced FRA-1 expression. Likewise the inhibition of protein kinase C zeta, which is a known downstream effector of PI3K, did not alter FRA-1 expression. We found that the PI3K through p21-activated kinase 1 regulates FRA-1 proto-oncogene induction by CS and the subsequent activation of the Elk1 and cAMP-response element-binding protein transcription factors that are bound to the promoter in HBE cells.

  20. Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas.

    PubMed

    Wang, Huamin; Wang, Hua; Zhang, Wei; Huang, Helen J; Liao, Warren S L; Fuller, Gregory N

    2004-08-01

    Loss of phosphatase and tensin homolog (PTEN) and amplification of the epidermal growth factor receptor (EGFR) gene contribute to the progression of gliomas. As downstream targets of the PTEN and EGFR signaling pathways, Akt, NFkappaB, and signal transducer and activator of transcription-3 (Stat3) have been shown to play important roles in the control of cell proliferation, apoptosis, and oncogenesis. We examined the activation status of Akt, NFkappaB, and Stat3 in 259 diffuse gliomas using tissue microarrays and immunohistochemistry, and evaluated their association with glioma grade. We observed significant positive correlations between the activation status of Akt and NFkappaB and glioma grade. In contrast, only focal immunoreactivity for phospho-Stat3 was observed in < 9% of high-grade gliomas. In addition, we observed a significant correlation between the activation of Akt and NFkappaB. Functional correlation between Akt activation and the activation of NFkappaB was confirmed in U251MG GBM cells in which inhibition of Akt activation either by stable expression of PTEN or by the PI3-kinase inhibitors, wortmannin and LY294002, led to a concomitant decrease in NFkappaB-binding activity. Thus, our results demonstrate that constitutive activation of Akt and NFkappaB, but not Stat3, contributes significantly to the progression of diffuse gliomas, and activation of Akt may lead to NFkappaB activation in high-grade gliomas.

  1. Formononetin attenuates Aβ25-35-induced cytotoxicity in HT22 cells via PI3K/Akt signaling and non-amyloidogenic cleavage of APP.

    PubMed

    Chen, Lizhi; Ou, Shanshan; Zhou, Lingqi; Tang, Hai; Xu, Jie; Guo, Kaihua

    2017-02-03

    Amyloid beta (Aβ) is the main component of the amyloid plaques that accumulate in the brains of Alzheimer patients. Here, we reported the protective role of Formononetin (Form) against Aβ 25-35 -induced neurotoxicity in HT22 cells. We found that Form significantly increased the viability of HT22 cells but decreased the cell apoptosis when challenging with Aβ 25-35. The inhibitory effects of Form were associated with PI3K/Akt signaling pathway as PI3K inhibitor (LY294002) or ERα specific inhibitor (MPP) blocked the effects. Form also accelerated the non-amyloidogenic process of amyloid precursor protein (APP) by enhancing α-secretase activity and sAPPα release. Altogether, our findings may provide a novel therapeutic target to treat AD sufferers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis.

    PubMed

    Baker, Natasha; Sohn, Jihee; Tuan, Rocky S

    2015-12-01

    Stem cells are considered an important resource for tissue repair and regeneration. Their utilization in regenerative medicine will be aided by mechanistic insight into their responsiveness to external stimuli. It is likely that, similar to all other cells, an initial determinant of stem cell responsiveness to external stimuli is the organization of signaling molecules in cell membrane rafts. The clustering of signaling molecules in these cholesterol-rich membrane microdomains can affect the activity, specificity, cross-talk and amplification of cell signaling. Membrane rafts fall into two broad categories, non-caveolar and caveolar, based on the absence or presence, respectively, of caveolin scaffolding proteins. We have recently demonstrated that caveolin-1 (Cav-1) expression increases during, and knockdown of Cav-1 expression enhances, osteogenic differentiation of human bone marrow derived mesenchymal stem cells (MSCs). The increase in Cav-1 expression observed during osteogenesis is likely a negative feedback mechanism. We hypothesize that focal adhesion signaling pathways such as PI3K/Akt signaling may be negatively regulated by Cav-1 during human MSC osteogenesis. Human bone marrow MSCs were isolated from femoral heads obtained after total hip arthroplasty. MSCs were incubated in standard growth medium alone or induced to osteogenically differentiate by the addition of supplements (β-glycerophosphate, ascorbic acid, dexamethasone, and 1,25-dihydroxyvitamin D3). The activation of and requirement for PI3K/Akt signaling in MSC osteogenesis were assessed by immunoblotting for phosphorylated Akt, and treatment with the PI3K inhibitor LY294002 and Akt siRNA, respectively. The influences of Cav-1 and cholesterol membrane rafts on PI3K/Akt signaling were investigated by treatment with Cav-1 siRNA, methyl-β-cyclodextrin, or cholesterol oxidase, followed by cellular sub-fractionation and/or immunoblotting for phosphorylated Akt. LY294002 and Akt siRNA inhibited MSC

  3. AVS-1357 inhibits melanogenesis via prolonged ERK activation.

    PubMed

    Kim, Dong-Seok; Lee, Hyun-Kyung; Park, Seo-Hyoung; Chae, Chong Hak; Park, Kyoung-Chan

    2009-08-01

    In this study, we demonstrated that a derivative of imidazole, AVS-1357, is a novel skin-whitening compound. AVS-1357 was found to significantly inhibit melanin production in a dose-dependent manner; however, it did not directly inhibit tyrosinase. Furthermore, we found that AVS-1357 induced prolonged activation of extracellular signal-regulated kinase (ERK) and Akt, while it downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase. It has been reported that the activation of ERK and/or Akt is involved in melanogenesis. Therefore, we examined the effects of AVS-1357 on melanogenesis in the absence or presence of PD98059 (a specific inhibitor of the ERK pathway) and/or LY294002 (a specific inhibitor of the Akt pathway). PD98059 dramatically increased melanogenesis, whereas LY294002 had no effect. Furthermore, PD98059 attenuated AVS-1357 induced ERK activation, as well as the downregulation of MITF and tyrosinase. These findings suggest that the effects of AVS-1357 occur via downregulation of MITF and tyrosinase, which is caused by AVS-1357-induced prolonged ERK activation. Taken together, our results indicate that AVS-1357 has the potential as a new skin whitening agent.

  4. An essential role for the Id1/PI3K/Akt/NFkB/survivin signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro.

    PubMed

    Li, Wei; Wang, Hang; Kuang, Chun-Yan; Zhu, Jin-Kun; Yu, Yang; Qin, Zhe-Xue; Liu, Jie; Huang, Lan

    2012-04-01

    The enhancement of re-endothelialisation is a critical therapeutic option for repairing injured blood vessels. Endothelial progenitor cells (EPCs) are the major source of cells that participate in endothelium repair and contribute to re-endothelialisation by reducing neointima formation after vascular injury. The over-expression of the inhibitor of differentiation or DNA binding 1 (Id1) significantly improved EPC proliferation. This study aimed to investigate the effects of Id1 on the phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor kappa B (NFκB)/survivin signalling pathway and its significance in promoting EPC proliferation in vitro. Spleen-derived EPCs were cultured as previously described. Id1 was presented at low levels in EPCs, and was rapidly up-regulated by stimulation with vascular endothelial growth factor. We demonstrated that transient transfection of Id1 into EPCs activated the PI3K/Akt/NFκB/survivin signalling pathway and promoted EPC proliferation. The proliferation of EPCs was extensively inhibited by silencing of endogenous Id1, and knockdown of Id1 expression led to suppression of PI3K/Akt/NFκB/survivin signalling pathway in EPCs. In addition, blockade by the PI3K-specific inhibitor LY294002, Akt inhibitor, the NFκB inhibitor BAY 11-7082, the survivin inhibitor Curcumin, or the survivin inhibitor YM155 reduced the effects of Id1 transfection. These results suggest that the Id1/PI3K/Akt/NFκB/survivin signalling pathway plays a critical role in EPC proliferation. The Id1/PI3K/Akt/NFκB/survivin signalling pathway may represent a novel therapeutic target in the prevention of restenosis after vascular injury.

  5. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick

    PubMed Central

    Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank

    2012-01-01

    Purpose Intravitreal insulin has been shown to be a powerful stimulator of myopia in chickens, in particular if the retinal image is degraded or defocused. In most tissues, the insulin receptor activates two main signaling pathways: a) the mitogen-activated protein kinase (MAPK) cascade (e.g., mitogen-activated protein kinasem kinase [MEK] and extracellular regulated kinase [ERK]) and b) the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In the current study, insulin was injected, and these pathways were separately inhibited to determine which is activated when the retinal image is defocused by spectacle lenses. Methods Chicks were treated with either +7 D, −7 D, or no lenses. They were intravitreally injected with insulin, the MEK inhibitor U0126, the PI3K inhibitor Ly294002, or a combination of insulin and one of the inhibitors. Refractions and ocular dimension were measured at the beginning and after four days of treatment. The retinal proteins of the chicks were measured with western blots after 2 h and four days of treatment. Incubation occurred with anti-Akt1, anti-Erk1/2, anti-phospho-AktThr308, and anti-phospho-Erk1/2(Thr202/Tyr204) antibodies, and the ratio between the relative intensity of the phospho-form and the total-form was calculated. Results Chicks wearing positive lenses and injected with saline and with PI3K inhibitor compensated for the imposed defocus and became hyperopic. Insulin injections and insulin plus PI3K inhibitor injections prevented lens-induced hyperopia, whereas the MEK inhibitor alone and insulin plus MEK inhibitor had no effect. Obviously, the MEK inhibitor suppressed the effect of insulin on eye growth in the plus lens–treated animals. Chicks treated with negative lenses and injected with insulin, or with insulin plus MEK inhibitor, overcompensated for the imposed defocus. This effect of insulin was not detected in eyes injected with PI3K inhibitor plus insulin, suggesting that the PI3K inhibitor

  6. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick.

    PubMed

    Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank; Feldkaemper, Marita P

    2012-01-01

    Intravitreal insulin has been shown to be a powerful stimulator of myopia in chickens, in particular if the retinal image is degraded or defocused. In most tissues, the insulin receptor activates two main signaling pathways: a) the mitogen-activated protein kinase (MAPK) cascade (e.g., mitogen-activated protein kinasem kinase [MEK] and extracellular regulated kinase [ERK]) and b) the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In the current study, insulin was injected, and these pathways were separately inhibited to determine which is activated when the retinal image is defocused by spectacle lenses. Chicks were treated with either +7 D, -7 D, or no lenses. They were intravitreally injected with insulin, the MEK inhibitor U0126, the PI3K inhibitor Ly294002, or a combination of insulin and one of the inhibitors. Refractions and ocular dimension were measured at the beginning and after four days of treatment. The retinal proteins of the chicks were measured with western blots after 2 h and four days of treatment. Incubation occurred with anti-Akt1, anti-Erk1/2, anti-phospho-Akt(Thr308), and anti-phospho-Erk1/2((Thr202/Tyr204)) antibodies, and the ratio between the relative intensity of the phospho-form and the total-form was calculated. Chicks wearing positive lenses and injected with saline and with PI3K inhibitor compensated for the imposed defocus and became hyperopic. Insulin injections and insulin plus PI3K inhibitor injections prevented lens-induced hyperopia, whereas the MEK inhibitor alone and insulin plus MEK inhibitor had no effect. Obviously, the MEK inhibitor suppressed the effect of insulin on eye growth in the plus lens-treated animals. Chicks treated with negative lenses and injected with insulin, or with insulin plus MEK inhibitor, overcompensated for the imposed defocus. This effect of insulin was not detected in eyes injected with PI3K inhibitor plus insulin, suggesting that the PI3K inhibitor suppressed the effects of

  7. S100A11 promotes human pancreatic cancer PANC-1 cell proliferation and is involved in the PI3K/AKT signaling pathway.

    PubMed

    Xiao, Mingbing; Li, Tao; Ji, Yifei; Jiang, Feng; Ni, Wenkai; Zhu, Jing; Bao, Baijun; Lu, Cuihua; Ni, Runzhou

    2018-01-01

    S100A11, a member of S100 calcium-binding protein family, is associated with the numerous processes of tumorigenesis and metastasis. In the present study, the role of S100A11, and its possible underlying mechanisms in cell proliferation, apoptosis and cell cycle distribution in human pancreatic cancer were explored. Immunohistochemical analyses of S100A11 and phosphorylated (p)-AKT serine/threonine kinase (AKT) were performed in 30 resected specimens from patients with pancreatic cancer. PANC-1 cells were transfected with pcDNA3.1-S100A11 or treated with 50 µmol/l LY294002 for 48 h. Cell proliferation was determined using a cell counting kit-8 assay, whereas apoptosis and cell cycle distribution were determined by flow cytometry analysis. The mRNA and protein levels of S100A11, and AKT were determined using semi quantitative reverse transcription-polymerase chain reaction and western blot analyses, respectively. Pearson correlation analysis revealed that the expression levels of S100A11 and p-AKT were positively correlated (r, 0.802; P<0.05). Compared with the control group, S100A11 overexpression significantly promoted PANC-1 cell proliferation and reduced the percentage of early apoptotic cells. Flow cytometric analysis indicated that the proportion of PANC-1 cells in the S phase was significantly elevated and cell percentage in the G0/G1 phase declined in response to S100A11 overexpression (all P<0.05). S100A11 overexpression also significantly increased AKT mRNA and p-AKT protein expression levels (both P<0.05). The phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, significantly inhibited PANC-1 cell proliferation, promoted apoptosis and caused G1/S phase arrest in PANC-1 cells (all P<0.05). These findings together suggest that S100A11 promotes the viability and proliferation of human pancreatic cancer PANC-1 cells through the upregulation of the PI3K/AKT signaling pathway. Thus, S100A11 may be considered as a novel drug target for targeted therapy of

  8. Clusterin protects H9c2 cardiomyocytes from oxidative stress-induced apoptosis via Akt/GSK-3β signaling pathway

    PubMed Central

    Jun, Hyoung-Oh; Kim, Dong-hun; Lee, Sae-Won; Lee, Hye Shin; Seo, Ji Hae; Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Min, Bon Hong

    2011-01-01

    Clusterin is a secretory glycoprotein, which is highly up-regulated in a variety of normal and injury tissues undergoing apoptosis including infarct region of the myocardium. Here, we report that clusterin protects H9c2 cardiomyocytes from H2O2-induced apoptosis by triggering the activation of Akt and GSK-3β. Treatment with H2O2 induces apoptosis of H9c2 cells by promoting caspase cleavage and cytochrome c release from mitochondria. However, co-treatment with clusterin reverses the induction of apoptotic signaling by H2O2, thereby recovers cell viability. The protective effect of clusterin on H2O2-induced apoptosis is impaired by PI3K inhibitor LY294002, which effectively suppresses clusterin-induced activation of Akt and GSK-3β. In addition, the protective effect of clusterin is independednt on its receptor megalin, because inhibition of megalin has no effect on clusturin-mediated Akt/GSK-3β phosphoylation and H9c2 cell viability. Collectively, these results suggest that clusterin has a role protecting cardiomyocytes from oxidative stress and the Akt/GSK-3β signaling mediates anti-apoptotic effect of clusterin. PMID:21270507

  9. Smad4 sensitizes colorectal cancer to 5-fluorouracil through cell cycle arrest by inhibiting the PI3K/Akt/CDC2/survivin cascade.

    PubMed

    Zhang, Binhao; Leng, Chao; Wu, Chao; Zhang, Zhanguo; Dou, Lei; Luo, Xin; Zhang, Bixiang; Chen, Xiaoping

    2016-03-01

    5-Fluorouracil (5-FU), a cell cycle-specific antimetabolite, is one of the most commonly used chemotherapeutic agents for colorectal cancer (CRC). Yet, resistance to 5-FU-based chemotherapy is still an obstacle to the treatment of this malignancy. Mutation or loss of Smad4 in CRC is pivotal for chemoresistance. However, the mechanism by which Smad4 regulates the chemosensitivity of CRC remains unclear. In the present study, we investigated the role of Smad4 in the chemosensitivity of CRC to 5-FU, and whether Smad4-regulated cell cycle arrest is involved in 5-FU chemoresistance. We used Smad4-expressing CT26 and Smad4-null SW620 cell lines as experimental models, by knockdown or transgenic overexpression. Cells or tumors were treated with 5-FU to determine chemosensitivity by cell growth, tumorigenicity assay and a mouse model. Cell cycle distribution was examined with flow cytometric analysis, and cell cycle-related proteins were examined by western blotting. Smad4 deficiency in CT26 and SW620 cells induced chemoresistance to 5-FU both in vitro and in vivo. Smad4 deficiency attenuated G1 or G2 cell cycle arrest by activating the PI3K/Akt/CDC2/survivin pathway. The PI3K inhibitor, LY294002, reversed the activation of the Akt/CDC2/survivin cascade in the Smad4-deficient cells, while it had little effect on cells with high Smad4 expression. In conclusion, we discovered a novel mechanism mediated by Smad4 to trigger 5-FU chemosensitivity through cell cycle arrest by inhibiting the PI3K/Akt/CDC2/survivin cascade. The present study also implies that LY294002 has potential therapeutic value to reverse the chemosensitivity of CRC with low Smad4 expression.

  10. MicroRNA-21 promotes bone mesenchymal stem cells migration in vitro by activating PI3K/Akt/MMPs pathway.

    PubMed

    Lv, Chen; Yang, Shengwu; Chen, Xin; Zhu, Xiongbai; Lin, Wenjun; Wang, Lu; Huang, Zhengxiang; Wang, Mingyue; Tu, Guanjun

    2017-12-01

    MicroRNA-21 (miR-21) contributes to anti-apoptosis in bone marrow mesenchymal stem cells (BMSC), but its role in the migration of BMSCs remains vague. The aim of this study was to determine the possible effect of miR-21 on regulating BMSCs directional migration and the expression of MMP-2/MMP-9 in BMSCs in vitro. BMSCs were successfully infected with miR-21-up lentivirus. Cell migration using Transwell assay indicated that upregulated expression of miR-21 could significantly promote BMSCs migration. Western blot analysis indicated that miR-21 significantly upregulated the expression of MMP-2 and MMP-9, which were related to metastasis-associated genes. GM6001, the specific MMPs inhibitor, abrogated the upregulated expression of MMP-2/MMP-9 and abolished the positive effect of miR-21 on promoting BMSCs migration. Meanwhile, miR-21 significantly enhanced Akt phosphorylation, as measured by Western blot analysis. LY294002, an inhibitor of Akt activation, abrogated the phosphorylation of Akt and abolished the positive effect of miR-21 on promoting BMSCs migration and upregulating MMP-2/MMP-9 expression. These results suggest that miR-21 contributes to BMSCs migration by upregulating MMP-2/MMP-9, potentially via the PI3K/Akt pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Akt regulates the subcellular localization of the Rab27a-binding protein JFC1 by phosphorylation.

    PubMed

    Johnson, Jennifer L; Pacquelet, Sandrine; Lane, William S; Eam, Boreth; Catz, Sergio D

    2005-08-01

    Here, we show that the Rab27a-binding protein JFC1/Slp1 (synaptotagmin-like protein) is regulated by Akt-mediated phosphorylation. Using the phosphatase and tensin homolog-null LNCaP cells and the phosphatidylinositol 3-kinase inhibitor LY294002, we show that the phosphorylation of endogenous JFC1 is dependent on the phosphatidylinositol 3-kinase/Akt pathway. JFC1 was phosphorylated in cells expressing a constitutively active Akt, confirming that it is an Akt substrate in vivo. Direct phosphorylation of JFC1 by Akt was confirmed in vitro. Using microcapillary high-performance liquid chromatography tandem mass spectrometry, we identified five Akt-phosphorylation sites in JFC1. By mutagenesis analysis and subsequent immunoprecipitation (IP), we established that Akt phosphorylates JFC1 at serine 241. JFC1 and Rab27a colocalize in the proximity of the plasma membrane in LNCaP cells. The interaction was confirmed by IP analysis and was abolished by the point mutation W83S in JFC1. Phosphorylation did not alter the ability of JFC1 to bind to Rab27a. Instead, phosphorylation by Akt dramatically decreased when JFC1 was bound to Rab27a. Finally, we show that as a consequence of in vivo phosphorylation, JFC1 dissociates from the membrane, promoting JFC1 redistribution to the cytosol. Our results suggest that Akt regulates JFC1/Slp1 function by phosphorylation and may have implications on Rab27a-containing vesicle secretion.

  12. Role of Akt signaling in resistance to DNA-targeted therapy

    PubMed Central

    Avan, Abolfazl; Narayan, Ravi; Giovannetti, Elisa; Peters, Godefridus J

    2016-01-01

    The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients. PMID:27777878

  13. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kaijun; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou; Jiang, Yiqian

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolishedmore » escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.« less

  14. Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia.

    PubMed

    Chi, Oak Z; Mellender, Scott J; Kiss, Geza K; Liu, Xia; Weiss, Harvey R

    2017-05-01

    One of the important factors altering the degree of blood-brain barrier (BBB) disruption in cerebral ischemia is the anesthetic used. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway has been reported to be involved in modulating BBB permeability and in isoflurane induced neuroprotection. This study was performed to compare the degree of BBB disruption in focal cerebral ischemia under isoflurane vs pentobarbital anesthesia and to determine whether inhibition of PI3K/Akt would affect the disruption in the early stage of focal cerebral ischemia. Permanent middle cerebral artery (MCA) occlusion was performed in rats under 1.4% isoflurane or pentobarbital (50mg/kg i.p.) anesthesia with controlled ventilation. In half of each group LY294002, which is a PI3K/Akt inhibitor, was applied on the ischemic cortex immediately after MCA occlusion. After one hour of MCA occlusion, the transfer coefficient (K i ) of 14 C-α-aminoisobutyric acid ( 14 C-AIB) was determined to quantify the degree of BBB disruption. MCA occlusion increased the K i both in the isoflurane and pentobarbital anesthetized rats. However, the value of K i was lower under isoflurane (11.5±6.0μL/g/min) than under pentobarbital (18.3±7.1μL/g/min) anesthesia. The K i of the contralateral cortex of the pentobarbital group was higher (+74%) than that of the isoflurane group. Application of LY294002 on the ischemic cortex increased the K i (+99%) only in the isoflurane group. The degree of BBB disruption by MCA occlusion was significantly lower under isoflurane than pentobarbital anesthesia in the early stage of cerebral ischemia. Our data demonstrated the importance of choice of anesthetics and suggest that PI3K/Akt signaling pathway plays a significant role in altering BBB disruption in cerebral ischemia during isoflurane but not during pentobarbital anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Chen, R H; Su, Y H; Chuang, R L; Chang, T Y

    1998-10-15

    Insulin and insulin receptor substrate 1 (IRS-1) are capable of protecting liver cells from apoptosis induced by transforming growth factor-beta1 (TGF-beta). The Ras/mitogen-activated protein kinase (MAP kinase) and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways are both activated upon insulin stimulation and can protect against apoptosis under certain circumstances. We investigated which of these pathways is responsible for the protective effect of insulin on TGF-beta-induced apoptosis. An activated Ras, although elicited a strong mitogenic effect, could not protect Hep3B cells from TGF-beta-induced apoptosis. Furthermore, PD98059, a selective inhibitor of MEK, did not suppress the antiapoptotic effect of insulin. In contrast, the PI 3-kinase inhibitor, LY294002, efficiently blocked the effect of insulin. Protection against TGF-beta-induced apoptosis conferred by PI 3-kinase was further verified by stable transfection of an activated PI 3-kinase. Downstream targets of PI 3-kinase involved in this protection was further investigated. An activated Akt mimicked the antiapoptotic effect of insulin, whereas a dominant-negative Akt inhibited such effect. However, rapamycin, the p70S6 kinase inhibitor, had no effect on the protectivity of insulin against TGF-beta-induced apoptosis, suggesting that the antiapoptotic target of PI 3-kinase/Akt pathway is independent or lies upstream of the p70S6 kinase. The mechanism by which PI 3-kinase/Akt pathway interferes with the apoptotic signaling of TGF-beta was explored. Activation of PI 3-kinase did not lead to a suppression of Smad hetero-oligomerization or nuclear translocation but blocked TGF-beta-induced caspase-3-like activity. In summary, the PI 3-kinase/Akt pathway, but not the Ras/MAP kinase pathway, protects against TGF-beta-induced apoptosis by inhibiting a step downstream of Smad but upstream of caspase-3.

  16. The Atypical Antipsychotic Agent, Clozapine, Protects Against Corticosterone-Induced Death of PC12 Cells by Regulating the Akt/FoxO3a Signaling Pathway.

    PubMed

    Zeng, Zhiwen; Wang, Xue; Bhardwaj, Sanjeev K; Zhou, Xuanhe; Little, Peter J; Quirion, Remi; Srivastava, Lalit K; Zheng, Wenhua

    2017-07-01

    Schizophrenia is one of the most severe psychiatric disorders. Increasing evidence implicates that neurodegeneration is a component of schizophrenia pathology and some atypical antipsychotics are neuroprotective and successful in slowing the progressive morphological brain changes. As an antipsychotic agent, clozapine has superior and unique effects, but the intracellular signaling pathways that mediate clozapine action remain to be elucidated. The phosphatidylinositol-3-kinase/protein kinase B/Forkhead box O3 (PI3K/Akt/FoxO3a) pathway is crucial for neuronal survival. However, little information is available regarding this pathway with clozapine. In the present study, we investigated the protective effect of clozapine on the PC12 cells against corticosterone toxicity. Our results showed that corticosterone decreases the phosphorylation of Akt and FoxO3a, leading to the nuclear localization of FoxO3a and the apoptosis of PC12 cells, while clozapine concentration dependently protected PC12 cells against corticosterone insult. Pathway inhibitors studies displayed that the protective effect of clozapine was reversed by LY294002 and wortmannin, two PI3K inhibitors, or Akt inhibitor VIII although several other inhibitors had no effect. The shRNA knockdown results displayed that downregulated Akt1 or FoxO3a attenuated the protective effect of clozapine. Western blot analyses revealed that clozapine induced the phosphorylation of Akt and FoxO3a by the PI3K/Akt pathway and reversed the reduction of the phosphorylated Akt and FoxO3a and the nuclear translocation of FoxO3a evoked by corticosterone. Together, our data indicates that clozapine protects PC12 cells against corticosterone-induced cell death by modulating activity of the PI3K/Akt/FoxO3a pathway.

  17. Acute Alcohol Modulates Cardiac Function as PI3K/Akt Regulates Oxidative Stress

    PubMed Central

    Umoh, Nsini A.; Walker, Robin K.; Al-Rubaiee, Mustafa; Jeffress, Miara A.; Haddad, Georges E.

    2015-01-01

    Background Clinical manifestations of alcohol abuse on the cardiac muscle include defective contractility with the development of heart failure. Interestingly, low alcohol consumption has been associated with reduced risk of cardiovascular disease. Although several hypotheses have been postulated for alcoholic cardiomyopathy and for the low-dose beneficial cardiovascular effects, the precise mechanisms and mediators remain largely undefined. We hypothesize that modulation of oxidative stress by PI3K/Akt plays a key role in the cardiac functional outcome to acute alcohol exposure. Methods Thus, acutely exposed rat cardiac tissue and cardiocytes to low (LA: 5 mM), moderate (MA: 25 mM), and high (HA: 100 mM) alcohol were assessed for markers of oxidative stress in the presence and absence of PI3K/Akt activators (IGF-1 0.1 μM or constitutively active PI3K: Ad.BD110 transfection) or inhibitor (LY294002 1 μMor Akt-negative construct Ad.Akt(K179M) transfection). Results Acute LA reduced Akt, superoxide dismutase (SOD-3) and NFκB, ERK1, and p38 MAPK gene expression. Acute HA only increased that of SOD-3 and NFκB. These effects were generally inhibited by Ad.Akt(K179M) and enhanced with Ad.BD110 transfection. In parallel, LA reduced but HA enhanced Akt activity, which was reversed by IGF-1 and inhibited by Ad.Akt(K179M), respectively. Also, LA reduced caspase 3/7 activity and oxidative stress, while HA increased both. The former was blocked, while the latter effect was enhanced by Ad.Akt(K179M). The reverse was true with PI3K/Akt activation. This translated into reduced viability with HA, with no effect with LA. On the functional level, acute LA improved cardiac output and ejection fraction, mainly through increased stroke volume. This was accompanied with enhanced end-systolic pressure–volume relationship and preload recruitable stroke work. Opposite effect was recorded for HA. LA and HA in vivo functional effects were alleviated by LY and enhanced by IGF-1 treatment

  18. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathwaymore » in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.« less

  19. IGF-1 Promotes Brn-4 Expression and Neuronal Differentiation of Neural Stem Cells via the PI3K/Akt Pathway

    PubMed Central

    Zhang, Xinhua; Zhang, Lei; Cheng, Xiang; Guo, Yuxiu; Sun, Xiaohui; Chen, Geng; Li, Haoming; Li, Pengcheng; Lu, Xiaohui; Tian, Meiling; Qin, Jianbing; Zhou, Hui; Jin, Guohua

    2014-01-01

    Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways. PMID:25474202

  20. BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling.

    PubMed

    Gu, Chunyan; Peng, Hailin; Lu, Yue; Yang, Hongbao; Tian, Zhidan; Yin, Gang; Zhang, Wen; Lu, Sicheng; Zhang, Yi; Yang, Ye

    2017-08-22

    We previously explored the role of BTK in maintaining multiple myeloma stem cells (MMSCs) self-renewal and drug-resistance. Here we investigated the elevation of BTK suppressing MM cellular senescence, a state of irreversible cellular growth arrest. We firstly discovered that an increased expression of BTK in MM samples compared to normal controls by immunohistochemistry (IHC), and significant chromosomal gain in primary samples. In addition, BTK high-expressing MM patients are associated with poor outcome in both Total Therapy 2 (TT2) and TT3 cohorts. Knockdown BTK expression by shRNA induced MM cellular senescence using β-galactosidase (SA-b-gal) staining, cell growth arrest by cell cycle staining and decreased clonogenicity while forcing BTK expression in MM cells abrogated these characteristics. We also validated this feature in mouse embryonic fibroblast cells (MEFs), which showed that elevated BTK expression was resistant to MEF senescence after serial cultivation in vitro . Further mechanism study revealed that BTK activated AKT signaling leading to down-regulation of P27 expression and hindered RB activity while AKT inhibitor, LY294002, overcame BTK-overexpression induced cellular senescence resistance. Eventually we demonstrated that BTK inhibitor, CGI-1746, induced MM cellular senescence, colony reduction and tumorigenecity inhibition in vivo . Summarily, we designate a novel mechanism of BTK in mediating MM growth, and BTK inhibitor is of great potential in vivo and in vitro suggesting BTK is a promising therapeutic target for MM.

  1. BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling

    PubMed Central

    Lu, Yue; Yang, Hongbao; Tian, Zhidan; Yin, Gang; Zhang, Wen; Lu, Sicheng; Zhang, Yi; Yang, Ye

    2017-01-01

    We previously explored the role of BTK in maintaining multiple myeloma stem cells (MMSCs) self-renewal and drug-resistance. Here we investigated the elevation of BTK suppressing MM cellular senescence, a state of irreversible cellular growth arrest. We firstly discovered that an increased expression of BTK in MM samples compared to normal controls by immunohistochemistry (IHC), and significant chromosomal gain in primary samples. In addition, BTK high-expressing MM patients are associated with poor outcome in both Total Therapy 2 (TT2) and TT3 cohorts. Knockdown BTK expression by shRNA induced MM cellular senescence using β-galactosidase (SA-b-gal) staining, cell growth arrest by cell cycle staining and decreased clonogenicity while forcing BTK expression in MM cells abrogated these characteristics. We also validated this feature in mouse embryonic fibroblast cells (MEFs), which showed that elevated BTK expression was resistant to MEF senescence after serial cultivation in vitro. Further mechanism study revealed that BTK activated AKT signaling leading to down-regulation of P27 expression and hindered RB activity while AKT inhibitor, LY294002, overcame BTK-overexpression induced cellular senescence resistance. Eventually we demonstrated that BTK inhibitor, CGI-1746, induced MM cellular senescence, colony reduction and tumorigenecity inhibition in vivo. Summarily, we designate a novel mechanism of BTK in mediating MM growth, and BTK inhibitor is of great potential in vivo and in vitro suggesting BTK is a promising therapeutic target for MM. PMID:28915637

  2. Activation of the PI3K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1.

    PubMed

    Chen, Xiong; Liao, Jie; Lu, YeBin; Duan, XiaoHui; Sun, WeiJia

    2011-06-01

    Bone morphogenetic proteins (BMPs) signaling has an emerging role in pancreatic cancer. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in pancreatic cancer. In our studies, we have focused on bone morphogenetic protein 2(BMP-2) because it induces an epithelial to mesenchymal transition (EMT) and accelerates invasion in the human pancreatic cancer cell line Panc-1. It has been reported that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates invasion of gastric and colon cancer cells, which is unrevealed in pancreatic cancer cells. The objective of our study was to investigate whether BMP-2 mediated invasion might pass through the PI3K/Akt pathway. Our results show that expression of phosphorylation of Akt was increased by treatment with BMP-2, but not Noggin, a BMP-2 antagonist. Then pretreatment of Panc-1 cells with LY294002, an inhibitor of the PI3K/AKT pathway, significantly inhibited BMP-2-induced EMT and invasiveness. The data suggest that BMP-2 accelerates invasion of panc-1 cells via the PI3K/AKT pathway in panc-1 cells, which gives clues to searching new therapy targets in advanced pancreatic cancer.

  3. Activation of G protein coupled estrogen receptor (GPER) promotes the migration of renal cell carcinoma via the PI3K/AKT/MMP-9 signals.

    PubMed

    Guan, Bao-Zhang; Yan, Rui-Ling; Huang, Jian-Wei; Li, Fo-Lan; Zhong, Ying-Xue; Chen, Yu; Liu, Fan-Na; Hu, Bo; Huang, Si-Bo; Yin, Liang-Hong

    2018-03-04

    Renal cell carcinoma (RCC) is the third most frequent malignancy within urological oncology. However, the mechanisms responsible for RCC metastasis are still needed further illustration. Our present study revealed that a seven-transmembrane receptor G-protein coupled estrogen receptor (GPER) was highly detected in various RCC cell lines such as ACHN, OS-RC-2 and SW839. The activation of GPER by its specific agonist G-1 significantly promoted the in vitro migration and invasion of ACHN and OS-RC-2 cells. G-1 also up regulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. The inhibitor of MMP-9 (Cat-444278), but not MMP-2 (Sc-204092), abolished G-1 induced cell migration, which suggested that MMP-9 is the key molecule mediating G-1 induced RCC progression. Further, G-1 treatment resulted in phosphorylation of AKT and ERK in RCC cells. PI3K/AKT inhibitor (LY294002), while not ERK inhibitor (PD98059), significantly abolished G-1 induced up regulation of MMP-9 in both AHCN and OS-RC-2 cells. Generally, our data revealed that activation of GPER by its specific agonist G-1 promoted the metastasis of RCC cells through PI3K/AKT/MMP-9 signals, which might be a promising new target for drug discovery of RCC patients.

  4. 3, 3′-Diindolylmethane Exhibits Antileukemic Activity In Vitro and In Vivo through a Akt-Dependent Process

    PubMed Central

    Gao, Ning; Cheng, Senping; Budhraja, Amit; Liu, E-Hu; Chen, Jieping; Chen, Deying; Yang, Zailin; Luo, Jia; Shi, Xianglin; Zhang, Zhuo

    2012-01-01

    3,3′-diindolylmethane (DIM), one of the active products derived from Brassica plants, is a promising antitumor agent. The present study indicated that DIM significantly induced apoptosis in U937 human leukemia cells in dose- and time-dependent manners. These events were also noted in other human leukemia cells (Jurkat and HL-60) and primary human leukemia cells (AML) but not in normal bone marrow mononuclear cells. We also found that DIM-induced lethality is associated with caspases activation, myeloid cell leukemia-1 (Mcl-1) down-regulation, p21cip1/waf1 up-regulation, and Akt inactivation accompanied by c-jun NH2-terminal kinase (JNK) activation. Enforced activation of Akt by a constitutively active Akt construct prevented DIM-mediated caspase activation, Mcl-1 down-regulation, JNK activation, and apoptosis. Conversely, DIM lethality was potentiated by the PI3K inhibitor LY294002. Interruption of the JNK pathway by pharmacologic or genetic approaches attenuated DIM-induced caspases activation, Mcl-1 down-regulation, and apoptosis. Lastly, DIM inhibits tumor growth of mouse U937 xenograft, which was related to induction of apoptosis and inactivation of Akt, as well as activation of JNK. Collectively, these findings suggest that DIM induces apoptosis in human leukemia cell lines and primary human leukemia cells, and exhibits antileukemic activity in vivo through Akt inactivation and JNK activation. PMID:22363731

  5. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway

    PubMed Central

    Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-01-01

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1–42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1–42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1–42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1–42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. PMID:26950279

  6. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    PubMed

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

  7. Akt, mTOR and NF-κB pathway activation in Treponema pallidum stimulates M1 macrophages.

    PubMed

    Lin, Li-Rong; Gao, Zheng-Xiang; Lin, Yong; Zhu, Xiao-Zhen; Liu, Wei; Liu, Dan; Gao, Kun; Tong, Man-Li; Zhang, Hui-Lin; Liu, Li-Li; Xiao, Yao; Niu, Jian-Jun; Liu, Fan; Yang, Tian-Ci

    2018-06-01

    The polarization of macrophages and the molecular mechanism involved during the early process of syphilis infection remain unknown. This study was conducted to explore the influence of Treponema pallidum (T. pallidum) treatment on macrophage polarization and the Akt-mTOR-NFκB signaling pathway mechanism involved in this process. M0 macrophages derived from the phorbol-12-myristate-13-acetate-induced human acute monocytic leukemia cell line THP-1 were cultured with T. pallidum. T. pallidum induced inflammatory cytokine (IL-1β and TNF-α) expression in a dose- and time-dependent manner. However IL-10 cytokine expression decreased at the mRNA and protein levels. Additionally, the expression of the M1 surface marker iNOS was up-regulated with incubation time, and the expression of the M2 surface marker CD206 was low (vs. PBS treated macrophages, P < 0.001) and did not fluctuate over 12 h. Further studies revealed that Akt-mTOR-NFκB pathway proteins, including p-Akt, p-mTOR, p-S6, p-p65, and p-IκBα, were significantly higher in the T. pallidum-treated macrophages than in the PBS-treated macrophages (P < 0.05). In addition, inflammatory cytokine expression was suppressed in T. pallidum-induced M1 macrophages pretreated with LY294002 (an Akt-specific inhibitor) or PDTC (an NF-κB inhibitor), while inflammatory cytokine levels increased in T. pallidum-induced M1 macrophages pretreated with rapamycin (an mTOR inhibitor). These findings revealed that T. pallidum promotes the macrophage transition to pro-inflammatory M1 macrophages in vitro. The present study also provides evidence that Akt, mTOR and NF-κB pathway activation in T. pallidum stimulates M1 macrophages. This study provides novel insights into the innate immune response to T. pallidum infection. Copyright © 2018. Published by Elsevier B.V.

  8. [Exendin-4 promotes paracrine action of adipose-derived stem cells through PI3K/Akt signaling pathways].

    PubMed

    Zhou, Hao; Yang, Junjie; Wagn, Jing; Hu, Shunying; Chen, Guanghui; Chen, Yundai

    2014-10-01

    To investigate the mechanism by which exendin-4 promotes paracrine secretion of cytokines by adipose-derived stem cells (ADSCs). In vitro cultured SD rat ADSCs (fourth passage) with or without exendin-4 treatment underwent flow cytometry to characterize the surface markers. MTT assay was performed to assess the proliferation of the cells exposed to different concentrations (0-20 nm/L) of exendin-4, and the paracrine secretion of cytokines (bFGF, VEGF, HGF, and IGF-1) by the ADSCs was evaluated by qPCR. The changes in the expressions of p-Akt in the cells were analyzed by Western blotting and qPCR in response to exendin-4 (10 nm/L) with or without exposure to PI3K/Akt inhibitor LY-294002 (50 nm/L); bFGF, VEGF, HGF, and IGF-1 production in the cells were detected using ELISA kits. Treatment with exendin-4 for 12 h did not affect the surface marker profile of the ADSCs but promoted the cell proliferation (P<0.05). Exendin-4 significantly increased the mRNA expressions of VEGF, bFGF, HGF, and IGF-1 in a concentration-dependent manner, and 10 nm/L was the optimum concentration (P<0.05). Exendin-4 treatment resulted in significantly increased p-Akt expressions in the ADSCs, and PI3K/Akt inhibitor not only reversed such effects of exendin-4 on p-Akt but also diminished the exendin-4- mediated up-regulation of the paracrine cytokines. Exendin-4 can concentration-dependently promote the proliferative and paracrine capacities of ADSCs partially through the PI3K/Akt signaling pathway without affecting the surface marker profile of the cells.

  9. PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy

    PubMed Central

    Komeili-Movahhed, Tahereh; Fouladdel, Shamileh; Barzegar, Elmira; Atashpour, Shekoufeh; Hossein Ghahremani, Mohammad; Nasser Ostad, Seyed; Madjd, Zahra; Azizi, Ebrahim

    2015-01-01

    Objective(s): Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted therapy against PI3K/Akt signaling pathway using LY294002 (LY) to re-sensitize breast cancer MCF7 cell line to mitoxantrone (MTX) chemotherapy. Materials and Methods: Anticancer effects of MTX, siRNA, and LY alone and in combination were evaluated in MCF7 cells using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: MTT and apoptosis assays showed that both MTX and LY inhibited cell proliferation and induced apoptosis in MCF7 cells. Results indicated that inhibition of BCRP by siRNA or PI3K/Akt signaling pathway by LY significantly increased sensitivity of MCF7 cells to antiproliferation and apoptosis induction of MTX. Furthermore, MTX showed G2/M arrest, whereas LY induced G0/G1 arrest in cell cycle distribution of MCF7 cells. Combination of siRNA or LY with MTX chemotherapy significantly increased accumulation of MCF7 cells in the G2/M phase of cell cycle. Conclusion: Combination of MTX chemotherapy with BCRP siRNA and PI3K/Akt inhibition can overcome MDR in breast cancer cells. This study furthermore suggests that novel therapeutic approaches are needed to enhance anticancer effects of available drugs in breast cancer. PMID:26124933

  10. Involvement of PI3K/Akt Signaling Pathway and Its Downstream Intracellular Targets in the Antidepressant-Like Effect of Creatine.

    PubMed

    Cunha, Mauricio P; Budni, Josiane; Ludka, Fabiana K; Pazini, Francis L; Rosa, Julia Macedo; Oliveira, Ágatha; Lopes, Mark W; Tasca, Carla I; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    2016-07-01

    Creatine has been proposed to exert beneficial effects in the management of depression, but the cell signaling pathways implicated in its antidepressant effects are not well established. This study investigated the involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. The acute treatment of mice with creatine (1 mg/kg, po) increased the Akt and P70S6K phosphorylation, and HO-1, GPx and PSD95 immunocontents. The pretreatment of mice with LY294002 (10 nmol/mouse, icv, PI3K inhibitor), wortmannin (0.1 μg/mouse, icv, PI3K inhibitor), ZnPP (10 μg/mouse, icv, HO-1 inhibitor), or rapamycin (0.2 nmol/mouse, icv, mTOR inhibitor) prevented the antidepressant-like effect of creatine (1 mg/kg, po) in the TST. In addition, the administration of subeffective dose of either the selective GSK3 inhibitor AR-A014418 (0.01 μg/mouse, icv), the nonselective GSK3 inhibitor lithium chloride (10 mg/kg, po), or the HO-1 inductor CoPP (0.01 μg/mouse, icv), in combination with a subeffective dose of creatine (0.01 mg/kg, po) reduced the immobility time in the TST as compared with either drug alone. No treatment caused significant changes in the locomotor activity of mice. These results indicate that the antidepressant-like effect of creatine in the TST depends on the activation of Akt, Nrf2/HO-1, GPx, and mTOR, and GSK3 inhibition.

  11. delta opioid receptors stimulate Akt-dependent phosphorylation of c-jun in T cells.

    PubMed

    Shahabi, Nahid A; McAllen, Kathy; Sharp, Burt M

    2006-02-01

    Activation of naive T cells markedly up-regulates the expression of delta opioid receptors (DORs). These receptors are bound by DOR peptides released by T cells, modulating T cell functions such as interleukin-2 production, cellular proliferation, and chemotaxis. Previous studies have shown that DOR agonists [e.g., [D-Ala(2)-D-Leu(5)]-enkephalin (DADLE)] modulate T cell antigen receptor signaling through mitogen-activated protein kinases (MAPKs; i.e., extracellular signal-regulated kinases 1 and 2) and that DORs directly induce phosphorylation of activating transcription factor-2 (implicated in cytokine gene transcription) and its association with the MAPK c-jun1 NH(2)-terminal kinase (JNK). Such observations suggest that DORs may induce the phosphorylation of c-jun. These experiments were performed to test this hypothesis and determine the potential roles of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B). DADLE (10(-10) to 10(-6) M) dose-dependently induced c-jun phosphorylation. This was blocked by pertussis toxin and the DOR-specific antagonist naltindole. Fluorescence flow cytometry showed that DADLE significantly stimulated c-jun phosphorylation by T cells. DADLE stimulated phosphorylation of membrane-associated Akt; wortmannin and LY294002 ([2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]), specific inhibitors of PI3K, abolished the DADLE-induced phosphorylation of c-jun. Finally, inhibitors of Akt and JNK blocked DADLE-induced phosphorylation of c-jun. Thus, activated DORs directly stimulate c-jun phosphorylation through a PI3K-dependent pathway in T cells, apparently involving Akt. This implies that DORs activate JNK through a novel pathway dependent on PI3K and Akt, thereby regulating the function of activator protein-1 transcription complexes containing c-jun and other transcription partners.

  12. IGF-1 protects SH-SY5Y cells against MPP+-induced apoptosis via PI3K/PDK-1/Akt pathway.

    PubMed

    Kim, Chanyang; Park, Seungjoon

    2018-03-01

    Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP + ) is associated with the activity of PI3K/PDK1/Akt pathway. Treatment of cells with IGF-1 inhibited MPP + -induced apoptotic cell death. IGF-1-induced activation of Akt and the protective effect of IGF-1 on MPP + -induced apoptosis were abolished by chemical inhibition of PDK1 (GSK2334470) or PI3K (LY294002). The phosphorylated levels of Akt and PDK1 were significantly suppressed after MPP + exposure, while IGF-1 treatment completely restored MPP+-induced reductions in phosphorylation. IGF-1 protected cells from MPP + insult by suppressing intracellular reactive oxygen species (ROS) production and malondialdehyde levels and increasing superoxide dismutase activity. Mitochondrial ROS levels were also increased during MPP + exposure, which were attenuated by IGF-1 treatment. In addition, IGF-1-treated cells showed increased activities of succinate dehydrogenase and citrate synthase, stabilization of mitochondrial transmembrane potential, increased ratio of Bcl-2 to Bax, prevention of cytochrome c release and inhibition of caspase-3 activation with PARP cleavage. Furthermore, the protective effects of IGF-1 on oxidative stress and mitochondrial dysfunction were attenuated when cells were preincubated with GSK2334470 or LY294002. Our data suggest that IGF-1 protects SH-SY5Y cells against MPP + -associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades via the activation of PI3K/PDK1/Akt pathway. © 2018 The authors.

  13. IGF-1 protects SH-SY5Y cells against MPP+-induced apoptosis via PI3K/PDK-1/Akt pathway

    PubMed Central

    Kim, Chanyang; Park, Seungjoon

    2018-01-01

    Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+) is associated with the activity of PI3K/PDK1/Akt pathway. Treatment of cells with IGF-1 inhibited MPP+-induced apoptotic cell death. IGF-1-induced activation of Akt and the protective effect of IGF-1 on MPP+-induced apoptosis were abolished by chemical inhibition of PDK1 (GSK2334470) or PI3K (LY294002). The phosphorylated levels of Akt and PDK1 were significantly suppressed after MPP+ exposure, while IGF-1 treatment completely restored MPP+-induced reductions in phosphorylation. IGF-1 protected cells from MPP+ insult by suppressing intracellular reactive oxygen species (ROS) production and malondialdehyde levels and increasing superoxide dismutase activity. Mitochondrial ROS levels were also increased during MPP+ exposure, which were attenuated by IGF-1 treatment. In addition, IGF-1-treated cells showed increased activities of succinate dehydrogenase and citrate synthase, stabilization of mitochondrial transmembrane potential, increased ratio of Bcl-2 to Bax, prevention of cytochrome c release and inhibition of caspase-3 activation with PARP cleavage. Furthermore, the protective effects of IGF-1 on oxidative stress and mitochondrial dysfunction were attenuated when cells were preincubated with GSK2334470 or LY294002. Our data suggest that IGF-1 protects SH-SY5Y cells against MPP+-associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades via the activation of PI3K/PDK1/Akt pathway. PMID:29459421

  14. Emodin induces neurite outgrowth through PI3K/Akt/GSK-3β-mediated signaling pathways in Neuro2a cells.

    PubMed

    Park, Shin-Ji; Jin, Mei Ling; An, Hyun-Kyu; Kim, Kyoung-Sook; Ko, Min Jung; Kim, Cheol Min; Choi, Young Whan; Lee, Young-Choon

    2015-02-19

    In this study, a neurite outgrowth-inducing substance was isolated from the ethylacetate extract of the Polygonum multiflorum roots and identified as emodin by gas-liquid chromatography-mass spectrometry and (1)H NMR and (13)C NMR. Emodin displayed remarkable neurite outgrowth-inducing activity in Neuro2a cells, as demonstrated by morphological changes and immunocytochemistry for class III β-tubulin. Emodin exhibited a stronger neutrophic activity than retinoic acid (RA) known as inducer of neurite outgrowth in Neuro2a cells. Emodin treatment resulted in marked increases in phosphorylation of Akt a direct downstream signaling molecule of phosphatidylinositol 3-kinase (PI3K), but upstream of glycogen synthase kinase-3β (GSK-3β) and cAMP response element-binding protein (CREB). These augmentations and neurite-bearing cells induced by emodin were remarkably reduced by the addition of PI3K inhibitor LY294002. These results demonstrate that emodin induces neuronal differentiation of Neuro2a cells via PI3K/Akt/GSK-3β pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Chlorogenic Acid Prevents Osteoporosis by Shp2/PI3K/Akt Pathway in Ovariectomized Rats

    PubMed Central

    Zuo, Hui Ling; Yao, Fen Fen; Ruan, Hui Bing; Xu, Jin; Song, Wei; Zhou, Yi Cheng; Wen, Shi Yao; Dai, Jiang Hua; Zhu, Mei Lan; Luo, Jun

    2016-01-01

    Cortex Eucommiae is used worldwide in traditional medicine, various constituents of Cortex Eucommiae, such as chlorogenic acid (CGA), has been reported to exert anti-osteoporosis activity in China, but the mechanism about their contribution to the overall activity is limited. The aims of this study were to determine whether chlorogenic acid can prevent estrogen deficiency-induced osteoporosis and to analyze the mechanism of CGA bioactivity. The effect of CGA on estrogen deficiency-induced osteoporosis was performed in vivo. Sixty female Sprague-Dawley rats were divided randomly among a sham-operated group and five ovariectomy (OVX) plus treatment subgroups: saline vehicle, 17α-ethinylestradiol (E2), or CGA at 9, 27, or 45 mg/kg/d. The rats’ femoral metaphyses were evaluated by micro-computed tomography (μCT). The mechanism of CGA bioactivity was investigated in vitro. Bone mesenchymal stem cells (BMSCs) were treated with CGA, with or without phosphoinositide 3-kinase (PI3K) inhibitor LY294002. BMSCs proliferation and osteoblast differentiation were assessed with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and alkaline phosphatase, with or without Shp2 interfering RNA (RNAi). The results display that CGA at 27 and 45 mg/kg/day inhibited the decrease of bone mineral density (BMD) that induced by OVX in femur (p< 0.01), significantly promoted the levels of bone turnover markers, and prevented bone volume fraction (BV/TV), connectivity density (CoonD), trabecular number (Tb.N), trabecular thickness (Tb.Th) (all p< 0.01) to decrease and prevented the trabecular separation (Tb.Sp), structure model index (SMI)(both p< 0.01) to increase. CGA at 1 or 10 μM enhanced BMSC proliferation in a dose-dependent manner. CGA at 0.1 to 10 μM increased phosphorylated Akt (p-Akt) and cyclin D1. These effects were reversed by LY294002. CGA at 1 or 10 μM increased BMSC differentiation to osteoblasts (p< 0.01), Shp2 RNAi suppressed CGA-induced osteoblast

  16. Molecular and Functional Characterization of Three Different Postzygotic Mutations in PIK3CA-Related Overgrowth Spectrum (PROS) Patients: Effects on PI3K/AKT/mTOR Signaling and Sensitivity to PIK3 Inhibitors

    PubMed Central

    Forte, Giovanna; Bagnulo, Rosanna; Stella, Alessandro; Lastella, Patrizia; Cutrone, Mario; Benedicenti, Francesco; Susca, Francesco C.; Patruno, Margherita; Varvara, Dora; Germani, Aldo; Chessa, Luciana; Laforgia, Nicola; Tenconi, Romano; Simone, Cristiano; Resta, Nicoletta

    2015-01-01

    Background PIK3CA-related overgrowth spectrum (PROS) include a group of disorders that affect only the terminal portion of a limb, such as type I macrodactyly, and conditions like fibroadipose overgrowth (FAO), megalencephaly-capillary malformation (MCAP) syndrome, congenital lipomatous asymmetric overgrowth of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epidermal nevi, skeletal and spinal anomalies (CLOVES) syndrome and Hemihyperplasia Multiple Lipomatosis (HHML). Heterozygous postzygotic PIK3CA mutations are frequently identified in these syndromes, while timing and tissue specificity of the mutational event are likely responsible for the extreme phenotypic variability observed. Methods We carried out a combination of Sanger sequencing and targeted deep sequencing of genes involved in the PI3K/AKT/mTOR pathway in three patients (1 MCAP and 2 FAO) to identify causative mutations, and performed immunoblot analyses to assay the phosphorylation status of AKT and P70S6K in affected dermal fibroblasts. In addition, we evaluated their ability to grow in the absence of serum and their response to the PI3K inhibitors wortmannin and LY294002 in vitro. Results and Conclusion Our data indicate that patients’ cells showed constitutive activation of the PI3K/Akt pathway. Of note, PI3K pharmacological blockade resulted in a significant reduction of the proliferation rate in culture, suggesting that inhibition of PI3K might prove beneficial in future therapies for PROS patients. PMID:25915946

  17. Inhibition of Gluconeogenesis in Primary Hepatocytes by Stromal Cell-derived Factor-1 (SDF-1) through a c-Src/Akt-dependent Signaling Pathway*

    PubMed Central

    Liu, Hui-Yu; Wen, Ge-Bo; Han, Jianmin; Hong, Tao; Zhuo, Degen; Liu, Zhenqi; Cao, Wenhong

    2008-01-01

    Hepatic gluconeogenesis is elevated in diabetes and a major contributor to hyperglycemia. Stromal cell-derived factor-1 (SDF-1) is a chemokine and an activator of Akt. In this study, we tested the hypothesis that SDF-1 suppresses hepatic gluconeogenesis through Akt. Our results from isolated primary hepatocytes show that SDF-1α and SDF-1β inhibited glucose production via gluconeogenesis and reduced transcript levels of key gluconeogenic genes glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Additionally, SDF-1α and SDF-1β both inhibited activation of the PEPCK promoter. In examining the mechanism by which SDF-1 inhibits gluconeogenesis, we found that SDF-1 promoted phosphorylation of Akt, FoxO1, and c-Src, but did not activate insulin receptor substrate-1-like insulin. Blockade of Akt activation by LY294002, FoxO1 translocation by constitutively nuclear FoxO1 mutant, or c-Src activation by the chemical inhibitor PP2, respectively, blunted SDF-1 suppression of gluconeogenesis. Finally, our results show that knocking down the level of SDF-1 receptor CXCR4 mRNA blocked SDF-1 suppression of gluconeogenesis. Together, our results demonstrate that SDF-1 is capable of inhibiting gluconeogenesis in primary hepatocytes through a signaling pathway distinct from the insulin signaling. PMID:18786922

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yunliang; Wu, Congshan; Ma, Jianxia, E-mail: yz_mjx@163.com

    Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGFmore » was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.« less

  19. Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line.

    PubMed

    Freitas, Andiara E; Egea, Javier; Buendía, Izaskun; Navarro, Elisa; Rada, Patricia; Cuadrado, Antonio; Rodrigues, Ana Lúcia S; López, Manuela G

    2015-01-01

    Hyperactivation of the hypothalamic-pituitary-adrenal axis is a common finding in major depression; this may lead to increased levels of cortisol, which are known to cause oxidative stress imbalance and apoptotic neuronal cell death, particularly in the hippocampus, a key region implicated in mood regulation. Agmatine, an endogenous metabolite of L-arginine, has been proposed for the treatment of major depression. Corticosterone induced apoptotic cell death and increased ROS production in cultured hippocampal neuronal cells, effects that were abolished in a concentration- and time-dependent manner by agmatine. Interestingly, the combination of sub-effective concentrations of agmatine with fluoxetine or imipramine afforded synergic protection. The neuroprotective effect of agmatine was abolished by yohimbine (α2-adrenoceptor antagonist), ketanserin (5-HT2A receptor antagonist), LY294002 (PI3K inhibitor), PD98059 (MEK1/2 inhibitor), SnPP (HO-1 inhibitor), and cycloheximide (protein synthesis inhibitor). Agmatine increased Akt and ERK phosphorylation and induced the transcription factor Nrf2 and the proteins HO-1 and GCLc; induction of these proteins was prevented by yohimbine, ketanserin, LY294002, and PD98059. In conclusion, agmatine affords neuroprotection against corticosterone effects by a mechanism that implicates Nrf2 induction via α2-adrenergic and 5-HT2A receptors, Akt and ERK pathways, and HO-1 and GCLc expression.

  20. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  1. Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL– and mutant FLT3-expressing cells

    PubMed Central

    Weisberg, Ellen; Banerji, Lolita; Wright, Renee D.; Barrett, Rosemary; Ray, Arghya; Moreno, Daisy; Catley, Laurence; Jiang, Jingrui; Hall-Meyers, Elizabeth; Sauveur-Michel, Maira; Stone, Richard; Galinsky, Ilene; Fox, Edward; Kung, Andrew L.

    2008-01-01

    Mediators of PI3K/AKT signaling have been implicated in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). Studies have shown that inhibitors of PI3K/AKT signaling, such as wortmannin and LY294002, are able to inhibit CML and AML cell proliferation and synergize with targeted tyrosine kinase inhi-bitors. We investigated the ability of BAG956, a dual PI3K/PDK-1 inhibitor, to be used in combination with inhibitors of BCR-ABL and mutant FLT3, as well as with the mTOR inhibitor, rapamycin, and the rapamycin derivative, RAD001. BAG956 was shown to block AKT phosphorylation induced by BCR-ABL–, and induce apoptosis of BCR-ABL–expressing cell lines and patient bone marrow cells at concentrations that also inhibit PI3K signaling. Enhancement of the inhibitory effects of the tyrosine kinase inhibitors, imatinib and nilotinib, by BAG956 was demonstrated against BCR-ABL expressing cells both in vitro and in vivo. We have also shown that BAG956 is effective against mutant FLT3-expressing cell lines and AML patient bone marrow cells. Enhancement of the inhibitory effects of the tyrosine kinase inhibitor, PKC412, by BAG956 was demonstrated against mutant FLT3-expressing cells. Finally, BAG956 and rapamycin/RAD001 were shown to combine in a nonantagonistic fashion against BCR-ABL– and mutant FLT3-expressing cells both in vitro and in vivo. PMID:18184863

  2. Exercise Training Stimulates Ischemia-Induced Neovascularization via Phosphatidylinositol 3-Kinase/Akt-Dependent Hypoxia-Induced Factor-1α Reactivation in Mice of Advanced Age

    PubMed Central

    Cheng, Xian Wu; Kuzuya, Masafumi; Kim, Weon; Song, Haizhen; Hu, Lina; Inoue, Aiko; Nakamura, Kae; Di, Qun; Sasaki, Takeshi; Tsuzuki, Michitaka; Shi, Guo-Ping; Okumura, Kenji; Murohara, Toyoaki

    2011-01-01

    Background Exercise stimulates the vascular response in pathological conditions, including ischemia; however, the molecular mechanisms by which exercise improves the impaired hypoxia-induced factor (HIF)-1α–mediated response to hypoxia associated with aging are poorly understood. Here, we report that swimming training (ST) modulates the vascular response to ischemia in aged (24-month-old) mice. Methods and Results Aged wild-type mice (MMP-2+/+) that maintained ST (swimming 1 h/d) from day 1 after surgery were randomly assigned to 4 groups that were treated with either vehicle, LY294002, or deferoxamine for 14 days. Mice that were maintained in a sedentary condition served as controls. ST increased blood flow, capillary density, and levels of p-Akt, HIF-1α, vascular endothelial growth factor, Fit-1, and matrix metalloproteinase-2 (MMP-2) in MMP-2+/+ mice. ST also increased the numbers of circulating endothelial progenitor cells and their function associated with activation of HIF-1α. All of these effects were diminished by LY294002, an inhibitor of phosphatidylinositol 3-kinase; enhanced by deferoxamine, an HIF-1α stabilizer; and impaired by knockout of MMP-2. Finally, bone marrow transplantation confirmed that ST enhanced endothelial progenitor cell homing to ischemic sites in aged mice. Conclusions ST can improve neovascularization in response to hypoxia via a phosphatidylinositol 3-kinase–dependent mechanism that is mediated by the HIF-1α/vascular endothelial growth factor/MMP-2 pathway in advanced age. PMID:20679550

  3. Neuroprotective effect of nicorandil through inhibition of apoptosis by the PI3K/Akt1 pathway in a mouse model of deep hypothermic low flow.

    PubMed

    Yu, Di; Fan, Changfeng; Zhang, Weiyan; Wen, Zhongyuan; Hu, Liang; Yang, Lei; Feng, Yu; Yin, Ke-Jie; Mo, Xuming

    2015-10-15

    Nicorandil exerts a protective effect on ischemia-reperfusion (I/R) injury in the brain and kidney through anti-apoptotic mechanisms. However, the mechanism by which nicorandil protects against I/R injury induced by deep hypothermic low flow (DHLF) remains unclear. We used a cerebral I/R model induced by DHLF to determine the neuroprotective effects and possible mechanisms of nicorandil. Hematoxylin-eosin (HE) staining and in situ terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL) assay were used to detect changes in cell morphology and the number of apoptotic cells in hippocampus, respectively. The apoptotic regulators including Bcl-2, Bax, Akt, and p-Akt (the active, phosphorylated form of Akt) were examined by Western blot (WB). Histopathological findings showed that nicorandil significantly alleviated morphological damage in hippocampal and reduced the number of TUNEL-positive nuclei induced by DHLF. Nicorandil also increased the expression of Bcl-2 and decreased the expression of Bax, while increasing p-Akt level. Consistent with these results, nicorandil-mediated neuroprotection was reduced in the Akt1+/- mutant mice and inhibited by LY294002, a PI3K inhibitor. These findings showed that nicorandil provides a neuroprotective role in DHLF-induced I/R injury by inhibiting apoptosis via activation of the PI3K/Akt1 signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes.

    PubMed

    Pentassuglia, Laura; Heim, Philippe; Lebboukh, Sonia; Morandi, Christian; Xu, Lifen; Brink, Marijke

    2016-05-01

    Nrg1β is critically involved in cardiac development and also maintains function of the adult heart. Studies conducted in animal models showed that it improves cardiac performance under a range of pathological conditions, which led to its introduction in clinical trials to treat heart failure. Recent work also implicated Nrg1β in the regenerative potential of neonatal and adult hearts. The molecular mechanisms whereby Nrg1β acts in cardiac cells are still poorly understood. In the present study, we analyzed the effects of Nrg1β on glucose uptake in neonatal rat ventricular myocytes and investigated to what extent mTOR/Akt signaling pathways are implicated. We show that Nrg1β enhances glucose uptake in cardiomyocytes as efficiently as IGF-I and insulin. Nrg1β causes phosphorylation of ErbB2 and ErbB4 and rapidly induces the phosphorylation of FAK (Tyr(861)), Akt (Thr(308) and Ser(473)), and its effector AS160 (Thr(642)). Knockdown of ErbB2 or ErbB4 reduces Akt phosphorylation and blocks the glucose uptake. The Akt inhibitor VIII and the PI3K inhibitors LY-294002 and Byl-719 abolish Nrg1β-induced phosphorylation and glucose uptake. Finally, specific mTORC2 inactivation after knockdown of rictor blocks the Nrg1β-induced increases in Akt-p-Ser(473) but does not modify AS160-p-Thr(642) or the glucose uptake responses to Nrg1β. In conclusion, our study demonstrates that Nrg1β enhances glucose uptake in cardiomyocytes via ErbB2/ErbB4 heterodimers, PI3Kα, and Akt. Furthermore, although Nrg1β activates mTORC2, the resulting Akt-Ser(473) phosphorylation is not essential for glucose uptake induction. These new insights into pathways whereby Nrg1β regulates glucose uptake in cardiomyocytes may contribute to the understanding of its regenerative capacity and protective function in heart failure. Copyright © 2016 the American Physiological Society.

  5. Hydrogen postconditioning promotes survival of rat retinal ganglion cells against ischemia/reperfusion injury through the PI3K/Akt pathway.

    PubMed

    Wu, Jiangchun; Wang, Ruobing; Yang, Dianxu; Tang, Wenbin; Chen, Zeli; Sun, Qinglei; Liu, Lin; Zang, Rongyu

    2018-01-22

    Retinal ischemia/reperfusion injury (IRI) plays a crucial role in the pathophysiology of various ocular diseases. Our previous study have shown that postconditioning with inhaled hydrogen (H 2 ) (HPC) can protect retinal ganglion cells (RGCs) in a rat model of retinal IRI. Our further study aims to investigate potential mechanisms underlying HPC-induced protection. Retinal IRI was performed on the right eyes of rats and was followed by inhalation of 67% H 2 mixed with 33% oxygen immediately after ischemia for 1 h daily for one week. RGC density was counted using haematoxylin and eosin (HE) staining, retrograde labelling with cholera toxin beta (CTB) and TUNEL staining, respectively. Visual function was assessed using flash visual evoked potentials (FVEP) and pupillary light reflex (PLR). The phosphorylated Akt was analysed by RT-PCR and western blot. The results showed that administration of HPC significantly inhibited the apoptosis of RGCs and protected the visual function. Simultaneously, HPC treatment markedly increased the phosphorylations of Akt. Blockade of PI3K activity by inhibitors (LY294002) dramatically abolished its anti-apoptotic effect and lowered both visual function and Akt phosphorylation levels. Taken together, our results demonstrate that HPC appears to confer neuroprotection against retinal IRI via the PI3K/Akt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  7. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  8. Trypanosoma cruzi trans-sialidase: A potent and specific survival factor for human Schwann cells by means of phosphatidylinositol 3-kinase/Akt signaling

    PubMed Central

    Chuenkova, Marina V.; Furnari, Frank B.; Cavenee, Webster K.; Pereira, Miercio A.

    2001-01-01

    Patients infected with Trypanosoma cruzi may remain asymptomatic for decades and show signs of neuroregeneration in the peripheral nervous system (PNS). In the absence of such neuroregeneration, patients may die in part by extensive neuronal destruction in the gastrointestinal tract. Thus, T. cruzi may, despite their invasion of the PNS, directly prevent cell death to keep nerve destruction in check. Indeed, T. cruzi invasion of Schwann cells, their prime target in PNS, suppressed host-cell apoptosis caused by growth-factor deprivation. The trans-sialidase (TS) of T. cruzi and the Cys-rich domain of TS reproduced the antiapoptotic activity of the parasites at doses (≥3.0 nM) comparable or lower than those of bona fide mammalian growth factors. This effect was blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). TS also activated Akt, a downstream effector of PI3K. Ectopic expression of TS in an unrelated parasite, Leishmania major, turned those parasites into activators of Akt in Schwann cells. In contrast, the Cys-rich domain of TS did not block apoptosis in Schwann cells overexpressing dominant-negative Akt or constitutively active PTEN, a negative regulator of PI3K/Akt signaling. The results demonstrate that T. cruzi, through its TS, triggers the survival of host Schwann cells via the PI3K/Akt pathway, suggesting a role for PI3K/Akt in the pathogenesis of Chagas' disease. PMID:11481434

  9. BMI-1 suppression increases the radiosensitivity of oesophageal carcinoma via the PI3K/Akt signaling pathway.

    PubMed

    Yang, Xing-Xiao; Ma, Ming; Sang, Mei-Xiang; Zhang, Xue-Yuan; Liu, Zhi-Kun; Song, Heng; Zhu, Shu-Chai

    2018-02-01

    B-cell‑specific Moloney murine leukaemia virus integration site-1 (BMI-1) contributes to the growth of tumour cells post-irradiation (IR). The aim of the present study was to characterize the effects of BMI-1 on cell viability, radiosensitivity and its mechanisms of action in oesophageal squamous cell cancer (ESCC). Western blotting and immunohistochemistry were employed to evaluate the protein expression of BMI-1 in ESCC cells and specimens, respectively. Additionally, the protein expression levels of BMI-1, H2AK119ub and γH2AX in ESCC cells were detected following different doses of IR and at different times after IR. The protein expression levels of MDC1 and 53BP1 were also measured. Flow cytometry and MTT assays were used to determine cell cycle progression, apoptosis and cell viability. The phosphatidylinositol 3-kinase inhibitor LY294002 and the agonist IGF-1 were employed to suppress or induce the phosphorylation of Akt to determine whether BMI-1 induces radioresistance in ESCC cells via activation of the PI3K/Akt pathway. The expression of BMI-1 was higher in ESCC tissues and cells compared with that in normal oesophageal tissues and cells. In addition, BMI-1 was positively related to tumour size and lymph node metastases and negatively to the overall survival of ESCC patients. IR induced the expression of BMI-1, H2AK119ub and γH2AX in a dose- and time-dependent manner. BMI-1 knockdown lowered the expression of γH2AX, MDC1 and 53BP1, suppressed cell viability and increased radiosensitivity. G2/M phase arrest was eliminated; this was followed by an increased proportion of cells entering the G0/G1 phase after IR and BMI-1 knockdown via the upregulation of P16 and downregulation of cyclin D2 and cyclin-dependent kinase-4. Moreover, BMI-1 knockdown increased cell apoptosis, downregulated MCL-1 and p-Akt and upregulated Bax. Additionally, the inhibitory effect of the downregulation of p-Akt by LY294002 on tumour cell viability was identical to that of

  10. The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration

    PubMed Central

    Mathavan, Ketan; Khedgikar, Vikram; Bartolo, Vanessa

    2017-01-01

    During development, a multi-potent group of cells known as the cranial neural crest (CNC) migrate to form craniofacial structures. Proper migration of these cells requires proteolysis of cell adhesion molecules, such as cadherins. In Xenopus laevis, preventing extracellular cleavage of cadherin-11 impairs CNC migration. However, overexpression of the soluble cleavage product (EC1-3) is capable of rescuing this phenotype. The mechanism by which EC1-3 promotes CNC migration has not been investigated until now. Here we show that EC1-3 stimulates phosphorylation of Akt, a target of PI3K, in X.laevis CNC. Through immunoprecipitation experiments, we determined that EC1-3 interacts with all ErbB receptors, PDGFRα, and FGFR1. Of these receptors, only ErbB2 was able to produce an increase in Akt phosphorylation upon treatment with a recombinant EC1-3. This increase was abrogated by mubritinib, an inhibitor of ErbB2. We were able to recapitulate this decrease in Akt phosphorylation in vivo by knocking down ErbB2 in CNC cells. Knockdown of the receptor also significantly reduced CNC migration in vivo. We confirmed the importance of ErbB2 and ErbB receptor signaling in CNC migration using mubritinib and canertinib, respectively. Mubritinib and the PI3K inhibitor LY294002 significantly decreased cell migration while canertinib nearly prevented it altogether. These data show that ErbB2 and Akt are important for CNC migration and implicate other ErbB receptors and Akt-independent signaling pathways. Our findings provide the first example of a functional interaction between the extracellular domain of a type II classical cadherin and growth factor receptors. PMID:29190819

  11. Hydroxysafflor yellow A cardioprotection in ischemia-reperfusion (I/R) injury mainly via Akt/hexokinase II independent of ERK/GSK-3β pathway.

    PubMed

    Min, Jia; Wei, Cui

    2017-03-01

    Hydroxysafflor yellow A (HSYA) is the main active component of Carthamus tinctorius L which has been used for hundreds of years in Chinese folk medicine in the treatment cardiovascular disease. This study was designed to investigate whether HSYA exerts cardioprotection in ischemia-reperfusion (I/R) injury heart and the mechanisms involved. The protective effect and mechanisms in myocardial ischemia reperfusion injury of HSYA was evaluated by hypoxia-recover (H/R) injury cell model which induced by hypoxia and recovered with oxygen in H9c2 cells. PI3K/Akt and ERK as the reperfusion injury salvage kinase (RISK) pathway and Hexokinase II (HKII) were both examined. In H/R cell model, HSYA significantly reduced dehydrogenase (LDH), Caspase 3 level, alleviated oxidative stress injury and apoptosis, meanwhile restored mitochondrial energy metabolism. Pretreatment with PI3K inhibitor (LY294002) or hexokinase II inhibitor (3-BrPA), the protective effect of HSYA was significantly attenuated. On the contrary, pretreatment with ERK inhibitor (PD98059), the protective effect of HSYA on myocardial cells was decreased slightly, not as significant as PI3K inhibitor or hexokinase II inhibitor. ERK play a protective role in myocardial protection by phosphorylation of GSK3-β, but the effect of HSYA on phosphorylation of GSK3-β is weakly, however the effect of HSYA on Akt and hexokinase II were significantly up-regulated. Meanwhile, the phosphorylation of GSK3-β by HSYA was significantly reduced after gave the ERK inhibitor and had no significant difference between the model group. The cardioprotection effect of HSYA appears to be mainly mediated via the PI3K/Akt/hexokinase II. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway.

    PubMed

    Zhao, Zhihu; Ma, Xinlong; Ma, Jianxiong; Sun, Xiaolei; Li, Fengbo; Lv, Jianwei

    2018-04-25

    Endothelial progenitor cells (EPCs) have been shown to be involved in the process of physiological neovascularization in vivo. Because increasing evidence has indicated that naringin, a major active ingredient in the Chinese herb Drynaria fortunei, can promote angiogenesis and inhibit endothelial cell apoptosis, our study was designed to determine the role of naringin in EPC proliferation and tube formation capacity and examine the potential mechanism for these effects. EPCs were isolated from bone marrow and treated with naringin. An MTT assay was used to investigate EPC proliferation and the tube formation capacity of these EPCs, which were seeded on Matrigel. The protein levels of CXCL12, its receptor (chemokine receptor 4 (CXCR4)) and a downstream signaling molecule (Akt and phosphorylated Akt (pAkt)) were examined using Western blotting. A CXCR4 antagonist (AMD3100) and a phosphatidylinositol 3-kinase (PI3K) antagonist (LY294002) were used to characterize the underlying mechanisms. The results showed that naringin-induced EPC proliferation reached a maximum at day 3 and that the optimal dose of naringin was 500 ng/ml. Treatment with naringin facilitated the EPC tube formation capacity and increased the levels of CXCL12, CXCR4 and pAkt (P < 0.05) relative to those in the control group. Moreover, the naringin-induced EPC tube formation capacity was significantly attenuated by AMD3100 or LY294002. In conclusion, we showed here that the naringin-enhanced EPC proliferation and tube formation were mediated by the activation of the PI3K/Akt signaling pathway via the CXCL12/CXCR4 axis, which suggests that naringin could serve as a new therapeutic medicine and has the potential to be applied for the treatment of ischemic disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Airborne nitro-PAHs induce Nrf2/ARE defense system against oxidative stress and promote inflammatory process by activating PI3K/Akt pathway in A549 cells.

    PubMed

    Shang, Yu; Zhou, Qian; Wang, Tiantian; Jiang, Yuting; Zhong, Yufang; Qian, Guangren; Zhu, Tong; Qiu, Xinghua; An, Jing

    2017-10-01

    Ambient particulate matter (PM) is a worldwide health issue of concern. However, limited information is available regarding the toxic contributions of the nitro-derivatives of polycyclic aromatic hydrocarbons (nitro-PAHs). This study intend to examine whether 1-nitropyrene (1-NP) and 3-nitrofluoranthene (3-NF) could activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) antioxidant defense system, and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway participates in regulating pro-inflammatory responses in A549 cells. Firstly, 1-NP and 3-NF concentration-dependently induced cellular apoptosis, reactive oxygen species (ROS) generation, DNA damage, S phase cell cycle arrest and differential expression of related cytokine genes. Secondly, 1-NP and 3-NF activated the Nrf2/ARE defense system, as evidenced by increased protein expression levels and nuclear translocation of transcription factor Nrf2, elevated Nrf2/ARE binding activity, up-regulated expression of the target gene heme oxygenase-1 (HO-1). Significantly increased protein expression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylation level of Akt indicated that the PI3K/Akt pathway was activated during pro-inflammatory process. Further, both PI3K inhibitor (LY294002) and Akt inhibitor (MK-2206) reversed the elevated TNF-α expression to control level. Our results suggested that Nrf2/ARE pathway activation might cause an initiation step in cellular protection against oxidative stress caused by nitro-PAHs, and the PI3K/Akt pathway participated in regulating inflammatory responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A Novel AKT Activator, SC79, Prevents Acute Hepatic Failure Induced by Fas-Mediated Apoptosis of Hepatocytes.

    PubMed

    Liu, Wei; Jing, Zhen-Tang; Wu, Shu-Xiang; He, Yun; Lin, Yan-Ting; Chen, Wan-Nan; Lin, Xin-Jian; Lin, Xu

    2018-05-01

    Acute liver failure is a serious clinical problem of which the underlying pathogenesis remains unclear and for which effective therapies are lacking. The Fas receptor/ligand system, which is negatively regulated by AKT, is known to play a prominent role in hepatocytic cell death. We hypothesized that AKT activation may represent a strategy to alleviate Fas-induced fulminant liver failure. We report here that a novel AKT activator, SC79, protects hepatocytes from apoptosis induced by agonistic anti-Fas antibody CH11 (for humans) or Jo2 (for mice) and significantly prolongs the survival of mice given a lethal dose of Jo2. Under Fas-signaling stimulation, SC79 inhibited Fas aggregation, prevented the recruitment of the adaptor molecule Fas-associated death domain (FADD) and procaspase-8 [or FADD-like IL-1β-converting enzyme (FLICE)] into the death-inducing signaling complex (DISC), but SC79 enhanced the recruitment of the long and short isoforms of cellular FLICE-inhibitory protein at the DISC. All of the SC79-induced hepatoprotective and DISC-interruptive effects were confirmed to have been reversed by the Akt inhibitor LY294002. These results strongly indicate that SC79 protects hepatocytes from Fas-induced fatal hepatic apoptosis. The potent alleviation of Fas-mediated hepatotoxicity by the relatively safe drug SC79 highlights the potential of our findings for immediate hepatoprotective translation. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Heparanase induced by advanced glycation end products (AGEs) promotes macrophage migration involving RAGE and PI3K/AKT pathway

    PubMed Central

    2013-01-01

    Background Advanced glycation end products (AGEs), inflammatory-associated macrophage migration and accumulation are crucial for initiation and progression of diabetic vascular complication. Enzymatic activity of heparanase (HPA) is implicated strongly in dissemination of metastatic tumor cells and cells of the immune system. In addition, HPA enhances the phosphorylation of selected signaling molecules including AKT pathway independent of enzymatic activity. However, virtually nothing is presently known the role of HPA during macrophage migration exposed to AGEs involving signal pathway. Methods These studies were carried out in Ana-1 macrophages. Macrophage viability was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. HPA and AKT protein expression in macrophages are analysed by Western blotting and HPA mRNA expression by real time quantitative RT-PCR. Release of HPA was determined by ELISA. Macrophage migration was assessed by Transwell assays. Results HPA protein and mRNA were found to be increased significantly in AGEs-treated macrophages. Pretreatment with anti-HPA antibody which recognizes the nonenzymatic terminal of HPA prevented AGEs-induced AKT phosphorylation and macrophage migration. LY294002 (PI3k/AKT inhibitor) inhibited AGEs-induced macrophage migration. Furthermore, pretreatment with anti-receptor for advanced glycation end products (RAGE) antibody attenuated AGEs-induced HPA expression, AKT phosphorylation and macrophage migration. Conclusions These data indicate that AGEs-induced macrophage migration is dependent on HPA involving RAGE-HPA-PI3K/AKT pathway. The nonenzymatic activity of HPA may play a key role in AGEs-induced macrophage migration associated with inflammation in diabetic vascular complication. PMID:23442498

  16. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis.

    PubMed

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya

    2014-08-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  17. Relaxin attenuates aristolochic acid induced human tubular epithelial cell apoptosis in vitro by activation of the PI3K/Akt signaling pathway.

    PubMed

    Xie, Xiang-Cheng; Zhao, Ning; Xu, Qun-Hong; Yang, Xiu; Xia, Wen-Kai; Chen, Qi; Wang, Ming; Fei, Xiao

    2017-06-01

    Aristolochic acid nephropathy remains a leading cause of chronic kidney disease (CKD), however few treatment strategies exist. Emerging evidence has shown that H2 relaxin (RLX) possesses powerful antifibrosis and anti-apoptotic properties, therefore we aimed to investigate whether H2 relaxin can be employed to reduce AA-induced cell apoptosis. Human proximal tubular epithelial (HK-2) cells exposed to AA-I were treated with or without administration of H2 RLX. Cell viability was examined using the WST-8 assay. Apoptotic morphologic alterations were observed using the Hoechst 33342 staining method. Apoptosis was detected using flow cytometry. The expression of caspase 3, caspase 8, caspase 9, ERK1/2, Bax, Bcl-2, and Akt proteins was determined by Western blot. Co-treatment with RLX reversed the increased apoptosis observed in the AA-I only treated group. RLX restored expression of phosphorylated Akt which found to be decreased in the AA-I only treated cells. RLX co-treatment led to a decrease in the Bax/Bcl-2 ratio as well as the cleaved form of caspase-3 compared to the AA-I only treated cells. This anti-apoptotic effect of RLX was attenuated by co-administration of the Akt inhibitor LY294002. The present study demonstrated H2 RLX can decrease AA-I induced apoptosis through activation of the PI3K/Akt signaling pathway.

  18. Selaginella tamariscina (Beauv.) possesses antimetastatic effects on human osteosarcoma cells by decreasing MMP-2 and MMP-9 secretions via p38 and Akt signaling pathways.

    PubMed

    Yang, Jia-Sin; Lin, Chiao-Wen; Hsieh, Yih-Shou; Cheng, Hsin-Lin; Lue, Ko-Huang; Yang, Shun-Fa; Lu, Ko-Hsiu

    2013-09-01

    Selaginella tamariscina is a traditional medicinal plant for treatment of some advanced cancers in the Orient. However, the effect of S. tamariscina on metastasis of osteosarcoma and the underlying mechanism remain unclear. We tested the hypothesis that S. tamariscina suppresses cellular motility, invasion and migration and also investigated its signaling pathways. This study demonstrates that S. tamariscina, at a range of concentrations (from 0 to 50 μg/mL), concentration-dependently inhibited the migration/invasion capacities of three osteosarcoma cell lines without cytotoxic effects. Zymographic and western blot analyses revealed that S. tamariscina inhibited the matrix metalloproteinase (MMP)-2 and MMP-9 enzyme activity, as well as protein expression. Western blot analysis also showed that S. tamariscina inhibits phosphorylation of p38 and Akt. Furthermore, SB203580 (p38 inhibitor) and LY294002 (PI3K inhibitor) showed the similar effects as S. tamariscina in U2OS cells. In conclusion, S. tamariscina possesses an antimetastatic activity in osteosarcoma cells by down-regulating MMP-2 and MMP-9 secretions and increasing TIMP-1 and TIMP-2 expressions through p38 and Akt-dependent pathways. S. tamariscina may be a powerful candidate to develop a preventive agent for osteosarcoma metastasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function.

    PubMed

    Qi, Xiao-Jun; Wildey, Gary M; Howe, Philip H

    2006-01-13

    Bim, the Bcl-2 interacting mediator of cell death, is a member of the BH3-only family of pro-apoptotic proteins. Recent studies have demonstrated that the apoptotic activity of Bim can be regulated through a post-translational mechanism whereby ERK phosphorylation serves as a signal for Bim ubiquitination and proteasomal degradation. In this report, we investigated the signaling pathways leading to Bim phosphorylation in Ba/F3 cells, an interleukin-3 (IL-3)-dependent B-cell line. IL-3 stimulation induced phosphorylation of Bim(EL), one of the predominant isoforms of Bim expressed in cells, at multiple sites, as evidenced by the formation of at least three to four bands by Western blotting that were sensitive to phosphatase digestion. The appearance of multiple, phosphorylated species of Bim(EL) correlated with Akt, and not ERK, activation. The PI3K inhibitor, LY294002, blocked IL-3-stimulated Akt activity and partially blocked Bim(EL) phosphorylation. In vitro kinase assays showed that recombinant Akt could directly phosphorylate a GST-Bim(EL) fusion protein and identified the Akt phosphorylation site in the Bim(EL) domain as Ser(87). Further, we demonstrated that cytokine stimulation promotes Bim(EL) binding to 14-3-3 proteins. Finally, we show that mutation of Ser(87) dramatically increases the apoptotic potency of Bim(EL). We propose that Ser(87) of Bim(EL) is an important regulatory site that is targeted by Akt to attenuate the pro-apoptotic function of Bim(EL), thereby promoting cell survival.

  20. Epigallocatechin-3-Gallate Reduces Neuronal Apoptosis in Rats after Middle Cerebral Artery Occlusion Injury via PI3K/AKT/eNOS Signaling Pathway

    PubMed Central

    Zhonghang, Xu; Tongtong, Liu; Wanshu, Guo

    2018-01-01

    Background/Aims Epigallocatechin-3-gallate (EGCG) has neuroprotective effects and the ability to resist amyloidosis. This study observed the protective effect of EGCG against neuronal injury in rat models of middle cerebral artery occlusion (MCAO) and investigated the mechanism of action of PI3K/AKT/eNOS signaling pathway. Methods Rat models of permanent MCAO were established using the suture method. Rat behavior was measured using neurological deficit score. Pathology and apoptosis were measured using HE staining and TUNEL. Oxidative stress and brain injury markers were examined using ELISA. Apoptosis-related proteins and PI3K/AKT/eNOS signaling pathway were determined using western blot assay and immunohistochemistry. Results EGCG decreased neurological function score, protected nerve cells, inhibited neuronal apoptosis, and inhibited oxidative stress injury and brain injury markers level after MCAO. EGCG reduced the apoptotic rate of neurons, increased the expression of Bcl-2, and decreased the expression of Caspase-3 and Bax. After LY294002 suppressed the PI3K pathway, the protective effect of EGCG decreased after administration of PI3K inhibitors. Conclusion EGCG has a protective effect on rat brain injury induced by MCAO, possibly by modulating the PI3K/AKT/eNOS signaling pathway. PMID:29770336

  1. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kook, Sung-Ho; Lim, Shin-Saeng; Cho, Eui-Sic

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentialsmore » of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.« less

  2. Tanshinone IIA protects PC12 cells from β-amyloid(25-35)-induced apoptosis via PI3K/Akt signaling pathway.

    PubMed

    Dong, Huimin; Mao, Shanping; Mao, Shanpin; Wei, Jiajun; Liu, Baohui; Zhang, Zhaohui; Zhang, Qian; Yan, Mingmin

    2012-06-01

    For the aging populations of any nation, Dementia is becoming a primary problem and Alzheimer’s dementia (AD) is the most common type. However, until now, there is no effective treatment for AD. Tanshinone IIA (Tan IIA) has been reported for neuroprotective potential to against amyloid β peptides (Aβ)-induced cytotoxicity in the rat pheochromocytoma cell line PC-12, which is widely used as AD research model, but the mechanism still remains unclear. To investigate the effect of Tan IIA and the possible molecular mechanism in the apoptosis of PC12 cells, we induced apoptosis in PC12 cells with β-amyloid(25-35), and treated cells with Tan IIA. After 24 h treatment, we found that Tan IIA increased the cell viability and reduced the number of apoptotic cells induced by Aβ(25-35). However, neuroprotection of Tan IIA was abolished by PI3K inhibitor LY294002. Meanwhile, Treatment with lithium chloride, a phosphorylation inhibitor of GSK3β, which is a downstream target of PI3K/Akt, can block Aβ(25-35)-induced cell apoptosis in a Tan IIA-like manner. Our findings suggest that Tan IIA is an effective neuroprotective agent and a viable candidate in AD therapy and PI3K/Akt activation and GSK3β phosphorylation are involved in the neuroprotection of Tan IIA.

  3. Dexamethasone protects auditory hair cells against TNFalpha-initiated apoptosis via activation of PI3K/Akt and NFkappaB signaling.

    PubMed

    Haake, Scott M; Dinh, Christine T; Chen, Shibing; Eshraghi, Adrien A; Van De Water, Thomas R

    2009-09-01

    Tumor necrosis factor alpha (TNFalpha) is associated with trauma-induced hearing loss. Local treatment of cochleae of trauma-exposed animals with a glucocorticoid is effective in reducing the level of hearing loss that occurs post-trauma (e.g., electrode insertion trauma-induced hearing loss/dexamethasone treatment). Dexamethasone (Dex) protects auditory hair cells (AHCs) from trauma-induced loss by activating cellular signal pathways that promote cell survival. Organ of Corti explants challenged with an ototoxic level of TNFalpha was the trauma model with Dex the otoprotective drug. A series of inhibitors were used in combination with the Dex treatment of TNFalpha-exposed explants to investigate the signal molecules that participate in Dex-mediated otoprotection. The otoprotective capacity of Dex against TNFalpha ototoxicity was determined by hair cell counts obtained from fixed explants stained with FITC-phalloidin labeling with investigators blinded to specimen identity. The general caspase inhibitor Boc-d-fmk prevented TNFalpha-induced AHC death. There was a significant reduction (p<0.05) in the efficacy of Dex otoprotection against TNFalpha ototoxicity when the following cellular events were blocked: (1) glucocorticoid receptors (Mif); (2) PI3K (LY294002); (3) Akt/PKB (SH-6); and (4) NFkappaB (NFkappaB-I). Dex treatment protects hair cells against TNFalpha apoptosis in vitro by activation of PI3K/Akt and NFkappaB signaling.

  4. DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yong; Fang, Shi-ji; Zhu, Li-juan

    Highlights: • LDI increases ALP activity, promotes type I collagen (Col I)/Runx2 mRNA expression. • LDI induces DNA–PKcs activation, which is required for osteoblast differentiation. • Akt activation mediates LDI-induced ALP activity and Col I/Runx2 mRNA increase. • DNA–PKcs–SIN1 complexation mediates LDI-induced Akt Ser-473 phosphorylation. • DNA–PKcs–SIN1 complexation is important for osteoblast differentiation. - Abstract: Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA–PKcs)–Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which wasmore » detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1 Gy) induced phosphorylation of DNA–PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA–PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA–PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA–PKcs–SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA–PKcs–SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.« less

  5. Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1α/CXC chemokine receptor 4 pathway

    PubMed Central

    ZHOU, HAO; YANG, JUNJIE; XIN, TING; ZHANG, TAO; HU, SHUNYIN; ZHOU, SHANSHAN; CHEN, GUANGHUI; CHEN, YUNDAI

    2015-01-01

    Adipose-derived stem cells (ADSCs) are considered a suitable source of cells for the repair of tissue following acute myocardial infarction (AMI); however, the transplantation efficiency of ADSCs remains low. Therefore, identification of an efficient method to enhance the migration of engrafted cells to the target site is required. The present study used exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, to optimize the migratory capacity of ADSCs. The aim was to determine the effect and mechanisms of Ex-4 on the migration of ADSCs to neonatal rat ventricular cardiomyocyte-derived conditioned medium (NRVC-CM). The ADSCs and cardiomyocytes were cultured in vitro. Following incubation of the ADSCs with Ex-4, cell proliferation was measured using an MTT assay and the expression levels of CXC chemokine receptor 4 (CXCR4) were investigated by reverse transctiption quantitative polymerase chain reaction (RT-qPCR), western blot analysis and flow cytometry. In addition, the expression levels of stromal cell-derived factor-1α (SDF-1α) were evaluated in the NRVC-CM treated with Ex-4 by ELISA, RT-qPCR and western blot analysis. The migration of the ADSCs to the NRVC-CM was examined using a Transwell assay. Changes in the protein expression levels of phosphorylated (p−)Akt were examined in the two types of cell by western blot analysis. The results suggested that Ex-4 promoted the proliferation and expression of CXCR4 in the ADSCs, increased the secretion of SDF-1α in the cardiomyocytes and increased the expression levels of p-Akt in both cells. However, the alterations to the SDF-1α/C XC R4 cascade in the cells were abrogated following pretreatment with LY-294002, a phosphoinositide 3-kinase(PI3K) inhibitor. Furthermore, a Transwell migration assay revealed marked translocation of the ADSCs through the membranes, towards the NRVC-CM, following treatment with Ex-4. However, these effects were reduced significantly by pretreatment of the cells with the SDF-1

  6. Down-regulation of Long Noncoding RNA MALAT1 Protects Hippocampal Neurons Against Excessive Autophagy and Apoptosis via the PI3K/Akt Signaling Pathway in Rats with Epilepsy.

    PubMed

    Wu, Qiang; Yi, Xuewei

    2018-06-01

    Epilepsy is a common chronic brain disorder and is characterized by an enduring predisposition to generate seizures. The hippocampus is especially vulnerable to seizure-induced damage. In this study, we explore the ability of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) to influence the autophagy and apoptosis of hippocampal neurons in epilepsy and the underlying mechanism involving the PI3K/Akt signaling pathway. Seventy-two Sprague-Dawley rats were assigned to normal, sham, Ep, Ep + si-NC, Ep + si-MALAT1, and Ep + si-MALAT1 + LY groups. Fluorescence in situ hybridization kit was employed to determine the MALAT1 in the brain tissues. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to determine the expression of MALAT1, mRNAs, and proteins. The autophagy of hippocampal neurons was evaluated under a transmission electron microscope and their apoptosis was evaluated using TUNEL staining. We found that MALAT1 and c-Met were enriched while microRNA-101 (miR-101) decreased in rats with epilepsy. The demonstration showed that MALAT1 binds to miR-101, thus regulating c-Met. In rats with epilepsy, MALAT1 depletion mediated by anti-MALAT1 siRNA resulted in activation of PI3K/Akt signaling pathway and loss of hippocampal neurons. LY294002, an inhibitor of PI3K/Akt signaling pathway, could reverse the events caused by MALAT1 knockdown. Taken together, these findings indicate that down-regulation of MALAT1 activates the PI3K/Akt signaling pathway to protect hippocampal neurons against autophagy and apoptosis in rats with epilepsy.

  7. Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway.

    PubMed

    Yang, Yeong-In; Lee, Kyung-Tae; Park, Hee-Juhn; Kim, Tae Jin; Choi, Youn Seok; Shih, Ie-Ming; Choi, Jung-Hye

    2012-12-01

    Paclitaxel (Taxol) is currently used as the front-line chemotherapeutic agent for several cancers including ovarian carcinoma; however, the drug frequently induces drug resistance through multiple mechanisms. The new strategy of using natural compounds in combination therapies is highly attractive because those compounds may enhance the efficacy of chemotherapy. In this study, we found that tectorigenin, an isoflavonoid isolated from flower of Pueraria thunbergiana, enhanced the growth-inhibitory effect of paclitaxel in paclitaxel-resistant ovarian cancer cells (MPSC1(TR), A2780(TR) and SKOV3(TR)) as well as their naive counterparts. The combination of tectorigenin with paclitaxel resulted in a synergistic apoptosis compared with either agent alone through activation of caspases-3, -8 and -9. Treatment with tectorigenin inhibited the nuclear translocation of NFκB and the expression of NFκB-dependent genes such as FLIP, XIAP, Bcl-2, Bcl-xL and COX-2, which are known to be associated with chemoresistance. In addition, the tectorigenin-paclitaxel combination inhibited the phosphorylation of IκB and IKK and the activation of Akt in paclitaxel-resistant cancer cells. Moreover, tectorigenin-paclitaxel-induced cell growth inhibition was enhanced by pretreatment with the Akt inhibitor LY294002 or overexpression of the dominant negative Akt (Akt-DN), but reduced by overexpression of constitutively activated Akt (Akt-Myr). Furthermore, we found that Akt-Myr, at least in part, reversed tectorigenin-paclitaxel-induced nuclear translocation of NFκB and the phosphorylation of IκB and IKK. These data suggest that tectorigenin could sensitize paclitaxel-resistant human ovarian cancer cells through inactivation of the Akt/IKK/IκB/NFκB signaling pathway, and promise a new intervention to chemosensitize paclitaxel-induced cytotoxicity in ovarian cancer.

  8. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia.

    PubMed

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M; Dombkowski, Alan A; Buck, Steven A; Boerner, Julie L; Taub, Jeffrey W; Matherly, Larry H; Ge, Yubin

    2009-09-24

    RUNX1 (AML1) encodes the core binding factor alpha subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the delta catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)-kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease.

  9. Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators.

    PubMed

    Johnson, Ann Mary; Kartha, C C

    2014-04-01

    Insulin-like growth factor-1 (IGF-1) is known to promote proliferation in many cell types including c-kit(pos) cardiac stem cells (CSCs). Downstream signaling pathways of IGF-1 induced CSC proliferation have not been investigated. An important downstream target of IGF-1/Akt-1 signaling is FoxO3a, a key negative regulator of cell-cycle progression. We studied the effect of IGF-1 on proliferation of c-kit(pos) murine CSCs and found that IGF-1-mediated cell proliferation is associated with FoxO3a phosphorylation and inactivation of its transcriptional activity. PI3 inhibitors LY294002 and Wortmannin abolished the effect of IGF-1 on FoxO3a phosphorylation indicating that FoxO3a phosphorylation is mediated by PI3/Akt-1 pathway. In cells with FoxO3a translocation to the cytoplasm, there is decreased expression of cell-cycle inhibitors such as p27(kip1) and p57(kip2) and increased expression of CyclinD1. Our study provides evidence that IGF-1 induced CSC proliferation could be the result of FoxO3a inactivation and its downstream effect on cell-cycle regulators.

  10. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway

    PubMed Central

    WANG, DONGDONG; SAGA, YASUSHI; SATO, NAOTO; NAKAMURA, TOSHIKAZU; TAKIKAWA, OSAMU; MIZUKAMI, HIROAKI; MATSUBARA, SHIGEKI; FUJIWARA, HIROYUKI

    2016-01-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  11. Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39.

    PubMed

    Kong, Dexin; Dan, Shingo; Yamazaki, Kanami; Yamori, Takao

    2010-04-01

    As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in various diseases particularly cancer, considerable competition occurs in development of PI3K inhibitors. Consequently, novel PI3K inhibitors such as ZSTK474, GDC-0941 and NVP-BEZ235 have been developed. Even though all these inhibitors were reported to inhibit class I PI3K but not dozens of protein kinases, whether they have different molecular targets remained unknown. To investigate such molecular target specificity, we have determined the inhibitory effects of these novel inhibitors together with classical PI3K inhibitor LY294002 on PI3K superfamily (including classes I, II, and III PI3Ks, PI4K and PI3K-related kinases) by using several novel non-radioactive biochemical assays. As a result, ZSTK474 and GDC-0941 indicated highly similar inhibition profiles for PI3K superfamily, with class I PI3K specificity much higher than NVP-BEZ235 and LY294002. We further investigated their growth inhibition effects on JFCR39, a human cancer cell line panel which we established for molecular target identification, and analysed their cell growth inhibition profiles (fingerprints) by using COMPARE analysis programme. Interestingly, we found ZSTK474 exhibited a highly similar fingerprint with GDC-0941 (r=0.863), more similar than with that of either NVP-BEZ235 or LY294002, suggesting that ZSTK474 shares more in molecular targets with GDC-0941 than with either of the other two PI3K inhibitors, consistent with the biochemical assay result. The biological implication of the difference in molecular target specificity of these PI3K inhibitors is under investigation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. 5,7-Dihydroxyflavone Analogues May Regulate Lipopolysaccharide-Induced Inflammatory Responses by Suppressing IκBα-Linked Akt and ERK5 Phosphorylation in RAW 264.7 Macrophages

    PubMed Central

    Shimizu, Kazue; Koketsu, Mamoru; Ninomiya, Masayuki; Sato, Daisuke; Suzuki, Takashi; Hayakawa, Satoshi

    2017-01-01

    We studied the anti-inflammatory activity of twelve 5,7-dihydroxyflavone analogues in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. We found that chrysin (1) and 4′-methoxytricetin (9) showed relatively significant anti-inflammatory activity and low cytotoxicity. Moreover, 1 and 9 recovered the expression levels of iNOS and COX2, as well as those of the intracellular inflammatory mediators IL-1β and IL-6, which were upregulated by LPS stimulation. In addition, 1 and 9 actively regulated the phosphorylation of IκBα, leading to the activation of NFκB. Phosphorylation of Akt and ERK5 (upstream of NFκB) by LPS stimulation was significantly regulated by 1 and 9, as well as by BIX 02189 and LY 294002, which are phosphorylation inhibitors of ERK5 and Akt, respectively. The results suggest that compounds 1 and 9 may suppress the levels of iNOS and COX2 by regulating phosphorylation of Akt, ERK5, and IκBα and thus NFκB-related signaling pathways, resulting in anti-inflammatory effects in the cells. Because 1 and 9 showed low cytotoxicity and regulated both PGE2 and NO production caused by inflammatory responses, they may hold promise as natural anti-inflammatory agents. PMID:28539967

  13. Nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro.

    PubMed

    Wang, Chengze; Gu, Weiting; Zhang, Yunpeng; Ji, Yawen; Wen, Yong; Xu, Xin

    2017-07-05

    Cigarette smoking is one of highly risk factors of cervical cancer. Recently nicotine has been reported to increase proliferation and invasion in some smoking related cancers, like non-small cell lung cancer and esophageal squamous cell cancer. However, the effects and mechanisms of nicotine stimulation on cervical cancer cells are not clear. Here, we investigated the effects and mechanisms of nicotine stimulation on HeLa cells in vitro. In our study, we found that nicotine could accelerate HeLa cells migration and invasion, activate PI3K/Akt and NF-κB pathways and increase the expression of Vimentin in vitro. Moreover, we demonstrated that the specific PI3K inhibitor LY294002 could reverse nicotine-induced cell migration and invasion, NF-κB activation and up-regulation of Vimentin. Inhibition of NF-κB by Pyrrolidine dithiocarbamate (PDTC) also antagonized nicotine-induced cell migration, invasion and up-regulation of Vimentin. Simply put, these findings suggest that nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK

    PubMed Central

    Budhraja, Amit; Gao, Ning; Zhang, Zhuo; Son, Young-Ok; Cheng, Senping; Wang, Xin; Ding, Songze; Hitron, Andrew; Chen, Gang; Luo, Jia; Shi, Xianglin

    2015-01-01

    In this study, we investigated the functional role of Akt and JNK signaling cascades in apigenin-induced apoptosis in U937 human leukemia cells and anti-leukemic activity of apigenin in vivo. Apigenin-induced apoptosis by inactivation of Akt with a concomitant activation of JNK, Mcl-1 and Bcl-2 down-regulation, cytochrome c release from mitochondria and activation of caspases. Constitutively active myristolated Akt prevented apigenin-induced JNK, caspases activation, and apoptosis. Conversely, LY294002 and a dominant negative construct of Akt potentiated apigenin-induced apoptosis in leukemia cells. Interruption of JNK pathway showed marked reduction in apigenin-induced caspases activation and apoptosis in leukemia cells. Furthermore, in vivo administration of apigenin resulted in attenuation of tumor growth in U937 xenografts accompanied inactivation of Akt and activation of JNK. Attenuation of tumor growth in U937 xenografts by apigenin raises the possibility that apigenin may have clinical implications and can be further tested for incorporating in leukemia treatment regimens. PMID:22084167

  15. Ibrutinib, a Bruton's tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma.

    PubMed

    Wang, Jin; Liu, Xiaoyang; Hong, Yongzhi; Wang, Songtao; Chen, Pin; Gu, Aihua; Guo, Xiaoyuan; Zhao, Peng

    2017-07-17

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, is a novel anticancer drug used for treating several types of cancers. In this study, we aimed to determine the role of ibrutinib on GBM. Cell proliferation was determined by using cell viability, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and cell apoptosis were analyzed by flow cytometry. Cell migratory ability was evaluated by wound healing assays and trans-well migration assays. ATG7 expression was knocked-down by transfection with Atg7-specific small interfering RNA. Overexpression of active Akt protein was achieved by transfecting the cells with a plasmid expressing constitutively active Akt (CA-Akt). Transmission electron microscopy was performed to examine the formation of autophagosomes in cells. Immunofluorescence and western blot analyses were used to analyze protein expression. Tumor xenografts in nude mice and immunohistochemistry were performed to evaluate the effect of ibrutinib on tumor growth in vivo. Ibrutinib inhibited cellular proliferation and migration, and induced apoptosis and autophagy in LN229 and U87 cells. Overexpression of the active Akt protein decreased ibrutinib-induced autophagy, while inhibiting Akt by LY294002 treatment enhanced ibrutinib-induced autophagy. Specific inhibition of autophagy by 3-methyladenine (3MA) or Atg7 targeting with small interfering RNA (si-Atg7) enhanced the anti-GBM effect of ibrutinib in vitro and in vivo. Our results indicate that ibrutinib exerts a profound antitumor effect and induces autophagy through Akt/mTOR signaling pathway in GBM cells. Autophagy inhibition promotes the antitumor activity of ibrutinib in GBM. Our findings provide important insights into the action of an anticancer agent combining with autophagy inhibitor for malignant glioma.

  16. Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3beta.

    PubMed

    Feng, Jianhua; Lucchinetti, Eliana; Ahuja, Preeti; Pasch, Thomas; Perriard, Jean-Claude; Zaugg, Michael

    2005-11-01

    Postischemic administration of volatile anesthetics activates reperfusion injury salvage kinases and decreases myocardial damage. However, the mechanisms underlying anesthetic postconditioning are unclear. Isolated perfused rat hearts were exposed to 40 min of ischemia followed by 1 h of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane (1.5 minimum alveolar concentration) administered at the onset of reperfusion. In some experiments, atractyloside (10 microm), a mitochondrial permeability transition pore (mPTP) opener, and LY294002 (15 microm), a phosphatidylinositol 3-kinase inhibitor, were coadministered with isoflurane. Western blot analysis was used to determine phosphorylation of protein kinase B/Akt and its downstream target glycogen synthase kinase 3beta after 15 min of reperfusion. Myocardial tissue content of nicotinamide adenine dinucleotide served as a marker for mPTP opening. Accumulation of MitoTracker Red 580 (Molecular Probes, Invitrogen, Basel, Switzerland) was used to visualize mitochondrial function. Anesthetic postconditioning significantly improved functional recovery and decreased infarct size (36 +/- 1% in unprotected hearts vs. 3 +/- 2% in anesthetic postconditioning; P < 0.05). Isoflurane-mediated protection was abolished by atractyloside and LY294002. LY294002 inhibited isoflurane-induced phosphorylation of protein kinase B/Akt and glycogen synthase kinase 3beta and opened mPTP as determined by nicotinamide adenine dinucleotide measurements. Atractyloside, a direct opener of the mPTP, did not inhibit phosphorylation of protein kinase B/Akt and glycogen synthase kinase 3beta by isoflurane but reversed isoflurane-mediated cytoprotection. Microscopy showed accumulation of the mitochondrial tracker in isoflurane-protected functional mitochondria but no staining in mitochondria of unprotected hearts. Anesthetic postconditioning by isoflurane effectively protects against reperfusion damage by preventing

  17. Hippocampal glycogen synthase kinase 3β is critical for the antidepressant effect of cyclin-dependent kinase 5 inhibitor in rats.

    PubMed

    Li, Gang; Liu, Ting; Kong, Xiangqian; Wang, Lei; Jin, Xing

    2014-09-01

    Cdk5 is a member of cyclin-dependent kinase (Cdk), a proline-directed serine/threonine kinase, and plays a key role in normal neural development and function. Evidence of previous study showed that chronic inhibition of Cdk5 in hippocampal dentate gyrus (DG) blocked the development of depressive-like symptoms, suggesting that Cdk5 plays a role in development of depression. Forced swim test, novelty-suppressed feeding test, and learned helplessness were used to evaluate the cellular and molecular mechanisms underlying the behavioral regulation of Cdk5 inhibitors in rats. Two Cdk5 inhibitors butyrolactone and roscovitine were used to investigate the possible antidepressant-like actions of Cdk5 blockade and the potential mechanisms. Systemic administration of butyrolactone (200 mg/kg, IP) or roscovitine (100 mg/kg, IP) produced effective antidepressant-like actions. Moreover, infusion (5 mM) of GSK3β activator LY294002 into DG abolished the antidepressant-like actions of butyrolactone and roscovitine, suggesting that inhibition of GSK3β might be involved in the antidepressant effect of Cdk5 inhibitors. Moreover, pretreatment of LY294002 (5 mM) blocked the antidepressant-like effect of butyrolactone and roscovitine in learned helplessness. Additionally, inescapable footshock induced a significant increase of GSK3β activity, while butyrolactone and roscovitine decreased GSK3β activity. In contrast, pretreatment of LY294002 prevented the inhibitory effects of butyrolactone and roscovitine on GSK3β activation. Finally, a specific GSK3β inhibitor, SB216763 (1 ng, DG), demonstrated an effective antidepressant-like action. These findings demonstrate that systemic administration of Cdk5 inhibitors produced antidepressant-like actions and that inhibition of GSK3β is involved in behavioral response of Cdk5 inhibitors.

  18. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.

    PubMed

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-02-18

    Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU.

  19. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway

    PubMed Central

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-01-01

    Background: Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. Methods: We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Results: Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Conclusion: Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU. PMID:24384683

  20. Protective properties of Huperzine A through activation Nrf2/ARE-mediated transcriptional response in X-rays radiation-induced NIH3T3 cells.

    PubMed

    Zhu, Huan-Feng; Yan, Peng-Wei; Wang, Li-Jun; Liu, Ya-Tian; Wen, Jing; Zhang, Qian; Fan, Yan-Xin; Luo, Yan-Hong

    2018-06-22

    Huperzine A (HupA), derived from Huperzia Serrata, has exhibited a variety of biological actions, in particular neuroprotective effect. However, the protective activities of HupA on murine embryonic fibroblast NIH3T3 cells after X-rays radiation have not been fully elucidated. Herein, HupA treatment dramatically promoted cell viability, abated a G0/G1 peak accumulation, and ameliorated increase of cell apoptosis in NIH3T3 cells after X-rays radiation. Simultaneously, HupA notably enhanced activities of anti-oxidant enzymes, inhibited activity of lipid peroxide, and efficiently eliminated production of reactive oxygen species in NIH3T3 cells after X-rays radiation. Dose-dependent increase of antioxidant genes by HupA were associated with up-regulated Nrf2 and down-regulated Keap-1 expression, which was confirmed by increasing nuclear accumulation, and inhibiting of degradation of Nrf2. Notably, augmented luciferase activity of ARE may explained Nrf2/ARE-mediated signaling pathways behind HupA protective properties. Moreover, expression of Nrf2 HupA-mediated was significant attenuated by AKT inhibitor (LY294002), p38 MAPK inhibitor (SB202190) and ERK inhibitor (PD98059). Besides, HupA-mediated cell viability, and ROS production were dramatically bated by LY294002, SB202190, and PD98059. Taken together, HupA effectively ameliorated X-rays radiation-induced damage Nrf2-ARE-mediated transcriptional response via activation AKT, p38, and ERK signaling in NIH3T3 cells. © 2018 Wiley Periodicals, Inc.

  1. Inhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells

    PubMed Central

    Su, Tzu-Rong; Lin, Jen-Jie; Tsai, Chi-Chu; Huang, Tsu-Kei; Yang, Zih-Yan; Wu, Ming-O; Zheng, Yu-Qing; Su, Ching-Chyuan; Wu, Yu-Jen

    2013-01-01

    Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and dopachrome tautomerase (Dct). In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK). Using inhibitors against PI3K/Akt (LY294002) or MEK/ERK-specific (PD98059), the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763) restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions. PMID:24129178

  2. Context-Dependent Antagonism between Akt Inhibitors and Topoisomerase Poisons

    PubMed Central

    Gálvez-Peralta, Marina; Flatten, Karen S.; Loegering, David A.; Peterson, Kevin L.; Schneider, Paula A.; Erlichman, Charles

    2014-01-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  3. Context-dependent antagonism between Akt inhibitors and topoisomerase poisons.

    PubMed

    Gálvez-Peralta, Marina; Flatten, Karen S; Loegering, David A; Peterson, Kevin L; Schneider, Paula A; Erlichman, Charles; Kaufmann, Scott H

    2014-05-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  4. Osthole relaxes pulmonary arteries through endothelial phosphatidylinositol 3-kinase/Akt-eNOS-NO signaling pathway in rats.

    PubMed

    Yao, Li; Lu, Ping; Li, Yumei; Yang, Lijing; Feng, Hongxuan; Huang, Yong; Zhang, Dandan; Chen, Jianguo; Zhu, Daling

    2013-01-15

    Pulmonary arterial hypertension is a life-threatening disease lacking effective therapies. Osthole is a natural coumarin compound isolated from Angelica pubescens Maxim., which possesses hypotensive effect. Although its effects on isolated thoracic aorta (systemic circulating system) are clarified, it remains unclear whether Osthole relaxes isolated pulmonary arteries (PAs) (pulmonary circulating system). The aim of this study was to investigate the effects of Osthole on isolated PAs and the underlying mechanisms. We examined PA relaxation induced by Osthole in isolated human and rat PA rings with force-electricity transducers, the expression and activity of endothelial nitric oxide synthase (eNOS) and protein kinase B (Akt) with western blot, and nitric oxide (NO) production using DAF-FM DA fluorescent indicator. The results showed that Osthole elicited a dose-dependent vasorelaxation activity with phenylephrine-precontracted human and rat PA rings, which can be diminished by endothelium denudation and inhibition of eNOS, while having no effect on rat mesenteric arteries. Osthole increased NO release as well as activation of Akt and eNOS, indicated with increased phosphorylations of Akt at Ser-473 and eNOS at Ser-1177 in endothelial cells. PI3K inhibitor LY294002 also blocked Osthole induced vasodilation. In summary, dilative effect of Osthole was dependent on endothelial integrity and NO production, and was mediated by endothelial PI3K/Akt-eNOS-NO pathway. These may provide a new pulmonary vasodilator for the therapy of pulmonary arterial hypertension. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Curcumin attenuates cardiomyocyte hypertrophy induced by high glucose and insulin via the PPARγ/Akt/NO signaling pathway.

    PubMed

    Chen, Rongchun; Peng, Xiaofeng; Du, Weimin; Wu, Yang; Huang, Bo; Xue, Lai; Wu, Qin; Qiu, Hongmei; Jiang, Qingsong

    2015-05-01

    To investigate the potential effect of curcumin on cardiomyocyte hypertrophy and a possible mechanism involving the PPARγ/Akt/NO signaling pathway in diabetes. The cardiomyocyte hypertrophy induced by high glucose (25.5mmol/L) and insulin (0.1μmol/L) (HGI) and the antihypertrophic effect of curcumin were evaluated in primary culture by measuring the cell surface area, protein content and atrial natriuretic factor (ANF) mRNA expression. The mRNA and protein expressions were assayed by reverse transcription PCR and Western blotting, whereas the NO concentration and endothelial NO synthase (eNOS) activity were determined using nitrate reduction and ELISA methods, respectively. The cardiomyocyte hypertrophy induced by HGI was characterized by increasing ANF mRNA expression, total protein content, and cell surface area, with downregulated mRNA and protein expressions of both PPARγ and Akt, which paralleled the declining eNOS mRNA expression, eNOS content, and NO concentration. The effects of HGI were inhibited by curcumin (1, 3, 10μmol/L) in a concentration-dependent manner. GW9662 (10μmol/L), a selective PPARγ antagonist, could abolish the effects of curcumin. LY294002 (20μmol/L), an Akt blocker, and N(G)-nitro-l-arginine-methyl ester (100μmol/L), a NOS inhibitor, could also diminish the effects of curcumin. The results suggested that curcumin supplementation can improve HGI-induced cardiomyocytes hypertrophy in vitro through the activation of PPARγ/Akt/NO signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Vitexin protects dopaminergic neurons in MPTP-induced Parkinson’s disease through PI3K/Akt signaling pathway

    PubMed Central

    Hu, Ming; Li, Fangming; Wang, Weidong

    2018-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease which is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Methods In this study, the neuroprotective effect of vitexin (Vit), a flavonoid compound isolated from Crataegus pinnatifida Bunge was examined in PD models both in vitro and in vivo. Results On SH-SY5Y cells, methyl-4-phenylpyridine (MPP+) treatment suppressed cell viability, induced apoptosis, and increased Bax/Bcl-2 ratio and caspase-3 activity. However, Vit improved these parameters induced by MPP+ treatment significantly. Further study disclosed that Vit enhanced the phosphorylation of PI3K and Akt which was downregulated by MPP+ in SH-SY5Y cells, the effect of which could be blocked by PI3K inhibitor LY294002 and activated by PI3K activator IGF-1. Moreover, results from the pole test and traction test suggested that Vit pretreatment prevented bradykinesia and alleviated the initial lesions caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in MPTP-treated mouse PD model. Vit also enhanced the activation of PI3K and Akt and suppressed the ratio of Bax/Bcl-2 and caspase-3 activity in MPTP-treated mice. Conclusion Taken together, this study demonstrated that Vit protected dopaminergic neurons against MPP+/MPTP-induced neurotoxicity through the activation of PI3K/Akt signaling pathway. Our findings may facilitate the clinical application of Vit in the therapy of PD. PMID:29588573

  7. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway

    PubMed Central

    Soo, Hsien-Chuen; Chung, Felicia Fei-Lei; Lim, Kuan-Hon; Yap, Veronica Alicia; Bradshaw, Tracey D.; Hii, Ling-Wei; Tan, Si-Hoey; See, Sze-Jia; Tan, Yuen-Fen; Leong, Chee-Onn

    2017-01-01

    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted. PMID:28107519

  8. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway.

    PubMed

    Soo, Hsien-Chuen; Chung, Felicia Fei-Lei; Lim, Kuan-Hon; Yap, Veronica Alicia; Bradshaw, Tracey D; Hii, Ling-Wei; Tan, Si-Hoey; See, Sze-Jia; Tan, Yuen-Fen; Leong, Chee-Onn; Mai, Chun-Wai

    2017-01-01

    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted.

  9. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    PubMed

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  10. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells

    PubMed Central

    Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu

    2016-01-01

    Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3′ -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy. PMID:26788032

  11. Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling.

    PubMed

    Shen, C; Cai, G-Q; Peng, J-P; Chen, X-D

    2015-12-01

    Glucocorticoids (GCs) have been widely used in the management of osteoarthritis (OA) and rheumatoid arthritis (RA). Nevertheless, there has been some concern about their ability of increasing reactive oxygen species (ROS) in the cartilage. Forkhead-box class O (FOXO) transcription factors have been proved to have a protective role in chondrocytes through regulation of autophagy and defending oxidative stress. The objective of this study was to investigate the role of FOXO3 in Dex-induce up-regulation of ROS. Healthy cartilages debris from six patients were used for chondrocytes culture. After the treatment of dexamethasone (Dex), the ROS levels, autophagic flux, the expression of FOXO3 in chondrocytes were measured. RNA interference technique was also used to determine the role of FOXO3 in Dex-induced autophagy. The metabolism of the extra-cellular matrix was also investigated. Dex increased intracellular ROS level, the expression of Akt, FOXO3 as well as autophagy flux in human chondrocytes. The expression of aggrecanases also increased after the treatment of Dex. Catalase, the ROS scavenger, suppressed Dex-induced up-regulation of autophagy flux and expression of aggrecanases and Akt. MK-2206 and LY294002, the PI3K/Akt inhibitors, repressed Dex-induced up-regulation of FOXO3. Silencing FOXO3 resulted in down-regulation of Dex-induced autophagy. Moreover, knockdown of FOXO3 increased Dex-induced apoptosis as well as ROS levels in chondrocytes. In addition, up-regulation of autophagy by Rapamycin resulted in decreasing ROS level in chondrocytes. Dex could advance the degenerative process in cartilage. Autophagy was induced in response to Dex-induced up-regulation of ROS via ROS/Akt/FOXO3 signal pathway. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. PI3K/AKT signaling inhibits NOTCH1 lysosome-mediated degradation.

    PubMed

    Platonova, Natalia; Manzo, Teresa; Mirandola, Leonardo; Colombo, Michela; Calzavara, Elisabetta; Vigolo, Emilia; Cermisoni, Greta Chiara; De Simone, Daria; Garavelli, Silvia; Cecchinato, Valentina; Lazzari, Elisa; Neri, Antonino; Chiaramonte, Raffaella

    2015-06-06

    The pathways of NOTCH and PI3K/AKT are dysregulated in about 60% and 48% of T-cell acute lymphoblastic leukemia (T-ALL) patients, respectively. In this context, they interact and cooperate in controlling tumor cell biology. Here, we propose a novel mechanism by which the PI3K/AKT pathway regulates NOTCH1 in T-ALL, starting from the evidence that the inhibition of PI3K/AKT signaling induced by treatment with LY294002 or transient transfection with a dominant negative AKT mutant downregulates NOTCH1 protein levels and activity, without affecting NOTCH1 transcription. We showed that the withdrawal of PI3K/AKT signaling was associated to NOTCH1 phosphorylation in tyrosine residues and monoubiquitination of NOTCH1 detected by Ubiquitin capture assay. Co-immunoprecipitation assay and colocalization analysis further showed that the E3 ubiquitin ligase c-Cbl interacts and monoubiquitinates NOTCH1, activating its lysosomal degradation. These results suggest that the degradation of NOTCH1 could represent a mechanism of control by which NOTCH1 receptors are actively removed from the cell surface. This mechanism is finely regulated by the PI3K/AKT pathway in physiological conditions. In pathological conditions characterized by PI3K/AKT hyperactivation, such as T-ALL, the excessive AKT signaling could lead to NOTCH1 signaling dysregulation. Therefore, a therapeutic strategy directed to PI3K/AKT in T-ALL could contemporaneously inhibit the dysregulated NOTCH1 signaling. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. 17β-Estradiol on the Expression of G-Protein Coupled Estrogen Receptor (GPER/GPR30) Mitophagy, and the PI3K/Akt Signaling Pathway in ATDC5 Chondrocytes In Vitro

    PubMed Central

    Fan, Dong-xiao; Yang, Xu-hao; Li, Yi-nan

    2018-01-01

    Background Osteoarthritis is a progressive inflammatory joint disease resulting in damage to articular cartilage. G-protein coupled estrogen receptor (GPER/GPR30) activates cell signaling in response to 17β-estradiol, which can be blocked by the GPR30 agonist, G15, an analog of G-1. The aims of this study were to investigate the effects of 17β-estradiol on the expression of G-protein coupled estrogen receptor (GPER/GPR30) on mitophagy and the PI3K/Akt signaling pathway in ATDC5 chondrocytes in vitro. Material/Methods Cultured ATDC5 chondrocytes were treated with increasing concentrations of 17β-estradiol with and without G15, p38 inhibitor (SB203580), JNK inhibitor (SP600125), PI3K inhibitor (LY294002, S1737), and mTOR inhibitor (S1842). Expression of GPER/GPR30 and components of the PI3K/Akt pathway in cultured ATDC5 chondrocytes were detected by immunofluorescence (IF) staining, Western blot, and real-time polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) and IF were used to detect mitophagosomes. Expression of LC-3, LAMP2, TOM20, Hsp60, p-Akt, p-mTOR, p-p38, and p-JNK was investigated by Western blot. Proliferation and viability of the ATDC5 chondrocytes were determined using BrdU and MTT assays. Results In 17β-estradiol-treated ATDC5 chondrocytes, increased expression of GPER/GPR30 was found, but fewer mitophagosomes were observed, and decreased numbers of TOM20-positive granules were co-localized with decreased LAMP2 and increased expression levels of TOM20, Hsp60, p-Akt, and p-mTOR, and reduced expression of LC3-II, were found. In 17β-estradiol-treated ATDC5 chondrocytes, the proliferation and viability of the 17β-estradiol-treated ATDC5 chondrocytes were significantly elevated. Conclusions Treatment with 17β-estradiol protected ATDC5 chondrocytes against mitophagy via the GPER/GPR30 and the PI3K/Akt signaling pathway. PMID:29608013

  14. Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway.

    PubMed

    Dal-Cim, Tharine; Molz, Simone; Egea, Javier; Parada, Esther; Romero, Alejandro; Budni, Josiane; Martín de Saavedra, Maria D; del Barrio, Laura; Tasca, Carla I; López, Manuela G

    2012-08-01

    Mitochondrial perturbation and oxidative stress are key factors in neuronal vulnerability in several neurodegenerative diseases or during brain ischemia. Here we have investigated the protective mechanism of action of guanosine, the guanine nucleoside, in a human neuroblastoma cell line, SH-SY5Y, subjected to mitochondrial oxidative stress. Blockade of mitochondrial complexes I and V with rotenone plus oligomycin (Rot/oligo) caused a significant decrease in cell viability and an increase in ROS production. Guanosine that the protective effect of guanosine incubated concomitantly with Rot/oligo abolished Rot/oligo-induced cell death and ROS production in a concentration dependent manner; maximum protection was achieved at the concentration of 1mM. The cytoprotective effect afforded by guanosine was abolished by adenosine A(1) or A(2A) receptor antagonists (DPCPX or ZM241385, respectively), or by a large (big) conductance Ca(2+)-activated K(+) channel (BK) blocker (charybdotoxin). Evaluation of signaling pathways showed that the protective effect of guanosine was not abolished by a MEK inhibitor (PD98059), by a p38(MAPK) inhibitor (SB203580), or by a PKC inhibitor (cheleritrine). However, when blocking the PI3K/Akt pathway with LY294002, the neuroprotective effect of guanosine was abolished. Guanosine increased Akt and p-Ser-9-GSK-3β phosphorylation confirming this pathway plays a key role in guanosine's neuroprotective effect. Guanosine induced the antioxidant enzyme heme oxygenase-1 (HO-1) expression. The protective effects of guanosine were prevented by heme oxygenase-1 inhibitor, SnPP. Moreover, bilirubin, an antioxidant and physiologic product of HO-1, is protective against mitochondrial oxidative stress. In conclusion, our results show that guanosine can afford protection against mitochondrial oxidative stress by a signaling pathway that implicates PI3K/Akt/GSK-3β proteins and induction of the antioxidant enzyme HO-1. Copyright © 2012 Elsevier Ltd. All

  15. Insulin-like growth factor-I stimulates H{sub 4}II rat hepatoma cell proliferation: Dominant role of PI-3'K/Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexia, Catherine; Fourmatgeat, Pascal; Delautier, Daniele

    2006-04-15

    Although hepatocytes are the primary source of endocrine IGF-I and -II in mammals, their autocrine/paracrine role in the dysregulation of proliferation and apoptosis during hepatocarcinogenesis and in hepatocarcinomas (HCC) remains to be elucidated. Indeed, IGF-II and type-I IGF receptors are overexpressed in HCC cells, and IGF-I is synthesized in adjacent non-tumoral liver tissue. In the present study, we have investigated the effects of type-I IGF receptor signaling on H{sub 4}II rat hepatoma cell proliferation, as estimated by {sup 3}H-thymidine incorporation into DNA. IGF-I stimulated the rate of DNA synthesis of serum-deprived H{sub 4}II cells, stimulation being maximal 3 h aftermore » the onset of IGF-I treatment and remaining elevated until at least 6 h. The IGF-I-induced increase in DNA replication was abolished by LY294002 and only partially inhibited by PD98059, suggesting that phosphoinositol-3' kinase (PI-3'K) and to a lesser extent MEK/Erk signaling were involved. Furthermore, the 3- to 19-fold activation of the Erks in the presence of LY294002 suggested a down-regulation of the MEK/Erk cascade by PI-3'K signaling. Finally, the effect of IGF-I on DNA replication was almost completely abolished in clones of H{sub 4}II cells expressing a dominant-negative form of Akt but was unaltered by rapamycin treatment of wild-type H{sub 4}II cells. Altogether, these data support the notion that the stimulation of H{sub 4}II rat hepatoma cell proliferation by IGF-I is especially dependent on Akt activation but independent on the Akt/mTOR signal0009i.« less

  16. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    PubMed

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  17. Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2017-01-01

    Glioblastoma (GBM) is the most common brain tumor with poor survival rate. Our results show that penfluridol, an antipsychotic drug significantly reduced the survival of ten adult and pediatric glioblastoma cell lines with IC50 ranging 2–5 μM after 72 hours of treatment and induced apoptosis. Penfluridol treatment suppressed the phosphorylation of Akt at Ser473 and reduced the expression of GLI1, OCT4, Nanog and Sox2 in several glioblastoma cell lines in a concentration-dependent manner. Inhibiting Akt with LY294002 and siRNA, or inhibiting GLI1 using GANT61, cyclopamine, siRNA and CRISPR/Cas9 resulted in enhanced cell growth suppressive effects of penfluridol. On the other hand, overexpression of GLI1 significantly attenuated the effects of penfluridol. Our results further demonstrated that penfluridol treatment inhibited the growth of U87MG tumors by 65% and 72% in subcutaneous and intracranial in vivo glioblastoma tumor models respectively. Immunohistochemical and western blot analysis of tumors revealed reduced pAkt (Ser 473), GLI1, OCT4 and increase in caspase-3 cleavage and TUNEL staining, confirming in vitro findings. Taken together, our results indicate that overall glioblastoma tumor growth suppression by penfluridol was associated with Akt-mediated inhibition of GLI1. PMID:28380428

  18. TGFβ1-mediated PI3K/Akt and p38 MAP kinase dependent alternative splicing of fibronectin extra domain A in human podocyte culture.

    PubMed

    Madne, Tarunkumar Hemraj; Dockrell, Mark Edward Carl

    2018-04-30

    Alternative splicing is an important gene regulation process to distribute proteins in health and diseases. Extra Domain A+ Fibronectin (EDA+Fn) is an alternatively spliced form of fibronectin (Fn) protein, present in the extra cellular matrix (ECM) and a recognised marker of various pathologies. TGFβ1 has been shown to induce alternative splicing of EDA+Fn in many cell types. Podocytes are spectacular cell type and play a key role in filtration and synthesise ECM proteins in renal physiology and pathology. In our previous study we have demonstrated expression and alternative splicing of EDA+Fn in basal condition in human podocytes culture. TGFβ1 further induced the basal expression and alternative splicing of EDA+Fn through Alk5 receptor and SR proteins. In this study, we have investigated TGFβ1 mediated signalling involved in alternative splicing of EDA+Fn in human podocytes. We have performed western blotting to characterise the expression of the EDA+Fn protein and other signalling proteins and RT-PCR to look for signalling pathways involved in regulation of alternative splicing of EDA+Fn in conditionally immortalised human podocytes culture.We have used TGFβ1 as a stimulator and SB431542, SB202190 and LY294002 for inhibitory studies. In this work, we have demonstrated in human podocytes culture TGFβ1 2.5ng/ml induced phosphorylation of Smad1/5/8, Smad2 and Smad3 via the ALK5 receptor. TGFβ1 significantly induced the PI3K/Akt pathway and the PI3K/Akt pathway inhibitor LY294002 significantly downregulated basal as well as TGFβ1 induced alternative splicing of EDA+Fn in human podocytes. In addition to this, TGFβ1 significantly induced the p38 MAP kinase signalling pathway and p38 MAP kinase signalling pathway inhibitor SB202190 downregulated the TGFβ1-mediated alternative splicing of EDA+Fn in human podocytes. The results with PI3K and p38 MAP kinase signalling pathway suggest that inhibiting PI3K signalling pathway downregulated the basal alternative

  19. Carbon Monoxide Protects against Hepatic Ischemia/Reperfusion Injury via ROS-Dependent Akt Signaling and Inhibition of Glycogen Synthase Kinase 3β

    PubMed Central

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W.

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury. PMID:24454979

  20. Carbon monoxide protects against hepatic ischemia/reperfusion injury via ROS-dependent Akt signaling and inhibition of glycogen synthase kinase 3β.

    PubMed

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  1. Apigenin Reduces Survival of Choriocarcinoma Cells by Inducing Apoptosis via the PI3K/AKT and ERK1/2 MAPK Pathways.

    PubMed

    Lim, Whasun; Park, Sunwoo; Bazer, Fuller W; Song, Gwonhwa

    2016-12-01

    Apigenin is a flavonoid found in parsley, onions, oranges, tea, chamomile, wheat, and sprouts. It has a variety of biological properties including anti-oxidant, anti-mutagenic, anti-carcinogenic, anti-inflammatory, anti-proliferative, and anti-spasmodic effects. Based on epidemiological and case-control studies, apigenin is regarded as a novel chemotherapeutic agent against various cancer types. However, little is known about the effects of apigenin on choriocarcinoma cells. Therefore, we investigated the anti-cancer effects of apigenin on choriocarcinoma cells (JAR and JEG3) in the present study. Apigenin reduced viability and migratory properties, increased apoptosis, and suppressed mitochondrial membrane potential in both the JAR and JEG3 cells. In addition, apigenin predominantly decreased phosphorylation of AKT, P70RSK, and S6 whereas the phosphorylation of ERK1/2 and P90RSK was increased by apigenin treatment of JAR and JEG3 cells in a dose-dependent manner. Moreover, treatment of JAR and JEG3 cells with both apigenin and pharmacological inhibitors of PI3K/AKT (LY294002) and ERK1/2 (U0126) revealed synergistic anti-proliferative effects. Collectively, these results indicated that the apigenin is an invaluable chemopreventive agent that inhibits progression and metastasis of choriocarcinoma cells through regulation of PI3K/AKT and ERK1/2 MAPK signal transduction mechanism. J. Cell. Physiol. 231: 2690-2699, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Selenizing astragalus polysaccharide attenuates PCV2 replication promotion caused by oxidative stress through autophagy inhibition via PI3K/AKT activation.

    PubMed

    Liu, Dandan; Xu, Jing; Qian, Gang; Hamid, Mohammed; Gan, Fang; Chen, Xingxiang; Huang, Kehe

    2018-03-01

    Our previous studies have shown that oxidative stress could promote the porcine circovirus type 2 (PCV2) replication, and astragalus polysaccharide (APS)/selenium could suppress PCV2 replication. However, whether selenizing astragalus polysaccharide (sAPS) provides protection against oxidative stress-induced PCV2 replication promotion and the mechanism involved remain unclear. The present study aimed to explore the mechanism of the PCV2 replication promotion induced by oxidative stress and a novel pharmacotherapeutic approach involving the regulation of autophagy of sAPS. Our results showed that H 2 O 2 promoted PCV2 replication via enhancing autophagy by using 3-methyladenine (3-MA) and autophagy-related gene 5 (ATG5) knockdown. Sodium selenite, APS, the mixture of sodium selenite and APS, and sAPS significantly inhibited H 2 O 2 -induced PCV2 replication promotion, respectively. Among these, sAPS exerted maximal inhibitory effect. sAPS could also significantly inhibit autophagy activated by H 2 O 2 and increase the Akt and mTOR phosphorylation. Moreover, LY294002, the specific phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor, significantly alleviated the effects of sAPS on autophagy and PCV2 replication. Taken together, we conclude that H 2 O 2 promotes PCV2 replication by inducing autophagy and sAPS attenuates the PCV2 replication promotion through autophagy inhibition via PI3K/AKT activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DNA-hypomethylating agent, 5'-azacytidine, induces cyclooxygenase-2 expression via the PI3-kinase/Akt and extracellular signal-regulated kinase-1/2 pathways in human HT1080 fibrosarcoma cells.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2015-10-01

    The cytosine analogue 5'-azacytidine (5'-aza) induces DNA hypomethylation by inhibiting DNA methyltransferase. In clinical trials, 5'-aza is widely used in epigenetic anticancer treatments. Accumulated evidence shows that cyclooxygenase-2 (COX-2) is overexpressed in various cancers, indicating that it may play a critical role in carcinogenesis. However, few studies have been performed to explore the molecular mechanism underlying the increased COX-2 expression. Therefore, we tested the hypothesis that 5'-aza regulates COX-2 expression and prostaglandin E2 (PGE2) production. The human fibrosarcoma cell line HT1080, was treated with various concentrations of 5'-aza for different time periods. Protein expressions of COX-2, DNA (cytosine-5)-methyltransferase 1 (DNMT1), pAkt, Akt, extracellular signal-regulated kinase (ERK), and phosphorylated ERK (pERK) were determined using western blot analysis, and COX-2 mRNA expression was determined using RT-PCR. PGE2 production was evaluated using the PGE2 assay kit. The localization and expression of COX-2 were determined using immunofluorescence staining. Treatment with 5'-aza induces protein and mRNA expression of COX-2. We also observed that 5'-aza-induced COX-2 expression and PGE2 production were inhibited by S-adenosylmethionine (SAM), a methyl donor. Treatment with 5'-aza phosphorylates PI3-kinase/Akt and ERK-1/2; inhibition of these pathways by LY294002, an inhibitor of PI3-kinase/Akt, or PD98059, an inhibitor of ERK-1/2, respectively, prevents 5'-aza-induced COX-2 expression and PGE2 production. Overall, these observations indicate that the hypomethylating agent 5'-aza modulates COX-2 expression via the PI3-kinase/Akt and ERK-1/2 pathways in human HT1080 fibrosarcoma cells.

  4. Ketamine, a Clinically Used Anesthetic, Inhibits Vascular Smooth Muscle Cell Proliferation via PP2A-Activated PI3K/Akt/ERK Inhibition

    PubMed Central

    Chang, Yi; Li, Jiun-Yi; Jayakumar, Thanasekaran; Hung, Shou-Huang; Lee, Wei-Cheng; Manubolu, Manjunath; Sheu, Joen-Rong; Hsu, Ming-Jen

    2017-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) gives rise to major pathological processes involved in the development of cardiovascular diseases. The use of anti-proliferative agents for VSMCs offers potential for the treatment of vascular disorders. Intravenous anesthetics are firmly established to have direct effects on VSMCs, resulting in modulation of blood pressure. Ketamine has been used for many years in the intensive care unit (ICU) for sedation, and has recently been considered for adjunctive therapy. In the present study, we investigated the effects of ketamine on platelet-derived growth factor BB (PDGF-BB)-induced VSMC proliferation and the associated mechanism. Ketamine concentration-dependently inhibited PDGF-BB-induced VSMC proliferation without cytotoxicity, and phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated protein kinase (ERK) inhibitors, LY294002 and PD98059, respectively, have similar inhibitory effects. Ketamine was shown to attenuate PI3K, Akt, and ERK1/2 phosphorylation induced by PDGF-BB. Okadaic acid, a selective protein phosphatase 2A (PP2A) inhibitor, significantly reversed ketamine-mediated PDGF-BB-induced PI3K, Akt, and ERK1/2 phosphorylation; a transfected protein phosphatse 2a (pp2a) siRNA reversed Akt and ERK1/2 phosphorylation; and 3-O-Methyl-sphingomyeline (3-OME), an inhibitor of sphingomyelinase, also significantly reversed ERK1/2 phosphorylation. Moreover, ketamine alone significantly inhibited tyrosine phosphorylation and demethylation of PP2A in a concentration-dependent manner. In addition, the pp2a siRNA potently reversed the ketamine-activated catalytic subunit (PP2A-C) of PP2A. These results provide evidence of an anti-proliferating effect of ketamine in VSMCs, showing activation of PP2A blocks PI3K, Akt, and ERK phosphorylation that subsequently inhibits the proliferation of VSMCs. Thus, ketamine may be considered a potential effective therapeutic agent for reducing atherosclerotic

  5. Ketamine, a Clinically Used Anesthetic, Inhibits Vascular Smooth Muscle Cell Proliferation via PP2A-Activated PI3K/Akt/ERK Inhibition.

    PubMed

    Chang, Yi; Li, Jiun-Yi; Jayakumar, Thanasekaran; Hung, Shou-Huang; Lee, Wei-Cheng; Manubolu, Manjunath; Sheu, Joen-Rong; Hsu, Ming-Jen

    2017-11-27

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) gives rise to major pathological processes involved in the development of cardiovascular diseases. The use of anti-proliferative agents for VSMCs offers potential for the treatment of vascular disorders. Intravenous anesthetics are firmly established to have direct effects on VSMCs, resulting in modulation of blood pressure. Ketamine has been used for many years in the intensive care unit (ICU) for sedation, and has recently been considered for adjunctive therapy. In the present study, we investigated the effects of ketamine on platelet-derived growth factor BB (PDGF-BB)-induced VSMC proliferation and the associated mechanism. Ketamine concentration-dependently inhibited PDGF-BB-induced VSMC proliferation without cytotoxicity, and phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated protein kinase (ERK) inhibitors, LY294002 and PD98059, respectively, have similar inhibitory effects. Ketamine was shown to attenuate PI3K, Akt, and ERK1/2 phosphorylation induced by PDGF-BB. Okadaic acid, a selective protein phosphatase 2A (PP2A) inhibitor, significantly reversed ketamine-mediated PDGF-BB-induced PI3K, Akt, and ERK1/2 phosphorylation; a transfected protein phosphatse 2a ( pp2a ) siRNA reversed Akt and ERK1/2 phosphorylation; and 3-O-Methyl-sphingomyeline (3-OME), an inhibitor of sphingomyelinase, also significantly reversed ERK1/2 phosphorylation. Moreover, ketamine alone significantly inhibited tyrosine phosphorylation and demethylation of PP2A in a concentration-dependent manner. In addition, the pp2a siRNA potently reversed the ketamine-activated catalytic subunit (PP2A-C) of PP2A. These results provide evidence of an anti-proliferating effect of ketamine in VSMCs, showing activation of PP2A blocks PI3K, Akt, and ERK phosphorylation that subsequently inhibits the proliferation of VSMCs. Thus, ketamine may be considered a potential effective therapeutic agent for reducing

  6. [The effect of leptin and its mechanisms on the migration and invasion of human breast cancer MCF-7 cells].

    PubMed

    Wang, Lin; Cao, Hong; Pang, Xueli; Li, Kuangfa; Dang, Weiqi; Tang, Hao; Chen, Tingmei

    2013-12-01

    To investigate the effect and the relevant molecular mechanisms of leptin on the migration and invasion of human breast cancer MCF-7 cells. The expression of OB-R in MCF-7 cells was measured by RT-PCR and Western blotting. The effects of leptin (100 ng/mL) on the the phosphorylation of a few key cell signaling proteins, p-ERK1/2, p-STAT3, p-AKT in MCF-7 cells were examined by Western blotting. Cell scratch assay and Transwell(TM); assay were utilized to measure the effects of leptin on the migration and invasion capability of MCF-7 cells, respectively. The effects of leptin on the mRNA and protein expression of matrix metalloproteinas 9 (MMP-9) and transforming growth factor β (TGF-β) were measured by RT-PCR and Western blotting. Both OB-Rb and OB-Rt were expressed in MCF-7 cells. This indicated that leptin may have significant activities in MCF7 cells. Indeed, leptin increased the phosphorylation of p-ERK1/2, p-STAT3, and p-AKT in MCF-7 cells (P < 0.05). Further, leptin promoted migration and invasion of MCF-7 cells, which were attenuated by the JAK/STAT inhibitor AG490 (50 μmol/L), and the PI3K/AKT inhibitor LY294002 (10 μmol/L) (P < 0.05). Similarly, leptin also increased the mRNA and protein expression of MMP-9 and TGF-β, and these effects were blocked by AG490 and LY294002 as well (P < 0.05). Leptin promoted the migration and invasion capabilities of MCF-7 cells. These activities may be achieved by the upregulation of MMP-9 and TGF-β through JAK/STAT and PI3K/AKT signaling pathways.

  7. Isorhynchophylline Protects PC12 Cells Against Beta-Amyloid-Induced Apoptosis via PI3K/Akt Signaling Pathway

    PubMed Central

    Xian, Yan-Fang; Lin, Zhi-Xiu; Mao, Qing-Qiu; Chen, Jian-Nan; Su, Zi-Ren; Lai, Xiao-Ping; Ip, Paul Siu-Po

    2013-01-01

    The neurotoxicity of amyloid-β (Aβ) has been implicated as a critical cause of Alzheimer's disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated from Uncaria rhynchophylla, exerts neuroprotective effect against Aβ 25–35-induced neurotoxicity in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN against Aβ 25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation in Aβ 25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β (p-GSK-3β). Lithium chloride blocked Aβ 25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3β inhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversed Aβ 25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN against Aβ 25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3β signaling pathway. PMID:24319473

  8. Silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway.

    PubMed

    Li, Yumei; Zhang, Chunmei; Cai, Danfeng; Chen, Congde; Mu, Dongmei

    2017-12-01

    Rhabdoid tumors, which tend to occur prior to the age of 2 years, are one of the most aggressive malignancies and have a poor prognosis due to the frequency of metastasis. Silibinin, a natural extract, has been approved as a potential tumor suppressor in various studies, however, whether or not it also exerts its antitumor capacity in rhabdoid tumors, particularly with regards to tumor migration and invasion, is unclear. The rhabdoid tumor G401 cell line was used in the present in vitro study. An MTT assay was used to assess the cytotoxicity of silibinin on G401 cells, cell migration was studied using a wound healing assay and a Transwell migration assay, and cell invasion was determined using a Transwell invasion assay. The underlying mechanism in silibinin inhibited cell migration and invasion was investigated by western blot analysis and further confirmed using a specific inhibitor. Experimental results demonstrated that high doses of silibinin suppressed cell viability, and that low doses of silibinin inhibited cell migration and invasion without affecting cell proliferation. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway was involved in the silibinin-induced inhibition of metastasis. Silibinin inactivated the PI3K/Akt pathway, and inhibited cell migration and invasion, an effect that was further enhanced when LY294002, a classic PI3K inhibitor, was used concurrently. In general, silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway and may be a potential chemotherapeutic drug to combat rhabdoid tumors in the future.

  9. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects.

    PubMed

    Payne, Christopher D; Deeg, Mark A; Chan, Melanie; Tan, Lai Hock; LaBell, Elizabeth Smith; Shen, Tong; DeBrota, David J

    2014-12-01

    The aim of this study was to assess the safety and tolerability, pharmacokinetics and pharmacodynamics of LY3000328 when administered as single escalating doses to healthy volunteers. This was a phase 1, placebo-controlled, dose escalation study with LY3000328 in 21 healthy male volunteers. Subjects were administered escalating LY3000328 doses up to 300 mg with food in this single dose study. Blood samples were collected at set times post-dose for the assessment of LY3000328 pharmacokinetics and the measurement of cathepsin S (CatS) activity, CatS mass and calculated CatS specific activity. All doses of LY3000328 were well tolerated, with linear pharmacokinetics up to the 300 mg dose. The pharmacodynamic activity of LY3000328 was measured ex vivo showing a biphasic response to LY3000328, where CatS activity declines, then returns to baseline, and then increases to a level above baseline. CatS mass was also assessed post-dose which increased in a dose-dependent manner, and continued to increase after LY3000328 had been cleared from the body. CatS specific activity was additionally calculated to normalize CatS activity for changes in CatS mass. This demonstrated the increase in CatS activity was attributable to the increase in CatS mass detected in plasma. A specific inhibitor of CatS which is cleared quickly from plasma may produce a transient decrease in plasma CatS activity which is followed by a more prolonged increase in plasma CatS mass which may have implications for the future clinical development of inhibitors of CatS. © 2014 The British Pharmacological Society.

  10. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects

    PubMed Central

    Payne, Christopher D; Deeg, Mark A; Chan, Melanie; Tan, Lai Hock; LaBell, Elizabeth Smith; Shen, Tong; DeBrota, David J

    2014-01-01

    Aim The aim of this study was to assess the safety and tolerability, pharmacokinetics and pharmacodynamics of LY3000328 when administered as single escalating doses to healthy volunteers. Methods This was a phase 1, placebo-controlled, dose escalation study with LY3000328 in 21 healthy male volunteers. Subjects were administered escalating LY3000328 doses up to 300 mg with food in this single dose study. Blood samples were collected at set times post-dose for the assessment of LY3000328 pharmacokinetics and the measurement of cathepsin S (CatS) activity, CatS mass and calculated CatS specific activity. Results All doses of LY3000328 were well tolerated, with linear pharmacokinetics up to the 300 mg dose. The pharmacodynamic activity of LY3000328 was measured ex vivo showing a biphasic response to LY3000328, where CatS activity declines, then returns to baseline, and then increases to a level above baseline. CatS mass was also assessed post-dose which increased in a dose-dependent manner, and continued to increase after LY3000328 had been cleared from the body. CatS specific activity was additionally calculated to normalize CatS activity for changes in CatS mass. This demonstrated the increase in CatS activity was attributable to the increase in CatS mass detected in plasma. Conclusion A specific inhibitor of CatS which is cleared quickly from plasma may produce a transient decrease in plasma CatS activity which is followed by a more prolonged increase in plasma CatS mass which may have implications for the future clinical development of inhibitors of CatS. PMID:25039273

  11. Jaceosidin, a natural flavone, promotes angiogenesis via activation of VEGFR2/FAK/PI3K/AKT/NF-κB signaling pathways in endothelial cells.

    PubMed

    Lee, Tae Hoon; Jung, Hana; Park, Keun Hyung; Bang, Myun Ho; Baek, Nam-In; Kim, Jiyoung

    2014-10-01

    Angiogenesis, the growth of new blood vessels from pre-existing vasculature, plays an important role in physiological and pathological processes such as embryonic development wound healing and revascularization of tissues after exposure to ischemia. We investigated the effects of jaceosidin, a main constituent of medicinal herbs of the genus Artemisia, on angiogenesis and signaling pathways in endothelial cells. Jaceosidin stimulated proliferation, migration and tubulogenesis of ECs as well as ex vivo sprouting from aorta rings, which are phenomena typical of angiogenesis. Jaceosidin activated vascular endothelial growth factor receptor 2 (VEGFR2, FLk-1/KDR) and angiogenic signaling molecules such as focal adhesion kinase, phosphatidylinositol 3-kinase, and its downstream target, the serine-threonine kinase AKTWe also demonstrated that jaceosidin activated the NF-κB-driven expression of a luciferase reporter gene and NF-κB binding to DNA. Jaceosidin-induced proliferation and migration of human umbilical vascular endothelial cells were strongly inhibited by the phosphatidylinositol 3-kinase inhibitor LY294002 and NF-κB inhibitor BAY11-7082, indicating that the PI3K/AKT/NF-κB signaling pathway is involved in jaceosidin-induced angiogenesis. Our results suggest that jaceosidin stimulates angiogenesis by activating the VEGFR2/FAK/PI3K/AKT/NF-κB signaling pathway and that it may be useful in developing angiogenic agents to promote the growth of collateral blood vessels in ischemic tissues. © 2014 by the Society for Experimental Biology and Medicine.

  12. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-inducedmore » PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.« less

  13. LSD1 sustains estrogen-driven endometrial carcinoma cell proliferation through the PI3K/AKT pathway via di-demethylating H3K9 of cyclin D1.

    PubMed

    Chen, Chunqin; Wang, Yanan; Wang, Shiyu; Liu, Yuan; Zhang, Jiawen; Xu, Yuyao; Zhang, Zhenbo; Bao, Wei; Wu, Sufang

    2017-03-01

    A recent study reported that histone lysine specific demethylase 1 (LSD1, KDM1A) is overexpressed in endometrioid endometrial carcinoma (EEC) and associated with tumor progression as well as poor prognosis. However, the physiological function and mechanism of LSD1 in endometrial cancer (EC) remains largely unknown. In this study, we demonstrate that β-estradiol (E2) treatment increased LSD1 expression via the GPR30/PI3K/AKT pathway in endometrial cancer cells. Both siGPR30 and the PI3K inhibitor LY294002 block this effect. RNAi-mediated silencing of LSD1 abolished estrogen-driven endometrial cancer cell (ECC) proliferation, and induced G1 cell arrest and apoptosis. Mechanistically, we find that LSD1 silencing results in PI3K/AKT signal inactivation, but without the elevation of PTEN expression as expected. This is because the inhibition of LSD1 induces dimethylation of lysine 9 on histone H3 (H3K9m2) accumulation at the promoter region of cyclin D1. Interfering with cyclin D1 leads to PI3K/AKT signal suppression. Re-overexpression of cyclin D1 in LSD1-knockdown ECCs reverses the LSD1 inhibitory action. Our finding connects estrogen signaling with epigenetic regulation in EEC and provides novel experimental support for LSD1 as a potential target for endometrial cancer therapeutics.

  14. 18β-Glycyrrhetinic acid suppresses TNF-α induced matrix metalloproteinase-9 and vascular endothelial growth factor by suppressing the Akt-dependent NF-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Park, Sang Rul; Choi, Yung Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kim, Gi-Young

    2014-08-01

    Little is known about the molecular mechanism through which 18β-glycyrrhetinic acid (GA) inhibits metastasis and invasion of cancer cells. Therefore, this study aimed to investigate the effects of GA on the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in various types of cancer cells. We found that treatment with GA reduces tumor necrosis factor-α (TNF-α)-induced Matrigel invasion with few cytotoxic effects. Our findings also showed that MMP-9 and VEGF expression increases in response to TNF-α; however, GA reverses their expression. In addition, GA inhibited inhibitory factor kappa B degradation, sustained nuclear factor-kappa B (NF-κB) subunits, p65 and p50, in the cytosol compartments, and consequently suppressed the TNF-α-induced DNA-binding activity and luciferase activity of NF-κB. Specific NF-κB inhibitors, pyrrolidine dithiocarbamate, MG132, and PS-1145, also attenuated TNF-α-mediated MMP-9 and VEGF expression as well as activity by suppressing their regulatory genes. Furthermore, phosphorylation of TNF-α-induced phosphatidyl-inositol 3 kinase (PI3K)/Akt was significantly downregulated in the presence of GA accompanying with the inhibition of NF-κB activity, and as presumed, the specific PI3K/Akt inhibitor LY294002 significantly decreased MMP-9 and VEGF expression as well as activity. These results suggest that GA operates as a potential anti-invasive agent by downregulating MMP-9 and VEGF via inhibition of PI3K/Akt-dependent NF-κB activity. Taken together, GA might be an effective anti-invasive agent by suppressing PI3K/Akt-mediated NF-κB activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. FGF21 protects human umbilical vein endothelial cells against high glucose-induced apoptosis via PI3K/Akt/Fox3a signaling pathway.

    PubMed

    Guo, Dongmin; Xiao, Lele; Hu, Huijun; Liu, Mihua; Yang, Lu; Lin, Xiaolong

    2018-05-25

    Diabetic macroangiopathy is the main cause of morbidity and mortality in patients with diabetes. Endothelial cell injury is a pathological precondition for diabetic macroangiopathy. Fibroblast growth factor 21 (FGF21) is a key metabolic regulator which has recently been suggested to protect cardiac myocytes and vascular cells against oxidative stress-induced injury in vitro and vivo. In this study, we aimed to investigate the protective capacity of FGF21 in human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced apoptosis via phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt)/FoxO3a pathway. The cell viability was examined by CCK-8 assay, Intracellular ROS levels were measured by the detection of the fluorescent product formed by the oxidation of DCFH-DA, Apoptosis was analyzed using Hoechst 33258 nuclear staining and Flow Cytometry Analysis (FCA), the expression of protein were detected by Western blot. Results show that pretreating HUVECs with FGF21 before exposure to HG increases cell viability, while decreasing apoptosis and the generation of reactive oxygen species. Western blot analysis shows that HG reduces the phosphorylation of Akt and FoxO3a, and induces nuclear localization of FoxO3a. The effects were significantly reversed by FGF21 pre-treatment. Furthermore, the protective effects of FGF21 were prevented by PI3K/Akt inhibitor LY294002. Our data demonstrates that FGF21 protects HUVECs from HG-induced oxidative stress and apoptosis via the activation of PI3K/Akt/FoxO3a signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Myoung Hee; Oh, Sang Cheul; Lee, Hyun Joo

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B.more » Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.« less

  17. [6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation.

    PubMed

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation.

  18. Bcl-2 and caspase-3 are major regulators in Agaricus blazei-induced human leukemic U937 cell apoptosis through dephoshorylation of Akt.

    PubMed

    Jin, Cheng-Yun; Moon, Dong-Oh; Choi, Yung Hyun; Lee, Jae-Dong; Kim, Gi-Young

    2007-08-01

    Agaricus blazei is a medicinal mushroom that possesses antimetastatic, antitumor, antimutagenic, and immunostimulating effects. However, the molecular mechanisms involved in A. blazei-mediated apoptosis remain unclear. In the present study, to elucidate the role of the Bcl-2 in A. blazei-mediated apoptosis, U937 cells were transfected with either empty vector (U937/vec) or vector containing cDNA encoding full-length Bcl-2 (U937/Bcl-2). As compared with U937/vec, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment of U937/vec with 1.0-4.0 mg/ml of A. blazei extract (ABE) for 24 h resulted in a significant induction of morphologic features indicative of apoptosis. In contrast, U937/Bcl-2 exposed to the same ABE treatment only exhibited a slight induction of apoptotic features. ABE-induced apoptosis was accompanied by downregulation of antiapoptotic proteins such as X-linked inhibitor of apoptosis protein (XIAP), inhibitor of apoptosis protein (cIAP)-2 and Bcl-2, activation of caspase-3, and cleavage of poly(ADP-ribose)polymerase (PARP). Ectopic expression of Bcl-2 was associated with significantly induced expression of antiapoptotic proteins, such as cIAP-2 and Bcl-2, but not XIAP. Ectopic expression of Bcl-2 also reduced caspase-3 activation and PARP cleavage in ABE treated U937 cells. Furthermore, treatment with the caspase-3 inhibitor z-DEVD-fmk was sufficient to restore cell viability following ABE treatment. This increase in viability was ascribed to downregulation of caspase-3 and blockage of PARP and PLC-gamma cleavage. ABE also triggered the downregulation of Akt, and combined treatment with LY294002 (an inhibitor of Akt) significantly decreased cell viability. The results indicated that major regulators of ABE-induced apoptosis in human leukemic U937 cells are Bcl-2 and caspase-3, which are associated with dephosphorylation of the Akt signal pathway.

  19. Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries.

    PubMed

    Pérez, Francisco R; Venegas, Fabiola; González, Magdalena; Andrés, Sergio; Vallejos, Catalina; Riquelme, Gloria; Sierralta, Jimena; Michea, Luis

    2009-06-01

    Recent studies have shown that the epithelial sodium channel (ENaC) is expressed in vascular tissue. However, the role that ENaC may play in the responses to vasoconstrictors and NO production has yet to be addressed. In this study, the contractile responses of perfused pressurized small-diameter rat mesenteric arteries to phenylephrine and serotonin were reduced by ENaC blockade with amiloride (75.1+/-3.2% and 16.9+/-2.3% of control values, respectively; P<0.01) that was dose dependent (EC(50)=88.9+/-1.6 nmol/L). Incubation with benzamil, another ENaC blocker, had similar effects. alpha, beta, and gamma ENaC were identified in small-diameter rat mesenteric arteries using RT-PCR and Western blot with specific antibodies. In situ hybridization and immunohistochemistry localized ENaC expression to the tunica media and endothelium of small-diameter rat mesenteric arteries. Patch-clamp experiments demonstrated that primary cultures of mesenteric artery endothelial cells expressed amiloride-sensitive sodium currents. Mechanical ablation of the endothelium or inhibition of eNOS with N(omega)-nitro-L-arginine inhibited the reduction in contractility caused by ENaC blockers. ENaC inhibitors increased eNOS phosphorylation (Ser 1177) and Akt phosphorylation (Ser 473). The presence of the phosphoinositide 3-kinase inhibitor LY294002 blunted Akt phosphorylation and eNOS phosphorylation and the decrease in the response to phenylephrine caused by blockers of ENaC, indicating that the phosphoinositide 3-kinase/Akt pathway was activated after ENaC inhibition. Finally, we observed that the effects of blockers of ENaC were flow dependent and that the vasodilatory response to shear stress was enhanced by ENaC blockade. Our results identify a previously unappreciated role for ENaC as a negative modulator of eNOS and NO production in resistance arteries.

  20. HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer

    PubMed Central

    Choi, Yiseul; Ko, Young San; Park, Jinju; Choi, Youngsun; Kim, Younghoon; Pyo, Jung-Soo; Jang, Bo Gun; Hwang, Douk Ho; Kim, Woo Ho; Lee, Byung Lan

    2016-01-01

    AIM To investigated the relationships between HER2, c-Jun N-terminal kinase (JNK) and protein kinase B (AKT) with respect to metastatic potential of HER2-positive gastric cancer (GC) cells. METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility. CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC. PMID:27895401

  1. Molecular Imaging of Phosphorylation Events for Drug Development

    PubMed Central

    Chan, C. T.; Paulmurugan, R.; Reeves, R. E.; Solow-Cordero, D.; Gambhir, S. S.

    2014-01-01

    Purpose Protein phosphorylation mediated by protein kinases controls numerous cellular processes. A genetically encoded, generalizable split firefly luciferase (FL)-assisted complementation system was developed for noninvasive monitoring phosphorylation events and efficacies of kinase inhibitors in cell culture and in small living subjects by optical bioluminescence imaging. Procedures An Akt sensor (AST) was constructed to monitor Akt phosphorylation and the effect of different PI-3K and Akt inhibitors. Specificity of AST was determined using a non-phosphorylable mutant sensor containing an alanine substitution (ASA). Results The PI-3K inhibitor LY294002 and Akt kinase inhibitor perifosine led to temporal- and dose-dependent increases in complemented FL activities in 293T human kidney cancer cells stably expressing AST (293T/AST) but not in 293T/ASA cells. Inhibition of endogenous Akt phosphorylation and kinase activities by perifosine also correlated with increase in complemented FL activities in 293T/AST cells but not in 293T/ASA cells. Treatment of nude mice bearing 293T/AST xenografts with perifosine led to a 2-fold increase in complemented FL activities compared to that of 293T/ASA xenografts. Our system was used to screen a small chemical library for novel modulators of Akt kinase activity. Conclusion This generalizable approach for noninvasive monitoring of phosphorylation events will accelerate the discovery and validation of novel kinase inhibitors and modulators of phosphorylation events. PMID:19048345

  2. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells.

    PubMed

    Shao, Yuxin; Wolf, Patricia G; Guo, Shuangshuang; Guo, Yuming; Gaskins, H Rex; Zhang, Bingkun

    2017-05-01

    Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 μM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 μM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 μM) significantly elevated TEER at 6-24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 μM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Buyang Huanwu Decoction Vigorously Rescues PC12 Cells Against 6-OHDA-Induced Neurotoxicity via Akt/GSK3β Pathway Based on Serum Pharmacology Methodology.

    PubMed

    Li, Zeyan; Wang, Hui; Wang, Qian; Sun, Jinhao

    2016-12-01

    Buyang Huanwu decoction (BYHWD), as a popular traditional Chinese medicine formula, was widely used for treating ischemic diseases. However, in the area of neurodegenerative diseases, the researches focused on BYHWD are rare but promising, and molecular mechanisms underlying are largely elusive. 6-Hydroxydopamine (6-OHDA), a dopaminergic-specific neurotoxin, is extensively used to establish neurotoxic model in vivo and in vitro. In our present study, we prepared drug-containing serum of BYHWD (Buyang Huanwu drug-containing serum [BYHWS]) based on serum pharmacology methodology. Neurotoxic model in vitro was established in PC12 cells, and innovative experimental grouping method was adopted to investigate neuroprotective effects of BYHWS on neurotoxicity induced by 6-OHDA exposure. Remarkably, BYHWS vigorously rescued PC12 cells from 6-OHDA-induced neurotoxicity even to surpass 100% in cell viability. Moreover, Hoechst/propidium iodide (PI) staining revealed that cell apoptotic rate was reduced significantly after incubation of BYHWS. Besides, BYHWS effectively restored the disruption of mitochondrial membrane potential and attenuated the elevation of intracellular reactive oxygen species level caused by 6-OHDA insult. Furthermore, BYHWS remarkably reversed the dephosphorylation of Akt (protein kinase B) and glycogen synthase kinase-3β (GSK3β) evoked by 6-OHDA. The above protective effects were attenuated by coculturing with Akt inhibitor LY294002. In summary, we concluded that the BYHWS vigorously blocked 6-OHDA-induced neurotoxicity via Akt/GSK3β pathway and provided a novel insight into roles of BYHWD in the clinical practices on neurodegenerative diseases.

  4. bFGF Protects Against Blood-Brain Barrier Damage Through Junction Protein Regulation via PI3K-Akt-Rac1 Pathway Following Traumatic Brain Injury.

    PubMed

    Wang, Zhou-Guang; Cheng, Yi; Yu, Xi-Chong; Ye, Li-Bing; Xia, Qing-Hai; Johnson, Noah R; Wei, Xiaojie; Chen, Da-Qing; Cao, Guodong; Fu, Xiao-Bing; Li, Xiao-Kun; Zhang, Hong-Yu; Xiao, Jian

    2016-12-01

    Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced blood-brain barrier (BBB) breakdown. Exogenous basic fibroblast growth factor (bFGF) has been shown to have neuroprotective function in brain injury. The present study therefore investigates the beneficial effects of bFGF on the BBB after TBI and the underlying mechanisms. In this study, we demonstrate that bFGF reduces neurofunctional deficits and preserves BBB integrity in a mouse model of TBI. bFGF suppresses RhoA and upregulates tight junction proteins, thereby mitigating BBB breakdown. In vitro, bFGF exerts a protective effect on BBB by upregulating tight junction proteins claudin-5, occludin, zonula occludens-1, p120-catenin, and β-catenin under oxygen glucose deprivation/reoxygenation (OGD) in human brain microvascular endothelial cells (HBMECs). Both the in vivo and in vitro effects are related to the activation of the downstream signaling pathway, PI3K/Akt/Rac-1. Inhibition of the PI3K/Akt or Rac-1 by specific inhibitors LY294002 or si-Rac-1, respectively, partially reduces the protective effect of bFGF on BBB integrity. Overall, our results indicate that the protective role of bFGF on BBB involves the regulation of tight junction proteins and RhoA in the TBI model and OGD-induced HBMECs injury, and that activation of the PI3K/Akt /Rac-1 signaling pathway underlies these effects.

  5. Coprinus comatus Cap Inhibits Adipocyte Differentiation via Regulation of PPARγ and Akt Signaling Pathway

    PubMed Central

    Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  6. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells.

    PubMed

    Tsai, Jen-Pi; Lee, Chien-Hsing; Ying, Tsung-Ho; Lin, Chu-Liang; Lin, Chia-Liang; Hsueh, Jung-Tsung; Hsieh, Yi-Hsien

    2015-10-06

    The use of dietary bioactive compounds in chemoprevention can potentially reverse, suppress, or even prevent cancer progression. However, the effects of licochalcone A (LicA) on apoptosis and autophagy in cervical cancer cells have not yet been clearly elucidated. In this study, LicA treatment was found to significantly induce the apoptotic and autophagic capacities of cervical cancer cells in vitro and in vivo. MTT assay results showed dose- and time-dependent cytotoxicity in four cervical cancer cell lines treated with LicA. We found that LicA induced mitochondria-dependent apoptosis in SiHa cells, with decreasing Bcl-2 expression. LicA also induced autophagy effects were examined by identifying accumulation of Atg5, Atg7, Atg12 and microtubule-associated protein 1 light chain 3 (LC3)-II. Treatment with autophagy-specific inhibitors (3-methyladenine and bafilomycin A1) enhanced LicA-induced apoptosis. In addition, we suggested the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of mTOR pathway by LicA. Furthermore, the inhibition of PI3K/Akt by LY294002/si-Akt or of mTOR by rapamycin augmented LicA-induced apoptosis and autophagy. Finally, the in vivo mice bearing a SiHa xenograft, LicA dosed at 10 or 20 mg/kg significantly inhibited tumor growth. Our findings demonstrate the chemotherapeutic potential of LicA for treatment of human cervical cancer.

  7. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2Bmore » inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. - Highlights: • MAT2B up-regulates the expression of adipogenic marker genes and promotes porcine intramuscular preadipocyte differentiation. • MAT2B influences intracellular SAMe levels and further affects cell clonal expansion. • MAT2B interacts with AKT and activates AKT/ERK signaling pathway.« less

  8. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect bymore » suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in

  9. STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells

    PubMed Central

    Pan, Xi; Jiang, Binyuan; Liu, Jianhao; Ding, Juan; Li, Yuehui; Sun, Ruili; Peng, Li; Qin, Changfei; Fang, Shujuan; Li, Guancheng

    2017-01-01

    Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer. PMID:28545028

  10. STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells.

    PubMed

    Pan, Xi; Jiang, Binyuan; Liu, Jianhao; Ding, Juan; Li, Yuehui; Sun, Ruili; Peng, Li; Qin, Changfei; Fang, Shujuan; Li, Guancheng

    2017-07-11

    Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer.

  11. GPER agonist dilates mesenteric arteries via PI3K-Akt-eNOS and potassium channels in both sexes.

    PubMed

    Peixoto, Pollyana; Aires, Rosária Dias; Lemos, Virgínia Soares; Bissoli, Nazaré Souza; Santos, Roger Lyrio Dos

    2017-08-15

    The action of oestrogen has traditionally been attributed to the activation of nuclear receptors (ERα and ERβ). A third receptor, the G protein-coupled oestrogen receptor (GPER), has been described as mediator of the rapid action of oestrogen. Based on the possible protective role of oestrogen in the cardiovascular system, the present study was designed to determine whether selective GPER activation induces relaxation of mesenteric resistance arteries in both sexes and which signalling pathways are involved. Third-order mesenteric arteries were isolated, and concentration-response curves were plotted following the cumulative addition of the selective GPER agonist G-1 (1nM-10μM) following induction of contraction with phenylephrine (3μM). The vasodilatory effects of G-1 were assessed before and after removal of the endothelium or incubation for 30min with nitric oxide synthase (N ω -nitro-L-arginine methyl ester - L-NAME, 300μM) and cyclooxygenase (indomethacin - INDO, 10μM) inhibitors alone or combined, PI3K-Akt pathway inhibitor (LY-294,002, 2.5μM) or a potassium channel blocker (tetraethylammonium - TEA, 5mM). GPER immunolocalisation was also performed on the investigated arteries. The tested GPER agonist induced concentration-dependent relaxation of the mesenteric resistance arteries without differences related to sex that were partially endothelium dependent, mainly mediated by the PI3K-Akt-eNOS pathway and attenuated by nonspecific potassium channel blockade. In addition, the endothelial GPER immunolocalisation was stronger among females. This evidence provides a new perspective for understanding the mechanisms involved in the vascular responses triggered by oestrogen via GPER in both sexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Molecular cloning and characterization of a threonine/serine protein kinase lvakt from Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Ruan, Lingwei; Liu, Rongdiao; Xu, Xun; Shi, Hong

    2014-07-01

    The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is involved in various cellular functions, including anti-apoptosis, protein synthesis, glucose metabolism and cell cycling. However, the role of the PI3K-AKT pathway in crustaceans remains unclear. In the present study, we cloned and characterized the AKT gene lvakt from Litopenaeus vannamei. The 511-residue LVAKT was highly conserved; contained a PH domain, a catalytic domain and a hydrophobic domain; and was highly expressed in the heart and gills of L. vannamei. We found, using Real-Time Quantitative PCR (Q-PCR) analysis, that lvakt was up-regulated during early white spot syndrome virus (WSSV) infection. Moreover, the PI3K-specific inhibitor, LY294002, reduced viral gene transcription, implying that the PI3K-AKT pathway might be hijacked by WSSV. Our results therefore suggest that LVAKT may play an important role in the shrimp immune response against WSSV.

  13. Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, Marc; Dormond-Meuwly, Anne; Pythoud, Catherine

    2013-08-16

    Highlights: •PI3K inhibitors inhibit AKT only transiently. •Re-activation of AKT limits the anti-cancer effect of PI3K inhibitors. •The results suggest to combine PI3K and AKT inhibitors in cancer therapy. -- Abstract: Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed bymore » the reactivation of AKT signaling after 48 h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.« less

  14. Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Kang, Chang-Hee; Dilshara, Matharage Gayani; Lee, Hak-Ju; Choi, Yung Hyun; Choi, Il-Whan; Kim, Gi-Young

    2014-12-01

    Microglia are important macrophages to defend against pathogens in the central nervous system (CNS); however, persistent or acute inflammation of microglia lead to CNS disorders via neuronal cell death. Therefore, we theorized that a good strategy for the treatment of CNS disorders would be to target inflammatory mediators from microglia in disease. Consequently, we investigated whether isobutyrylshikonin (IBS) attenuates the production of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Treatment with IBS inhibited the secretion of NO and prostaglandin E2 (as well as the expression of their key regulatory genes), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Isobutyrylshikonin also suppressed LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB), by inhibiting the nuclear translocation of p50 and p65 in addition to blocking the phosphorylation and degradation of IκBα. Pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, showed the down-regulation of LPS-induced iNOS and COX-2 messenger RNA by suppressing NF-κB activity. This indirectly suggests that IBS-mediated NF-κB inhibition is the main signaling pathway involved in the inhibition of iNOS and COX-2 expression. In addition, IBS attenuated LPS-induced phosphorylation of PI3K and Akt, which are upstream molecules of NF-κB, in LPS-stimulated BV2 microglial cells. The functional aspects of the PI3K/Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor that attenuated LPS-induced iNOS and COX-2 expression by suppressing NF-κB activity. These data suggest that an IBS-mediated anti-inflammatory effect may be involved in suppressing the PI3K/Akt-mediated NF-κB signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells.

    PubMed

    Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik

    2012-01-01

    Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1-F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  16. An allosteric Akt inhibitor effectively blocks Akt signaling and tumor growth with only transient effects on glucose and insulin levels in vivo

    PubMed Central

    Cherrin, Craig; Haskell, Kathleen; Howell, Bonnie; Jones, Raymond; Leander, Karen; Robinson, Ronald; Watkins, Aubrey; Bilodeau, Mark; Hoffman, Jacob; Sanderson, Philip; Hartman, George; Mahan, Elizabeth; Prueksaritanont, Thomayant; Jiang, Guoqiang; She, Qing-Bai; Rosen, Neal; Sepp-Lorenzino, Laura; Defeo-Jones, Deborah; Huber, Hans E.

    2010-01-01

    The PI3K-Akt pathway is dysregulated in the majority of solid tumors. Pharmacological inhibition of Akt is a promising strategy for treating tumors resistant to growth factor receptor antagonists due to mutations in PI3K or PTEN. We have developed allosteric, isozyme-specific inhibitors of Akt activity and activation, as well as ex vivo kinase assays to measure inhibition of individual Akt isozymes in tissues. Here we describe the relationship between PK, Akt inhibition, hyperglycemia and tumor efficacy for a selective inhibitor of Akt1 and Akt2 (AKTi). In nude mice, AKTi treatment caused transient insulin resistance and reversible, dose-dependent hyperglycemia and hyperinsulinemia. Akt1 and Akt2 phosphorylation was inhibited in mouse lung with EC50 values of 1.6 and 7 μM, respectively, and with similar potency in other tissues and xenograft tumors. Weekly subcutaneous dosing of AKTi resulted in dose-dependent inhibition of LNCaP prostate cancer xenografts, an AR-dependent tumor with PTEN deletion and constitutively activated Akt. Complete tumor growth inhibition was achieved at 200 mpk, a dose that maintained inhibition of Akt1 and Akt2 of greater than 80% and 50%, respectively, for at least 12 hours in xenograft tumor and mouse lung. Hyperglycemia could be controlled by reducing Cmax, while maintaining efficacy in the LNCaP model, but not by insulin administration. AKTi treatment was well tolerated, without weight loss or gross toxicities. These studies supported the rationale for clinical development of allosteric Akt inhibitors and provide the basis for further refining of pharmacokinetic properties and dosing regimens of this class of inhibitors. PMID:20139722

  17. Sulfiredoxin-1 protects against simulated ischaemia/reperfusion injury in cardiomyocyte by inhibiting PI3K/AKT-regulated mitochondrial apoptotic pathways.

    PubMed

    Zhang, Jiankai; He, Zhangyou; Guo, Jinhua; Li, Zhe; Wang, Xiaohong; Yang, Chun; Cui, Xiaojun

    2016-01-01

    Reactive oxygen species (ROS)-triggered cardiac cell injury is recognized as the major contributor for the pathogenesis progression of ischaemic cardiovascular diseases. Sulfiredoxin-1 (Srx-1) is an endogenous antioxidant and exerts the crucial neuroprotective effects in cerebral ischaemia. However, its function and the underlying mechanism in ischaemic heart diseases remain poorly defined. Here, a dramatical decrease in Srx-1 was validated in H9c2 cardiomyocytes upon simulated ischaemia-reperfusion (SI/R) injury. Moreover, Srx-1 protected H9c2 cells from SI/R-injured injury as the evidences that Srx-1 up-regulation attenuated the inhibitory effects on cell viability, lactate dehydrogenase (LDH) and cell apoptosis upon SI/R treatment. Knockdown of Srx-1 accelerated cell injury upon SI/R. Mechanism assay corroborated that SI/R treatment noticeably aggravated the loss of mitochondrial membrane potential (Δψm), which was remarkably abated in Ad-Srx-1 groups. Importantly, Srx-1 elevation substantially reduced cytochrome c release, the activity of caspase-9 and caspase-3, accompany with the subsequent decrease in the cleavage of poly (ADP ribose) polymerase (PARP). Concomitantly, overexpression of Srx-1 also decreased the expression of pro-apoptosis protein Bax and increased anti-apoptotic Bcl-2 expression. Further analysis substantiated that Srx-1 treatment remarkably induced the activation of PI3K/AKT signalling. Preconditioning with LY294002 dramatically decreased Srx-1-enhanced cell resistance to SI/R injury. Importantly, LY294002 mitigated the inhibitory effects of Srx-1 on Δψm loss, cytochrome c release, caspase-9/3 activity, and the expression of Bcl-2 family. Together, these results suggested that Srx-1 might protect cardiomyocyte injury upon SI/R by suppressing PI3K/AKT-mediated mitochondria dependent apoptosis, revealing a promising therapeutic agent against ischaemic cardiovascular diseases. © 2016 The Author(s).

  18. Fisetin inhibits epidermal growth factor-induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression.

    PubMed

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen; Hsieh, Yi-Hsien; Yang, Shun-Fa

    2017-01-01

    Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)-induced cell migration and the underlying mechanisms remain unclear. Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription-PCR (RT-PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1-dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases.

  19. Pressure and inflammatory stimulation induced increase of cadherin-11 is mediated by PI3K/Akt pathway in synovial fibroblasts from temporomandibular joint.

    PubMed

    Wu, M; Xu, T; Zhou, Y; Lu, H; Gu, Z

    2013-10-01

    The goal of the study was to investigate the expression of cadherin-11 in synovial fibroblasts (SFs) under mechanical or inflammatory stimuli, and its potential relationship with PI3K/Akt signaling pathway. SFs separated from rat temporomandibular joint (TMJ) were treated with hydrostatic pressures (HP) of 30, 60, 90, and 120 kPa, as well as tumor necrosis factor-α (TNF-α) for 12, 24, 48, and 72 h. The location of cadherin-11 was observed by immunofluorescence microscopy, and its expression was detected by real-time PCR and Western blot. We also studied the activation of PI3K/Akt signaling pathway in SFs with HP or TNF-α stimulation. The results showed that increased expression of cadherin-11 could be found in the cell-cell contact site of SFs in response to HP and inflammatory stimulation. The mRNA and protein expression of cadherin-11 was positively correlated with the intensity of HP and the duration time of TNF-α treatment. Increased expression of vascular endothelial growth factor-D (VEGF-D) and activation of Akt were also found. Treatment with PI3K inhibitor LY294002 attenuated the pressure or inflammatory cytokine induction increases of cadherin-11, VEGF-D, and FGF-2 both in mRNA and protein levels. These findings suggest that cadherin-11 may play important roles in SFs following exposure to mechanical loading and inflammatory stimulation. In addition, PI3K/Akt pathway was associated with pressure or inflammation-induced cadherin-11 expression, which may involve in the pathogenesis of temporomandibular diseases. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Activation of the N-Ras-PI3K-Akt-mTOR Pathway by Hepatitis C Virus: Control of Cell Survival and Viral Replication

    PubMed Central

    Mannová, Petra; Beretta, Laura

    2005-01-01

    The hepatitis C virus (HCV) replication complex is localized within detergent-resistant membranes or lipid rafts. We analyzed the protein contents of detergent-resistant fractions isolated from Huh7 cells expressing a self-replicating full-length HCV-1b genome. Using two-dimensional gel electrophoresis followed by mass spectrometry, we identified N-Ras as one of the proteins in which expression was increased in the detergent-resistant fractions from HCV genomic replicon clones compared to control cells. N-Ras is an activator of the phosphatidylinositol-3-kinase (PI3K)-Akt pathway. We found that the activities of PI3K and Akt, as well as the activity of their downstream target, mTOR, in the HCV-replicating cells were increased. Both PI3K-Akt- and mTOR-dependent pathways have been shown to promote cell survival. In agreement with this, HCV replicon cells were resistant to serum starvation-induced apoptosis. We also characterized the role of this pathway in HCV replication. Reduction of N-Ras expression by transfection of N-Ras small interfering RNA (siRNA) resulted in increased replication of HCV. We observed a similar increase in HCV replication in cells treated with the PI3K inhibitor LY294002 and in cells transfected with mTOR siRNA. Taken together, these data suggest that increased N-Ras levels in subcellular sites of HCV replication and stimulation of the prosurvival PI3K-Akt pathway and mTOR by HCV not only protect cells against apoptosis but also contribute to the maintenance of steady-state levels of HCV replication. These effects may contribute to the establishment of persistent infection by HCV. PMID:15994768

  1. Tauroursodeoxycholic acid inhibits endoplasmic reticulum stress, blocks mitochondrial permeability transition pore opening, and suppresses reperfusion injury through GSK-3ß in cardiac H9c2 cells.

    PubMed

    Xie, Yuxi; He, Yonggui; Cai, Zhiliang; Cai, Jianhang; Xi, Mengyao; Zhang, Yidong; Xi, Jinkun

    2016-01-01

    This study investigates whether inhibition of endoplasmic reticulum (ER) stress prevents opening of the mitochondrial permeability transition pore (mPTP) and evaluates the corresponding signaling pathways involved in this process. Exposure of cardiac H9c2 cells to 800 µM H 2 O 2 for 20 min opened mPTP in response to oxidative stress, as demonstrated by quenching of tetramethylrhodamine ethyl ester (TMRE) fluorescence. Oxidative stress-induced mPTP opening was rescued by the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) in a dose-dependent manner at low concentrations. The PI3K and PKG inhibitors LY294002 and KT5823 inhibited the effect of TUDCA on mPTP opening, suggesting the involvement of PI3K/Akt and PKG signaling pathways. TUDCA significantly increased glycogen synthase kinase 3 (GSK-3β) phosphorylation at Ser-9, with peak effect at 30 µM TUDCA. The level of GRP78 (ER chaperone) expression was significantly upregulated by 30 µM TUDCA. TUDCA-induced increases in Akt and GSK-3β phosphorylation were inhibited by LY294002, whereas KT5823 suppressed TUDCA-induced increases in VASP and GSK-3β phosphorylation. Oxidative stress severely affected cell morphology and ultrastructure. TUDCA prevented H 2 O 2 -induced ER swelling and mitochondrial damage. TUDCA boosted the viability of cells disrupted by ischemia/reperfusion (I/R), indicating that TUDCA eased reperfusion injury. However, TUDCA did not improve the viability of cells expressing the constitutively active GSK-3β mutant (GSK-3β-S9A-HA) that were subjected to I/R, suggesting an essential role of GSK-3β inactivation in TUDCA-mediated cardioprotection against reperfusion damage. These data indicate that ER stress inhibition prevents mPTP opening and attenuates reperfusion injury through GSK-3β inactivation. The PI3K/Akt and PKG pathways may mediate GSK-3β inactivation.

  2. Effects of Isoform-selective Phosphatidylinositol 3-Kinase Inhibitors on Osteoclasts

    PubMed Central

    Shugg, Ryan P. P.; Thomson, Ashley; Tanabe, Natsuko; Kashishian, Adam; Steiner, Bart H.; Puri, Kamal D.; Pereverzev, Alexey; Lannutti, Brian J.; Jirik, Frank R.; Dixon, S. Jeffrey; Sims, Stephen M.

    2013-01-01

    Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics. PMID:24133210

  3. Fractionated Ionizing Radiation Promotes Epithelial-Mesenchymal Transition in Human Esophageal Cancer Cells through PTEN Deficiency-Mediated Akt Activation.

    PubMed

    He, Enhui; Pan, Fei; Li, Guangchao; Li, Jingjing

    2015-01-01

    In some esophageal cancer patients, radiotherapy may not prevent distant metastasis thus resulting in poor survival. The underlying mechanism of metastasis in these patients is not well established. In this study, we have demonstrated that ionizing radiation may induce epithelial-mesenchymal transition (EMT) accompanied with increased cell migration and invasion, through downregulation of phosphatase and tensin homolog (PTEN), and activation of Akt/GSK-3β/Snail signaling. We developed a radioresistant (RR) esophageal squamous cancer cell line, KYSE-150/RR, by fractionated ionizing radiation (IR) treatment, and confirmed its radioresistance using a clonogenic survival assay. We found that the KYSE-150/RR cell line displayed typical morphological and molecular characteristics of EMT. In comparison to the parental cells, KYSE-150/RR cells showed an increase in post-IR colony survival, migration, and invasiveness. Furthermore, a decrease in PTEN in KYSE-150/RR cells was observed. We postulated that over-expression of PTEN may induce mesenchymal-epithelial transition in KYSE-150/RR cells and restore IR-induced increase of cell migration. Mechanistically, fractionated IR inhibits expression of PTEN, which leads to activation of Akt/GSK-3β signaling and is associated with the elevated levels of Snail protein, a transcription factor involved in EMT. Correspondingly, treatment with LY294002, a phosphatidylinositol-3-kinase inhibitor, mimicked PTEN overexpression effect in KYSE-150/RR cells, further suggesting a role for the Akt/GSK-3β/Snail signaling in effects mediated through PTEN. Together, these results strongly suggest that fractionated IR-mediated EMT in KYSE-150/RR cells is through PTEN-dependent pathways, highlighting a direct proinvasive effect of radiation treatment on tumor cells.

  4. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway.

    PubMed

    Liu, Chao; Wu, Jiliang; Xu, Kui; Cai, Fei; Gu, Jun; Ma, Liqun; Chen, Jianguo

    2010-03-01

    Recently more evidences support baicalein (Bai) is neuroprotective in models of ischemic stroke. This study was conducted to determine the molecular mechanisms involved in this effect. Either permanent or transient (2 h) middle cerebral artery occlusion (MCAO) was induced in rats in this study. Permanent MCAO led to larger infarct volumes in contrast to transient MCAO. Only in transient MCAO, Bai administration significantly reduced infarct size. Baicalein also markedly reduced apoptosis in the penumbra of transient MCAO rats. Additionally, oxygen and glucose deprivation (OGD) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular reactive oxygen species level and nitrotyrosine formation induced by OGD was counteracted by Bai, which is parallel with attenuated cell injury. The reduction of phosphorylation Akt and glycogen synthase kinase-3beta (GSK3beta) induced by OGD was restored by Bai, which was associated with preserved levels of phosphorylation of PTEN, the phophatase that negatively regulates Akt. As a consequence, Bcl-2/Bcl-xL-associated death protein phosphorylation was increased and the protein level of Bcl-2 in motochondria was maintained, which subsequently antagonize cytochrome c released in cytosol. LY294002 blocked the increase in phospho-AKT evoked by Bai and abolished the associated protective effect. Together, these findings provide evidence that Bai protects neurons against ischemia injury and this neuroprotective effect involves PI3K/Akt and PTEN pathway.

  5. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    PubMed Central

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  6. Neuroprotective Effect of Curcumin Against Cerebral Ischemia-Reperfusion Via Mediating Autophagy and Inflammation.

    PubMed

    Huang, Lifa; Chen, Chengwei; Zhang, Xin; Li, Xu; Chen, Zupeng; Yang, Chao; Liang, Xiaolong; Zhu, Guochong; Xu, Zhen

    2018-01-01

    Curcumin, a polyphenolic compound extracted from Curcuma longa, has drawn attention for its effective bioactivities against ischemia-induced injury. This study aimed to evaluate the neuroprotective effect of curcumin and investigate the underlying mechanism that mediates autophagy and inflammation in an animal model of middle cerebral artery occlusion (MCAO) in rats. Curcumin was delivered to Sprague Dawley male rats at a dose of 200 mg/kg curcumin by intraperitoneal injection 30 min after ischemia-reperfusion (I/R). LY294002, a specific inhibitor of the PI3K/Akt/mTOR pathway, as well as anisomycin, an activator of TLR4/p38/MAPK, was administered by ventricle injection 30 min before MCAO. The same volume of saline was given as a control. Brain infarction and neurological function were determined 24 h post-MCAO. Immunoblotting and immunofluorescence were used to detect alterations in autophagy-relevant proteins Akt, p-Akt, mTOR, p-mTOR, LC3-II, and LC3-I, and inflammation-related proteins TLR4, p-38, p-p38, and IL-1 in the ipsilateral hemisphere. Cerebral I/R injury resulted in significant alterations of LC3-II/LC3-I, IL-1, TLR4, and p-p38. Curcumin in MCAO rats significantly improved brain damage and neurological function by upregulating p-Akt and p-mTOR and downregulating LC3-II/LC3-I, IL-1, TLR4, p-38, and p-p38. However, these protective effects against ischemia could be suppressed when LY294002 or anisomycin was included. Curcumin exerts neuroprotective effects by attenuating autophagic activities through mediating the PI3K/Akt/mTOR pathway, while also suppressing an inflammatory reaction by regulating the TLR4/p38/MAPK pathway. Furthermore, this study indicates that curcumin could be an effective therapy for patients afflicted with ischemia.

  7. Bufalin attenuates the stage and metastatic potential of hepatocellular carcinoma in nude mice

    PubMed Central

    2014-01-01

    Background Advanced hepatocellular carcinoma (HCC) patients undergo significant tumor growth and metastasis. Here, we investigated bufalin for treating HCC, which exhibits anti-tumor activities in many tumor cell lines. Method In our experiment, HCCLM3-R cells were injected into nude mice to form subcutaneous human HCC tumors that were implanted into the liver to establish orthotopic transplantation tumor models. Bufalin was injected intraperitoneally at 1 or 1.5 mg/kg. LY294002 (100 mg/kg), a potent inhibitor of Akt which reduced the levels of pAkt in HCCLM3 cell lines, was injected intraperitoneally into one group thrice weekly. The control was injected with an equal volume of saline. Morphological alterations were evaluated in the liver and lung by stereomicroscopy, the apoptotic rate was measured by TUNEL staining, and expression of AKT/GSK3β/β-catenin/E-cadherin signaling pathway-related proteins was detected by immunohistochemistry (IHC) and western blot analysis. Results These results suggested that the sizes and qualities of orthotopic transplanted tumors as well as pulmonary metastasis decreased markedly at the highest bufalin dose compared with that in the control. Orthotopic transplanted tumor tissues were necrotic in bufalin-treated groups and the apoptotic cell number was markedly higher at the highest bufalin dose compared with that in the control. Certain changes of expression of AKT/GSK3β/β-catenin/E-cadherin signaling pathway-related proteins were in tumor tissues, which were related to the bufalin dose. Similar results were observed in the LY294002-treated group. Conclusion Based on the above, one can draw conclusions that bufalin has significant anti-tumor activities and reduces the metastatic potential in an orthotopic transplantation tumor model of human HCC. Inhibition of AKT/GSK3β/β-catenin/E-cadherin signaling pathways by bufalin may show therapeutic effects in advanced HCC patients. PMID:24581171

  8. FBI-1 Is Overexpressed in Gestational Trophoblastic Disease and Promotes Tumor Growth and Cell Aggressiveness of Choriocarcinoma via PI3K/Akt Signaling.

    PubMed

    Mak, Victor C Y; Wong, Oscar G W; Siu, Michelle K Y; Wong, Esther S Y; Ng, Wai-Yan; Wong, Richard W C; Chan, Ka-Kui; Ngan, Hextan Y S; Cheung, Annie N Y

    2015-07-01

    Human placental trophoblasts can be considered pseudomalignant, with tightly controlled proliferation, apoptosis, and invasiveness. Gestational trophoblastic disease (GTD) represents a family of heterogeneous trophoblastic lesions with aberrant apoptotic and proliferative activities and dysregulation of cell signaling pathways. We characterize the oncogenic effects of factor that binds to the inducer of short transcripts of HIV-1 [FBI-1, alias POZ and Krüppel erythroid myeloid ontogenic factor (POKEMON)/ZBTB7A] in GTD and its role in promoting cell aggressiveness in vitro and tumor growth in vivo. IHC studies showed increased nuclear expression of FBI-1, including hydatidiform moles, choriocarcinoma (CCA), and placental site trophoblastic tumor, in GTD. In JAR and JEG-3 CCA cells, ectopic FBI-1 expression opposed apoptosis through repression of proapoptotic genes (eg, BAK1, FAS, and CASP8). FBI-1 overexpression also promoted Akt activation, as indicated by Akt-pS473 phosphorylation. FBI-1 overexpression promoted mobility and invasiveness of JEG-3 and JAR, but not in the presence of the phosphoinositide 3-kinase inhibitor LY294002. These findings suggest that FBI-1 could promote cell migration and invasion via phosphoinositide 3-kinase/Akt signaling. In vivo, nude mice injected with CCA cells with stable FBI-1 knockdown demonstrated reduced tumor growth compared with that in control groups. These findings suggest that FBI-1 is clinically associated with the progression of, and may be a therapeutic target in, GTD, owing to its diverse oncogenic effects on dysregulated trophoblasts. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts.

    PubMed

    Zhang, Yu; Yang, Jian-Hong

    2013-11-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture that may be related to hyperglycemia. However, the mechanisms accounting for diabetic bone disorder are unclear. Here, we showed that high glucose significantly promoted the production of reactive oxygen species (ROS) in rat primary osteoblasts. Most importantly, we reported for the first time that ROS induced by high glucose increased alkaline phosphatase activity, inhibited type I collagen (collagen I) protein level and cell mineralization, as well as gene expression of osteogenic markers including runt-related transcription factor 2 (Runx2), collagen I, and osteocalcin, but promoted lipid droplet formation and gene expression of adipogenic markers including peroxisome proliferator-activated receptor gamma, adipocyte fatty acid binding protein (aP2), and adipsin, which were restored by pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, high glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation but stimulated adipogenic differentiation. In contrast, NAC and a PI3K inhibitor, LY-294002, reversed the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of Akt under high glucose. These results indicated that oxidative stress played a key role in high glucose-induced increase of adipogenic differentiation, which contributed to the inhibition of osteogenic differentiation. This process was mediated by PI3K/Akt pathway in rat primary osteoblasts. Hence, suppression of oxidative stress could be a potential therapeutic approach for diabetic osteopenia. © 2013 Wiley Periodicals, Inc.

  10. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qin; Qin, Liyue; Huang, Fei, E-mail: Fei_H@ho

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP{sup +})-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AFmore » enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP{sup +} in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation. - Highlights: • AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity. • AF modulated PI3K/Akt and ERK signaling pathways. • AF could alleviate neuroinflammation in SN.« less

  11. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway

    PubMed Central

    Gupta, Sanjay

    2014-01-01

    Forkhead box O (FoxO) transcription factors play an important role as tumor suppressor in several human malignancies. Disruption of FoxO activity due to loss of phosphatase and tensin homolog and activation of phosphatidylinositol-3 kinase (PI3K)/Akt are frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits antiproliferative and anticarcinogenic activities through mechanisms, which are not fully defined. In the present study, we show that apigenin suppressed prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice through the PI3K/Akt/FoxO-signaling pathway. Apigenin-treated TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate as well as completely abolished distant organ metastasis. Apigenin treatment resulted in significant decrease in the weight of genitourinary apparatus (P < 0.0001), dorsolateral (P < 0.0001) and ventral prostate (P < 0.028), compared with the control group. Apigenin-treated mice showed reduced phosphorylation of Akt (Ser473) and FoxO3a (Ser253), which correlated with its increased nuclear retention and decreased binding of FoxO3a with 14-3-3. These events lead to reduced proliferation as assessed by Ki-67 and cyclin D1, along with upregulation of FoxO-responsive proteins BIM and p27/Kip1. Complementing in vivo results, similar observations were noted in human prostate cancer LNCaP and PC-3 cells after apigenin treatment. Furthermore, binding of FoxO3a with p27/Kip1 was markedly increased after 10 and 20 μM apigenin treatment resulting in G0/G1-phase cell cycle arrest, which was consistent with the effects elicited by PI3K/Akt inhibitor, LY294002. These results provide convincing evidence that apigenin effectively suppressed prostate cancer progression, at least in part, by targeting the PI3K/Akt/FoxO-signaling pathway. PMID:24067903

  12. Tanshinone IIA protects H9c2 cells from oxidative stress-induced cell death via microRNA-133 upregulation and Akt activation.

    PubMed

    Gu, Yunfei; Liang, Zhuo; Wang, Haijun; Jin, Jun; Zhang, Shouyan; Xue, Shufeng; Chen, Jianfeng; He, Huijuan; Duan, Kadan; Wang, Jing; Chang, Xuewei; Qiu, Chunguang

    2016-08-01

    The aim of the present study was to investigate the cardioprotective effect of tanshinone IIA and the underlying molecular mechanisms. An in vitro model of oxidative stress injury was established in cardiac H9c2 cells, and the effects of tanshinone IIa were investigated using cell viability, reverse transcription-quantitative polymerase chain reaction and western blotting assays. The results demonstrated that tanshinone IIA protects H9c2 cells from H 2 O 2 -induced cell death in a concentration-dependent manner, via a mechanism involving microRNA-133 (miR-133), and that treatment with TIIA alone exerted no cytotoxic effects on H9c2. In order to further elucidate the mechanisms underlying the actions of TIIA, reverse transcription-quantitative polymease chain reaction and western blot analysis were performed. Reductions in miR-133 expression levels induced by increasing concentrations of H 2 O 2 were reversed by treatment with tanshinone IIA. In addition, the inhibition of miR-133 by transfection with an miR-133 inhibitor abolished the cardioprotective effects of tanshinone IIA against H 2 O 2 -induced cell death. Furthermore, western blot analysis demonstrated that tanshinone IIA activated Akt kinase via the phosphorylation of serine 473. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by pretreatment with the PI3K specific inhibitors wortmannin and LY294002 also eliminated the cardioprotective effects of tanshinone IIA against H 2 O 2 -induced cell death. Western blot analysis demonstrated that H 2 O 2 -induced reductions in B cell lymphoma 2 (Bcl-2) expression levels were reversed by tanshinone IIA. In addition, the effect of tanshinone IIA on Bcl-2 protein expression level in an oxidative environment was suppressed by a PI3K inhibitor, wortmannin, indicating that tanshinone IIA exerts cardioprotective effects against H 2 O 2 -induced cell death via the activation of the PI3K/Akt signal transduction pathway and the consequent

  13. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    PubMed

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  14. Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitizes melanoma cells to Bortezomib by blocking Akt pathway.

    PubMed

    Yeramian, Andree; Sorolla, Anabel; Velasco, Ana; Santacana, Maria; Dolcet, Xavier; Valls, Joan; Abal, Leandre; Moreno, Sara; Egido, Ramón; Casanova, Josep M; Puig, Susana; Vilella, Ramón; Llombart-Cussac, Antonio; Matias-Guiu, Xavier; Martí, Rosa M

    2012-02-15

    Despite the use of multiple therapeutic strategies, metastatic melanoma remains a challenge for oncologists. Thus, new approaches using combinational treatment may be used to try to improve the prognosis of this disease. In this report, we have analyzed the expression of receptor tyrosine kinases (RTKs) in melanoma specimens and in four metastatic melanoma cell lines. Both melanoma specimens and cell lines expressed RTKs, suggesting that they may represent eventual targets for multitargeted tyrosine kinase inhibitor, Suntinib. Sunitinib reduced the proliferation of two melanoma cell lines (M16 and M17) and increased apoptosis in one of them (M16). Moreover, the two metastatic melanoma cell lines harbored an activated receptor (PDGFRα and VEGFR, respectively), and Sunitinib suppressed the phosphorylation of the RTKs and their downstream targets Akt and ribosomal protein S6, in these two cell lines. Similar results were obtained when either PDGFRα or VEGFR2 expression was silenced by lentiviral-mediated short-hairpin RNA delivery in M16 and M17, respectively. To evaluate the interaction between Sunitinib and Bortezomib, median dose effect analysis using MTT assay was performed, and combination index was calculated. Bortezomib synergistically enhanced the Sunitinib-induced growth arrest in Sunitinib-sensitive cells (combination index < 1). Moreover, LY294002, a PI3K inhibitor, sensitized melanoma cells to Bortezomib treatment, suggesting that downregulation of phospho-Akt by Sunitinib mediates the synergy obtained by Bortezomib + Sunitinib cotreatment. Altogether, our results suggest that melanoma cells harboring an activated RTK may be clinically responsive to pharmacologic RTK inhibition by Sunitinib, and a strategy combining Sunitinib and Bortezomib, may provide therapeutic benefit. Copyright © 2011 UICC.

  15. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models.

    PubMed

    Lin, Jie; Sampath, Deepak; Nannini, Michelle A; Lee, Brian B; Degtyarev, Michael; Oeh, Jason; Savage, Heidi; Guan, Zhengyu; Hong, Rebecca; Kassees, Robert; Lee, Leslie B; Risom, Tyler; Gross, Stefan; Liederer, Bianca M; Koeppen, Hartmut; Skelton, Nicholas J; Wallin, Jeffrey J; Belvin, Marcia; Punnoose, Elizabeth; Friedman, Lori S; Lin, Kui

    2013-04-01

    We describe the preclinical pharmacology and antitumor activity of GDC-0068, a novel highly selective ATP-competitive pan-Akt inhibitor currently in clinical trials for the treatment of human cancers. The effect of GDC-0068 on Akt signaling was characterized using specific biomarkers of the Akt pathway, and response to GDC-0068 was evaluated in human cancer cell lines and xenograft models with various genetic backgrounds, either as a single agent or in combination with chemotherapeutic agents. GDC-0068 blocked Akt signaling both in cultured human cancer cell lines and in tumor xenograft models as evidenced by dose-dependent decrease in phosphorylation of downstream targets. Inhibition of Akt activity by GDC-0068 resulted in blockade of cell-cycle progression and reduced viability of cancer cell lines. Markers of Akt activation, including high-basal phospho-Akt levels, PTEN loss, and PIK3CA kinase domain mutations, correlate with sensitivity to GDC-0068. Isogenic PTEN knockout also sensitized MCF10A cells to GDC-0068. In multiple tumor xenograft models, oral administration of GDC-0068 resulted in antitumor activity ranging from tumor growth delay to regression. Consistent with the role of Akt in a survival pathway, GDC-0068 also enhanced antitumor activity of classic chemotherapeutic agents. GDC-0068 is a highly selective, orally bioavailable Akt kinase inhibitor that shows pharmacodynamic inhibition of Akt signaling and robust antitumor activity in human cancer cells in vitro and in vivo. Our preclinical data provide a strong mechanistic rationale to evaluate GDC-0068 in cancers with activated Akt signaling. ©2012 AACR.

  16. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  17. Activation of G-protein coupled estrogen receptor 1 improves early-onset cognitive impairment via PI3K/Akt pathway in rats with traumatic brain injury.

    PubMed

    Wang, Ze-Fen; Pan, Zhi-Yong; Xu, Cheng-Shi; Li, Zhi-Qiang

    2017-01-22

    Previous studies experimentally reveal that G-protein coupled estrogen receptor 1(GPER) has neuroprotection against ischemic injury. However, its effect on traumatic brain injury (TBI) is less well-established. Cognitive impairment following human TBI is a common clinical observation, and TBI is considered as a risk factor for Alzheimer's disease (AD). This study aimed to observe the possible protective effect of GPER on early-onset cognitive impairment after a single TBI and investigate the cellular mechanism underlying its actions. We found that selective GPER agonist G-1 significantly reduced hippocampal CA1 neuronal loss and improved cognitive impairment in TBI rats. Although previous studies have shown that AD-like tau pathology occurs many years after both repetitive and single TBI, accumulation of hyperphosphorylated tau was not observed within days (detected at 24 h and 7d) after TBI. Furthermore, tau phosphorylation was not altered by G-1 treatment. It was found that G-1 administration caused an increase in p-Akt level. However, the neuroprotective effects of G-1 on spatial cognition and neuronal death were attenuated by PI3K/Akt inhibitor LY294002. These findings indicate that GPER agonist G-1 had protection on cognitive function via activation of PI3K/Akt signaling. Early-onset cognitive impairment following a single TBI was closely associated with acute hippocampal neuronal loss rather than tau pathology. This study suggests that early activation of GPER might be a promising therapeutic strategy for improvement of TBI-induced cognitive outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Resveratrol analogue, HS-1793, induces apoptotic cell death and cell cycle arrest through downregulation of AKT in human colon cancer cells.

    PubMed

    Kim, Dong Hwan; Kim, Min Jeong; Sung, Bokyung; Suh, Hongsuk; Jung, Jee H; Chung, Hae Young; Kim, Nam Deuk

    2017-01-01

    Resveratrol, a polyphenolic compound, is a naturally occurring phytochemical and is found in a variety of plants, including grapes, berries and peanuts. It has gained much attention for its potential anticancer activity against various types of human cancer. However, the usefulness of resveratrol as a chemotherapeutic agent is limited by its photosensitivity and metabolic instability. In this study the effects of a synthetic analogue of resveratrol, HS-1793, on the proliferation and apoptotic cell death were investigated using HCT116 human colon cancer cells. Although this compound has been reported to have anticancer activities in several human cancer cell lines, the therapeutic effects of HS-1793 on human colon cancer and its mechanisms of action have not been extensively studied. HS-1793 inhibited cell growth and induced apoptotic cell death in a concentration-dependent fashion. Induction of apoptosis was determined by morphological changes, cleavage of poly(ADP-ribose) polymerase, alteration of Bax/Bcl-2 expression ratio, and caspase activations. Flow cytometric analysis revealed that HS-1793 induced G2/M arrest in the cell cycle progression in HCT116 cells. Furthermore, HS-1793 showed more potent anticancer effects in several aspects than resveratrol in HCT116 cells. In addition, HS-1793 suppressed Akt and the phosphatidylinositol-3 kinase/Akt inhibitor LY294002 was found to enhance its induction of apoptosis. Thus, these findings suggest that HS-1793 have potential as a candidate chemotherapeutic agent against human colon cancer.

  19. Antiproliferative and apoptotic effect of LY2090314, a GSK-3 inhibitor, in neuroblastoma in vitro.

    PubMed

    Kunnimalaiyaan, Selvi; Schwartz, Victoriana K; Jackson, Iris Alao; Clark Gamblin, T; Kunnimalaiyaan, Muthusamy

    2018-05-11

    Neuroblastoma (NB) is a devastating disease. Despite recent advances in the treatment of NB, about 60% of high-risk NB will have relapse and therefore long-term event free survival is very minimal. We have reported that targeting glycogen synthase kinase-3 (GSK-3) may be a potential strategy to treat NB. Consequently, investigating LY2090314, a clinically relevant GSK-3 inhibitor, on NB cellular proliferation and may be beneficial for NB treatment. The effect of LY2090314 was compared with a previously studied GSK-3 inhibitor, Tideglusib. Colorimetric, clonogenic, and live-cell image confluency assays were used to study the proliferative effect of LY2090314 on NB cell lines (NGP, SK-N-AS, and SH-SY-5Y). Western blotting and caspase glo assay were performed to determine the mechanistic function of LY2090314 in NB cell lines. LY2090314 treatment exhibited significant growth reduction starting at a 20 nM concentration in NGP, SK-N-AS, and SH-SY-5Y cells. Western blot analysis indicated that growth suppression was due to apoptosis as evidenced by an increase in pro-apoptotic markers cleaved PARP and cleaved caspase-3 and a reduction in the anti-apoptotic protein, survivin. Further, treatment significantly reduced the level of cyclin D1, a key regulatory protein of the cell cycle and apoptosis. Functionally, this was confirmed by an increase in caspase activity. LY2090314 treatment reduced the expression levels of phosphorylated GSK-3 proteins and increased the stability of β-catenin in these cells. LY2090314 effectively reduces growth of both human MYCN amplified and non-amplified NB cell lines in vitro. To our knowledge, this is the first study to look at the effect of LY2090314 in NB cell lines. These results indicate that GSK-3 may be a therapeutic target for NB and provide rationale for further preclinical analysis using LY2090314.

  20. Hydrogen-Rich Saline Attenuates Brain Injury Induced by Cardiopulmonary Bypass and Inhibits Microvascular Endothelial Cell Apoptosis Via the PI3K/Akt/GSK3β Signaling Pathway in Rats.

    PubMed

    Chen, Keyan; Wang, Nan; Diao, Yugang; Dong, Wanwei; Sun, YingJie; Liu, Lidan; Wu, Xiuying

    2017-01-01

    Cardiopulmonary bypass (CPB) is prone to inducing brain injury during open heart surgery. A hydrogen-rich solution (HRS) can prevent oxidation and apoptosis, and inhibit inflammation. This study investigated effects of HRS on brain injury induced by CPB and regulatory mechanisms of the PI3K/Akt/GSK3β signaling pathway. A rat CPB model and an in vitro cell hypoxia model were established. After HRS treatment, Rat behavior was measured using neurological deficit score; Evans blue (EB) was used to assess permeability of the blood-brain barrier (BBB); HE staining was used to observe pathological changes; Inflammatory factors and brain injury markers were detected by ELISA; the PI3K/Akt/GSK3β pathway-related proteins and apoptosis were assessed by western blot, immunohistochemistry and qRT -PCR analyses of brain tissue and neurons. After CPB, brain tissue anatomy was disordered, and cell structure was abnormal. Brain tissue EB content increased. There was an increase in the number of apoptotic cells, an increase in expression of Bax and caspase-3, a decrease in expression of Bcl2, and increases in levels of Akt, GSK3β, P-Akt, and P-GSK3β in brain tissue. HRS treatment attenuated the inflammatory reaction ,brain tissue EB content was significantly reduced and significantly decreased expression levels of Bax, caspase-3, Akt, GSK3β, P-Akt, and P-GSK3β in the brain. After adding the PI3K signaling pathway inhibitor, LY294002, to rat cerebral microvascular endothelial cells (CMECs), HRS could reduce activated Akt expression and downstream regulatory gene phosphorylation of GSK3β expression, and inhibit CMEC apoptosis. The PI3K/Akt/GSK3β signaling pathway plays an important role in the mechanism of CPB-induced brain injury. HRS can reduce CPB-induced brain injury and inhibit CMEC apoptosis through the PI3K/Akt/GSK3β signaling pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  1. Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells.

    PubMed

    Zeng, Bingqing; Li, Yiwen; Niu, Bo; Wang, Xinyi; Cheng, Yufang; Zhou, Zhongzhen; You, Tingting; Liu, Yonggang; Wang, Haitao; Xu, Jiangping

    2016-08-01

    The selective serotonin reuptake inhibitor fluoxetine is neuroprotective in several brain injury models. It is commonly used to treat major depressive disorder and related conditions, but its mechanism of action remains incompletely understood. Activation of the phosphatidylinositol-3-kinase/protein kinase B/forkhead box O3a (PI3K/Akt/FoxO3a) and protein kinase A/cAMP-response element binding protein (PKA/CREB) signaling pathways has been strongly implicated in the pathogenesis of depression and might be the downstream target of fluoxetine. Here, we used PC12 cells exposed to corticosterone (CORT) to study the neuroprotective effects of fluoxetine and the involvement of the PI3K/Akt/FoxO3a and PKA/CREB signaling pathways. Our results show that CORT reduced PC12 cells viability by 70 %, and that fluoxetine showed a concentration-dependent neuroprotective effect. Neuroprotective effects of fluoxetine were abolished by inhibition of PI3K, Akt, and PKA using LY294002, KRX-0401, and H89, respectively. Treatment of PC12 cells with fluoxetine resulted in increased phosphorylation of Akt, FoxO3a, and CREB. Fluoxetine also dose-dependently rescued the phosphorylation levels of Akt, FoxO3a, and CREB, following administration of CORT (from 99 to 110, 56 to 170, 80 to 170 %, respectively). In addition, inhibition of PKA and PI3K/Akt resulted in decreased levels of p-CREB, p-Akt, and p-FoxO3a in the presence of fluoxetine. Furthermore, fluoxetine reversed CORT-induced upregulation of p53-upregulated modulator of apoptosis (Puma) and Bcl-2-interacting mediator of cell death (Bim) via the PI3K/Akt/FoxO3a signaling pathway. H89 treatment reversed the effect of fluoxetine on the mRNA level of brain-derived neurotrophic factor, which was decreased in the presence of CORT. Our data indicate that fluoxetine elicited neuroprotection toward CORT-induced cell death that involves dual regulation from PI3K/Akt/FoxO3a and PKA/CREB pathways.

  2. Propofol protects hippocampal neurons from apoptosis in ischemic brain injury by increasing GLT-1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway.

    PubMed

    Gong, Hong-Yan; Zheng, Fang; Zhang, Chao; Chen, Xi-Yan; Liu, Jing-Jing; Yue, Xiu-Qin

    2016-09-01

    Ischemic brain injury (IBI) can cause nerve injury and is a leading cause of morbidity and mortality worldwide. The neuroprotective effects of propofol against IBI have been previously demonstrated. However, the neuroprotective effects of propofol on hippocampal neurons are not yet entirely clear. In the present study, models of IBI were established in hypoxia-exposed hippocampal neuronal cells. Cell viability assay and apoptosis assay were performed to examine the neuroprotective effects of propofol on hippocampal neurons in IBI. A significant decrease in cell viability and a significant increase in cell apoptosis were observed in the IBI group compared with the control group, accompanied by a decrease in glial glutamate transporter-1 (GLT‑1) expression as determined by RT-qPCR and western blot analysis. The effects of IBI were reversed by propofol treatment. The siRNA-mediated knockdown of GLT‑1 in the hypoxia-exposed hippocampal neuronal cells led to an increase in cell apoptosis, Jun N-terminal kinase (JNK) activation and N-methyl-D‑aspartate (NMDA) receptor (NR1 and NR2B) activation, as well as to a decrease in cell viability and a decrease in Akt activation. The effects of RNA interference-mediated GLT‑1 gene silencing on cell viability, JNK activation, NMDAR activation, cell apoptosis and Akt activation in the hippocampal neuronal cells were slightly reversed by propofol treatment. The JNK agonist, anisomycin, and the Akt inhibitor, LY294002, both significantly blocked the effects of propofol on hippocampal neuronal cell viability and apoptosis in IBI. The decrease in JNK activation and the increase in Akt activation caused by GLT‑1 overexpression were reversed by NMDA. Collectively, our findings suggest that propofol treatment protects hippocampal neurons against IBI by enhancing GLT‑1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway.

  3. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi-Feng; Yu, Hong-Wei; Sun, Li-Li

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involvedmore » in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased

  4. High glucose-induced resistance to 5-fluorouracil in pancreatic cancer cells alleviated by 2-deoxy-D-glucose.

    PubMed

    Cheng, Yao; Diao, Dongmei; Zhang, Hao; Guo, Qi; Wu, Xuandi; Song, Yongchun; Dang, Chengxue

    2014-03-01

    Abnormal glucose metabolism from hyperglycemia or diabetes aggravates the progression of pancreatic cancer. It is unknown whether high glucose has an impact on the antitumor effect of 5-fluorouracil (5-Fu) and whether targeting aberrant glucose metabolism using 2-deoxy-D-glucose (2-DG) may reverse this effect in high-glucose microenvironments. The cell viability of AsPC-1 and Panc-1 was analyzed by MTT assay following 5-Fu treatment at different glucose concentrations. Altered sensitivity to 5-Fu by 2-DG was also analyzed. LY294002 was used to inhibit PI3K-Akt signaling to determine the mechanism involved. In response to glucose, 5-Fu-induced cell growth inhibition was attenuated in a dose-dependent manner, accompanied with activated p-Akt, while 2-DG enhanced 5-Fu-induced cell growth inhibition. Moreover, blocking the PI3K/Akt pathway by LY294002 effectively eliminated 2-DG-induced apoptosis. In conclusion, high glucose weakens the antitumor effect of 5-Fu via PI3K / Akt signaling. Using 2-DG in combination with 5-Fu significantly increased their therapeutic effectiveness in high-glucose microenvironments.

  5. Protection against MPP(+)-induced neurotoxicity in SH-SY5Y cells by tormentic acid via the activation of PI3-K/Akt/GSK3β pathway.

    PubMed

    Zhao, Qing; Ye, Junli; Wei, Na; Fong, Chichun; Dong, Xiaoli

    2016-07-01

    The cause of Parkinson's disease (PD) could be ascribed to the progressive and selective loss of dopaminergic neurons in the substantia nigra pars compacta, and thus molecules with neuroprotective ability may have therapeutic value against PD. In the current study, the neuroprotective effects and underlying mechanisms of tormentic acid (TA), a naturally occurring triterpene extracted from medicinal plants such as Rosa rugosa and Potentilla chinensis, were evaluated in a widely used cellular PD model in which neurotoxicity was induced by MPP(+) in cultured SH-SY5Y cells. We found that TA at 1-30 μM substantially protected against MPP(+)-induced neurotoxicity, as evidenced by the increase in cell viability, decrease in lactate dehydrogenase release and the reduction in apoptotic nuclei. Moreover, TA effectively inhibited the elevated intracellular accumulation of reactive oxygen species as well as Bax/Bcl-2 ratio caused by MPP(+). Most importantly, TA markedly reversed the inhibition of protein expression of phosphorylated Akt (Ser 473) and phosphorylated GSK3β (Ser 9) caused by MPP(+). LY294002, the specific inhibitor of PI3-K, significantly abrogated the up-regulated phosphorylated Akt and phosphorylated GSK3β offered by TA, suggesting that the neuroprotection of TA was mainly dependent on the activation of PI3-K/Akt/GSK3β signaling pathway. The results taken together indicate that TA may be a potential candidate for further preclinical study aimed at the prevention and treatment of PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway.

    PubMed

    Hseu, You-Cheng; Lee, Meng-Shiou; Wu, Chi-Rei; Cho, Hsin-Ju; Lin, Kai-Yuan; Lai, Guan-Hua; Wang, Sheng-Yang; Kuo, Yueh-Hsiung; Kumar, K J Senthil; Yang, Hsin-Ling

    2012-03-07

    Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.

  7. Jolkinolide B induces apoptosis in MDA-MB-231 cells through inhibition of the PI3K/Akt signaling pathway.

    PubMed

    Lin, Yu; Cui, Hongxia; Xu, Huiyu; Yue, Liling; Xu, Hao; Jiang, Liyan; Liu, Jicheng

    2012-06-01

    The phosphoinositol-3-kinase (PI3K)/Akt signal transduction pathway is critically important for tumor cell growth, proliferation and apoptosis. Apoptosis activation has been reported to be a good target in cancer therapies. In this study, we have found that jolkinolide B (JB), a diterpenoid from the traditional Chinese medicinal herb Euphorbia fischeriana Steud, strongly inhibited the expression of the PI3K p85 subunit and the phosphorylation of Akt. Furthermore, we evaluated the effects of JB on the proliferation and apoptosis of MDA-MB-231 human breast cancer cells. Our results show significant induction of apoptosis in MDA-MB-231 cells incubated with JB. This effect was enhanced by combination with LY294002. In addition, treatment with JB could induce downregulation of the Bcl-2/Bax ratio, and subsequent promotion of mitochondrial release of cytochrome c and activation of caspase-3. Taken together, JB-induced apoptosis of MDA-MB-231 cells occurs through the mitochondrial pathway. Further, the PI3K/Akt signaling cascade plays a role in the induction of apoptosis in JB-treated cells. These observations suggest that JB may have therapeutic applications in the treatment of cancer.

  8. Procyanidins from Wild Grape (Vitis amurensis) Seeds Regulate ARE-Mediated Enzyme Expression via Nrf2 Coupled with p38 and PI3K/Akt Pathway in HepG2 Cells

    PubMed Central

    Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik

    2012-01-01

    Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1–F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway. PMID:22312287

  9. Fisetin inhibits epidermal growth factor–induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression

    PubMed Central

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen

    2017-01-01

    Purpose Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)–induced cell migration and the underlying mechanisms remain unclear. Methods Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription–PCR (RT–PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Results Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Conclusions Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1–dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases. PMID:29296070

  10. Ibrolipim attenuates high glucose-induced endothelial dysfunction in cultured human umbilical vein endothelial cells via PI3K/Akt pathway.

    PubMed

    Xiao, Guohua; Wang, Zongbao; Zeng, Huaicai; Yu, Jian; Yin, Weidong; Zhang, Sujun; Wang, Yueting; Zhang, Yali

    2011-10-01

    Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of

  11. PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway.

    PubMed

    Shu, Xiang-Rong; Wu, Jing; Sun, He; Chi, Li-Qun; Wang, Jin-Huan

    2015-09-28

    Multiple protein or microRNA markers have been recognized to contribute to the progression and recurrence of cervical cancers. Particular those, which are associated with the chemo- or radio-resistance of cervical cancers, have been proposed to be promising and to facilitate the definition for cervical cancer treatment options. This study was designed to explore the potential prognosis value of p21-activated kinase (PAK)-4 in cervical cancer, via the Kaplan-Meier analysis, log-rank test and Cox regression analysis, and then to investigate the regulatory role of PAK4 in the cisplatin resistance in cervical cancer cells, via the strategies of both PAK4 overexpression and PAK4 knockout. It was demonstrated that PAK4 was upregulated in cervical cancer tissues, in an association with the cancer's malignance variables such as FIGO stage, lymph node or distant metastasis and the poor histological grade. The high PAK4 expression was also independently associated with poor prognosis to cervical cancer patients. Moreover, PAK4 confers cisplatin resistance in cervical cancer Hela or Caski cells. In addition, the PI3K/Akt pathway has been implicated in the PAK4-confered cisplatin resistance. And the PI3K/Akt inhibitor, LY294002, markedly deteriorated the cisplatin-mediated viability reduction of Hela or Caski cells, indicating the involvement of PI3K/Akt pathway in the cisplatin resistance in cervical cancer cells. This study has confirmed the significant prognostic role of PAK4 level in cervical cancer patients and has recognized the regulatory role in cervical cancer progression. Moreover, our study has indicated that PAK4 also confers the chemoresistance of cervical cancer cells in a PI3K/Akt-dependent way. Thus, our study indicates PAK4 as a promising marker for cervical cancer treatment.

  12. Ursolic acid improves podocyte injury caused by high glucose.

    PubMed

    Xu, Li; Fan, Qiuling; Wang, Xu; Li, Lin; Lu, Xinxing; Yue, Yuan; Cao, Xu; Liu, Jia; Zhao, Xue; Wang, Lining

    2017-08-01

    Autophagy plays an important role in the maintenance of podocyte homeostasis. Reduced autophagy may result in limited renal cell function during exposure to high glucose conditions. In this study we investigated the effects of ursolic acid (UA) on autophagy and podocyte injury, which were induced by high glucose. Conditionally immortalized murine podocytes were cultured in media supplemented with high glucose and the effects of the PI3K inhibitor LY294002 and UA on protein expression were determined. miR-21 expression was detected by real-time RT-PCR. Activation of the PTEN-PI3K/Akt/mTOR pathway, expression of autophagy-related proteins and expression of podocyte marker proteins were determined by western blot. Immunofluorescence was used to monitor the accumulation of LC3 puncta. Autophagosomes were also observed by transmission electron microscopy. During exposure to high glucose conditions, the normal level of autophagy was reduced in podocytes, and this defective autophagy induced podocyte injury. Increased miR-21 expression, decreased PTEN expression and abnormal activation of the PI3K/Akt/mTOR pathway were observed in cells that were cultured in high glucose conditions. UA and LY294002 reduced podocyte injury through the restoration of defective autophagy. Our data suggest that UA inhibits miR-21 expression and increases PTEN expression, which in turn inhibits Akt and mTOR and restores normal levels of autophagy. Our data suggest that podocyte injury is associated with reduced levels of autophagy during exposure to high glucose conditions, UA attenuated podocyte injury via an increase in autophagy through miR-21 inhibition and PTEN expression, which inhibit the abnormal activation of the PI3K/Akt/mTOR pathway. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  13. Crystal Structure of Human AKT1 with an Allosteric Inhibitor Reveals a New Mode of Kinase Inhibition

    PubMed Central

    Wu, Wen-I; Voegtli, Walter C.; Sturgis, Hillary L.; Dizon, Faith P.; Vigers, Guy P. A.; Brandhuber, Barbara J.

    2010-01-01

    AKT1 (NP_005154.2) is a member of the serine/threonine AGC protein kinase family involved in cellular metabolism, growth, proliferation and survival. The three human AKT isozymes are highly homologous multi-domain proteins with both overlapping and distinct cellular functions. Dysregulation of the AKT pathway has been identified in multiple human cancers. Several clinical trials are in progress to test the efficacy of AKT pathway inhibitors in treating cancer. Recently, a series of AKT isozyme-selective allosteric inhibitors have been reported. They require the presence of both the pleckstrin-homology (PH) and kinase domains of AKT, but their binding mode has not yet been elucidated. We present here a 2.7 Å resolution co-crystal structure of human AKT1 containing both the PH and kinase domains with a selective allosteric inhibitor bound in the interface. The structure reveals the interactions between the PH and kinase domains, as well as the critical amino residues that mediate binding of the inhibitor to AKT1. Our work also reveals an intricate balance in the enzymatic regulation of AKT, where the PH domain appears to lock the kinase in an inactive conformation and the kinase domain disrupts the phospholipid binding site of the PH domain. This information advances our knowledge in AKT1 structure and regulation, thereby providing a structural foundation for interpreting the effects of different classes of AKT inhibitors and designing selective ones. PMID:20886116

  14. Soyasaponins Can Blunt Inflammation by Inhibiting the Reactive Oxygen Species-Mediated Activation of PI3K/Akt/NF-kB Pathway

    PubMed Central

    Zha, Longying; Chen, Jiading; Sun, Suxia; Mao, Limei; Chu, Xinwei; Deng, Hong; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-01-01

    We and others have recently shown that soyasaponins abundant in soybeans can decrease inflammation by suppressing the nuclear factor kappa B (NF-kB)-mediated inflammation. However, the exact molecular mechanisms by which soyasaponins inhibit the NF-kB pathway have not been established. In this study in macrophages, soyasaponins (A1, A2 and I) inhibited the lipopolysaccharide (LPS)-induced release of inflammatory marker prostaglandin E2 (PGE2) to a similar extent as the NF-kB inhibitor (BAY117082). Soyasaponins (A1, A2 and I) also suppressed the LPS-induced expression of cyclooxygenase 2 (COX-2), another inflammatory marker, in a dose-dependent manner by inhibiting NF-kB activation. In defining the associated mechanisms, we found that soyasaponins (A1, A2 and I) blunted the LPS-induced IKKα/β phosphorylation, IkB phosphorylation and degradation, and NF-kB p65 phosphorylation and nuclear translocation. In studying the upstream targets of soyasaponins on the NF-kB pathway, we found that soyasaponins (A1, A2 and I) suppressed the LPS-induced activation of PI3K/Akt similarly as the PI3K inhibitor LY294002, which alone blocked the LPS-induced activation of NF-kB. Additionally, soyasaponins (A1, A2 and I) reduced the LPS-induced production of reactive oxygen species (ROS) to the same extent as the anti-oxidant N-acetyl-L-cysteine, which alone inhibited the LPS-induced phosphorylation of Akt, IKKα/β, IkBα, and p65, transactivity of NF-kB, PGE2 production, and malondialdehyde production. Finally, our results show that soyasaponins (A1, A2 and I) elevated SOD activity and the GSH/GSSG ratio. Together, these results show that soyasaponins (A1, A2 and I) can blunt inflammation by inhibiting the ROS-mediated activation of the PI3K/Akt/NF-kB pathway. PMID:25233217

  15. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway.

    PubMed

    Yu, Minli; Wang, Huan; Xu, Yali; Yu, Debing; Li, Dongfeng; Liu, Xiuhong; Du, Wenxing

    2015-08-01

    During embryonic development, IGF-1 fulfils crucial roles in skeletal myogenesis. However, the involvement of IGF-1-induced myoblast proliferation in muscle growth is still unclear. In the present study, we have characterised the role of IGF-1 in myoblast proliferation both in vitro and in vivo and have revealed novel details of how exogenous IGF-1 influences myogenic genes in chicken embryos. The results show that IGF-1 significantly induces the proliferation of cultured myoblasts in a dose-dependent manner. Additionally, the IGF-1 treatment significantly promoted myoblasts entering a new cell cycle and increasing the mRNA expression levels of cell cycle-dependent genes. However, these effects were inhibited by the PI3K inhibitor LY294002 and the Akt inhibitor KP372-1. These data indicated that the pro-proliferative effect of IGF-1 was mediated in response to the PI3K/Akt signalling pathway. Moreover, we also showed that exogenous IGF-1 stimulated myoblast proliferation in vivo. IGF-1 administration obviously promoted the incorporation of BrdU and remarkably increased the number of PAX7-positive cells in the skeletal muscle of chicken embryos. Administration of IGF-1 also significantly induced the upregulation of myogenic factors gene, the enhancement of c-Myc and the inhibition of myostatin (Mstn) expression. These findings demonstrate that IGF-1 has strong activity as a promoter of myoblast expansion and muscle fiber formation during early myogenesis. Therefore, this study offers insight into the mechanisms responsible for IGF-1-mediated stimulation of embryonic skeletal muscle development, which could have important implications for the improvement of chicken meat production. © 2015 International Federation for Cell Biology.

  16. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    NASA Technical Reports Server (NTRS)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  17. Blocks to thyroid cancer cell apoptosis can be overcome by inhibition of the MAPK and PI3K/AKT pathways.

    PubMed

    Gunda, V; Bucur, O; Varnau, J; Vanden Borre, P; Bernasconi, M J; Khosravi-Far, R; Parangi, S

    2014-03-06

    Current treatment for recurrent and aggressive/anaplastic thyroid cancers is ineffective. Novel targeted therapies aimed at the inhibition of the mutated oncoprotein BRAF(V600E) have shown promise in vivo and in vitro but do not result in cellular apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a tumor-selective manner by activating the extrinsic apoptotic pathway. Here, we show that a TRAIL-R2 agonist antibody, lexatumumab, induces apoptosis effectively in some thyroid cancer cell lines (HTh-7, TPC-1 and BCPAP), while more aggressive anaplastic cell lines (8505c and SW1736) show resistance. Treatment of the most resistant cell line, 8505c, using lexatumumab in combination with the BRAF(V600E) inhibitor, PLX4720, and the PI3K inhibitor, LY294002, (triple-drug combination) sensitizes the cells by triggering both the extrinsic and intrinsic apoptotic pathways in vitro as well as 8505c orthotopic thyroid tumors in vivo. A decrease in anti-apoptotic proteins, pAkt, Bcl-xL, Mcl-1 and c-FLIP, coupled with an increase in the activator proteins, Bax and Bim, results in an increase in the Bax to Bcl-xL ratio that appears to be critical for sensitization and subsequent apoptosis of these resistant cells. Our results suggest that targeting the death receptor pathway in thyroid cancer can be a promising strategy for inducing apoptosis in thyroid cancer cells, although combination with other kinase inhibitors may be needed in some of the more aggressive tumors initially resistant to apoptosis.

  18. Lambda-cyhalothrin disrupts the up-regulation effect of 17β-estradiol on post-synaptic density 95 protein expression via estrogen receptor α-dependent Akt pathway.

    PubMed

    Wang, Qunan; Xia, Xin; Deng, Xiaomei; Li, Nian; Wu, Daji; Zhang, Long; Yang, Chengwei; Tao, Fangbiao; Zhou, Jiangning

    2016-03-01

    Lambda-cyhalothrin (LCT), one of the type II pyrethroids, has been widely used throughout the world. The estrogenic effect of LCT to increase cell proliferation has been well established. However, whether the estrogenic effect of LCT will influence neurodevelopment has not been investigated. In addition, 17β-Estradiol (E2) plays a crucial role in neurodevelopment and induces an increase in synaptic proteins. The post-synaptic density 95 (PSD95) protein, which is involved in the development of the structure and function of new spines and localized with estrogen receptor α (ERα) at the post-synaptic density (PSD), was detected in our study by using hippocampal neuron cell line HT22. We found that LCT up-regulated PSD95 and ERα expression, estrogen receptor (ER) antagonist ICI182,780 and phosphatidylinositol-4; 5-bisphosphate 3-kinase (PI3K) inhibitor LY294,002 blocked this effect. In addition, LCT disrupted the promotion effect of E2 on PSD95. To investigate whether the observed changes are caused by ERα-dependent signaling activation, we next detected the effects of LCT on the ERα-mediated PI3K-Protein kinase B (PKB/Akt)-eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) pathway. There existed an activation of Akt and the downstream factor 4E-BP1 after LCT treatment. In addition, LCT could disrupt the activation effect of E2 on the Akt pathway. However, no changes in cAMP response element-binding protein (CREB) activation and PSD95 messenger ribonucleic acid (mRNA) were observed. Our findings demonstrated that LCT could increase the PSD95 protein level via the ERα-dependent Akt pathway, and LCT might disrupt the up-regulation effect of E2 on PSD95 protein expression via this signaling pathway. Copyright © 2015. Published by Elsevier B.V.

  19. Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway.

    PubMed

    Mao, Xiao-Yuan; Zhou, Hong-Hao; Li, Xi; Liu, Zhao-Qian

    2016-08-01

    Oxidative glutamate toxicity is involved in diverse neurological disorders including epilepsy and ischemic stroke. Our present work aimed to assess protective effects of huperzine A (HupA) against oxidative glutamate toxicity in a mouse-derived hippocampal HT22 cells and explore its potential mechanisms. Cell survival and cell injury were analyzed by MTT method and LDH release assay, respectively. The production of ROS was measured by detection kits. Protein expressions of BDNF, phosphor-TrkB (p-TrkB), TrkB, phosphor-Akt (p-Akt), Akt, phosphor-mTOR (p-mTOR), mTOR, phosphor-p70s6 (p-p70s6) kinase, p70s6 kinase, Bcl-2, Bax, and β-actin were assayed via Western blot analysis. Enzyme-linked immunosorbent assay was employed to measure the contents of nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Our findings illustrated 10 μM HupA for 24 h significantly protected HT22 from cellular damage and suppressed the generation of ROS. Additionally, after treating with LY294002 or wortmannin [the selective inhibitors of phosphatidylinositol 3 kinase (PI3K)], HupA dramatically prevented the down-regulations of p-Akt, p-mTOR, and p-p70s6 kinase in HT22 cells under oxidative toxicity. Furthermore, it was observed that the protein levels of BDNF and p-TrkB were evidently enhanced after co-treatment with HupA and glutamate in HT22 cells. The elevations of p-Akt and p-mTOR were abrogated under toxic conditions after blockade of TrkB by TrkB IgG. Cellular apoptosis was significantly suppressed (decreased caspase-3 activity and enhanced Bcl-2 protein level) after HupA treatment. It was concluded that HupA attenuated oxidative glutamate toxicity in murine hippocampal HT22 cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway.

  20. PI3K/Akt-dependent functions of TFII-I transcription factors in mouse embryonic stem cells.

    PubMed

    Chimge, Nyam-Osor; Makeyev, Aleksandr V; Waigel, Sabine J; Enkhmandakh, Badam; Bayarsaihan, Dashzeveg

    2012-04-01

    Activation of PI3K/Akt signaling is sufficient to maintain the pluripotency of mouse embryonic stem cells (mESC) and results in down-regulation of Gtf2i and Gtf2ird1 encoding TFII-I family transcription factors. To investigate how these genes might be involved in the process of embryonic stem cell differentiation, we performed expression microarray profiling of mESC upon inhibition of PI3K by LY294002. This analysis revealed significant alterations in expression of genes for specific subsets of chromatin-modifying enzymes. Surprisingly, genome-wide promoter ChIP-chip mapping indicated that the majority of differently expressed genes could be direct targets of TFII-I regulation. The data support the hypothesis that upregulation of TFII-I factors leads to activation of a specific group of developmental genes during mESC differentiation. © 2011 Wiley Periodicals, Inc.

  1. Prostaglandin E2 mediates phosphorylation and down-regulation of the tuberous sclerosis-2 tumor suppressor (tuberin) in human endometrial adenocarcinoma cells via the Akt signaling pathway.

    PubMed

    Sales, Kurt J; Battersby, Sharon; Williams, Alistair R W; Anderson, Richard A; Jabbour, Henry N

    2004-12-01

    Prostaglandin (PG) E2 promotes tumor growth via interaction with its G protein-coupled receptors and activation of intracellular signaling. Tuberous sclerosis 2 (tuberin) is a tumor suppressor, which negatively regulates cell growth. Its phosphorylation results in its inactivation and targeted down- regulation, thus lifting the growth inhibition effects. This study investigated the expression and localization of tuberin in neoplastic and normal endometrium and the effect of PGE2 on phosphorylation of tuberin via the Akt pathway. Quantitative RT-PCR and Western blot analysis demonstrated reduced expression of tuberin in neoplastic tissue, compared with normal endometrial tissue. Tuberin expression was localized by immunohistochemistry to the glandular epithelial compartment in neoplastic and normal endometrium. We investigated the effect of PGE2 on phosphorylation of tuberin via the Akt pathway. Treatment of neoplastic and normal endometrium with 100 nm PGE2 enhanced phosphorylated tuberin immunoreactivity in the glandular epithelium. PGE2 also phosphorylated Akt and tuberin in Ishikawa endometrial adenocarcinoma cells, leading to a reduction in expression of total tuberin protein. Cotreatment of cells with wortmannin or LY294002 inhibited the PGE2-induced phosphorylation of Akt and tuberin. These data suggest that PGE2 signaling may promote endometrial tumorigenesis by inactivation of tuberin after its phosphorylation via the Akt signaling pathway.

  2. Therapeutic Effect of External Application of Ligustrazine Combined with Holistic Nursing on Pressure Sores.

    PubMed

    Niu, Junzhi; Han, Lin; Gong, Fen

    2016-08-15

    BACKGROUND This study aimed to explore the therapeutic effect of external application of ligustrazine combined with holistic nursing on pressure sores, as well as the underlying mechanism. MATERIAL AND METHODS From February 2014 to March 2015, a total of 32 patients with Phase II and Phase III pressure sores were enrolled and randomly assigned to an experimental group or a control group. The clinical data were comparable between the 2 groups. In addition to holistic nursing, the patients in the experimental group received 4 weeks of continuous external application of ligustrazine, whereas patients in the control group received compound clotrimazole cream. Therapeutic effect and healing time were recorded. HaCaT cells were used as an in vitro model for mechanism analysis of the effect of ligustrazine in treating pressure sores. After culturing with different concentrations of ligustrazine or the inhibitor of AKT (LY294002) for 72 h, cell viability, clone formation numbers, and levels of phosphatidyl inositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR) were determined. RESULTS Compared to the control group, the total effective rate in the experimental group was significantly higher, and the healing time was significantly reduced. Cell viability and clone formation numbers were significantly upregulated by ligustrazine in a dose-dependent manner. Both the cell viability and clone formation numbers were significantly inhibited by application of LY294002. CONCLUSIONS Our results suggest that ligustrazine combined with holistic nursing is an effective treatment of pressure sores. The protective effect may be associated with the promotion of cell growth by activation of the PI3K/AKT pathway.

  3. Therapeutic Effect of External Application of Ligustrazine Combined with Holistic Nursing on Pressure Sores

    PubMed Central

    Niu, Junzhi; Han, Lin; Gong, Fen

    2016-01-01

    Background This study aimed to explore the therapeutic effect of external application of ligustrazine combined with holistic nursing on pressure sores, as well as the underlying mechanism. Material/Methods From February 2014 to March 2015, a total of 32 patients with Phase II and Phase III pressure sores were enrolled and randomly assigned to an experimental group or a control group. The clinical data were comparable between the 2 groups. In addition to holistic nursing, the patients in the experimental group received 4 weeks of continuous external application of ligustrazine, whereas patients in the control group received compound clotrimazole cream. Therapeutic effect and healing time were recorded. HaCaT cells were used as an in vitro model for mechanism analysis of the effect of ligustrazine in treating pressure sores. After culturing with different concentrations of ligustrazine or the inhibitor of AKT (LY294002) for 72 h, cell viability, clone formation numbers, and levels of phosphatidyl inositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR) were determined. Results Compared to the control group, the total effective rate in the experimental group was significantly higher, and the healing time was significantly reduced. Cell viability and clone formation numbers were significantly upregulated by ligustrazine in a dose-dependent manner. Both the cell viability and clone formation numbers were significantly inhibited by application of LY294002. Conclusions Our results suggest that ligustrazine combined with holistic nursing is an effective treatment of pressure sores. The protective effect may be associated with the promotion of cell growth by activation of the PI3K/AKT pathway. PMID:27523814

  4. Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages

    PubMed Central

    Chai, Jianshen; Luo, Li; Hou, Fengyan; Fan, Xia; Yu, Jing; Ma, Wei; Tang, Wangqi; Yang, Xue; Zhu, Junyu; Kang, Wenyuan; Yan, Jun; Liang, Huaping

    2016-01-01

    Macrophages are key responders of inflammation and are closely related with oxidative stress. Activated macrophages can enhance oxygen depletion, which causes an overproduction of reactive oxygen species (ROS) and leads to further excessive inflammatory response and tissue damage. Agmatine, an endogenous metabolite of L-arginine, has recently been shown to have neuroprotective effects based on its antioxidant properties. However, the antioxidant effects of agmatine in peripheral tissues and cells, especially macrophages, remain unclear. In this study we explored the role of agmatine in mediating antioxidant effects in RAW 264.7 cells and studied its antioxidant mechanism. Our data demonstrate that agmatine is an activator of Nrf2 signaling that markedly enhances Nrf2 nuclear translocation, increases nuclear Nrf2 protein level, up-regulates the expression of the Nrf2 downstream effector HO-1, and attenuates ROS generation induced by Lipopolysaccharide (LPS). We further demonstrated that the agmatine-induced activation of Nrf2 is likely through the PI3K/Akt pathway. LY294002, a specific PI3K/Akt inhibitor, abolished agmatine-induced HO-1 up-regulation and ROS suppression significantly. Inhibiting HO-1 pathway significantly attenuated the antioxidant effect of agmatine which the products of HO-1 enzymatic activity contributed to. Furthermore, the common membrane receptors of agmatine were evaluated, revealing that α2-adrenoceptor, I1-imidazoline receptor or I2-imidazoline receptor are not required by the antioxidant properties of agmatine. Taken together, our findings revealed that agmatine has antioxidant activity against LPS-induced ROS accumulation in RAW 264.7 cells involving HO-1 expression induced by Nrf2 via PI3K/Akt pathway activation. PMID:27685463

  5. Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma.

    PubMed

    Yu, Peter Y; Gardner, Heather L; Roberts, Ryan; Cam, Hakan; Hariharan, Seethalakshmi; Ren, Ling; LeBlanc, Amy K; Xiao, Hui; Lin, Jiayuh; Guttridge, Denis C; Mo, Xiaokui; Bennett, Chad E; Coss, Christopher C; Ling, Yonghua; Phelps, Mitch A; Houghton, Peter; London, Cheryl A

    2017-01-01

    STAT3 is a transcription factor involved in cytokine and receptor kinase signal transduction that is aberrantly activated in a variety of sarcomas, promoting metastasis and chemotherapy resistance. The purpose of this work was to develop and test a novel putative STAT3 inhibitor, LY5. An in silico fragment-based drug design strategy was used to create LY5, a small molecule inhibitor that blocks the STAT3 SH2 domain phosphotyrosine binding site, inhibiting homodimerization. LY5 was evaluated in vitro demonstrating good biologic activity against rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma cell lines at high nanomolar/low micromolar concentrations, as well as specific inhibition of STAT3 phosphorylation without effects on other STAT3 family members. LY5 exhibited excellent oral bioavailability in both mice and healthy dogs, and drug absorption was enhanced in the fasted state with tolerable dosing in mice at 40 mg/kg BID. However, RNAi-mediated knockdown of STAT3 did not phenocopy the biologic effects of LY5 in sarcoma cell lines. Moreover, concentrations needed to inhibit ex vivo metastasis growth using the PuMA assay were significantly higher than those needed to inhibit STAT3 phosphorylation in vitro. Lastly, LY5 treatment did not inhibit the growth of sarcoma xenografts or prevent pulmonary metastasis in mice. LY5 is a novel small molecule inhibitor that effectively inhibits STAT3 phosphorylation and cell proliferation at nanomolar concentrations. LY5 demonstrates good oral bioavailability in mice and dogs. However LY5 did not decrease tumor growth in xenograft mouse models and STAT3 knockdown did not induce concordant biologic effects. These data suggest that the anti-cancer effects of LY5 identified in vitro were not mediated through STAT3 inhibition.

  6. C-Type Lectin-Like Receptor 2 Suppresses AKT Signaling and Invasive Activities of Gastric Cancer Cells by Blocking Expression of Phosphoinositide 3-Kinase Subunits.

    PubMed

    Wang, Lan; Yin, Jie; Wang, Xuefei; Shao, Miaomiao; Duan, Fangfang; Wu, Weicheng; Peng, Peike; Jin, Jing; Tang, Yue; Ruan, Yuanyuan; Sun, Yihong; Gu, Jianxin

    2016-05-01

    markers; these tumor-suppressive effects of CLEC2 required SYK. CLEC2 and SYK interacted physically, and SYK maintained the stability of CLEC2 in cells. AGS cells with CLEC2 knockdown had increased levels of phosphorylated AKT and glycogen synthase kinase-3 beta, increased expression of Snail, reduced levels of E-cadherin, and formed more metastases in mice than AGS cells that expressed CLEC2; these knockdown changes were prevented by the PI3K inhibitor LY294002. Activation of CLEC2 in AGS cells reduced protein and messenger RNA levels of PI3K subunits p85 and p110; this effect was blocked by SYK inhibitor R406. Levels of CLEC2 and SYK proteins and messenger RNAs correlated in gastric tumor samples. CLEC2 suppresses metastasis of gastric cancer cells injected into mice, and prevents activation of AKT and glycogen synthase kinase-3 beta signaling, as well as invasiveness and expression of epithelial to mesenchymal transition markers in gastric cancer cell lines. CLEC2 prevents expression of PI3K subunits, in a SYK-dependent manner. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate.

    PubMed

    Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr

    2017-09-01

    Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Tangeretin, a citrus flavonoid, inhibits PGDF-BB-induced proliferation and migration of aortic smooth muscle cells by blocking AKT activation.

    PubMed

    Seo, Juhee; Lee, Hyun Sun; Ryoo, Sungwoo; Seo, Jee Hee; Min, Byung-Sun; Lee, Jeong-Hyung

    2011-12-30

    Tangeretin, a natural polymethoxylated flavone concentrated in the peel of citrus fruits, is known to have antiproliferative, antiinvasive, antimetastatic and antioxidant activities. However, the effect of tangeretin on vascular smooth muscle cells (VSMCs) is unknown. This study examined the effect of tangeretin on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of rat aortic smooth muscle cells (RASMCs) as well as its underlying mechanisms. Tangeretin significantly inhibited proliferation, DNA synthesis and migration of PDGF-BB-stimulated RASMCs without inducing cell death. Treatment with tangeretin-induced cell-cycle arrest in the G₀/G₁ phase was associated with down-regulation of cyclin D1 and cyclin E in addition to up-regulation of p27(kip1). We also showed that tangeretin inhibited PDGF-BB-induced phosphorylation of AKT, while it had no effect on the phosphorylation of phospholipase Cγ (PLCγ), PDGF receptor β-chain (PDGF-Rβ) and extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). An in vitro kinase assay revealed that tangeretin inhibited AKT activity in a dose-dependent manner. Moreover, treatment of LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, had similar effects than that of tangeretin on the expression of p27(kip1) and cyclin D1, as well as cell migration in PDFG-BB-stimulated RASMCs. Taken together, these findings suggest that tangeretin could suppress PDGF-BB-induced proliferation and migration of RASMCs through the suppression of PI3K/AKT signaling pathway, and may be a potential candidate for preventing or treating vascular diseases, such as atherosclerosis and restenosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The CDK4/6 inhibitor LY2835219 overcomes vemurafenib resistance resulting from MAPK reactivation and cyclin D1 upregulation.

    PubMed

    Yadav, Vipin; Burke, Teresa F; Huber, Lysiane; Van Horn, Robert D; Zhang, Youyan; Buchanan, Sean G; Chan, Edward M; Starling, James J; Beckmann, Richard P; Peng, Sheng-Bin

    2014-10-01

    B-RAF selective inhibitors, including vemurafenib, were recently developed as effective therapies for melanoma patients with B-RAF V600E mutation. However, most patients treated with vemurafenib eventually develop resistance largely due to reactivation of MAPK signaling. Inhibitors of MAPK signaling, including MEK1/2 inhibitor trametinib, failed to show significant clinical benefit in patients with acquired resistance to vemurafenib. Here, we describe that cell lines with acquired resistance to vemurafenib show reactivation of MAPK signaling and upregulation of cyclin D1 and are sensitive to inhibition of LY2835219, a selective inhibitor of cyclin-dependent kinase (CDK) 4/6. LY2835219 was demonstrated to inhibit growth of melanoma A375 tumor xenografts and delay tumor recurrence in combination with vemurafenib. Furthermore, we developed an in vivo vemurafenib-resistant model by continuous administration of vemurafenib in A375 xenografts. Consistently, we found that MAPK is reactivated and cyclin D1 is elevated in vemurafenib-resistant tumors, as well as in the resistant cell lines derived from these tumors. Importantly, LY2835219 exhibited tumor growth regression in a vemurafenib-resistant model. Mechanistic analysis revealed that LY2835219 induced apoptotic cell death in a concentration-dependent manner in vemurafenib-resistant cells whereas it primarily mediated cell-cycle G1 arrest in the parental cells. Similarly, RNAi-mediated knockdown of cyclin D1 induced significantly higher rate of apoptosis in the resistant cells than in parental cells, suggesting that elevated cyclin D1 activity is important for the survival of vemurafenib-resistant cells. Altogether, we propose that targeting cyclin D1-CDK4/6 signaling by LY2835219 is an effective strategy to overcome MAPK-mediated resistance to B-RAF inhibitors in B-RAF V600E melanoma. ©2014 American Association for Cancer Research.

  10. IGF-1 protects against dexamethasone-induced cell death in insulin secreting INS-1 cells independent of AKT/PKB phosphorylation.

    PubMed

    Avram, Diana; Ranta, Felicia; Hennige, Anita M; Berchtold, Susanne; Hopp, Sabine; Häring, Hans-Ulrich; Lang, Florian; Ullrich, Susanne

    2008-01-01

    Appropriate insulin secretion depends on beta-cell mass that is determined by the balance between cell proliferation and death. IGF-1 stimulates proliferation and protects against apoptosis. In contrast, glucocorticoids promote cell death. In this study we examined molecular interactions of the glucocorticoid dexamethasone (dexa) with IGF-1 signalling pathways in insulin secreting INS-1 cells. IGF-1 (50 ng/ml) increased the growth rate and stimulated BrdU incorporation, while dexa (100 nmol/l) inhibited cell growth, BrdU incorporation and induced apoptosis. Dexa-induced cell death was partially antagonized by IGF-1. This protection was further increased by LY294002 (10 micromol/l), an inhibitor of PI3 kinase. In contrast, MAP kinase inhibitor PD98059 (10 micromol/l) significantly reduced the protective effect of IGF-1. The analysis of signalling pathways by Western blotting revealed that dexa increased IRS-2 protein abundance while the expression of PI3K, PKB and ERK remained unchanged. Despite increased IRS-2 protein,IRS-2 tyrosine phosphorylation stimulated by IGF-1 was inhibited by dexa. Dexa treatment reduced basal PKB phosphorylation. However, IGF-1-mediated stimulation of PKB phosphorylation was not affected by dexa, but ERK phosphorylation was reduced. LY294002 restored IGF-1-induced ERK phosphorylation. These data suggest that dexa induces apoptosis in INS-1 cells by inhibiting phosphorylation of IRS-2, PKB and ERK. IGF-1 counteracts dexa-mediated apoptosis in the presence of reduced PKB but increased ERK phosphorylation. (c) 2008 S. Karger AG, Basel.

  11. The putative endocannabinoid transport blocker LY2183240 is a potent inhibitor of FAAH and several other brain serine hydrolases.

    PubMed

    Alexander, Jessica P; Cravatt, Benjamin F

    2006-08-02

    How lipid transmitters move within and between cells to communicate signals remains an important and largely unanswered question. Integral membrane transporters, soluble lipid-binding proteins, and metabolic enzymes have all been proposed to collaboratively regulate lipid signaling dynamics in vivo. Assignment of the relative contributions made by each of these classes of proteins requires selective pharmacological agents to perturb their individual functions. Recently, LY2183240, a heterocyclic urea inhibitor of the putative endocannabinoid (EC) transporter, was shown to disrupt the cellular uptake of the lipid EC anandamide and promote analgesia in vivo. Here, we show that LY2183240 is a potent, covalent inhibitor of the EC-degrading enzyme fatty acid amide hydrolase (FAAH). LY2183240 inactivates FAAH by carbamylation of the enzyme's serine nucleophile. More global screens using activity-based proteomic probes identified several additional serine hydrolases that are also inhibited by LY2183240. These results indicate that the blockade of anandamide uptake observed with LY2183240 may be due primarily to the inactivation of FAAH, providing further evidence that this enzyme serves as a metabolic driving force that promotes the diffusion of anandamide into cells. More generally, the proteome-wide target promiscuity of LY2183240 designates the heterocyclic urea as a chemotype with potentially excessive protein reactivity for drug design.

  12. Erythropoietin activates telomerase through transcriptional and posttranscriptional regulation in human erythroleukemic JAS-REN-A cells.

    PubMed

    Akiyama, Masaharu; Kawano, Takeshi; Mikami-Terao, Yoko; Agawa-Ohta, Miyuki; Yamada, Osamu; Ida, Hiroyuki; Yamada, Hisashi

    2011-03-01

    We evaluated the molecular mechanism of telomerase activation by erythropoietin (EPO) in human erythroleukemic JAS-REN-A cells. Telomerase activity increased 3-4 fold after 3-24h of culture with EPO and was associated with increases in c-myc mRNA after 1-3h, of c-Myc protein after 3-6h, and of human telomerase reverse transcriptase (hTERT) mRNA and hTERT protein after 6-24h. Simultaneously EPO induced phosphorylation of signal transducer activator of transcription 5 (STAT5), AKT, and extracellular signal-regulated kinase (ERK). Telomerase activity induced by EPO was significantly inhibited by AG490, PD98059, and LY294002. AG490 downregulated c-myc and hTERT mRNA expression with inhibited STAT5 and AKT phosphorylation. PD98059 also reduced c-myc and hTERT expression and inhibited ERK phosphorylation. However, LY294002 did not inhibit c-myc or hTERT mRNA expression despite inhibiting STAT5 and AKT phosphorylation. These results suggest that EPO activates telomerase in JAS-REN-A cells through dual regulation: hTERT gene transcription by Janus tyrosine kinase 2/STAT5/c-Myc and hTERT protein phosphorylation by phosphatidylinositol 3'-kinase/AKT. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing.

    PubMed

    Okumura, Naoki; Nakano, Shinichiro; Kay, EunDuck P; Numata, Ryohei; Ota, Aya; Sowa, Yoshihiro; Sakai, Toshiyuki; Ueno, Morio; Kinoshita, Shigeru; Koizumi, Noriko

    2014-01-15

    To investigate the molecular mechanism of Rho-associated kinase (ROCK) inhibitors Y-27632 and Y-39983 on corneal endothelial cell (CEC) proliferation and their wound-healing effect. The expression of G1 proteins of the cell cycle and expression of phosphorylated Akt in monkey CECs (MCECs) treated with Y-27632 were determined by Western blotting. The effect of Y-39983 on the proliferation of MCECs and human CECs (HCECs) was evaluated by both Ki67 staining and incorporation of BrdU. As an in vivo study, Y-39983 was topically instilled in a corneal-endothelial partially injured rabbit model, and CEC proliferation was then evaluated. Investigation of the molecular mechanism of Y-27632 on CEC proliferation revealed that Y-27632 facilitated degradation of p27Kip1 (p27), and promoted the expression of cyclin D. When CECs were stimulated with Y-27632, a 1.7-fold increase in the activation of Akt was seen in comparison to the control after 1 hour. The presence of LY294002, the PI 3-kinase inhibitor, sustained the level of p27. When the efficacy of Y-39983 on cell proliferation was measured in a rabbit model, Y-39983 eye-drop instillation demonstrated rapid wound healing in a concentration range of 0.095 to 0.95 mM, whereas Y-27632 demonstrated rapid wound healing in a concentration range of 3 to 10 mM. These findings show that ROCK inhibitors employ both cyclin D and p27 via PI 3-kinase signaling to promote CEC proliferation, and that Y-39983 may be a more potent agent than Y-27632 for facilitating corneal endothelium wound healing.

  14. Protection against 1-methyl-4-phenyl pyridinium-induced neurotoxicity in human neuroblastoma SH-SY5Y cells by Soyasaponin I by the activation of the phosphoinositide 3-kinase/AKT/GSK3β pathway.

    PubMed

    Guo, Zheng; Cao, Wei; Zhao, Shifeng; Han, Zengtai; Han, Boxiang

    2016-07-06

    Parkinson's disease (PD) can be ascribed to the progressive and selective loss of dopaminergic neurons in the substantia nigra pars compacta, and thus molecules with neuroprotective ability may have therapeutic value against PD. In the current study, the neuroprotective effects and underlying mechanisms of Soyasaponin I (Soya-I), a naturally occurring triterpene extracted from a widely used ingredient in many foods, such as Glycine max (soybean), were evaluated in a widely used cellular PD model in which neurotoxicity was induced by 1-methyl-4-phenyl pyridinium (MPP) in cultured SH-SY5Y cells. We found that Soya-I at 10-40 μM considerably protected against MPP-induced neurotoxicity as evidenced by an increase in cell viability, a decrease in lactate dehydrogenase release, and a reduction in apoptotic nuclei. Moreover, Soya-I effectively inhibited the elevated intracellular accumulation of reactive oxygen species as well as the Bax/Bcl-2 ratio caused by MPP. Most importantly, Soya-I markedly reversed the inhibition of protein expression of phosphorylated AKT and phosphorylated GSK3β caused by MPP. LY294002, the specific inhibitor of phosphoinositide 3-kinase, significantly abrogated the upregulated phosphorylated AKT and phosphorylated GSK3β offered by Soya-I, suggesting that the neuroprotection of Soya-I was mainly dependent on the activation of the phosphoinositide 3-kinase/AKT/GSK3β signaling pathway. The results taken together indicate that Soya-I may be a potential candidate for further preclinical study aimed at the prevention and treatment of PD.

  15. Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB through PI3-K/Akt pathways.

    PubMed

    Simão, Fabrício; Matté, Aline; Pagnussat, Aline S; Netto, Carlos A; Salbego, Christianne G

    2012-10-01

    Accumulating evidence indicates that resveratrol potently protects against cerebral ischemia damage due to its oxygen free radicals scavenging and antioxidant properties. However, cellular mechanisms that may underlie the neuroprotective effects of resveratrol in brain ischemia are not fully understood yet. This study aimed to investigate the potential association between the neuroprotective effect of resveratrol and the apoptosis/survival signaling pathways, in particular the glycogen synthase kinase 3 (GSK-3β) and cAMP response element-binding protein (CREB) through phosphatidylinositol 3-kinase (PI3-K)-dependent pathway. An experimental model of global cerebral ischemia was induced in rats by the four-vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl staining indicated extensive neuronal death at 7 days after ischemia/reperfusion. Administration of resveratrol by i.p. injections (30 mg/kg) for 7 days before ischemia significantly attenuated neuronal death. Both GSK-3β and CREB appear to play a critical role in resveratrol neuroprotection through the PI3-K/Akt pathway, as resveratrol pretreatment increased the phosphorylation of Akt, GSK-3β and CREB in 1 h in the CA1 hippocampus after ischemia/reperfusion. Furthermore, administration of LY294002, an inhibitor of PI3-K, compromised the neuroprotective effect of resveratrol and decreased the level of p-Akt, p-GSK-3β and p-CREB after ischemic injury. Taken together, the results suggest that resveratrol protects against delayed neuronal death in the hippocampal CA1 by maintaining the pro-survival states of Akt, GSK-3β and CREB pathways. These data suggest that the neuroprotective effect of resveratrol may be mediated through activation of the PI3-K/Akt signaling pathway, subsequently downregulating expression of GSK-3β and CREB, thereby leading to prevention of neuronal death after brain ischemia in rats. © 2012 The Authors. European Journal of Neuroscience © 2012

  16. Synthesis and Biological Evaluation of Analogues of AKT (Protein Kinase B) Inhibitor-IV

    PubMed Central

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R.

    2011-01-01

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl4-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells, and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold. PMID:21319800

  17. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weijie, E-mail: 459586768@qq.com; Liu, Yuxi, E-mail: 924013616@qq.com; Wang, Youhua, E-mail: wyouhua1516@163.com

    Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwannmore » cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.« less

  18. Rosuvastatin postconditioning protects isolated hearts against ischemia-reperfusion injury: The role of radical oxygen species, PI3K-Akt-GSK-3β pathway, and mitochondrial permeability transition pore.

    PubMed

    Liu, Chun-Wei; Yang, Fan; Cheng, Shi-Zhao; Liu, Yue; Wan, Liang-Hui; Cong, Hong-Liang

    2017-02-01

    Glycogen synthase kinase-3β (GSK-3β) and mitochondrial permeability transition pore (mPTP) play an important role in myocardial ischemia-reperfusion injury. The aim of this study was to investigate whether postconditioning with rosuvastatin is able to reduce myocardial ischemia-reperfusion injury and clarify the potential mechanisms. Isolated rat hearts underwent 30 minutes of ischemia and 60 minutes of reperfusion in the presence or absence of rosuvastatin (1-50 nmol/L). The activity of signaling pathway was determined by Western blot analysis, and Ca 2+ -induced mPTP opening was assessed by the use of a potentiometric method. Rosuvastatin significantly reduced myocardial infarct size and improved cardiac function at 5 and 10 nmol/L. Protection disappeared at higher concentration and reverted to increased damage at 50 nmol/L. At 5 nmol/L, rosuvastatin increased the phosphorylation of protein kinase B (Akt) and GSK-3β, concomitant with a higher Ca 2+ load required to open the mPTP. Rosuvastatin postconditioning also significantly increased superoxide dismutase activity and reduced malondialdehyde and radical oxygen species level. LY294002, phosphatidylinositol-3-kinase (PI3K) inhibitors, abolished these protective effects of rosuvastatin postconditioning. Rosuvastatin prevents myocardial ischemia-reperfusion injury by inducing phosphorylation of PI3K-Akt and GSK-3β, preventing oxidative stress and subsequent inhibition of mPTP opening. © 2016 John Wiley & Sons Ltd.

  19. Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway

    PubMed Central

    Attar, Narsis; Ng, Charles; Chu, Connie; Guo, Deliang; Nazarian, Ramin; Chmielowski, Bartosz; Glaspy, John A.; Comin-Anduix, Begonya; Mischel, Paul S.; Lo, Roger S.; Ribas, Antoni

    2011-01-01

    Background The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway. Methodology/Principal Findings The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance. Conclusions/Significance Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors. PMID:22194965

  20. Resveratrol Suppresses Rotenone-induced Neurotoxicity Through Activation of SIRT1/Akt1 Signaling Pathway.

    PubMed

    Wang, Hui; Dong, Xiaoguang; Liu, Zengxun; Zhu, Shaowei; Liu, Haili; Fan, Wenchuang; Hu, Yanlai; Hu, Tao; Yu, Yonghui; Li, Yizhao; Liu, Tianwei; Xie, Chengjia; Gao, Qing; Li, Guibao; Zhang, Jing; Ding, Zhaoxi; Sun, Jinhao

    2018-06-01

    Rotenone is a common pesticide and has been reported as one of the risk factors for Parkinson disease. Rotenone can cause neuronal death or apoptosis through inducing oxidative injury and inhibiting mitochondrial function. As a natural polyphenolic compound, resveratrol possesses the antioxidant capacity and neuroprotective effect. However, the mechanism underlying the neuroprotective effect of resveratrol against rotenone-induced neurotoxicity remains elusive. Here, we treated PC12 cells with rotenone to induce neurotoxicity, and the neurotoxic cells were subjected to resveratrol treatment. The CCK8 and LDH activity assays demonstrated that resveratrol could suppress neurotoxicity induced by rotenone (P < 0.01). The DCFH-DA assay indicated that resveratrol reduced the production of reactive oxygen species (ROS). JC-1 and Hoechst 33342/PI staining revealed that resveratrol attenuated mitochondrial dysfunction and cell apoptosis. Moreover, resveratrol reversed rotenone-induced decrease in SIRT1 expression and Akt1 phosphorylation (P < 0.05). Furthermore, when the SIRT1 and Akt1 activity was inhibited by niacinamide and LY294002, respectively, the neuroprotective effect of resveratrol was remarkably attenuated, which implied that SIRT1 and Akt1 could mediate this process and may be potential molecular targets for intervening rotenone-induced neurotoxicity. In summary, our study demonstrated that resveratrol reduced rotenone-induced oxidative damage, which was partly mediated through activation of the SIRT1/Akt1 signaling pathway. Our study launched a promising avenue for the potential application of resveratrol as a neuroprotective therapeutic agent in Parkinson disease. Anat Rec, 301:1115-1125, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. Regulation of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through klotho expression.

    PubMed

    Xuan, Nguyen Thi; Hoang, Nguyen Huy; Nhung, Vu Phuong; Duong, Nguyen Thuy; Ha, Nguyen Hai; Hai, Nong Van

    2017-06-01

    Insulin or insulin-like growth factor 1 (IGF-1) promotes the activation of phosphoinositide 3 kinase (PI3K)/Akt signaling in immune cells including dendritic cells (DCs), the most potent professional antigen-presenting cells for naive T cells. Klotho, an anti-aging protein, participates in the regulation of the PI3K/Akt signaling, thus the Ca 2+ -dependent migration is reduced in klotho-deficient DCs. The present study explored the effects of insulin/IGF-1 on DC function through klotho expression. To this end, the mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were treated with insulin or IGF-1 and followed by stimulating with lipopolysaccharides (LPS). Tumor necrosis factor (TNF)-α formation was examined by enzyme-linked immunosorbent assay (ELISA). Phagocytosis was analyzed by FITC-dextran uptake assay. The expression of klotho was determined by quantitative PCR, immunoprecipitation and western blotting. As a result, treatment of the cells with insulin/IGF-1 resulted in reducing the klotho expression as well as LPS-stimulated TNF-α release and increasing the FITC-dextran uptake but unaltering reactive oxygen species (ROS) production in BMDCs. The effects were abolished by using pharmacological inhibition of PI3K/Akt with LY294002 and paralleled by transfecting DCs with klotho siRNA. In conclusion, the regulation of klotho sensitive DC function by IGF-1 or insulin is mediated through PI3K/Akt signaling pathway in BMDCs.

  2. Inhibitory effects of 1-O-methyl-fructofuranose from Schisandra chinensis fruit on melanogenesis in B16F0 melanoma cells.

    PubMed

    Oh, Eun Young; Jang, Ji Yeon; Choi, Yung Hyun; Choi, Young Whan; Choi, Byung Tae

    2010-10-28

    1-O-methyl-fructofuranose (1-O-MFF) from the fruit of Schisandra chinensis is a traditional Korean medicinal herb that has a variety of beneficial properties. The effect of purified 1-O-MFF on melanogenesis including the activation of related signaling pathways was investigated. The inhibitory activities of 1-O-MFF were examined by melanin synthesis, tyrosinase activity assay, Western blot and flow cytometric analyses in B16F0 mouse melanoma cells. 1-O-MFF significantly inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner, and reduced the expression of melanogenic proteins including microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1. 1-O-MFF phosphorylated and activated melanogenesis inhibitory proteins such as mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and Akt. Flow cytometry confirmed that 1-O-MFF phosphorylated ERK and Akt proteins and recovered partially phosphorylated forms in cells treated with the MEK/ERK inhibitor compound PD98059 and the phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor compound LY294002. The suppressive effects of 1-O-MFF on melanogenesis may involve down-regulation of MITF and its downstream signal pathway via the activation of MEK/ERK or PI3K/Akt. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Active lipids of Ganoderma lucidum spores-induced apoptosis in human leukemia THP-1 cells via MAPK and PI3K pathways.

    PubMed

    Wang, Jia-He; Zhou, Yi-Jun; Zhang, Meng; Kan, Liang; He, Ping

    2012-01-31

    Ganoderma lucidum (Lingzhi) is traditionally drug, which has been traditionally effective used in the treatment of chronic hepatopathy, hypertension, hyperglycemia and cancer. THP-1 and HL-60 apoptosis induced by active lipids of Ganoderma lucidum spores was quantified by flow cytometry using FITC-conjugated annexin V and PI; MAPK and Akt were measured by Western blot, and caspase-3, -8 and -9 activities were also detected by spectrophotometric assay. Our results showed that active lipids of Ganoderma lucidum spores decreased phosphorylation-ERK1/2 (P-ERK1/2), P-Akt and increased P-JNK1/2, but did not affect expressions of P-p38 MAPK in THP-1 cells. Moreover, treatment of THP-1 cells with active lipids of Ganoderma lucidum spores resulted in activation of caspase-3, -8 and -9. Furthermore, LY294002 (Akt inhibitor) or PD98059 (ERK1/2 inhibitor) significantly enhanced active lipids of Ganoderma lucidum spores-induced apoptosis in THP-1 cells, whereas caspase inhibitors or SP600125 (JNK inhibitor), decreased apoptosis in THP-1 cells. Taken together, our study for the first time suggests that active lipids of Ganoderma lucidum spores is able to enhance apoptosis in THP-1 cells, at least in part, through inhibition of ERK1/2, Akt and activation of JNK1/2 signaling pathways. Moreover, it also triggers caspase-3, -8 and -9 activation mediated apoptotic induction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Small molecule sensitization to TRAIL is mediated via nuclear localization, phosphorylation and inhibition of chaperone activity of Hsp27

    PubMed Central

    Mellier, G; Liu, D; Bellot, G; Lisa Holme, A; Pervaiz, S

    2013-01-01

    The small chaperone protein Hsp27 confers resistance to apoptosis, and therefore is an attractive anticancer drug target. We report here a novel mechanism underlying the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitizing activity of the small molecule LY303511, an inactive analog of the phosphoinositide 3-kinase inhibitor inhibitor LY294002, in HeLa cells that are refractory to TRAIL-induced apoptosis. On the basis of the fact that LY303511 is derived from LY294002, itself derived from quercetin, and earlier findings indicating that quercetin and LY294002 affected Hsp27 expression, we investigated whether LY303511 sensitized cancer cells to TRAIL via a conserved inhibitory effect on Hsp27. We provide evidence that upon treatment with LY303511, Hsp27 is progressively sequestered in the nucleus, thus reducing its protective effect in the cytosol during the apoptotic process. LY303511-induced nuclear translocation of Hsp27 is linked to its sustained phosphorylation via activation of p38 kinase and MAPKAP kinase 2 and the inhibition of PP2A. Furthermore, Hsp27 phosphorylation leads to the subsequent dissociation of its large oligomers and a decrease in its chaperone activity, thereby further compromising the death inhibitory activity of Hsp27. Furthermore, genetic manipulation of Hsp27 expression significantly affected the TRAIL sensitizing activity of LY303511, which corroborated the Hsp27 targeting activity of LY303511. Taken together, these data indicate a novel mechanism of small molecule sensitization to TRAIL through targeting of Hsp27 functions, rather than its overall expression, leading to decreased cellular protection, which could have therapeutic implications for overcoming chemotherapy resistance in tumor cells. PMID:24176848

  5. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    PubMed

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  6. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition

    PubMed Central

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R.; Sun, Shi-Yong

    2012-01-01

    API-1 is a novel small molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation, and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of c-FLIP levels and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of DR4 or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis, but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1, but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Since other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. PMID:22345097

  7. Crystal Structure of the FGFR4/LY2874455 Complex Reveals Insights into the Pan-FGFR Selectivity of LY2874455.

    PubMed

    Wu, Daichao; Guo, Ming; Philips, Michael A; Qu, Lingzhi; Jiang, Longying; Li, Jun; Chen, Xiaojuan; Chen, Zhuchu; Chen, Lin; Chen, Yongheng

    2016-01-01

    Aberrant FGFR4 signaling has been documented abundantly in various human cancers. The majority of FGFR inhibitors display significantly reduced potency toward FGFR4 compared to FGFR1-3. However, LY2874455 has similar inhibition potency for FGFR1-4 with IC50 less than 6.4 nM. To date, there is no published crystal structure of LY2874455 in complex with any kinase. To better understand the pan-FGFR selectivity of LY2874455, we have determined the crystal structure of the FGFR4 kinase domain bound to LY2874455 at a resolution of 2.35 Å. LY2874455, a type I inhibitor for FGFR4, binds to the ATP-binding pocket of FGFR4 in a DFG-in active conformation with three hydrogen bonds and a number of van der Waals contacts. After alignment of the kinase domain sequence of 4 FGFRs, and superposition of the ATP binding pocket of 4 FGFRs, our structural analyses reveal that the interactions of LY2874455 to FGFR4 are largely conserved in 4 FGFRs, explaining at least partly, the broad inhibitory activity of LY2874455 toward 4 FGFRs. Consequently, our studies reveal new insights into the pan-FGFR selectivity of LY2874455 and provide a structural basis for developing novel FGFR inhibitors that target FGFR1-4 broadly.

  8. Discovery of chiral dihydropyridopyrimidinones as potent, selective and orally bioavailable inhibitors of AKT.

    PubMed

    Parthasarathy, Saravanan; Henry, Kenneth; Pei, Huaxing; Clayton, Josh; Rempala, Mark; Johns, Deidre; De Frutos, Oscar; Garcia, Pablo; Mateos, Carlos; Pleite, Sehila; Wang, Yong; Stout, Stephanie; Condon, Bradley; Ashok, Sheela; Lu, Zhohai; Ehlhardt, William; Raub, Tom; Lai, Mei; Geeganage, Sandaruwan; Burkholder, Timothy P

    2018-06-01

    During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK 2 . A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3β in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. AMR-Me inhibits PI3K/Akt signaling in hormone-dependent MCF-7 breast cancer cells and inactivates NF-κB in hormone-independent MDA-MB-231 cells.

    PubMed

    Rabi, Thangaiyan; Huwiler, Andrea; Zangemeister-Wittke, Uwe

    2014-07-01

    AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy. © 2013 Wiley Periodicals, Inc.

  10. Cordyceps sinensis polysaccharide inhibits PDGF-BB-induced inflammation and ROS production in human mesangial cells.

    PubMed

    Wang, Ying; Wang, Yan; Liu, Dan; Wang, Wang; Zhao, Huan; Wang, Min; Yin, Hongping

    2015-07-10

    CPS-F, a polysaccharide derived from Cordyceps sinensis, is a potential anti-inflammatory and anti-oxidative agent. We demonstrated that CPS-F not only inhibits platelet-derived growth factor BB (PDGF-BB)-induced intracellular reactive oxygen species (ROS) generation, and up-regulation of tumor necrosis factor-α (TNF-α), TNF-α receptor 1 (TNFR1), and monocyte chemotactic protein-1 (MCP-1), but also acts synergistically in combination with MAPK/ERK inhibitor U0126 and PI3K/Akt inhibitor LY294002. Additionally, up-regulation of pro-inflammatory factors was reversed by use of a combination of CPS-F and NADPH oxidase (NOX) inhibitor diphenyleneiodonium chloride (DPI) or silencing of NOX1. Furthermore, CPS-F prevents the PDGF receptor β (PDGFRβ) promoter activity induced by PDGF-BB in transfected cells and ameliorates increased levels of TNF-α, TNFR1, and MCP-1 when PDGFRβ is silenced, thereby suggesting that CPS-F possesses a bidirectional regulatory function. Our findings suggest CPS-F may exert its therapeutic effect for the treatment of glomerulonephritis related to human mesangial cells (HMCs) through the ERK1/2/Akt pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Examination of the signal transduction pathways leading to upregulation of tissue type plasminogen activator by Porphyromonas endodontalis in human pulp cells.

    PubMed

    Huang, F-M; Chen, Y-J; Chou, M-Y; Chang, Y-C

    2005-12-01

    To investigate the tissue type plasminogen activator (t-PA) activity in human pulp cells stimulated with Porphyromonas endodontalis (P. endodontalis) in the absence or presence of p38 inhibitor SB203580, mitogen-activated protein kinase kinase (MEK) inhibitor U0126 and phosphatidylinositaol 3-kinase (PI3K) inhibitor LY294002. The supernatants of P. endodontalis were used to evaluate t-PA activity in human pulp cells using casein zymography and enzyme-linked immunosorbent assay (ELISA). Furthermore, to search for possible signal transduction pathways, SB203580, U0126 and LY294002 were added to test how they modulated the t-PA activity. The main casein secreted by human pulp cells migrated at 70 kDa and represented t-PA. Secretion of t-PA was found to be stimulated with P. endodontalis during 2-day cultured period (P < 0.05). From the results of casein zymography and ELISA, SB203580 and U0126 significantly reduced the P. endodontalis stimulated t-PA production respectively (P < 0.05). However, LY294002 lacked the ability to change the P. endodontalis stimulated t-PA production (P > 0.05). Porphyromonas endodontalis enhances t-PA production in human pulp cells, and the signal transduction pathways p38 and MEK are involved in the inhibition of t-PA.

  12. Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells

    PubMed Central

    Choi, In-Wook; Ismail, Hassan Ahmed Hassan Ahmed; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Yuk, Jae-Min; Jo, Eun-Kyeong; Lee, Young-Ha

    2015-01-01

    Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings

  13. Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells.

    PubMed

    Yamaji, Masayuki; Ota, Akinobu; Wahiduzzaman, Md; Karnan, Sivasundaram; Hyodo, Toshinori; Konishi, Hiroyuki; Tsuzuki, Shinobu; Hosokawa, Yoshitaka; Haniuda, Masayuki

    2017-11-01

    Malignant pleural mesothelioma (MPM), an asbestos-related occupational disease, is an aggressive and incurable tumor of the thoracic cavity. Despite recent advances in MPM treatment, overall survival of patients with MPM is very low. Recent studies have implicated that PI3K/Akt signaling is involved in MPM cell survival and development. To investigate the effects of Akt inhibitors on MPM cell survival, we examined the effects of nine selective Akt inhibitors, namely, afuresertib, Akti-1/2, AZD5363, GSK690693, ipatasertib, MK-2206, perifosine, PHT-427, and TIC10, on six MPM cell lines, namely, ACC-MESO-4, Y-MESO-8A, MSTO-211H, NCI-H28, NCI-H290, and NCI-H2052, and a normal mesothelial cell line MeT-5A. Comparison of IC 50 values of the Akt inhibitors showed that afuresertib, an ATP-competitive specific Akt inhibitor, exerted tumor-specific effects on MPM cells. Afuresertib significantly increased caspase-3 and caspase-7 activities and apoptotic cell number among ACC-MESO-4 and MSTO-211H cells. Moreover, afuresertib strongly arrested the cell cycle in the G 1 phase. Western blotting analysis showed that afuresertib increased the expression of p21 WAF 1/ CIP 1 and decreased the phosphorylation of Akt substrates, including GSK-3β and FOXO family proteins. These results suggest that afuresertib-induced p21 expression promotes G 1 phase arrest by inducing FOXO activity. Furthermore, afuresertib significantly enhanced cisplatin-induced cytotoxicity. Interestingly, results of gene set enrichment analysis showed that afuresertib modulated the expression E2F1 and MYC, which are associated with fibroblast core serum response. Together, these results suggest that afuresertib is a useful anticancer drug for treating patients with MPM. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

  15. Selective Akt Inhibitors Synergize with Tyrosine Kinase Inhibitors and Effectively Override Stroma-Associated Cytoprotection of Mutant FLT3-Positive AML Cells

    PubMed Central

    Zhang, Xin; Nelson, Erik; Sattler, Martin; Liu, Feiyang; Nicolais, Maria; Zhang, Jianming; Mitsiades, Constantine; Smith, Robert W.; Stone, Richard; Galinsky, Ilene; Nonami, Atsushi; Griffin, James D.; Gray, Nathanael

    2013-01-01

    Objectives Tyrosine kinase inhibitor (TKI)-treated acute myeloid leukemia (AML) patients commonly show rapid and significant peripheral blood blast cell reduction, however a marginal decrease in bone marrow blasts. This suggests a protective environment and highlights the demand for a better understanding of stromal:leukemia cell communication. As a strategy to improve clinical efficacy, we searched for novel agents capable of potentiating the stroma-diminished effects of TKI treatment of mutant FLT3-expressing cells. Methods We designed a combinatorial high throughput drug screen using well-characterized kinase inhibitor-focused libraries to identify novel kinase inhibitors capable of overriding stromal-mediated resistance to TKIs, such as PKC412 and AC220. Standard liquid culture proliferation assays, cell cycle and apoptosis analysis, and immunoblotting were carried out with cell lines or primary AML to validate putative candidates from the screen and characterize the mechanism(s) underlying observed synergy. Results and Conclusions Our study led to the observation of synergy between selective Akt inhibitors and FLT3 inhibitors against mutant FLT3-positive AML in either the absence or presence of stroma. Our findings are consistent with evidence that Akt activation is characteristic of mutant FLT3-transformed cells, as well as observed residual Akt activity following FLT3 inhibitor treatment. In conclusion, our study highlights the potential importance of Akt as a signaling factor in leukemia survival, and supports the use of the co-culture chemical screen to identify agents able to potentiate TKI anti-leukemia activity in a cytoprotective microenvironment. PMID:23437141

  16. Additive effect by combination of Akt inhibitor, MK-2206, and PDGFR inhibitor, tyrphostin AG 1296, in suppressing anaplastic thyroid carcinoma cell viability and motility.

    PubMed

    Che, Huan-Yong; Guo, Hang-Yuan; Si, Xu-Wei; You, Qiao-Ying; Lou, Wei-Ying

    2014-01-01

    The phosphatidylinositol-3-kinase/Akt pathway and receptor tyrosine kinases regulate many tumorigenesis related cellular processes including cell metabolism, cell survival, cell motility, and angiogenesis. Anaplastic thyroid carcinoma (ATC) is a rare type of thyroid cancer with no effective systemic therapy. It has been shown that Akt activation is associated with tumor progression in ATC. Here we observed the additive effect between an Akt inhibitor (MK-2206) and a novel platelet-derived growth factor receptor inhibitor (tyrphostin AG 1296) in ATC therapy. We found an additive effect between MK-2206 and tyrphostin AG 1296 in suppressing ATC cell viability. The combination of MK-2206 and tyrphostin AG 1296 induces additive apoptosis, additive suppression of the Akt signaling pathway, as well as additive inhibition of cell migration and invasion of ATC cells. Furthermore, the combination of MK-2206 and tyrphostin AG 1296 induced additive suppression of ATC tumor growth in vivo. In summary, our studies suggest that the combination of Akt and receptor tyrosine kinase inhibitors may be an efficient therapeutic strategy for ATC treatment, which might shed new light on ATC therapy.

  17. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway.

    PubMed

    Zhang, L-H; Yin, A-A; Cheng, J-X; Huang, H-Y; Li, X-M; Zhang, Y-Q; Han, N; Zhang, X

    2015-01-29

    The tripartite motif protein TRIM24 (tripartite motif-containing 24) has been found to play distinct roles in tumor development and progression, according to different tumor contexts. However, it remains elusive whether TRIM24 plays a role in malignant gliomas that are the most common and deadly primary brain tumors in adults. We report here that TRIM24 expression is positively correlated with glioma malignancy and is negatively associated with prognosis of patients with newly diagnosed glioblastoma, which is the most malignant form of gliomas but displays highly heterogeneous clinical outcome. The multivariate Cox regression analysis demonstrates the independent predictive value of TRIM24 expression level for overall and progression-free survival. Knockdown of TRIM24 suppresses cell proliferation, cell cycle progression, clone formation and in vivo tumor development, whereas overexpression of TRIM24 promotes cell growth. Chromatin immunoprecipitation, real-time reverse transcription-PCR and mutation analyses demonstrate that TRIM24 binds to the PIK3CA promoter via its PHD-Bromo domain to activate the transcription of PIK3CA gene, thus enhancing phosphatidylinositide 3-kinase (PI3K)/Akt signaling. The pan-PI3K inhibitor LY294002 and small interfering RNA targeting PIK3CA both abrogate the growth-promoting effect of TRIM24. Moreover, TRIM24 regulates the expression of DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) through PI3K/Akt/nuclear factor-κB signaling transduction and enhances resistance to temozolomide, the standard chemotherapeutic agent for glioblastoma. Finally, glioblastoma patients with low TRIM24 expression benefit from chemotherapy, whereas those with high TRIM24 expression do not have such benefit. Our results suggest that TRIM24 might serve as a potential prognostic marker and therapeutic target for the management of malignant gliomas.

  18. Ischemic preconditioning negatively regulates plenty of SH3s-mixed lineage kinase 3-Rac1 complex and c-Jun N-terminal kinase 3 signaling via activation of Akt.

    PubMed

    Zhang, Q-G; Han, D; Xu, J; Lv, Q; Wang, R; Yin, X-H; Xu, T-L; Zhang, G-Y

    2006-12-01

    Activation of Akt/protein kinase B has been recently reported to play an important role in ischemic tolerance. We here demonstrate that the decreased protein expression and phosphorylation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) underlie the increased Akt-Ser-473 phosphorylation in the hippocampal CA1 subfield in ischemic preconditioning (IPC). Co-immunoprecipitation analysis reveals that Akt physically interacts with Rac1, a small Rho family GTPase required for mixed lineage kinase 3 (MLK3) autophosphorylation, and both this interaction and Rac1-Ser-71 phosphorylation induced by Akt are promoted in preconditioned rats. In addition, we show that Akt activation results in the disassembly of the plenty of SH3s (POSH)-MLK3-Rac1 signaling complex and down-regulation of the activation of MLK3/c-Jun N-terminal kinase (JNK) pathway. Akt activation results in decreased serine phosphorylation of 14-3-3, a cytoplasmic anchor of Bax, and prevents ischemia-induced mitochondrial translocation of Bax, release of cytochrome c, and activation of caspase-3. The expression of Fas ligand is also decreased in the CA1 region. Akt activation protects against apoptotic neuronal death as shown in TUNEL staining following IPC. Intracerebral infusion of LY294002 before IPC reverses the increase in Akt phosphorylation and the decrease in JNK signaling activation, as well as the neuroprotective action of IPC. Our results suggest that activation of pro-apoptotic MLK3/JNK3 cascade can be suppressed through activating anti-apoptotic phosphoinositide 3-kinase/Akt pathway induced by a sublethal ischemic insult, which provides a functional link between Akt and the JNK family of stress-activated kinases in ischemic tolerance.

  19. Neuroprotective properties of ciliary neurotrophic factor on retinoic acid (RA)-predifferentiated SH-SY5Y neuroblastoma cells.

    PubMed

    Wang, Ke; Zhou, Fanfan; Zhu, Xue; Zhang, Kai; Huang, Biao; Zhu, Lan; Zhu, Ling

    2014-01-01

    Ciliary neurotrophic factor (CNTF) is a neurocytokine, which could promote survival and/or differentiation in many cell types. In this study, the biological effects of CNTF on retinoic acid (RA)-predifferentiated SH-SY5Y neuroblastoma cells and the underlying molecular mechanism of this effect were investigated for the first time. The results showed that RA was able to increase cells susceptibility to CNTF via regulating the expression levels of CNTF receptors. A further study revealed that CNTF could induce phosphorylation of STAT3, Akt and ERK1/2 in RA-predifferentiated SH-SY5Y neuroblastoma cells, while the promoting activity of CNTF on survival and neurite growth of cells was attenuated by co-treatment with JAK2 inhibitor AG490 (25 μM), STAT3 inhibitor Curcumin (50 μM), PI3K inhibitor LY-294002 (50 µM), but not by co-treatment with MEK inhibitor PD98059 (50 μM). These findings suggested that JAK2/STAT3, as well as PI3K/Akt, play important roles in mediating the survival and neurite growth response of RA-predifferentiated cells to CNTF. Our study may be useful to further understand the functional role of CNTF and offer a convenient model to explore the therapeutic potential of CNTF in neurodegenerative diseases.

  20. Esculetin exerts antitumor effect on human gastric cancer cells through IGF-1/PI3K/Akt signaling pathway.

    PubMed

    Wang, Guijun; Lu, Meili; Yao, Yusheng; Wang, Jing; Li, Juan

    2017-11-05

    In this study, we aimed to investigate the antitumor effect of esculetin, a coumarin derivative extracted from natural plants, on human gastric cancer cells, and to illustrate the potential mechanisms. The results showed that esculetin exhibited anti-proliferative effects against gastric cancer cells and induced their apoptosis in a dose dependent manner with lower toxicity against normal gastric epithelial cells. Mechanism study indicated that esculetin induced gastric cancer MGC-803 cells apoptosis by triggering the activation of mitochondrial apoptotic pathway through reducing the mitochondrial membrane potential (MMP), increasing Bax/Bcl-2 ratio, activating caspase-3 and caspase-9 activity, and increasing cytochrome c release from mitochondria. Further study showed that the pro-apoptotic effects of esculetin were associated with down-regulation of insulin-like growth factor-1/ phosphatidylinositide 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling pathway. Activation of IGF-1/PI3K/Akt pathway by IGF-1 abrogated the pro-apoptotic effects of esculetin, while inhibition of IGF-1/PI3K/Akt pathway by triciribine or LY294002 enhanced the pro-apoptotic effects of esculetin. In addition, esculetin inhibited in vivo tumor growth with no obvious toxicity following subcutaneous inoculation of MGC-803 cells in nude mice, and inhibited activation of IGF-1/PI3K/Akt pathway in tumor tissue. These results indicate that esculetin could inhibit cell proliferation and induce apoptosis of gastric cancer cells through IGF-1/PI3K/Akt mediated mitochondrial apoptosis pathway, and may be a novel effective chemotherapeutic agent against gastric cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling.

    PubMed

    Zhang, Wenting; Liu, Jia; Hu, Xiaoming; Li, Peiying; Leak, Rehana K; Gao, Yanqin; Chen, Jun

    2015-10-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival. © 2015 American Heart Association, Inc.

  2. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism.

    PubMed

    Yang, Po-Min; Huang, Yu-Ting; Zhang, Yu-Qi; Hsieh, Chia-Wen; Wung, Being-Sun

    2016-12-01

    The production of nitric oxide (NO) by endothelial NO synthase (eNOS) plays a major role in maintaining vascular homeostasis. This study elucidated the potential role of carbon monoxide (CO)-releasing molecules (CORMs) in NO production and explored the underlying mechanisms in endothelial cells. We observed that 25μM CORM-2 could increase NO production and stimulate an increase in the intracellular Ca 2+ level. Furthermore, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetra acetic acid caused CORM-2-induced NO production, which was abolished by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM), indicating that intracellular Ca 2+ release plays a major role in eNOS activation. The inhibition of the IP3 receptor diminished the CORM-2-induced intracellular Ca 2+ increase and NO production. Furthermore, CORM-2 induced eNOS Ser 1179 phosphorylation and eNOS dimerization, but it did not alter eNOS expression. CORM-2 (25μM) also prolonged Akt phosphorylation, lasting for at least 12h. Pretreatment with phosphatidylinositol 3-kinase inhibitors (wortmannin or LY294002) inhibited the increases in NO production and phosphorylation but did not affect eNOS dimerization. CORM-2-induced eNOS Ser 1179 phosphorylation was intracellularly calcium-dependent, because pretreatment with an intracellular Ca 2+ chelator (BAPTA-AM) inhibited this process. Although CORM-2 increases intracellular reactive oxygen species (ROS), pretreatment with antioxidant enzyme catalase and N-acetyl-cysteine did not abolish the CORM-2-induced eNOS activity or phosphorylation, signifying that ROS is not involved in this activity. Hence, CORM-2 enhances eNOS activation through intracellular calcium release, Akt phosphorylation, and eNOS dimerization. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Artemisia princeps extract promoted glucose uptake in cultured L6 muscle cells via glucose transporter 4 translocation.

    PubMed

    Yamamoto, Norio; Ueda, Manabu; Kawabata, Kyuichi; Sato, Takuya; Kawasaki, Kengo; Hashimoto, Takashi; Ashida, Hitoshi

    2010-01-01

    Artemisia princeps is a familiar plant as a food substance and medicinal herb. In this study, we evaluated the effects of an ethanol extract of A. princeps (APE) on glucose uptake in differentiated L6 muscle cells. Treatment with APE elevated deoxyglucose uptake, and translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane in L6 myotubes occurred. The PI3K inhibitor LY294002 attenuated glucose uptake induced by APE. Phosphorylation of the Ser(473) residue of Akt was not observed, but phosphorylation of PI3K, Akt (Thr(308)), and atypical PKC was. In addition, APE stimulated phosphorylation of AMP-activated protein kinase (AMPK) at a level similar to 5'-amino-5-imidazolecarboxamide-riboside (AICAR). These results indicate that APE stimulates glucose uptake by inducing GLUT4 translocation, which is in part mediated by combination of the PI3K-dependent atypical PKC pathway and AMPK pathways.

  4. Distinct mobilization of leukocytes and hematopoietic stem cells by CXCR4 peptide antagonist LY2510924 and monoclonal antibody LY2624587

    PubMed Central

    Peng, Sheng-Bin; Van Horn, Robert D.; Yin, Tinggui; Brown, Robin M.; Roell, William C.; Obungu, Victor H.; Ruegg, Charles; Wroblewski, Victor J.; Raddad, Eyas; Stille, John R.

    2017-01-01

    Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 play a critical role in mobilization and redistribution of immune cells and hematopoietic stem cells (HSCs). We evaluated effects of two CXCR4-targeting agents, peptide antagonist LY2510924 and monoclonal antibody LY2624587, on mobilizing HSCs and white blood cells (WBCs) in humans, monkeys, and mice. Biochemical analysis showed LY2510924 peptide blocked SDF-1/CXCR4 binding in all three species; LY2624587 antibody blocked binding in human and monkey, with minimal activity in mouse. Cellular analysis showed LY2624587 antibody, but not LY2510924 peptide, down-regulated cell surface CXCR4 and induced hematological tumor cell death; both agents have been shown to inhibit SDF-1/CXCR4 interaction and downstream signaling. In animal models, LY2510924 peptide induced robust, prolonged, dose- and time-dependent WBC and HSC increases in mice and monkeys, whereas LY2624587 antibody induced only moderate, transient increases in monkeys. In clinical trials, similar pharmacodynamic effects were observed in patients with advanced cancer: LY2510924 peptide induced sustained WBC and HSC increases, while LY2624587 antibody induced only minimal, transient WBC changes. These distinct pharmacodynamic effects in two different classes of CXCR4 inhibitors are clinically important and should be carefully considered when designing combination studies with immune checkpoint inhibitors or other agents for cancer therapy. PMID:29212254

  5. Effect of simvastatin on the resistance to EGFR tyrosine kinase inhibitors in a non-small cell lung cancer with the T790M mutation of EGFR.

    PubMed

    Hwang, Ki-Eun; Kwon, Su-Jin; Kim, Young-Suk; Park, Do-Sim; Kim, Byoung-Ryun; Yoon, Kwon-Ha; Jeong, Eun-Taik; Kim, Hak-Ryul

    2014-05-01

    Although non-small cell lung cancer (NSCLC) tumors with activating mutations in the epidermal growth factor receptor (EGFR) are highly responsive to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, development of acquired resistance is almost inevitable. Statins show antitumor activity, but it is unknown whether they can reverse EGFR-TKIs resistance in NSCLC with the T790M mutation of EGFR. This study investigated overcoming resistance to EGFR-TKI using simvastatin. We demonstrated that addition of simvastatin to gefitinib enhanced caspase-dependent apoptosis in T790M mutant NSCLC cells. Simvastatin also strongly inhibited AKT activation, leading to suppression of β-catenin activity and the expression of its targets, survivin and cyclin D1. Both insulin treatment and AKT overexpression markedly increased p-β-catenin and survivin levels, even in the presence of gefitinib and simvastatin. However, inhibition of AKT by siRNA or LY294002 treatment decreased p-β-catenin and survivin levels. To determine the role of survivin in simvastatin-induced apoptosis of gefitinib-resistant NSCLC, we showed that the proportion of apoptotic cells following treatment with survivin siRNA and the gefitinib-simvastatin combination was greater than the theoretical additive effects, whereas survivin up-regulation could confer protection against gefitinib and simvastatin-induced apoptosis. Similar results were obtained in erlotinib and simvastatin-treated HCC827/ER cells. These findings suggest that survivin is a key molecule that renders T790M mutant NSCLC cells resistant to apoptosis induced by EGFR-TKIs and simvastatin. Overall, these data indicate that simvastatin may overcome EGFR-TKI resistance in T790M mutant NSCLCs via an AKT/β-catenin signaling-dependent down-regulation of survivin and apoptosis induction. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. KEAP1-dependent synthetic lethality induced by AKT and TXNRD1 inhibitors in lung cancer

    PubMed Central

    Dai, Bingbing; Yoo, Suk-Yuong; Bartholomeusz, Geoffrey; Graham, Ryan A.; Majidi, Mourad; Yan, Shaoyu; Meng, Jieru; Ji, Lin; Coombes, Kevin; Minna, John D.; Fang, Bingliang; Roth, Jack A.

    2013-01-01

    Intrinsic resistance to agents targeting phosphatidylinositol-3-kinase (PI3K)/AKT pathway is one of the major challenges in cancer treatment with such agents. The objective of this study is to identify the genes or pathways that can be targeted to overcome the resistance of non-small cell lung cancer to the AKT inhibitor, MK2206, which is currently being evaluated in phase I and II clinical trials. Using a genome-wide small interfering RNA (siRNA) library screening and biological characterization we identified that inhibition of Thioredoxin Reductase-1 (TXNRD1), one of the key anti-oxidant enzymes, with siRNAs or its inhibitor, Auranofin, sensitized non-small cell lung cancer cells to MK2206 treatment in vitro and in vivo. We found that simultaneous inhibition of TXNRD1 and AKT pathways induced robust reactive oxygen species (ROS) production, which was involved in c-Jun N-terminal Kinase (JNK, MAPK8) activation and cell apoptosis. Furthermore we found that the synthetic lethality interaction between the TXNRD1 and AKT pathways occurred through the KEAP1/NRF2 cellular antioxidant pathway. Lastly, we found that synthetic lethality induced by TXNRD1 and AKT inhibitors relied on wild type KEAP1 function. Our study indicates that targeting the interaction between AKT and TXNRD1 antioxidant pathways with MK2206 and Auranofin, a FDA approved drug, is a rational strategy to treat lung cancer and that KEAP1 mutation status may offer a predicative biomarker for such combination approaches. PMID:23824739

  7. Interleukin-2-induced survival of natural killer (NK) cells involving phosphatidylinositol-3 kinase-dependent reduction of ceramide through acid sphingomyelinase, sphingomyelin synthase, and glucosylceramide synthase.

    PubMed

    Taguchi, Yoshimitsu; Kondo, Tadakazu; Watanabe, Mitsumasa; Miyaji, Michihiko; Umehara, Hisanori; Kozutsumi, Yasunori; Okazaki, Toshiro

    2004-11-15

    Interleukin 2 (IL-2) rescued human natural killer (NK) KHYG-1 cells from apoptosis along with a reduction of ceramide. Conversely, an increase of ceramide inhibited IL-2-rescued survival. IL-2 deprivation-induced activation of acid sphingomyelinase (SMase) and inhibition of glucosylceramide synthase (GCS) and sphingomyelin synthase (SMS) were normalized by IL-2 supplementation. A phosphatidyl inositol-3 (PI-3) kinase inhibitor, LY294002, inhibited IL-2-rescued survival, but a mitogen-activated protein kinase inhibitor, PD98059, and an inhibitor of Janus tyrosine kinase/signal transducer and activator of transcription pathway, AG490, did not. LY294002 inhibited IL-2-induced reduction of ceramide through activation of acid SMase and inhibition of GCS and SMS, suggesting the positive involvement of PI-3 kinase in ceramide reduction through enzymatic regulation. Indeed, a constitutively active PI-3 kinase enhanced growth rate and ceramide reduction through inhibition of acid SMase and activation of GCS and SMS. Further, LY294002 inhibited IL-2-induced changes of transcriptional level as well as mRNA and protein levels in acid SMase and GCS but did not affect the stability of the mRNAs. These results suggest that PI-3 kinase-dependent reduction of ceramide through regulation of acid SMase, GCS, and SMS plays a role in IL-2-rescued survival of NK cells.

  8. Retinol induces morphological alterations and proliferative focus formation through free radical-mediated activation of multiple signaling pathways.

    PubMed

    Gelain, Daniel Pens; Pasquali, Matheus Augusto de Bittencourt; Caregnato, Fernanda Freitas; Castro, Mauro Antonio Alves; Moreira, José Claudio Fonseca

    2012-04-01

    Toxicity of retinol (vitamin A) has been previously associated with apoptosis and/or cell malignant transformation. Thus, we investigated the pathways involved in the induction of proliferation, deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats. Sertoli cells were isolated from immature rats and cultured. The cells were subjected to a 24-h treatment with different concentrations of retinol. Parameters of oxidative stress and cytotoxicity were analyzed. The effects of the p38 inhibitor SB203580 (10 μmol/L), the JNK inhibitor SP600125 (10 μmol/L), the Akt inhibitor LY294002 (10 μmol/L), the ERK inhibitor U0126 (10 μmol/L) the pan-PKC inhibitor Gö6983 (10 μmol/L) and the PKA inhibitor H89 (1 μmol/L) on morphological and proliferative/transformation-associated modifications were studied. Retinol (7 and 14 μmol/L) significantly increases the reactive species production in Sertoli cells. Inhibition of p38, JNK, ERK1/2, Akt, and PKA suppressed retinol-induced [(3)H]dT incorporation into the cells, while PKC inhibition had no effect. ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells, while Akt and JNK inhibition partially decreased focus formation. ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells, while other treatments had no effect. Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level.

  9. Zaprinast activates MAPKs, NFκB, and Akt and induces the expressions of inflammatory genes in microglia.

    PubMed

    Lee, Heung-Soon; Kwon, Soon-Ho; Ham, Ji-Eun; Lee, Joo Young; Kim, Dong-Hoon; Shin, Kyung-Ho; Choi, Sang-Hyun

    2012-07-01

    Previously, the authors reported that zaprinast, an inhibitor of cGMP-selective phosphodiesterases, induced the secretions of TNF-α and IL-1β by microglia and enhanced the induction of iNOS by lipopolysaccharide (LPS). In this study, the signaling mechanism responsible for microglial activation by zaprinast was investigated and the effects of zaprinast and LPS on microglial activation were compared. Zaprinast was found to activate ERK1/2, p38 MAPK, JNK, NFκB, and PI3K/Akt, and subsequently, induce the mRNA expressions of IL-1α, IL-1β, TNF-α, CCL2, CCL4, CXCL1, CXCL2, and CD14. Associations between signaling pathways and gene expressions were examined by treating microglia with signal inhibitors. PDTC inhibited the induction of all the above genes by zaprinast, and SB203580 inhibited all genes except CXCL1. SP600125, PD98059, and LY294002 inhibited the induction of at least CCL2. Microglial activation by zaprinast was then compared with full-blown activation by LPS. The zaprinast-induced phosphorylations of MAPKs and IκB were less prompt than LPS-induced phosphorylations. IκB degradation by LPS was significant at 10min and did not return to normal, whereas zaprinast induced a later, transient degradation. LPS induced the mRNA expressions of IL-1β, TNF-α, IL-6, CCL2, iNOS, and COX-2, and although zaprinast significantly induced the expressions of all except IL-6 and iNOS, these inductions were far less than those induced by LPS. Collectively, zaprinast was found to upregulate microglial activity mainly via NFκB and p38 MAPK signaling and the subsequent expressions of inflammatory genes. Although, zaprinast was found to have obvious effects on microglia, these were weaker than the effects of LPS. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Group II Metabotropic Glutamate Receptor Agonist Ameliorates MK801-Induced Dysfunction of NMDA Receptors via the Akt/GSK-3β Pathway in Adult Rat Prefrontal Cortex

    PubMed Central

    Xi, Dong; Li, Yan-Chun; Snyder, Melissa A; Gao, Ruby Y; Adelman, Alicia E; Zhang, Wentong; Shumsky, Jed S; Gao, Wen-Jun

    2011-01-01

    Pharmacological intervention targeting mGluRs has emerged as a potential treatment for schizophrenia, whereas the mechanisms involved remain elusive. We explored the antipsychotic effects of an mGluR2/3 agonist in the MK-801 model of schizophrenia in the rat prefrontal cortex. We found that the mGluR2/3 agonist LY379268 effectively recovered the disrupted expression of NMDA receptors induced by MK-801 administration. This effect was attributable to the direct regulatory action of LY379268 on NMDA receptors via activation of the Akt/GSK-3β signaling pathway. As occurs with the antipsychotic drug clozapine, acute treatment with LY379268 significantly increased the expression and phosphorylation of NMDA receptors, as well as Akt and GSK-3β. Physiologically, LY379268 significantly enhanced NMDA-induced current in prefrontal neurons and a GSK-3β inhibitor occluded this effect. In contrast to the widely proposed mechanism of modulating presynaptic glutamate release, our results strongly argue that mGluR2/3 agonists modulate the function of NMDA receptors through postsynaptic actions and reverse the MK-801-induced NMDA dysfunction via the Akt/GSK-3β pathway. This study provides novel evidence for postsynaptic mechanisms of mGluR2/3 in regulation of NMDA receptors and presents useful insights into the mechanistic actions of mGluR2/3 agonists as potential antipsychotic agents for treating schizophrenia. PMID:21326193

  11. BDE-99 (2,2',4,4',5-pentabromodiphenyl ether) triggers epithelial-mesenchymal transition in colorectal cancer cells via PI3K/Akt/Snail signaling pathway.

    PubMed

    Wang, Fei; Ruan, Xin-Jian; Zhang, Hong-Yan

    2015-01-01

    The gut is in direct contact with BDE-99 (2,2',4,4',5-pentabromodiphenyl ether), one of the most abundant PBDE congeners in the environment and in human tissues. The objective of the present study was to investigate the effects of BDE-99 on colorectal cancer (CRC) cells. The effects of BDE-99 on cell proliferation were measured by CCK-8 assay in the CRC cell line HCT-116. Wound healing and transwell migration/invasion assays were used to test the migration and invasion of CRC cells. Factors related to epithelial-to-mesenchymal transition (EMT) were measured by real-time PCR and Western blot analysis for mRNA and protein levels, respectively. BDE-99 was found to increase migration and invasion and trigger EMT in HCT-116 cells; EMT was characterized by cells acquiring mesenchymal spindle-like morphology and by increased expression of N-cadherin with a concomitant decrease in E-cadherin. BDE-99 treatment also increased the protein and mRNA levels of the transcription factor Snail, but not Slug, Twist, and ZEB1. Knockdown of Snail by siRNA significantly attenuated BDE-99-induced EMT in HCT-116 cells, suggesting that Snail plays a crucial role in BDE-99-induced EMT. The PI3K/Akt inhibitor LY294002 completely blocked BDE-99-induced Snail and invasion of HCT-116 cells. Our results revealed that BDE-99 can trigger the EMT of colon cancer cells via the PI3K/AKT/Snail signaling pathway. This study provides new insight into the tumorigenesis and metastasis of CRC stimulated by BDE-99 and possibly other PBDE congeners.

  12. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells.

    PubMed

    Fang, Fang; Qin, Yingxin; Hao, Feng; Li, Qiang; Zhang, Wei; Zhao, Chen; Chen, Shuang; Zhao, Liangzhong; Wang, Liguo; Cai, Jianhui

    2016-08-01

    The androgen signaling pathway serves an important role in the development of prostate cancer. β-Catenin is an androgen receptor (AR) cofactor and augments AR signaling. Glycogen synthase kinase-3β (GSK-3β), a target of phosphorylated serine/threonine protein kinase B (p-Akt), regulates β-catenin stability. In addition, β-catenin, a coregulator of AR, physically interacts with AR and enhances AR-mediated target gene transcription. The multifunctional glycoprotein cluster of differentiation (CD) 147 is highly expressed on the cell surface of the majority of cancer cells, and it promotes tumor invasion, metastasis and growth. In the present study, the molecular effects of CD147 on the Akt/GSK-3β/β-catenin/AR signaling network were investigated in LNCaP cells. Using short hairpin-mediated RNA knockdown of CD147 in LNCaP cells, it was demonstrated that downregulation of CD147 resulted in inhibitory phosphorylation of GSK-3β, and then promoted degeneration of β-catenin and reduced nuclear accumulation of β-catenin. In addition, immunoprecipitation studies demonstrated that CD147 downregulation decreased the formation of a complex between β-catenin and AR. It was shown that CD147 knockdown suppressed the expression of the AR target gene prostate-specific antigen and the growth of AR-positive LNCaP cells. Furthermore, inhibition of PI3K/Akt with LY294002 augmented CD147-mediated function. The present study indicates that the PI3K/Akt pathway may facilitate CD147-mediated activation of the AR pathway.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Liu, Ning-Ning; Liu, Wei-Hua

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and GATA Binding Protein 4 (GATA4) are important for the growth of cardiac fibroblasts (CFs). When deregulated, LOX-1 and GATA4 can cause cardiac remodeling. In the present study, we found novel evidence that GATA4 was required for the LOX-1 regulation of CF proliferation. The inhibition of LOX-1 by RNA interference LOX-1 lentivirus resulted in the loss of PI3K/Akt activation and GATA4 protein expression. The overexpression of LOX-1 by lentivirus rescued CF proliferation, PI3K/Akt activation, and GATA4 protein expression. Moreover, GATA4 overexpression enhanced CF proliferation with LOX-1 inhibition. We also found that the inhibition ofmore » PI3K/Akt activation by LY294002, a PI3K inhibitor, reduced cell proliferation and protein level of GATA4. In summary, GATA4 may play an important role in the LOX-1 and PI3K/Akt regulation of CF proliferation. -- Highlights: •GATA4 is regulated by LOX-1 signaling in CFs. •GATA4 is involved in LOX-1 regulating CF proliferation. •GATA4 is regulated by PI3K/Akt signaling in CFs.« less

  14. Salidroside mediates apoptosis and autophagy inhibition in concanavalin A-induced liver injury

    PubMed Central

    Feng, Jiao; Niu, Peiqin; Chen, Kan; Wu, Liwei; Liu, Tong; Xu, Shizan; Li, Jingjing; Li, Sainan; Wang, Wenwen; Lu, Xiya; Yu, Qiang; Liu, Ning; Xu, Ling; Wang, Fan; Dai, Weiqi; Xia, Yujing; Fan, Xiaoming; Guo, Chuanyong

    2018-01-01

    Salidroside (Sal) is a glycoside extract from Rhodiola rosea L. with anti-inflammatory, antioxidant, anticancer and cardioprotective properties. The present study explored the protective effects and the possible mechanisms of Sal on concanavalin A (ConA)-induced liver injury in mice. Balb/C mice were divided into five groups: Normal control (injected with normal saline), ConA (25 mg/kg), Sal (10 mg/kg) +ConA, Sal (20 mg/kg) + ConA (Sal injected 2 h prior to ConA injection) and Sal (20 mg/kg) only. The serum levels of liver enzymes, pro-inflammatory cytokines, and apoptosis- and autophagy-associated marker proteins were determined at 2, 8 and 24 h after ConA injection. LY294002 was further used to verify whether the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated. Primary hepatocytes were isolated to verify the effect of Sal in vitro. The results indicated that Sal was a safe agent to reduce pathological damage and serum liver enzymes in ConA-induced liver injury. Sal suppressed inflammatory reactions in serum and liver tissues, and activated the PI3K/Akt signaling pathway to inhibit apoptosis and autophagy in vivo and in vitro, which could be reversed by LY294002. In conclusion, Sal attenuated ConA-induced liver injury by modulating PI3K/Akt pathway-mediated apoptosis and autophagy in mice.

  15. Cardioprotective effect of breviscapine: inhibition of apoptosis in H9c2 cardiomyocytes via the PI3K/Akt/eNOS pathway following simulated ischemia/reperfusion injury.

    PubMed

    Wang, Jun; Ji, Shu-Yun; Liu, Si-Zhu; Jing, Rui; Lou, Wei-Juan

    2015-09-01

    Breviscapine (BE) is a standardized Chinese herbal medicine extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used to treat cardiovascular and cerebrovascular diseases. However, there are no reports on the protective effects and underlying molecular mechanisms of BE action on myocardial ischemia/reperfusion (MI/R)-induced cardiomyocyte apoptosis. In the present study, we aimed to confirm the cardioprotective effect of BE from MI/R injury in vivo, and investigate the potential molecular mechanisms against simulated ischemia/reperfusion (SI/R)-induced cardiomyocyte apoptosis in vitro. The rat model of MI/R injury was induced by 30 min of transient vessel occlusion followed by 3 h of reperfusion. BE significantly reduced the myocardium infarct size and production of cardiac troponin (cTnl) in serum. In an in vitro experiment, H9c2 cardiomyocytes were incubated with vehicle or ischemic buffer during hypoxia; then, they were reoxygenated with or without BE. BE markedly improved the cell viability and decreased lactate dehydrogenase (LDH) release. We confirmed the anti-apoptotic effect of BE with the Hoechst 33258 staining assay, and this effect was associated with an increase in Bcl-2 and a decrease in active caspase-3 expression. Western blot analysis also showed that BE increased the phosphorylation of Akt and eNOS in H9c2 cells, and the protective effects of BE were partially inhibited by the phosphatidylinositol 3'-kinase (PI3K) specific inhibitor LY294002. Our results suggested that BE could provide significant cardioprotection against MI/R injury, and the potential mechanisms might involve suppression of cardiomyocyte apoptosis through activating the PI3K/Akt/eNOS signaling pathway.

  16. The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells.

    PubMed

    Berrak, Özge; Akkoç, Yunus; Arısan, Elif Damla; Çoker-Gürkan, Ajda; Obakan-Yerlikaya, Pınar; Palavan-Ünsal, Narçin

    2016-02-01

    Bcl-2 protein has been contributed with number of genes which are involved in oncogenesis. Among the many targets of Bcl-2, NFκB have potential role in induction of cell cycle arrest. Curcumin has potential therapeutic effects against breast cancer through multiple signaling pathways. In this study, we investigated the role of curcumin in induction of cell cycle arrest via regulating of NFκB and polyamine biosynthesis in wt and Bcl-2+ MCF-7 cells. To examine the effect of curcumin on cell cycle regulatory proteins, PI3K/Akt, NFκB pathways and polyamine catabolism, we performed immunoblotting assay. In addition, cell cycle analysis was performed by flow cytometry. The results indicated that curcumin induced cell cycle arrest at G2/M phase by downregulation of cyclin B1 and Cdc2 and inhibited colony formation in MCF-7wt cells. However, Bcl-2 overexpression prevented the inhibition of cell cycle associated proteins after curcumin treatment. The combination of LY294002, PI3K inhibitor, and curcumin induced cell cycle arrest by decreasing CDK4, CDK2 and cyclin E2 in Bcl-2+ MCF-7 cells. Moreover, LY294002 further inhibited the phosphorylation of Akt in Bcl-2+ MCF-7 cells. Curcumin could suppress the nuclear transport of NFκB through decreasing the interaction of P-IκB-NFκB. The combination of wedelolactone, NFκB inhibitor, and curcumin acted different on SSAT expression in wt MCF-7 and Bcl-2+ MCF-7 cells. NFκB inhibition increased the SSAT after curcumin treatment in Bcl-2 overexpressed MCF-7 cells. Inhibition of NFκB activity as well as suppression of ROS generation with NAC resulted in the partial relief of cells from G2/M checkpoint after curcumin treatment in wt MCF-7 cells. In conclusion, the potential role of curcumin in induction of cell cycle arrest is related with NFκB-regulated polyamine biosynthesis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells.

    PubMed

    Deng, Xiaobei; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2013-06-01

    It has been well documented in in vitro studies that ambient airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM(2.5)) is capable of inducing oxidative stress, which plays a key role in PM(2.5)-mediated cytotoxicity. Although nuclear factor erythroid-2-related factor 2 (Nrf2) has been shown to regulate the intracellular defense mechanisms against oxidative stress, a potential of the Nrf2-mediated cellular defense against oxidative stress induced by PM(2.5) remains to be determined. This study was aimed to explore the potential signaling pathway of Nrf2-mediated defense mechanisms against PM(2.5)-induced oxidative stress in human type II alveolar epithelial A549 cells. We exposed A549 cells to PM(2.5) particles collected from Beijing at a concentration of 16 μg/cm(2). We observed that PM(2.5) triggered an increase of intracellular reactive oxygen species (ROS) in a time-dependent manner during a period of 2 h exposure. We also found that Nrf2 overexpression suppressed and Nrf2 knockdown increased PM(2.5)-induced ROS generation. Using Western blot and confocal microscopy, we found that PM(2.5) exposure triggered significant translocation of Nrf2 into nucleus, resulting in AKT phosphorylation and significant transcription of ARE-driven phases II enzyme genes, such as NAD(P)H:quinone oxidoreductase (NQO-1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) in A549 cells. Evaluation of signaling pathways showed that a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), but not an ERK 1/2 inhibitor (PD98059) or a p38 MAPK (SB203580), significantly down-regulated PM(2.5)-induced Nrf2 nuclear translocation and HO-1 mRNA expression, indicating PI3K/AKT is involved in the signaling pathway leads to the PM(2.5)-induced nuclear translocation of Nrf2 and subsequent Nrf2-mediated HO-1 transcription. Taken together, our results suggest that PM(2.5)-induced ROS may function as signaling molecules to activate Nrf

  18. Lp-PLA2 silencing protects against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages.

    PubMed

    Zheng, HuaDong; Cui, DaJiang; Quan, XiaoJuan; Yang, WeiLin; Li, YingNa; Zhang, Lin; Liu, EnQi

    2016-09-02

    Atherosclerosis is a disease of the large- and medium-size arteries that is characterized by the formation of atherosclerotic plaques, in which foam cells are the characteristic pathological cells. However, the key underlying pathomechanisms are still not fully elucidated. In this study, we investigated the role of lipoprotein-associated phospholipase A2 (Lp-PLA2) in ox-LDL-induced oxidative stress and cell apoptosis, and further, elucidated the potential machanisms in human THP1 macrophages. Flow cytometry and western blot analyses showed that both cell apoptosis and Lp-PLA2 expression were dose-dependently elevated after ox-LDL treatment for 24 h and also time-dependently increased after 50 mg/L ox-LDL incubation in THP1 macrophages. In addition, Lp-PLA2 silencing decreased ox-LDL-induced Lp-PLA2 and CD36 expression in THP1 macrophages. We also found that the levels of oil red O-staining, triglyceride (TG) and total cholesterol (TC) were significantly upregulated in ox-LDL-treated THP1 cells, but inhibited by Lp-PLA2 silencing. Furthermore, ox-LDL treatment resulted in significant increases of ROS and MDA but a marked decrease of SOD, effects that were reversed by Lp-PLA2 silencing in THP1 cells. Lp-PLA2 silencing reduced ox-LDL-induced cell apoptosis and caspase-3 expression in THP1 cells. Moreover, Lp-PLA2 siRNA transfection dramatically lowered the elevated levels of p-Akt and p-mTOR proteins in ox-LDL-treated THP1 cells. Both PI3K inhibitor LY294002 and mTOR inhibitor rapamycin decreased the augmented caspase-3 expression and TC content induced by ox-LDL, respectively. Taken together, these results revealed that Lp-PLA2 silencing protected against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, Yefei; Yan, Fengdi; Fu, Cong; Li, Yongjun; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2012-08-01

    Tissue kallikrein (TK) has been demonstrated to improve neovasculogenesis after myocardial infarction (MI). In the present study, we examined the role and underlying mechanisms of TK in peripheral endothelial progenitor cell (EPC) function. Peripheral blood-derived mononuclear cells containing EPCs were isolated from rat. The in vitro effects of TK on EPC differentiation, apoptosis, migration, and vascular tube formation capacity were studied in the presence or absence of TK, kinin B(2) receptor antagonist (icatibant), and phosphatidylinositol-3 kinase inhibitor (LY294002). Apoptosis was evaluated by flow-cytometry analysis using Annexin V-FITC/PI staining, as well as western-blot analysis of Akt phosphorylation and cleaved caspase-3. Using an MI mouse model, we then examined the in vivo effects of human TK gene adenoviral vector (Ad.hTK) administration on the number of CD34(+)Flk-1(+) progenitors in the peripheral circulation, heart tissue, extent of vasculogenesis, and heart function. Administration of TK significantly increased the number of Dil-LDL/UEA-lectin double-positive early EPCs, as well as their migration and tube formation properties in vitro. Transduction of TK in cultured EPCs attenuated apoptosis induced by hypoxia and led to an increase in Akt phosphorylation and a decrease in cleaved caspase-3 levels. The beneficial effects of TK were blocked by pretreatment with icatibant and LY294002. The expression of recombinant human TK in the ischemic mouse heart significantly improved cardiac contractility and reduced infarct size 7 days after gene delivery. Compared with the Ad.Null group, Ad.hTK reduced mortality and preserved left ventricular function by increasing the number of CD34(+)Flk-1(+) EPCs and promoting the growth of capillaries and arterioles in the peri-infarct myocardium. These data provide direct evidence that TK promotes vessel growth by increasing the number of EPCs and enhancing their functional properties through the kinin B(2) receptor-Akt

  20. Mangiferin prevents the growth of gastric carcinoma by blocking the PI3K-Akt signalling pathway.

    PubMed

    Du, Min; Wen, Gang; Jin, Juan; Chen, Yuanguang; Cao, Jun; Xu, Aman

    2017-12-05

    The aim of the present study was to investigate the effects of mangiferin on gastric carcinoma cells and to determine the possible mechanisms underlying such effects. The MTT assay was performed to evaluate the antiproliferative effect of mangiferin. Following treatment, apoptosis rates of SGC-7901 were established by flow cytometry and laser confocal microscopy, and western blot analysis was used to detect the expression of apoptosis-related proteins. The MTT assay showed that mangiferin inhibited the proliferation of SGC-7901 and BCG-823 cells in a dose-dependent and time-dependent manner. After SGC-7901 cells were exposed to mangiferin for 24, 48 and 72 h, the half-maximal inhibitory concentration values were 16.00, 8.63 and 4.79 µmol/l, respectively. SGC-7901 cell apoptosis induced by mangiferin was observed by Annexin V/PI doubling staining and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive staining. We found a significant decrease in Bcl-2, Bcl-xL and Mcl-1 expression and a significant increase in Bax, Bad and cleaved caspase-3 and caspase-9 expression in SGC-7901 cells by mangiferin treatment. Moreover, mangiferin significantly decreased the levels of p-PI3K, p-Akt and p-mTOR, but had no effects on those of PI3K, Akt and mTOR in epidermal growth factor-treated SGC-7901 cells. Interestingly, the proapoptotic effect of mangiferin on SGC-7901 cells was partially blocked by the Akt activator SC79, whereas LY294002 significantly increased mangiferin-induced apoptosis and growth inhibition. Taken together, our findings indicate that mangiferin effectively inhibits cell growth and induces apoptosis of gastric cancer cells through inhibiting the PI3K/Akt pathways with relative safety, and may be used as a novel chemotherapeutic agent against gastric cancer.

  1. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    PubMed Central

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  2. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, migration effects and accelerates cell cycle progression in multiple myeloma cells via activating the Akt pathway.

    PubMed

    Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan

    2016-10-01

    Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.

  3. Role of EGFR transactivation in preventing apoptosis in Pseudomonas aeruginosa-infected human corneal epithelial cells.

    PubMed

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X

    2004-08-01

    To determine the role of epidermal growth factor (EGF) receptor (EGFR)-mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa-infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase-mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis. Bacterial infection of HCECs induces

  4. Role of EGFR Transactivation in Preventing Apoptosis in Pseudomonas aeruginosa–Infected Human Corneal Epithelial Cells

    PubMed Central

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X.

    2009-01-01

    PURPOSE To determine the role of epidermal growth factor (EGF) receptor (EGFR)–mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). METHODS Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. RESULTS P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa–infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase–mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis

  5. Glycyrrhetinic acid protects H9c2 cells from oxygen glucose deprivation-induced injury through the PI3K/AKt signaling pathway.

    PubMed

    Wang, Liqin; Zhang, Yuyan; Wan, Haitong; Jin, Weifeng; Yu, Li; Zhou, Huifen; Yang, Jiehong

    2017-01-01

    Glycyrrhetinic acid (GA) is an ingredient of triterpene saponins found in Gancao (Radix Glycyrrhizae). Here, we investigated the protective effects of GA in H9c2 cells, and explored its possible mechanism of action. Different concentrations of GA were used to treat H9c2 cells under oxygen glucose deprivation. We analyzed cell necrosis and apoptosis using optical microscopy, Hoechst 33342 staining, FITC-annexin V/PI double-staining and lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and interleukin (IL)-1β assays. Changes in related pro-apoptosis and anti-apoptosis proteins were detected by Western blot. Optical microscopy showed that GA improved cell morphology, including cell shrinkage, cauliflower-like membrane blebbing, and even some cell debris. Meanwhile, GA also ameliorated cell nuclei characteristics such as nucleus size, chromatin condensation and bright staining from Hoechst 33342 staining. GA also lowered the apoptotic rate and the levels of LDH, CK-MB and IL-1β in a dose-dependent manner. Furthermore, GA treatment increased Bcl-2 protein expression and decreased caspase-8 and Bax protein expression, while elevating the Bcl-2/Bax ratio. GA preconditioning increased p-AKt protein expression; however, after adding LY 294002, the p-AKt expression decreased obviously. Our results demonstrated that GA could protect H9c2 cells from apoptosis in a dose-dependent manner, and the potential mechanism might be related to the PI3K/AKt signaling pathway.

  6. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells.

    PubMed

    Mercau, M E; Astort, F; Giordanino, E F; Martinez Calejman, C; Sanchez, R; Caldareri, L; Repetto, E M; Coso, O A; Cymeryng, C B

    2014-03-25

    Previous studies from our laboratory demonstrated the involvement of COX-2 in the stimulation of steroid production by LPS in murine adrenocortical Y1 cells, as well as in the adrenal cortex of male Wistar rats. In this paper we analyzed signaling pathways involved in the induction of this key regulatory enzyme in adrenocortical cells and demonstrated that LPS triggers an increase in COX-2 mRNA levels by mechanisms involving the stimulation of reactive oxygen species (ROS) generation and the activation of p38 MAPK and Akt, in addition to the previously demonstrated increase in NFκB activity. In this sense we showed that: (1) inhibition of p38 MAPK or PI3K/Akt (pharmacological or molecular) prevented the increase in COX-2 protein levels by LPS, (2) LPS induced p38 MAPK and Akt phosphorylation, (3) antioxidant treatment blocked the effect of LPS on p38 MAPK phosphorylation and in COX-2 protein levels, (4) PI3K inhibition with LY294002 prevented p38 MAPK phosphorylation and, (5) the activity of an NFκB reporter was decreased by p38 MAPK or PI3K inhibition. These results suggest that activation of both p38 MAPK and PI3K/Akt pathways promote the stimulation of NFκB activity and that PI3K/Akt activity might regulate both p38 MAPK and NFκB signaling pathways. In summary, in this study we showed that in adrenal cells, LPS induces COX-2 expression by activating p38 MAPK and PI3K/Akt signaling pathways and that both pathways converge in the modulation of NFκB transcriptional activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. The O-methylated isoflavone, formononetin, inhibits human ovarian cancer cell proliferation by sub G0/G1 cell phase arrest through PI3K/AKT and ERK1/2 inactivation.

    PubMed

    Park, Sunwoo; Bazer, Fuller W; Lim, Whasun; Song, Gwonhwa

    2018-05-15

    Formononetin is an isoflavone that is extracted from red clovers or soy. It has anti-oxidant, anti-proliferative, and anti-tumor effects against cells in various diseases. Several cohort studies have indicated that phytoestrogen intake, including formononetin, could reduce the risk of various carcinogenesis. In fact, many case-control studies have indicated the potential value of flavonoids as drug supplements in the treatment of many cancer patients. However, the toxic effects and the anti-cancer mechanism of formononetin in ovarian cancer are unknown. We investigated the toxicological mechanism of formononetin in ES2 and OV90 ovarian cancer cells. Formononetin suppressed cell proliferation through sub G0/G1 phase arrest and increased apoptosis in both cell lines. Furthermore, it induced loss of mitochondrial membrane potential and generation of reactive oxygen species in ES2 and OV90 cells. The formononetin-mediated regulation of cell proliferation and apoptosis involved decreased phosphorylation of ERK1/2, P90RSK, AKT, P70S6K, and S6 proteins, and increased phosphorylation of P38 protein in ES2 and OV90 cells. Co-treatment of formononetin with pharmacological inhibitors (LY294002 or U0126) revealed additional anti-proliferative effects on the two human ovarian cancer cell types. Conclusively, the results indicate the potential value of formononetin as an anti-cancer agent in human ovarian cancer. © 2018 Wiley Periodicals, Inc.

  8. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: Potential implications of inflammation bowel disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yi, E-mail: mondayzy@126.com; Tu, Chuantao, E-mail: tu.chuantao@zs-hospital.sh.cn; Zhao, Yuan, E-mail: zhao.yuan@zs-hospital.sh.cn

    Background: Angiogenesis plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Placental growth factor (PlGF) is a specific regulator of pathological angiogenesis and is upregulated in the sera of IBD patients. Therefore, the role of PlGF in IBD angiogenesis was investigated here using HIMECs. Methods: The expression of PlGF and its receptors in human intestinal microvascular endothelial cells (HIMECs) and inflamed mucosa of IBD patients were examined using quantitative PCR and western blot analysis and the role of PlGF in IBD HIMECs was further explored using small interfering RNA (siRNA). The induction of pro-inflammatory cytokine by PlGFmore » in HIMECs was confirmed by ELISA. The capacity of PlGF to induce angiogenesis in HIMECs was tested through proliferation, cell-migration, matrigel tubule-formation assays and its underlying signaling pathway were explored by western blot analysis of ERK1/2 and PI3K/Akt phosphorylation. Results: mRNA and protein expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. Inflamed mucosa of IBD patients also displayed higher expression of PIGF. The production of IL-6 and TNF-α in culture supernatant of HIMECs treated with exogenous recombinant human PlGF-1 (rhPlGF-1) were increased. Furthermore, rhPlGF-1 significantly induced HIMECs migration and tube formation in a dose-dependent manner and knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced these angiogenesis activities. PlGF induced PI3K/Akt phosphorylation in HIMECs and pretreatment of PlGF-stimulated HIMECs with PI3K inhibitor (LY294002) significantly inhibited the PlGF-induced cell migration and tube formation. Conclusion: Our results demonstrated the pro-inflammatory and angiogenic effects of PlGF on HIMECs in IBD through activation of PI3K/Akt signaling pathway. PlGF/PI3K/Akt signaling may serve as a potential therapeutic target for IBD. - Highlights: • Expression of PlGF and its receptor

  9. Radiance line ratios Ly-β/Ly-α, Ly-γ/Ly-α, Ly-δ/Ly-α, and Ly-ε/Ly-α for soft X-ray emissions following charge exchange between C 6+ and Kr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. M. Andrianarijaona; Wulf, D.; McCammon, D.

    2015-02-04

    The radiance line ratios Ly-β/Ly-α, Ly-γ/Ly-α, Ly-δ/Ly-α, and Ly-ε/Ly-α for soft X-ray emission following charge exchange (CX) between C 6+ and Kr are reported in this paper for collision energies between approximately 320 and 46,000 eV/u. The corresponding collision velocities (250–3000 km/s) are characteristic of the solar wind. X-ray spectra were obtained at the Oak Ridge National Laboratory Multicharged Ion Research Facility using a microcalorimeter X-ray detector with a resolution on the order of 10 eV FWHM. The measured Ly-ε/Ly-α is zero for all considered energies and suggests that very little, if any, capture to 6p occurs. The measured Ly-β/Ly-αmore » and Ly-γ/Ly-α ratios intersect and form a well resolved node around (950 ± 50) km/s, which could be used as an astrophysical velocity indicative tool. The results reported here are compared to calculations for C 6+ + H since no published theory for C 6+ + Kr is known to exist. Finally, double-electron-capture (DEC) and other multi-electron processes are possible. True double capture is estimated to be only 10% of the single-electron-capture (SEC).« less

  10. Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsubaki, Masanobu; Satou, Takao; Itoh, Tatsuki

    Osteosarcoma is one of the most common primary malignant bone tumors in children and adolescents. Some patients continue to have a poor prognosis, because of the metastatic disease. YM529/ONO-5920 is a nitrogen-containing bisphosphonate that has been used for the treatment of osteoporosis. YM529/ONO-5920 has recently been reported to induce apoptosis in various tumors including osteosarcoma. However, the mode of metastasis suppression in osteosarcoma by YM529/ONO-5920 is unclear. In the present study, we investigated whether YM529/ONO-5920 inhibited tumor cell migration, invasion, adhesion, or metastasis in the LM8 mouse osteosarcoma cell line. We found that YM529/ONO-5920 significantly inhibited metastasis, cell migration, invasion,more » and adhesion at concentrations that did not have antiproliferative effects on LM8 cells. YM529/ONO-5920 also inhibited the mRNA expression and protein activities of matrix metalloproteinases (MMPs). In addition, YM529/ONO-5920 suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and the serine/threonine protein kinase B (Akt) by the inhibition of Ras prenylation. Moreover, U0126, a mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, also inhibited LM8 cell migration, invasion, adhesion, and metastasis, as well as the mRNA expression and protein activities of MMP-1, MMP-2, MMP-9, and MT1-MMP. The results indicated that YM529/ONO-5920 suppressed the Ras/MEK/ERK and Ras/PI3K/Akt pathways, thereby inhibiting LM8 cell migration, invasion, adhesion, and metastasis. These findings suggest that YM529/ONO-5920 has potential clinical applications for the treatment of tumor cell metastasis in osteosarcoma. -- Highlights: ► We investigated whether YM529/ONO-5920 inhibited tumor metastasis in osteosarcoma. ► YM529/ONO-5920 inhibited metastasis, cell migration, invasion, and adhesion. ► YM529/ONO-5920 suppressed Ras signalings. ► YM529

  11. A short peptide GPIGS promotes proliferation of hair bulb keratinocytes and accelerates hair regrowth in mice.

    PubMed

    Tsuruda, Akinori; Kawano, Yasuhiro; Maekawa, Takaaki; Oka, Syuichi

    2005-03-01

    The aim of this study was to discover a novel agent that promotes hair growth. We carried out a screening test in 298 types of conditioned medium (CM) from cultures of bacteria by using a hair bulb keratinocyte (HBK) growth assay. As a result, we found a HBK growth factor in the CM of Bacillus sp. M18. This HBK growth factor was purified by collecting biologically active fractions in three steps, including HP-20 batch processing, LH-20 chromatography and C18 reverse-phase high-pressure liquid chromatography, and identified as a short peptide GPIGS. GPIGS increased Akt phosphorylation in HBKs. Moreover, the GPIGS-stimulated HBK growth was inhibited by the treatment with LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI-3K). These results suggest that GPIGS promotes HBK growth via the PI-3K/Akt pathway. In addition to in vitro tests, GPIGS was found to accelerate hair regrowth in telogen mice. Our results indicate that GPIGS is a potential agent to promote hair growth.

  12. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  13. Dual Phosphorylation of Btk by Akt/Protein Kinase B Provides Docking for 14-3-3ζ, Regulates Shuttling, and Attenuates both Tonic and Induced Signaling in B Cells

    PubMed Central

    Nore, Beston F.; Hussain, Alamdar; Gustafsson, Manuela O.; Mohamed, Abdalla J.

    2013-01-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation. PMID:23754751

  14. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs.

    PubMed

    Urnukhsaikhan, Enerelt; Cho, Hyunjin; Mishig-Ochir, Tsogbadrakh; Seo, Young-Kwon; Park, Jung-Kueg

    2016-04-15

    Pulsed electromagnetic fields (PEMF) are known to affect biological properties such as differentiation, regulation of transcription factor and cell proliferation. However, the cell-protective effect of PEMF exposure is largely unknown. The aim of this study is to understand the mechanisms underlying PEMF-mediated suppression of apoptosis and promotion of survival, including PEMF-induced neuronal differentiation. Treatment of induced human BM-MSCs with PEMF increased the expression of neural markers such as NF-L, NeuroD1 and Tau. Moreover, treatment of induced human BM-MSCs with PEMF greatly decreased cell death in a dose- and time-dependent manner. There is evidence that Akt and Ras are involved in neuronal survival and protection. Activation of Akt and Ras results in the regulation of survival proteins such as Bad and Bcl-xL. Thus, the Akt/Ras signaling pathway may be a desirable target for enhancing cell survival and treatment of neurological disease. Our analyses indicated that PEMF exposure dramatically increased the activity of Akt, Rsk, Creb, Erk, Bcl-xL and Bad via phosphorylation. PEMF-dependent cell protection was reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that the PI3K/Akt/Bad signaling pathway may be a possible mechanism for the cell-protective effects of PEMF. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Insulin Signaling in Bupivacaine-induced Cardiac Toxicity: Sensitization during Recovery and Potentiation by Lipid Emulsion

    PubMed Central

    Fettiplace, Michael R.; Kowal, Katarzyna; Ripper, Richard; Young, Alexandria; Lis, Kinga; Rubinstein, Israel; Bonini, Marcelo; Minshall, Richard; Weinberg, Guy

    2015-01-01

    Background The impact of local anesthetics on regulation of glucose homeostasis by protein kinase B (Akt) and 5’-Adenosine monophosphate activated protein kinase (AMPK) is unclear but important because of the implications for both local anesthetic toxicity and its reversal by intravenous lipid emulsion (ILE). Methods Sprague-Dawley rats received 10mg/kg bupivacaine over 20 seconds followed by nothing or 10mL/kg ILE (or ILE without bupivacaine). At key time points, heart and kidney were excised. Glycogen content and phosphorylation levels of Akt, p70s6k, s6, IRS1, GSK-3β, AMPK, ACC, TSC2 were quantified. Three animals received Wortmannin to irreversibily inhibit phosphoinositide-3-kinase (Pi3k) signaling. Isolated heart studies were conducted with bupivacaine and LY294002—a reversible Pi3K inhibitor. Results Bupivacaine cardiotoxicity rapidly de-phosphorylated Akt at S473 to 63 ± 5% of baseline and phosphorylated AMPK to 151 ± 19%. AMPK activation inhibited targets downstream of mTORC1 via TSC2. Feedback dephosphorylation of IRS1 to 31 ± 8% of baseline sensitized Akt signaling in hearts resulting in hyper-phosphorylation of Akt at T308 and GSK-3β to 390 ± 64% and 293 ± 50% of baseline respectively. Glycogen accumulated to 142 ± 7% of baseline. Irreversible inhibition of Pi3k upstream of Akt exacerbated bupivacaine cardiotoxicity, while pretreating with a reversible inhibitor delayed onset of toxicity. ILE rapidly phosphorylated Akt at S473 and T308 to 150 ± 23% and 167 ± 10% of baseline, respectively but did not interfere with AMPK or targets of mTORC1. Conclusion Glucose handling by Akt and AMPK is integral to recovery from bupivacaine cardiotoxicity and modulation of these pathways by ILE contributes to lipid resuscitation. PMID:26646023

  16. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors.

    PubMed

    Blake, James F; Xu, Rui; Bencsik, Josef R; Xiao, Dengming; Kallan, Nicholas C; Schlachter, Stephen; Mitchell, Ian S; Spencer, Keith L; Banka, Anna L; Wallace, Eli M; Gloor, Susan L; Martinson, Matthew; Woessner, Richard D; Vigers, Guy P A; Brandhuber, Barbara J; Liang, Jun; Safina, Brian S; Li, Jun; Zhang, Birong; Chabot, Christine; Do, Steven; Lee, Leslie; Oeh, Jason; Sampath, Deepak; Lee, Brian B; Lin, Kui; Liederer, Bianca M; Skelton, Nicholas J

    2012-09-27

    The discovery and optimization of a series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine compounds that are ATP-competitive, selective inhibitors of protein kinase B/Akt is reported. The initial design and optimization was guided by the use of X-ray structures of inhibitors in complex with Akt1 and the closely related protein kinase A. The resulting compounds demonstrate potent inhibition of all three Akt isoforms in biochemical assays and poor inhibition of other members of the cAMP-dependent protein kinase/protein kinase G/protein kinase C extended family and block the phosphorylation of multiple downstream targets of Akt in human cancer cell lines. Biological studies with one such compound, 28 (GDC-0068), demonstrate good oral exposure resulting in dose-dependent pharmacodynamic effects on downstream biomarkers and a robust antitumor response in xenograft models in which the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway is activated. 28 is currently being evaluated in human clinical trials for the treatment of cancer.

  17. IL-7 splicing variant IL-7{delta}5 induces human breast cancer cell proliferation via activation of PI3K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Deshun; Department of Pharmaceutical science, Guangdong Pharmaceutical University, Guangzhou, Guangdong; Liu, Bing

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer This study confirms the role of IL-7{delta}5 in breast cancer cell proliferation. Black-Right-Pointing-Pointer IL-7{delta}5 promotes breast cancer cell proliferation and cell cycle progression. Black-Right-Pointing-Pointer IL-7{delta}5 promotes cell proliferation via activation of PI3K/Akt pathway. -- Abstract: Various tumor cells express interleukin 7 (IL-7) and IL-7 variants. IL-7 has been confirmed to stimulate solid tumor cell proliferation. However, the effect of IL-7 variants on tumor cell proliferation remains unclear. In this study, we evaluated the role of IL-7{delta}5 (an IL-7 variant lacking exon 5) on proliferation and cell cycle progression of human MDA-MB-231 and MCF-7 breast cancer cells. The resultsmore » showed that IL-7{delta}5 promoted cell proliferation and cell cycle progression from G1 phase to G2/M phase, associated with upregulation of cyclin D1 expression and the downregulation of p27{sup kip1} expression. Mechanistically, we found that IL-7{delta}5 induced the activation of Akt. Inhibition of PI3K/Akt pathway by LY294002 reversed the proliferation and cell cycle progression of MDA-MB-231 and MCF-7 cells induced by IL-7{delta}5. In conclusion, our findings demonstrate that IL-7{delta}5 variant induces human breast cancer cell proliferation and cell cycle progression via activation of PI3K/Akt pathway. Thus, IL-7{delta}5 may be a potential target for human breast cancer therapeutics intervention.« less

  18. Production of reactive oxygen species by withaferin A causes loss of type collagen expression and COX-2 expression through the PI3K/Akt, p38, and JNK pathways in rabbit articular chondrocytes.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2013-11-01

    Withaferin A (WFA) is a major chemical constituent of Withania somnifera, also known as Indian ginseng. Many recent reports have provided evidence of its anti-tumor, anti-inflammation, anti-oxidant, and immune modulatory activities. Although the compound appears to have a large number of effects, its defined mechanisms of action have not yet been determined. We investigated the effects of WFA on loss of type collagen expression and inflammation in rabbit articular chondrocytes. WFA increased the production of reactive oxygen species, suggesting the induction of oxidative stress, in a dose-dependent manner. Also, we confirmed that WFA causes loss of type collagen expression and inflammation as determined by a decrease of type II collagen expression and an increase of cyclooxygenase-2 (COX-2) expression via western blot analysis in a dose- and time- dependent manner. WFA also reduced the synthesis of sulfated proteoglycan via Alcian blue staining and caused the synthesis of prostaglandin E2 (PGE2) via assay kit in dose- and time-dependent manners. Treatment with N-acetyl-L-cysteine (NAC), an antioxidant, inhibited WFA-induced loss of type II collagen expression and increase in COX-2 expression, accompanied by inhibition of reactive oxygen species production. WFA increased phosphorylation of both Akt and p38. Inhibition of PI3K/Akt, p38, and JNK with LY294002 (LY), SB203580 (SB), or SP600125 (SP) in WFA-treated cells rescued the expression of type II collagen and suppressed the expression of COX-2. These results demonstrate that WFA induces loss of type collagen expression and inflammation via PI3K/Akt, p38, and JNK by generating reactive oxygen species in rabbit articular chondrocytes. © 2013 Published by Elsevier Inc.

  19. Edaravone protects rats and human pulmonary alveolar epithelial cells against hyperoxia injury: heme oxygenase-1 and PI3K/Akt pathway may be involved.

    PubMed

    Cao, Huifang; Feng, Ying; Ning, Yunye; Zhang, Zinan; Li, Weihao; Li, Qiang

    2015-01-01

    Hyperoxic acute lung injury (HALI) is a clinical syndrome as a result of prolonged supplement of high concentrations of oxygen. As yet, no specific treatment is available for HALI. The present study aims to investigate the effects of edaravone on hyperoxia-induced oxidative injury and the underlying mechanism. We treated rats and human pulmonary alveolar epithelial cells with hyperoxia and different concentration of edaravone, then examined the effects of edaravone on cell viability, cell injury and two oxidative products. The roles of heme oxygenase-1 (HO-1) and PI3K/Akt pathway were explored using Western blot and corresponding inhibitors. The results showed that edaravone reduced lung biochemical alterations induced by hyperoxia and mortality of rats, dose-dependently alleviated cell mortality, cell injury, and peroxidation of cellular lipid and DNA oxidative damage. It upregulated cellular HO-1 expression and activity, which was reversed by PI3K/Akt pathway inhibition. The administration of zinc protoporphyrin-IX, a HO-1 inhibitor, and LY249002, a PI3K/Akt pathway inhibitor, abolished the protective effects of edaravone in cells. This study indicates that edaravone protects rats and human pulmonary alveolar epithelial cells against hyperoxia-induced injury and the antioxidant effect may be related to upregulation of HO-1, which is regulated by PI3K/Akt pathway.

  20. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.

    PubMed

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  1. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays

    PubMed Central

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K. PMID:25831267

  2. Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models.

    PubMed

    Buendia, Izaskun; Gómez-Rangel, Vanessa; González-Lafuente, Laura; Parada, Esther; León, Rafael; Gameiro, Isabel; Michalska, Patrycja; Laudon, Moshe; Egea, Javier; López, Manuela G

    2015-12-01

    Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL.

    PubMed

    Erdmann, Tabea; Klener, Pavel; Lynch, James T; Grau, Michael; Vočková, Petra; Molinsky, Jan; Tuskova, Diana; Hudson, Kevin; Polanska, Urszula M; Grondine, Michael; Mayo, Michele; Dai, Beiying; Pfeifer, Matthias; Erdmann, Kristian; Schwammbach, Daniela; Zapukhlyak, Myroslav; Staiger, Annette M; Ott, German; Berdel, Wolfgang E; Davies, Barry R; Cruzalegui, Francisco; Trneny, Marek; Lenz, Peter; Barry, Simon T; Lenz, Georg

    2017-07-20

    Activated B-cell-like (ABC) and germinal center B-cell-like diffuse large B-cell lymphoma (DLBCL) represent the 2 major molecular DLBCL subtypes. They are characterized by differences in clinical course and by divergent addiction to oncogenic pathways. To determine activity of novel compounds in these 2 subtypes, we conducted an unbiased pharmacologic in vitro screen. The phosphatidylinositol-3-kinase (PI3K) α/δ (PI3Kα/δ) inhibitor AZD8835 showed marked potency in ABC DLBCL models, whereas the protein kinase B (AKT) inhibitor AZD5363 induced apoptosis in PTEN-deficient DLBCLs irrespective of their molecular subtype. These in vitro results were confirmed in various cell line xenograft and patient-derived xenograft mouse models in vivo. Treatment with AZD8835 induced inhibition of nuclear factor κB signaling, prompting us to combine AZD8835 with the Bruton's tyrosine kinase inhibitor ibrutinib. This combination was synergistic and effective both in vitro and in vivo. In contrast, the AKT inhibitor AZD5363 was effective in PTEN-deficient DLBCLs through downregulation of the oncogenic transcription factor MYC. Collectively, our data suggest that patients should be stratified according to their oncogenic dependencies when treated with PI3K and AKT inhibitors. © 2017 by The American Society of Hematology.

  4. Resveratrol Induces Growth Arrest and Apoptosis through Activation of FOXO Transcription Factors in Prostate Cancer Cells

    PubMed Central

    Chen, Qinghe; Ganapathy, Suthakar; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.

    2010-01-01

    Background Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol. Methodology/Principal Findings Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin) and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM) induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and apoptosis, and

  5. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells

    PubMed Central

    Amantini, Consuelo; Morelli, Maria Beatrice; Santoni, Matteo; Soriani, Alessandra; Cardinali, Claudio; Farfariello, Valerio; Eleuteri, Anna Maria; Bonfili, Laura; Mozzicafreddo, Matteo; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2015-01-01

    Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells. PMID:26097873

  6. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb{sup 2+}-induced neuronal death in cultured hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Chenchen; Xing Tairan; Tang Mingliang

    2008-06-15

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb{sup 2+} causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb{sup 2+}. Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb{sup 2+}-induced neuronalmore » death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb{sup 2+} treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 {mu}M) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb{sup 2+}. And that Pb{sup 2+}-elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb{sup 2+} and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death.« less

  7. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3

    NASA Technical Reports Server (NTRS)

    Pavalko, Fredrick M.; Gerard, Rita L.; Ponik, Suzanne M.; Gallagher, Patricia J.; Jin, Yijun; Norvell, Suzanne M.

    2003-01-01

    In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway. Copyright 2002 Wiley-Liss, Inc.

  8. Alterations in microRNA expression profile in HCV-infected hepatoma cells: Involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi

    2011-08-19

    Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV repliconmore » as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.« less

  9. PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos.

    PubMed

    Bradham, C A; Miranda, E L; McClay, D R

    2004-04-01

    Skeletogenesis in the sea urchin embryo is a simple model of biomineralization, pattern formation, and cell-cell communication during embryonic development. The calcium carbonate skeletal spicules are secreted by primary mesenchyme cells (PMCs), but the skeletal pattern is dictated by the embryonic ectoderm. Although the process of skeletogenesis is well characterized, there is little molecular understanding of the basis of patterning within this system. In this study, we examined the contribution of phosphatidylinositide 3-kinase (PI3K)-mediated signaling to the skeletogenic process in sea urchin embryos by using the well-established PI3K inhibitors LY294002 and wortmannin. Our results show that PI3K inhibitors specifically and reversibly block skeletogenesis, and that this blockade occurs within the PMCs rather than in the ectoderm, because the inhibitors block spiculogenesis in cultured micromeres. Our results are consistent with a model in which PI3K signaling is required, not for pattern sensing or interpretation but rather for the biomineralization process itself in the sea urchin embryo. Copyright 2004 Wiley-Liss, Inc.

  10. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Qi; Shen Mi; Ding Mei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Aktmore » and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.« less

  11. Insulin upregulates GRIM-19 and protects cardiac mitochondrial morphology in type 1 diabetic rats partly through PI3K/AKT signaling pathway.

    PubMed

    Li, Yong-Guang; Dong, Zhi-Feng; Chen, Kan-Kai; He, Ya-Ping; Dai, Xiao-Yan; Li, Shuai; Li, Jing-Bo; Zhu, Wei; Wei, Meng

    2017-11-04

    Insulin is involved in the development of diabetic heart disease and is important in the activities of mitochondrial complex I. However, the effect of insulin on cardiac mitochondrial nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 subunit of retinoic-interferon-induced mortality 19 (GRIM-19) has not been characterized. The aim of this study was to investigate the effect of insulin on the mitochondrial GRIM-19 in the hearts of rats with streptozotocin (STZ)-induced type 1 diabetes. Protein changes of GRIM-19 were evaluated by western blotting and reverse transcription-quantitative polymerase chain reaction. Furthermore, the effects of insulin on mitochondrial complex I were detected in HeLa cells and H9C2 cardiac myocytes. During the development of diabetic heart disease, the cardiac function did not change within the 8 weeks, but the mitochondrial morphology was altered. The hearts from the rats with STZ-induced diabetes exhibited reduced expression of GRIM-19. Prior to the overt cardiac dilatation, mitochondrial alterations were already present. Following subcutaneous insulin injection, it was demonstrated that GRIM-19 protein was altered, as well as the mitochondrial morphology. The phosphoinositide 3-kinase inhibitor LY294002 had an effect on insulin signaling in H9C2 cardiacmyocytes, and decreased the level of GRIM-19 by half compared with that in the insulin group. The results indicate that insulin is essential for the control of cardiac mitochondrial morphology and the GRIM-19 expression partly via PI3K/AKT signaling pathways. Copyright © 2017. Published by Elsevier Inc.

  12. RhoA/ROCK pathway mediates leptin-induced uPA expression to promote cell invasion in ovarian cancer cells.

    PubMed

    Ghasemi, Ahmad; Hashemy, Seyed Isaac; Aghaei, Mahmoud; Panjehpour, Mojtaba

    2017-04-01

    Previous studies have shown that leptin, an adipocyte-secreted hormone, stimulates ovarian cancer invasion. Here, we investigated the contribution of uPA in leptin-induced ovarian cancer cell invasion. The cell invasion and migration experiments were carried out using matrigel invasion and wound healing assays in ovarian cancer cell lines (OVCAR3, SKOV3and CaoV-3). The mechanism underlying the invasive effect of leptin was examined using cell transfection with Ob-Rb siRNA, pre-treatment with a specific inhibitor of RhoA and ROCK, RhoA activation assay, OB-Rb, Rock and upA protein expression. Our results show that leptin induced ovarian cancer cell invasion via up-regulating upA in a time and dose-dependent manner, which was attenuated using knockdown of OB-Rb by siRNA. Moreover, pre-incubation with C3 (inhibitor of RhoA) and Y-27632 (inhibitor of ROCK) effectively attenuated leptin-induced upA expression and inhibited invasive ability of ovarian cancer cells. We also found that pretreatment with inhibitors of PI3K/AKT (LY294002), JAK/STAT (AG490) and NF-kB (BAY 11-7082) significantly reduced leptin-induced upA expression. Collectively, our findings demonstrate that OB-Rb, RhoA/ROCK, PI3K/AKT, JAK/STAT pathways and NF-kB activation are involved in leptin-induced upA expression. These results may provide a new mechanism that facilitates leptin-induced ovarian cancer invasion. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pinoresinol-4,4'-di-O-beta-D-glucoside from Valeriana officinalis root stimulates calcium mobilization and chemotactic migration of mouse embryo fibroblasts.

    PubMed

    Do, Kee Hun; Choi, Young Whan; Kim, Eun Kyoung; Yun, Sung Ji; Kim, Min Sung; Lee, Sun Young; Ha, Jung Min; Kim, Jae Ho; Kim, Chi Dae; Son, Beung Gu; Kang, Jum Soon; Khan, Ikhlas A; Bae, Sun Sik

    2009-06-01

    Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4'-di-O-beta-D-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 microM PDG resulted in strong stimulation of MEF cell migration and the EC(50) was about 2 microM. Pretreatment with pertussis toxin (PTX), an inhibitor of G(i) protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the G(i)-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 microM), which is a selective antagonist for LPA(1) and LPA(3) receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.

  14. Anticonvulsant and adverse effects of MK-801, LY 235959, and GYKI 52466 in combination with Ca2+ channel inhibitors in mice.

    PubMed

    Gasior, M; Borowicz, K; Kleinrok, Z; Starownik, R; Czuczwar, S J

    1997-04-01

    This study was designed to investigate the influence of the calcium (Ca2+) channel inhibitors nicardipine, nifedipine, and flunarizine on the protective action of MK-801, LY 235959 [N-methyl-D-aspartate (NMDA) receptor antagonists], and GYKI 52466 (a non-NMDA receptor antagonist) against electroconvulsions in mice. Unlike nicardipine (15 mg/kg) or flunarizine (10 mg/kg) nifedipine (7.5 and 15 mg/kg) potentiated the protective potency of MK-801 (0.05 mg/kg), as reflected by significant elevation of the convulsive threshold (a CS50 value of the current strength in mA producing tonic hind limb extension in 50% of the animals). The protective activity of LY 235959 and GYKI 52466 was reflected by their ED50 values in mg/kg, at which the drugs were expected to protect 50% of mice against maximal electroshock-induced tonic extension of the hind limbs. Nicardipine (3.75 15 mg/kg), nifedipine (0.94-15 mg/kg), and flunarizine (2.5-10 mg/kg) in a dose-dependent manner markedly potentiated the antiseizure efficacy of LY 235959. Flunarizine (5 and 10 mg/kg) was the only Ca2+ channel inhibitor to enhance the protective action of GYKI 52466 against electroconvulsions. Except with MK-801 + flunarizine (motor performance) or GYKI 52466 + flunarizine (long-term memory), combination of NMDA or non-NMDA receptor antagonists with Ca2+ channel inhibitors produced an impairment of motor performance (evaluated in the chimney test) and long-term memory acquisition (measured in the passive avoidance task) as compared with vehicle treatment.

  15. Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals.

    PubMed

    Zhao, Y; You, W; Zheng, J; Chi, Y; Tang, W; Du, R

    2016-11-01

    Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, the investigation about the molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The objective of the present study is to investigate the effects of valproic acid (VPA), a histone deacetylase inhibitor, on the angiogenesis of cervical cancer. The effects and mechanisms of VPA on in vitro angiogenesis and vascular endothelial growth factor (VEGF) expression of human cervical cancer HeLa and SiHa cells were investigated. Our present study reveals that 1 mM VPA can significantly inhibit the in vitro angiogenic potential and VEGF expression of human cervical cancer HeLa and SiHa cells. Further, the transcription and protein levels of hypoxia inducible factor-1α (HIF-1α), and not HIF-1β, are significantly inhibited in VPA-treated cervical cancer cells. Over expression of HIF-1α can obviously reverse VPA-induced VEGF down regulation. VPA-treatment decreases the activation of Akt and ERK1/2 in both HeLa and SiHa cells in a time-dependent manner. The inhibitor of Akt (LY 294002) or ERK1/2 (PD98059) can inhibit VEGF alone and cooperatively reinforce the suppression effects of VPA on HIF-1α and VEGF expression. Collectively, our data reveal that the inhibition of PI3K/Akt and ERK1/2 signals are involved in VPA-induced HIF-1α and VEGF suppression of cervical cancer cells.

  16. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells.

    PubMed

    Yuan, Huier; Hu, Yaqiu; Zhu, Yuzhang; Zhang, Yongneng; Luo, Chaohuan; Li, Zhi; Wen, Tengfei; Zhuang, Wanling; Zou, Jinfang; Hong, Liangli; Zhang, Xin; Hisatome, Ichiro; Yamamoto, Tetsuya; Cheng, Jidong

    2017-03-05

    Hyperuricemia occurs together with abnormal glucose metabolism and insulin resistance. Skeletal muscle is an important organ of glucose uptake, disposal, and storage. Metformin activates adenosine monophosphate-activated protein kinase (AMPK) to regulate insulin signaling and promote the translocation of glucose transporter type 4 (GLUT4), thereby stimulating glucose uptake to maintain energy balance. Our previous study showed that high uric acid (HUA) induced insulin resistance in skeletal muscle tissue. However, the mechanism of metformin ameliorating UA-induced insulin resistance in muscle cells is unknown and we aimed to determine it. In this study, differentiated C2C12 cells were exposed to UA (15 mg/dl), then reactive oxygen species (ROS) was detected with DCFH-DA and glucose uptake with 2-NBDG. The levels of phospho-insulin receptor substrate 1 (IRS1; Ser307), phospho-AKT (Ser473) and membrane GLUT4 were examined by western blot analysis. The impact of metformin on UA-induced insulin resistance was monitored by adding Compound C, an AMPK inhibitor, and LY294002, a PI3K/AKT inhibitor. Our data indicate that UA can increase ROS production, inhibit IRS1-AKT signaling and insulin-stimulated glucose uptake, and induce insulin resistance in C2C12 cells. Metformin can reverse this process by increasing intracellular glucose uptake and ameliorating UA-induced insulin resistance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents

    PubMed Central

    Zhang, Xiao-Fei; Sun, Rong-qin; Jia, Yi-fan; Chen, Qing; Tu, Rong-Fu; Li, Ke-ke; Zhang, Xiao-Dong; Du, Run-Lei; Cao, Ri-hui

    2016-01-01

    A series of novel harmine derivatives bearing a benzylindine substituent in position-1 of β-carboline ring were synthesized and evaluated as antitumor agents. The N2-benzylated β-carboline derivatives 3a–g represented the most interesting anticancer activities and compound 3c was found to be the most active agent to diverse cancer cell lines such as gastric carcinoma, melanoma and colorectal cancer. Notably, compound 3c showed low toxicity to normal cells. The treatment significantly induced cell apoptosis. Mechanistically, PI3K/AKT signaling pathway mediated compound 3c-induced apoptosis. Compound 3c inhibited phosphorylation of AKT and promoted the production of reactive oxygen species (ROS). The ROS scavenger, LNAC and GSH, could disturb the effect of compound 3c induced apoptosis and PI3K activity inhibitor LY294002 synergistically enhanced compound 3c efficacy. Moreover, the results from nude mice xenograft model showed that compound 3c treatment effectively inhibited tumor growth and decreased tumor weight. Collectively, our results demonstrated that compound 3c exerts apoptotic effect in cancer cells via suppression of phosphorylated AKT and evocation of ROS generation, which suggested that compound 3c might be served as a promising therapeutic agent for cancer treatment. PMID:27625151

  18. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer.

    PubMed

    De Marco, Carmela; Laudanna, Carmelo; Rinaldo, Nicola; Oliveira, Duarte Mendes; Ravo, Maria; Weisz, Alessandro; Ceccarelli, Michele; Caira, Elvira; Rizzuto, Antonia; Zoppoli, Pietro; Malanga, Donatella; Viglietto, Giuseppe

    2017-01-01

    Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant Bio

  19. Paclitaxel suppresses proliferation and induces apoptosis through regulation of ROS and the AKT/MAPK signaling pathway in canine mammary gland tumor cells.

    PubMed

    Ren, Xiaoli; Zhao, Bingbing; Chang, Hongjian; Xiao, Min; Wu, Yuhong; Liu, Yun

    2018-06-01

    Paclitaxel is a diterpenoid compound, derived from the pacific yew (Taxus brevifolia) berry, which exhibits antineoplastic effects against various types of cancer. However, the antitumor effects and the molecular mechanisms of paclitaxel on canine CHMm cells remain to be elucidated. The aim of the present study was to investigate the antitumor effects of paclitaxel on CHMm cells and identify relevant signal transduction pathways modulated by paclitaxel using multiple methods including MTT assay, flow cytometry, acridine orange/ethidium bromide staining, transmission electron microscopy, determination of cellular reactive oxygen species (ROS), superoxide dismutase (SOD) and malondiadehyde (MDA) and western blotting, the data indicated that paclitaxel decreased cell viability, induced G2/M‑phase cell cycle arrest, suppressed the expression of cyclin B1 and induced apoptosis in a dose‑dependent manner. In addition, paclitaxel upregulated the expression of Bax and cytochrome c, but reduced expression of apoptosis regulator Bcl‑2, resulting in activation of caspase‑3, chromatin condensation, karyopyknosis, intracellular vacuolization, increased production of ROS and MDA, and decreased activity of SOD. However, these effects were inhibited when CHMm cells were treated with N‑acetyl‑L‑cysteine. Furthermore, treatment with paclitaxel inhibited the level of of phospho (p)‑RAC‑α serine/threonine‑protein kinase (AKT) and p‑ribosomal protein S6 kinase proteins, and promoted phosphorylation of P38 mitogen‑activated protein kinase (MAPK) and p‑90 kDa ribosomal protein S6 kinase 1 proteins in CHMm cells. It was observed that paclitaxel in combination with pharmacological inhibitors of the P38 and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K) signaling pathways (SB203580 and LY294002, respectively) exerted synergistic inhibitory effects on the proliferation of the CHMm cells. The results of the present study demonstrated that paclitaxel

  20. MK-2206, an AKT Inhibitor, Promotes Caspase-Independent Cell Death and Inhibits Leiomyoma Growth

    PubMed Central

    Sefton, Elizabeth C.; Qiang, Wenan; Serna, Vanida; Kurita, Takeshi; Wei, Jian-Jun; Chakravarti, Debabrata

    2013-01-01

    Uterine leiomyomas (ULs), benign tumors of the myometrium, are the number one indication for hysterectomies in the United States due to a lack of an effective alternative therapy. ULs show activation of the pro-survival AKT pathway compared with normal myometrium; however, substantial data directly linking AKT to UL cell survival are lacking. We hypothesized that AKT promotes UL cell survival and that it is a viable target for inhibiting UL growth. We used the investigational AKT inhibitor MK-2206, currently in phase II trials, on cultured primary human UL and myometrial cells, immortalized leiomyoma cells, and in leiomyoma grafts grown under the kidney capsule in mice. MK-2206 inhibited AKT and PRAS40 phosphorylation but did not regulate serum- and glucocorticoid-induced kinase and ERK1/2, demonstrating its specificity for AKT. MK-2206 reduced UL cell viability and decreased UL tumor volumes. UL cells exhibited disruption of mitochondrial structures and underwent cell death that was independent of caspases. Additionally, mammalian target of rapamycin and p70S6K phosphorylation were reduced, indicating that mammalian target of rapamycin complex 1 signaling was compromised by AKT inhibition in UL cells. MK-2206 also induced autophagy in UL cells. Pretreatment of primary UL cells with 3-methyladenine enhanced MK-2206-mediated UL cell death, whereas knockdown of ATG5 and/or ATG7 did not significantly influence UL cell viability in the presence of MK-2206. Our data provide molecular evidence for the involvement of AKT in UL cell survival and suggest that AKT inhibition by MK-2206 may be a viable option to consider for the treatment of ULs. PMID:24002033

  1. 20(S)-Protopanaxadiol enhances angiogenesis via HIF-1α-mediated VEGF secretion by activating p70S6 kinase and benefits wound healing in genetically diabetic mice

    PubMed Central

    Zhang, Er-Yun; Gao, Bo; Shi, Hai-Lian; Huang, Ling-Fang; Yang, Li; Wu, Xiao-Jun; Wang, Zheng-Tao

    2017-01-01

    Impaired angiogenesis is one of the crucial factors that impede the wound healing process in diabetic foot ulcers (DFUs). In this study, we found that 20(S)-protopanaxadiol (PPD), an aglycone of ginsenosides in Panax notoginseng, stimulated angiogenesis and benefited wound healing in genetically diabetic mice. In HUVECs, PPD promoted cell proliferation, tube formation and VEGF secretion accompanied by increased nuclear translocalization of HIF-1α, which led to elevated VEGF mRNA expression. PPD activated both PI3K/Akt/mTOR and Raf/MEK/ERK signaling pathways in HUVECs, which were abrogated by LY294002 and PD98059. Furthermore, these two pathways had crosstalk through p70S6K, as LY294002, PD98059 and p70S6K siRNA abolished the angiogenic responses of PPD. In the excisional wound splinting model established in db/db diabetic mice, PPD (0.6, 6 and 60 mg ml−1) accelerated wound closure, which was reflected by a significantly reduced wound area and epithelial gaps, as well as elevated VEGF expression and capillary formation. In addition, PPD activated PI3K/Akt/ERK signaling pathways, as well as enhanced p70S6K activity and HIF-1α synthesis in the wounds. Overall, our results revealed that PPD stimulated angiogenesis via HIF-1α-mediated VEGF expression by activating p70S6K through PI3K/Akt/mTOR and Raf/MEK/ERK signaling cascades, which suggests that the compound has potential use in wound healing therapy in patients suffering from DFUs. PMID:29075038

  2. Pan-Pim Kinase Inhibitor AZD1208 Suppresses Tumor Growth and Synergistically Interacts with Akt Inhibition in Gastric Cancer Cells.

    PubMed

    Lee, Miso; Lee, Kyung-Hun; Min, Ahrum; Kim, Jeongeun; Kim, Seongyeong; Jang, Hyemin; Lim, Jee Min; Kim, So Hyeon; Ha, Dong-Hyeon; Jeong, Won Jae; Suh, Koung Jin; Yang, Yae-Won; Kim, Tae Yong; Oh, Do-Youn; Bang, Yung-Jue; Im, Seock-Ah

    2018-06-06

    Pim kinases are highly conserved serine/threonine kinases, and different expression patterns of each isoform (Pim-1, Pim-2, and Pim-3) have been observed in various types of human cancers, including gastric cancer. AZD1208 is a potent and selective inhibitor that affects all three isoforms of Pim. We investigated the effects of AZD1208 as a single agent and in combination with an Akt inhibitor in gastric cancer cells. The antitumor activity of AZD1208 with/without an Akt inhibitor was evaluated in a large panel of gastric cancer cell lines through growth inhibition assays. The underlying mechanism was also examined by western blotting, immunofluorescence assay, and cell cycle analysis. AZD1208 treatment decreased gastric cancer cell proliferation rates and induced autophagy only in long-term culture systems. Light chain 3B (LC3B), a marker of autophagy, was increased in sensitive cells in a dose-dependent manner with AZD1208 treatment, which suggested that the growth inhibition effect of AZD1208 was achieved through autophagy, not apoptosis. Moreover, we found that cells damaged by Pim inhibition were repaired by activation of the DNA damage repair pathway, which promoted cell survival and led the cells to become resistant to AZD1208. We also confirmed that the combination of an Akt inhibitor with AZD1208 produced a highly synergistic effect in gastric cancer cell lines. Treatment with AZD1208 alone induced considerable cell death through autophagy in gastric cancer cells. Moreover, the combination of AZD1208 with an Akt inhibitor showed synergistic antitumor effects through regulation of the DNA damage repair pathway.

  3. Phase I Study of LY2606368, a Checkpoint Kinase 1 Inhibitor, in Patients With Advanced Cancer

    PubMed Central

    Infante, Jeffrey; Janku, Filip; Jones, Suzanne; Nguyen, Ly M.; Burris, Howard; Naing, Aung; Bauer, Todd M.; Piha-Paul, Sarina; Johnson, Faye M.; Kurzrock, Razelle; Golden, Lisa; Hynes, Scott; Lin, Ji; Lin, Aimee Bence; Bendell, Johanna

    2016-01-01

    Purpose The primary objective was to determine safety, toxicity, and a recommended phase II dose regimen of LY2606368, an inhibitor of checkpoint kinase 1, as monotherapy. Patients and Methods This phase I, nonrandomized, open-label, dose-escalation trial used a 3 + 3 dose-escalation scheme and included patients with advanced solid tumors. Intravenous LY2606368 was dose escalated from 10 to 50 mg/m2 on schedule 1 (days 1 to 3 every 14 days) or from 40 to 130 mg/m2 on schedule 2 (day 1 every 14 days). Safety measures and pharmacokinetics were assessed, and pharmacodynamics were measured in blood, hair follicles, and circulating tumor cells. Results Forty-five patients were treated; seven experienced dose-limiting toxicities (all hematologic). The maximum-tolerated doses (MTDs) were 40 mg/m2 (schedule 1) and 105 mg/m2 (schedule 2). The most common related grade 3 or 4 treatment-emergent adverse events were neutropenia, leukopenia, anemia, thrombocytopenia, and fatigue. Grade 4 neutropenia occurred in 73.3% of patients and was transient (typically < 5 days). Febrile neutropenia incidence was low (7%). The LY2606368 exposure over the first 72 hours (area under the curve from 0 to 72 hours) at the MTD for each schedule coincided with the exposure in mouse xenografts that resulted in maximal tumor responses. Minor intra- and intercycle accumulation of LY2606368 was observed at the MTDs for both schedules. Two patients (4.4%) had a partial response; one had squamous cell carcinoma (SCC) of the anus and one had SCC of the head and neck. Fifteen patients (33.3%) had a best overall response of stable disease (range, 1.2 to 6.7 months), six of whom had SCC. Conclusion An LY2606368 dose of 105 mg/m2 once every 14 days is being evaluated as the recommended phase II dose in dose-expansion cohorts for patients with SCC. PMID:27044938

  4. mTOR Complexes Repress Hypertrophic Agonist-Stimulated Expression of Connective Tissue Growth Factor in Adult Cardiac Muscle Cells.

    PubMed

    Sundararaj, Kamala; Pleasant, Dorea L; Moschella, Phillip C; Panneerselvam, Kavin; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2016-02-01

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that promotes fibrosis in various organs. In the heart, both cardiomyocytes (CM) and cardiac fibroblasts have been reported as a source of CTGF expression, aiding cardiac fibrosis. Although the mammalian target of rapamycin (mTOR) forms 2 distinct complexes, mTORC1 and mTORC2, and plays a central role in integrating biochemical signals for protein synthesis and cellular homeostasis, we explored its role in CTGF expression in adult feline CM. CM were stimulated with 10 μM phenylephrine (PE), 200 nM angiotensin (Ang), or 100 nM insulin for 24 hours. PE and Ang, but not insulin, caused an increase in CTGF mRNA expression with the highest expression observed with PE. Inhibition of mTOR with torin1 but not rapamycin significantly enhanced PE-stimulated CTGF expression. Furthermore, silencing of raptor and rictor using shRNA adenoviral vectors to suppress mTORC1 and mTORC2, respectively, or blocking phosphatidylinositol 3-kinase (PI3K) signaling with LY294002 (LY) or Akt signaling by dominant-negative Akt expression caused a substantial increase in PE-stimulated CTGF expression as measured by both mRNA and secreted protein levels. However, studies with dominant-negative delta isoform of protein kinase C demonstrate that delta isoform of protein kinase C is required for both agonist-induced CTGF expression and mTORC2/Akt-mediated CTGF suppression. Finally, PE-stimulated CTGF expression was accompanied with a corresponding increase in Smad3 phosphorylation and pretreatment of cells with SIS3, a Smad3 specific inhibitor, partially blocked the PE-stimulated CTGF expression. Therefore, a PI3K/mTOR/Akt axis plays a suppressive role on agonist-stimulated CTGF expression where the loss of this mechanism could be a contributing factor for the onset of cardiac fibrosis in the hypertrophying myocardium.

  5. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies

    PubMed Central

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated. PMID:25523586

  6. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Wang, Wei; Liu, Dong; Zhang, Haoqiang; Gao, Peng; Geng, Lei; Yuan, Yulin; Lu, Jianxi; Wang, Zhen

    2015-03-01

    The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization.

  7. Modulation of Platelet Activation and Thrombus Formation Using a Pan-PI3K Inhibitor S14161

    PubMed Central

    Ren, Lijie; Liu, Xiaohui; Wang, Qi; He, Sudan; Wu, Qingyu; Hu, Hu; Mao, Xinliang; Zhu, Li

    2014-01-01

    The phosphatidylinositol 3–kinase (PI3K) signaling pathway is critical in modulating platelet functions. In the present study, we evaluated the effect of S14161, a recently identified pan-class I PI3K inhibitor, on platelet activation and thrombus formation. Results showed that S14161 inhibited human platelet aggregation induced by collagen, thrombin, U46619, and ADP in a dose-dependent manner. Flow cytometric studies showed that S14161 inhibited convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that S14161 decreased platelet adhesion on collagen-coated surface by about 80%. Western blot showed that S14161 inhibited phosphorylation of Akt at both Ser473 and Thr308 sites, and GSK3β at Ser9 in response to collagen, thrombin, or U46619. Comparable studies showed that S14161 has a higher potential bioavailability than LY294002, a prototypical inhibitor of pan-class I PI3K. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2 mg/kg) to male C57BL/6 mice significantly extended the first occlusion time (5.05±0.99 min, n = 9) compared to the vehicle controls (3.72±0.95 min, n = 8) (P<0.05), but did not prolong the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation without significant bleeding tendency and toxicity, and considering its potential higher bioavailability, it may be developed as a novel therapeutic agent for the prevention of thrombotic disorders. PMID:25115838

  8. Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells

    PubMed Central

    Prabhu, Kirti S.; Siveen, Kodappully S.; Kuttikrishnan, Shilpa; Iskandarani, Ahmad; Tsakou, Magdalini; Achkar, Iman W.; Therachiyil, Lubna; Krishnankutty, Roopesh; Parray, Aijaz; Kulinski, Michal; Merhi, Maysaloun; Dermime, Said; Mohammad, Ramzi M.

    2017-01-01

    The X-linked inhibitor of apoptosis (XIAP) is a viable molecular target for anticancer drugs that overcome apoptosis-resistance of malignant cells. XIAP is an inhibitor of apoptosis, mediating through its association with BIR3 domain of caspase 9. Embelin, a quinone derivative isolated from the Embelia ribes plant, has been shown to exhibit chemopreventive, anti-inflammatory, and apoptotic activities via inhibiting XIAP activity. In this study, we found that embelin causes a dose-dependent suppression of proliferation in leukemic cell lines K562 and U937. Embelin mediated inhibition of proliferation correlates with induction of apoptosis. Furthermore, embelin treatment causes loss of mitochondrial membrane potential and release of cytochrome c, resulting in subsequent activation of caspase-3 followed by polyadenosin-5’-diphosphate-ribose polymerase (PARP) cleavage. In addition, embelin treatment of leukemic cells results in a decrease of constitutive phosphorylations/activation level of AKT and downregulation of XIAP. Gene silencing of XIAP and AKT expression showed a link between XIAP expression and activated AKT in leukemic cells. Interestingly, targeting of XIAP and PI3-kinase/AKT signaling augmented inhibition of proliferation and induction of apoptosis in leukemic cells. Altogether these findings raise the possibility that embelin alone or in combination with inhibitors of PI3-kinase/AKT pathway may have therapeutic usage in leukemia and possibly other malignancies with up-regulated XIAP pathway. PMID:28704451

  9. Insulin-like growth factor 1 rescues R28 retinal neurons from apoptotic death through ERK-mediated BimEL phosphorylation independent of Akt.

    PubMed

    Kong, Dejuan; Gong, Lijie; Arnold, Edith; Shanmugam, Sumathi; Fort, Patrice E; Gardner, Thomas W; Abcouwer, Steven F

    2016-10-01

    Insulin-like growth factor 1 (IGF-1) can provide long-term neurotrophic support by activation of Akt, inhibition of FoxO nuclear localization and suppression of Bim gene transcription in multiple neuronal systems. However, MEK/ERK activation can also promote neuron survival through phosphorylation of BimEL. We explored the contribution of the PI3K/Akt/FoxO and MEK/ERK/BimEL pathways in IGF-1 stimulated survival after serum deprivation (SD) of R28 cells differentiated to model retinal neurons. IGF-1 caused rapid activation of Akt leading to FoxO1/3-T32/T24 phosphorylation, and prevented FoxO1/3 nuclear translocation and Bim mRNA upregulation in response to SD. IGF-1 also caused MAPK/MEK pathway activation as indicated by ERK1/2-T202/Y204 and Bim-S65 phosphorylation. Overexpression of FoxO1 increased Bim mRNA expression and amplified the apoptotic response to SD without shifting the serum response curve. Inhibition of Akt activation with LY294002 or by Rictor knockdown did not block the protective effect of IGF-1, while inhibition of MEK activity with PD98059 prevented Bim phosphorylation and blocked IGF-1 protection. In addition, knockdown of Bim expression was protective during SD, while co-silencing of FoxO1 and Fox03 expression had little effect. Thus, the PI3K/Akt/FoxO pathway was not essential for protection from SD-induced apoptosis by IGF-1 in R28 cells. Instead, IGF-1 protection was dependent on activation of the MEK/ERK pathway leading to BimEL phosphorylation, which is known to prevent Bax/Bak oligomerization and activation of the intrinsic mitochondrial apoptosis pathway. These studies demonstrate the requirement of the MEK/ERK pathway in a model of retinal neuron cell survival and highlight the cell specificity for IGF-1 signaling in this response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Insulin-like Growth Factor 1 Rescues R28 Retinal Neurons from Apoptotic Death through ERK-mediated BimEL Phosphorylation Independent of Akt

    PubMed Central

    Kong, Dejuan; Gong, Lijie; Arnold, Edith; Shanmugam, Sumathi; Fort, Patrice E.; Gardner, Thomas W.; Abcouwer, Steven F.

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) can provide long-term neurotrophic support by activation of Akt, inhibition of FoxO nuclear localization and suppression of Bim gene transcription in multiple neuronal systems. However, MEK/ERK activation can also promote neuron survival through phosphorylation of BimEL. We explored the contribution of the PI3K/Akt/FoxO and MEK/ERK/BimEL pathways in IGF-1 stimulated survival after serum deprivation (SD) of R28 cells differentiated to model retinal neurons. IGF-1 caused rapid activation of Akt leading to FoxO1/3-T32/T24 phosphorylation, and prevented FoxO1/3 nuclear translocation and Bim mRNA upregulation in response to SD. IGF-1 also caused MAPK/MEK pathway activation as indicated by ERK1/2-T202/Y204 and Bim-S65 phosphorylation. Overexpression of FoxO1 increased Bim mRNA expression and amplified the apoptotic response to SD without shifting the serum response curve. Inhibition of Akt activation with LY294002 or by Rictor knockdown did not block the protective effect of IGF-1, while inhibition of MEK activity with PD98059 prevented Bim phosphorylation and blocked IGF-1 protection. In addition, knockdown of Bim expression was protective during SD, while co-silencing of FoxO1 and Fox03 expression had little effect. Thus, the PI3K/Akt/FoxO pathway was not essential for protection from SD-induced apoptosis by IGF-1 in R28 cells. Instead, IGF-1 protection was dependent on activation of the MEK/ERK pathway leading to BimEL phosphorylation, which is known to prevent Bax/Bak oligomerization and activation of the intrinsic mitochondrial apoptosis pathway. These studies demonstrate the requirement of the MEK/ERK pathway in a model of retinal neuron cell survival and highlight the cell specificity for IGF-1 signaling in this response. PMID:27511131

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, preventedmore » this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.« less

  12. Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate.

    PubMed

    Nakano, Ayako; Miki, Hirokazu; Nakamura, Shingen; Harada, Takeshi; Oda, Asuka; Amou, Hiroe; Fujii, Shiro; Kagawa, Kumiko; Takeuchi, Kyoko; Ozaki, Shuji; Matsumoto, Toshio; Abe, Masahiro

    2012-02-01

    Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been well studied in hematopoietic malignant cells including multiple myeloma (MM) cells.We demonstrate herein that HKII is constitutively over-expressed in MM cells. 3-bromopyruvate (3BrPA), an inhibitor of HKII, promptly and substantially suppresses ATP production and induces cell death in MM cells. Interestingly, cocultures with osteoclasts (OCs) but not bone marrow stromal cells (BMSCs) enhanced the phosphorylation of Akt along with an increase in HKII levels and lactate production in MM cells. The enhancement of HKII levels and lactate production in MM cells by OCs were mostly abrogated by the PI3K inhibitor LY294002, suggesting activation of glycolysis in MM cells by OCs via the PI3K-Akt-HKII pathway. Although BMSCs and OCs stimulate MM cell growth and survival, 3BrPA induces cell death in MM cells even in cocultures with OCs as well as BMSCs. Furthermore, 3BrPA was able to diminish ATP-dependent ABC transporter activity to restore drug retention in MM cells in the presence of OCs. These results may underpin possible clinical application of 3BrPA in patients with MM.

  13. Inhibition of c-Met as a Therapeutic Strategy for Esophageal Adenocarcinoma

    PubMed Central

    Watson, Gregory A; Zhang, Xinglu; Stang, Michael T; Levy, Ryan M; Queiroz de Oliveira, Pierre E; Gooding, William E; Christensen, James G; Hughes, Steven J

    2006-01-01

    Abstract The hepatocyte growth factor (HGF) receptor c-Met is a tyrosine kinase receptor with established oncogenic properties. We have previously shown that c-Met is usually overexpressed in esophageal adenocarcinoma (EA), yet the implications of c-Met inhibition in EA remain unknown. Three c-Met-overexpressing EA cell lines (Seg-1, Bic-1, and Flo-1) were used to examine the effects of a c-Met-specific small molecule inhibitor (PHA665752) on cell viability, apoptosis, motility, invasion, and downstream signaling pathways. PHA665752 demonstrated dose-dependent inhibition of constitutive and/or HGF-induced phosphorylation of c-Met, which correlated with reduced cell viability and inhibition of extracellular regulated kinase 1/2 phosphorylation in all three EA cell lines. In contrast, PHA665752 induced apoptosis and reduced motility and invasion in only one EA cell line, Flo-1. Interestingly, Flo-1 was the only cell line in which phosphatidylinositol 3-kinase (PI3K)/Akt was induced following HGF stimulation. The PI3K inhibitor LY294002 produced effects equivalent to those of PHA665752 in these cells. We conclude that inhibition of c-Met may be a useful therapeutic strategy for EA. Factors other than receptor overexpression, such as c-Met-dependent PI3K/Akt signaling, may be predictive of an individual tumor's response to c-Met inhibition. PMID:17132227

  14. Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling

    PubMed Central

    Thomas, M G; Saldanha, M; Mistry, R J; Dexter, D T; Ramsden, D B; Parsons, R B

    2013-01-01

    Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways. PMID:23764850

  15. Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling.

    PubMed

    Thomas, M G; Saldanha, M; Mistry, R J; Dexter, D T; Ramsden, D B; Parsons, R B

    2013-06-13

    Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways.

  16. Estradiol up-regulates L-type Ca2+ channels via membrane-bound estrogen receptor/phosphoinositide-3-kinase/Akt/cAMP response element-binding protein signaling pathway.

    PubMed

    Yang, Xiaoyan; Mao, Xiaofang; Xu, Gao; Xing, Shasha; Chattopadhyay, Ansuman; Jin, Si; Salama, Guy

    2018-05-01

    In long QT syndrome type 2, women are more prone than men to the lethal arrhythmia torsades de pointes. We previously reported that 17β-estradiol (E2) up-regulates L-type Ca 2+ channels and current (I Ca,L ) (∼30%) in rabbit ventricular myocytes by a classic genomic mechanism mediated by estrogen receptor-α (ERα). In long QT syndrome type 2 (I Kr blockade or bradycardia), the higher Ca 2+ influx via I Ca,L causes Ca 2+ overload, spontaneous sarcoplasmic reticulum Ca 2+ release, and reactivation of I Ca,L that triggers early afterdepolarizations and torsades de pointes. The purpose of this study was to investigate the molecular mechanisms whereby E2 up-regulates I Ca,L , which are poorly understood. H9C2 and rat myocytes were incubated with E2 ± ER antagonist, or inhibitors of downstream transcription factors, for 24 hours, followed by western blots of Cav1.2α1C and voltage-clamp measurements of I Ca,L . Incubation of H9C2 cells with E2 (10-100 nM) increased I Ca,L density and Cav1.2α1C expression, which were suppressed by the ER antagonist ICI182,780 (1 μM). Enhanced I Ca,L and Cav1.2α1C expression by E2 was suppressed by inhibitors of phosphoinositide-3-kinase (Pi3K) (30 μM LY294002; P <.05) and Akt (5 μM MK2206) but not of mitogen-activated protein kinase (5 μM U0126) or protein kinase A (1 μM KT5720). E2 incubation increased p-CREB via the Pi3K/Akt pathway, reached a peak in 20 minutes (3-fold), and leveled off to 1.5-fold 24 hours later. Furthermore, a CREB decoy oligonucleotide inhibited E2-induced Cav1.2α1C expression, whereas membrane-impermeable E2 (E2-bovine serum albumin) was equally effective at Cav1.2α1C up-regulation as E2. Estradiol up-regulates Cav1.2α1C and I Ca,L via plasma membrane ER and by activating Pi3K, Akt, and CREB signaling. The promoter regions of the CACNA1C gene (human-rabbit-rat) contain adjacent/overlapping binding sites for p-CREB and ERα, which suggests a synergistic regulation by these pathways. Copyright © 2018

  17. Discovery of LY2457546: a multi-targeted anti-angiogenic kinase inhibitor with a novel spectrum of activity and exquisite potency in the acute myelogenous leukemia-Flt-3-internal tandem duplication mutant human tumor xenograft model.

    PubMed

    Burkholder, Timothy P; Clayton, Joshua R; Rempala, Mark E; Henry, James R; Knobeloch, John M; Mendel, David; McLean, Johnathan A; Hao, Yan; Barda, David A; Considine, Eileen L; Uhlik, Mark T; Chen, Yuefeng; Ma, Liandong; Bloem, Laura J; Akunda, Jacqueline K; McCann, Denis J; Sanchez-Felix, Manuel; Clawson, David K; Lahn, Michael M; Starling, James J

    2012-06-01

    LY2457546 is a potent and orally bioavailable inhibitor of multiple receptor tyrosine kinases involved in angiogenic and tumorigenic signalling. In biochemical and cellular assays, LY2457546 demonstrates potent activity against targets that include VEGFR2 (KDR), PDGFRβ, FLT-3, Tie-2 and members of the Eph family of receptors. With activities against both Tie2 and Eph receptors, LY2457546 possesses an activity profile that distinguishes it from multikinase inhibitors. When compared head to head with sunitinib, LY2457546 was more potent for inhibition of endothelial tube formation in an in vitro angiogenesis co-culture model with an intermittent treatment design. In vivo, LY2457546 inhibited VEGF-driven autophosphorylation of lung KDR in the mouse and rat in a dose and concentration dependent manner. LY2457546 was well tolerated and exhibited efficacy in a 13762 syngeneic rat mammary tumor model in both once and twice daily continuous dosing schedules and in mouse human tumor xenograft models of lung, colon, and prostate origin. Additionally, LY2457546 caused complete regression of well-established tumors in an acute myelogenous leukemia (AML) FLT3-ITD mutant xenograft tumor model. The observed efficacy that was displayed by LY2457546 in the AML FLT3-ITD mutant tumor model was superior to sunitinib when both were evaluated using equivalent doses normalized to in vivo inhibition of pKDR in mouse lung. LY2457546 was well tolerated in non-clinical toxicology studies conducted in rats and dogs. The majority of the toxicities observed were similar to those observed with other multi-targeted anti-angiogenic kinase inhibitors (MAKs) and included bone marrow hypocellularity, hair and skin depigmentation, cartilage dysplasia and lymphoid organ degeneration and necrosis. Thus, the unique spectrum of target activity, potent in vivo anti-tumor efficacy in a variety of rodent and human solid tumor models, exquisite potency against a clinically relevant model of AML, and non

  18. Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients.

    PubMed

    Zhao, Yue; Zhang, Chunmei; Huang, Ying; Yu, Yang; Li, Rong; Li, Min; Liu, Nana; Liu, Ping; Qiao, Jie

    2015-01-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder accompanied by chronic low-grade inflammation, but the molecular mechanism remains unclear. We investigated the action of WNT5a in the development of chronic inflammation in PCOS and the related molecular signaling pathways. This was a prospective study conducted at the Division of Reproduction Center, Peking University Third Hospital. A total of 35 PCOS patients and 87 control women who reported to the clinic for the in vitro procedure and the cause of marital infertility was male azoospermia were included. Mural granulosa cells (GCs) of 35 PCOS patients and 37 controls were collected during oocyte retrieval and gene expression was analyzed. The human KGN cells and mural GCs from 50 control subjects (six to eight samples were pooled together for each experiment) were cultured in vitro. The regulation of inflammation and oxidative stress was confirmed by quantitative PCR, flow-cytometric assay, and dual-luciferase reporter assay after inflammatory stimuli or WNT5a overexpression. Relevant signaling pathways were identified using specific inhibitors. Our data demonstrate significantly elevated WNT5a expression in the mural GCs of PCOS patients compared with the controls. Lipopolysaccharide stimulation increased WNT5a expression in KGN cells and mural GCs, and BAY-117082 and pyrrolidinedithiocarbamic acid [nuclear factor-κB (NF-κB) inhibitor] treatments suppressed WNT5a mRNA below the control level. WNT5a overexpression also enhanced the expression of inflammation-related genes and increased intracellular reactive oxygen species, whereas both BAY-117082 and LY-294002 (phosphatidylinositol 3-kinase inhibitor) significantly inhibited WNT5a-induced inflammation and oxidative stress. WNT5a acts as a proinflammatory factor in human ovarian GCs. The up-regulated expression of WNT5a in PCOS increases inflammation and oxidative stress predominantly via the phosphatidylinositol 3-kinase/AKT

  19. Rg1 protects rat bone marrow stem cells against hydrogen peroxide-induced cell apoptosis through the PI3K/Akt pathway.

    PubMed

    Hu, Junzheng; Gu, Yanqing; Fan, Weimin

    2016-07-01

    The aim of the present study was to investigate the protective mechanism of ginsenoside Rg1 against the apoptosis of rat bone marrow stem cells (rBMSCs) under oxidative stress, and to determine the association with the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. H2O2 was used to induce oxidative injury in rBMSCs. The cells in the H2O2 model group were treated with 800 µM H2O2 for 6 h to induce oxidative injury. The cells in the ginsenoside Rg1 group were treated with 10 µM ginsenoside Rg1 for 24 h, followed by H2O2 treatment. The cells in the Akt pathway blockage group were treated with 25 µM LY294002 for 1 h, followed by ginsenoside Rg1 + H2O2 treatment. The cell counting kit-8 assay was performed to determine cell viability. Cell apoptosis was detected by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The results of flow cytometry and TUNEL staining indicated that the apoptotic rate of the H2O2 model group was significantly higher compared with that of the control group. Following the ginsenoside Rg1 pretreatment, the apoptotic rate was significantly reduced. In the Akt pathway blockage group, no significant alterations in the levels of cell apoptosis were observed compared with the H2O2 model group. Western blot analysis demonstrated that the ginsenoside Rg1 group had a significant downregulation of Bax and cleaved caspase‑3 and an upregulation of Bcl‑2 and phosphorylated Akt protein expression levels compared with the H2O2 model group and the Akt pathway blockage group. In conclusion, ginsenoside Rg1 had a protective effect against the H2O2‑induced oxidative stress of rBMSCs, and the specific mechanism may be associated with the activation of the PI3K/Akt pathway by ginsenoside Rg1.

  20. Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    PubMed

    Gadgeel, Shirish M; Wozniak, Antoinette

    2013-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) are frequently observed in non-small-cell lung cancer (NSCLC), occurring in about 40% to 60% of never-smokers and in about 17% of patients with adenocarcinomas. EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, have transformed therapy for patients with EGFR-mutant NSCLC and have proved superior to chemotherapy as first-line treatment for this patient group. Despite these benefits, there are currently 2 key challenges associated with EGFR inhibitor therapy for patients with NSCLC. First, only 85% to 90% of patients with the EGFR mutation derive clinical benefit from EGFR TKIs, with the remainder demonstrating innate resistance to therapy. Second, acquired resistance to EGFR TKIs inevitably occurs in patients who initially respond to therapy, with a median duration of response of about 10 months. Mutant EGFR activates various subcellular signaling cascades, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which demonstrates maintained activity in a variety of TKI-resistant cancers. Given the fundamental role of the PI3K/Akt/mTOR pathway in tumor oncogenesis, proliferation, and survival, PI3K pathway inhibitors have emerged as a possible solution to the problem of EGFR TKI resistance. However resistance to EGFR TKIs is associated with considerable heterogeneity and complexity. Preclinical experiments investigating these phenomena suggest that in some patients, PI3K inhibitors will have to be paired with other targeted agents if they are to be effective. This review discusses the preclinical data supporting PI3K/Akt/mTOR pathway inhibitor combinations in EGFR TKI-resistant NSCLC from the perspective of the various agents currently being investigated in clinical trials. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Albiflorin ameliorates obesity by inducing thermogenic genes via AMPK and PI3K/AKT in vivo and in vitro.

    PubMed

    Jeong, Mi-Young; Park, Jinbong; Youn, Dong-Hyun; Jung, Yunu; Kang, JongWook; Lim, Seona; Kang, Min-Woo; Kim, Hye-Lin; So, Hong-Seob; Park, Raekil; Hong, Seung-Heon; Um, Jae-Young

    2017-08-01

    Brown adipose tissue (BAT) activation has been identified as a possible target to treat obesity and to protect against metabolic diseases by increasing energy consumption. We explored whether albiflorin (AF), a natural compound, could contribute to lowering the high risk of obesity with BAT and primary brown preadipocytes in vivo and in vitro. Human adipose tissue-derived mesenchymal stem cells (hAMSCs) were cultured with adipogenic differentiation media with or without AF. Male C57BL/6J mice (n=5 per group) were fed a high-fat diet (HFD) for six weeks with or without AF. Brown preadipocytes from the interscapular BAT of mice were cultured with or without AF. In white adipogenic differentiation of hAMSCs, AF treatment significantly reduced the formation of lipid droplets and the expression of adipogenesis-related genes. In HFD-induced obese C57BL/6J mice, AF treatment significantly reduced body weight gain as well as the weights of the white adipose tissue, liver and spleen. Furthermore, AF induced the expression of genes involved in thermogenic function in BAT. In primary brown adipocytes, AF effectively stimulated the expressions of thermogenic genes and markedly up-regulated the AMP-activated protein kinase (AMPK) signaling pathway. Pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 nullified the induction of the thermogenic genes by AF in primary brown adipocytes. Moreover, AF activated beige cell marker genes induced by the pharmacological activation of peroxisome proliferator-activated receptor γ in hAMSCs. This study shows that AF prevents the development of obesity in hAMSCs and mice fed an HFD and that it is also capable of stimulating the differentiation of brown adipocytes through the modulation of thermogenic genes by AMPK and PI3K/AKT. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer

    PubMed Central

    Tao, Jessica J.; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S.; Carey, Lisa A.; Perou, Charles M.; Baselga, José; Scaltriti, Maurizio

    2014-01-01

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidyl-inositol 3-kinase (PI3K)–Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting. PMID:24667376

  3. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer.

    PubMed

    Tao, Jessica J; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S; Carey, Lisa A; Perou, Charles M; Baselga, José; Scaltriti, Maurizio

    2014-03-25

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting.

  4. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dong-mei; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province; Lu, Jun, E-mail: lu-jun75@163.com

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitivemore » deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.« less

  5. Modulatory effects of bombyxin on ecdysteroidogenesis in Bombyx mori prothoracic glands.

    PubMed

    Gu, Shi-Hong; Chen, Chien-Hung; Hsieh, Yun-Chin; Lin, Pei-Ling; Young, Shun-Chieh

    2015-01-01

    In the present study, we investigated the modulatory effects of ecdysteroidogenesis of prothoracic glands (PGs) by bombyxin, an endogenous insulin-like peptide in the silkworm, Bombyx mori. The results showed that bombyxin stimulated ecdysteroidogenesis during a long-term incubation period and in a dose-dependent manner. Moreover, the injection of bombyxin into day 4-last instar larvae increased ecdysteroidogenesis 24h after the injection, indicating its possible in vivo function. Phosphorylation of the insulin receptor and Akt, and the target of rapamycin (TOR) signaling were stimulated by bombyxin, and stimulation of Akt phosphorylation and TOR signaling appeared to be dependent on phosphatidylinositol 3-kinase (PI3K). Bombyxin inhibited the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), and the inhibition appeared to be PI3K-independent. Bombyxin-stimulated ecdysteroidogenesis was blocked by either an inhibitor of PI3K (LY294002) or a chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, AICAR), indicating involvement of the PI3K/Akt and AMPK signaling pathway. Bombyxin did not stimulate extracellular signal-regulated kinase (ERK) signaling of PGs. Bombyxin, but not prothoracicotropic hormone (PTTH) stimulated cell viability of PGs. In addition, bombyxin treatment also affected mRNA expression levels of insulin receptor, Akt, AMPKα, -β, and -γ in time-dependent manners. These results suggest that bombyxin modulates ecdysteroidogenesis in B. mori PGs during development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. CCDC106 promotes non-small cell lung cancer cell proliferation.

    PubMed

    Zhang, Xiupeng; Zheng, Qin; Wang, Chen; Zhou, Haijing; Jiang, Guiyang; Miao, Yuan; Zhang, Yong; Liu, Yang; Li, Qingchang; Qiu, Xueshan; Wang, Enhua

    2017-04-18

    Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P < 0.001), and poor overall survival (P < 0.001) in 183 non-small cell lung cancer cases. A549 and H1299 cells were selected as representative of CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.

  7. CXCR6 promotes tumor cell proliferation and metastasis in osteosarcoma through the Akt pathway.

    PubMed

    Ma, Yunsheng; Xu, Xin; Luo, Mei

    2017-01-01

    Chemokine (C-X-C motif) receptor 6 (CXCR6) is up-regulated in many malignancies, indicating that CXCR6 plays an important role in tumor progression. However, the expression and function of CXCR6 in osteosarcoma (OS) remains unclear. This study aimed to explore the expression levels and function of CXCR6 in OS tissues and osteosarcoma cell lines MG-63, HOS and U2OS. The protein expression levels of CXCR6 in OS patient tissues and three osteosarcoma cell lines MG-63, HOS and U2OS were assessed. CXCR6-overexpression MG-63 cell lines were established and then the proliferation, invasion and the epithelial-mesenchymal transition (EMT) in those cells were assessed. CXCR6 mRNA levels in OS tissues were significantly higher than those in normal bone tissues. Consistently, both of the mRNA and protein levels of CXCR6 in OS cell lines MG-63, HOS and U2OS were higher than those in normal bone cells hFOB1.19. CXCR6 overexpression not only promoted cell proliferation, invasion and EMT, but also enhanced the phosphorylation of Akt in MG-63 cells. After inhibition of Akt-phosphorylation by Akt inhibitor, LY2940023, CXCR6-induced cell proliferation and invasion were dramatically attenuated. In conclusion, the present study demonstrated that CXCR6 enhances OS cell proliferation and invasion through the Akt pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin, E-mail: Jqin710@vip.sina.com

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-addedmore » active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.« less

  9. BMP9 Inhibits Proliferation and Metastasis of HER2-Positive SK-BR-3 Breast Cancer Cells through ERK1/2 and PI3K/AKT Pathways

    PubMed Central

    Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-01-01

    Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer. PMID:24805814

  10. BMP9 inhibits proliferation and metastasis of HER2-positive SK-BR-3 breast cancer cells through ERK1/2 and PI3K/AKT pathways.

    PubMed

    Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-01-01

    Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer.

  11. Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol 3-kinase and N-glycosylation.

    PubMed

    Samih, N; Hovsepian, S; Aouani, A; Lombardo, D; Fayet, G

    2000-11-01

    It was previously demonstrated that insulin or TSH treatment of FRTL-5 cells resulted in an elevation of glucose transport and in an increase of cell surface expression of the glucose transporter Glut-1. However, the signaling mechanisms leading to the insulin or TSH-induced increase in the cell surface expression of Glut-1 were not investigated. In the present study, we demonstrated that wortmannin and LY294002, two specific inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), interfere both in the signaling pathways of insulin and TSH leading to glucose consumption enhancement and Glut-1 translocation. Two hours after insulin treatment, TSH or cAMP analog (Bu)2cAMP stimulation, glucose transport was increased and most of the intracellular Glut-1 pool was translocated to plasma membranes. Wortmannin or LY294002 blocked the insulin, (Bu)2cAMP, and the TSH-induced translocation of Glut-1. Wortmannin or LY294002 alone did not alter the basal ratio between intracellular and cell surface Glut-1 molecules. These results suggest that in FRTL-5 cells wortmannin and LY294002 inhibited the insulin, (Bu)2cAMP and TSH events leading to Glut-1 translocation from an intracellular compartment to the plasma membrane. Likewise, (Bu)2cAMP effects on glucose transport and Glut-1 translocation to plasma membrane were repressed by PI3-kinase inhibitors but not by the protein kinase A (PKA) inhibitor H89. We suggest that (Bu)2cAMP stimulates Glut-1 translocation to plasma membrane through PI3-kinase-dependent and PKA-independent signaling pathways. To further elucidate mechanisms that regulate the translocation of Glut-1 to cell membrane, we extended this study to the role played by the N-glycosylation in the translocation and in the biological activity of Glut-1 in FRTL-5 cells. For this purpose we used tunicamycin, an inhibitor of the N-glycosylation. Our experiments with tunicamycin clearly showed that both the glycosylated and unglycosylated forms of the transporter reached

  12. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance

    PubMed Central

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Franklin, Richard A.; Montalto, Giuseppe; Cervello, Melchiorre; Libra, Massimo; Candido, Saverio; Malaponte, Grazia; Mazzarino, Maria C.; Fagone, Paolo; Nicoletti, Ferdinando; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Chiarini, Francesca; Evangelisti, Camilla; Cocco, Lucio; Martelli, Alberto M.

    2012-01-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance. PMID:23085539

  13. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance.

    PubMed

    McCubrey, James A; Steelman, Linda S; Chappell, William H; Abrams, Stephen L; Franklin, Richard A; Montalto, Giuseppe; Cervello, Melchiorre; Libra, Massimo; Candido, Saverio; Malaponte, Grazia; Mazzarino, Maria C; Fagone, Paolo; Nicoletti, Ferdinando; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Chiarini, Francesca; Evangelisti, Camilla; Cocco, Lucio; Martelli, Alberto M

    2012-10-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.

  14. Effect of limb ischemic preconditioning on myocardial apoptosis-related proteins in ischemia-reperfusion injury

    PubMed Central

    GAO, JIANZHI; ZHAO, LINJING; WANG, YONGLING; TENG, QINGLEI; LIANG, LIDONG; ZHANG, JINYING

    2013-01-01

    The aim of this study was to investigate the effect of limb ischemic preconditioning (LIPC) on myocardial apoptosis in myocardial ischemia-reperfusion injury (MIRI), as well as the regulation of caspase-3 and the B cell lymphoma 2 (Bcl-2) gene in LIPC. A total of 50 rats were divided randomly into 5 groups (n=10). Four rats in each group were drawn out for detection of apoptosis. The sham, MIRI and LIPC groups underwent surgery without additional treatment. In the LY294002 group, LY294002 preconditioning was administered 15 min before reperfusion. In the LY294002+LIPC group, following LIPC, LY294002 was administered 15 min before reperfusion. The relative expression of myocardial Bcl-2 and caspase-3 mRNA and the apoptotic index for each group were determined by reverse transcription-polymerase chain reaction (RT-PCR) and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), respectively. The ultrastructure of the cardiac muscle tissues was observed by election microscopy. Compared with the sham group, the expression of caspase-3 mRNA in the MIRI group significantly increased (P<0.05) and the expression of Bcl-2 mRNA clearly decreased. Compared with the MIRI group, LIPC reduced the expression of caspase-3 and increased the expression of Bcl-2 mRNA (P<0.05). There were no significant differences between the LY294002+LIPC group and the MIRI group. Compared with the sham group, the apoptotic index of myocardial cells in the MIRI group significantly increased (P<0.05). Compared with the MIRI group, LIPC significantly decreased the apoptotic index of myocardial cells (P<0.05) and LY294002 increased the apoptotic index of myocardial cells. Compared with the LIPC group, LY294002+LIPC significantly increased the apoptotic index of myocardial cells (P<0.05). There were no significant differences between the LY294002+LIPC and MIRI groups. In conclusion, LIPC increased the expression of Bcl-2 and decreased caspase-3 mRNA and

  15. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    PubMed

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. Copyright © 2015. Published by Elsevier B.V.

  16. Akt mediates 17beta-estradiol and/or estrogen receptor-alpha inhibition of LPS-induced tumor necresis factor-alpha expression and myocardial cell apoptosis by suppressing the JNK1/2-NFkappaB pathway.

    PubMed

    Liu, Chung-Jung; Lo, Jeng-Fan; Kuo, Chia-Hua; Chu, Chun-Hsien; Chen, Li-Ming; Tsai, Fuu-Jen; Tsai, Chang-Hai; Tzang, Bor-Show; Kuo, Wei-Wen; Huang, Chih-Yang

    2009-09-01

    Evidence shows that women have lower tumour necrosis factor-alpha (TNF-alpha) levels and lower incidences of heart dysfunction and sepsis-related morbidity and mortality. To identify the cardioprotective effects and precise cellular/molecular mechanisms behind estrogen and estrogen receptors (ERs), we investigated the effects of 17beta-estradiol (E(2)) and estrogen receptor alpha (ERalpha) on LPS-induced apoptosis by analyzing the activation of survival and death signalling pathways in doxycycline (Dox)-inducible Tet-On/ERalpha H9c2 myocardial cells and ERalpha-transfected primary cardiomyocytes overexpressing ERalpha. We found that LPS challenge activated JNK1/2, and then induced IkappaB degradation, NFkappaB activation, TNF-alpha up-regulation and subsequent myocardial apoptotic responses. In addition, treatments involving E(2), membrane-impermeable BSA-E(2) and/or Dox, which induces ERalpha overexpression, significantly inhibited LPS-induced apoptosis by suppressing LPS-up-regulated JNK1/2 activity, IkappaB degradation, NFkappaB activation and pro-apoptotic proteins (e.g. TNF-alpha, active caspases-8, t-Bid, Bax, released cytochrome c, active caspase-9, active caspase-3) in myocardial cells. However, the cardioprotective properties of E(2), BSA-E(2) and ERalpha overexpression to inhibit LPS-induced apoptosis and promote cell survival were attenuated by applying LY294002 (PI3K inhibitor) and PI3K siRNA. These findings suggest that E(2), BSA-E(2) and ERalpha expression exert their cardioprotective effects by inhibiting JNK1/2-mediated LPS-induced TNF-alpha expression and cardiomyocyte apoptosis through activation of Akt.

  17. Developing a Novel Embryo-Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics.

    PubMed

    Wehmas, Leah Christine; Tanguay, Robert L; Punnoose, Alex; Greenwood, Juliet A

    2016-08-01

    Glioblastoma is an aggressive brain cancer requiring improved treatments. Existing methods of drug discovery and development require years before new therapeutics become available to patients. Zebrafish xenograft models hold promise for prioritizing drug development. We have developed an embryo-larval zebrafish xenograft assay in which cancer cells are implanted in a brain microenvironment to discover and prioritize compounds that impact glioblastoma proliferation, migration, and invasion. We illustrate the utility of our assay by evaluating the well-studied, phosphatidylinositide 3-kinase inhibitor LY294002 and zinc oxide nanoparticles (ZnO NPs), which demonstrate selective cancer cytotoxicity in cell culture, but the in vivo effectiveness has not been established. Exposures of 3.125-6.25 μM LY294002 significantly decreased proliferation up to 34% with concentration-dependent trends. Exposure to 6.25 μM LY294002 significantly inhibited migration/invasion by ∼27% within the glioblastoma cell mass (0-80 μm) and by ∼32% in the next distance region (81-160 μm). Unexpectedly, ZnO enhanced glioblastoma proliferation by ∼19% and migration/invasion by ∼35% at the periphery of the cell mass (161+ μm); however, dissolution of these NPs make it difficult to discern whether this was a nano or ionic effect. These results demonstrate that we have a short, relevant, and sensitive zebrafish-based assay to aid glioblastoma therapeutic development.

  18. Obatoclax and LY3009120 Efficiently Overcome Vemurafenib Resistance in Differentiated Thyroid Cancer.

    PubMed

    Wei, Wei-Jun; Sun, Zhen-Kui; Shen, Chen-Tian; Song, Hong-Jun; Zhang, Xin-Yun; Qiu, Zhong-Ling; Luo, Quan-Yong

    2017-01-01

    Although the prognosis of differentiated thyroid cancer (DTC) is relatively good, 30-40% of patients with distant metastases develop resistance to radioactive iodine therapy due to tumor dedifferentiation. For DTC patients harboring BRAF V600E mutation, Vemurafenib, a BRAF kinase inhibitor, has dramatically changed the therapeutic landscape, but side effects and drug resistance often lead to termination of the single agent treatment. In the present study, we showed that either LY3009120 or Obatoclax (GX15-070) efficiently inhibited cell cycle progression and induced massive death of DTC cells. We established that BRAF/CRAF dimerization was an underlying mechanism for Vemurafenib resistance. LY3009120, the newly discovered pan-RAF inhibitor, successfully overcame Vemurafenib resistance and suppressed the growth of DTC cells in vitro and in vivo. We also observed that expression of anti-apoptotic Bcl-2 increased substantially following BRAF inhibitor treatment in Vemurafenib-resistant K1 cells, and both Obatoclax and LY3009120 efficiently induced apoptosis of these resistant cells. Specifically, Obatoclax exerted its anti-cancer activity by inducing loss of mitochondrial membrane potential (ΔΨm), dysfunction of mitochondrial respiration, reduction of cellular glycolysis, autophagy, neutralization of lysosomes, and caspase-related apoptosis. Furthermore, the cancer killing effects of LY3009120 and Obatoclax extended to two more Vemurafenib-resistant DTC cell lines, KTC-1 and BCPAP. Taken together, our results highlighted the potential value of LY3009120 for both Vemurafenib-sensitive and -resistant DTC and provided evidence for the combination therapy using Vemurafenib and Obatoclax for radioiodine-refractory DTC.

  19. Obatoclax and LY3009120 Efficiently Overcome Vemurafenib Resistance in Differentiated Thyroid Cancer

    PubMed Central

    Wei, Wei-Jun; Sun, Zhen-Kui; Shen, Chen-Tian; Song, Hong-Jun; Zhang, Xin-Yun; Qiu, Zhong-Ling; Luo, Quan-Yong

    2017-01-01

    Although the prognosis of differentiated thyroid cancer (DTC) is relatively good, 30-40% of patients with distant metastases develop resistance to radioactive iodine therapy due to tumor dedifferentiation. For DTC patients harboring BRAFV600E mutation, Vemurafenib, a BRAF kinase inhibitor, has dramatically changed the therapeutic landscape, but side effects and drug resistance often lead to termination of the single agent treatment. In the present study, we showed that either LY3009120 or Obatoclax (GX15-070) efficiently inhibited cell cycle progression and induced massive death of DTC cells. We established that BRAF/CRAF dimerization was an underlying mechanism for Vemurafenib resistance. LY3009120, the newly discovered pan-RAF inhibitor, successfully overcame Vemurafenib resistance and suppressed the growth of DTC cells in vitro and in vivo. We also observed that expression of anti-apoptotic Bcl-2 increased substantially following BRAF inhibitor treatment in Vemurafenib-resistant K1 cells, and both Obatoclax and LY3009120 efficiently induced apoptosis of these resistant cells. Specifically, Obatoclax exerted its anti-cancer activity by inducing loss of mitochondrial membrane potential (ΔΨm), dysfunction of mitochondrial respiration, reduction of cellular glycolysis, autophagy, neutralization of lysosomes, and caspase-related apoptosis. Furthermore, the cancer killing effects of LY3009120 and Obatoclax extended to two more Vemurafenib-resistant DTC cell lines, KTC-1 and BCPAP. Taken together, our results highlighted the potential value of LY3009120 for both Vemurafenib-sensitive and -resistant DTC and provided evidence for the combination therapy using Vemurafenib and Obatoclax for radioiodine-refractory DTC. PMID:28382170

  20. Rapid elevation of sodium transport through insulin is mediated by AKT in alveolar cells

    PubMed Central

    Mattes, Charlott; Laube, Mandy; Thome, Ulrich H.

    2014-01-01

    Abstract Alveolar fluid clearance is driven by vectorial Na+ transport and promotes postnatal lung adaptation. The effect of insulin on alveolar epithelial Na+ transport was studied in isolated alveolar cells from 18–19‐day gestational age rat fetuses. Equivalent short‐circuit currents (ISC) were measured in Ussing chambers and different kinase inhibitors were used to determine the pathway of insulin stimulation. In Western Blot measurements the activation of mediators stimulated by insulin was analyzed. The ISC showed a fast dose‐dependent increase by insulin, which could be attributed to an increased ENaC (epithelial Na+ channel) activity in experiments with permeabilized apical or basolateral membrane. 5‐(N‐Ethyl‐N‐isopropyl)amiloride inhibition of ISC was not affected, however, benzamil‐sensitive ISC was increased in insulin‐stimulated monolayers. The application of LY‐294002 and Akti1/2 both completely blocked the stimulating effect of insulin on ISC. PP242 partly blocked the effect of insulin, whereas Rapamycin evoked no inhibition. Western Blot measurements revealed an increased phosphorylation of AKT after insulin stimulation. SGK1 activity was also increased by insulin as shown by Western Blot of pNDRG1. However, in Ussing chamber measurements, GSK650394, an inhibitor of SGK1 did not prevent the increase in ISC induced by insulin. The application of IGF‐1 mimicked the effect of insulin and increased the ENaC activity. In addition, an increased autophosphorylation of the IGF‐1R/IR was observed after insulin stimulation. We conclude that insulin rapidly increases epithelial Na+ transport by enhancing the activity of endogenous ENaC through activation of PI3K/AKT in alveolar cells. PMID:24760523

  1. Phosphoinositide 3-kinase regulates maturation of lysosomes in rat hepatocytes.

    PubMed Central

    Mousavi, Seyed Ali; Brech, Andreas; Berg, Trond; Kjeken, Rune

    2003-01-01

    To obtain information about the role of phosphoinositide 3-kinase (PI3K) in the endocytic pathway in hepatocytes, the uptake and intracellular transport of asialo-orosomucoid (ASOR) was followed in cells treated with wortmannin or LY294002. The two inhibitors, at concentrations known to inhibit the enzyme, did not affect internalization or the number of surface asialoglycoprotein receptors, but they caused a paradoxical increase (approx. 50% above control values) in the degradation of ASOR labelled with [(125)I]tyramine cellobiose ([(125)I]TC). Wortmannin or LY204002 inhibited the autophagic sequestration of lactate dehydrogenase very effectively, and the enhanced degradation of [(125)I]TC-ASOR could be an indirect effect of reduced autophagy, as an amino acid mixture known to inhibit autophagy also caused increased degradation of [(125)I]TC-ASOR, and its effect was not additive to that of wortmannin or LY294002. Wortmannin or LY294002 had pronounced effects on the late parts of the endocytic pathway in the hepatocytes: first, dense lysosomes disappeared and were replaced by swollen vesicles; secondly, degradation of [(125)I]TC-ASOR took place in an organelle of lower buoyant density (in a sucrose gradient) than the bulk of lysosomes (identified in the gradient by lysosomal marker enzymes). With increasing length of incubation with wortmannin or LY294002, the density distributions of the lysosomal markers also shifted to lower density and gradually approached that of the labelled degradation products. The labelled degradation products formed from [(125)I]TC-labelled proteins were trapped at the site of formation, because they did not penetrate the vesicle membranes. The results obtained indicate that internalization and intracellular transport of ASOR to lysomes may take place in the absence of PI3K activity in rat hepatocytes. On the other hand, fusion of late endosomes with lysosomes seems to produce 'hybrid organelles' (active lysosomes) that are unable to

  2. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats.

    PubMed

    Slouzkey, Ilana; Maroun, Mouna

    2016-12-01

    The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction. © 2016 Slouzkey and Maroun; Published by Cold Spring Harbor Laboratory Press.

  3. Sirt2 Deacetylase Is a Novel AKT Binding Partner Critical for AKT Activation by Insulin*

    PubMed Central

    Ramakrishnan, Gopalakrishnan; Davaakhuu, Gantulga; Kaplun, Ludmila; Chung, Wen-Cheng; Rana, Ajay; Atfi, Azeddine; Miele, Lucio; Tzivion, Guri

    2014-01-01

    AKT/PKB kinases transmit insulin and growth factor signals downstream of phosphatidylinositol 3-kinase (PI3K). AKT activation involves phosphorylation at two residues, Thr308 and Ser473, mediated by PDK1 and the mammalian target of rapamycin complex 2 (mTORC2), respectively. Impaired AKT activation is a key factor in metabolic disorders involving insulin resistance, whereas hyperactivation of AKT is linked to cancer pathogenesis. Here, we identify the cytoplasmic NAD+-dependent deacetylase, Sirt2, as a novel AKT interactor, required for optimal AKT activation. Pharmacological inhibition or genetic down-regulation of Sirt2 diminished AKT activation in insulin and growth factor-responsive cells, whereas Sirt2 overexpression enhanced the activation of AKT and its downstream targets. AKT was prebound with Sirt2 in serum or glucose-deprived cells, and the complex dissociated following insulin treatment. The binding was mediated by the pleckstrin homology and the kinase domains of AKT and was dependent on AMP-activated kinase. This regulation involved a novel AMP-activated kinase-dependent Sirt2 phosphorylation at Thr101. In cells with constitutive PI3K activation, we found that AKT also associated with a nuclear sirtuin, Sirt1; however, inhibition of PI3K resulted in dissociation from Sirt1 and increased association with Sirt2. Sirt1 and Sirt2 inhibitors additively inhibited the constitutive AKT activity in these cells. Our results suggest potential usefulness of Sirt1 and Sirt2 inhibitors in the treatment of cancer cells with up-regulated PI3K activity and of Sirt2 activators in the treatment of insulin-resistant metabolic disorders. PMID:24446434

  4. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangxin; Yu, XiYong; Lin, ShuGuang

    2007-05-11

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response tomore » SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.« less

  5. The secretome of endothelial progenitor cells promotes brain endothelial cell activity through PI3-kinase and MAP-kinase.

    PubMed

    Di Santo, Stefano; Seiler, Stefanie; Fuchs, Anna-Lena; Staudigl, Jennifer; Widmer, Hans Rudolf

    2014-01-01

    Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.

  6. Ginkgolide B Reduces LOX-1 Expression by Inhibiting Akt Phosphorylation and Increasing Sirt1 Expression in Oxidized LDL-Stimulated Human Umbilical Vein Endothelial Cells

    PubMed Central

    Chen, Beidong; Li, Xingguang; Qi, Ruomei

    2013-01-01

    Oxidized low-density lipoprotein (ox-LDL) is an important risk factor in the development of atherosclerosis. LOX-1, a lectin-like receptor for ox-LDL, is present primarily on endothelial cells and upregulated by ox-LDL, tumor necrosis factor a, shear stress, and cytokines in atherosclerosis. Recent studies demonstrated that ginkgolide B, a platelet-activating factor receptor antagonist, has antiinflammatory and antioxidant effects on endothelial and nerve cells. The present study investigated the effects of ginkgolide B on LOX-1 expression and the possible mechanism of action. Our results showed that ginkgolide B inhibited LOX-1 and intercellular cell adhesion molecule-1 (ICAM-1) expression in ox-LDL-stimulated endothelial cells through a mechanism associated with the attenuation of Akt activation. Similar data were obtained by silencing Akt and LY294002. We also evaluated Sirt1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. These molecules play a protective role in endothelial cell injury. The results showed that ginkgolide B increased Sirt1 expression in ox-LDL-treated cells. The inhibitory effects of ginkgolide B on LOX-1 and ICAM-1 expression were reduced in Sirt1 siRNA-transfected cells. Nrf2 expression was increased in ox-LDL-treated cells, and ginkgolide B downregulated Nrf2 expression. These results suggest that ginkgolide B reduces Nrf2 expression by inhibiting LOX-1 expression, consequently reducing oxidative stress injury in ox-LDL-stimulated cells. Altogether, these results indicate that the protective effect of ginkgolide B on endothelial cells may be attributable to a decrease in LOX-1 expression and an increase in Sirt1 expression in ox-LDL-stimulated endothelial cells, the mechanism of which is linked to the inhibition of Akt activation. Ginkgolide B may be a multiple-target drug that exerts protective effects in ox-LDL-treated human umbilical vein endothelial cells. PMID:24069345

  7. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation.

    PubMed

    Mou, Linkai; Cui, Tongwei; Liu, Weiguang; Zhang, Hong; Cai, Zhanxiu; Lu, Shaoyong; Gao, Guojun

    2017-05-01

    Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity. © 2016 John Wiley & Sons A/S.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, M.-S.; Ho, C.-T.; Ho, Y.-S.

    Fatty acid synthase (FAS) is a major lipogenic enzyme catalyzing the synthesis of long-chain saturated fatty acids. Most breast cancers require lipogenesis for growth. Here, we demonstrated the effects of theanaphthoquinone (TNQ), a member of the thearubigins generated by the oxidation of theaflavin (TF-1), on the expression of FAS in human breast cancer cells. TNQ was found to suppress the EGF-induced expression of FAS mRNA and FAS protein in MDA-MB-231 cells. Expression of FAS has previously been shown to be regulated by the SREBP family of transcription factors. In this study, we demonstrated that the EGF-induced nuclear translocation of SREBP-1more » was blocked by TNQ. Moreover, TNQ also modulated EGF-induced ERK1/2 and Akt phosphorylation. Treatment of MDA-MB-231 cells with PI 3-kinase inhibitors, LY294002 and Wortmannin, inhibited the EGF-induced expression of FAS and nuclear translocation of SREBP-1. Treatment with TNQ inhibited EGF-induced EGFR/ErbB-2 phosphorylation and dimerization. Furthermore, treatment with kinase inhibitors of EGFR and ErbB-2 suggested that EGFR/ErbB-2 activation was involved in EGF-induced FAS expression. In constitutive FAS expression, TNQ inhibited FAS expression and Akt autophosphorylation in BT-474 cells. The PI 3-kinase inhibitors and tyrosine kinase inhibitors of EGFR and ErbB-2 also reduced constitutive FAS expression. In addition, pharmacological blockade of FAS by TNQ decreased cell viability and induced cell death in BT-474 cells. In summary, our findings suggest that TNQ modulates FAS expression by the regulation of EGFR/ErbB-2 pathways and induces cell death in breast cancer cells.« less

  9. Neuroligin-3 protects retinal cells from H2O2-induced cell death via activation of Nrf2 signaling.

    PubMed

    Li, Xiu-Miao; Huang, Dan; Yu, Qing; Yang, Jian; Yao, Jin

    2018-05-25

    Intensified oxidative stress can cause severe damage to human retinal pigment epithelium (RPE) cells and retinal ganglion cells (RGCs). The potential effect of neuroligin-3 (NLGN3) against the process is studied here. Our results show that NLGN3 efficiently inhibited hydrogen peroxide (H 2 O 2 )-induced death and apoptosis in human RPE cells and RGCs. H 2 O 2 -induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage in retinal cells were alleviated by NLGN3. NLGN3 activated nuclear-factor-E2-related factor 2 (Nrf2) signaling, enabling Nrf2 protein stabilization, nuclear translocation and expression of key anti-oxidant enzymes (HO1, NOQ1 and GCLC) in RPE cells and RGCs. Further results demonstrate that NLGN3 activated Akt-mTORC1 signaling in retinal cells. Conversely, Akt-mTORC1 inhibitors (RAD001 and LY294002) reduced NLGN3-induced HO1, NOQ1 and GCLC mRNA expression. Significantly, Nrf2 silencing by targeted shRNAs reversed NLGN3-induced retinal cytoprotection against H 2 O 2 . We conclude that NLGN3 activates Nrf2 signaling to protect human retinal cells from H 2 O 2 . NLGN3 could be further tested as a valuable retinal protection agent. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Targeting protein kinase-b3 (akt3) signaling in melanoma.

    PubMed

    Madhunapantula, SubbaRao V; Robertson, Gavin P

    2017-03-01

    Deregulated Akt activity leading to apoptosis inhibition, enhanced proliferation and drug resistance has been shown to be responsible for 35-70% of advanced metastatic melanomas. Of the three isoforms, the majority of melanomas have elevated Akt3 expression and activity. Hence, potent inhibitors targeting Akt are urgently required, which is possible only if (a) the factors responsible for the failure of Akt inhibitors in clinical trials is known; and (b) the information pertaining to synergistically acting targeted therapeutics is available. Areas covered: This review provides a brief introduction of the PI3K-Akt signaling pathway and its role in melanoma development. In addition, the functional role of key Akt pathway members such as PRAS40, GSK3 kinases, WEE1 kinase in melanoma development are discussed together with strategies to modulate these targets. Efficacy and safety of Akt inhibitors is also discussed. Finally, the mechanism(s) through which Akt leads to drug resistance is discussed in this expert opinion review. Expert opinion: Even though Akt play key roles in melanoma tumor progression, cell survival and drug resistance, many gaps still exist that require further understanding of Akt functions, especially in the (a) metastatic spread; (b) circulating melanoma cells survival; and (c) melanoma stem cells growth.

  11. Efficacy of AKT Inhibitor ARQ 092 Compared with Sorafenib in a Cirrhotic Rat Model with Hepatocellular Carcinoma.

    PubMed

    Roth, Gaël S; Macek Jilkova, Zuzana; Zeybek Kuyucu, Ayca; Kurma, Keerthi; Ahmad Pour, Séyédéh Tayébéh; Abbadessa, Giovanni; Yu, Yi; Busser, Benoit; Marche, Patrice N; Leroy, Vincent; Decaens, Thomas

    2017-10-01

    Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related mortality worldwide. The AKT pathway has been found activated in 50% of HCC cases, making it a promising target. Therefore, we assess efficacy of the allosteric AKT inhibitor ARQ 092 compared with untreated control and standard treatment, sorafenib, in vitro and in vivo ARQ 092 blocked phosphorylation of AKT in vitro and strongly inhibited cell growth with significantly higher potency than sorafenib. Similarly, apoptosis and cell migration were strongly reduced by ARQ 092 in vitro To mimic human advanced HCC, we used a diethylnitrosamine-induced cirrhotic rat model with fully developed HCC. MRI analyses showed that ARQ 092 significantly reduced overall tumor size. Furthermore, number of tumors was decreased by ARQ 092, which was associated with increased apoptosis and decreased proliferation. Tumor contrast enhancement was significantly decreased in the ARQ 092 group. Moreover, on tumor tissue sections, we observed a vascular normalization and a significant decrease in fibrosis in the surrounding liver of animals treated with ARQ 092. Finally, pAKT/AKT levels in ARQ 092-treated tumors were reduced, followed by downregulation of actors of AKT downstream signaling pathway: pmTOR, pPRAS40, pPLCγ1, and pS6K1. In conclusion, we demonstrated that ARQ 092 blocks AKT phosphorylation in vitro and in vivo In the HCC-rat model, ARQ 092 was well tolerated, showed antifibrotic effect, and had stronger antitumor effect than sorafenib. Our results confirm the importance of targeting AKT in HCC. Mol Cancer Ther; 16(10); 2157-65. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Inhibitor of G protein-coupled receptor kinase 2 normalizes vascular endothelial function in type 2 diabetic mice by improving β-arrestin 2 translocation and ameliorating Akt/eNOS signal dysfunction.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kamata, Katsuo; Kobayashi, Tsuneo

    2012-07-01

    In type 2 diabetes, although Akt/endothelial NO synthase (eNOS) activation is known to be negatively regulated by G protein-coupled receptor kinase 2 (GRK2), it is unclear whether the GRK2 inhibitor would have therapeutic effects. Here we examined the hypotensive effect of the GRK2 inhibitor and its efficacy agonist both vascular (aortic) endothelial dysfunction (focusing especially on the Akt/eNOS pathway) and glucose intolerance in two type 2 diabetic models (ob/ob mice and nicotinamide+streptozotocin-induced diabetic mice). Mice were treated with a single injection of the GRK2 inhibitor or vehicle, and the therapeutic effects were compared by examining vascular function and by Western blotting. The GRK2 inhibitor lowered blood pressure in both diabetic models but not in their age-matched controls. The GRK2 inhibitor significantly improved clonidine-induced relaxation only in diabetic (ob/ob and DM) mice, with accompanying attenuations of GRK2 activity and translocation to the plasma membrane. These protective effects of the GRK2 inhibitor may be attributable to the augmented Akt/eNOS pathway activation (as evidenced by increases in Akt phosphorylation at Ser(473) and at Thr(308), and eNOS phosphorylation at Ser(1177)) and to the prevention of the GRK2 translocation and promotion of β-arrestin 2 translocation to the membrane under clonidine stimulation. Moreover, the GRK2 inhibitor significantly improved the glucose intolerance seen in the ob/ob mice. Our work provides the first evidence that in diabetes, the GRK2 inhibitor ameliorates vascular endothelial dysfunction via the Akt/eNOS pathway by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation under clonidine stimulation, thereby contributing to a blood pressure-lowering effect. We propose that the GRK2 inhibitor may be a promising therapeutic agent for cardiovascular complications in type 2 diabetes.

  13. A phase 1 and dose-finding study of LY2523355 (litronesib), an Eg5 inhibitor, in Japanese patients with advanced solid tumors.

    PubMed

    Wakui, Hiroshi; Yamamoto, Noboru; Kitazono, Satoru; Mizugaki, Hidenori; Nakamichi, Shinji; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamada, Yasuhide; Suzuki, Kohei; Kanda, Hironori; Akinaga, Shiro; Tamura, Tomohide

    2014-07-01

    Eg5, a mitotic motor kinesin protein, plays an essential role in bipolar spindle formation in the M phase of the cell cycle. LY2523355 (litronesib) is an allosteric inhibitor of Eg5. This phase 1 and dose-finding study aimed to assess the safety, pharmacokinetics (PK), recommended dose for further studies, and preliminary efficacy in Japanese patients with advanced solid tumors. LY2523355 was given on days 1, 2, and 3 every 3 weeks at one of three dose levels: 2, 4, and 5 mg/m²/day. Toxicity was assessed according to NCI-CTCAE version 4.0, and tumor response according to RECIST version 1.1. granulocyte colony-stimulating factor (G-CSF) was used only for grade 4 neutropenia or grade 3 febrile neutropenia. Twelve patients were treated at doses of 2 (n = 3), 4 (n = 3), and 5 (n = 6) mg/m²/day. Most frequent treatment-related adverse events were neutropenia and leukopenia (100 %). Grade 4 neutropenia was observed in 83 %, but all recovered to above 500 neutrophils/μl within 7 days. All patients at 4 and 5 mg/m²/day required G-CSF support. No dose-limiting toxicities were reported up to 5 mg/m²/day. In PK analysis, LY2523355 exposure increased in a dose-dependent manner. The PK parameters for LY2523355 were similar to those observed in Western populations. No objective tumor responses were observed. The recommended dose of LY2523355 with therapeutic G-CSF use for further studies was determined to be 5 mg/m²/day in Japanese patients with advanced solid tumors.

  14. Effects and mechanisms of melatonin on the proliferation and neural differentiation of PC12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yumei; Zhang, Ziqiang; Lv, Qiongxia

    Melatonin, a lipophilic molecule that is mainly synthesized in the pineal gland, performs various neuroprotective functions. However, the detailed role and mechanisms of promoting neuronal differentiation remains limited. This study demonstrated that 10 μM melatonin led to significant increases in the proliferation and neurite outgrowth of PC12 cells. Increased expression of microtubule-associated protein 2 (MAP2, a neuron-specific protein) was also observed. However, luzindole (melatonin receptor antagonist) and PD98059 (MEK inhibitor) attenuated these increases. LY294002 (AKT inhibitor) inhibited melatonin-mediated proliferation in PC12 cells and did not affect melatonin-induced neural differentiation. The expression of p-ERK1/2/ERK1/2 was increased by melatonin treatment for 14 days in PC12 cells,more » whereas luzindole or PD98059 reduced the melatonin-induced increase. These results suggest that the activation of both the MEK/ERK and PI3K/AKT signaling pathways could potentially contribute to melatonin-mediated proliferation, but that only the MEK/ERK pathway participates in the melatonin-induced neural differentiation of PC12 cells. Altogether, our study demonstrates for the first time that melatonin may exert a positive effect on neural differentiation via melatonin receptor signalling and that the MEK/ERK1/2 signalling may act down stream from the melatonin pathway. - Highlights: • Melatonin improves the proliferation of PC12 cells. • Melatonin induces neural differentiation of PC12 cells. • Melatonin-mediated proliferation in PC12 cells relies on the ERK and AKT pathways. • Activation of ERK is essential for melatonin-induced neural differentiation of PC12.« less

  15. Rho/Rho kinase and phosphoinositide 3-kinase are parallel pathways in the development of spontaneous arterial tone in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Wehrwein, Erica A; Northcott, Carrie A; Loberg, Robert D; Watts, Stephanie W

    2004-06-01

    Hypertension is characterized by abnormal vascular contractility and function. Arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats develop spontaneous tone that is not observed in arteries from normotensive rats. Inhibition of phosphoinositide 3-kinase (PI3-kinase) by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) reduces spontaneous tone development. The Rho/Rho-kinase pathway has been suggested to play a role in hypertension and may be dependent on PI3-kinase activity. We hypothesized that Rhokinase is involved in spontaneous tone development and that Rho/Rho-kinase is a downstream effector of PI3-kinase. Using endothelium-denuded aortic strips in isolated tissue bath, we demonstrated that (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) (Y27632) (1 microM), a Rho-kinase inhibitor, significantly reduced spontaneous tone in the DOCA aorta but that it did not affect sham aorta basal tone (DOCA 63.5 +/- 15.9 versus sham 1.2 +/- 0.4 total change in percentage of phenylephrine contraction). We examined the interaction between the PI3-kinase and Rho pathways by observing the effects of LY294002 on a Rhokinase effector, myosin phosphatase (MYPT), and Y27632 on a PI3-kinase effector, Akt, using Western blot analysis. Inhibition of PI3-kinase reduced spontaneous tone, but it had no effect on the phosphorylation status of MYPT, indicating that PI3-kinase is not a downstream effector of Rho/Rho-kinase. These data indicate that there is little interaction between the Rho/Rhokinase and PI3-kinase pathways in the DOCA-salt aorta, and the two pathways seem to operate in parallel in supporting spontaneous arterial tone. These data reflect spontaneous tone only and do not rule out the possibility of interaction between these pathways in agonist-stimulated tone.

  16. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation.

    PubMed

    Zhang, Pingzhao; Wang, Dejie; Zhao, Yu; Ren, Shancheng; Gao, Kun; Ye, Zhenqing; Wang, Shangqian; Pan, Chun-Wu; Zhu, Yasheng; Yan, Yuqian; Yang, Yinhui; Wu, Di; He, Yundong; Zhang, Jun; Lu, Daru; Liu, Xiuping; Yu, Long; Zhao, Shimin; Li, Yao; Lin, Dong; Wang, Yuzhuo; Wang, Liguo; Chen, Yu; Sun, Yinghao; Wang, Chenji; Huang, Haojie

    2017-09-01

    Bromodomain and extraterminal domain (BET) protein inhibitors are emerging as promising anticancer therapies. The gene encoding the E3 ubiquitin ligase substrate-binding adaptor speckle-type POZ protein (SPOP) is the most frequently mutated in primary prostate cancer. Here we demonstrate that wild-type SPOP binds to and induces ubiquitination and proteasomal degradation of BET proteins (BRD2, BRD3 and BRD4) by recognizing a degron motif common among them. In contrast, prostate cancer-associated SPOP mutants show impaired binding to BET proteins, resulting in decreased proteasomal degradation and accumulation of these proteins in prostate cancer cell lines and patient specimens and causing resistance to BET inhibitors. Transcriptome and BRD4 cistrome analyses reveal enhanced expression of the GTPase RAC1 and cholesterol-biosynthesis-associated genes together with activation of AKT-mTORC1 signaling as a consequence of BRD4 stabilization. Our data show that resistance to BET inhibitors in SPOP-mutant prostate cancer can be overcome by combination with AKT inhibitors and further support the evaluation of SPOP mutations as biomarkers to guide BET-inhibitor-oriented therapy in patients with prostate cancer.

  17. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Jianwei; Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050; Sun, Xiaolei

    2015-08-14

    Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively,more » but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.« less

  18. ARS-Interacting Multi-Functional Protein 1 Induces Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Accumulation of β-Catenin via Fibroblast Growth Factor Receptor 2-Mediated Activation of Akt

    PubMed Central

    Kim, Seo Yoon; Son, Woo Sung; Park, Min Chul; Kim, Chul Min; Cha, Byung Hyun; Yoon, Kang Jun; Lee, Soo-Hong

    2013-01-01

    ARS-Interacting Multi-functional Protein 1 (AIMP1) is a cytokine that is involved in the regulation of angiogenesis, immune activation, and fibroblast proliferation. In this study, fibroblast growth factor receptor 2 (FGFR2) was isolated as a binding partner of AIMP peptide (amino acids 6–46) in affinity purification using human bone marrow-derived mesenchymal stem cells (BMMSCs). AIMP1 peptide induced the proliferation of adult BMMSCs by activating Akt, inhibiting glycogen synthase kinase-3β, and thereby increasing the level of β-catenin. In addition, AIMP1 peptide induced the translocation of β-catenin to the nucleus and increased the transcription of c-myc and cyclin D1 by activating the β-catenin/T-cell factor (TCF) complex. By contrast, transfection of dominant negative TCF abolished the effect of AIMP1. The inhibition of Akt, using LY294002, abolished the accumulation and nuclear translocation of β-catenin induced by AIMP1, leading to a decrease in c-myc and cyclin D1 expression, which decreased the proliferation of BMMSCs. An intraperitoneal injection of AIMP1 peptide into C57/BL6 mice increased the colony formation of fibroblast-like cells. Fluorescence activated cell sorting analysis showed that the colony-forming cells were CD29+/CD44+/CD90+/CD105+/CD34−/CD45−, which is characteristic of MSCs. In addition, the fibroblast-like cells differentiated into adipocytes, chondrocytes, and osteocytes. Taken together, these data suggest that AIMP1 peptide promotes the proliferation of BMMSCs by activating the β-catenin/TCF complex via FGFR2-mediated activation of Akt, which leads to an increase in MSCs in peripheral blood. PMID:23672191

  19. ARS-interacting multi-functional protein 1 induces proliferation of human bone marrow-derived mesenchymal stem cells by accumulation of β-catenin via fibroblast growth factor receptor 2-mediated activation of Akt.

    PubMed

    Kim, Seo Yoon; Son, Woo Sung; Park, Min Chul; Kim, Chul Min; Cha, Byung Hyun; Yoon, Kang Jun; Lee, Soo-Hong; Park, Sang Gyu

    2013-10-01

    ARS-Interacting Multi-functional Protein 1 (AIMP1) is a cytokine that is involved in the regulation of angiogenesis, immune activation, and fibroblast proliferation. In this study, fibroblast growth factor receptor 2 (FGFR2) was isolated as a binding partner of AIMP peptide (amino acids 6-46) in affinity purification using human bone marrow-derived mesenchymal stem cells (BMMSCs). AIMP1 peptide induced the proliferation of adult BMMSCs by activating Akt, inhibiting glycogen synthase kinase-3β, and thereby increasing the level of β-catenin. In addition, AIMP1 peptide induced the translocation of β-catenin to the nucleus and increased the transcription of c-myc and cyclin D1 by activating the β-catenin/T-cell factor (TCF) complex. By contrast, transfection of dominant negative TCF abolished the effect of AIMP1. The inhibition of Akt, using LY294002, abolished the accumulation and nuclear translocation of β-catenin induced by AIMP1, leading to a decrease in c-myc and cyclin D1 expression, which decreased the proliferation of BMMSCs. An intraperitoneal injection of AIMP1 peptide into C57/BL6 mice increased the colony formation of fibroblast-like cells. Fluorescence activated cell sorting analysis showed that the colony-forming cells were CD29(+)/CD44(+)/CD90(+)/CD105(+)/CD34(-)/CD45(-), which is characteristic of MSCs. In addition, the fibroblast-like cells differentiated into adipocytes, chondrocytes, and osteocytes. Taken together, these data suggest that AIMP1 peptide promotes the proliferation of BMMSCs by activating the β-catenin/TCF complex via FGFR2-mediated activation of Akt, which leads to an increase in MSCs in peripheral blood.

  20. Progranulin Deficiency Reduces CDK4/6/pRb Activation and Survival of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    de la Encarnación, Ana; Alquézar, Carolina; Esteras, Noemí; Martín-Requero, Ángeles

    2015-12-01

    Null mutations in GRN are associated with frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). However, the influence of progranulin (PGRN) deficiency in neurodegeneration is largely unknown. In neuroblastoma cells, silencing of GRN gene causes significantly reduced cell survival after serum withdrawal. The following observations suggest that alterations of the CDK4/6/retinoblastoma protein (pRb) pathway, secondary to changes in PI3K/Akt and ERK1/2 activation induced by PGRN deficiency, are involved in the control of serum deprivation-induced apoptosis: (i) inhibiting CDK4/6 levels or their associated kinase activity by sodium butyrate or PD332991 sensitized control SH-SY5Y cells to serum deprivation-induced apoptosis without affecting survival of PGRN-deficient cells; (ii) CDK4/6/pRb seems to be downstream of the PI3K/Akt and ERK1/2 signaling pathways since their specific inhibitors, LY294002 and PD98059, were able to decrease CDK6-associated kinase activity and induce death of control SH-SY5Y cells; (iii) PGRN-deficient cells show reduced stimulation of PI3K/Akt, ERK1/2, and CDK4/6 activities compared with control cells in the absence of serum; and (iv) supplementation of recombinant human PGRN was able to rescue survival of PGRN-deficient cells. These observations highlight the important role of PGRN-mediated stimulation of the PI3K/Akt-ERK1/2/CDK4/6/pRb pathway in determining the cell fate survival/death under serum deprivation.

  1. Perlecan Domain V Induces VEGf Secretion in Brain Endothelial Cells through Integrin α5β1 and ERK-Dependent Signaling Pathways

    PubMed Central

    Clarke, Douglas N.; Al Ahmad, Abraham; Lee, Boyeon; Parham, Christi; Auckland, Lisa; Fertala, Andrezj; Kahle, Michael; Shaw, Courtney S.; Roberts, Jill; Bix, Gregory J.

    2012-01-01

    Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy. PMID:23028886

  2. Novel Kinase Inhibitors Targeting the PH Domain of AKT for Preventing and Treating Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Medical Oncology Branch is seeking statements of capability or interest from parties interested in licensing and co-development collaborative research to further develop, evaluate, or commercialize novel kinase inhibitors targeting the PH domain of AKT.

  3. Hydrogen‑rich solution against myocardial injury and aquaporin expression via the PI3K/Akt signaling pathway during cardiopulmonary bypass in rats.

    PubMed

    Song, Dandan; Liu, Xuelei; Diao, Yugang; Sun, Yingjie; Gao, Guangjie; Zhang, Tiezheng; Chen, Keyan; Pei, Ling

    2018-06-20

    attenuated myocardial injury, reduced the expression levels of cTnI, LDH, CK‑MB, BNP, IL‑1β, IL‑6, TNF‑α, MDA and MPO, and increased SOD release. Levels of Bcl‑2, AQP‑1, AQP‑4, p‑Akt, HO‑1 and Nrf2 were significantly increased following HRS; whereas Bax and caspase‑3 expression levels were significantly reduced following CPB. HRS treatment significantly increased the viability of myocardial cells, reduced the rate of myocardial cell apoptosis and the release of MDA and LDH compared with the CPB group. A PI3K inhibitor (LY294002) was revealed to reverse the protective effect of HRS treatment. HRS was demonstrated to attenuate CPB‑induced myocardial injury, suppress AQP‑1 and AQP‑4 expression following CPB treatment and protect myocardial cells via the PI3K/Akt signaling pathway.

  4. Differential roles of MAPK-Erk1/2 and MAPK-p38 in insulin or insulin-like growth factor-I (IGF-I) signaling pathways for progesterone production in human ovarian cells.

    PubMed

    Seto-Young, D; Avtanski, D; Varadinova, M; Park, A; Suwandhi, P; Leiser, A; Parikh, G; Poretsky, L

    2011-06-01

    Insulin and insulin like-growth factor-I (IGF-I) participate in the regulation of ovarian steroidogenesis. In insulin resistant states ovaries remain sensitive to insulin because insulin can activate alternative signaling pathways, such as phosphatidylinositol-3-kinase (PI-3 kinase) and mitogen-activated protein-kinase (MAPK) pathways, as well as insulin receptors and type 1 IGF receptors. We investigated the roles of MAPK-Erk1/2 and MAPK-p38 in insulin and IGF-I signaling pathways for progesterone production in human ovarian cells. Human ovarian cells were cultured in tissue culture medium in the presence of varying concentrations of insulin or IGF-I, with or without PD98059, a specific MAPK-Erk1/2 inhibitor, with or without SB203580, a specific MAPK-p38 inhibitor or with or without a specific PI-3-kinase inhibitor LY294002. Progesterone concentrations were measured using radioimmunoassay. PD98059 alone stimulated progesterone production in a dose-dependent manner by up to 65% (p<0.001). Similarly, LY294002 alone stimulated progesterone production by 13-18% (p<0.005). However, when used together, PD98059 and LY294002 inhibited progesterone production by 17-20% (p<0.001). SB203580 alone inhibited progesterone production by 20-30% (p<0.001). Insulin or IGF-I alone stimulated progesterone production by 40-60% (p<0.001). In insulin studies, PD98059 had no significant effect on progesterone synthesis while SB203580 abolished insulin-induced progesterone production. Either PD98059 or SB203580 abolished IGF-I-induced progesterone production. Both MAPK-Erk1/2 and MAPK-p38 participate in IGF-I-induced signaling pathways for progesterone production, while insulin-induced progesterone production requires MAPK-p38, but not MAPK-Erk1/2. These studies provide further evidence for divergence of insulin and IGF-I signaling pathways for human ovarian cell steroidogenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Developing a Novel Embryo–Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics

    PubMed Central

    Wehmas, Leah Christine; Tanguay, Robert L.; Punnoose, Alex

    2016-01-01

    Abstract Glioblastoma is an aggressive brain cancer requiring improved treatments. Existing methods of drug discovery and development require years before new therapeutics become available to patients. Zebrafish xenograft models hold promise for prioritizing drug development. We have developed an embryo–larval zebrafish xenograft assay in which cancer cells are implanted in a brain microenvironment to discover and prioritize compounds that impact glioblastoma proliferation, migration, and invasion. We illustrate the utility of our assay by evaluating the well-studied, phosphatidylinositide 3-kinase inhibitor LY294002 and zinc oxide nanoparticles (ZnO NPs), which demonstrate selective cancer cytotoxicity in cell culture, but the in vivo effectiveness has not been established. Exposures of 3.125–6.25 μM LY294002 significantly decreased proliferation up to 34% with concentration-dependent trends. Exposure to 6.25 μM LY294002 significantly inhibited migration/invasion by ∼27% within the glioblastoma cell mass (0–80 μm) and by ∼32% in the next distance region (81–160 μm). Unexpectedly, ZnO enhanced glioblastoma proliferation by ∼19% and migration/invasion by ∼35% at the periphery of the cell mass (161+ μm); however, dissolution of these NPs make it difficult to discern whether this was a nano or ionic effect. These results demonstrate that we have a short, relevant, and sensitive zebrafish-based assay to aid glioblastoma therapeutic development. PMID:27158859

  6. Dexmedetomidine Protects Neural Stem Cells from Ketamine-Induced Injury.

    PubMed

    Lu, Pan; Lei, Shan; Li, Weisong; Lu, Yang; Zheng, Juan; Wang, Ning; Xia, Yongjun; Lu, Haixia; Chen, Xinlin; Liu, Yong; Zhang, Peng-Bo

    2018-06-19

    Ketamine inhibits the proliferation of neural stem cells (NSCs) and disturbs normal neurogenesis. Dexmedetomidine provides neuroprotection against volatile anesthetic-induced neuroapoptosis and cognitive impairment in the developing brain. Whether it may protect NSCs from ketamine-induced injury remains unknown. In this study, we investigated the protective effects of dexmedetomidine on ketamine-exposed NSCs and explored the mechanisms potentially involved. Primary NSC cultures were characterized using immunofluorescence. Cell viability was determined using a Cell Counting Kit 8 assay. Proliferation and apoptosis were assessed with BrdU incorporation and TUNEL assays, respectively. Protein levels of cleaved caspase-3, phosphorylated protein kinase B (p-Akt), and glycogen synthase kinase-3β (p-GSK-3β) were quantified using western blotting. Ket-amine significantly decreased NSC viability and proliferation and increased their apoptosis. Dexmedetomidine increased NSC proliferation and decreased their apoptosis in a dose-dependent manner. Furthermore, dexmedetomidine pretreatment notably augmented the viability and proliferation of ketamine-exposed NSCs and reduced their apoptosis. Moreover, dexmedetomidine lessened caspase-3 activation and increased p-Akt and p-GSK-3β levels in NSCs exposed to ketamine. The protective effects of dexmedetomidine on ketamine-exposed NSCs could be partly reversed by the PI3K inhibitor LY294002. Collectively, these findings indicate that dexmedetomidine may protect NSCs from ketamine-induced injury via the PI3K/Akt/GSK-3β signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Advanced glycation end-products and insulin signaling in granulosa cells

    PubMed Central

    Chatzigeorgiou, Antonios; Papageorgiou, Efstathia; Koundouras, Dimitrios; Koutsilieris, Michael

    2016-01-01

    Advanced glycation end-products (AGEs) may interfere with insulin intracellular signaling and glucose transport in human granulosa cells, potentially affecting ovarian function, follicular growth, linked with diminished fertility. The potential interaction of AGEs with insulin signaling pathways and glucose transport was investigated in human granulosa KGN cells. KGN cells were cultured with variable concentrations of human glycated albumin (HGA, 50–200 µg/mL) or insulin (100 ng/mL). Combined treatments of KGN cells with insulin (100 ng/mL) and HGA (200 µg/mL) were also performed. p-AKT levels and glucose transporter type 4 (Glut-4) translocation analysis were performed by Western blot. Phosphatidylinositol-3-kinase (PI3K)-specific signaling was checked by using the PI3K-inhibitor, LY294002. p-AKT levels were significantly increased following insulin treatment compared to basal levels or HGA exposure. This insulin-mediated AKT-phosphorylation was PI3K-specific and it was inhibited after combined treatment of insulin and HGA. Furthermore, Glut-4 translocation from the cytoplasm to the membrane compartments of KGN cells was remarkably reduced after the combined treatment of insulin and HGA. The present findings support that AGEs interfere with insulin signaling in granulosa cells and prevent Glut-4 membrane translocation suggesting that intra ovarian AGEs accumulation, from endogenous or exogenous sources, may contribute to the pathophysiology of states characterized with anovulation and insulin resistance such as polycystic ovary syndrome. PMID:25956684

  8. The Effects of IGF-1 on TNF-α-Treated DRG Neurons by Modulating ATF3 and GAP-43 Expression via PI3K/Akt/S6K Signaling Pathway.

    PubMed

    Zhang, Lei; Yue, Yaping; Ouyang, Meishuo; Liu, Huaxiang; Li, Zhenzhong

    2017-05-01

    Upregulation of the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) is involved in the development and progression of numerous neurological disorders. Recent reports have challenged the concept that TNF-α exhibits only deleterious effects of pro-inflammatory destruction, and have raised the awareness that it may play a beneficial role in neuronal growth and function in particular conditions, which prompts us to further investigate the role of this cytokine. Insulin-like growth factor-1 (IGF-1) is a cytokine possessing powerful neuroprotective effects in promoting neuronal survival, neuronal differentiation, neurite elongation, and neurite regeneration. The association of IGF-1 with TNF-α and the biological effects, produced by interaction of IGF-1 and TNF-α, on neuronal outgrowth status of primary sensory neurons are still to be clarified. In the present study, using an in vitro model of primary cultured rat dorsal root ganglion (DRG) neurons, we demonstrated that TNF-α challenge at different concentrations elicited diverse biological effects. Higher concentration of TNF-α (10 ng/mL) dampened neurite outgrowth, induced activating transcription factor 3 (ATF3) expression, reduced growth-associated protein 43 (GAP-43) expression, and promoted GAP-43 and ATF3 coexpression, which could be reversed by IGF-1 treatment; while lower concentration of TNF-α (1 ng/mL) promoted neurite sprouting, decreased ATF3 expression, increased GAP-43 expression, and inhibited GAP-43 and ATF3 coexpression, which could be potentiated by IGF-1 supplement. Moreover, IGF-1 administration restored the activation of Akt and p70 S6 kinase (S6K) suppressed by higher concentration of TNF-α (10 ng/mL) challenge. In contrast, lower concentration of TNF-α (1 ng/mL) had no significant effect on Akt or S6K activation, and IGF-1 administration activated these two kinases. The effects of IGF-1 were abrogated by phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These data

  9. Effects of the novel endocannabinoid uptake inhibitor, LY2183240, on fear-potentiated startle and alcohol-seeking behaviors in mice selectively bred for high alcohol preference.

    PubMed

    Powers, Matthew S; Barrenha, Gustavo D; Mlinac, Nate S; Barker, Eric L; Chester, Julia A

    2010-12-01

    Alcohol-use disorders often occur together with anxiety disorders in humans which may be partly due to common inherited genetic factors. Evidence suggests that the endocannabinoid system (ECS) is a promising therapeutic target for the treatment of individuals with anxiety and/or alcohol-use disorders. The present study assessed the effects of a novel endocannabinoid uptake inhibitor, LY2183240, on anxiety- and alcohol-seeking behaviors in a unique animal model that may represent increased genetic risk to develop co-morbid anxiety and alcohol-use disorders in humans. Mice selectively bred for high alcohol preference (HAP) show greater fear-potentiated startle (FPS) than mice selectively bred for low alcohol preference (LAP). We examined the effects of LY2183240 on the expression of FPS in HAP and LAP mice and on alcohol-induced conditioned place preference (CPP) and limited-access alcohol drinking behavior in HAP mice. Repeated administration of LY2183240 (30 mg/kg) reduced the expression of FPS in HAP but not LAP mice when given prior to a second FPS test 48 h after fear conditioning. Both the 10 and 30 mg/kg doses of LY2183240 enhanced the expression of alcohol-induced CPP and this effect persisted in the absence of the drug. LY2183240 did not alter limited-access alcohol drinking behavior, unconditioned startle responding, or locomotor activity. These findings suggest that ECS modulation influences both conditioned fear and conditioned alcohol reward behavior. LY2183240 may be an effective pharmacotherapy for individuals with anxiety disorders, such as post-traumatic stress disorder, but may not be appropriate for individuals with co-morbid anxiety and alcohol-use disorders.

  10. Discovery of 3-(3-(4-(1-Aminocyclobutyl)phenyl)-5-phenyl-3 H -imidazo[4,5- b ]pyridin-2-yl)pyridin-2-amine (ARQ 092): An Orally Bioavailable, Selective, and Potent Allosteric AKT Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapierre, Jean-Marc; Eathiraj, Sudharshan; Vensel, David

    The work in this paper describes the optimization of the 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine chemical series as potent, selective allosteric inhibitors of AKT kinases, leading to the discovery of ARQ 092 (21a). The cocrystal structure of compound 21a bound to full-length AKT1 confirmed the allosteric mode of inhibition of this chemical class and the role of the cyclobutylamine moiety. Compound 21a demonstrated high enzymatic potency against AKT1, AKT2, and AKT3, as well as potent cellular inhibition of AKT activation and the phosphorylation of the downstream target PRAS40. Compound 21a also served as a potent inhibitor of the AKT1-E17K mutant protein and inhibited tumormore » growth in a human xenograft mouse model of endometrial adenocarcinoma.« less

  11. Novel PI3K/Akt Inhibitors Screened by the Cytoprotective Function of Human Immunodeficiency Virus Type 1 Tat

    PubMed Central

    Kim, Dong-Hyun; Kim, Baek

    2011-01-01

    The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors. PMID:21765914

  12. ASYMMETRIC ABSORPTION PROFILES OF Ly{alpha} AND Ly{beta} IN DAMPED Ly{alpha} SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hee-Won, E-mail: hwlee@sejong.ac.kr

    2013-08-01

    Damped Ly{alpha} systems observed in the quasar spectra are characterized by a high neutral hydrogen column density, N{sub HI} > 2 x 10{sup 20} cm{sup -2}. The absorption wing profiles are often fitted using the Voigt function due to the fact that the scattering cross section near the resonant line center is approximately described by the Lorentzian function. Since a hydrogen atom has infinitely many p states that participate in the electric dipole interaction, the cross section starts to deviate from the Lorentzian in an asymmetric way in the line wing regions. We investigate this asymmetry in the absorption linemore » profiles around Ly{alpha} and Ly{beta} as a function of the neutral hydrogen column density N{sub HI}. In terms of {Delta}{lambda} {identical_to} {lambda} - {lambda}{sub {alpha}}, we expand the Kramers-Heisenberg formula around Ly{alpha} to find {sigma}({lambda}) {approx_equal} (0.5f{sub 12}){sup 2}{sigma}{sub T}({Delta}{lambda}/{lambda}{sub {alpha}}){sup -2}[1 + 3.792({Delta}{lambda}/{lambda}{sub {alpha}})], where f{sub 12} and {sigma}{sub T} are the oscillator strength of Ly{alpha} and the Thomson scattering cross section, respectively. In terms of {Delta}{lambda}{sub 2} {identical_to} {lambda} - {lambda}{sub {beta}} in the vicinity of Ly{beta}, the total scattering cross section, given as the sum of cross sections for Rayleigh and Raman scattering, is shown to be {sigma}({lambda}) {approx_equal} {sigma}{sub T}(0.5f{sub 13}){sup 2}(1 + R{sub 0})({Delta}{lambda}{sub 2}/{lambda}{sub {beta}}){sup -2}[1 - 24.68({Delta}{lambda}{sub 2}/{lambda}{sub {beta}})] with f{sub 13} and the factor R{sub 0} = 0.1342 being the oscillator strength for Ly{beta} and the ratio of the Raman cross section to Rayleigh cross section, respectively. A redward asymmetry develops around Ly{alpha}, whereas a blue asymmetry is obtained for Ly{beta}. The absorption center shifts are found to be almost proportional to the neutral hydrogen column density.« less

  13. microRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma.

    PubMed

    Chai, Zong-Tao; Zhu, Xiao-Dong; Ao, Jian-Yang; Wang, Wen-Quan; Gao, Dong-Mei; Kong, Jian; Zhang, Ning; Zhang, Yuan-Yuan; Ye, Bo-Gen; Ma, De-Ning; Cai, Hao; Sun, Hui-Chuan

    2015-05-29

    microRNAs (miRNAs) have been reported to modulate macrophage colony-stimulating factor (M-CSF) and macrophages. The aim of this study was to find whether miR-26a can suppress M-CSF expression and the recruitment of macrophages. Hepatocellular carcinoma (HCC) cell lines with decreased or increased expression of miR-26a were established in a previous study. M-CSF expression by tumor cells was measured by enzyme-linked immunosorbent assay, and cell migration assays were used to explore the effect of HCC cell lines on macrophage recruitment in vitro. Real-time PCR measured a panel of mRNAs expressed by macrophages. Xenograft models were used to observe tumor growth. Immunohistochemistry was conducted to study the relation between miR-26a expression and M-CSF expression and macrophage recruitment in patients with HCC. Ectopic expression of miR-26a reduced expression of M-CSF. The conditioned medium (CM) from HepG2 cells that overexpressed miR-26a reduced the migration ability of THP-1 cells stimulated by phorbol myristate acetate (PMA) increased expression of interleukin (IL)-12b or IL-23 mRNA and decreased expression of chemokine (C-C motif) ligand (CCL)22, CCL17, and IL-10 mRNA, in comparison to the medium from the parental HepG2 cells. These effects could be interrupted by the PI3K/Akt pathway inhibitor LY294002. Ectopic expression of miR-26a in HCC cells suppressed tumor growth, M-CSF expression, and infiltration of macrophages in tumors. Similar results were also found when using HCCLM3 cells. Furthermore, the expression of miR-26a was inversely correlated with M-CSF expression and macrophage infiltration in tumor tissues from patients with HCC. miR-26a expression reduced M-CSF expression and recruitment of macrophages in HCC.

  14. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice[S

    PubMed Central

    Babaev, Vladimir R.; Hebron, Katie E.; Wiese, Carrie B.; Toth, Cynthia L.; Ding, Lei; Zhang, Youmin; May, James M.; Fazio, Sergio; Vickers, Kasey C.; Linton, MacRae F.

    2014-01-01

    Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis. PMID:25240046

  15. PI3K/mTOR Dual Inhibitor, LY3023414, Demonstrates Potent Antitumor Efficacy Against Esophageal Adenocarcinoma in a Rat Model.

    PubMed

    Zaidi, Ali H; Kosovec, Juliann E; Matsui, Daisuke; Omstead, Ashten N; Raj, Moses; Rao, Rohit R; Biederman, Robert W W; Finley, Gene G; Landreneau, Rodney J; Kelly, Ronan J; Jobe, Blair A

    2017-07-01

    The purpose of the current study is to determine the efficacy of a PI3K/mTOR dual inhibitor, LY3023414, on established EAC in an in vivo model. Esophageal adenocarcinoma (EAC) is a highly lethal cancer with limited treatment options. The PI3K/mTOR pathway is upregulated in EAC and may be a target for novel therapies. Esophagojejunostomy was performed on Sprague-Dawley rats to induce carcinogenesis, and LY3023414 was cyclically administered intraperitoneally between 32 and 40 weeks postsurgery to treatment animals. Magnetic resonance imaging (MRI) and histology were used to determine clinical response. Immunohistochemistry, immunofluorescence, and Western blot were used to validate apoptosis by cleaved caspase-3, proliferation by Ki67, and pathway inhibition, respectively. Mean MRI tumor volume increased by 109.2% in controls (n = 32) and decreased by 56.8% in treatment animals (n=17) (P < 0.01). Treatment with LY3023414 demonstrated tumor volume increase in 0% (control = 46.4%) (P < 0.01), decrease in 58.8% (control = 7.1%) (P < 0.01), and stable volume in 41.2% (control = 46.4%) (P = 0.77). EAC prevalence in controls increased by 25%; whereas, prevalence in treatment animals decreased by 29.4% (P < 0.01). Approximately, 75% of treatment animals presenting with residual masses on MRI had a histological response >50%. Increased apoptosis by cleaved caspase-3 (P = 0.03) and decreased proliferation by Ki67 (P < 0.01) were demonstrated in the treatment arm, when compared with the control arm. On Western blot analysis of pathway checkpoints, p-mTOR (p=0.03) and PI3K-α (P = 0.04) were downregulated in treatment responsive residual tumors, when compared with controls. LY3023414 demonstrates efficacy against EAC in a preclinical model, establishing the rationale for clinical testing.

  16. A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: ex vivo and in vivo studies.

    PubMed

    Jayakumar, Thanasekaran; Chen, Wei-Fan; Lu, Wan-Jung; Chou, Duen-Suey; Hsiao, George; Hsu, Chung-Yi; Sheu, Joen-Rong; Hsieh, Cheng-Ying

    2013-06-01

    Sulforaphane is a naturally occurring isothiocyanate, which can be found in cruciferous vegetables such as broccoli and cabbage. Sulforaphane was found to have very potent inhibitory effects on tumor growth through regulation of diverse mechanisms. However, no data are available concerning the effects of sulforaphane on platelet activation and its relative issues. Activation of platelets caused by arterial thrombosis is relevant to a variety of cardiovascular diseases. Hence, the aim of this study was to examine the in vivo antithrombotic effects of sulforaphane and its possible mechanisms in platelet activation. Sulforaphane (0.125 and 0.25 mg/kg) was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice. Other in vivo studies also revealed that sulforaphane (0.25 mg/kg) significantly prolonged platelet plug formation in mice. In addition, sulforaphane (15-75 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen. Sulforaphane inhibited platelet activation accompanied by inhibiting relative Ca(2+) mobilization; phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and Akt; and hydroxyl radical (OH(●)) formation. Sulforaphane markedly increased cyclic (c)AMP, but not cyclic (c)GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxal in-1-one), an inhibitor of guanylate cyclase, obviously reversed the sulforaphane-mediated effects on platelet aggregation; PKC activation, p38 MAPK, Akt and VASP phosphorylation; and OH(●) formation. Furthermore, a PI3-kinase inhibitor (LY294002) and a p38 MAPK inhibitor (SB203580) both significantly diminished PKC activation and p38 MAPK and Akt phosphorylation; in contrast, a PKC inhibitor (RO318220) did not diminish p38 MAPK or Akt phosphorylation stimulated by collagen. This

  17. Resistance of Akt kinases to dephosphorylation through ATP-dependent conformational plasticity.

    PubMed

    Chan, Tung O; Zhang, Jin; Rodeck, Ulrich; Pascal, John M; Armen, Roger S; Spring, Maureen; Dumitru, Calin D; Myers, Valerie; Li, Xue; Cheung, Joseph Y; Feldman, Arthur M

    2011-11-15

    Phosphorylation of a threonine residue (T308 in Akt1) in the activation loop of Akt kinases is a prerequisite for deregulated Akt activity frequently observed in neoplasia. Akt phosphorylation in vivo is balanced by the opposite activities of kinases and phosphatases. Here we describe that targeting Akt kinase to the cell membrane markedly reduced sensitivity of phosphorylated Akt to dephosphorylation by protein phosphatase 2A. This effect was amplified by occupancy of the ATP binding pocket by either ATP or ATP-competitive inhibitors. Mutational analysis revealed that R273 in Akt1 and the corresponding R274 in Akt2 are essential for shielding T308 in the activation loop against dephosphorylation. Thus, occupancy of the nucleotide binding pocket of Akt kinases enables intramolecular interactions that restrict phosphatase access and sustain Akt phosphorylation. This mechanism provides an explanation for the "paradoxical" Akt hyperphosphorylation induced by ATP-competitive inhibitor, A-443654. The lack of phosphatase resistance further contributes insight into the mechanism by which the human Akt2 R274H missense mutation may cause autosomal-dominant diabetes mellitus.

  18. C-myb Plays an Essential Role in the Protective Function of IGF-1 on Cytotoxicity Induced by Aβ25-35 via the PI3K/Akt Pathway.

    PubMed

    Zhang, Jingyu; Shu, Yongwei; Qu, Yang; Zhang, Lina; Chu, Tingting; Zheng, Yonghui; Zhao, Hong

    2017-12-01

    There have been numerous reports about neurodegenerative diseases, including Alzheimer's disease. Nevertheless, the molecules responsible for the neurodegeneration in Alzheimer's disease are basically unknown. Recent findings indicate that the cellular myeloblastosis (c-myb) regulates neural progenitor cell proliferation. In the current study, the function of insulin-like growth factor-1 (IGF-1) against cell toxicity in SH-SY5Y cells induced by β-amyloid 25-35 (Aβ 25-35 ) and its molecular mechanism were investigated. It was found that p25 protein production was raised by Aβ 25-35 (25 μM), similar to the increased expression of μ-calpain. The results also showed that Aβ 25-35 reduced c-myb, elevated tau hyper-phosphorylation, and induced death of SH-SY5Y cells. Loss of cell viability and apoptosis of SH-SY5Y cells induced by Aβ 25-35 were attenuated by IGF-1 pretreatment in a dose-dependent manner. In addition, IGF-1 blocked μ-calpain expression, which was induced by Aβ 25-35 and reduced p25 formation and tau hyper-phosphorylation. Moreover, the expression of c-myb in SH-SY5Y cells was increased by combining IGF-1 with Aβ 25-35 or IGF-1 alone. The neuroprotective function of IGF-1 was attenuated in the SH-SY5Y cells, which were transfected with a c-myb small interfering RNA. Furthermore, LY294002, a specific PI3K inhibitor, reduced c-myb expression and abolished IGF-1's protective function in SH-SY5Y cell apoptosis induced by Aβ 25-35 . The facts above indicate that c-myb has a role in IGF-1-mediated protection from Aβ 25-35 -induced cytotoxicity via the PI3K/Akt pathway.

  19. Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts.

    PubMed

    Wang, Li-Ping; Wang, Yan; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2013-05-15

    The proliferation of cardiac fibroblasts is implicated in the pathogenesis of myocardial remodeling and fibrosis. Intermediate-conductance calcium-activated K⁺ channels (K(Ca)3.1 channels) have important roles in cell proliferation. However, it is unknown whether angiotensin II (Ang II), a potent profibrotic molecule, would regulate K(Ca)3.1 channels in cardiac fibroblasts and participate in cell proliferation. In the present study, we investigated whether K(Ca)3.1 channels were regulated by Ang II, and how the channel activity mediated cell proliferation in cultured adult rat cardiac fibroblasts using electrophysiology and biochemical approaches. It was found that mRNA, protein, and current density of K(Ca)3.1 channels were greatly enhanced in cultured cardiac fibroblasts treated with 1 μM Ang II, and the effects were countered by the angiotensin type 1 receptor (AT₁R) blocker losartan, the p38-MAPK inhibitor SB203580, the ERK1/2 inhibitor PD98059, and the PI3K/Akt inhibitor LY294002. Ang II stimulated cell proliferation and the effect was antagonized by the K(Ca)3.1 blocker TRAM-34 and siRNA targeting K(Ca)3.1. In addition, Ang II-induced increase of K(Ca)3.1 expression was attenuated by transfection of activator protein-1 (AP-1) decoy oligodeoxynucleotides. These results demonstrate for the first time that Ang II stimulates cell proliferation mediated by upregulating K(Ca)3.1 channels via interacting with the AT₁R and activating AP-1 complex through ERK1/2, p38-MAPK and PI3K/Akt signaling pathways in cultured adult rat cardiac fibroblasts. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  20. Development of phosphocellulose paper-based screening of inhibitors of lipid kinases: case study with PI3Kβ.

    PubMed

    Yanamandra, Mahesh; Kole, Labanyamoy; Giri, Archana; Mitra, Sayan

    2014-03-15

    The phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate the cellular signal transduction pathways involved in cell growth, proliferation, survival, apoptosis, and adhesion. Deregulation of these pathways are common in oncogenesis, and they are known to be altered in other metabolic disorders as well. Despite its huge potential as an attractive target in these diseases, there is an unmet need for the development of a successful inhibitor. Unlike protein kinase inhibitors, screening for lipid kinase inhibitors has been challenging. Here we report, for the first time, the development of a radioactive lipid kinase screening platform using a phosphocellulose plate that involves transfer of radiolabeled [γ-(32)P]ATP to phosphatidylinositol 4,5-phosphate forming phosphatidylinositol 3,4,5-phosphate, captured on the phosphocellulose plate. Enzyme kinetics and inhibitory properties were established in the plate format using standard inhibitors, such as LY294002, TGX-221, and wortmannin, having different potencies toward PI3K isoforms. ATP and lipid apparent Km for both were determined and IC50 values generated that matched the historical data. Here we report the use of a phosphocellulose plate for a lipid kinase assay (PI3Kβ as the target) as an excellent platform for the identification of novel chemical entities in PI3K drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells.

    PubMed

    Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua

    2017-06-01

    Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.

  2. Intracellular pathways triggered by the selective FLT-1-agonist placental growth factor in vascular smooth muscle cells exposed to hypoxia.

    PubMed

    Bellik, Lydia; Vinci, Maria Cristina; Filippi, Sandra; Ledda, Fabrizio; Parenti, Astrid

    2005-10-01

    We have previously shown that hypoxia makes vascular smooth muscle cells (VSMCs) responsive to placental growth factor (PlGF) through the induction of functional fms-like tyrosine kinase (Flt-1) receptors. The aim of this study was to investigate the molecular mechanisms involved in the PlGF effects on proliferation and contraction of VSMCs previously exposed to hypoxia (3% O2). In cultured rat VSMCs exposed to hypoxia, PlGF increased the phosphorylation of protein kinase B (Akt), p38 and STAT3; activation of STAT3 was higher than that of other kinases. In agreement with this finding, the proliferation of hypoxia-treated VSMCs in response to PlGF was significantly impaired by the p38 and the phosphatidylinositol 3-kinase inhibitors SB202190 and LY294002, respectively, and was almost completely prevented by AG490, a janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) inhibitor. Since hypoxia was able to reverse the vasorelaxant effect of PlGF into a vasoconstrictor response, the mechanism of this latter effect was also investigated. Significant Flt-1 activity was measured in isolated preparations from rat aorta exposed to hypoxia. Inhibitors of mitogen-activated protein kinase kinase, Akt and STAT3 induced a modest inhibition of the vasoconstrictor response to PlGF, while the p38 inhibitor SB202190 markedly impaired the PlGF-induced contractile response. These effects were selectively mediated by Flt-1 without any involvement of foetal liver kinase-1 receptors. These data are the first evidence that different intracellular pathways activated by Flt-1 receptor in VSMCs are involved in diverse biological effects of PlGF: while mitogen activated protein kinase kinase/extracellular signal regulated kinase(1/2) and JAK/STAT play a role in VSMC proliferation, p38 is involved in VSMC contraction. These findings may highlight the role of PlGF in vascular pathology.

  3. Effects of rehabilitation training on apoptosis of nerve cells and the recovery of neural and motor functions in rats with ischemic stroke through the PI3K/Akt and Nrf2/ARE signaling pathways.

    PubMed

    Jin, Xiao-Fei; Wang, Shan; Shen, Min; Wen, Xin; Han, Xin-Rui; Wu, Jun-Chang; Tang, Gao-Zhuo; Wu, Dong-Mei; Lu, Jun; Zheng, Yuan-Lin

    2017-09-01

    This study was designed in order to investigate the effects between rehabilitation training on the apoptosis of nerve cells and the recovery of neural and motor functions of rats with ischemic stroke by way of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and nuclear factor E2-related factor 2/antioxidant responsive element (Nrf2/ARE) signaling pathways. In total, 110 healthy adult male Sprague-Dawley (SD) rats were selected in order to take part in this study. Ninety SD rats were used in order to establish the middle cerebral artery occlusion (MCAO), among which 80 rats were randomly assigned as part of the natural recovery, natural recovery+Rp-PI3K (the rats injected with PI3K/Akt inhibitor LY294002), rehabilitation training, and rehabilitation training+Rp-PI3K groups. Meanwhile, 20 rats were selected as part of the sham operation group. The neural and motor functions of these rats were evaluated using a balance beam test and the Bederson score. The mRNA expressions of PI3K, Akt, Nrf2 and HO-1 were measured using an RT-qPCR. The protein expressions of PI3K, p-PI3K, Akt, p-Akt, Nrf2 and HO-1 were also detected by using western blotting and the immunohistochemistry process. The cell cycle and cell apoptosis were detected by using a flow cytometry and TUNEL assay. The sham operation group exhibited lower neural and motor function scores than other groups. At the 7, 14, and 21 d marks of this study, the neural and motor function scores were increased in the natural recovery, natural recovery+Rp-PI3K, and rehabilitation training+Rp-PI3K groups in comparison with the rehabilitation training group but found to be decreased in the natural recovery group in comparison with the natural recovery+Rp-PI3K group. In comparison with the sham operation group, expressions of PI3K, Nrf2 and HO-1, and proportions of p-PI3K/PI3K and p-Akt/Akt were all higher in the natural recovery, rehabilitation training, and rehabilitation training+Rp-PI3K groups. Same trends were

  4. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through NO and Akt

    PubMed Central

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J.

    2011-01-01

    Objective Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous NO synthase (NOS) inhibitors ADMA and L-NMMA. This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA independent effects that influence endothelial function. Methods and Results Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in HUVEC, we found that DDAH1 acts to promote endothelial cell proliferation, migration and tube formation both by Akt phosphorylation as well as through the traditional role of degrading ADMA. Incubation of HUVEC with the NOS inhibitors L-NAME or ADMA, the soluble guanylyl cyclase inhibitor ODQ, or the cGMP analog 8-pCPT-cGMP had no effect on p-AktSer473, indicating that the increase of p-AktSer473 produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase of p-AktSer473. Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. Conclusions DDAH1 exerts a unique role in activating Akt that affects endothelial function independent of degrading endogenous NOS inhibitors. PMID:21212404

  5. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K.

    PubMed

    Molnár, Judit; Fazakas, Csilla; Haskó, János; Sipos, Orsolya; Nagy, Krisztina; Nyúl-Tóth, Ádám; Farkas, Attila E; Végh, Attila G; Váró, György; Galajda, Péter; Krizbai, István A; Wilhelm, Imola

    2016-05-03

    Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer.

  6. Morinda citrifolia Leaf Extract Enhances Osteogenic Differentiation Through Activation of Wnt/β-Catenin Signaling.

    PubMed

    Gu, Hanna; Boonanantanasarn, Kanitsak; Kang, Moonkyu; Kim, Ikhwi; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2018-01-01

    Morinda citrifolia (Noni) leaf is an herbal medicine with application in the domestic treatment of a broad range of conditions, including bone fracture and luxation. However, the basic mechanism underlying the stimulation of osteogenic differentiation by Noni leaf extract remains poorly understood. This study aimed to examine the effect of this extract on osteogenic differentiation and the mechanism by which Noni leaf extract enhances osteogenic differentiation. Aqueous extract of Noni leaves was prepared, and rutin and kaempferol-3-O-rutinoside were identified to be two of its major components. C2C12 and human periodontal ligament (hPDL) cells were used to study the effect of Noni. Noni did not show cytotoxicity at a concentration range of 0.015%-1.0% (w/v%) and significantly enhanced the activity of alkaline phosphatase (ALP) and expression levels of osteoblast differentiation markers, including Runx2, ALP, osterix, and osteocalcin, bone morphogenetic protein 2, Wnt3a, and β-catenin. In addition, Noni enhanced the matrix mineralization of hPDL cells. In the signaling pathways, Noni increased the phosphorylation levels of Akt and GSK3β and nuclear translocation and transcriptional activity of β-catenin, which were attenuated by the addition of Dkk-1, a Wnt inhibitor, or LY294002, a PI3K inhibitor. These results suggest that Noni leaf extract enhances osteogenic differentiation through the PI3K/Akt-dependent activation of Wnt/β-catenin signaling. Noni leaf extract might be a novel alternative medicine for bone and periodontal regeneration in patients with periodontal diseases.

  7. NF45 inhibits cardiomyocyte apoptosis following myocardial ischemia-reperfusion injury.

    PubMed

    Liu, Xiaojuan; Zhang, Chi; Qian, Long; Zhang, Chao; Wu, Kunpeng; Yang, Chen; Yan, Daliang; Wu, Xiang; Shi, Jiahai

    2015-12-01

    Cardiomyocyte apoptosis, which occurs during ischemia and reperfusion injury, can cause irreversible damage to cardiac function. There is accumulating evidence that nuclear factor 45 (NF45) and regulatory pathways are important in understanding reparative processes in the myocardium. NF45 is a multifunctional regulator of gene expression that participates in the regulation of DNA break repair. Recently, NF45 has been proved to be associated with tumor cell apoptosis in various human malignancies. However, the underlying mechanism of NF45 regulating myocardial ischemia-reperfusion (I/R) injury remains unclear. In this study, western blot showed that NF45 expression decreased after myocardial I/R in vivo. Double immunofluorescent staining revealed that NF45, located in the nucleus of cardiomyocyes, was correlated with cardiomyocyte apoptosis. Furthermore, NF45 expression decreased in H9c2 cells after hypoxia-reoxygenation (H/R) treatment in vitro, which was in line with the results in vivo. Overexpression of NF45 in H9c2 cells reduced cell apoptosis, as evidenced by increased Bcl-2 level, as well as decreased cleaved caspase-3, p53 and p21 expression. The expression of NF45 was reduced by LY294002 (a PI3K/Akt inhibitor), but not SB203580 (a p38 inhibitor), suggesting that NF45 prevented H/R-induced H9c2 cell apoptosis via PI3K/Akt pathway. Our data may supply a novel molecular target for acute myocardial infarction (AMI) therapy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt.

    PubMed

    Bai, Dong; Ueno, Lynn; Vogt, Peter K

    2009-12-15

    The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-kappaB (NFkappaB) by inducing phosphorylation and subsequent degradation of inhibitor of kappaB (IkappaB). We show here that NFkappaB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFkappaB-dependent transcription. The degradation of the IkappaB protein is strongly enhanced in Akt-transformed cells, and the loss of NFkappaB activity by introduction of a super-repressor of NFkappaB, IkappaBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFkappaB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFkappaB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IkappaB kinase) alpha and beta. Akt phosphorylates IKKalpha on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKalpha and beta. Our results demonstrate two separate functions of the IKK complex in NFkappaB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IkappaB and the phosphorylation of p65. The data further support the conclusion that NFkappaB activity is essential for PI3K- and Akt-induced oncogenic transformation. Copyright (c) 2009 UICC.

  9. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionate attenuates glutamate-induced caspase-3 cleavage via regulation of glycogen synthase kinase 3beta.

    PubMed

    Nishimoto, Takaaki; Kihara, Takeshi; Akaike, Akinori; Niidome, Tetsuhiro; Sugimoto, Hachiro

    2008-04-01

    Preconditioning of sublethal ischemia exhibits neuroprotection against subsequent ischemia-induced neuronal death. It has been indicated that glutamate, an excitatory amino acid, is involved in the pathogenesis of ischemia-induced neuronal death or neurodegeneration. To elucidate whether prestimulation of glutamate receptor could counter ischemia-induced neuronal death or neurodegeneration, we examined the effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), an ionotropic subtype of glutamate receptor, on excess glutamate-induced excitotoxicity using primary cortical neuronal cultures. We found that AMPA exerted a neuroprotective effect in a time- and concentration-dependent manner. A blocker of phosphatidylinositol-3 kinase (PI3K), LY294002 (10 microM), significantly attenuated AMPA-induced protection. In addition, Ser473 of Akt/PKB, a downstream target of PI3K, was phosphorylated by AMPA administration (10 microM). Glycogen synthase kinase 3beta (GSK3beta), which has been reported to be inactivated by Akt, was phosphorylated at Ser9 by AMPA. Ser9-phosphorylated GSK3beta or inactivated form would be a key molecule for neuroprotection, insofar as lithium chloride (100 microM) and SB216763 (10 microM), inhibitors of GSK3beta, also induced phosphorylation of GSK3beta at Ser9 and exerted neuroprotection, respectively. Glutamate (100 microM) increased cleaved caspase-3, an apoptosis-related cysteine protease, and caspase-3 inhibitor (Ac-DEVD-CHO; 1 microM) blocked glutamate-induced excitotoxicity in our culture. AMPA (10 microM, 24 hr) and SB216763 (10 microM) prominently decreased glutamate-induced caspase-3 cleavage. These findings suggest that AMPA activates PI3K-Akt and subsequently inhibits GSK3beta and that inactivated GSK3beta attenuates glutamate-induced caspase-3 cleavage and neurotoxicity.

  10. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    PubMed

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  11. Hexane extracts of Polygonum multiflorum improve tissue and functional outcome following focal cerebral ischemia in mice.

    PubMed

    Lee, Soo Vin; Choi, Kyung Ha; Choi, Young Whan; Hong, Jin Woo; Baek, Jin Ung; Choi, Byung Tae; Shin, Hwa Kyoung

    2014-04-01

    Polygonum multiflorum is a traditional Korean medicine that has been utilized widely in East Asian countries as a longevity agent. Clinical studies have demonstrated that Polygonum multiflorum improves hypercholesterolemia, coronary heart disease, neurosis and other diseases commonly associated with aging. However, scientific evidence defining the protective effects and mechanisms of Polygonum multiflorum against ischemic stroke is incomplete. In the present study, we investigated the cerebrovascular protective effects of Polygonum multiflorum against ischemic brain injury using an in vivo photothrombotic mouse model. To examine the underlying mechanism of action, we utilized an in vitro human brain microvascular endothelial cell (HBMEC) culture system. Hexane extracts (HEPM), ethyl acetate extracts (EAEPM) and methanol extracts (MEPM) of Polygonum multiflorum (100 mg/kg) were administered intraperitoneally 30 min prior to ischemic insult. Focal cerebral ischemia was induced in C57BL/6J mice and endothelial nitric oxide synthase knockout (eNOS KO) mice by photothrombotic cortical occlusion. We evaluated the infarct volume, as well as neurological and motor function, 24 h after ischemic brain injury. Following ischemic insult, HEPM induced a significant reduction in infarct volume and subsequent neurological deficits, compared with EAEPM and MEPM. HEPM significantly decreased infarct size and improved neurological and motor function, which was not observed in eNOS KO mice, suggesting that this cerebroprotective effect is primarily an eNOS-dependent mechanism. In vitro, HEPM effectively promoted NO production, however these effects were inhibited by the NOS inhibitor, L-NAME and the PI3K/Akt inhibitor, LY-294002. Furthermore, HEPM treatment resulted in increased phosphorylation-dependent activation of Akt and eNOS in HBMEC, suggesting that HEPM increased NO production via phosphorylation-dependent activation of Akt and eNOS. In conclusion, HEPM prevents cerebral

  12. FLT3-ITD induces expression of Pim kinases through STAT5 to confer resistance to the PI3K/Akt pathway inhibitors on leukemic cells by enhancing the mTORC1/Mcl-1 pathway.

    PubMed

    Okada, Keigo; Nogami, Ayako; Ishida, Shinya; Akiyama, Hiroki; Chen, Cheng; Umezawa, Yoshihiro; Miura, Osamu

    2018-02-06

    FLT3-ITD is the most frequent tyrosine kinase mutation in acute myeloid leukemia (AML) associated with poor prognosis. We previously reported that activation of STAT5 confers resistance to PI3K/Akt inhibitors on the FLT3-ITD-positive AML cell line MV4-11 and 32D cells driven by FLT3-ITD (32D/ITD) but not by FLT3 mutated in the tyrosine kinase domain (32D/TKD). Here, we report the involvement of Pim kinases expressed through STAT5 activation in acquisition of this resistance. The specific pan-Pim kinase inhibitor AZD1208 as well as PIM447 in combination with the PI3K inhibitor GDC-0941 or the Akt inhibitor MK-2206 cooperatively downregulated the mTORC1/4EBP1 pathway, formation of the eIF4E/eIF4G complex, and Mcl-1 expression leading to activation of Bak and Bax to induce caspase-dependent apoptosis synergistically in these cells. These cooperative effects were enhanced or inhibited by knock down of mTOR or expression of its activated mutant, respectively. Overexpression of Mcl-1 conferred the resistance on 32D/ITD cells to combined inhibition of the PI3K/Akt pathway and Pim kinases, while the Mcl-1-specific BH3 mimetic A-1210477 conquered the resistance of MV4-11 cells to GDC-0941. Furthermore, overexpression of Pim-1 in 32D/TKD enhanced the mTORC1/Mcl-1 pathway and partially protected it from the PI3K/Akt inhibitors or the FLT3 inhibitor gilteritinib to confer the resistance to PI3K/Akt inhibitors. Finally, AZD1208 and GDC-0941 cooperatively inhibited the mTORC1/Mcl-1 pathway and reduced viable cell numbers of primary AML cells from some FLT3-ITD positive cases. Thus, Pim kinases may protect the mTORC1/4EBP1/Mcl-1 pathway to confer the resistance to the PI3K/Akt inhibitors on FLT3-ITD cells and represent promising therapeutic targets.

  13. The Role of the Caspase-8 Inhibitor FLIP in Androgen-Withdrawal Induced Death of Prostate Epithelium

    DTIC Science & Technology

    2007-01-01

    cells. Cancer Res 2000;60:2384-9. 20. Voelkel-Johnson C, King DL, Norris JS. Resistance of prostate cancer cells to soluble TNF-related apoptosis...Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell...ethanol. LY294002 (Cayman) was dissolved in Androgens and FOXO3a regulate FLIP page 7 dimethylsulfoxide (DMSO). Soluble recombinant human TRAIL (Biomol

  14. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells

    PubMed Central

    Zhao, Jianfang; Klausen, Christian; Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C.K.

    2016-01-01

    Epithelial ovarian cancer is the leading cause of death among gynaecological cancers. Previous studies have demonstrated that epidermal growth factor receptor (EGFR) ligands can induce ovarian cancer cell invasion by down-regulating E-cadherin. Betacellulin is a unique member of the EGF family. It is overexpressed in a variety of cancers and is associated with reduced survival. However, the biological functions and clinical significance of betacellulin in ovarian cancer remain unknown. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by suppressing E-cadherin expression. Treatment of SKOV3 and OVCAR5 ovarian cancer cell lines with betacellulin down-regulated E-cadherin, but not N-cadherin. In addition, betacellulin treatment increased the expression of Snail and Slug, and these effects were completely blocked by pre-treatment with EGFR inhibitor AG1478. Interestingly, only knockdown of Slug reversed the down-regulation of E-cadherin by betacellulin. Betacellulin treatment induced the activation of both the MEK-ERK and PI3K-Akt signaling pathways, and it also significantly increased ovarian cancer cell migration. Importantly, the effects of betacellulin on E-cadherin, Slug and cell migration were attenuated by pre-treatment with either U0126 or LY294002. Our results suggest that betacellulin induces ovarian cancer migration and Slug-dependent E-cadherin down-regulation via EGFR-mediated MEK-ERK and PI3K-Akt signaling. PMID:27129169

  15. Evaluation of Alternative Splicing Regulators as Targets for Selective Therapy of Triple Negative (Basal) Breast Carcinoma

    DTIC Science & Technology

    2017-10-01

    inhibitor (LY294002) ? Figure 2. Signaling pathway and experimental design . Growth signal supporting tumor growth are transmitted through the PI3K...are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...are generating the experimental animals that combine the transgene with the knockout alleles. Under Task 4, we analyzed the expression of KHDRBS3 in

  16. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein.

    PubMed

    Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L

    2017-10-01

    Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.

  17. Lyα emitters with very large Lyα equivalent widths, EW0(Lyα) ≃ 200-400 Å, at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Ouchi, Masami; Shimasaku, Kazuhiro; Schaerer, Daniel; Nakajima, Kimihiko; Shibuya, Takatoshi; Ono, Yoshiaki; Rauch, Michael; Goto, Ryosuke

    2017-02-01

    We present physical properties of spectroscopically confirmed Lyα emitters (LAEs) with very large rest-frame Lyα equivalent widths EW0(Lyα). Although the definition of large EW0(Lyα) LAEs is usually difficult due to limited statistical and systematic uncertainties, we identify six LAEs selected from ˜3000 LAEs at z ˜ 2 with reliable measurements of EW0 (Lyα) ≃ 200-400 Å given by careful continuum determinations with our deep photometric and spectroscopic data. These large EW0(Lyα) LAEs do not have signatures of AGN, but notably small stellar masses of M★ = 107-8 M⊙ and high specific star formation rates (star formation rate per unit galaxy stellar mass) of ˜100 Gyr-1. These LAEs are characterized by the median values of L(Lyα) = 3.7 × 1042 erg s-1 and MUV = -18.0 as well as the blue UV continuum slope of β = -2.5 ± 0.2 and the low dust extinction E(B-V)_* = 0.02^{+0.04}_{-0.02}, which indicate a high median Lyα escape fraction of f_esc^{Lyα }=0.68± 0.30. This large f_esc^{Lyα } value is explained by the low H I column density in the interstellar medium which is consistent with full width at half-maximum (FWHM) of the Lyα line, FWHM(Lyα) = 212 ± 32 km s-1, significantly narrower than those of small EW0(Lyα) LAEs. Based on the stellar evolution models, our observational constraints of the large EW0 (Lyα), the small β, and the rest-frame He II EW imply that at least a half of our large EW0(Lyα) LAEs would have young stellar ages of ≲20 Myr and very low metallicities of Z < 0.02 Z⊙ regardless of the star formation history.

  18. BRAFV600E Negatively Regulates the AKT Pathway in Melanoma Cell Lines

    PubMed Central

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F.; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways. PMID:22880048

  19. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    PubMed

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  20. Osteoblast proliferation is enhanced upon the insulin receptor substrate 1 overexpression via PI3K signaling leading to down-regulation of NFκB and BAX pathway.

    PubMed

    Ma, H; Ma, J X; Xue, P; Gao, Y; Li, Y K

    2015-02-01

    The insulin receptor substrate 1 (IRS1) promotes bone formation via osteoblast proliferation mediated by PI3K/Akt signaling. A reduction in NFκB activity in osteoblasts results in an increase in bone formation. The NFκB signaling pathway leads to increased expression of BAX, which contributes to osteoblast apoptosis. The purpose of this study was to investigate the expression of recombinant plasmid enhanced green fluorescent protein-N1 (pEGFP-N1) that transferred IRS1 gene into osteoblasts in vitro and evaluate the effects of IRS1 overexpression on NFκBp65 and on BAX. Osteoblasts were transfected with pEGFP-N1 or pEGFP-N1 encoding wild-type IRS1 (pEGFP-N1-IRS1). Cell cycle analysis was performed using flow cytometry. The expression levels of NFκBp65 and BAX were measured by Western blotting. Our results revealed that overexpression of IRS1 stimulated osteoblast proliferation, as evidenced by an increase in the number of cells in the S phase compared to controls. IRS1 overexpression in osteoblasts activated the PI3K/Akt pathway, and inhibited expression of NFκBp65 and BAX. When osteoblasts transfected with pEGFP-N1-IRS1 were exposed to a PI3K inhibitor (LY294002), the effects of IRS1 overexpression were reversed. On the basis of our study, it seems that osteoblasts proliferated upon IRS1 overexpression due to inhibition of the NFκB pathway and downregulation of BAX through PI3K/Akt signaling. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cellsmore » increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.« less

  2. GPER-1 agonist G1 induces vasorelaxation through activation of epidermal growth factor receptor-dependent signalling pathway.

    PubMed

    Jang, Eun Jin; Seok, Young Mi; Arterburn, Jeffrey B; Olatunji, Lawrence A; Kim, In Kyeom

    2013-10-01

    The G protein-coupled oestrogen receptor-1 (GPER-1) agonist G1 induces endothelium-dependent relaxation. Activation of the epidermal growth factor (EGF) receptor leads to transduction of signals from the plasma membrane for the release of nitric oxide. We tested the hypothesis that G1 induces endothelium-dependent vasorelaxation through activation of the EGF receptor. Rat aortic rings were mounted in organ baths. After pretreatment with various inhibitors, aortic rings contracted with 11,9-epoxymethano-prostaglandin F2α or KCl were subjected to relaxation by G1. G1 induced endothelium-dependent vasorelaxation, which was attenuated by pretreatment with either L -N(ω) -nitroarginine methyl ester (L -NAME), an inhibitor of nitric oxide synthase, or (3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline HB-EGF, heparin-binding EGF-like growth factor, a GPER-1 antagonist. Neither a general oestrogen receptor antagonist, ICI 182 780, nor a selective oestrogen receptor-α antagonist, methyl-piperidino-pyrazole dihydrochloride (MPP), had an effect on G1-induced vasorelaxation. However, pretreatment with EGF receptor blockers, AG1478 or DAPH, resulted in attenuated G1-induced vasorelaxation. In addition, pretreatment with Src inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or Akt inhibitor VIII also resulted in attenuated vascular relaxation induced by the cumulative addition of G1. However, neither phosphatidylinositol-3 kinase inhibitors LY294002 and wortmannin nor an extracellular signal-regulated kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto) butadiene monoethanolate had effect on vascular relaxation induced by the cumulative addition of G1. G1 induces endothelium-dependent vasorelaxation through Src-mediated activation of the EGF receptor and the Akt pathway in rat aorta. © 2013 Royal Pharmaceutical Society.

  3. Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid.

    PubMed

    Budni, J; Romero, A; Molz, S; Martín-de-Saavedra, M D; Egea, J; Del Barrio, L; Tasca, C I; Rodrigues, A L S; López, M G

    2011-09-08

    Folic acid (folate) is a vitamin of the B-complex group that is essential for cell replication. Folate is a major determinant of one-carbon metabolism, in which S-adenosylmethionine donates methyl groups that are crucial for neurological function. Many roles for folic acid have been reported, including neuroprotective and antidepressant properties. On the other hand, increased concentrations of corticoids have proven neurotoxic effects and hypersecretion of glucocorticoids has been linked to different mood disorders. The purpose of this study was to investigate the potential protective effect of folic acid on dexamethasone-induced cellular death in SH-SY5Y neuroblastoma cell line and the possible intracellular signaling pathway involved in such effect. Exposure to 1 mM dexamethasone for 48 h caused a significant reduction of cell viability measured as 3-[4,5 dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) reduction. Exposure of SH-SY5Y cells for 72 h to increasing concentrations of folate (1-300 μM) was not cytotoxic. However, pretreatment with folate (10-300 μM) reduced dexamethasone-induced toxicity in a significant manner. To explore the putative intracellular signaling pathways implicated in the protective effect of folate we used different protein kinase inhibitors. The protective effect of folic acid on dexamethasone-induced neurotoxicity was reversed by the phosphatidylinositol-3 kinase/Akt (PI3K/Akt, LY294002), Ca²⁺/Calmodulin-dependent protein kinase II (CaMKII, KN-93), and protein kinase A (PKA, H-89) inhibitors, but not the mitogen-activated protein/extracellular signal-regulated kinase (MEK1/2, PD98059) and protein kinase C (PKC, chelerythrine) inhibitors. In conclusion, the results of this study show that folic acid can protect against dexamethasone-induced neurotoxicity and its protective mechanism is related to a signaling pathway that involves PI3K/Akt, CaMKII, and PKA. Copyright © 2011. Published by Elsevier Ltd.

  4. Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer.

    PubMed

    Scagliotti, Giorgio; Kang, Jin Hyoung; Smith, David; Rosenberg, Richard; Park, Keunchil; Kim, Sang-We; Su, Wu-Chou; Boyd, Thomas E; Richards, Donald A; Novello, Silvia; Hynes, Scott M; Myrand, Scott P; Lin, Ji; Smyth, Emily Nash; Wijayawardana, Sameera; Lin, Aimee Bence; Pinder-Schenck, Mary

    2016-10-01

    Introduction LY2603618 is a selective inhibitor of checkpoint kinase 1 (CHK1) protein kinase, a key regulator of the DNA damage checkpoint, and is predicted to enhance the effects of antimetabolites, such as pemetrexed. This phase II trial assessed the overall response rate, safety, and pharmacokinetics (PK) of LY2603618 and pemetrexed in patients with non-small cell lung cancer (NSCLC). Methods In this open-label, single-arm trial, patients with advanced or metastatic NSCLC progressing after a prior first-line treatment regimen (not containing pemetrexed) and Eastern Cooperative Oncology Group performance status ≤2 received pemetrexed (500 mg/m(2), day 1) and LY2603618 (150 mg/m(2), day 2) every 21 days until disease progression. Safety was assessed using Common Terminology Criteria for Adverse Events v3.0. Serial blood samples were collected for PK analysis after LY2603618 and pemetrexed administration. Expression of p53, as measured by immunohistochemistry and genetic variant analysis, was assessed as a predictive biomarker of response. Results Fifty-five patients were enrolled in the study. No patients experienced a complete response; a partial response was observed in 5 patients (9.1 %; 90 % CI, 3.7-18.2) and stable disease in 20 patients (36.4 %). The median progression-free survival was 2.3 months (range, 0-27.1). Safety and PK of LY2603618 in combination with pemetrexed were favorable. No association between p53 status and response was observed. Conclusions There was no significant clinical activity of LY2603618 and pemetrexed combination therapy in patients with advanced NSCLC. The results were comparable with historical pemetrexed single-agent data, with similar safety and PK profiles being observed.

  5. Lyα Profile, Dust, and Prediction of Lyα Escape Fraction in Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Dijkstra, Mark; Tilvi, V.; Wang, Junxian

    2017-08-01

    We studied Lyman-α (Lyα) escape in a statistical sample of 43 Green Peas with HST/COS Lyα spectra. Green Peas are nearby star-forming galaxies with strong [O III]λ5007 emission lines. Our sample is four times larger than the previous sample and covers a much more complete range of Green Pea properties. We found that about two-thirds of Green Peas are strong Lyα line emitters with rest-frame Lyα equivalent width > 20 \\mathringA . The Lyα profiles of Green Peas are diverse. The Lyα escape fraction, defined as the ratio of observed Lyα flux to intrinsic Lyα flux, shows anti-correlations with a few Lyα kinematic features—both the blue peak and red peak velocities, the peak separations, and the FWHM of the red portion of the Lyα profile. Using properties measured from Sloan Digital Sky Survey optical spectra, we found many correlations—the Lyα escape fraction generally increases at lower dust reddening, lower metallicity, lower stellar mass, and higher [O III]/[O II] ratio. We fit their Lyα profiles with the H I shell radiative transfer model and found that the Lyα escape fraction is anti-correlated with the best-fit N H I . Finally, we fit an empirical linear relation to predict {f}{esc}{Lyα } from the dust extinction and Lyα red peak velocity. The standard deviation of this relation is about 0.3 dex. This relation can be used to isolate the effect of intergalactic medium (IGM) scatterings from Lyα escape and to probe the IGM optical depth along the line of sight of each z> 7 Lyα emission-line galaxy in the James Webb Space Telescope era.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Wooyoung; Bazer, Fuller W.; Song, Gwonhwa, E-mail: ghsong@korea.ac.kr

    The low oxygen environment in the uterine environment requires pre-implantation embryos to adapt to oxygen deficiency. Hypoxia-inducible factor (HIF)-1 is a master regulator whereby cells adapt to changes in oxygen concentrations. In addition to hypoxic conditions, non-hypoxic stimuli such as growth factors also activate expression of HIF-1. In this study, the mechanisms underlying low oxygen-dependent and epidermal growth factor (EGF)-dependent expression of HIF-1α were explored using porcine trophectoderm (pTr) cells. The results indicated that expression of HIF-1α and HIF-1β mRNAs was not affected by low concentrations of oxygen; however, hypoxic conditions markedly increased the abundance of HIF-1α protein, especially inmore » nuclei of pTr cells. Even under normoxic conditions, the abundance of HIF-1α protein increased in response to EGF. This EGF-mediated increase in HIF-1α protein was blocked through inhibition of translation by cycloheximide. The inhibitors LY294002 (PI3K-AKT inhibitor), U0126 (inhibitor of ERK1/2) and rapamycin (mTOR inhibitor) also blocked the ability of EGF to increase HIF-1α protein and to phosphorylate AKT, ERK1/2 and mTOR proteins. Both hypoxia and EGF induced proliferation of pTr cells. This ability of EGF to stimulate proliferation of pTr cells was suppressed by EGFR siRNA, but not HIF-1α siRNA, but a significant decrease in EGF-induced HIF-1α protein occurred when pTr cells were transfected with HIF-1α siRNA. The results of the present study suggest that pTr cells adapt to oxygen deficiency and proliferate in response to an oxygen-dependent HIF-1 system, and that EGF at maternal–conceptus interface can increase the abundance of HIF-1α protein via translational regulation through AKT, ERK1/2 and mTOR signaling cascades. - Highlights: • HIF-1α expression is up-regulated in pTr cells under low oxygen concentrations. • EGF induces HIF-1α accumulation in pTr cells. • EGF-induced HIF-1α accumulation is blocked by

  7. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt.

    PubMed

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J

    2011-04-01

    Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous nitric oxide (NO) synthase (NOS) inhibitors asymmetrical dimethylarginine (ADMA) and L-NG-monomethyl arginine (L-NMMA). This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA-independent effects that influence endothelial function. Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in human umbilical vein endothelial cells, we found that DDAH1 acts to promote endothelial cell proliferation, migration, and tube formation by Akt phosphorylation, as well as through the traditional role of degrading ADMA. Incubation of human umbilical vein endothelial cells with the NOS inhibitors l-NG-nitro-arginine methyl ester (L-NAME) or ADMA, the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-2)quinoxalin-1-one, or the cGMP analog 8-(4-Chlorophenylthio)-cGMP had no effect on phosphorylated (p)-Akt(Ser473), indicating that the increase in p-Akt(Ser473) produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase in p-Akt(Ser473). Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. DDAH1 exerts a unique role in activating Akt that affects endothelial function independently of degrading endogenous NOS inhibitors.

  8. EphB4 Receptor Tyrosine Kinase in Prostate Cancer

    DTIC Science & Technology

    2011-09-01

    San Diego, La Jolla, CA, USAAbbreviations: MAP kinase, mitogen-activated prote tidylinositol 4,5-bisphosphate; PI(3,4,5)P3, phosphatid PI3K...okadaic acid (MP Biomedicals, 150 μM stock in DMSO), LY294002, PD98059, rapamycin (see previous section), dasatinib (LC Laboratories; 50 μM stock in DMSO...the phosphatase inhibitor tautomycin, which preferentially inhibits PP1 over PP2A. The cells were stimulated and analyzed as in (D). (F) Okadaic acid

  9. Oncosuppressive suicide gene virotherapy "PVH1-yCD/5-FC" for pancreatic peritoneal carcinomatosis treatment: NFκB and Akt/PI3K involvement.

    PubMed

    Réjiba, Soukaina; Bigand, Christelle; Parmentier, Celine; Masmoudi, Ahmed; Hajri, Amor

    2013-01-01

    Peritoneal carcinomatosis is common in advanced pancreatic cancer. Despite current standard treatment, patients with this disease until recently were considered incurable. Cancer gene therapy using oncolytic viruses have generated much interest over the past few years. Here, we investigated a new gene directed enzyme prodrug therapy (GDEPT) approach for an oncosuppressive virotherapy strategy using parvovirus H1 (PV-H1) which preferentially replicates and kills malignant cells. Although, PV-H1 is not potent enough to destroy tumors, it represents an attractive vector for cancer gene therapy. We therefore sought to determine whether the suicide gene/prodrug system, yCD/5-FC could be rationally combined to PV-H1 augmenting its intrinsic oncolytic activity for pancreatic cancer prevention and treatment. We showed that the engineered recombinant parvovirus rPVH1-yCD with 5-FC treatment increased significantly the intrinsic cytotoxic effect and resulted in potent induction of apoptosis and tumor growth inhibition in chemosensitive and chemoresistant cells. Additionally, the suicide gene-expressing PV-H1 infection reduced significantly the constitutive activities of NFκB and Akt/PI3K. Combination of their pharmacological inhibitors (MG132 and LY294002) with rPVH1-yCD/5-FC resulted in substantial increase of antitumor activity. In vivo, high and sustained expression of NS1 and yCD was observed in the disseminated tumor nodules and absent in normal tissues. Treatment of mice bearing intraperitoneal pancreatic carcinomatosis with rPVH1-yCD/5-FC resulted in a drastic inhibition of tumor cell spreading and subsequent increase in long-term survival. Together, the presented data show the improved oncolytic activity of wPV-H1 by yCD/5-FC and thus provides valuable effective and promising virotherapy strategy for prevention of tumor recurrence and treatment. In the light of this study, the suicide gene parvovirotherapy approach represents a new weapon in the war against

  10. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Peter Tzu-Yu; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Lin, Chih-Chung

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression andmore » cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2

  11. Dietary flavonoid fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management

    PubMed Central

    Adhami, Vaqar Mustafa; Syed, Deeba; Khan, Naghma; Mukhtar, Hasan

    2013-01-01

    Epidemiologic and case control population based studies over the past few decades have identified diet as an important determinant of cancer risk. This evidence has kindled an interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds has been fisetin (3,7,3’,4’-tetrahydroxyflavone), a flavonol and a member of the flavonoid polyphenols that also include quercetin, myricetin and kaempferol. Fisetin is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. We evaluated the effects of fisetin against melanoma and cancers of the prostate, pancreas and the lungs. Using prostate and lung adenocarcinoma cells, we observed that fisetin acts as a dual inhibitor of the PI3K/Akt and the mTOR pathways. This is a significant finding considering the fact that mTOR is phosphorylated and its activation is more frequent in tumors with overexpression of PI3K/Akt. Dual inhibitors of PI3K/Akt and mTOR signaling have been suggested as valuable agents for treating such cancers. Here, we summarize our findings on the dietary flavonoid fisetin and its effects on cancer with particular focus on prostate cancer. Our observations and findings from other laboratories suggest that fisetin could be a useful chemotherapeutic agent that could be used either alone or as an adjuvant with conventional chemotherapeutic drugs for the management of prostate and other cancers. PMID:22842629

  12. Oncosuppressive Suicide Gene Virotherapy “PVH1-yCD/5-FC” for Pancreatic Peritoneal Carcinomatosis Treatment: NFκB and Akt/PI3K Involvement

    PubMed Central

    Réjiba, Soukaina; Bigand, Christelle; Parmentier, Celine; Masmoudi, Ahmed; Hajri, Amor

    2013-01-01

    Peritoneal carcinomatosis is common in advanced pancreatic cancer. Despite current standard treatment, patients with this disease until recently were considered incurable. Cancer gene therapy using oncolytic viruses have generated much interest over the past few years. Here, we investigated a new gene directed enzyme prodrug therapy (GDEPT) approach for an oncosuppressive virotherapy strategy using parvovirus H1 (PV-H1) which preferentially replicates and kills malignant cells. Although, PV-H1 is not potent enough to destroy tumors, it represents an attractive vector for cancer gene therapy. We therefore sought to determine whether the suicide gene/prodrug system, yCD/5-FC could be rationally combined to PV-H1 augmenting its intrinsic oncolytic activity for pancreatic cancer prevention and treatment. We showed that the engineered recombinant parvovirus rPVH1-yCD with 5-FC treatment increased significantly the intrinsic cytotoxic effect and resulted in potent induction of apoptosis and tumor growth inhibition in chemosensitive and chemoresistant cells. Additionally, the suicide gene-expressing PV-H1 infection reduced significantly the constitutive activities of NFκB and Akt/PI3K. Combination of their pharmacological inhibitors (MG132 and LY294002) with rPVH1-yCD/5-FC resulted in substantial increase of antitumor activity. In vivo, high and sustained expression of NS1 and yCD was observed in the disseminated tumor nodules and absent in normal tissues. Treatment of mice bearing intraperitoneal pancreatic carcinomatosis with rPVH1-yCD/5-FC resulted in a drastic inhibition of tumor cell spreading and subsequent increase in long-term survival. Together, the presented data show the improved oncolytic activity of wPV-H1 by yCD/5-FC and thus provides valuable effective and promising virotherapy strategy for prevention of tumor recurrence and treatment. In the light of this study, the suicide gene parvovirotherapy approach represents a new weapon in the war against

  13. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed Central

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-01-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets. PMID:10947961

  14. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  15. Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells.

    PubMed

    Chen, Kuan-Hung; Weng, Meng-Shih; Lin, Jen-Kun

    2007-01-15

    Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is a polymethoxylated flavonoid concentrated in the peel of citrus fruits. Recent studies have shown that tangeretin exhibits anti-proliferative, anti-invasive, anti-metastatic, and antioxidant activities. However, the anti-inflammatory properties of tangeretin are unclear. In this study, we examine the effects of tangeretin and its structure-related compound, nobiletin, on the expression of cyclooxygenases-2 (COX-2) in human lung epithelial carcinoma cells, A549, and human non-small cell lung carcinoma cells, H1299. Tangeretin exerts a much better inhibitory activity than nobiletin against IL-1beta-induced production of COX-2 in A549 cells, and it effectively represses the constitutively expressed COX-2 in H1299. RT-PCR was used to investigate the transcriptional inhibition of COX-2 by tangeretin. COX-2 mRNA was rapidly induced by IL-1beta in 3h and markedly suppressed by tangeretin. IL-1beta-induced the activation of ERK, p38 MAPK, JNK, and AKT in A549 cells. COX-2 expression in response to IL-1beta was attenuated by pretreatment with SB203580, SP600125, and LY294002, but not with PD98059, suggesting the involvement of p38 MAPK, JNK, and PI3K in this response. Pretreatment of cells with tangeretin inhibited IL-1beta-induced p38 MAPK, JNK, and AKT phosphorylation and the downstream activation of NF-kappaB. These results may reveal that the tangeretin inhibition of IL-1beta-induced COX-2 expression in A549 cells is, at least in part, mediated through suppression of NF-kappaB transcription factor as well as through suppression of the signaling proteins of p38 MAPK, JNK, and PI3K, but not of ERK.

  16. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.

    PubMed

    Lin, Hui-Ping; Kuo, Li-Kuo; Chuu, Chih-Pin

    2012-01-01

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Function-specific intracellular signaling pathways downstream of heparin-binding EGF-like growth factor utilized by human trophoblasts.

    PubMed

    Jessmon, Philip; Kilburn, Brian A; Romero, Roberto; Leach, Richard E; Armant, D Randall

    2010-05-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1-2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation.

  18. Function-Specific Intracellular Signaling Pathways Downstream of Heparin-Binding EGF-Like Growth Factor Utilized by Human Trophoblasts1

    PubMed Central

    Jessmon, Philip; Kilburn, Brian A.; Romero, Roberto; Leach, Richard E.; Armant, D. Randall

    2010-01-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1–2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation. PMID:20130271

  19. Insulin-like Growth Factor-I Mediates Neuroprotection in Proteasome Inhibition-Induced Cytotoxicity in SH-SY5Y Cells

    PubMed Central

    Cheng, Benxu; Maffi, Shivani Kaushal; Martinez, Alex Anthony; Acosta, Yolanda P Villarreal; Morales, Liza D; Roberts, James L

    2011-01-01

    The proteasome is an enzyme complex responsible for targeted intracellular proteolysis. Alterations in proteasome-mediated protein clearance have been implicated in the pathogenesis of aging, Alzheimer's disease (AD) and Parkinson's disease (PD). In such diseases, proteasome inhibition may contribute to formation of abnormal protein aggregates, which in turn activate intracellular unfolded protein responses that cause oxidative stress and apoptosis. In this study, we investigated the protective effect of Insulin-like Growth Factor-I (IGF-1) for neural SH-SY5Y cells treated with the proteasomal inhibitor, Epoxomicin, In SH-SY5Y cells, Epoxomicin treatment results in accumulation of intracellular ubiquitinated proteins and cytochrome c release from damaged mitochondria, leading to cell death, in Epoxomicin time- and dose-dependent manner. In cells treated with small amounts of IGF-1, the same dosages of Epoxomicin reduced both mitochondrial damage (cytochrome c release) and reduced caspase-3 activation and PARP cleavage, both of which are markers of apoptosis. Notably, however, IGF-1-treated SH-SY5Y cells still contained ubiquitinated protein aggregates. This result indicates that IGF-1 blocks the downstream apoptotic consequences of Epoxomicin treatment leading to decreased proteasome function. Clues as to the mechanism for this protective effect come from (a) increased AKT phosphorylation observed in IGF-1-protected cells, vs. cells exposed to Epoxomicin without IGF-1, and (b) reduction of IGF-1 protection by pretreatment of the cells with LY294002 (an inhibitor of PI3-kinase). Together these findings suggest that activation of PI3/AKT pathways by IGF-1 is involved in IGF-1 neuroprotection against apoptosis following proteasome inhibition. PMID:21545837

  20. The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL-induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells

    PubMed Central

    NATHWANI, SEEMA-MARIA; GREENE, LISA M.; BUTINI, STEFANIA; CAMPIANI, GIUSEPPE; WILLIAMS, D. CLIVE; SAMALI, AFSHIN; SZEGEZDI, EVA; ZISTERER, DANIELA M.

    2016-01-01

    Apoptotic defects are frequently associated with poor outcome in pediatric acute lymphoblastic leukaemia (ALL) hence there is an ongoing demand for novel strategies that counteract apoptotic resistance. The death ligand TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) and its selective tumour receptor system has attracted exceptional clinical interest. However, many malignancies including ALL are resistant to TRAIL monotherapy. Tumour resistance can be overcome by drug combination therapy. TRAIL and its agonist antibodies are currently undergoing phase II clinical trials with established chemotherapeutics. Herein, we present promising therapeutic benefits in combining TRAIL with the selective anti-leukaemic agents, the pyrrolo-1,5-benzoxazepines (PBOXs) for the treatment of ALL. PBOX-15 synergistically enhanced apoptosis induced by TRAIL and a DR5-selective TRAIL variant in ALL-derived cells. PBOX-15 enhanced TRAIL-induced apoptosis by dual activation of extrinsic and intrinsic apoptotic pathways. The specific caspase-8 inhibitor, Z-IETD-FMK, identified the extrinsic pathway as the principal mode of apoptosis. We demonstrate that PBOX-15 can enhance TRAIL-induced apoptosis by upregulation of DR5, reduction of cellular mitochondrial potential, activation of the caspase cascade and downregulation of PI3K/Akt, c-FLIP, Mcl-1 and IAP survival pathways. Of note, the PI3K pathway inhibitor LY-294002 significantly enhanced the apoptotic potential of TRAIL and PBOX-15 validating the importance of Akt downregulation in the TRAIL/PBOX-15 synergistic combination. Considering the lack of cytotoxicity to normal cells and ability to downregulate several survival pathways, PBOX-15 may represent an effective agent for use in combination with TRAIL for the treatment of ALL. PMID:27176505