Sample records for al ca cr

  1. Cross sections for He and Ne isotopes in natural Mg, Al, and Si, He isotopes in CaF2, Ar isotopes in natural Ca, and radionuclides in natural Al, Si, Ti, Cr, and stainless steel induced by 12- to 45-MeV protons

    NASA Technical Reports Server (NTRS)

    Walton, J. R.; Heymann, D.; Yaniv, A.; Edgerley, D.; Rowe, M. W.

    1976-01-01

    Stacks of thin Mg, Al, Si, Ca, CaF2, Ti, and stainless steel foils were bombarded in twelve irradiations by a variable energy cyclotron. Cross sections are reported for He and Ne in natural Mg, Al, and Si, and for He in CaF2, and for Ar in natural Ca, as determined from mass spectrometer analysis of the inert gases. In addition, cross sections of Na-22 in natural Al and Si, of V-48 in natural Ti, and of Cr-51, Mn-52, and Co-57 in stainless steel are reported. From these were deduced Cr-51 and Mn-52 cross sections in natural Cr.

  2. The effect of Al2O3, CaO, Cr2O3 and MgO on devitrification of silica

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    The effect of doping on devitrification of vitreous silica was studied at 1100, 1200, and 1300 C. Dispersion of dopants on a molecular scale was accomplished via a sol-gel technique. All dopants accelerated the devitrification of silica but to different degrees. The most active was CaO followed by MgO, Al2O3, and Cr2O3. Pure silica and silica containing Cr2O3 and Al2O3 devitrified to alpha-cristobalite only, whereas silica doped with CaO and MgO produced alpha-quartz and alpha-cristobalite. It appears that prolonged heat treatment would cause alpha-quartz to transform to alpha-cristobalite.

  3. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lihua; He, Xiaoman; Qu, Jun

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kineticsmore » with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less

  4. Cr6+-containing phases in the system CaO-Al2O3-CrO42--H2O at 23 °C

    NASA Astrophysics Data System (ADS)

    Pöllmann, Herbert; Auer, Stephan

    2012-01-01

    Synthesis and investigation of lamellar calcium aluminium hydroxy salts was performed to study the incorporation of chromate ions in the interlayer of lamellar calcium aluminium hydroxy salts. Different AFm-phases (calcium aluminate hydrate with alumina, ferric oxide, mono-anion phase) containing chromate were synthesized. These AFm-phases belong to the group of layered double hydroxides (LDHs). 3CaO·Al2O3·CaCrO4·nH2O and C3A·1/2Ca(OH)2·1/2CaCrO4·12H2O were obtained as pure phases and their different distinct interlayer water contents and properties determined. Solid solution of chromate-containing phases and tetracalcium-aluminate-hydrate (TCAH) were studied. The uptake of chromate into TCAH from solutions was proven. Chromate contents in solution decrease to <0.2 mg/l.

  5. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    NASA Astrophysics Data System (ADS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.

  6. Ehimeite, NaCa2Mg4CrSi6Al2O22(OH)2: The first Cr-dominant amphibole from the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nishio-Hamane, Daisuke; Ohnishi, Masayuki; Minakawa, Tetsuo; Yamaura, Jun-Ichi; Saito, Shohei; Kadota, Ryo

    The first Cr-dominant amphibole, ehimeite, ideally NaCa2Mg4CrSi6Al2O22(OH)2, has been found in a chromitite deposit in the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan. Ehimeite occurs as prismatic crystals of up to 1.5 cm in length and 0.5 cm in width and is found in association with chromite, kämmererite (Cr-rich clinochlore), Cr-poor clinochlore, phlogopite, and uvarovite. It is transparent, emerald green to pale green in color with pale green streaks, and has a vitreous luster. Optically, it is biaxial positive with α = 1.644(2), β = 1.647(2), γ = 1.659(2), and 2Vcalc. = 53°. It has a Mohs’ hardness of 6 and densities of 3.08(3) g/cm3 (measured using heavy liquids) and 3.121 g/cm3 (calculated from powder diffraction data and the empirical formula). The empirical formula is (Na0.88K0.07)Σ0.95(Ca1.89Na0.02Mg0.09)Σ2.00(Mg4.03Cr0.62Al0.19Fe3+0.07Fe2+0.07Ti0.03)Σ5.00(Si6.14Al1.86)Σ8.00O22(OH)2 on the basis of O = 22 and OH = 2, and ehimeite mainly forms a solid solution, NaCa2Mg4(Cr, Al)Si6Al2O22(OH)2, with pargasite. It has a monoclinic unit cell with a = 9.9176(14) Å, b = 18.0009(12) Å, c = 5.2850(7) Å, β = 105.400(7)°, V = 909.6 (17) Å3, and Z = 2, and it belongs to the space group C2/m, as refined from powder XRD data. The eight strongest lines in the powder XRD pattern [d (Å), I/I0, hkl] are (3.370, 58, 150), (2.932, 43, 221), (2.697, 81, 151), (2.585, 50, 061), (2.546, 100, 202), (2.346, 42, 351), (2.156, 35, 261), and (1.514, 55, 263). The crystal structure has been refined to R1 = 0.0488 using single-crystal XRD data. It has been concluded that ehimeite in the Akaishi Mine was formed by the reaction of chromitite and the metamorphic fluid in the retrograde stage of serpentinization during the Sanbagawa metamorphism.

  7. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  8. Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)

    NASA Astrophysics Data System (ADS)

    Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.

    2014-02-01

    In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.

  9. Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Xu, Bajin; Ling, Guoping

    2015-03-01

    In this paper, α-Al2O3 film was prepared by low temperature thermal oxidation of Al8Cr5 coating. The Al8Cr5 alloy coating was prepared on SUS430 stainless steel through a two-step approach including electrodepositing Cr/Al composite coating and subsequent heat treatment at 740 °C for 16 h. After mechanical polishing removal of voids on the surface, the Al8Cr5 coating was thermal oxidized at 720 °C in argon for 100 h. The samples were characterized by SEM, EDX, XRD, XPS and TEM. XPS detection on the surface of oxidized Al8Cr5 coating showed that the oxide film mainly consisted of Al2O3. TEM characterization of the oxide film showed that it was α-Al2O3 films ca. 110 nm. The formation of α-Al2O3 films at low temperature can be attributed to the formation of Cr2O3 nuclei at the initial stage of oxidation which lowers the nucleation energy barrier of α-Al2O3.

  10. Synthesis, characterization of double perovskite Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feraru, S.; Samoila, P.; Borhan, A.I.

    2013-10-15

    Double perovskite-type oxide Ca{sub 2}MSbO{sub 6} materials, where M = Dy, Fe, Cr, and Al, were prepared by using the sol–gel auto-combustion method. The role of different B-site cations on their synthesis, structures, morphologies and catalytic properties was investigated. The progress of double-perovskite type structure formation and the disappearance of the organic phases were monitored by infrared absorption spectroscopy (FTIR). Double perovskite oxide structures were evaluated using X-ray diffraction (XRD), while the microstructure of obtained compounds was studied using scanning electron microscopy (SEM). Also, BET surface areas were measured at the liquid nitrogen temperature by nitrogen adsorption. Catalytic properties ofmore » the obtained compounds were evaluated by test reaction of hydrogen peroxide decomposition. - Highlights: • Ca{sub 2}MSbO{sub 6} double perovskites were obtained by sol–gel auto-combustion method. • Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr and Al) as catalysts in H{sub 2}O{sub 2} decomposition • Strong relationship between particles' shape, BET area and catalytic performance • Ca{sub 2}FeSbO{sub 6} spherical grains show superior catalytic activity.« less

  11. Reaction diffusion in the NiCrAl and CoCrAl systems

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1978-01-01

    The paper assesses the effect of overlay coating and substrate composition on the kinetics of coating depletion by interdiffusion. This is accomplished by examining the constitution, kinetics and activation energies for a series of diffusion couples primarily of the NiCrAl/Ni-10Cr or CoCrAl/Ni-10Cr type annealed at temperatures in the range 1000-1205 C for times up to 500 hr. A general procedure is developed for analyzing diffusion in multicomponent multiphase systems. It is shown that by introducing the concept of beta-source strength, which can be determined from appropriate phase diagrams, the Wagner solution for consumption of a second phase in a semiinfinite couple is successfully applied to the analysis of MCrAl couples. Thus, correlation of beta-recession rate constants with couple composition, total and diffusional activation energies, and interdiffusion coefficients are determined.

  12. Inhibition of plasma membrane Ca(2+)-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca(2+)-occluded state.

    PubMed

    Moreira, Otacilio C; Rios, Priscila F; Barrabin, Hector

    2005-07-15

    The bidentate complex of ATP with Cr(3+), CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca(2+)-ATPase and the Na(+),K(+)-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca(2+) and Na(+), respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca(2+)-ATPase. The complex inhibited with similar efficiency the Ca(2+)-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T(1/2)=30 min at 37 degrees C) with a K(i)=28+/-9 microM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg(2+) but unaltered when Ca(2+) was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca(2+) occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La(3+) with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca(2+) at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca(2+) promoted by the plasma membrane Ca(2+)-ATPase goes through an enzymatic phospho-intermediate that maintains Ca(2+) ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.

  13. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    PubMed

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  14. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.

    1980-01-01

    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  15. Response of Cr and Cr-Al coatings on Zircaloy-2 to high temperature steam

    NASA Astrophysics Data System (ADS)

    Zhong, Weicheng; Mouche, Peter A.; Heuser, Brent J.

    2018-01-01

    The oxidation behavior of chromium (Cr) and chromium-aluminum (CrAl) coatings with various compositions deposited on Zircaloy-2 to 700 °C high-temperature steam (HTS) exposure has been investigated. CrAl coatings with higher Al compositions demonstrate lower oxidation weight gain. A layer of γ-alumina developed on the CrAl coatings with Al composition over 43 at%, while Al2O3 and Cr2O3 developed on CrAl coatings with Al composition below 33 at%. Oxidation of Zircaloy-2 substrate was inhibited by the 1um coatings to 20 h HTS exposure. Coating constituent elements diffused into the substrate and formed intermetallic phases with the Zircaloy substrate. Thicker layers of intermetallic phases developed on the coatings with higher Al composition. The intermetallic phases included Fe and Ni, indicating the dissolution of second phase particles (SPPs) during HTS exposure.

  16. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2 nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  17. Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings

    NASA Astrophysics Data System (ADS)

    Daroonparvar, Mohammadreza; Yajid, Muhamad Azizi Mat; Yusof, Noordin Mohd; Bakhsheshi-Rad, Hamid Reza; Adabi, Mohsen; Hamzah, Esah; Kamali, Hussein Ali

    2015-07-01

    Al-AlCr was coated on Mg-Ca and Mg-Zn-Ce-La alloys using physical vapor deposition method. The surface morphology of the specimens was characterized by x-ray diffraction, scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and atomic force microscopy (AFM). The AFM results indicated that the average surface roughness of Al-AlCr coating on the Mg-Ca alloy is much lower than that of Al-AlCr coating on the Mg-Zn-Ce-La alloy. However, Al-AlCr coating on the Mg-Ca alloy presented a more compact structure with fewer pores, pinholes, and cracks than Al-AlCr coating on the Mg-Zn-Ce-La alloy. Electrochemical studies revealed that the novel coating (Al-AlCr) can remarkably reduce the corrosion rate of the Mg-Ca alloy in 3.5 wt.% NaCl solution. It was seen that the anodic current density of the Al-AlCr-coated Mg-Ca alloy was very small when compared to the Al-AlCr-coated Mg-Zn-Ce-La and uncoated alloys. Impedance modulus ( Z) of the Al-AlCr-coated samples was higher than that of the bare Mg alloys. Z of Al-AlCr-coated Mg-Ca alloy was higher than that of the Al-AlCr-coated Mg-Zn-Ce-La alloy at low frequency.

  18. Formation of unusual Cr5+ charge state in CaCr0.5Fe0.5O3 perovskite

    NASA Astrophysics Data System (ADS)

    Dai, Jian-Hong; Zhao, Qing; Sun, Qian; Zhang, Shuo; Wang, Xiao; Shen, Xu-Dong; Liu, Zhe-Hong; Shen, Xi; Yu, Ri-Cheng; Chan, Ting-Shan; Li, Lun-Xiong; Zhou, Guang-Hui; Yang, Yi-feng; Jin, Chang-Qing; Long, You-Wen

    2018-03-01

    A new oxide CaCr0.5Fe0.5O3 was prepared under high pressure and temperature conditions. It crystallizes in a B-site disordered Pbnm perovskite structure. The charge combination is determined to be Cr5+/Fe3+ with the presence of unusual Cr5+ state in octahedral coordination, although Cr4+ and Fe4+ occur in the related perovskites CaCrO3 and CaFeO3. The randomly distributed Cr5+ and Fe3+ spins lead to short-range ferromagnetic coupling, whereas an antiferromagnetic phase transition takes place near 50 K due to the Fe3+–O–Fe3+ interaction. In spite of the B-site Cr5+/Fe3+ disorder, the compound exhibits electrical insulating behavior. First-principles calculations further demonstrate the formation of {CaCr}}0.55+{Fe}}0.53+{{{O}}}3 charge combination, and the electron correlation effect of Fe3+ plays an important role for the insulting ground state. CaCr0.5Fe0.5O3 provides the first Cr5+ perovskite system with octahedral coordination, opening a new avenue to explore novel transition-metal oxides with exotic charge states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574378, 51772324, and 61404052),the National Basic Research Program of China (Grant No. 2014CB921500), and the Chinese Academy of Sciences (Grant Nos. YZ201555, QYZDB-SSW-SLH013, GJHZ1773, and XDB07030300).

  19. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  20. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  1. Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C

    NASA Astrophysics Data System (ADS)

    Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon

    2018-04-01

    In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.

  2. Effect of Al and Cr Content on Air and Steam Oxidation of FeCrAl Alloys and Commercial APMT Alloy

    DOE PAGES

    Unocic, Kinga A.; Yamamoto, Yukinori; Pint, Bruce A.

    2017-03-09

    To develop the next generation of accident-tolerant fuel cladding for light-water nuclear reactors, wrought FeCrAlY alloys with varying amounts of Cr and Al and commercial Kanthal APMT alloy were evaluated for short-term (4 h) oxidation resistance in steam and air at 1200–1475 °C. Model alloys with lower Cr contents and higher Al contents were evaluated in this paper as lower Cr contents are desirable for radiation damage resistance during operation. As expected, a synergistic effect was found between the Cr and Al contents to enable protective Al 2O 3 formation under these conditions. Characterization of the alumina scales formed inmore » steam found that the scale morphology was affected by the alloy Y content and detailed scanning transmission electron microscopy (STEM) detected Y segregation along scale grain boundaries at 1200 °C. However, after 4 h at 1475 °C, Y and Hf were not segregated to the oxide grain boundaries formed on APMT and the scale had a single layer structure. Finally, compared to oxidation in air, STEM characterization of the outer scale showed differences in the Fe and Cr distributions in steam.« less

  3. Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Krot, Alexander N.; Ogliore, Ryan C.; Yin, Qing-Zhu; Amelin, Yuri; Stirling, Claudine H.; Kaltenbach, Angela

    2017-03-01

    We report on the mineralogy, petrography, and in situ measured oxygen- and magnesium-isotope compositions of eight porphyritic chondrules (seven FeO-poor and one FeO-rich) from the Renazzo-like carbonaceous (CR) chondrites Graves Nunataks 95229, Grosvenor Mountains 03116, Pecora Escarpment 91082, and Queen Alexandra Range 99177, which experienced minor aqueous alteration and very mild thermal metamorphism. We find no evidence that these processes modified the oxygen- or Al-Mg isotope systematics of chondrules in these meteorites. Olivine, low-Ca pyroxene, and plagioclase within an individual chondrule have similar O-isotope compositions, suggesting crystallization from isotopically uniform melts. The only exceptions are relict grains in two of the chondrules; these grains are 16O-enriched relative to phenocrysts of the host chondrules. Only the FeO-rich chondrule shows a resolvable excesses of 26Mg, corresponding to an inferred initial 26Al/27Al ratio [(26Al/27Al)0] of (2.5 ± 1.6) × 10-6 (±2SE). Combining these results with the previously reported Al-Mg isotope systematics of CR chondrules (Nagashima et al., 2014, Geochem. J. 48, 561), 7 of 22 chondrules (32%) measured show resolvable excesses of 26Mg; the presence of excess 26Mg does not correlate with the FeO content of chondrule silicates. In contrast, virtually all chondrules in weakly metamorphosed (petrologic type 3.0-3.1) unequilibrated ordinary chondrites (UOCs), Ornans-like carbonaceous (CO) chondrites, and the ungrouped carbonaceous chondrite Acfer 094 show resolvable excesses of 26Mg. The inferred (26Al/27Al)0 in CR chondrules with resolvable excesses of 26Mg range from (1.0 ± 0.4) × 10-6 to (6.3 ± 0.9) × 10-6, which is typically lower than (26Al/27Al)0 in the majority of chondrules from UOCs, COs, and Acfer 094. Based on the inferred (26Al/27Al)0, three populations of CR chondrules are recognized; the population characterized by low (26Al/27Al)0 (<3 × 10-6) is dominant. There are no noticeable

  4. Nanometre-scale 3D defects in Cr2AlC thin films.

    PubMed

    Chen, Y T; Music, D; Shang, L; Mayer, J; Schneider, J M

    2017-04-20

    MAX-phase Cr 2 AlC containing thin films were synthesized by magnetron sputtering in an industrial system. Nanometre-scale 3D defects are observed near the boundary between regions of Cr 2 AlC and of the disordered solid solution (CrAl) x C y . Shrinkage of the Cr-Cr interplanar distance and elongation of the Cr-Al distance in the vicinity of the defects are detected using transmission electron microscopy. The here observed deformation surrounding the defects was described using density functional theory by comparing the DOS of bulk Cr 2 AlC with the DOS of a strained and unstrained Cr 2 AlC(0001) surface. From the partial density of states analysis, it can be learned that Cr-C bonds are stronger than Cr-Al bonds in bulk Cr 2 AlC. Upon Cr 2 AlC(0001) surface formation, both bonds are weakened. While the Cr-C bonds recover their bulk strength as Cr 2 AlC(0001) is strained, the Cr-Al bonds experience only a partial recovery, still being weaker than their bulk counterparts. Hence, the strain induced bond strengthening in Cr 2 AlC(0001) is larger for Cr d - C p bonds than for Cr d - Al p bonds. The here observed changes in bonding due to the formation of a strained surface are consistent with the experimentally observed elongation of the Cr-Al distance in the vicinity of nm-scale 3D defects in Cr 2 AlC thin films.

  5. Natural Cr3+-rich ettringite: occurrence, properties, and crystal structure

    NASA Astrophysics Data System (ADS)

    Seryotkin, Yurii V.; Sokol, Ella V.; Kokh, Svetlana N.; Murashko, Mikhail N.

    2017-08-01

    Cr3+-rich ettringite with Cr3+→Al substitution and Cr/(Cr + Al) ratios up to 0.40-0.50 was found in mineral assemblages of the Ma'aleh Adumim area of Mottled Zone (Judean Desert). The Cr3+-rich compositions were the latest in the thaumasite → ettringite-thaumasite solid solution → ettringite → ettringite-bentorite solid solution series. The mineral-forming solution was enriched in Cr3+ and had a pH buffered by afwillite at 11-12. Chromium was inherited from larnite rocks produced by high-temperature combustion metamorphic alteration of bioproductive calcareous sediments. The Cr/(Cr + Al) ratios are within 0.10-0.15 in most of the analysed crystals. This degree of substitution imparts pink colouration to the crystals, but does not affect their habit (a combination of monohedra and a prism). The habit changes to pyramid faces in coarse and later Cr3+-bearing crystals as Cr/(Cr + Al) ratios increase abruptly to 0.40-0.50. Single-crystal XRD analysis of one Cr-free and two Cr3+-rich samples and their structure determination and refinement indicate that the Cr-rich crystals (with Cr/(Cr + Al) to 0.3) preserve the symmetry and metrics of ettringite. The Ca-O bonding network undergoes differentiation with increase of Cr3+ concentration at octahedral M sites. The compression of Ca2 and expansion of Ca1 polyhedra sub-networks correlates with the degree of Cr3+→Al substitution.

  6. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  7. Cr Isotopes in Allende Ca-Al-rich Inclusions

    NASA Technical Reports Server (NTRS)

    Bogdanovski, O.; Papanastassiou, D. A.; Wasserburg, G. J.

    2002-01-01

    We have determined Cr isotope compositions in minerals from Allende CAI in order to address the initial 53Mn (half-life 3.7 Ma) abundance in the solar system. Additional information is contained in the original extended abstract.

  8. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

    NASA Astrophysics Data System (ADS)

    Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.

    2017-02-01

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

  9. Synthesis of Nano Sized Cr2AlC Powders by Molten Salt Method.

    PubMed

    Xiao, Dan; Zhu, Jianfeng; Wang, Fen; Tang, Yi

    2015-09-01

    Cr2AlC powders were successfully synthesized by molten salt method using Cr, Al and C as starting materials. The effects of the process parameters and amount of Al addition on the purity of the Cr2AlC powders were also investigated in details. The formation mechanism of Cr2AlC powders was investigated by XRD and DSC. The results indicated that intermediates of Cr7C3 and Cr- Al intermetallics, such as CrAl17, Cr2Al, Cr2Al8, were formed by the reactions among the initial elements, then the intermediates gradually transformed to Cr2AlC. From the fixed composition of Cr:Al:C = 2:1.2:1, high purity Cr2AlC powders could be obtained with an inorganic salt KCl as a solvent at 1250 degrees C for 60 min under argon atmosphere which was lower than that (generally 1450 degrees C) of conventional solid state reaction.

  10. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  11. Electronic, thermoelectric, and magneto-dielectric properties of Ca1-xNaxCr2O4

    NASA Astrophysics Data System (ADS)

    Kolodiazhnyi, Taras; Sakurai, Hiroya

    2013-06-01

    We report on electronic, thermoelectric, and magneto-dielectric properties of Ca1-xNaxCr2O4 series with a calcium ferrite-type structure prepared by high-pressure-high-temperature synthesis. Dielectric spectroscopy down to 2 K confirms that both CaCr2O4 and NaCr2O4 end members have an insulating ground state notwithstanding the fact that the latter compound has a mixed valence Cr3+/Cr4+ structure. A crossover from positive to negative charge carriers occurs in NaCr2O4 at T≈230 K. Partial substitution of Ca for Na brings about a change from n to p type carriers at ca. x =0.75. A strong suppression of thermal conductivity below TN=21 K was found in CaCr2O4 indicating a scattering of acoustic phonons from a long wave-length cycloidal magnetic excitations. A pronounced dielectric anomaly at Néel temperature adds CaCr2O4 to the multiferroic family of compounds. Lattice contribution to dielectric properties of NaCr2O4 at TN=125 K is screened by high electric conductivity. An onset of the magnetocapacitance above 3 T correlates with the spin-flop transition in NaCr2O4 at a critical field of 3.5 T. A strong non-saturated magnetocapacitance in this compound cannot be entirely attributed to the colossal magnetoresistance.

  12. Effect of aluminum contents on sputter deposited CrAlN thin films

    NASA Astrophysics Data System (ADS)

    Vyas, A.; Zhou, Z. F.; Shen, Y. G.

    2018-02-01

    Pure CrN and CrAlN films with varied Al concentrations were prepared onto Si(100) substrates by an unbalanced reactive dc-magnetron sputtering system. The crystal structure, chemical states, and microstructure of the films were characterized by X-ray diffraction, X-ray photoelectron microscopy, transmission electron microscopy whereas mechanical properties were determined by nano-indentation measurements. XRD results showed a prominent (200) reflection in both CrN and CrAlN films. Results demonstrate that CrAlN films formed a solid solution and doping of Al atoms replace the Cr atoms affecting the lattice parameter and crystallization of the films. All Al doped films were of B1 NaCl-type structure, demonstrating that CrAlN films primarily crystallized in cubic structure. Microstructural investigation by TEM for a CrAlN film containing Al content of 24.1 at.%, revealed that there exists an amorphous/nanocrystalline domains (grains of about ∼ 11 nm) and hardness increases 22% when compared with pure CrN film.

  13. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, W., E-mail: witorw@gmail.com

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloysmore » in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr

  14. The comparison of microstructures and mechanical properties between 14Cr-Al and 14Cr-Ti ferritic ODS alloys

    DOE PAGES

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; ...

    2016-03-03

    In this study, two kinds of 14Cr ODS alloys (14Cr-Al and 14Cr-Ti) were investigated to reveal the different effects between Al and Ti on the microstructures and mechanical properties of 14Cr ferritic ODS alloys. The microstructure information such as grains, minor phases of these two alloys has been investigated by high-energy X-ray diffraction and transmission electron microscopy (TEM). The in situ synchrotron X-ray diffraction tensile test was applied to investigate the mechanical properties of these two alloys. The lattice strains of different phases through the entire tensile deformation process in these two alloys were analyzed to calculate their elastic stresses.more » From the comparison of elastic stress, the strengthening capability of Y 2Ti 2O 7 is better than TiN in 14Cr-Ti, and the strengthening capability of YAH is much better than YAM and AlN in 14Cr-Al ODS. The dislocation densities of 14Cr-Ti and 14Cr-Al ODS alloys during tensile deformation were also examined by modified Williamson-Hall analyses of peak broadening, respectively. In conclusion, the different increasing speed of dislocation density with plastic deformation reveals the better strengthening effect of Y-Ti-O particles in 14Cr-Ti ODS than that of Y-Al-O particles in 14Cr-Al ODS alloy.« less

  15. Importance of doping and frustration in itinerant Fe-doped Cr 2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr 2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr 1-xFe x) 2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing T N to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which T N gradually decreases followed by the appearance ofmore » a ferromagnetic state. Theoretical calculations explain that the Cr 2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr 2Al. In pure-phase Cr 2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr 2Al and Fe-doped Cr 2Al.« less

  16. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  17. Experimental evidence of Cr magnetic moments at low temperature in Cr2A(A=Al, Ge)C.

    PubMed

    Jaouen, M; Bugnet, M; Jaouen, N; Ohresser, P; Mauchamp, V; Cabioc'h, T; Rogalev, A

    2014-04-30

    From x-ray magnetic circular dichroism experiments performed at low temperature on Cr2AlC and Cr2GeC thin films, it is evidenced that Cr atoms carry a net magnetic moment in these ternary phases. It is shown that the Cr magnetization of the Al-based compound nearly vanished at 100 K in agreement with what has been recently observed on bulk. X-ray linear dichroism measurements performed at various angles of incidence and temperatures clearly demonstrate the existence of a charge ordering along the c axis of the structure of Cr2AlC. All these experimental observations support, in part, theoretical calculations claiming that Cr dd correlations have to be considered to correctly describe the structure and properties of these Cr-based ternary phases.

  18. Structure and Mechanical Properties of CrTiAlN/TiAlN Composite Coatings Deposited by Multi-Arc Ion Plating

    NASA Astrophysics Data System (ADS)

    Yan, Shaojian; Tian, Canxin; Huang, Zhihong; Yang, Bing; Fu, Dejun

    2014-10-01

    CrTiAlN/TiAlN composite coatings were deposited on cemented carbide by using a home-made industrial scale multi-arc ion plating system. The samples were studied by X-ray diffraction, scanning electron microscopy (SEM), microhardness and ball-on-disk testing. The properties of the CrTiAlN/TiAlN coatings were significantly influenced by the microstructure and the deposition time ratio of TiAlN over CrTiAlN layers. With the increase of deposition time ratio, the microhardness of CrTiAlN/TiAlN increased from 28.6 GPa to 37.5 GPa, much higher than that of CrTiAlN coatings. The friction coefficients of the CrTiAlN/TiAlN coatings were higher than those of CrTiAlN coatings against a cemented carbide ball. The microhardness of the CrTiAlN/TiAlN coatings was changed after annealing at 800°C, and the friction coefficients of the annealed coatings were increased against the cemented carbide ball.

  19. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO 2 or ZrO 2. Themore » new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.« less

  20. Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.

    2015-05-01

    Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.

  1. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  2. Transport properties of Co2CrAl Heusler alloy films

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Y. V.; Lee, Y. P.; Yoo, Y. J.; Seo, M. S.; Kim, J. M.; Hwang, J. S.; Dubowik, J.; Kim, K. W.; Choi, E. H.; Prokhnenko, O.

    2012-01-01

    The effect of atomic disorder on the electron transport and the magnetoresistance (MR) of Co2CrAl Heusler alloy (HA) films has been investigated. We show that Co2CrAl films with L21 order exhibit a negative value for the temperature coefficient of resistivity (TCR) in a temperature range of 10 < T < 290 K, and the temperature dependence of electric conductivity varies as T 3/2 similarly to that of the zero-gap semiconductors. The atomic or the site disorder on the way of L21 → B2 → A2 → amorphous state in Co2CrAl HA films causes the deviation from this dependence: reduction in the absolute value of TCR as well as decrease in the resistivity down to ϱ( T = 293 K) ˜ 200 μΩ cm in comparison to ϱ( T = 293 K) ˜ 230 μΩ cm typical for the Co2CrAl films with L21 order. The magnetic-field dependence of MR of the Co2CrAl films with L21 order is determined by two competing contributions: a positive Lorentz scattering and a negative s-d scattering. The atomic disorder in Co2CrAl films drastically changes MR behavior due to its strong influence on the magnetic properties.

  3. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less

  4. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra.

    PubMed

    Marashdeh, Ali; Frankcombe, Terry J

    2008-06-21

    The dehydrogenation enthalpies of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH(4))(2) is exothermic, indicating a metastable hydride. Calculations for CaAlH(5) including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH(4) with CaH(2) is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH(4))(2) and CaAlH(5) calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH(5) is presented in the more useful standard setting of P2(1)c symmetry and the phonon density of states of CaAlH(5), significantly different to other common complex metal hydrides, is rationalized.

  5. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra

    NASA Astrophysics Data System (ADS)

    Marashdeh, Ali; Frankcombe, Terry J.

    2008-06-01

    The dehydrogenation enthalpies of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH4)2 is exothermic, indicating a metastable hydride. Calculations for CaAlH5 including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH4 with CaH2 is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH4)2 and CaAlH5 calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH5 is presented in the more useful standard setting of P21/c symmetry and the phonon density of states of CaAlH5, significantly different to other common complex metal hydrides, is rationalized.

  6. Ca ISOTOPE EFFECTS IN ORGUEIL LEACHATES AND THE IMPLICATIONS FOR THE CARRIER PHASES OF {sup 54}Cr ANOMALIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moynier, Frederic; Podosek, Frank A.; Brannon, Joyce

    Primitive meteorites contain small {sup 40}Ca excesses, in addition to rare anomalies in {sup 48}Ca. Refractory inclusions from Vigarano and Allende have larger {sup 40}Ca and resolvable {sup 48}Ca anomalies. These results imply that Ca isotopic heterogeneities were still present in the early solar system at both the mineral and whole-rock scale. The absence of correlated Ca isotope anomalies in leachates from the CI1 chondrite Orgueil containing large {sup 54}Cr anomalies has implications on the origin of the Cr anomalies. {sup 54}Cr has to be produced either in massive stars during s-process nucleosynthesis without accompanying {sup 48}Ca or in particularmore » zones in the rare Type Ia supernovae. In the latter case, {sup 54}Cr has been produced in a zone predominantly enriched in Cr and {sup 54}Cr and not mixed with other zones, or {sup 54}Cr has been produced together with other neutron-rich nuclides and there has been subsequent decoupling of this material in the star, in the solar system, or in the laboratory.« less

  7. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  8. Structure and colossal dielectric permittivity of Ca2TiCrO6 ceramics

    NASA Astrophysics Data System (ADS)

    Yan-Qing, Tan; Meng, Yan; Yong-Mei, Hao

    2013-01-01

    A colossal permittivity ceramic material, Ca2TiCrO6, was successfully synthesized by the conventional solid-state reaction, and was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray photoemission spectroscopy (XPS) and x-ray diffraction (XRD). Rietveld refinement of XRD data indicated that the material crystallized in orthorhombic structure with space group pbnm. SEM displayed Ca2TiCrO6 ceramic grains packed uniformly with the size range 5-20 µm. XPS analyses indicated that elemental chromium and titanium of the material were in mixed valence. The corresponding dielectric property was tested in the frequency range 1 kHz-1 MHz and the temperature range 213-453 K, and the ceramics exhibited a relaxation-like dielectric behaviour. Importantly, the permittivity of Ca2TiCrO6 could reach 80 000 at 298 K (100 Hz) and was maintained at 40 000 up to 398 K at 1 MHz, which could be attributed to the ion disorder and mixed valence of Cr3+/Cr6+ and Ti3+/Ti4+.

  9. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  10. Tribological Behavior of Al-Cr Coating Obtained by Dgpsm and IIP Composite Technology

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Chen, Yu; Tao, Xuewei

    An Al-Cr composite alloyed layer composed of an Al enriched layer, a Cr enriched layer and a transition layer from the surface to the bulk along the cross-section was deposited on a 45# steel substrate by composite technology, where Cr was deposited using double glow plasma surface metallurgy (DGPSM), and Al was then implanted by ion implantation (IIP) to achieve higher micro-hardness and excellent abrasive resistance. The composite alloyed layer is approximately 5μm, and as metallurgical adherence to the substrate. The phases are Al8Cr5, Fe2AlCr, Cr23C6, Cr (Al) and Fe (Cr, Al) solid solution. The wear resistance tests were performed under various rotational speed (i.e. 280, 560 and 840r/min) with silicon nitride balls as the counterface material at ambient temperature. The Al-Cr composite alloyed layer exhibits excellent wear resistance when the speed is 280r/min with a friction coefficient as low as 0.3, which is attributed to Al8Cr5 in the Al implanted layer that withstands abrasive wear. Better wear resistance (friction coefficient: 0.254) at 560r/min is resulted from the formation of a high micro-hardness zone, and an oxidation layer with lubrication capacity. In addition, the composite alloyed layer suffers severe oxidative wear and adhesive wear at 840r/min due to the increment of the frictional heating. When compared to the 45# steel substrate, the enhanced wear resistance of the Al-Cr composite alloyed layer demonstrates the viable method developed in this work.

  11. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  12. Interfacial layers in high-temperature-oxidized NiCrAl

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Browning, R.; Poppa, H.; Smialek, J.

    1983-01-01

    The utility of Auger electron spectroscopy combined with ball cratering for depth analysis of oxide and diffusion layers produced in a Ni-14Cr-24Al alloy by oxidation in air at 1180 C for 25 hr is demonstrated. During postoxidation cooling, the oxide layers formed by this alloy spalled profusely. The remaining very thin oxide was primarily Cr2O3 with a trace of Ni. The underlying metal substrate exhibited gamma/gamma-prime and beta phases with a metallic interfacial layer which was similar to the bulk gamma/gamma-prime phase but slightly enriched in Cr and Al. These data are compared to electron microprobe results from a nominally identical alloy. The diffusion layer thickness is modelled with a simple mass balance equation and compared to recent results on the diffusion process in NiCrAl alloys.

  13. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  14. Viability of thin wall tube forming of ATF FeCrAl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys frommore » ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.« less

  15. Structural, optical, and thermal properties of MAX-phase Cr2AlB2

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Cui, Hong-Ling; Zhang, Rui-Zhou

    2018-04-01

    First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr2AlB2 are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 Å3 at T = 300 K, P = 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index n 0 is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.

  16. Enhanced Piezoelectric Response of AlN via CrN Alloying

    NASA Astrophysics Data System (ADS)

    Manna, Sukriti; Talley, Kevin R.; Gorai, Prashun; Mangum, John; Zakutayev, Andriy; Brennecka, Geoff L.; Stevanović, Vladan; Ciobanu, Cristian V.

    2018-03-01

    Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. We report on density functional theory calculations of structure and properties of the Crx Al1 -x N system for Cr concentrations ranging from zero to beyond the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in Crx Al1 -x N alloys is the increase of the internal parameter u of the wurtzite structure upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we find that Crx Al1 -x N has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that Crx Al1 -x N is a viable piezoelectric material whose properties can be tuned via Cr composition. We support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus d33 is approximately 4 times larger than that of pure AlN. This finding, combined with the relative ease of synthesis under nonequilibrium conditions, may position Crx Al1 -x N as a prime piezoelectric material for applications such as resonators and acoustic wave generators.

  17. Enhanced Piezoelectric Response of AlN via CrN Alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Sukriti; Talley, Kevin R.; Gorai, Prashun

    2018-03-01

    Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. We report on density functional theory calculations of structure and properties of the CrxAl1-xN system for Cr concentrations ranging from zero to beyond the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in CrxAl1-xN alloys is the increase of the internal parameter u of the wurtzite structuremore » upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we find that CrxAl1-xN has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that CrxAl1-xN is a viable piezoelectric material whose properties can be tuned via Cr composition. We support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus d33 is approximately 4 times larger than that of pure AlN. This finding, combined with the relative ease of synthesis under nonequilibrium conditions, may position CrxAl1-xN as a prime piezoelectric material for applications such as resonators and acoustic wave generators.« less

  18. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Howard, Richard H.; Yamamoto, Yukinori

    2017-06-01

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloys with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). The results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.

  19. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  20. Literature review report on atomistic modeling tools for FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Schwen, Daniel; Martinez, Enrique

    2015-12-01

    This reports summarizes the literature review results on atomistic tools, particularly interatomic potentials used in molecular dynamics simulations, for FeCrAl ternary alloys. FeCrAl has recently been identified as a possible cladding concept for accident tolerant fuels for its superior corrosion resistance. Along with several other concepts, an initial evaluation and recommendation are desired for FeCrAl before it’s used in realistic fuels. For this purpose, sufficient understanding on the in-reactor behavior of FeCrAl needs to be grained in a relatively short timeframe, and multiscale modeling and simulations have been selected as an efficient measure to supplement experiments and in-reactor testing formore » better understanding on FeCrAl. For the limited knowledge on FeCrAl alloys, the multiscale modeling approach relies on atomistic simulations to obtain the missing material parameters and properties. As a first step, atomistic tools have to be identified and this is the purpose of the present report. It was noticed during the literature survey that no interatomic potentials currently available for FeCrAl. Here, we summarize the interatomic potentials available for FeCr alloys for possible molecular dynamics studies using FeCr as surrogate materials. Other atomistic methods such as lattice kinetic Monte Carlo are also included in this report. A couple of research topics at the atomic scale are suggested based on the literature survey.« less

  1. P-type Al-doped Cr-deficient CrN thin films for thermoelectrics

    NASA Astrophysics Data System (ADS)

    le Febvrier, Arnaud; Van Nong, Ngo; Abadias, Gregory; Eklund, Per

    2018-05-01

    Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over-stoichiometry in nitrogen (CrN1+δ) rock-salt structure is obtained. A p-type conduction is observed with nitrogen-rich CrN combined with aluminum doping. The Cr0.96Al0.04N1.17 film exhibited a high Seebeck coefficient and a sufficient power factor at 300 °C. These results are a starting point for designing p-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale.

  2. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  3. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...

    2017-03-28

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less

  4. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    DOE PAGES

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; ...

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less

  5. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  6. Database on Performance of Neutron Irradiated FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerancemore » of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.« less

  7. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  8. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  9. Ca-Al-rich chondrules and inclusions in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bischoff, A.; Keil, K.

    1983-01-01

    Ca-Al-rich objects, hitherto mostly found in carbonaceous chondrites, are shown to be widespread, albeit rare, constituents of type 3 ordinary chondrites. Widespread occurrence and textural similarities of Ca-Al-rich chondrules to common, Mg-Fe-rich chondrules suggest that they formed by related processes. It is suggested in this article that Ca-Al-rich chondrules were formed by total melting and crystallization of heterogeneous, submillimeter- to submillimeter-sized dustballs made up of mixtures of high-temperature, Ca-Al-rich and lower-temperature, Na-K-rich components.

  10. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  11. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  12. Low-moment ferrimagnetic phase of the Heusler compound Cr2CoAl

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.; Marshall, Luke G.; Sterbinsky, George E.; Lewis, Laura H.; Heiman, Don

    2015-11-01

    Synthesizing half-metallic fully compensated ferrimagnets that form in the inverse Heusler phase could lead to superior spintronic devices. These materials would have high spin polarization at room temperature with very little fringing magnetic fields. Previous theoretical studies indicated that Cr2CoAl should form in a stable inverse Heusler lattice due to its low activation energy. Here, stoichiometric Cr2CoAl samples were arc-melted and annealed at varying temperatures, followed by studies of their structural and magnetic properties. High-resolution synchrotron X-ray diffraction revealed a chemically ordered Heusler phase in addition to CoAl and Cr phases. Soft X-ray magnetic circular dichroism revealed that the Cr and Co magnetic moments are antiferromagnetically oriented leading to the observed low magnetic moment in Cr2CoAl.

  13. Orthopyroxenes as Recorders of Diogenite Petrogenesis: Al-Cr-Ti Systematics

    NASA Astrophysics Data System (ADS)

    Fowler, G. W.; Papike, J. J.; Spilde, M. N.; Shearer, C. K.

    1993-07-01

    This research represents a continuing effort to understand the petrogenesis of diogenites and their relationship to eucrites. Our present suite of 17 diogenites includes: Aioun El Atrouss, Ellemeet, Garland, Ibbenburen, Johnstown, Manegoan, Peckelsheim, Roda, Shalka, Tatahouine, EET 83246, EET 83247, EET 87530, EET A79002, LEW 88008, and olivine diogenites ALH 84001 and ALH A77256. In our previous studies [1,2], we reported major, minor, and trace element systematics for a subgroup of 13 of these samples. In these studies, we concluded that Fe/Mg was compromised by post-crystallization annealing reactions. We also demonstrated [1] strong, positive correlations between Cr and Al along several trajectories on a Cr-Al data display. REE and Zr-Ti systematics indicate that most sampled diogenites represent cumulates from similar basaltic melts. These modeled melt compositions are similar to eucrites but show a greater compositional range. Here we further explore the Al-Cr-Ti systematics. Figure 1 (figures include over 1,000 high quality EMP analyses) is a Ti-Al plot that shows a main trend with a positive correlation between Ti and Al. Rhoda and one of the assemblages in polymict Garland have elevated Ti concentrations relative to the main trend while Manegoan has relatively depleted Ti concentrations. Figure 2 is a (Cr+Ti) vs. Al plot with a main trend that shows a strong, positive correlation between (Cr+Ti) and Al. Manegoan occupies the high (Cr+Ti)-Al end of the trend while Peckelsheim occupies the low end. Olivine diogenite ALH A77256 falls distinctly off the trend. However, ALH 84001, our only other olivine diogenite, plots with the other diogenite in the main trend. Several things are indicated by these systematics. The positive correlation of (Cr+Ti) vs. Al indicate that the most important charge balance couples are ^VITi^4+-^IVAl(sub)2, ^VITi^3+-^IVAl, ^VICr^3+-^IVAl, and ^VIAl-^IVAl. The ^VIAl-^IVAl couple is relatively more important in olivine diogenite ALH

  14. Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.

    PubMed

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-06-28

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.

  15. The initial 41Ca/40Ca ratios in two type A Ca-Al-rich inclusions: Implications for the origin of short-lived 41Ca

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chang

    2017-03-01

    This paper reports new 41Ca-41K isotopic data for two Type A CAIs, NWA 3118 #1Nb (Compact Type A) and Vigarano 3138 F8 (Fluffy Type A), from reduced CV3 chondrites. The NWA CAI is found to have carried live 41Ca at the level of (4.6 ± 1.9) ×10-9 , consistent with the proposed Solar System initial 41Ca /40Ca = 4.2 ×10-9 by Liu et al. (2012a). On the other hand, the Vigarano CAI does not have resolvable radiogenic 41K excesses that can be attributed to the decay of 41Ca. Combined with the 26Al data that have been reported for these two CAIs, we infer that the 41Ca distribution was not homogeneous when 26Al was widespread at the canonical level of 26Al /27Al = 5.2 ×10-5 . Such a 41Ca heterogeneity can be understood under two astrophysical contexts: in situ charged particle irradiation by the protoSun in the solar nebula that had inherited some baseline 10Be abundance from the molecular cloud, and Solar System formation in a molecular cloud enriched in 26Al and 41Ca contaminated by massive star winds. That said, more high quality 41Ca data are still needed to better understand the origin of this radionuclide.

  16. Development and Validation of Accident Models for FeCrAl Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean

    2016-08-01

    The purpose of this milestone report is to present the work completed in regards to material model development for FeCrAl cladding and highlight the results of applying these models to Loss of Coolant Accidents (LOCA) and Station Blackouts (SBO). With the limited experimental data available (essentially only the data used to create the models) true validation is not possible. In the absence of another alternative, qualitative comparisons during postulated accident scenarios between FeCrAl and Zircaloy-4 cladded rods have been completed demonstrating the superior performance of FeCrAl.

  17. Microstructural control of FeCrAl alloys using Mo and Nb additions

    DOE PAGES

    Sun, Zhiqian; Bei, Hongbin; Yamamoto, Yukinori

    2017-08-14

    The effects of Mo and Nb additions on the microstructure and mechanical properties of two FeCrAl alloys were studied in this paper. Fine and uniform recrystallized grain structures (~ 20–30 μm) were achieved in both alloys through suitable annealing after warm-rolling. The formation of Fe 2Nb-type Laves phase precipitates in the Nb-containing FeCrAl alloy effectively stabilized the deformed and recrystallized microstructures. The Mo-containing FeCrAl alloy exhibited strong γ texture fiber after annealing at 650–900 °C, whereas the annealed Nb-containing FeCrAl alloy had much weaker texture. Finally, both strength and ductility decreased as the grain size increased in both alloys.

  18. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.

    Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less

  19. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys

    DOE PAGES

    Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.; ...

    2017-07-06

    Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less

  20. Microstructural and optical properties of Ca and Cr doped cobalt ferrite nanoparticles synthesized by auto combustion

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.8Ca0.2) (Fe0.8 Cr0.2)2O4 were synthesized by auto combustion method. Microstructural studies were carried out by X-ray diffraction (XRD). The crystalline size of synthesized nanoparticles as determined by the XRD was found to be 17.6 nm. These structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 200-800 nm. The energy band gap was calculated with the help of Tauc relationship. Ca and Cr doped cobalt ferrite annealed at 600°C exhibit significant dispersion in complex permeability. The dielectric constant and dielectric loss of cobalt ferrite were studied as a function of frequency and were explained on the basis of Koop's theory based on Maxwell Wagner two layer models and electron hopping.

  1. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States

    USGS Publications Warehouse

    Wilshire, H.G.; Shervais, J.W.

    1975-01-01

    Ultramafic xenoliths in basalts from the western United States are divided into Al-augite and Cr-diopside groups. The Al-augite group is characterized by Al, Ti-rich augites, comparatively Fe-rich olivine and orthopyroxene, and Al-rich spinel, the Cr-diopside group by Cr-rich clinopyroxene and spinel and by Mg-rich olivine and pyroxenes. Both groups have a wide range of subtypes, but the Al-augite group is dominated by augite-rich varieties, and the Cr-diopside group by olivine-rich lherzolites. ?? 1975.

  2. Elevated Temperature Corrosion Studies of AlCrN and TiAlN Coatings by PAPVD on T91 Boiler Steel

    NASA Astrophysics Data System (ADS)

    Goyal, Lucky; Chawla, Vikas; Hundal, Jasbir Singh

    2017-11-01

    The present investigation discusses the hot corrosion behavior of AlCrN and TiAlN nano-coatings on T91 boiler steel by PAPVD process subjected to molten salt of Na2SO4-60%V2O5 at 900 °C for 50 cycles. Surface and cross-sectional studies were performed by AFM, SEM/EDS and XRD techniques to understand the corrosion kinetics and mechanism. T91 bare boiler steel as well as TiAlN-coated specimen has shown higher internal oxidation as well as weight gain. The better corrosion resistance of AlCrN-coated specimen has been observed by virtue of higher availability of Cr and Al in the oxide scale as well as adherent and dense coating. The betterment of AlCrN coating can be attributed to low internal oxidation as well as movement of Cr and Al toward oxide scale to form protective corrosion barriers.

  3. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  4. Transport properties of high-performance all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi giant magnetoresistance device

    NASA Astrophysics Data System (ADS)

    Bai, Z. Q.; Lu, Y. H.; Shen, L.; Ko, V.; Han, G. C.; Feng, Y. P.

    2012-05-01

    Transport properties of giant magnetoresistance (MR) junction consisting of trilayer Co2CrSi/Cu2CrAl/Co2CrSi Heusler alloys (L21) are studied using first-principles approach based on density functional theory and the non-equilibrium Green's function method. Highly conductive channels are found in almost the entire k-plane when the magnetizations of the electrodes are parallel, while they are completely blocked in the antiparallel configuration, which leads to a high magnetoresistance ratio (the pessimistic MR ratio is nearly 100%). Furthermore, the calculated I-V curve shows that the device behaves as a good spin valve with a considerable disparity in currents under the parallel and antiparallel magnetic configurations of the electrodes. The Co2CrSi/Cu2CrAl/Co2CrSi junction could be useful for high-performance all-metallic current-perpendicular-to-plane giant magnetoresistance reading head for the next generation high density magnetic storage.

  5. Precipitation of α' in neutron irradiated commercial FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Littrell, Kenneth C.; Briggs, Samuel A.

    2017-08-17

    In this paper, Alkrothal 720 and Kanthal APMT™, two commercial FeCrAl alloys, were neutron irradiated up to damage doses of 7.0 displacements per atom (dpa) in the temperature range of 320 to 382 °C to characterize the α' precipitation in these alloys using small-angle neutron scattering. Both alloys exhibited α' precipitation. Kanthal APMT™ exhibited higher number densities and volume fraction, a result attributed to its higher Cr content compared with Alkrothal 720. Finally, trends observed as a function of damage dose (dpa) are consistent with literature trends for both FeCr and FeCrAl alloys

  6. Hafnium influence on the microstructure of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Geanta, V.; Voiculescu, I.; Stanciu, E.-M.

    2016-06-01

    Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.

  7. Role of Y in the oxidation resistance of CrAlYN coatings

    NASA Astrophysics Data System (ADS)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  8. Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula

    NASA Astrophysics Data System (ADS)

    Budde, Gerrit; Kruijer, Thomas S.; Kleine, Thorsten

    2018-02-01

    Renazzo-type carbonaceous (CR) chondrites are distinct from most other chondrites in having younger chondrule 26Al-26Mg ages, but the significance of these ages and whether they reflect true formation times or spatial variations of the 26Al/27Al ratio within the solar protoplanetary disk are a matter of debate. To address these issues and to determine the timescales of metal-silicate fractionation and chondrule formation in CR chondrites, we applied the short-lived 182Hf-182W chronometer to metal, silicate, and chondrule separates from four CR chondrites. We also obtained Mo isotope data for the same samples to assess potential genetic links among the components of CR chondrites, and between these components and bulk chondrites. All investigated samples plot on a single Hf-W isochron and constrain the time of metal-silicate fractionation in CR chondrites to 3.6 ± 0.6 million years (Ma) after the formation of Ca-Al-rich inclusions (CAIs). This age is indistinguishable from a ∼3.7 Ma Al-Mg age for CR chondrules, suggesting not only that metal-silicate fractionation and chondrule formation were coeval, but also that these two processes were linked to each other. The good agreement of the Hf-W and Al-Mg ages, combined with concordant Hf-W and Al-Mg ages for angrites and CV chondrules, provides strong evidence for a disk-wide, homogeneous distribution of 26Al in the early solar system. As such, the young Al-Mg ages for CR chondrules do not reflect spatial 26Al/27Al heterogeneities but indicate that CR chondrules formed ∼1-2 Ma later than chondrules from most other chondrite groups. Metal and silicate in CR chondrites exhibit distinct nucleosynthetic Mo and W isotope anomalies, which are caused by the heterogeneous distribution of the same presolar s-process carrier. These data suggest that the major components of CR chondrites are genetically linked and therefore formed from a single reservoir of nebular dust, most likely by localized melting events within the

  9. High temperature oxidation resistant coatings for the directionally solidified Ni-Nb-Cr-Al eutectic superalloy

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Ulion, N. E.; Felten, E. J.

    1977-01-01

    Protective coatings required for the Ni-Nb-Cr-Al directionally solidified eutectic superalloy were developed and evaluated on the basis of oxidation resistance, diffusional stability, thermal fatigue, and creep resistance. NiCrAlY+Pt and NiCrAlY physical vapor-deposition coating systems exhibited the best combination of properties. Burner-rig testing indicated that the useful life of a 127-micron-thick NiCrAlY+Pt coating exceeds 1000 h at 1366 K. Eutectic-alloy creep lives at 1311 K and a stress of 151.7 MN/sq m were greater for NiCrAlY+Pt-coated specimens than for uncoated specimens by a factor of two.

  10. Ion irradiation testing and characterization of FeCrAl candidate alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commerciallymore » available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.« less

  11. Modeling degradation and failure of Ni-Cr-Al overlay coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    Degradation of a Ni-16Cr-25Al-0.06Zr overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of the initial Al and Cr content of the coating and substrate.

  12. Nanoindentation of Electropolished FeCrAl Alloy Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan; Aydogan, Eda; Mara, Nathan Allan

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a largermore » reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.« less

  13. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C tomore » a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.« less

  14. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Unocic, Kinga A; Hoelzer, David T

    2014-09-01

    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersionmore » was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.« less

  15. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  16. Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budde, Gerrit; Kruijer, Thomas S.; Kleine, Thorsten

    The CR chondrites are distinct from most other chondrites in having younger chondrule 26Al- 26Mg ages, but the significance of these ages and whether they reflect true formation times or a heterogeneous distribution of 26Al are not well understood. To better determine the timescales of CR chondrule formation and CR chondrite parent body accretion, we obtained Hf-W isotopic data for metal, silicate, and chondrule separates from four CR chondrites. We also obtained Mo isotopic data for the same samples, to assess potential genetic links among the components of CR chondrites, and between these components and bulk chondrites. The isotopic datamore » demonstrate that metal and silicate in CR chondrites exhibit distinct nucleosynthetic W and Mo isotope anomalies, caused by the heterogeneous distribution of a single presolar s-process carrier. These isotope signatures are akin to the complementary anomalies found previously for chondrules and matrix in CV chondrites and indicate that the major components of CR chondrites are genetically linked and formed from a common reservoir of solar nebula dust. The obtained Hf-W age of 3.6±0.6 million years (Ma) after the formation of Ca-Al-rich inclusions (CAIs) most likely dates metal-silicate separation during chondrule formation and is consistent with Al-Mg and Pb-Pb ages for CR chondrules, indicating that CR chondrules formed ~1–2 Ma later than chondrules from most other chondrite groups. Moreover, chemical, isotopic, and chronological data imply close temporal link between chondrule formation and chondrite accretion, making the CR chondrite parent body one of the youngest meteorite parent bodies. Such a late accretion at ~3.6 Ma after CAIs is consistent with isotopic composition of CR chondrites (e.g., 15N/ 14N) that is indicative of a formation at a larger heliocentric distance, probably beyond the orbit of Jupiter. As such, the accretion age of the CR parent body provides the earliest possible time at which Jupiter could

  17. Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula

    DOE PAGES

    Budde, Gerrit; Kruijer, Thomas S.; Kleine, Thorsten

    2017-10-24

    The CR chondrites are distinct from most other chondrites in having younger chondrule 26Al- 26Mg ages, but the significance of these ages and whether they reflect true formation times or a heterogeneous distribution of 26Al are not well understood. To better determine the timescales of CR chondrule formation and CR chondrite parent body accretion, we obtained Hf-W isotopic data for metal, silicate, and chondrule separates from four CR chondrites. We also obtained Mo isotopic data for the same samples, to assess potential genetic links among the components of CR chondrites, and between these components and bulk chondrites. The isotopic datamore » demonstrate that metal and silicate in CR chondrites exhibit distinct nucleosynthetic W and Mo isotope anomalies, caused by the heterogeneous distribution of a single presolar s-process carrier. These isotope signatures are akin to the complementary anomalies found previously for chondrules and matrix in CV chondrites and indicate that the major components of CR chondrites are genetically linked and formed from a common reservoir of solar nebula dust. The obtained Hf-W age of 3.6±0.6 million years (Ma) after the formation of Ca-Al-rich inclusions (CAIs) most likely dates metal-silicate separation during chondrule formation and is consistent with Al-Mg and Pb-Pb ages for CR chondrules, indicating that CR chondrules formed ~1–2 Ma later than chondrules from most other chondrite groups. Moreover, chemical, isotopic, and chronological data imply close temporal link between chondrule formation and chondrite accretion, making the CR chondrite parent body one of the youngest meteorite parent bodies. Such a late accretion at ~3.6 Ma after CAIs is consistent with isotopic composition of CR chondrites (e.g., 15N/ 14N) that is indicative of a formation at a larger heliocentric distance, probably beyond the orbit of Jupiter. As such, the accretion age of the CR parent body provides the earliest possible time at which Jupiter could

  18. Cr, Mn, and Ca distributions for olivine in angritic systems: Constraints on the origins of Cr-rich and Ca-poor core olivine in angrite LEW87051

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Mckay, G.; Le, L.

    1994-01-01

    Angrite meteorites are a type of basaltic achondrites that are noted for their very old cyrstallization ages (4.55 b.y.) and unusual chemical and mineralogical properties. In spite of great interest, only four angrites have been found. LEW87051 is the smallest one which weighs 0.6 g. It is a porphyritic rock with coarse subhedral to euhedral olivines set in a fine-grained groundmass which clearly represents a crystallized melt. The largest uncertainty about the petrogenesis of LEW87051 is the relationship between the large olivine crystals and the groundmass. Prinz et al. suggests that olivines are xenocrysts, while McKay et al. proposed a fractional cyrstallization model based on experimental studies. However, the crystals have Cr-rich and Ca-poor cores which do not match experimental olivines. Although Jurewicz and McKay tried to explaine the zoning of the rim by diffusion, some features are not explained. There also exists a definite composition boundary of Fe(2+) and MnO between the core and the rim. To clarify the origin of these olivines, we have performed experiments using LEW87051 analogs to measure the effects of oxygen fugacity on distribution coefficients of various elements in an angritic system.

  19. The effect of annealing on structure and hardness of (Fe-Cr)-50 at.% Al coatings synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ciswandi, Aryanto, Didik; Irmaniar, Tjahjono, Arif; Sudiro, Toto

    2018-05-01

    In this research, the deposition of (Fe-Cr)-50at.% Al coatings on low carbon steel was carried out by a mechanical alloying (MA) technique. The MA was performed in a shaker mill for 4 hours. Two types of Fe-Cr powders as starting material were used, high purity Fe-Cr powders: (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al, and Fe-Cr lump powder: (50FeCr)-50Al (in at.%). The coated samples were then annealed in a vacuum furnace at 700°C for 1h. The characterizations of coating structure before and after annealing were studied by XRD and SEM-EDX, while the coating hardness was measured by micro-Vickers hardness tester. Before annealing, all of coating composition were composed mainly of (Fe,Cr)Al phase. After annealing, the FeAl and Fe0.99Cr0.02Al0.99 intermetallic phases was formed in the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings. In addition, Fe2CrAlwas also found in the (Fe-25Cr)-50Al coating. Whilethe AlCr2 intermetallic phase was detected as the main phase of (50FeCr)-50Al coating. The cross-sectional microstructure showed that the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings have a smoother structure compared to (50FeCr)-50Al coating. The annealing led to intermetallic phase formation and an increasing coating hardness.

  20. First principles calculations of electronic structure and magnetic properties of Cr-based magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeed, Y., E-mail: yasir_saeed54321@yahoo.co; Shaukat, A., E-mail: schaukat@gmail.co; Nazir, S., E-mail: nazirsafdar@gmail.co

    2010-01-15

    First principles calculations based on the density functional theory (DFT) within the local spin density approximation are performed to investigate the electronic structure and magnetic properties of Cr-based zinc blende diluted magnetic semiconductors Al{sub 1-x}Cr{sub x}X (X=N, P, As, Sb) for 0<=x<=0.50.The behaviour of magnetic moment of Al{sub 1-x}Cr{sub x}X at each Cr site as well as the change in the band gap value due to spin down electrons has been studied by increasing the concentration of Cr atom and through changing X from N to Sb. Furthermore, the role of p-d hybridization is analyzed in the electronic band structuremore » and exchange splitting of d-dominated bands. The interaction strength is stronger in Al{sub 1-x}Cr{sub x}N and becomes weaker in Al{sub 1-x}Cr{sub x}Sb. The band gap due to the spin down electrons decreases with the increased concentration of Cr in Al{sub 1-x}Cr{sub x}X, and as one moves down along the isoelectronic series in the group V from N to Sb. Our calculations also verify the half-metallic ferromagnetic character in Cr doped AlX. - Graphical abstract: The prototype structures of Cr doped AlX (X=N, P, As, Sb) compounds: (A) zinc blende AlP for x=0, (B) Cr{sub 1}Al{sub 7}P{sub 8} for x=0.125, (C) Cr{sub 1}Al{sub 3}P{sub 4} for x=0.25, (D) Cr{sub 1}Al{sub 1}P{sub 2} for x=0.5.« less

  1. Characterisation of the Microstructure of Fe–Al/Cr3C2 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; JunhuiDong; Yang, Yuehong; Sun, Changming; Tuo, Ya; Li, Yanwei

    2018-03-01

    An Fe-Al/Cr3C2 composite coating is investigated to assess its suitability for treating high-temperature components in a power plant. The coating exhibits excellent high- temperature properties including good corrosion, erosion and friction-wear resistance at high temperatures. To deduce the formation of the Fe-Al/Cr3C2 composite coating and to provide an adequate theoretical basis for its extensive application, its structures and microstructures are investigated. Scanning electronic microscopy (SEM)is used along with energy-dispersive X-ray analysis (EDAX) to analyse the surface of the coating. Energy-dispersive spectroscopy (EDS) is used to analyse the cross-section of the coating. Further, X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to analyse the phases and micro structural features within the coating. The results reveal that the basic phases are two orderly inter metallic compounds (Fe3Al and FeAl) and that the reinforcement includes two oxides (Al2O3 and Cr2O3) as well as substantial quantities of Cr3C2. Al2O3is formed using two mechanisms: oxidation of aluminium in the coating and separation of Al2O3crystals from Fe3Al and FeAl. The grain size of Al2O3 and Cr2O3 in the coatings is nanometric. These two oxides may increase the corrosion-erosion and wear resistances of the coating when they are used as reinforcements.

  2. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    NASA Technical Reports Server (NTRS)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  3. Response surface methodology investigation into optimization of the removal condition and mechanism of Cr(Ⅵ) by Na2SO3/CaO.

    PubMed

    Zhao, Shengxin; Chen, Zhonglin; Shen, Jimin; Kang, Jing; Qu, Yanfeng; Wang, Binyuan; Wang, Xin; Yuan, Lie

    2017-11-01

    The removal of Cr(Ⅵ) by chemical reduction-precipitation is widely applied in wastewater treatment plants. Nevertheless, the formation of Cr(OH) 3 with gel properties has weak settlement performance, making it necessary to add a coagulant aid to reduce the settling time and improve the settling effect. In this investigation, a high concentration of Cr(Ⅵ) was removed using Na 2 SO 3 as a reducing agent and CaO as a coagulant. An improved reduction and precipitation experiment was modeled by applying a three-factor central composite experimental design (CCD). To reveal as many mechanisms as possible for Cr T removal, other verification experiments were performed. The Cr T removal efficiency decreased, which can be explained by the following three reasons: dissolution of Cr(Ⅲ), competition for adsorption between Ca 2+ and Cr(Ⅲ) at different coagulation times, and formation of a solubility complex with Cr(Ⅲ) due to the surplus SO 3 2- in solution. The increasing Cr T removal efficiency can be explained by the following two reasons: dissolved Ca 2+ from CaO can neutralize CrO 2 - that is produced by the dissolution of Cr(OH) 3 in alkaline solution and can broaden the optimal final pH range of coagulation. Ca 2+ could also strengthen the Cr T removal through adsorption bridging and co-precipitation with CaO as the core of flocs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; ...

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  5. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  6. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    DOE PAGES

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; ...

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μ B, 866 K and 0.9 μ B, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L2 1 disordered structure. The antisitemore » disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less

  7. Structure and superconductivity in the ternary silicide CaAlSi

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Huang, Gui-Qin; Liu, Mei

    2007-06-01

    Using the linear response-linearized Muffin-tin orbital (LR-LMTO) method, we study the electronic band structure, phonon spectra, electron-phonon coupling and superconductivity for c-axis ferromagnetic-like (F-like) and antiferromagnetic-like (AF-like) structures in ternary silicide CaAlSi. The following conclusions are drawn from our calculations. If Al and Si atoms are assumed to arrange along the c axis in an F-like long-range ordering (-Al-Al-Al-and-Si-Si-Si-), one could obtain the ultrasoft B1g phonon mode and thus very strong electron-phonon coupling in CaAlSi. However, the appearance of imaginary frequency phonon modes indicates the instability of such a structure. For Al and Si atoms arranging along the c axis in an AF-like long-range ordering (-Al-Si-Al-), the calculated electron-phonon coupling constant is equal to 0.8 and the logarithmically averaged frequency is 146.8 K. This calculated result can correctly yield the superconducting transition temperature of CaAlSi by the standard BCS theory in the moderate electron-phonon coupling strength. We propose that an AF-like superlattice model for Al (or Si) atoms along the c direction may mediate the inconsistency estimated from theory and experiment, and explain the anomalous superconductivity in CaAlSi.

  8. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  9. First principle study of UHTC ternary diboride, Cr2AlB2

    NASA Astrophysics Data System (ADS)

    Rastogi, Anugya; Rajpoot, Priyanka; Verma, U. P.

    2018-04-01

    In this paper ab-initio study of the structural, electronic and optical properties of ternary metal boride Cr2AlB2 using full potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The study of structural properties shows that Cr2AlB2 is metallic in nature and have orthorhombic crystal structure. The optical properties show that it possess anisotropic behavior, which have wide applications in electricity production through concentration of solar power (CSP) technology. To the best of our knowledge, theoretical study of the optical properties of Cr2AlB2 is reported for the first time.

  10. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  11. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  12. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  13. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  14. Can Cr( iii ) substitute for Al( iii ) in the structure of boehmite?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Conroy, Michele A.; Smith, Frances N.

    2016-01-01

    The dissolution of boehmite is a technical issue for the Al industry because of its recalcitrant nature. In fact, a similar problem exists with boehmite in nuclear waste sludge at the Hanford site in eastern Washington State, USA. Dissolution of Al phases is required to reduce the waste loadings in the final borosilicate glass waste form. Although not the most common Al-bearing species in the sludge, boehmite may become a rate limiting step in the processing of the wastes. Hanford boehmite is an order of magnitude more resistant to dissolution in hot caustic solutions than expected from surface-normalized rates. Wemore » are exploring potential intrinsic and extrinsic effects that may limit boehmite reactivity; one clue comes from microstructural analyses that indicate an association of Cr with Al in the Hanford nuclear waste. Hence, in this first paper, we investigated the potential role of chromium on the reactivity of boehmite in caustic solution. An important finding was that irrespective of the synthesis pathway, amount of Cr(III), or the resultant morphology, there was no evidence for Cr incorporation in the bulk structure, in agreement with QM calculations. In fact, electron microscopic (EM) and spectroscopic analyses showed that Cr was enriched at the (101) edges of the boehmite. However, Cr had no measurable effect on the morphology during the synthesis step. In contrast, comparison of the morphologies of the synthetic Cr-doped and pure boehmite samples after exposure to caustic solutions provided evidence that Cr inhibited the corrosion. TEM showed that Cr was not homogeneously distributed at the surface. Consequently, Cr may have partially passivated the surface by blocking discrete energetic sites on the lateral surfaces of boehmite.« less

  15. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  16. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linton, Kory D.; Field, Kevin G.; Petrie, Christian M.

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. Tomore » address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).« less

  17. Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2002-01-01

    The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.

  18. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  19. High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Butler, T. M.; Alfano, J. P.; Martens, R. L.; Weaver, M. L.

    2015-01-01

    High-entropy alloys (HEAs) are a class of alloys that are being considered for a number of applications. In the present study, the microstructures and 1050°C oxidation behaviors of two HEAs, Al10Cr22.5Co22.5Ni22.5Fe22.5 (at.%) and Al20Cr25Co25Ni25Si5 have been investigated along with Al15Cr10Co35Ni35Si5, which is a high-temperature shape-memory alloy. Oxide formation occurred via selective oxidation in a manner that was consistent with the oxide formation model devised by Giggins and Pettit for model Ni-Cr-Al alloys. The lower Al content alloy formed an external Cr2O3 scale and an internal subscale consisting of Al2O3 and AlN precipitates. The higher Al content alloys exhibited smaller mass gains and formed external Al2O3 scales without any internal oxidation of the alloys.

  20. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  1. Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Sun, Zhiqian; Pint, Bruce A.

    2016-06-03

    There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process inmore » a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe 2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental

  2. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling themore » integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs

  3. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N.; Massey, Caleb P.; Edmondson, Philip D.

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y 2O 3 (+ ZrO 2 or TiO 2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ballmore » milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.« less

  4. Solid-State Reaction Between Fe-Al-Ca Alloy and Al2O3-CaO-FeO Oxide During Heat Treatment at 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang

    2017-04-01

    The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.

  5. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  6. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Snead, Mary A.; Field, Kevin G.

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the developmentmore » of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.« less

  7. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditionalmore » Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.« less

  8. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Zachary T.; Terrani, Kurt A.; Yamamoto, Yukinori

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  9. Cr diffusion in MgAl2O4 synthetic spinels: preliminary results

    NASA Astrophysics Data System (ADS)

    Freda, C.; Celata, B.; Andreozzi, G.; Perinelli, C.; Misiti, V.

    2012-04-01

    Chromian spinel is an accessory phase common in crustal and mantle rocks, including peridotites, gabbros and basalts. Spinel, it has been identified as one of the most effective, sensible, and versatile petrogenetic indicator in mafic and ultramafic rock systems due to the strict interdependence between its physico-chemical properties (chemical composition, cation configuration etc.) and genetic conditions (temperature, pressure, and chemical characteristics of the system). In particular, studies on intra- and inter-crystalline Mg-Fe2+, Cr-Al exchange demonstrated the close relationship between spinel composition and both degree of partial melting and equilibrium temperature of spinel-peridotites. Moreover, studies focused on the chemical zoning of Mg-Fe2+ and/or Cr-Al components in spinel have been used, combined with a diffusion model, to provide quantitative information on peridotites and gabbros pressure-temperature paths and on deformation mechanisms. Although these potentials, most of the experimental studies have been performed on spinels hosting a limited content of divalent iron (sensu stricto, MgAl2O4), whereas the scarce studies on Cr-Al inter-diffusion coefficient have been performed at 3-7 GPa as pressure boundary condition. In order to contribute to the understanding of processes occurring in the lithospheric mantle, we have initiated an experimental research project aiming at determining the Cr-Al inter-diffusion in spinel at 2 GPa pressure and temperature ranging from 1100 to 1250 °C. The experiments were performed in a end-loaded piston cylinder by using a 19 mm assembly and graphite-Pt double capsules. As starting materials we used synthetic Mg-Al spinel (200-300 μm in size) and Cr2O3 powder. Microanalyses of experimental charge were performed on polished carbon-coated mounts by electronic microprobe. Line elemental analyses were made perpendicular to the contact surface between Cr2O3 powder and spinel, at interval of 2 μm. By processing these

  10. Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1981-01-01

    The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.

  11. Oxidation studies of Fe10CrAl-RE alloys exposed to Pb at 550 °C for 10,000 h

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Halvarsson, Mats; Weidow, Jonathan; Jönsson, Bo; Szakalos, Peter

    2013-11-01

    Five experimental FeCrAl-RE alloys have been exposed up to 10,000 h in stagnant liquid Pb at 550 °C. The test matrix consisted of three 10 wt.% Cr alloys, with an Al content ranging from 4 to 8 wt.% (10Cr-4Al, 10Cr-6Al and 10Cr-8Al), one alloy without additions of reactive elements (RE) (10Cr-6Al), and one reference alloy with 21 wt.% Cr and 5 wt.% Al (21Cr-5Al). The evaluation showed a clear difference in oxidation properties, and it was possible to divide the alloys into two distinct groups. A critical Al concentration in the interval of 4-6 wt.% at the given RE content was required to form a thin protective oxide. However, the absence of RE addition in one of the two 10Cr-6Al alloys resulted in a significant reduction in oxidation resistance, comparable with 10Cr-4Al. None of the alloys were severely corroded, however Pb penetrated to a relatively large extent into the porous oxide of the low performing alloys. A 100 nm thick oxide scale, partly consisting of alumina (Al2O3), was observed for the high performing 10Cr-6Al alloy. The Fe10CrAl-RE alloys showed overall very good corrosion resistance and are hence a promising new alloy category for liquid Pb applications.

  12. Phase Compositions of Self Reinforcement Al2O3/CaAl12O19 Composite using X-ray Diffraction Data and Rietveld Technique

    NASA Astrophysics Data System (ADS)

    Asmi, D.; Low, I. M.; O'Connor, B.

    2008-03-01

    The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.

  13. Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki

    2016-05-15

    We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔH{sub L}) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔH{sub T}) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔH{submore » L} observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔH{sub T} shows the same sign with a small magnitude. The opposite directions of ΔH{sub L} indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.« less

  14. [Structure and luminescence properties of Ga2O3 : Cr3+ by Al doping].

    PubMed

    Wang, Xian-Sheng; Wan, Min-Hua; Wang, Yin-Hai; Zhao, Hui; Hu, Zheng-Fa; Li, Hai-Ling

    2013-11-01

    The Al doping gallate phosphor (Ga(1-x)Al(x))2O3 : Cr3+ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) was synthesized by a high temperature solid-state reaction method. The X-ray diffractions show that the phase of the phosphors remains to be Ga2 O3 structure with increase in the contents of Al3+ ion. Beside, the fact that the X-ray diffraction peak shifts towards big angles with increasing Al3+ ions content shows that Al3+ ions entered the Ga2 O3 lattice. The peaks of the excitation spectra located at 258, 300, 410 and 550 nm are attributed to the band to band transition of the matrix, charge transfer band transition, and 4A2 --> 4T1 and 4A2 --> 4T2 transition of Cr3+ ions, respectively. Those excitation spectrum peak positions show different degrees of blue shift with the increase in the Al3+ ions content. The blue shift of the first two peaks are due to the band gap energy of substrate and the electronegativity between Cr3+ ions and ligands increasing, respectively. The blue shift of the energy level transition of Cr3+ ion is attributed to crystal field strength increasing. The Cr3+ ion luminescence changes from a broadband emission to a narrow-band emission with Al3+ doping, because the emission of Cr3+ ion changed from 4 T2 --> 4A2 to 2E --> 4A2 transition with the crystal field change after Al3+ ions doping. The Al3+ ions doping improved the long afterglow luminescence properties of samples, and the sample showed a longer visible near infrared when Al3+ ions content reaches 0.5. The thermoluminescence curve shows the sample with suitable trap energy level, and this is also the cause of the long afterglow luminescence materials.

  15. Parametric and experimentally informed BWR Severe Accident Analysis Utilizing FeCrAl - M3FT-17OR020205041

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Larry J.; Howell, Michael; Robb, Kevin R.

    Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristicsmore » are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation

  16. Formation Mechanism of CaS-Bearing Inclusions and the Rolling Deformation in Al-Killed, Low-Alloy Steel with Ca Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Jiang, Zhouhua; Li, Yang

    2016-08-01

    The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.

  17. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys

    DOE PAGES

    Gussev, M. N.; Field, K. G.; Yamamoto, Y.

    2017-05-05

    FeCrAl alloys are promising as corrosion- and oxidation-resistance materials for extreme high-temperature applications. However, further alloy design and improvement requires a delicate balance between workability, weldability, propensity for '-phase formation, among other factors. Here, a series of advanced oxidant resistant FeCrAl alloys were produced and investigated. Variants with Al (+2%), Nb (+1%), and TiC (0.1, 0.3, and 1%) additions over the reference alloy (Fe-13%Cr-5%Al) were characterized in detail before and after controlled laser beam welding using tensile tests with digital image correlation, SEM-EBSD analysis, and fractography. All investigated alloys demonstrated yield stress in the weldment over 500 MPa; no welding-inducedmore » cracking was observed. However, it was shown that the increase in the Al-content over 5% was detrimental leading to a brittle fracture mechanism and decreased ductility in the weldment. At the same time, Nb and TiC additions were beneficial for preventing grain growth and reducing local softening (yield stress reduction) in the heat-affected zone. The 1% TiC addition also effectively refined grain size in the weldment.« less

  18. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gussev, M. N.; Field, K. G.; Yamamoto, Y.

    FeCrAl alloys are promising as corrosion- and oxidation-resistance materials for extreme high-temperature applications. However, further alloy design and improvement requires a delicate balance between workability, weldability, propensity for '-phase formation, among other factors. Here, a series of advanced oxidant resistant FeCrAl alloys were produced and investigated. Variants with Al (+2%), Nb (+1%), and TiC (0.1, 0.3, and 1%) additions over the reference alloy (Fe-13%Cr-5%Al) were characterized in detail before and after controlled laser beam welding using tensile tests with digital image correlation, SEM-EBSD analysis, and fractography. All investigated alloys demonstrated yield stress in the weldment over 500 MPa; no welding-inducedmore » cracking was observed. However, it was shown that the increase in the Al-content over 5% was detrimental leading to a brittle fracture mechanism and decreased ductility in the weldment. At the same time, Nb and TiC additions were beneficial for preventing grain growth and reducing local softening (yield stress reduction) in the heat-affected zone. The 1% TiC addition also effectively refined grain size in the weldment.« less

  19. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  20. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE PAGES

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.; ...

    2018-05-09

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  1. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  2. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  3. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  4. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    DOE PAGES

    Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David; ...

    2017-04-30

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less

  5. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less

  6. Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl

    DTIC Science & Technology

    2016-08-24

    of the Fe doped half-Heusler and Heusler compounds CoFexCrAl and Co2-xFexCrAl (x = 0, 0.25, 0.5, 0.75, 1.0), respectively, have been studied both...Oogane, A. Hirohata, and V. K. Lazarov, “The Effect of Cobalt -Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys,” Materials 7

  7. Phase Composition and Hardening of Castable Al - Ca - Ni - Sc Alloys Containing 0.3% Sc

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Doroshenko, V. V.

    2017-05-01

    The phase composition of aluminum alloys of the Al - Ca - Ni - Sc system containing 0.3 wt.% Sc is studied. It is shown that the aluminum solid solution may be in equilibrium not only with binary phases (Al4Ca, Al3Sc and Al3Ni) but also with a ternary Al9NiCa compound. The temperature of attainment of maximum hardening due to precipitation of nanoparticles of phase Al3Sc is determined for all the alloys studied. Principal possibility of creation of castable alloys based on an (Al) + Al4Ca + Al9NiCa eutectic, the hardening heat treatment of which does not require quenching, is substantiated.

  8. Effects of Cr/Zn Substitutions on Dielectric Properties of CaCu{sub 3}Ti{sub 4}O{sub 12}(CCTO) Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajmi, R.; Yahya, A. K.; Deni, M. S. M.

    2010-07-07

    Effects of Zn and Cr substitutions on dielectric properties of CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12} ceramics are reported. Dielectric measurements at room temperature for un-substituted CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12}(x = 0, y = 0) between 10{sup 2}-10{sup 6} Hz showed dielectric constant of 2.7x10{sup 4} at 10{sup 2} Hz. Substitution of Zn for Cu in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(y = 0, x = 0.10, 0.50)caused dielectric constant to drop with increasing x. Cr substitution at Ti-site in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(x = 0, x = 0,) alsomore » caused decrease in dielectric constant. However, at x = 0.50, the dielectric constant at low frequency was enhanced compared to the un-substituted sample. Our results indicate that Cu and Ti sites play an important role in the formation of Internal Barrier Layer Capacitance (IBLC) in CCTO.« less

  9. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space

  10. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings I: Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  11. Terahertz Spectroscopy of CrH (X 6Σ+) and AlH (X 1Σ+)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2016-12-01

    New laboratory measurements of hydrides have been carried out using terahertz direct absorption spectroscopy. Spin components of the N=2≤ftarrow 1 transition of the free radical CrH (X 6Σ+) have been recorded in the range 730-734 GHz, as well as a new measurement of the J=2≤ftarrow 1 line of AlH (X 1Σ+) near 755 GHz. Both species were created in an AC discharge of H2, argon, and metal vapor. For CrH, the chromium source was Cr(CO)6, while AlH was produced from Al(CH3)3. The J=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5 fine-structure components were recorded for CrH, each which consists of resolved proton hyperfine doublets. For AlH, the two main quadrupole components, F=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5, of the J=2≤ftarrow 1 transition were observed as blended features. These data were analyzed with previous 1≤ftarrow 0 millimeter/submillimeter measurements with 6Σ and 1Σ Hamiltonians for chromium and aluminum hydrides, respectively, and rotational, fine-structure (CrH only), and hyperfine constants were derived. The new measurements have resulted in refined spectroscopic parameters for both species, as well as direct measurement of the respective 2≤ftarrow 1 rotational transitions. This work also resolves a 10 MHz discrepancy in the frequency of the AlH line. CrH and AlH have already been observed in the photospheres of stars via their electronic transitions. These data will facilitate their discovery at submillimeter/terahertz wavelengths in circumstellar envelopes and perhaps in diffuse clouds.

  12. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  13. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication

    DOE PAGES

    Sun, Zhiqian; Yamamoto, Yukinori

    2017-06-10

    The processability of a Mo-containing FeCrAl alloy (Fe-13Cr-5.2Al-2Mo base, in wt%), developed for accident-tolerant nuclear fuel claddings, was evaluated through a stepwise rolling process at 400 °C under two different inter-pass annealing conditions (i.e., 650 °C for 1 h and at 870 °C for 30 min). The inter-pass annealing at 870 °C easily softened the FeCrAl alloy; however, it led to the formation of coarse grains of ~200 µm. On the other hand, the FeCrAl alloy maintained elongated, deformed grains with the inter-pass annealing at 650 °C, but the annealed samples showed relatively high deformation resistance and strong texture. Importantmore » aspects concerning the processability and microstructural control of FeCrAl alloys, such as deformation inhomogeneity, texture development, and grain coarsening, were discussed. Optimized processing conditions were recommended, based on the results, to achieve desirable microstructures with balanced processability and mechanical properties.« less

  14. Luminescent properties of Cr-doped (GdX, Y1-X)3Al5O12 infra-red scintillator crystals

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Kurosawa, Shunsuke; Yamaji, Akihiro; Shoji, Yasuhiro; Pejchal, Jan; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2014-10-01

    Cr-doped (GdX Y1-X)3Al5O12 (X = 0, 0.25, 0.50) crystals prepared by the micro-pulling down method were investigated to develop a infra-red scintillator for implantable patient dosimeter in radiation therapy. In order to evaluate their optical and scintillation performance, the following properties were measured: (i) transmittance between ultra-violet and near-infra red region, (ii) photoluminescence spectra under Xe-lamp excitation, and (iii) X-ray excited radio-luminescence spectra. Cr:Y3Al5O12 and Cr:(Gd0.25 Y0.75)3Al5O12 crystals showed increased transmittance of 80%, while Cr:(Gd0.50 Y0.50)3Al5O12 had a lower transmittance of 40% due to its polycrystalline structure. In addition, all the Cr:(GdX Y1-X)3Al5O12 crystals showed sharp scintillation luminescence peaks ascribed to Cr3+ d-d transitions. Therefore, these results suggested that Cr:Y3Al5O12 and Cr:(Gd0.25 Y0.75)3Al5O12 crystals can be candidate materials for the dosimeter use.

  15. First-principles study of the effect of Cr and Al on the oxidation resistance of WSi2

    NASA Astrophysics Data System (ADS)

    Wang, Shuanglun; Pan, Yong; Lin, Yuanhua

    2018-04-01

    By means of first-principles approach, we systematically investigate the effect of Cr and Al on the oxidation resistance of WSi2. The interstice sites oxygen prefers to occupy are considered. Moreover, Cr and Al tend to occupy the Si sites of WSi2, and they are thermodynamically stable. The oxygen diffusion in various interstitial sites of undoped and doped WSi2 are studied, respectively. Importantly, Cr and Al can improve oxidation resistance of WSi2 obviously, and Cr, Al co-doped system has the best oxidation resistance. The improvement of oxidation resistance is attributed to the formation of Alsbnd O and Crsbnd O bonds.

  16. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGES

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; ...

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO 2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which ismore » a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y 2O 3 with ZrO 2, HfO 2 or TiO 2.« less

  17. Electron transport in all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi device, based on ab-initio NEGF calculations

    NASA Astrophysics Data System (ADS)

    Mikaeilzadeh, L.; Pirgholi, M.; Tavana, A.

    2018-05-01

    Based on the ab-initio non-equilibrium Green's function (NEGF) formalism based on the density functional theory (DFT), we have studied the electron transport in the all-Heusler device Co2CrSi/Cu2CrAl/Co2CrSi. Results show that the calculated transmission spectra is very sensitive to the structural parameters and the interface. Also, we obtain a range for the thickness of the spacer layer for which the MR effect is optimum. Calculations also show a perfect GMR effect in this device.

  18. Coadsorption and subsequent redox conversion behaviors of As(III) and Cr(VI) on Al-containing ferrihydrite.

    PubMed

    Ding, Zecong; Fu, Fenglian; Dionysiou, Dionysios D; Tang, Bing

    2018-04-01

    Naturally occurring ferrihydrite often contains various impurities, and Al is one of the most prominent impurities. However, little is known about how these impurities impact the physical and chemical properties of ferrihydrite with respect to metal(loid) adsorption. In this study, a series of Al-containing ferrihydrites were synthesized and exposed to a mixed solution containing As(III) and Cr(VI). The results showed that the two contaminants can be quickly adsorbed onto the surface of Al-containing ferrihydrite under acidic and neutral conditions. With the increase of Al molar percentage in ferrihydrites from 0 to 30, the adsorption capacity of As(III) decreased, whereas it increased for Cr(VI). On the other hand, with the increase of pH value from 3.0 to 11.0, the decreasing rate of As(III) was accelerated first, then slowed down, whereas the Cr(VI) decreasing rate slowed down dramatically. X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis method, transmission electron microscopy (TEM) analysis, energy dispersive spectroscopy (EDS) mapping, Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS) were employed to characterize Al-containing ferrihydrite. Interestingly, it was found that the redox transformation occurred between As(III) and Cr(VI) after the two contaminants were coadsorbed onto the surface of Al-containing ferrihydrite. The oxidation of As(III) to As(V) and reduction of Cr(VI) to Cr(III) would greatly lower the environmental hazard of the As(III) and Cr(VI). Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. YZ (Y = V, Cr; Z = Al, Ga) under pressure: a DFT study

    NASA Astrophysics Data System (ADS)

    Seema, K.; Kumar, Ranjan

    2014-09-01

    The structural, electronic and magnetic properties of Co-based Heusler compounds Co2YZ (Y = V, Cr; Z = Al, Ga) under pressure are studied using first principles density functional theory. The calculations are performed within generalized gradient approximation. The total magnetic moment decreases slightly on compression. Under application of external pressure, the valence band and conduction band are shifted downward which leads to the modification of electronic structure. There exists an indirect band gap along Г- X for all the alloys studied. Co2CrAl shows half-metallic nature up to 85 GPa. After this pressure transition from true half-metallic behavior to nearly half-metallic behavior is observed and at 90 GPa it shows metallic behavior. Co2CrGa shows nearly half-metallic behavior at ambient pressure, but true half-metallic behavior is observed as pressure is increased to 100 GPa. For Co2VGa, true half-metallic to nearly half-metallic transition is observed at 40 GPa and around 100 GPa, Co2VGa shows metallic behavior. For Co2VAl, true half-metallic behavior is not observed at ambient as well as higher pressures. The half metal-to-metal transition in Co2VAl and Co2CrAl is accompanied by quenching of magnetic moment.

  20. A combined APT and SANS investigation of α' phase precipitation in neutron-irradiated model FeCrAl alloys

    DOE PAGES

    Briggs, Samuel A.; Edmondson, Philip D.; Littrell, Kenneth C.; ...

    2017-03-01

    Here, FeCrAl alloys are currently under consideration for accident-tolerant fuel cladding applications in light water reactors owing to their superior high-temperature oxidation and corrosion resistance compared to the Zr-based alloys currently employed. However, their performance could be limited by precipitation of a Cr-rich α' phase that tends to embrittle high-Cr ferritic Fe-based alloys. In this study, four FeCrAl model alloys with 10–18 at.% Cr and 5.8–9.3 at.% Al were neutron-irradiated to nominal damage doses up to 7.0 displacements per atom at a target temperature of 320 °C. Small angle neutron scattering techniques were coupled with atom probe tomography to assessmore » the composition and morphology of the resulting α' precipitates. It was demonstrated that Al additions partially destabilize the α' phase, generally resulting in precipitates with lower Cr contents when compared with binary Fe-Cr systems. The precipitate morphology evolution with dose exhibited a transient coarsening regime akin to previously observed behavior in aged Fe-Cr alloys. Similar behavior to predictions of the LSW/UOKV models suggests that α' precipitation in irradiated FeCrAl is a diffusion-limited process with coarsening mechanisms similar to those in thermally aged high-Cr ferritic alloys.« less

  1. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  2. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  3. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  4. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.

    PubMed

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-12

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.

  5. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels

    PubMed Central

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-01

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening. PMID:29329260

  6. Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2017-02-01

    We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.

  7. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)(3)·Cr(OH)(3) nanoparticles.

    PubMed

    Zhang, WenJing; Li, Ping; Xu, HongBin; Sun, Randi; Qing, Penghui; Zhang, Yi

    2014-03-15

    An Al(OH)(3)·Cr(OH)(3) nanoparticle preparation procedure and its catalytic effect and mechanism on thermal decomposition of ammonium perchlorate (AP) were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis and mass spectroscopy (TG-MS). In the preparation procedure, TEM, SAED, and FT-IR showed that the Al(OH)(3)·Cr(OH)(3) particles were amorphous particles with dimensions in the nanometer size regime containing a large amount of surface hydroxyl under the controllable preparation conditions. When the Al(OH)(3)·Cr(OH)(3) nanoparticles were used as additives for the thermal decomposition of AP, the TG-DSC results showed that the addition of Al(OH)(3)·Cr(OH)(3) nanoparticles to AP remarkably decreased the onset temperature of AP decomposition from approximately 450°C to 245°C. The FT-IR, RS and XPS results confirmed that the surface hydroxyl content of the Al(OH)(3)·Cr(OH)(3) nanoparticles decreased from 67.94% to 63.65%, and Al(OH)3·Cr(OH)3 nanoparticles were limitedly transformed from amorphous to crystalline after used as additives for the thermal decomposition of AP. Such behavior of Al(OH)(3)·Cr(OH)(3) nanoparticles promoted the oxidation of NH3 of AP to decompose to N2O first, as indicated by the TG-MS results, accelerating the AP thermal decomposition. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Nathan; Sweet, Ryan; Maldonado, G. Ivan

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behaviormore » of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.« less

  9. Oxidation of Ca-α-SiAlON Powders Prepared by Combustion Synthesis

    PubMed Central

    Li, Jinfu; Li, Zhongmin; Wang, Enhui; Wang, Zhanjun; Yin, Xiaowei; Zhang, Zuotai

    2015-01-01

    The oxidation of Ca-α-SiAlON synthesized by the combustion synthesis (CS) method with different additives was investigated in air atmosphere using thermogravimetric (TG) analysis in a temperature range from 1453 K to 1653 K. The experimental results indicated that oxidation was controlled by mixed chemical and diffusion steps. The oxidation products by XRD analysis were composed of SiO2 and CaAl2Si2O8 at low oxidation temperature, whereas the SiO2-Al2O3-CaO ternary glassy phase was formed at elevated temperature. The deviation of oxidation resistance from each sample may be due to the morphological difference brought about by different additive additions. This study reveals the effects of additives on the oxidation resistance of synthesized Ca-α-SiAlON powders. PMID:28793657

  10. Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene.

    USGS Publications Warehouse

    Haselton, H.T.; Hemingway, B.S.; Robie, R.A.

    1984-01-01

    Low-T heat capacities (5-380 K) have been measured by adiabatic calorimetry for synthetic CaAl2SiO6 glass and pyroxene. High-T unit cell parameters were measured for CaAl2SiO6 pyroxene by means of a Nonius Guinier-Lenne powder camera in order to determine the mean coefficient of thermal expansion in the T range 25-1200oC. -J.A.Z.

  11. Interdiffusion behavior of U3Si2 with FeCrAl via diffusion couple studies

    NASA Astrophysics Data System (ADS)

    Hoggan, Rita E.; He, Lingfeng; Harp, Jason M.

    2018-04-01

    Uranium silicide (U3Si2) is a candidate to replace uranium oxide (UO2) as light water reactor (LWR) fuel because of its higher thermal conductivity and higher fissile density relative to the current standard, UO2. A class of Fe, Cr, Al alloys collectively known as FeCrAl alloys that have superior mechanical and oxidation resistance are being considered as an alternative to the standard Zirconium based LWR cladding. The interdiffusion behavior between FeCrAl and U3Si2 is investigated in this study. Commercially available FeCrAl, along with U3Si2 pellets were placed in diffusion couples. Individual tests were ran at temperatures ranging from 500 °C to 1000 °C for 30 h and 100 h. The interdiffusion was analyzed with an optical microscope, scanning electron microscope, and transmission electron microscope. Uniform and planar interdiffusion layers along the material interface were illustrated with backscatter electron micrographs and energy-dispersive X-ray spectroscopy. Electron diffraction was used to validate phases present in the system, including distinct U2Fe3Si/UFe2 and UFeSi layers at the material interface. U and Fe diffused far into the FeCrAl and U3Si2 matrix, respectively, in the higher temperature tests. No interaction was observed at 500 °C for 30 h.

  12. Deformation processed Al/Ca nano-filamentary composite conductors for HVDC applications

    NASA Astrophysics Data System (ADS)

    Czahor, C. F.; Anderson, I. E.; Riedemann, T. M.; Russell, A. M.

    2017-07-01

    Efficient long-distance power transmission is necessary as the world continues to implement renewable energy sources, often sited in remote areas. Light, strong, high-conductivity materials are desirable for this application to reduce both construction and operational costs. In this study an Al/Ca (11.5% vol.) composite with nano-filamentary reinforcement was produced by powder metallurgy then extruded, swaged, and wire drawn to a maximum true strain of 12.7. The tensile strength increased exponentially as the filament size was reduced to the sub-micron level. In an effort to improve the conductor’s ability to operate at elevated temperatures, the deformation-processed wires were heat-treated at 260°C to transform the Ca-reinforcing filaments to Al2Ca. Such a transformation raised the tensile strength by as much as 28%, and caused little change in ductility, while the electrical conductivity was reduced by only 1% to 3%. Al/Al2Ca composites are compared to existing conductor materials to show how implementation could affect installation and performance.

  13. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; El-Atwani, O.; Wang, Y. Q.; Mara, N. A.

    2018-05-01

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al2O3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe2+ ion irradiation up to ∼16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two-beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size and a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α‧ precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ∼3.4 dpa and ∼16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.

  14. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less

  15. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    DOE PAGES

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; ...

    2018-03-02

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less

  16. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    NASA Astrophysics Data System (ADS)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  17. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  18. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  19. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  20. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure

    NASA Astrophysics Data System (ADS)

    Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.

    2018-04-01

    FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.

  1. Reduction of CaO and MgO Slag Components by Al in Liquid Fe

    NASA Astrophysics Data System (ADS)

    Mu, Haoyuan; Zhang, Tongsheng; Fruehan, Richard J.; Webler, Bryan A.

    2018-05-01

    This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.

  2. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  3. Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo

    NASA Astrophysics Data System (ADS)

    Canto, C. E.; Andrade, E.; Rocha, M. F.; Alemón, B.; Flores, M.

    2017-09-01

    The tribocorrosion resistance and adherence of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by PVD reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt in order to enhance the tribocorrosion resistance of a biomedical alloy of CoCrMo. Tribocorrosion tests were performed using Simulated Body Fluid (SBF) at typical body temperature with a tribometer in a pin on disk test. The elemental composition and thickness of the coating which behave better at the tribocorrosion tests were evaluated by means of RBS (Rutherford Backscattering Spectroscopy) IBA (Ion Beam Analysis) technique, using an alpha particles beam of 1.8 MeV, before and after the reciprocating motion in the tribocorrosion test. In order to simulate the elemental profile of the samples, the SIMNRA simulation computer code was used. Measurements of the adhesion of the coatings to the substrate were carried on by means of a scratch test using a tribometer. By taking micrographs of the produced tracks, the critical loads at which the coatings are fully separated from the substrate were determined. From these tests it was observed that a coating with 10 min of TiAlPtN in a TiAlPtN/TiAl period of 30 min in multilayers of 10 periods and with an average thickness of 145 nm for the TiAlPtN nanolayers had the best tribocorrosion resistance behavior, compared to that of the CoCrMo alloy. The RBS experiments showed a reduction of the thickness of the films along with some loss of the multilayer structure after the reciprocating motion. The adhesion tests indicated that the multilayer with the average TiAlPtN thickness of 145 nm displayed the highest critical load. These results indicate a high correlation between the adherence and the tribocorrosion behavior.

  4. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurchenko, N.Yu.

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The densitymore » of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.« less

  5. Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K-T boundary clays from Stevns Klint

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2016-05-01

    Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.

  6. Plastic behavior of two-phase intermetallic compounds based on L1{sub 2}-type (Al,Cr){sub 3}Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.Y.; Wee, D.M.; Oh, M.H.

    Plastic behavior of two-phase intermetallic compounds based on L1{sub 2}-type (Al,Cr){sub 3}Ti was investigated using compression test at R.T. and 77K. L1{sub 2} single phase alloys and two-phase alloys consisting of mainly L1{sub 2} phase and a few or 20% (mole percent) second phases were selected from Al-Ti-Cr phase diagram. In general, compared with L1{sub 2} single phase, two-phase alloys consisting of 20% second phase showed relatively high yield strength and poor ductility. Among the alloys, however, Al-21Ti-23Cr alloy consisting of 20% Cr{sub 2}Al phase showed available ductility as well as high yield strength. Plastic behavior of L1{sub 2} singlemore » phase alloys and two-phase alloys consisting of a few Cr{sub 2}Al was also investigated. Homogenization of arc melted ingots substantially reduced the amount of second phases but introduced extensive pore. When Cr content increased in L1{sub 2} single phase alloys after the homogenization, the volume fraction of pores in the alloys decreased, and no residual porosity was observed in two-phase alloys consisting of a few% Cr{sub 2}Al phase. Environmental effect on the ductility of the alloys was investigated using compression test at different strain rates (1.2 {times} 10{sup {minus}4}/s and 1.2 {times} 10{sup {minus}2}/s). Environmental embrittlement was least significant in Al-25Ti-10Cr alloy consisting of L1{sub 2} single phase among the alloys tested in this study. However, based on the combined estimation of the pore formation, environmental embrittlement and ingot cast structure, it could be supposed that Al-21Ti-23Cr alloy consisting of 20% Cr{sub 2}Al as a second phase is expected to show the best tensile elongation behavior among the materials tested.« less

  7. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  8. Chemical and Morphological Characterization of Magnetron Sputtered at Different Bias Voltages Cr-Al-C Coatings

    PubMed Central

    Obrosov, Aleksei; Gulyaev, Roman; Zak, Andrzej; Ratzke, Markus; Naveed, Muhammad; Dudzinski, Wlodzimierz; Weiß, Sabine

    2017-01-01

    MAX phases (M = transition metal, A = A-group element, and X = C/N) are of special interest because they possess a unique combination of the advantages of both metals and ceramics. Most attention is attracted to the ternary carbide Cr2AlC because of its excellent high-temperature oxidation, as well as hot corrosion resistance. Despite lots of publications, up to now the influence of bias voltage on the chemical bonding structure, surface morphology, and mechanical properties of the film is still not well understood. In the current study, Cr-Al-C films were deposited on silicon wafers (100) and Inconel 718 super alloy by dc magnetron sputtering with different substrate bias voltages and investigated using Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and nanoindentation. Transmission Electron Microscopy (TEM) was used to analyze the correlation between the growth of the films and the coating microstructure. The XPS results confirm the presence of Cr2AlC MAX phase due to a negative shift of 0.6–0.9 eV of the Al2p to pure aluminum carbide peak. The XRD results reveal the presence of Cr2AlC MAX Phase and carbide phases, as well as intermetallic AlCr2. The film thickness decreases from 8.95 to 6.98 µm with increasing bias voltage. The coatings deposited at 90 V exhibit the lowest roughness (33 nm) and granular size (76 nm) combined with the highest hardness (15.9 GPa). The ratio of Al carbide to carbide-like carbon state changes from 0.12 to 0.22 and correlates with the mechanical properties of the coatings. TEM confirms the columnar structure, with a nanocrystalline substructure, of the films. PMID:28772516

  9. Effects of Solute Concentrations on Kinetic Pathways in Ni-Al-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Weninger, Jessica; Sudbrack, Chantal K.; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The kinetic pathways resulting from the formation of coherent gamma'-precipitates from the gamma-matrix are studied for two Ni-Al-Cr alloys with similar gamma'-precipitate volume fractions at 873 K. The details of the phase decompositions of Ni-7.5Al-8.5Cr at.% and Ni-5.2Al-14.2Cr at.% for aging times from 1/6 to 1024 h are investigated by atom-probe tomography, and are found to differ significantly from a mean-field description of coarsening. The morphologies of the gamma'-precipitates of the alloys are similar, though the degrees of gamma'-precipitate coagulation and coalescence differ. Quantification within the framework of classical nucleation theory reveals that differences in the chemical driving forces for phase decomposition result in differences in the nucleation behavior of the two alloys. The temporal evolution of the gamma'-precipitate average radii and the gamma-matrix supersaturations follow the predictions of classical coarsening models. The compositional trajectories of the gamma-matrix phases of the alloys are found to follow approximately the equilibrium tie-lines, while the trajectories of the gamma'-precipitates do not, resulting in significant differences in the partitioning ratios of the solute elements.

  10. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors

    DOE PAGES

    Yamamoto, Yukinori; Pint, Bruce A.; Terrani, Kurt A.; ...

    2015-10-19

    Development of nuclear grade, iron-based wrought FeCrAl alloys has been initiated for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys with enhanced accident tolerance. Ferritic alloys with sufficient chromium and aluminum additions can exhibit significantly improved oxidation kinetics in high-temperature steam environments when compared to zirconium-based alloys. In the first phase, a set of model FeCrAl alloys containing 10–20Cr, 3–5Al, and 0–0.12Y in weight percent, were prepared by conventional arc-melting and hot-working processes to explore the effect of composition on the properties of FeCrAlY alloys. It was found that the tensile properties were insensitivemore » to the alloy compositions studied; however, the steam oxidation resistance strongly depended on both the chromium and the aluminum contents. The second phase development focused on strengthening Fe-13Cr-5Al with minor alloying additions of molybdenum, niobium, and silicon. Combined with an optimized thermo-mechanical treatment, a thermally stable microstructure was produced with improved tensile properties at temperatures up to 741°C.« less

  11. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings II: Specific Heat Capacity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = {AT}^{4} + {BT}^{3} + {CT}^{2} + DT + \\varvec{E}where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3 R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3 R at all temperatures.

  12. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...

    2017-08-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and alunimum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3–0.8 displacements per atom (dpa) at temperatures of 335–355°C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a/2< 111 > or a< 100 > Burgers vectors. Weak composition dependencies were observedmore » and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Here, the results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.« less

  13. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Yamamoto, Yukinori; Howard, Richard H.

    2017-11-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and aluminum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3-0.8 displacements per atom (dpa) at temperatures of 335-355 °C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a / 2 〈 111 〉 or a 〈 100 〉 Burgers vectors. Weak composition dependencies were observed and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.

  14. Synthesis and Luminescence Characteristics of Cr 3+ doped Y 3Al 5O 12 Phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brenda A.; Dabestani, Reza T.; Lewis, Linda A.

    2015-10-01

    Luminescence performance of yttrium aluminum garnet (Y 3Al 5O 12) phosphors as a function of Cr 3+ concentration has been investigated via two different wet-chemical synthesis techniques, direct- (DP) and hydrothermal-precipitation (HP). Using either of these methods, the red-emitting phosphor [Y 3Al 5-xCr xO 12 (YAG: Cr 3+)] showed similar photoluminescence (PL) intensities once the dopant concentration was optimized. Specifically, the YAG: Cr 3+ PL emission intensity reached a maximum at Cr3+ concentrations of x = 0.02 (0.4 at.%) and x = 0.13 (2.6 at.%) for DP and HP processed samples, respectively. The results indicated the strong influence of themore » processing method on the optimized YAG: Cr 3+ performance, where a more effective energy transfer rate between a pair of Cr3+ activators at low concentration levels was observed by using the DP synthesis technique. Development of a highly efficient phosphor, using a facile synthesis approach, could significantly benefit consumer and industrial applications by improving the operational efficiency of a wide range of practical devices.« less

  15. Phase Transformation and Creep of Mg-Al-Ca Based Die-Cast Alloys

    NASA Astrophysics Data System (ADS)

    Suzuki, Akane; Saddock, Nicholas D.; Jones, J. Wayne; Pollock, Tresa M.

    The microstructure and microstructural stability of die-cast AC53 (Mg-5Al-3Ca) and AXJ530 (Mg-5Al-3Ca-0.15Sr) have been investigated in detail by transmission electron microscopy (TEM). Both alloys have an as-cast microstructure of α-Mg with (Mg, Al)2Ca (dihexagonal C36) eutectic at grain boundaries. During aging at 573 K, the C36 phase transforms to Al2Ca (cubic Cl5) phase. These two phases have a crystallographic orientation relationship of (0001)C36//{111}C15 and [2110]C36//[011]C15, and the transformation from C36 to C15 occurs by a shear-assisted process. Despite this change in the phase constitution, the network structure of the intermetallic compound(s) surrounding α-Mg grains is fairly stable, morphologically, even after prolonged exposure at elevated temperature. In the α-Mg matrix phase, precipitation of Al2Ca was observed after aging for 360 ks at 573 K. The precipitates are disc-shaped with a habit plane of {111}C15//(0001)α. AXJ530 shows higher creep resistance than AC53. The dislocation substructure that evolved during creep deformation was investigated in both alloys, and the basal and non-basal slip of a-dislocation and other slip modes of a+c- dislocations were observed. The relationship between creep properties and microstructure is discussed.

  16. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Hwang, Il Soon; Kim, Ji Hyun

    2013-10-01

    Iron-chromium-aluminum alloys containing 15-20 wt.% Cr and 4-6 wt.% Al have shown excellent corrosion resistance in the temperature range up to 600 °C or higher in liquid lead and lead-bismuth eutectic environments by the formation of protective Al2O3 layers. However, the higher Cr and Al concentrations in ferritic alloys could be problematic because of severe embrittlement in the manufacturing process as well as in service, caused by the formation of brittle phases. For this reason, efforts worldwide have so far mainly focused on the development of aluminizing surface treatments. However, aluminizing surface treatments have major disadvantages of cost, processing difficulties and reliability issues. In this study, a new FeCrAl alloy is proposed for structural materials in lead and lead-bismuth cooled nuclear applications. The alloy design relied on corrosion experiments in high temperature lead and lead-bismuth eutectic environments and computational thermodynamic calculations using the commercial software, JMatPro. The design of new alloys has focused on the optimization of Cr and Al levels for the formation of an external Al2O3 layer which can provide excellent oxidation and corrosion resistance in liquid lead alloys in the temperature range 300-600 °C while still retaining workable mechanical properties.

  17. Solute transport and the prediction of breakaway oxidation in gamma + beta Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    The Al transport and the condition leading to breakaway oxidation during the cyclic oxidation of gamma + beta NiCrAl alloys have been studied. The Al concentration/distance profiles were measured after various cyclic oxidation exposures at 1200 C. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide/metal interface, maintaining a constant flux of Al to the Al2O3 scale. It was also observed that breakaway oxidation occurs when the Al concentration at the oxide/metal interface approaches zero. A numerical model was developed to simulate the diffusional transport of Al and to predict breakaway oxidation in gamma + beta NiCrAl alloys undergoing cyclic oxidation. In a comparison of two alloys with similar oxide spalling characteristics, the numerical model was shown to predict correctly the onset of breakaway oxidation in the higher Al-content alloy.

  18. First-principles investigation of point defect and atomic diffusion in Al2Ca

    NASA Astrophysics Data System (ADS)

    Tian, Xiao; Wang, Jia-Ning; Wang, Ya-Ping; Shi, Xue-Feng; Tang, Bi-Yu

    2017-04-01

    Point defects and atomic diffusion in Al2Ca have been studied from first-principles calculations within density functional framework. After formation energy and relative stability of point defects are investigated, several predominant diffusion processes in Al2Ca are studied, including sublattice one-step mechanism, 3-jump vacancy cycles and antistructure sublattice mechanism. The associated energy profiles are calculated with climbing image nudged elastic band (CI-NEB) method, then the saddle points and activation barriers during atomic diffusion are further determined. The resulted activation barriers show that both Al and Ca can diffuse mainly mediated by neighbor vacancy on their own sublattice. 3-jump cycle mechanism mediated by VCa may make some contribution to the overall Al diffusion. And antistructure (AS) sublattice mechanism can also play an important role in Ca atomic diffusion owing to the moderate activation barrier.

  19. Microstructure transformation of Cr-Al coating on carbon steel prepared by ball milling method as a function of tungsten doping

    NASA Astrophysics Data System (ADS)

    Wismogroho, A. S.; Sudiro, T.; Didik, A.; Ciswandi

    2018-03-01

    In present work, Cr-Al coatings containing 0, 1, 2, 3, and 5% W have been prepared on the surface of low carbon steel by mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Afterward, the Cr-Al-W powder and substrate were mechanically alloyed in air for 1 hour. The heat treatment of coated samples was carried out at 800 °C in a vacuum furnace for 2 hour. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The analysis results reveal that the ball milling process induces the formation of homogeneous Cr-Al-W coating structure with a thickness of about 80 μm. The phase observation shows individual peaks of each starting elements, along with the occurrence of powder refinement and solid solution formation. After heat treatment, AlCr2 and Al8Cr5 phases were formed. The addition of W accelerates the formation of AlCr2, but inhibits the formation of Al8Cr5. The detail of the results was presented in this paper.

  20. Crystal structure and electrical conductivity of lanthanum-calcium chromites-titanates La 1-xCa xCr 1-yTi yO 3-δ ( x=0-1, y=0-1)

    NASA Astrophysics Data System (ADS)

    Vashook, V.; Vasylechko, L.; Zosel, J.; Gruner, W.; Ullmann, H.; Guth, U.

    2004-10-01

    Five series of perovskite-type compounds in the system La1-xCaxCr1-yTiyO3 with the nominal compositions y = 0 , x = 0 - 0.5 ; y = 0.2 , x = 0.2 - 0.8 ; y = 0.5 , x = 0.5 - 1.0 ; y = 0.8 , x = 0.6 - 1.0 and y = 1 , x = 0.8 - 1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)⩾1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1-x‧-y)Ca(x‧+y)CrIVx‧CrIII(1-x‧-y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x‧ < 0.6 - 0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1-xCaxCr1-yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10-16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10-15-0.21×105 Pa, the compounds with x > y (acceptor doped) are p-type semiconductors and those with x < y (donor doped) and x = y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite

  1. The CR (Renazzo-type) carbonaceous chondrite group and its implications

    NASA Technical Reports Server (NTRS)

    Weisberg, Michael K.; Prinz, Martin; Clayton, Robert N.; Mayeda, Toshiko K.

    1993-01-01

    A petrologic, geochemical, and oxygen isotropic study of the CR chondrites including Renazzo, Al Rais, El Djouf 001 and the paired Acfer meteorites, EET87770 and the paired samples, MAC87320, Y790112, Y793495, and Y791498 is presented. It is concluded that the CR group is characterized by abundant large multilayered, Fe, Ni metal-rich, type I chondrules; abundant matrix and dark inclusions; unique assemblages of serpentine and chlorite-rich phyllosilicates and Ca-carbonates; Ca-carbonate rims on chondrules; abundant Fe, Ni metal with a positive Ni vs. Co trend and a solar Ni:Co ratio; and amoeboid olivine aggregates with Mn-rich and Mn-poor forsterite.

  2. Doping effect on charge ordering in the spinel compound AlV_2-xCr_xO_4

    NASA Astrophysics Data System (ADS)

    Horibe, Yoichi; Kurushima, Kosuke; Mori, Shigeo; Shingu, Masao; Katsufuji, Takuro

    2004-03-01

    It is reported that AlV_2O4 with the spinel-type structure shows the charge-ordering (CO) behavior below 700K.[1] Because the average valence of V is V^2.5+ in this compound, the CO structure is characterized by the unique CO pattern with V^2+:V^4+=3:1. In this talk, we will report doping effect on the CO structure in AlV_2O_4. In particular, we will focus on changes of microstructure related to the CO structure by Cr doping by transmission electron microscopy. Firstly we confirmed that AlV_2O4 has a long-ranged CO structure characterized by a single wave vector q=(1/2)[111]. On the other hand, we found the presence of diffuse scatterings at the (1/2)[111] and (1/2)[1-11]-type positions in AlV_1.875Cr_0.125O4 at room temperature. This means that the CO structure in AlV_1.875Cr_0.125O4 has two wave vectors of q=(1/2)[111] and q=the (1/2)[1-11]. Furthermore, the long-ranged CO structure in AlV_2O4 changes into the short-ranged one by substituting Cr ions into the V ones. The correlation length of CO in x=0.125 can be estimated to be about 5 nm. Our results suggest that the Cr doping destroyed the CO correlation effectively. It is revealed that by substituting Cr ions to V ones, the CO state is suppressed drastically and disappeared with x > 0.125. [1] K. Matsuno et al., J. Phys. Soc. Jpn 70, 1456 (2001)

  3. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  4. [Cr-Ti-Al-N complex coating on titanium to strengthen Ti/porcelain bonding].

    PubMed

    Zhang, Hui; Guo, Tian-wen; Li, Jun-ming; Pan, Jing-guang; Dang, Yong-gang; Tong, Yu

    2006-02-01

    To study the feasibility of magnetron sputtering Cr-Ti-Al-N complex coating as an interlayer on titanium to enhance the titanium-ceramic binding strength. With a three-point bending test according to ISO 9693, the binding strength of Duceratin (Degussa) to titanium substrate prepared with 4 different surface treatments (polishing, polishing and megnetron sputtering Cr, Ti, Al, and N complex coating, sandblasting, sandblasting and coating) was evaluated. Ti/porcelain interface and fractured Ti surface were examined using scanning electron microscopy with energy-dispersive spectrometry (EDS). The binding strength of polished and coated titanium/Duceratin was significantly higher than polished titanium group (P<0.05). The binding strength of sandblasted and coated titanium/Duceratin did not differ significantly from that of sandblasted titanium group (P>0.05), and the strength in the two sandblasted titanium groups was significantly higher than that in polished and coated titanium group (P<0.05). Megnetron sputtering Cr-Ti-Al-N complex on polished titanium can increase the titanium/porcelain binding strength. Megnetron sputtering coating is a promising Ti/porcelain interlayer.

  5. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  6. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam. E.; Mohamed, Amira. T.

    2017-03-01

    The spinel ferrite Mg0.7Cr0.3Fe2O4, and Mg0.7Al0.3Fe2O4 were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al3+ and Mg2+ respectively. The substitution of Cr3+/Al3+ in place of Mg2+ ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg2+, which creates strain inside the crystal volume. According to VSM results, by adding Al3+ or Cr3+ ions at the expense of Mg2+, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5-1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al3+, and Cr3+ ions enhanced the optical, magnetic and structure properties of the samples. Mg0.7 Cr0.3Fe2O4 sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications.

  7. EPR and optical investigations of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com; Sivaramaiah, G.; Rao, J.L.

    2014-12-15

    Graphical abstract: The EPR spectrum of as-prepared LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor at 110 K. - Highlights: • Using the combustion synthesis, LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared in a few minutes. • Optical investigation indicates that Cr{sup 3+} ions are present in octahedral symmetry. • The EPR signals indicate that exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs in weakly distorted sites. - Abstract: The LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared by a low-temperature combustion synthesis method. As-prepared combustion synthesized powder was characterized using powder X-ray diffraction (XRD), diffuse reflectance (DRS), electron paramagnetic resonance (EPR) andmore » photoluminescence (PL) studies. The X-ray diffraction pattern reveals crystalline hexagonal phases. The UV–vis diffuse reflectance spectrum exhibits three broad bands characteristic of Cr{sup 3+} ions in octahedral symmetry. The EPR spectrum exhibits several resonance signals. The signals with the effective g values at g = 4.84, 3.64 and 2.26 have been attributed to the isolated Cr{sup 3+} ions. The signal with the effective g value at g = 1.94 has been attributed to exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs. The PL studies exhibit several bands characteristic of Cr{sup 3+} ions in octahedral symmetry.« less

  8. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; ...

    2016-11-01

    FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundariesmore » on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.« less

  9. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al

    NASA Astrophysics Data System (ADS)

    Galazka, Zbigniew; Ganschow, Steffen; Fiedler, Andreas; Bertram, Rainer; Klimm, Detlef; Irmscher, Klaus; Schewski, Robert; Pietsch, Mike; Albrecht, Martin; Bickermann, Matthias

    2018-03-01

    We experimentally evaluated segregation of Cr, Ce and Al in bulk β-Ga2O3 single crystals grown by the Czochralski method, as well as the impact of these dopants on optical properties. The segregation of Cr and Ce and their incorporation into the β-Ga2O3 crystal structure strongly depends on O2 concentration in the growth atmosphere which has a noticeable impact on decomposition of Ga2O3 and Cr2O3, as well as on the charge state of Cr and Ce. Effective segregation coefficients for Cr are in the range of 3.1-1.5 at 7-24 vol% O2, while for Ce they are roughly below 0.01 at 1.5-34 vol% O2. The effective segregation coefficient for Al is 1.1 at 1.5-21 vol% O2. Both dopants Ce and Al have a thermodynamically stabilizing effect on β-Ga2O3 crystal growth by supressing decomposition. While Ce has no impact on the optical transmittance in the ultraviolet and visible regions, in Cr doped crystals we observe three absorption bands due to Cr3+ on octahedral Ga sites, one in the ultraviolet merging with the band edge absorption of β-Ga2O3 and two in the visible spectrum, for which we estimate the absorption cross sections. Al doping also does not induce dopant related absorption bands but clearly shifts the absorption edge as one expects for a solid-solution crystal Ga2(1-x)Al2xO3 still in the monoclinic phase. For the highest doping concentration (Ga1.9Al0.1O3) we estimate an increase of the energy gap by 0.11 eV.

  10. Fabrication and luminescent properties of Al2O3:Cr3 + microspheres via a microwave solvothermal route followed by heat treatment

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenfeng; Liu, Dianguang; Liu, Hui; Du, Juan; Yu, Hongguang; Deng, Jie

    2012-06-01

    AlOOH:Cr3 + powders were synthesized via a microwave solvothermal route at 433 K for 30 min and were used as the precursor and template for the preparation of γ-Al2O3:Cr3 + by thermal transformation at 773 K for 2 h in air. The obtained γ-Al2O3 based powders were microspheres with an average diameter about 1.9 μm. Photoluminescence (PL) spectra showed that the Al2O3:Cr3 + particles presented a symmetric broad R band at 696 nm without appreciable splitting when excited at 462 nm. It is shown that the 0.04 mol% of doping concentration of Cr3 + ions in γ-Al2O3:Cr3 + is optimum. According to Dexter's theory, the critical distance between Cr3 + ions for energy transfer was determined to be 47.54 Å. Based on the corresponding PL spectrum, full width at half maximum (FWHM) of Al2O3:Cr3 + (0.04 mol%) was calculated to be 3.35 nm.

  11. Erosion behavior of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, Robert, E-mail: robert.franz@unileoben.ac.at; Mendez Martin, Francisca; Hawranek, Gerhard

    2016-03-15

    Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a resultmore » of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.« less

  12. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    NASA Technical Reports Server (NTRS)

    Carro, G.; Flanagan, W. F.

    1992-01-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3.

  13. Study on the Anti-Poison Performance of Al-Y-P Master Alloy for Impurity Ca in Aluminum Alloys.

    PubMed

    Zuo, Min; Dong, Yu; Zhao, Degang; Wang, Yan; Teng, Xinying

    2017-11-26

    In this article, the anti-poison performance of novel Al-6Y-2P master alloy for impurity Ca in hypereutectic Al-Si alloys was investigated in detail. According to the microstructural analysis, it can be found that the primary Si and eutectic Si particles could be relatively modified and refined. In order to investigate the influence mechanism of Ca on the limited refinement performance of Al-6Y-2P master alloy, types of Al-xSi-2Ca-3Y-1P (x = 0, 6, 12, 18, and 30) alloys were prepared. It is observed that Ca takes the form of more stable Ca3P2 compounds by reacting with YP, and the surface of Ca3P2 particles are unsmooth, and even some have wrinkles in Al Al-2Ca-3Y-1P alloy. With the increase of Si content in Al-xSi-2Ca-3Y-1P (x = 6, 12, 18 and 30) systems, the multi-encapsulation structures, i.e., the phosphide (AlP and YP), hexagonal Al2Si2Ca, the Al3Si2Y2 or primary Si from inside to outside in order were examined.The excapsulation of YP and AlP caused by Al2Si2Ca might be the reason for the limited refinement effect of Al-6Y-2P master alloy for hypereutectic Al-18Si alloys.

  14. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  15. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys

    DOE PAGES

    Sun, Zhiqian; Edmondson, Philip D.; Yamamoto, Yukinori

    2017-11-15

    The microstructures and mechanical properties of deformed and annealed Nb-containing FeCrAl alloys were investigated. Fine dispersion of Fe 2Nb-type Laves phase particles was observed in the bcc-Fe matrix after applying a thermomechanical treatment, especially along grain/subgrain boundaries, which effectively stabilized the recovered and recrystallized microstructures compared with the Nb-free FeCrAl alloy. The stability of recovered areas increased with Nb content up to 1 wt%. The recrystallized grain structure in Nb-containing FeCrAl alloys consisted of elongated grains along the rolling direction with a weak texture when annealed below 1100 °C. An abnormal relationship between recrystallized grain size and annealing temperature wasmore » found. Microstructural inhomogeneity in the deformed and annealed states was explained based on the Taylor factor. Annealed Nb-containing FeCrAl alloys showed a good combination of strength and ductility, which is desirable for their application as fuel cladding in light-water reactors.« less

  16. Solvent Free Transesterification of Glycerol Into Glycerol Carbonate Over Nanostructured CaAl Hydrotalcite Catalyst.

    PubMed

    Devarajan, Arulselvan; Thiripuranthagan, Sivakumar; Radhakrishnan, Ramakrishnan; Kumaravel, Sakthivel

    2018-07-01

    Drastic increase in green house gases due to fossil fuels usage urges the mankind to look for alternative fuel resources. Biodiesel is one of the alternative fuels which attracted the attention of many researchers. In recent years, bio-diesel drags much attention as an alternative clean fuel. Glycerol is an unavoidable byproduct in the transesterification process of vegetable oils into bio diesel and therefore market is flooded with glycerol. So it is high time to find ways of utilizing the abundant glycerol into value added products. Herein we report the catalytic transesterification of glycerol using dimethyl carbonate over MgAl-hydrotalcite (MgAl-HT), CaAl-hydrotalcite (CaAl-HT) and nano structured CaAl-HT catalysts. All the catalysts were characterized by XRD, FT-IR, TPD-CO2, BET, SEM and HR-TEM techniques. Among them Ca4Al-HT was found to be best in terms of conversion of glycerol (82.4%) and selectivity (95.9%) towards glycerol carbonate. The effect of CTAB template concentration in the nano synthesis of Ca4Al-HT on conversion and selectivity was studied and Ca4Al-HT synthesized with 0.4 moles of CTAB showed the best conversion of glycerol (98.7%) and the highest selectivity towards glycerol carbonate (97.9%). The recyclability test performed with the best catalyst showed that the catalyst was recyclable even after 5 cycles. Valorization of glycerol yields glycerol carbonate (GC) which is a very good polar solvent with high boiling point, building block in several organic syntheses and used in the production of surfactants, poly urethanes etc.

  17. Impact of neutron irradiation on mechanical performance of FeCrAl alloy laser-beam weldments

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; Cakmak, E.; Field, K. G.

    2018-06-01

    Oxidation-resistant iron-chromium-aluminum (FeCrAl) alloys demonstrate better performance in Loss-of-Coolant Accidents, compared with austenitic- and zirconium-based alloys. However, further deployment of FeCrAl-based materials requires detailed characterization of their performance under irradiation; moreover, since welding is one of the key operations in fabrication of light water reactor fuel cladding, FeCrAl alloy weldment performance and properties also should be determined prior to and after irradiation. Here, advanced C35M alloy (Fe-13%Cr-5%Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions were characterized after neutron irradiation in Oak Ridge National Laboratory's High Flux Isotope Reactor at 1.8-1.9 dpa in a temperature range of 195-559 °C. Specimen sets included as-received (AR) materials and specimens after controlled laser-beam welding. Tensile tests with digital image correlation (DIC), scanning electron microscopy-electron back scatter diffraction analysis, fractography, and x-ray tomography analysis were performed. DIC allowed for investigating local yield stress in the weldments, deformation hardening behavior, and plastic anisotropy. Both AR and welded material revealed a high degree of radiation-induced hardening for low-temperature irradiation; however, irradiation at high-temperatures (i.e., 559 °C) had little overall effect on the mechanical performance.

  18. Temperature Sensing Above 1000 C Using Cr-Doped GdAlO3 Spin-Allowed Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Chambers, Matthew D.

    2012-01-01

    Cr-doped GdAlO3 (Cr:GdAlO3) is shown to produce remarkably high-intensity spin-allowed broadband luminescence with sufficiently long decay times to make effective luminescence-decay-time based temperature measurements above 1000 C. This phosphor is therefore an attractive alternative to the much lower luminescence intensity rare-earth-doped thermographic phosphors that are typically utilized at these elevated temperatures. In particular, Cr:GdAlO3 will be preferred over rare-earth-doped phosphors, such as Dy:YAG, at temperatures up to 1200 C for intensity-starved situations when the much lower emission intensity from rare-earth-doped phosphors is insufficient for accurate temperature measurements in the presence of significant radiation background. While transition-metal-doped phosphors such as Cr:Al2O3 (ruby) are known to exhibit high luminescence intensity at low dopant concentrations, quenching due to nonradiative decay pathways competing with the (sup 2)E to (sup 4)A(sub 2) radiative transition (R line) has typically restricted their use for temperature sensing to below 600 C. Thermal quenching of the broadband (sup 4)T(sub 2) to (sup 4)A(sub 2) radiative transition from Cr:GdAlO3, however, is delayed until much higher temperatures (above 1000 C). This spin-allowed broadband emission persists to high temperatures because the lower-lying (sup 2)E energy level acts as a reservoir to thermally populate the higher shorter-lived (sup 4)T(sub 2) energy level and because the activation energy for nonradiative crossover relaxation from the (sup 4)T(sub 2) level to the (sup 4)A(sub 2) ground state is high. The strong crystal field associated with the tight bonding of the AlO6 octahedra in the GdAlO3 perovskite structure is responsible for this behavior.

  19. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-08-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while themore » time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3. 14 refs.« less

  20. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar

    2017-01-01

    FeCrAl alloys are an attractive class of materials for nuclear power applications because of their increased environmental compatibility compared with more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300 and 400 °C have shown post-irradiation microstructures containing dislocation loops and a Cr-rich α‧ phase. Although these initial studies established the post-irradiation microstructures, there was little to no focus on understanding the influence of pre-irradiation microstructures on this response. In this study, a well-annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 displacements per atom (dpa) at 382 °C and then the effect of random high-angle grain boundaries on the spatial distribution and size of a〈100〉 dislocation loops, a/2〈111〉 dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with a/2〈111〉 dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and a〈100〉 dislocation loops exhibiting an increased size in the vicinity of the grain boundary. These results suggest the importance of the pre-irradiation microstructure and, specifically, defect sink density spacing to the radiation tolerance of FeCrAl alloys.

  1. The Temporal Evolution of the Nanostructure of a Model Ni-Al-Cr Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2004-01-01

    The early to the later stages of precipitation of ordered gamma'-precipitates (L1(sub 2)) in Ni-5.2 Al-14.2 Cr (at.%) are studied at 873 K. Precipitates with radii as small as 0.45 nm are characterized fully by three-dimensional atom-probe (3DAP) microscopy. Contrary to what is often assumed by theory or in models, the average precipitate composition is shown to evolve with time, such that solute concentrations decrease toward an equilibrium value given by the solvus lines. Power-law time dependencies of the number density, mean radius, and supersaturations of Al and Cr are discussed in light of theoretical predictions for Ostwald ripening.

  2. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  3. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  4. Effects of Ca/Sr ratio control on optical and scintillation properties of Eu-doped Li(Ca,Sr)AlF6 single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Tanaka, Chieko; Kurosawa, Shunsuke; Yamaji, Akihiro; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2018-05-01

    Eu-doped Li(Ca,Sr)AlF6 [Eu:LiCSAF] single crystals with various Ca/Sr ratios were grown by the micro-pulling-down method, and their optical and scintillation properties were investigated to reveal the effects of Ca/Sr ratio on optical and scintillation properties of the Eu:LiCSAF single crystals. The Li(Ca1-x-ySrxEuy)AlF6 single crystals could be grown in 0 ≤ x ≤ 0.1, 0.5 ≤ x ≤ 1.0 and y = 0.02 while the Eu:LiCSAF crystals with x = 0.2, 0.25 and 0.4 included two colquiriite-type phases with different lattice parameters. The Li(Ca1-x-ySrxEuy)AlF6 single crystal with x = 0.25 and y = 0.02 showed the highest light yield under neutron irradiation.

  5. Phase Diagram of the Al-Ca-Fe-Si System and Its Application for the Design of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.

    2018-05-01

    The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.

  6. Structural classification of RAO3( MO) n compounds ( R =Sc, In, Y, or lanthanides; A =Fe(III), Ga, Cr, or Al; M =divalent cation; n = 1-11)

    NASA Astrophysics Data System (ADS)

    Kimizuka, Noboru; Mohri, Takahiko

    1989-01-01

    A series of new compounds RAO3( MO) n ( n = 1-11) having spinel, YbFe 2O 4, or InFeO 3(ZnO) n types of structures were newly synthesized ( R =Sc, In, Y, Lu, Yb, Tm, or Er; A =Fe(III), Ga, Cr, or Al; M =Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO 1.5, (FeZn)O 2.5, and ZnO layers for InFeO 3(ZnO) 10 and the TmO 1.5, (AlZn)O 2.5, and ZnO layers for TmAlO 3(ZnO) 11 are presented, respectively. The crystal structures of the( RAO3) m( MO) n phases ( R =Sc, In, Y, or lanthanide elements; A =Fe(III), Ga, Cr, or Al; M =divalent cation elements; m and n =integer) are classified into four crystal structure types (K 2NiF 4, CaFe 2O 4, YbFe 2O 4, and spinel), based upon the constituent cations R, A, and M

  7. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Edmondson, Philip

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scatteringmore » (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre

  8. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Ukai, Shigeharu; Oono, Naoko H.; Sakamoto, Kan; Hirai, Mutsumi

    2018-04-01

    FeCrAl-ODS ferritic steels with Ce-oxide dispersion instead of Y-oxide were produced for the accident tolerant fuel cladding of the light water reactor. Excess oxygen (Ex.O) was added to improve the mechanical property. The tensile strength at Ex.O = 0 is around 200 MPa at 700 °C, mainly owing to dispersed Ce2O3 particles in less than 10 nm size. The formation of the fine Ce2O3 particles is dominated by a coherent interface with ferritic matrix. With increasing Ex.O, an increased of number density of coarser Ce-Al type oxide particles over 10 nm size is responsible for the improvement of the tensile strength. Change of the type of oxide particle, CeO2, Ce2O3, CeAlO3, Al2O3, in FeCrAl-ODS steel was thermodynamically analyzed as a parameter of Ex.O.

  9. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    NASA Astrophysics Data System (ADS)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  10. Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates

    NASA Astrophysics Data System (ADS)

    Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin

    2018-01-01

    The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.

  11. Calorimetric investigation of precipitation kinetics in Al-Mg-Si-X(Cr,Be) alloys

    NASA Astrophysics Data System (ADS)

    Woo, K. D.; Lee, J. S.; Kim, S. W.

    1999-07-01

    This study has been carried out by differential scanning calorimetry (DSC) to study the kinetics of precipitation and the dissolution of metastable and stable phases in Al-Mg-Si-(Cr,Be) alloys which were heat treated by T6, two-step aging and RRA (retrogression and reaging) treatment. The heat flow variations by phase transformation in the as-quenched specimen were calculated from DSC thermograms obtained from heating rates of 5, 10, 15 and 20°C/min. Four exothermic peaks may be attributed to the precipitation of G.P.I zone, G.P.II zone(β″), β' and β (Mg2Si) phases, and three endothermic peaks may be attributed to the dissolution of G.P.I zone, β″ and the β' phases, respectively. The kinetic equation (dY/dt)=f(Y)koexp(-Q*/RT) can be used to study the precipitation kinetics of Ai-Mg-Si-(Cr, Be) alloys, where Q*, ko, and f(Y)are the activation energy, frequency factors and the function of Y, respectively. The kinetic parameters measured from DSC curves can be used to interpret the transformation kinetics.The formation rate of β″ phase in the Al-Mg-Si alloy increased by the small addition of Be. This is because Be increases the nucleating rate of the β″ phase due to the decrease of the matrix/β″ interface energy. By the addition of Be or Cr and Be in Al-Mg-Si alloy, G.P. zone was easily decomposed during retrogression treatment at 225°C for 3 min. Therefore, maximum hardness can be obtained by RRA (150°C/20 min→225°C/3 min→ 180°C/3O min) in Al-0.8%Mg-1.0%Si-0.05% Be and Al-0.8% Mg-l.0% Si-0.l% Cr-0.05% Be alloys owing to the high density of β″ and β' precipitates.

  12. Effect of High Pressure and Temperature on Structural, Thermodynamic and Thermoelectric Properties of Quaternary CoFeCrAl Alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-03-01

    Employing first-principles based on density functional theory we have investigated the structural, magneto-electronic, thermoelectric and thermodynamic properties of quaternary Heusler alloy CoFeCrAl. Electronic band structure displays that CoFeCrAl is an indirect band gap semiconductor in spin-down state with the band gap value of 0.65 eV. Elastic constants reveal CoFeCrAl is a mechanically stable structure having a Debye temperature of 648 K along with a high melting temperature (2130 K). The thermoelectric properties in the temperature range 50-800 K have been calculated. CoFeCrAl possesses a high Seebeck coefficient of - 46 μV/K at room temperature along with the huge power factor of ˜ 4.8 (1012 μW cm-1 K-2 s-1) which maximizes the figure-of-merit up to ˜ 0.75 at 800 K temperature and suggesting CoFeCrAl as potential thermoelectric material. The effect of high pressure and high temperature on the thermal expansion, Grüneisen parameter and heat capacity were also studied by using the quasi-harmonic Debye model.

  13. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Investigation of heat-resistant layered coating of Al-Cr-Ni

    NASA Astrophysics Data System (ADS)

    Shmorgun, V. G.; Trykov, Y. P.; Bogdanov, A. I.; Taube, A. O.

    2016-02-01

    The paper shows the transformation of the structure and phase composition of the layered coating system Al-Cr-Ni, obtained by the heat treatment of multilayered composite H20N80+AD1, welded by explosion, in the time range 1-300 hours. The cyclic heat resistance of the coating at 1150 ° C is studied.

  15. Evaluation of Cyclic Oxidation and Hot Corrosion Behavior of HVOF-Sprayed WC-Co/NiCrAlY Coating

    NASA Astrophysics Data System (ADS)

    Somasundaram, B.; Kadoli, Ravikiran; Ramesh, M. R.

    2014-08-01

    Corrosion of metallic structural materials at an elevated temperature in complex multicomponent gas environments are potential problems in many fossil energy systems, especially those using coal as a feedstock. Combating these problems involves a number of approaches, one of which is the use of protective coatings. The high velocity oxy fuel (HVOF) process has been used to deposit WC-Co/NiCrAlY composite powder on two types of Fe-based alloys. Thermocyclic oxidation behavior of coated alloys was investigated in the static air as well as in molten salt (Na2SO4-60%V2O5) environment at 700 °C for 50 cycles. The thermogravimetric technique was used to approximate the kinetics of oxidation. WC-Co/NiCrAlY coatings showed a lower oxidation rate in comparison to uncoated alloys. The oxidation resistance of WC-Co/NiCrAlY coatings can be ascribed to the oxide layer of Al2O3 and Cr2O3 formed on the outermost surface. Coated alloys extend a protective oxide scale composed of oxides of Ni and Cr that are known to impart resistance to the hot corrosion in the molten salt environment.

  16. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gussev, Maxim N.; Field, Kevin G.

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAlmore » alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations

  17. Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kousuke; Kurosawa, Shunsuke; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-12-01

    Eu doped CaF2/Li3AlF6 eutectics were grown by μ-PD method. The directionally solidified eutectic with well-aligned 600 nm diameter Eu:CaF2 scintillator fibers surrounded with Li3AlF6 was prepared. The grown eutectics showed an emission peak at 422 nm ascribed to Eu2+ 4f-5d transition from Eu:CaF2 scintillation fiber. Li concentration in the Eu:CaF2-Li3AlF6 eutectic is around 0.038 mol/cm3,which is two times higher than that of LiCaAlF6 single crystal (0.016 mol/cm3). The light yield of Eu:CaF2-Li3AlF6 eutectic was around 7000 ph/neutron. The decay time was about 550 ns (89%) and 1450 ns (11%).

  18. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger

  19. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  20. Characterization of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Karthikeyan, J.; Lerch, B. A.; Barrett, C.; Garlich, R.

    2007-01-01

    A newly developed Cu-23(wt.%)Cr-5%Al (CuCrAl) alloy is currently being considered as a protective coating for GRCop-84 (Cu-8(at.%)Cr-4%Nb). The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. In contrast, the uncoated substrate lost as much as 80% of its original weight under similar test conditions. Low cycle fatigue tests revealed that the fatigue lives of thinly coated GRCop-84 specimens were similar to the uncoated specimens within the limits of experimental scatter. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  1. Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.

  2. The BCC/B2 morphologies in Al xNiCoFeCr high-entropy alloys

    DOE PAGES

    Ma, Yue; Jiang, Beibei; Li, Chunling; ...

    2017-02-15

    Here, the present work primarily investigates the morphological evolution of the body-centered-cubic (BCC)/B2 phases in Al xNiCoFeCr high-entropy alloys (HEAs) with increasing Al content. It is found that the BCC/B2 coherent morphology is closely related to the lattice misfit between these two phases, which is sensitive to Al. There are two types of microscopic BCC/B2 morphologies in this HEA series: one is the weave-like morphology induced by the spinodal decomposition, and the other is the microstructure of a spherical disordered BCC precipitation on the ordered B2 matrix that appears in HEAs with a much higher Al content. The mechanical properties,more » including the compressive yielding strength and microhardness of the Al xNiCoFeCr HEAs, are also discussed in light of the concept of the valence electron concentration (VEC).« less

  3. Flow microcapillary plasma mass spectrometry-based investigation of new Al-Cr-Fe complex metallic alloy passivation.

    PubMed

    Ott, N; Beni, A; Ulrich, A; Ludwig, C; Schmutz, P

    2014-03-01

    Al-Cr-Fe complex metallic alloys are new intermetallic phases with low surface energy, low friction, and high corrosion resistance down to very low pH values (0-2). Flow microcapillary plasma mass spectrometry under potentiostatic control was used to characterize the dynamic aspect of passivation of an Al-Cr-Fe gamma phase in acidic electrolytes, allowing a better insight on the parameters inducing chemical stability at the oxyhydroxide-solution interface. In sulfuric acid pH 0, low element dissolution rates (in the µg cm(-2) range after 60 min) evidenced the passive state of the Al-Cr-Fe gamma phase with a preferential over-stoichiometric dissolution of Al and Fe cations. Longer air-aging was found to be beneficial for stabilizing the passive film. In chloride-containing electrolytes, ten times higher Al dissolution rates were detected at open-circuit potential (OCP), indicating that the spontaneously formed passive film becomes unstable. However, electrochemical polarization at low passive potentials induces electrical field generated oxide film modification, increasing chemical stability at the oxyhydroxide-solution interface. In the high potential passive region, localized attack is initiated with subsequent active metal dissolution. © 2013 Published by Elsevier B.V.

  4. Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017

    2015-12-15

    Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less

  5. Effects of pressure and temperature on sintering of Cr-doped Al2O3 by pulsed electric current sintering process

    NASA Astrophysics Data System (ADS)

    Dang, K. Q.; Nanko, M.

    2011-03-01

    The aluminium oxide crystal, Al2O3, which contains a small amount of chromium, Cr, is called ruby. Pulsed electric current sintering (PECS) was applied to sinter ruby polycrystals. Cr2O3-Al2O3 powder mixture prepared by drying an aqueous slurry containing amounts of Al2O3 and Cr(NO3)3 was consolidated by PECS process. The PECS process was performed in vacuum at sintering temperature raging from 1100 to 1300°C with heating rate of 2 K/min under applied uniaxial pressure varied from 40 to 100 MPa. This study found that highly densified and transparent Cr-doped Al2O3 can be obtained by the PECS process with the high applied pressure at sintering temperature of 1200°C.

  6. Microstructural observations in rapidly-solidified and heat-treated Ni sub 3 Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-01-01

    In this paper , the microstructural development following heat treatments of several rapidly-solidified Ni{sub 3}Al-Cr and Ni{sub 3}Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100% {gamma} phase-in the form of fine anti-phase domains (APD)-or a mixture of {gamma} (APDs) and {beta} phases. Upon annealing, the as-solidified microstructures transform to either APD-free {gamma}or mixtures of {gamma}and {gamma}{prime} phases. For those compositions where the quenched microstructures were 100{gamma}{prime} it was observed that APD coarsening followed conventional grain-growth kinetics, but when {gamma} phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remainedmore » unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr{sub 5}B{sub 3}.« less

  7. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO₂)₁-x(CuCrO₂)x.

    PubMed

    Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J

    2012-01-11

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  8. Versatile Oxide Films Protect FeCrAl Alloys Under Normal Operation and Accident Conditions in Light Water Power Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2018-02-01

    The US has currently a fleet of 99 nuclear power light water reactors which generate approximately 20% of the electricity consumed in the country. Near 90% of the reactors are at least 30 years old. There are incentives to make the existing reactors safer by using accident tolerant fuels (ATF). Compared to the standard UO2-zirconium-based system, ATF need to tolerate loss of active cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. Ferritic iron-chromium-aluminum (FeCrAl) alloys have been identified as an alternative to replace current zirconium alloys. They contain Fe (base) + 10-22 Cr + 4-6 Al and may contain smaller amounts of other elements such as molybdenum and traces of others. FeCrAl alloys offer outstanding resistance to attack by superheated steam by developing an alumina oxide on the surface in case of a loss of coolant accident like at Fukushima. FeCrAl alloys also perform well under normal operation conditions both in boiling water reactors and pressurized water reactors because they are protected by a thin oxide rich in chromium. Under normal operation condition, the key element is Cr and under accident conditions it is Al.

  9. 1300 K Compressive Properties of Directionally Solidified Ni-33Al-33Cr-1Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, Ivan E.

    2000-01-01

    The Ni-33Al-33Cr-1Mo eutectic has been directionally solidified by a modified Bridgeman technique at growth rates ranging from 7.6 to 508 mm/h to produce grain/cellular microstructures, containing alternating plates of NiAl and Cr alloyed with Mo. The grains had sharp boundaries for slower growth rates (< 12.7 mm/h), while faster growth rates (> 25.4 mm/h) lead to cells bounded by intercellular regions. Compressive testing at 1300 K indicated that alloys DS'ed at rates between 25.4 to 254 mm/h possessed the best strengths which exceed that for the as-cast alloy.

  10. Mg-Al-Ca In-Situ Composites with a Refined Eutectic Structure and Their Compressive Properties

    NASA Astrophysics Data System (ADS)

    Shi, Ling-Ling; Xu, Jian; Ma, Evan

    2008-05-01

    In a series of Mg x (Al2Ca)100- x (76 ≤ x ≤ 87) ternary alloys near the Mg-(Mg,Al)2Ca pseudo-binary eutectic point, different phases and morphologies based on ultrafine eutectic microstructure have been obtained by controlling the composition and changing the cooling rate via either induction melting or copper mold casting. For 81 ≤ x ≤ 87, the chill-cast alloys with ductile Mg dendrites embedded in an ultrafine [Mg + (Mg,Al)2Ca] eutectic matrix exhibit gradually increased fracture strength from 415 to 491 MPa with the decrease of Mg content. At x = 79, the Mg79Al14Ca7 alloy contains hard (Mg,Al)2Ca precipitates coexisting with ductile Mg dendrite, dispersed in the strong eutectic matrix. This alloy exhibits the highest compressive fracture strength (600 MPa), and the specific strength reaches 3.4 × 105 N·m·kg-1. The alloys all exhibit substantial plastic strain (5 to 6 pct). The attainment of such a combination of strength and plasticity is an interesting and useful step in improving the mechanical properties of lightweight Mg alloys.

  11. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  12. Crystal structure of Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2} and luminescence properties of Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 2+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Tomoyuki; Haniuda, Masahide; Fukuda, Koichiro

    2008-01-15

    The crystal structure of Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2} was determined from laboratory X-ray powder diffraction data (CuK{alpha}{sub 1}) using the Rietveld method, with the anisotropic displacement parameters being assigned for all atoms. The crystal structure is cubic (space group I4-bar 3d, Z=2) with lattice dimensions a=1.200950(5) nm and V=1.73211(1) nm{sup 3}. The reliability indices calculated from the Rietveld method were R{sub wp}=8.48% (S=1.21), R{sub p}=6.05%, R{sub B}=1.27% and R{sub F}=1.01%. The validity of the structural model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-basedmore » pattern fitting (MPF). The reliability indices calculated from the MPF were R{sub B}=0.75% and R{sub F}=0.56%. In the structural model there are one Ca site, two Al sites, two O sites and one Cl site. This compound is isomorphous with Ca{sub 12}Al{sub 10.6}Si{sub 3.4}O{sub 32}Cl{sub 5.4}. Europium-doped sample Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 2+} was prepared and the photoluminescence properties were presented. The excitation spectrum consisted of two wide bands, which were located at about 268 and 324 nm. The emission spectrum, when excited at 324 nm, resulted in indigo light with a peak at about 442 nm. - Graphical abstract: A portion of the crystal structure of Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2} showing eight-membered AlO{sub 4} rings and Ca-Cl-Ca unit.« less

  13. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 2; Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  14. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al Part II: Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  15. NEAMS-ATF M3 Milestone Report: Literature Review of Modeling of Radiation-Induced Swelling in Fe-Cr-Al Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xianming; Biner, Suleyman Bulent; Jiang, Chao

    2015-12-01

    Fe-Cr-Al steels are proposed as accident-tolerant-fuel (ATF) cladding materials in light water reactors due to their excellent oxidation resistance at high temperatures. Currently, the understanding of their performance in reactor environment is still limited. In this review, firstly we reviewed the experimental studies of Fe-Cr-Al based alloys with particular focus on the radiation effects in these alloys. Although limited data are available in literature, several previous and recent experimental studies have shown that Fe-Cr-Al based alloys have very good void swelling resistance at low and moderate irradiation doses but the growth of dislocation loops is very active. Overall, the behaviormore » of radiation damage evolution is similar to that in Fe-Cr ferritic/martensitic alloys. Secondly, we reviewed the rate theory-based modeling methods for modeling the coevolution of voids and dislocation loops in materials under irradiation such as Frenkel pair three-dimensional diffusion model (FP3DM) and cluster dynamics. Finally, we summarized and discussed our review and proposed our future plans for modeling radiation damage in Fe-Cr-Al based alloys.« less

  16. Synthesis of low-moment CrVTiAl: A potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, G. M.; McDonald, I.; Lejeune, B.; Lewis, L. H.; Heiman, D.

    2016-12-01

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials—semiconductors with unequal band gaps for each spin channel—can generate spin-polarized current without the need for spin-polarized contacts. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing strong fringing fields that would interfere with neighboring electronic components and limit the volume density of devices. The quaternary Heusler compound CrVTiAl has been predicted to be a zero-moment spin-filter material with a Curie temperature in excess of 1000 K. In this work, CrVTiAl has been synthesized with a lattice constant of a = 6.15 Å. Magnetization measurements reveal an exceptionally low moment of μ = 2.3 × 10-3 μB/f.u. at a field of μ0H = 2 T that is independent of temperature between T = 10 K and 400 K, consistent with the predicted zero-moment ferrimagnetism. Transport measurements reveal a combination of metallic and semiconducting components to the resistivity. Combining a zero-moment spin-filter material with nonmagnetic electrodes would lead to an essentially nonmagnetic spin injector. These results suggest that CrVTiAl is a promising candidate for further research in the field of spintronics.

  17. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    NASA Astrophysics Data System (ADS)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  18. Anisotropic electrical and lattice transport properties of ordered quaternary phases Cr2TiAlC2 and Mo2TiAlC2: A first principles study

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Ding, Y. C.; Xiao, B.; Cheng, Y. H.

    2016-11-01

    Electrical conductivities of Cr2TiAlC2 and Mo2TiAlC2 in a and c directions are calculated from semi-classic Boltzmann transport theory. The values are found to be σa = 5.68 ×105 S /m (6.56 ×105 S /m) and σc = 2.15 ×105 S /m (2.69 ×105 S /m) for Cr2TiAlC2 (Mo2TiAlC2) at 300 K. Using the phonon-mode Debye temperature and Slack-model, the lattice thermal conductivities in the two directions are also evaluated, and the values are κa = 18.71 W /m K (16.11 W/m K) and κc = 0.48 W /m K (0.25 W /m K) for Cr2TiAlC2 (Mo2TiAlC2) at room temperature. The anisotropy in lattice thermal conductivity is found to be stronger than that of electrical conductivity. The predicted Seebeck coefficients and thermoelectric figure of merit (ZT) indicate that they are poor thermoelectric materials. Due to the relatively high conductivities, they might be used to fabricate high temperature conductive components in aerospace industry. In addition, our results in a direction have the direct implications for the relevant properties of MXenes (Cr2TiC2 and Mo2TiC2), produced from their bulk phases.

  19. Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, G. F.; Dai, P. Q.

    2015-05-01

    An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.

  20. Crystal field analysis of the energy level structure of Cs2NaAlF6:Cr3+

    NASA Astrophysics Data System (ADS)

    Rudowicz, C.; Brik, M. G.; Avram, N. M.; Yeung, Y. Y.; Gnutek, P.

    2006-06-01

    An analysis of the energy level structure of Cr3+ ions in Cs2NaAlF6 crystal is performed using the exchange charge model (ECM) together with the crystal field analysis/microscopic spin Hamiltonian (CFA/MSH) computer package. Utilizing the crystal structure data, our approach enables modelling of the crystal field parameters (CFPs) and thus the energy level structure for Cr3+ ions at the two crystallographically inequivalent sites in Cs2NaAlF6. Using the ECM initial adjustment procedure, the CFPs are calculated in the crystallographic axis system centred at the Cr3+ ion at each site. Additionally the CFPs are also calculated using the superposition model (SPM). The ECM and SPM predicted CFP values match very well. Consideration of the symmetry aspects for the so-obtained CFP datasets reveals that the latter axis system matches the symmetry-adapted axis system related directly to the six Cr-F bonds well. Using the ECM predicted CFPs as an input for the CFA/MSH package, the complete energy level schemes are calculated for Cr3+ ions at the two sites. Comparison of the theoretical results with the experimental spectroscopic data yields satisfactory agreement. Our results confirm that the actual symmetry at both impurity sites I and II in the Cs2NaAlF6:Cr3+ system is trigonal D3d. The ECM predicted CFPs may be used as the initial (starting) parameters for simulations and fittings of the energy levels for Cr3+ ions in structurally similar hosts.

  1. Effects of particle size and forming pressure on pore properties of Fe-Cr-Al porous metal by pressureless sintering

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Uk; Yi, Yujeong; Lee, Minjeong; Kim, Byoung-Kee

    2017-03-01

    With increased hydrogen consumption in ammonia production, refining and synthesis, fuel cells and vehicle industries, development of the material components related to hydrogen production is becoming an important factor in industry growth. Porous metals for fabrication of hydrogen are commonly known for their relative excellence in terms of large area, lightness, lower heat capacity, high toughness, and permeability. Fe-Cr-Al alloys not only have high corrosion resistance, heat resistance, and chemical stability but also ductility, excellent mechanical properties. In order to control powder size and sintering temperature effects of Fe-Cr-Al porous metal fabrication, Fe-Cr-Al powder was classified into 25-35 μm, 35-45 μm, 45-75 μm using an auto shaking sieve machine and then classified Fe-Cr-Al powders were pressed into disk shapes using a uniaxial press machine and CIP. The pelletized Fe-Cr-Al specimens were sintered at various temperatures in high vacuum. Properties such as pore size, porosity, and air permeability were evaluated using perm-porosimetry. Microstructure and phase changes were observed with SEM and XRD. Porosity and relative density were proportionated to increasing sintering temperature. With sufficient sintering at increasing temperatures, the pore size is expected to be gradually reduced. Porosity decreased with increasing sintering temperature and gradually increased necking of the powder.

  2. Status Report on Irradiation Capsules Designed to Evaluate FeCrAl-UO 2 Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    This status report provides the background and current status of a series of irradiation capsules that were designed and are being built to test the interactions between candidate FeCrAl cladding for enhanced accident tolerant applications and prototypical enriched commercial UO 2 fuel in a neutron radiation environment. These capsules will test the degree, if any, of fuel cladding chemical interactions (FCCI) between FeCrAl and UO 2. The capsules are to be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory to burn-ups of 10, 30, and 50 GWd/MT with a nominal target temperature at the interfaces between themore » pellets and clad of 350°C.« less

  3. Visible light CrO4(2-) reduction using the new CuAlO2/CdS hetero-system.

    PubMed

    Brahimi, R; Bessekhouad, Y; Nasrallah, N; Trari, M

    2012-06-15

    In this study, 64% of hexavalent chromium Cr(VI) reduction from the initial concentration (10(-4) M) is reported under visible light using the (CuAlO(2)/CdS) hetero-system. In this new hetero-system, low doped CuAlO(2) delafossite, synthesized by sol-gel works as an electrons reservoir with a wide space charge region (440 nm). In this case, the electron transfer to chromate is mediated via the hexagonal CdS variety, whose conduction band level is at -1.08 V with respect to the saturated calomel electrode which is more negative than the CrO(4)(2-)/Cr(3+) level. This high reduction rate is achieved under optimized pH and CuAlO(2) percentage. Moreover, salicylic acid gives the best performance among hole scavengers and CuAlO(2) approaches 100% photostability at pH 7.5. The photo-catalytic process follows a pseudo first order kinetic with a half life of 2h. The reaction products are identified by UV-visible spectrophotometry and linear voltametry at a platinum rotating electrode. The results reveal the presence of Cr(3+) after irradiation. Copyright © 2012. Published by Elsevier B.V.

  4. AL(0) in municipal waste incinerator ash

    NASA Astrophysics Data System (ADS)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  5. Interdiffusion between the L1(2) trialuminides Al66Ti25Mn9 and Al67Ti25Cr8

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    Concentration-distance profiles obtained from Al66Ti25Mn9/Al67Ti25Cr8 diffusion couples are used to determine the interdiffusion coeffients in the temperature range 1373-1073 K. The couples are treated as pseudobinaries, and the diffusion coefficients are determined using the Matano approach. The results are then used to compute the activation energies for diffusion, and a comparison is made with some existing data for the activation energy for creep of Al22Ti8Fe3.

  6. Modification of tribology and high-temperature behavior of Ti 48Al 2Cr 2Nb intermetallic alloy by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Bo; Wang, Hua-Ming

    2006-06-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm × 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7C 3, TiC and both continuous and dense Al 2O 3, Cr 2O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials.

  7. Petrography, mineralogy, and Mg isotope composition of VICTA: A vigarano CaAl4O7-bearing type A inclusion

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Morse, A.; Long, J. V. P.

    1993-01-01

    Thermodynamic calculations predict that Ca-dialuminate (CaAl4O7) condenses from a cooling gas of solar composition after hibonite and before melilite. Although Ca-dialuminate has now been recorded from Ca Al-rich inclusions (CAI's) in at least 9 meteorites, compared to hibonite it is a relatively rare phase. As pointed out by Michel-Levy et al., the absence of Ca-dialuminate from most hibonite-bearing inclusions poses a serious problem for the condensation model of CAI formation. Here we describe an inclusion which contains abundant CA-dialuminate partially altered to a hercynite-rich (FeAl2O4) assemblage. The evidence from VICTA indicates that compared to all other phases in type A inclusions, Ca-dialuminate is the most susceptible to secondary alteration; a feature which may explain its restricted occurrence. Unaltered Ca-dialuminate and melilite in VICTA display excess Mg-26 indicative of in situ decay of Al-26.

  8. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  9. Oxidation Studies of SiAlON/MgAlON Ceramics with Fe2O3 and CaO Impurities, Part I: Kinetics

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Mei; Teng, Lidong; Seetharaman, Seshadri

    2013-02-01

    T he oxidation behaviors of composites SiAlON/MgAlON phases (β-SiAlON, 15R-SiAlON and MgAlON) synthesized from the residue during the leaching treatment of salt cake and corresponding synthetic samples were investigated in air by thermogravimetric measurements. Combined kinetics, viz. linear law + arctan law + parabolic law, are used to describe the kinetics of oxidation in isothermal mode. The oxidation studies reveal the effects of impurities, namely, Fe2O3 and CaO, present in the salt cake residue. The addition of Fe2O3 results in a lower activation energy and more aggressive oxidation. The addition of CaO caused the shrinkage during the synthesis and liquid formation during the oxidation above 1673 K (1400 °C). The impurities of CaO and Fe2O3 in the leaching residue can result in an aggressive oxidation at low temperature and a protective oxidation at temperatures above the eutectic point.

  10. The Analysis of the General Performance and Mechanical Behavior of Unirradiated FeCrAl Alloys Before and After Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gussev, Maxim N.; Field, Kevin G.; Yamamoto, Yukinori

    2016-06-03

    The present report summarizes and discusses the preliminary results for the in-depth characterization of the modern, nuclear-grade FeCrAl alloys currently under development. The alloys were designed for enhanced radiation tolerance and weldability, and the research is currently being pursued by the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Last year, seven candidate FeCrAl alloys with well-controlled chemistry and microstructures were designed and produced; welding was performed under well-controlled conditions. The structure and general performance of unirradiated alloys were assessed using standardized and advanced microstructural characterization techniques and mechanical testing. The primary objective is to identify the bestmore » candidate alloy, or at a minimum to identify the contributing factors that increase the weldability and radiation tolerance of FeCrAl alloys, therefore enabling future generations of FeCrAl alloys to deliver better performance parameters. This report is structured so as to describe these critical assessments of the weldability; radiation tolerance will be reported on in later reports from this program.« less

  11. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve; Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo; Zambrano, J.C.

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock.more » High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high

  12. Stability domain of alumina thermally grown on Fe-Cr-Al-based model alloys and modified surface layers exposed to oxygen-containing molten Pb

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Fetzer, R.; Weisenburger, A.; Doyle, S.; Bruns, M.; Heinzel, A.; Hosemann, P.; Mueller, G.

    2016-03-01

    The paper gives experimental results concerning the morphology, composition, structure and thickness of the oxide scales grown on Fe-Cr-Al-based bulk alloys during exposure to oxygen-containing molten lead. The results are discussed and compared with former results obtained on Al-containing surface layers, modified by melting with intense pulsed electron beam and exposed to similar conditions. The present and previous results provide the alumina stability domain and also the criterion of the Al/Cr ratio for the formation of a highly protective alumina layer on the surface of Fe-Cr-Al-based alloys and on modified surface layers exposed to molten lead with 10-6 wt.% oxygen at 400-600 °C. The protective oxide scales, grown on alumina-forming Fe-Cr-Al alloys under the given experimental conditions, were transient aluminas, namely, kappa-Al2O3 and theta-Al2O3.

  13. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, K. A.; Hales, J. D.; Zhang, Y.

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced ac- cident tolerance when compared to traditional UO2 fuel zircaloy clad fuel rods. One of the potential replacement claddings are iron-chromium-alunimum (FeCrAl) alloys due to their increased oxidation resistance [1–4] and higher strength [1, 2]. While the oxidation characteristics of FeCrAl are a benefit for accident tolerance, the thermal neu- tron absorption cross section of FeCrAl is about ten times that of Zircaloy. This neutronic penalty necessitates thinner cladding. Thismore » allows for slightly larger pellets to give the same cold gap width in the rod. However, the slight increase in pellet diameter is not sufficient to compensate for the neutronic penalty and enriching the fuel beyond the current 5% limit appears to be necessary [5]. Current estimates indicate that this neutronic penalty will impose an increase in fuel cost of 15-35% [1, 2]. In addition to the neutronic disadvantage, it is anticipated that tritium release to the coolant will be larger because the permeability of hydrogen in FeCrAl is about 100 times higher than in Zircaloy [6]. Also, radiation-induced hardening and embrittlement of FeCrAl need to be fully characterized experimentally [7]. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022 [8] multiscale multiphysics modeling approaches have been used to provide insight into these the use of FeCrAl as a cladding material. The purpose of this letter report is to highlight the multiscale modeling effort for iron-chromium-alunimum (FeCrAl) cladding alloys as part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program through its Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The approach taken throughout the

  14. High temperature oxidation resistance of magnetron-sputtered homogeneous CrAlON coatings on 430 steel

    NASA Astrophysics Data System (ADS)

    Garratt, E.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; AlFaify, S.; Gao, X.; Kayani, A.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.

    2009-11-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 oC. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  15. Synthesis and hydration behavior of calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye

    2014-02-15

    Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape.more » The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.« less

  16. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.

    2016-10-01

    FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.

  17. Enhanced adsorption of U(VI) and 241Am(III) from wastewater using Ca/Al layered double hydroxide@carbon nanotube composites.

    PubMed

    Chen, Haijun; Chen, Zhe; Zhao, Guixia; Zhang, Zhibin; Xu, Chao; Liu, Yunhai; Chen, Jing; Zhuang, Li; Haya, Tasawar; Wang, Xiangke

    2018-04-05

    Ca/Al layered double hydroxide decorated carbon nanotube (Ca/Al-LDH@CNTs) composites were fabricated by co-precipitation method and hydrothermal aged treatment. The prepared Ca/Al-LDH@CNTs was characterized by SEM, TEM, EDS, XRD, FT-IR, UV-vis and XPS techniques, and applied to remove U(VI) from aqueous solutions under various environmental conditions (i.e., pH, ionic strength, temperature and contact time). The results indicated that the adsorption of U(VI) on Ca/Al-LDH@CNTs was four times higher than that of U(VI) on bare CNTs. The kinetic investigations reflected the chemisorption of U(VI) on Ca/Al-LDH@CNTs through oxygen-containing functional groups. The adsorption isotherms demonstrated that the adsorption of U(VI) was well fitted by Langmuir model and the maximum adsorption capacity of U(VI) on Ca/Al-LDH@CNTs was calculated to be 382.9 mg g -1 at 289.15 K. The thermodynamic parameters calculated from temperature-dependent isotherms suggested that U(VI) adsorption on Ca/Al-LDH@CNTs were endothermic and spontaneous process. Furthermore, Ca/Al-LDH@CNTs could remove ∼91% of 241 Am(III) at pH = 8.0, which confirmed Ca/Al-LDH@CNTs as a promising material for multiply low level radionuclides' pollution remediation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    NASA Astrophysics Data System (ADS)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  19. The effect of substrate bias voltages on impact resistance of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chunyan, Yu; Linhai, Tian; Yinghui, Wei; Shebin, Wang; Tianbao, Li; Bingshe, Xu

    2009-01-01

    CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. The effect of substrate negative bias voltages on the impact property of the CrAlN coatings was studied. The X-ray diffraction (XRD) data show that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1), (2 0 0) (2 2 0) and (2 2 2) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing substrate bias voltage the coatings became more compact and denser, and the microhardness and fracture toughness of the coatings increased correspondingly. In the dynamic impact resistance tests, the CrAlN coatings displayed better impact resistance with the increase of bias voltage, due to the reduced emergence and propagation of the cracks in coatings with a very dense structure and the increase of hardness and fracture toughness in coatings.

  20. Microstructural Characteristics and Oxidation Behavior of Low-Pressure Cold-Sprayed CoNiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Lin-wei; Lu, Lei; Wang, Lu; Ning, Xian-jin; Wang, Quan-sheng; Wang, Ri-xin

    2017-10-01

    CoNiCrAlY coatings were deposited by low-pressure cold spraying and subsequently heat-treated at 1050 °C for 4 h in a vacuum environment. The microstructural characteristics and oxidation behavior of CoNiCrAlY coatings were investigated. The as-sprayed coating exhibited low porosity and oxygen content. The high plastic deformation of the sprayed particles led to significant refinement of γ-matrix and dissolution of β-(Ni,Co)Al phase in the as-sprayed coating. After heat treatment, the single phase (γ) in the as-sprayed coating was converted into a γ/β microstructure, and a continuous single α-Al2O3 scale was formed on the coating surface. Vacuum heat treatment can postpone the formation of spinel oxides within 100 h. After being oxidized at 1050 °C for 400 h, the heat-treated coating exhibited better oxidation resistance than the as-sprayed coating. The reduced growth rate of the oxide scale and the suppression of the formation of spinel oxides can be attributed to the vacuum heat treatment, as well as the intrinsic microstructure of the cold-sprayed coating. Finally, the effects of the microstructural changes induced during the cold spraying process on the growth of the thermally grown oxide and the oxidation mechanisms of the CoNiCrAlY coatings were discussed.

  1. Effect of Ca addition on the damping capacity of Mg-Al-Zn casting alloys

    NASA Astrophysics Data System (ADS)

    Jun, Joong-Hwan; Moon, Jung-Hyun

    2015-07-01

    The influences of Ca addition on the microstructures and damping capacities of AZ91-(0˜2)%Ca casting alloys were investigated, on the basis of the results of X-ray diffractometry, optical microscopy, scanning electron microscopy and vibration tests in a single cantilever mode. The amount of intermetallic compounds decreased with increasing Ca content up to 0.5%, above which it increased; the average cell size showed the opposite tendency. All alloys exhibited similar damping levels in the strain-amplitude independent region. Considering the very low solubility of Ca in the matrix, and that most of the Ca elements are consumed by the formation of the Al2Ca phase and incorporation into the Mg17Al12 phase, this would be ascribed to the almost identical concentrations of Ca solutes distributed in the matrix. In the strain-amplitude dependent region, however, the AZ91-0.5%Ca alloy possessed the maximum damping capacity. From the viewpoint of microstructural evolution with Ca addition, the number density of compound particles is considered to be the principal factor affecting the damping behavior in the strain-amplitude dependent region.

  2. Growth (AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Sheng; Chen, Kuan-Ta; Hsu, Chun-Yao; Hong, Po-Da

    2018-05-01

    This paper determines the optimal settings in the deposition parameters for (AlCrNbSiTiV)N high-entropy alloy (HEAs) nitride films that are deposited on CBN cutting tools and glass substrates. We use direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HIPIMS), with Ar plasma and N2 reactive gases. Experiments with the grey-Taguchi method are conducted to determine the effect of deposition parameters (deposition time, substrate DC bias, DC power and substrate temperature) on interrupted turning 50CrMo4 steel machining and the films' structural properties. Experimental result shows that the multiple performance characteristics for these (AlCrNbSiTiV)N HEAs film coatings can be improved using the grey-Taguchi method. As can be seen, the coated film is homogeneous, very compact and exhibits perfect adherence to the substrate. The distribution of elements is homogeneous through the depth of the (AlCrNbSiTiV)N film, as measured by an auger electron nanoscope. After interrupted turning with an (AlCrNbSiTiV)N film coated tool, we obtain much longer tool life than when using uncoated tools. The correlation of these results with microstructure analysis and tool life indicates that HIPIMS discharge induced a higher (AlCrNbSiTiV)N film density, a smoother surface structure and a higher hardness surface.

  3. Synthesis and energy transfer studies of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+}, Nd{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jicheng; Xia, Zhiguo; Liu, Quanlin, E-mail: qlliu@ustb.edu.cn

    2016-02-15

    Highlights: • Cr{sup 3+}/Nd{sup 3+} co-doped LaMgAl{sub 11}O{sub 19} phosphors were synthesized. • The energy transfer mechanism is ascribed to the dipole–quadrupole interaction. • The materials can convert the UV–vis light into near-infrared emission. - Abstract: Cr{sup 3+}/Nd{sup 3+} co-activated LaMgAl{sub 11}O{sub 19} phosphors have been synthesized by high temperature solid-state method. In the LaMgAl{sub 11}O{sub 19}:Cr{sup 3+}/Nd{sup 3+} system, Cr{sup 3+} can absorb the UV–vis photons (350–650 nm), and then energy transfer takes place between Cr{sup 3+} and Nd{sup 3+}, and finally the samples give near infrared emission originated from Nd{sup 3+}. Energy transfer from Cr{sup 3+} to Nd{supmore » 3+} is discussed via the variations of the lifetime values of Cr{sup 3+}, and the mechanism has been ascribed to the dipole–quadrupole interaction. The absorption of Cr{sup 3+} in the visible region and the following energy transfer from Cr{sup 3+} to Nd{sup 3+} indicated that the material can potentially serve as spectral convertors to improve the photovoltaic conversion efficiency of silicon-based solar cell.« less

  4. Synthesis and characterization of AlTiSiN/CrSiN multilayer coatings by cathodic arc ion-plating

    NASA Astrophysics Data System (ADS)

    Yang, B.; Tian, C. X.; Wan, Q.; Yan, S. J.; Liu, H. D.; Wang, R. Y.; Li, Z. G.; Chen, Y. M.; Fu, D. J.

    2014-09-01

    AlTiSiN/CrSiN multilayer coatings were deposited on Si (1 0 0) and cemented carbide substrates using Cr, AlTi cathodes and SiH4 gases by cathodic arc ion plating system. The influences of SiH4 gases flowrate on the structural and mechanical properties of the coatings were investigated, systematically. AlTiSiN/CrSiN coatings exhibit a B1 NaCl-type nano-multilayered structure in which the CrSiN nano-layers alternate with AlTiSiN nano-layers with multiple orientations of crystal planes indicated by XRD patterns and TEM. Si contents of the coatings increase with increasing SiH4 flowrate. The hardness of the coatings increases to the maximum value of 3500 Hv0.05 with increasing SiH4 flowrate from 20 to 40 sccm and then decreases with further addition of SiH4 gases. A higher adhesive force of 73 N is obtained at the flowrate of 48 sccm. The coatings exhibit different tribological performance when the mating materials were varied from Si3N4 to cemented carbide balls and the variation of friction coefficients of the coatings against Si3N4 influenced by SiH4 flowrate are not obvious as against cemented carbide balls.

  5. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  6. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  7. Self-Propagating Combustion Synthesis, Luminescent Properties and Photocatalytic Activities of Pure Ca12Al14O33: Tb3+(Sm3+)

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Yan, Yongsheng; Ma, Changchang

    2018-03-01

    The dual-functional Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ materials were prepared by the Self-Propagating Combustion Synthesis (SPCS) technology. The structure, morphology and light absorption property were investigated by XRD、FT-IR、UV-Vis DRS and SEM etc.. The doping of Tb3+ and Sm3+ ions had not changed cubic structure of Ca12Al14O33 but leaded to the slight lattice dilatation and the red-shifts of absorption peaks/edges. The excitation and emission spectra indicated that Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ are superior green and red luminescent materials, respectively, and displayed the distinctly refined structure characteristics which had importantly reference value for the energy level investigation of Tb3+ and Sm3+ ions. Meanwhile, Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ also exhibited the improved photocatalytic degradation for removing dye MB compared with bare Ca12Al14O33.

  8. Sensitivity analysis of FeCrAl cladding and U3Si2 fuel under accident conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean

    2016-08-01

    The purpose of this milestone report is to highlight the results of sensitivity analyses performed on two accident tol- erant fuel concepts: U3Si2 fuel and FeCrAl cladding. The BISON fuel performance code under development at Idaho National Laboratory was coupled to Sandia National Laboratories’ DAKOTA software to perform the sensitivity analyses. Both Loss of Coolant (LOCA) and Station blackout (SBO) scenarios were analyzed using main effects studies. The results indicate that for FeCrAl cladding the input parameters with greatest influence on the output metrics of interest (fuel centerline temperature and cladding hoop strain) during the LOCA were the isotropic swellingmore » and fuel enrichment. For U3Si2 the important inputs were found to be the intergranular diffusion coefficient, specific heat, and fuel thermal conductivity. For the SBO scenario, Young’s modulus was found to be influential in FeCrAl in addition to the isotropic swelling and fuel enrichment. Contrarily to the LOCA case, the specific heat of U3Si2 was found to have no effect during the SBO. The intergranular diffusion coefficient and fuel thermal conductivity were still found to be of importance. The results of the sensitivity analyses have identified areas where further research is required including fission gas behavior in U3Si2 and irradiation swelling in FeCrAl. Moreover, the results highlight the need to perform the sensitivity analyses on full length fuel rods for SBO scenarios.« less

  9. In-situ XAFS study for calcination process of Cr catalyst supported on γ-Al2O3 and SiO2

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Ikeda, K.; Katayama, M.; Inada, Y.

    2016-05-01

    The catalytic performance is largely affected by the oxidation state of supported Cr species, and its control changes the activity of Cr catalysts and the selectivity of products. In this study, the calcination process of the supported Cr catalysts on γ-Al2O3 and SiO2 was investigated by in-situ XAFS spectroscopy. The hydrate species was first supported by the impregnation method and was converted to CrO3 via Cr2O3 during the calcination process on both supporting materials. It was found that the temperature to complete the oxidation from Cr2O3 to CrO3 on SiO2 was higher than that on γ-Al2O3. The similarity of the interatomic distance between the surface oxygen atoms of the intermediate Cr2O3 species to that of SiO2 contributes to the stabilization of Cr2O3 on SiO2 during the calcination process.

  10. Network topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses.

    PubMed

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J K Richard; Benmore, Chris J

    2013-06-18

    Glass formation in the CaO-Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO-Al2O3 glasses using combined density functional theory-reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O-Ca and O-Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al-O is stronger than that of Ca-O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71-74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass.

  11. Influence of nanovoids on α-α' phase separation in FeCrAl oxide dispersion strengthened alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capdevila, Carlos; Aranda, M. M.; Rememnteria, R.

    2015-08-10

    The presence of nanovoids in the vicinity of oxide particles in FeCrAl oxide dispersion strengthened (ODS) alloy has been identified. These nanovoids are inherent to the manufacturing route and remain quite resistant during heat treatments. Positron annihilation spectroscopy (PAS) experiments demonstrate that these nanovoids trap Cr inside thereby reducing the Cr-content in the matrix. In conclusion, this might lead to a delay in the α–α' phase separation process as observed by atom probe tomography (APT).

  12. Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lv, Yanhong; Ji, Li; Liu, Xiaohong; Li, Hongxuan; Zhou, Huidi; Chen, Jianmin

    2012-02-01

    The CrAlN films were deposited on silicon and stainless steel substrates by unbalanced magnetron sputtering system. The influence of substrate bias on deposition rate, composition, structure, morphology and properties of the CrAlN films was investigated. The results showed that, with the increase of the substrate bias voltage, the deposition rate decreased accompanied by a change of the preferred orientation of the CrAlN film from (2 2 0) to (2 0 0). The grain size and the average surface roughness of the CrAlN films declined as the bias voltage increases above -100 V. The morphology of the films changed from obviously columnar to dense glass-like structure with the increase of the bias voltage from -50 to -250 V. Meanwhile, the films deposited at moderate bias voltage had better mechanical and tribological properties, while the films deposited at higher bias voltage showed better corrosion resistance. It was found that the corrosion resistance improvement was not only attributed to the low pinhole density of the film, but also to chemical composition of films.

  13. TEMPORAL EVOLUTION OF SUB-NANOMETER COMPOSITIONAL PROFILES ACROSS THE GAMMA/GAMMA' INTERFACE IN A MODEL Ni-Al-Cr SUPERALLOY

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.

    2005-01-01

    Early-stage phase separation in a Ni-5.2 Al-14.2 Cr at.% superalloy, isothermally decomposing at 873 K, is investigated with atom-probe tomography. Sub-nanometer scale compositional profiles across the gamma/gamma'(L12) interfaces demonstrate that both the gamma-matrix and the gamma'-precipitate compositions evolve with time. Observed chemical gradients of Al depletion and Cr enrichment adjacent to the gamma'-precipitates are transient, consistent with well-established model predictions for diffusion-limited growth, and mark the first detailed observation of this phenomenon. Furthermore, it is shown that Cr atoms are kinetically trapped in the growing precipitates.

  14. The electronic, structural and magnetic properties of Heusler compounds ZrCrCoZ(Z=B, Al, Ga, In): A first-principles study

    NASA Astrophysics Data System (ADS)

    Guo, R. K.; Liu, G. D.; Lin, T. T.; Wang, W.; Wang, L. Y.; Dai, X. F.

    2018-02-01

    It is predicted that the ZrCrCoZ(Z=B, Al, Ga, In) compounds with LiMnPbSn-type structure are half-metallic ferrimagnets with a large half-metallic gap by the first-principles calculations. The half-metallicity of the ZrCrCoZ(Z=B, Al, Ga, In) compounds are quite robust to the axial and uniaxial strain. The total magnetic moments in per unit cell are 4 μB for the ZrCrCoZ(Z=B, Al, Ga, In) compounds and follow the Slater-Pauling rule, which can be attributed to the great spin-splitting. The calculated formation energies are negative for all the ZrCrCoZ(Z=B, Al, Ga, In) compounds, which indicates that those compounds are in the thermodynamic stability and the possibility of synthesis in experiment.

  15. Tribological Properties of CrAlN and TiN Coatings Tested in Nano- and Micro-scale Laboratory Wear Tests

    NASA Astrophysics Data System (ADS)

    Hong, Ling; Bian, Guangdong; Hu, Shugen; Wang, Linlin; Dacosta, Herbert

    2015-07-01

    We investigated the tribological properties of CrAlN and TiN coatings produced by electron beam plasma-assisted physical vapor deposition by nano- and micro-scale wear tests. For comparison, we also conducted nano-indentation, nano-scanning wear tests, and pin-on-disk tribotests on uncoated M2 steel. The results indicate that, after nano-scale sliding tests against diamond indenter and pin-on-disk tests against ceramic alumina counterface pins, the CrAlN coating presents superior abrasive wear resistance compared to the TiN-coated and uncoated M2 steel samples. Against aluminum counterface, aluminum is more prone to attach on the CrAlN coating surface compared to TiN coating, but no apparent adhesive wear was observed, which has occurred on the TiN coating.

  16. Atomistic clustering-ordering and high-strain deformation of an Al 0.1CrCoFeNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.

    2016-08-08

    Here, computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived propertiesmore » are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study Al xCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al 0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al 0.1CrCoFeNi.« less

  17. Acid precipitation and food quality: Effects of dietary Al, Ca and P on bone and liver characteristics in American black ducks and mallards

    USGS Publications Warehouse

    Sparling, D.W.

    1991-01-01

    American black ducks (Anas rubripes) and mallards (A. platyrhynchos) were fed diets varying in concentrations of aluminum (Al). calcium (Ca), and phosphorus (P) for 10 weeks to identify toxic effects of Al under conditions representative of areas with acid precipitation. Femur and liver tissues were analyzed for Al. Ca, and P concentrations and structural characteristics. At two weeks of age, both species demonstrated pronounced differences in femur Al and P concentrations and femur mass from dietary Al and interaction between Ca:P regimen and Al:Low Ca:Low P enhanced Al storage and decreased P and mass in femurs. Femur Ca was lowest in the Low Ca:Low P regimen but was not affected by dietary Al. At 10 weeks, femur and liver Al continued to vary with dietary Al. Elevated Al and reduced Ca lowered modulus of elasticity. Femur P increased with elevated dietary P in black ducks. Elevated dietary P negated some of the effects of dietary A! on femur mass in black ducks. Reduced Ca concentrations weakened bones of both species and lowered both Ca and P. An array of clinical signs including lameness, discoloration of the upper mandible, complete and greenstick fractures, and death were responses to elevated Al and Ca:P regimen. Black ducks seemed to display these signs over a wider range of diets than mallards. Diets of 1,000 mg/kg Al had toxic effects on both species, particularly when combined with diets low in Ca and P.

  18. Pseudo-icosahedral Cr 55 Al 232 - δ as a high-temperature protective material

    DOE PAGES

    Rosa, R.; Bhattacharya, S.; Pabla, J.; ...

    2018-03-19

    In this paper, we report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high temperature protective coatings. Cr 55Al 232-δ [δ = 2.70(6)] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. Lastly, the origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  19. Pseudo-icosahedral Cr55Al232 -δ as a high-temperature protective material

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Bhattacharya, S.; Pabla, J.; He, H.; Misuraca, J.; Nakajima, Y.; Bender, A. D.; Antonacci, A. K.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Tritt, T. M.; Aronson, M. C.; Simonson, J. W.

    2018-03-01

    We report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high-temperature protective coatings. Cr55Al232 -δ [ δ =2.70 (6 ) ] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. The origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  20. Pseudo-icosahedral Cr 55 Al 232 - δ as a high-temperature protective material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, R.; Bhattacharya, S.; Pabla, J.

    In this paper, we report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high temperature protective coatings. Cr 55Al 232-δ [δ = 2.70(6)] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. Lastly, the origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  1. Acid mist and soil Ca and Al alter the mineral nutrition and physiology of red spruce

    Treesearch

    P.G. Schaberg; D.H. DeHayes; G.J. Hawley; G.R. Strimbeck; J.R. Cumming; P.F. Murakami; C.H. Borer

    2000-01-01

    We examined the effects and potential interactions of acid mist and soil solution Ca and Al treatments on foliar cation concentrations, membrane-associated Ca (mCa), ion leaching, growth, carbon exchange, and cold tolerance of red spruce (Picea rubens Sarg.) saplings. Soil solution Ca additions increased foliar Ca and Zn concentrations, and increased...

  2. Synthesis of low-moment CrVTiAl: a potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, Gregory; Wolfsberg, Jacob; McDonald, Ian; Lejeune, Brian; Lewis, Laura; Heiman, Don

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials - semiconductors with unequal band gaps for each spin channel - can generate spin-polarized current without the need for spin-polarizing electrodes. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing fringing fields to interfere with neighboring components. Several quaternary Heusler compounds have recently been predicted to have spin-filter properties and Curie temperatures TC >1000 K. In this work, CrVTiAl has been synthesized in the Y-type Heusler structure, as confirmed by X-ray diffractometry. Magnetization measurements exhibit an exceptionally small temperature-independent moment of 10-3μB /f.u. up to 400 K, a result that is consistent with zero-moment ferrimagnetism. In addition, temperature dependent resistivity measurements reveal the existence of a semiconducting conduction channel. These results suggest that CrVTiAl is a promising candidate for future spintronic devices.

  3. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  4. Effects of Tantalum on the Temporal Evolution of a Model Ni-Al-Cr Superalloy During Phase Decomposition

    NASA Technical Reports Server (NTRS)

    Booth, Morrison, Christopher; Seidman, David N.; Noebe, Ronald D.

    2009-01-01

    The effects of a 2.0 at.% addition of Ta to a model Ni-10.0Al-8.5Cr (at.%) superalloy aged at 1073 K are assessed using scanning electron microscopy and atom-probe tomography. The gamma'(Ll2)-precipitate morphology that develops as a result of gamma-(fcc)matrix phase decomposition is found to evolve from a bimodal distribution of spheroidal precipitates, to {001}-faceted cuboids and parallelepipeds aligned along the elastically soft {001}-type directions. The phase compositions and the widths of the gamma'-precipitate/gamma-matrix heterophase interfaces evolve temporally as the Ni-Al-Cr-Ta alloy undergoes quasi-stationary state coarsening after 1 h of aging. Tantalum is observed to partition preferentially to the gamma'-precipitate phase, and suppresses the mobility of Ni in the gamma-matrix sufficiently to cause an accumulation of Ni on the gamma-matrix side of the gamma'/gamma interface. Additionally, computational modeling, employing Thermo-Calc, Dictra and PrecipiCalc, is employed to elucidate the kinetic pathways that lead to phase decomposition in this concentrated Ni-Al-Cr-Ta alloy.

  5. Rub tolerance evaluation of two sintered NiCrAl gas path seal materials. [wear tests of gas turbine engine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.

  6. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  7. Status Report on Irradiation Capsules Containing Welded FeCrAl Specimens for Radiation Tolerance Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-02-26

    This status report provides the background and current status of a series of irradiation capsules, or “rabbits”, that were designed and built to test the contributions of microstructure, composition, damage dose, and irradiation temperature on the radiation tolerance of candidate FeCrAl alloys being developed to have enhanced weldability and radiation tolerance. These rabbits will also test the validity of using an ultra-miniature tensile specimen to assess the mechanical properties of irradiated FeCrAl base metal and weldments. All rabbits are to be irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) to damage doses up tomore » ≥15 dpa at temperatures between 200-550°C.« less

  8. High-pressure behaviour of Cr-Fe-Mg-Al spinels: applications to diamond geobarometry

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Bruschini, Enrico; Nestola, Fabrizio; Lenaz, Davide; Princivalle, Francesco; Andreozzi, Giovanni B.; Bosi, Ferdinando

    2014-05-01

    Spinels belonging to the chromite - magnesiochromite - hercynite (FeCr2O4-MgCr2O4-FeAl2O4) system are among the most common inclusions found in diamonds (Stachel and Harris 2008). In particular, although FeCr2O4 and MgCr2O4 components sum to between 85 and 88% of spinels found in diamonds, hercynite FeAl2O4 plays a not negligible role in determining their thermo-elastic properties with concentrations reaching 7-9 % (other minor end-members like MgAl2O4, MgFe2O4 and Fe2O3 rarely reach 2-3% in total, see Lenaz et al. 2009). Recent studies were focused on the determination of the diamond formation pressure by the so-called "elastic method" (see for example Nestola et al. 2011 and references therein). It was demonstrated that accurate and precise thermo-elastic parameters are fundamental to minimize the uncertainty of formation pressure. In this work we have determined the equations of state at room temperature of three synthetic spinel end-members chromite - magnesiochromite - hercynite and one natural spinel crystal extracted from a diamond (from Udachnaya mine, Siberia, Russia) by single-crystal X-ray diffraction in situ at high-pressure. A diamond-anvil cell was mounted on a STADI IV diffractometer equipped with a point detector and motorized by SINGLE software (Angel and Finger 2011). The natural crystal was investigated to test (and possibly validate) the "empirical prediction model", capable to provide bulk modulus and its first pressure derivative only knowing the composition of the spinels found in diamonds. Such prediction model could be used to obtain pressure of formation for the diamond-spinel pair through the elastic method. Details and results will be discussed. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Angel R.J., Finger L.W. (2011) SINGLE A program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247-251. Lenaz D., Logvinova A.M., Princivalle F., Sobolev N. (2009

  9. Preliminary Results on FeCrAl Alloys in the As-received and Welded State Designed to Have Enhanced Weldability and Radiation Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang

    2015-09-30

    The present report summarizes and discusses the recent results on developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability. The alloys used for these investigations are modern FeCrAl alloys based on a Fe-13Cr-5Al-2Mo-0.2Si-0.05Y alloy (in wt.%, designated C35M). Development efforts have focused on assessing the influence of chemistry and microstructure on the fabricability and performance of these newly developed alloys. Specific focus was made to assess the weldability, thermal stability, and radiation tolerance.

  10. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, following Extended Aging at 300-600C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Parker, Stephen Scott; Wood, Elizabeth Sooby

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21wt.%Cr-5wt.%Al-3wt.%Mo (Kanthal APMT). Aging treatments were performed for 100-1000 hours in stagnant air at 300, 400, 500, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, themore » oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.« less

  11. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)

    NASA Astrophysics Data System (ADS)

    Zhou, M.-F.; Robinson, P. T.; Malpas, J.; Aitchison, J.; Sun, M.; Bai, W.-J.; Hu, X.-F.; Yang, J.-S.

    2001-06-01

    The Sartohay block of the Dalabute ophiolite consists chiefly of mantle harzburgite and lherzolite with minor dunite. These rocks host voluminous chromite deposits with lenticular or vein-like shapes. The podiform chromitites are associated with, and cross-cut by, numerous troctolite dykes. Chromite in the chromitites has Al 2O 3 (23-31 wt%), TiO 2 (0.29-0.44 wt%), and Cr 2O 3 contents (<45 wt%) with Cr#s [100Cr/(Cr+Al)] (<60), typical of high-Al chromite deposits. The host peridotites in Sartohay have been texturally and geochemically modified by magmas from which the high-Al chromitites and mafic dykes formed. Dunites commonly envelop the podiform chromite bodies and show transitional contacts with the peridotites. Some of the peridotites and chromitites contain plagioclase that crystallized from impregnated melts. The dunite locally grades into troctolite with increasing plagioclase contents. As a result of melt impregnation, peridotites and dunites show variable Ca and Al contents and LREE enrichment. The parental magma of the chromitites was likely tholeiitic in composition, derived from partial melting of the asthenospheric mantle in a rising diapir. The interaction between this magma and pre-existing lithospheric mantle, composed of depleted lherzolite, would have formed a more silicic, tholeiitic magma from which high-Al chromitites crystallized. During this interaction, harzburgite and dunite were depleted in modal pyroxene and enriched in some incompatible elements (such as Al, Ca and LREE) due to melt impregnation.

  12. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip T.; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J.

    2012-01-01

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g3frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl1-xCrxO2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μeff is equal to the Cr3+ spin-only S = 3/2 value throughout the entire solid solution. ΘCW is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant JBB was estimated by mean-field theory to be 3.0 meV. Despite the sizable ΘCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  13. Trace Element Partitioning Between low-Ca Pyroxene and Ultracalcic Liquids.

    NASA Astrophysics Data System (ADS)

    Pertermann, M.; Schmidt, M. W.; Pettke, T.

    2003-12-01

    Low-Ca pyroxene or pigeonite ( ˜0.25-0.35 Ca per formula unit, pfu) is an important residual phase during high temperature melting of refractory mantle (e.g., ankaramite formation). High-Ca cpx (>0.6-0.7 Ca pfu) may be residual to relatively low temperature melting of fertile mantle (MOR and OI), but the opx-cpx solvus narrows considerably at higher temperatures (>1330-1350° C), leading to coexisting opx and low-Ca cpx. Little is known about the trace element partitioning of such low-Ca cpx at upper mantle conditions. Our new partitioning experiments investigate the role of low-Ca cpx during melting of depleted peridotite. Nominally anhydrous experiments with graphite-lined Pt-capsules were conducted at 1.4 GPa and 1360-1370° C. The synthetic starting material is close in composition to an ultracalcic liquid saturated in opx+pigeonite+olivine+spinel. The experiments yielded assemblages of glass, low-Ca cpx, ol, and minor Cr-spinel; opx is absent. The low-Ca clinopyroxenes have 0.20 and 0.32 Ca pfu at 1370 and 1360° C, respectively, and tetrahedral Al of 0.046 and 0.067 pfu. The liquids have ˜50 wt% SiO2, ˜12.5 wt% CaO and CaO/Al2O3 of 1.44-1.54. Pyroxenes and glasses were analyzed for trace elements (La, Ce, Nd, Sm, Eu, Gd, Dy, Er Yb, Lu, Sc, Y, Sr, Zr, Hf, V, Cr, Mn, Co, Zn) by LA-ICP-MS using a 193 nm ArF excimer laser coupled to an Elan 6100 mass spectrometer. Ablation occurred in He, and ablation spot sizes were 15-30 μ m for minerals and 50 μ m for glasses. Trace element concentrations in pyroxenes were low for most 3+ and 4+ cations. This resulted in small mineral/melt partition coefficients (D-values), approximately an order of magnitude lower than those for high-Ca cpx associated with peridotite melting, thus making the low-Ca cpx partitioning behavior rather similar to the behavior of peridotitic opx. Cpx with 0.32 Ca pfu has slightly elevated D-values for 3+ cations when compared to the 0.20 Ca pfu cpx: DSc = 0.45, DY = 0.11, DSm = 0.054 and DYb

  14. Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai

    2018-05-01

    The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this

  15. Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors.

    PubMed

    Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira

    2012-09-19

    The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.

  16. Structural classification of RAO/sub 3/(MO)/sub n/ compounds (R = Sc, In, Y, or lanthanides; A = Fe(III), Ga, Cr, or Al; M = divalent cation; n = 1-11)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    A series of new compounds (RAO/sub 3/MO)/sub n/ (n = 1-11) having spinel, YbFe/sub 2/O/sub 4/, or InFeO/sub 3/(ZnO)/sub n/ types of structures were newly synthesized (R = Sc, In, Y, Lu, Yb, Tm, or Er; A = Fe(III), Ga, Cr, or Al; M = Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO/sub 1.5/, (FeZn)O/sub 2.5/, and ZnO layers for InFeO/sub 3/(ZnO)/sub 10/ and the TmO/sub 1.5/, (AlZn)O/sub 2.5/, and ZnO layers for TmAlO/sub 3/(ZnO)/sub 11/ are presented,more » respectively. The crystal structures of the (RAO/sub 3/)/sub m/(MO)/sub n/ phases R = Sc, In, Y, or lanthanide elements; A = Fe(III), Ga, Cr, or Al; M = divalent cation elements; m and n = integer are classified into four crystal structure types (K/sub 2/NiF/sub 4/, CaFe/sub 2/O/sub 4/, YbFe/sub 2/O/sub 4/, and spinel), based upon the constituent cations R, A, and M.« less

  17. Surface microstructure and high temperature corrosion resistance of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Zhao, Limin; He, Dongyun

    2013-10-01

    The surface microstructure of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam (HCPEB) with long pulse duration of 200 μs was characterized by using optical microscopy, scanning electron microscopy and X-ray diffractometry. The distribution of chemical composition in modified surface layer was measured with electron probe micro-analyzer. The high temperature corrosion resistance of FeCrAl coating was tested in a saturated Na2SO4 and K2SO4 solution at 650 °C. After HCPEB irradiation, the coarse surface of arc-sprayed coating was changed as discrete bulged nodules with smooth and compact appearance. When using low energy density of 20 J/cm2, the surface modified layer was continuous entirely with an average melting depth of ˜30 μm. In the surface remelted layer, Fe and Cr elements gave a uniform distribution, while Al and O elements agglomerated particularly at the concave part between nodule structures to form α-Al2O3 phase. After high temperature corrosion tests, the FeCrAl coating treated with HCPEB of 20 J/cm2 remained a glossy surface with weight increment of ˜51 mg/cm2, decreased by 20% as compared to the initial sample. With the increasing energy density of HCPEB irradiation, the integrity of surface modified layer got segmented due to the formation of larger bulged nodules and cracks at the concave parts. For the HCPEB irradiation of 40 J/cm2, the high temperature corrosion resistance of FeCrAl coating was deteriorated drastically.

  18. Formation of Ti-Al-Cr-B-N coatings by ion-magnetron sputtering of composite targets

    NASA Astrophysics Data System (ADS)

    Sergeev, Oleg V.; Kalashnikov, Mark P.; Voronov, Andrey V.; Sergeev, Victor P.; Panin, Victor E.

    2017-12-01

    The research addresses the influence of bombardment by high-energy ions (Cr + B)+ with a low fluence 4 × 1017 cm-2 on the tribological and mechanical properties of Ti-Al-N coatings. The wear resistance decreases 2.6 times whereas the microhardness decreases 1.2 times. The structural-phase state and the chemical composition of the surface layer of the modified coating are determined. The research is carried out by transmission and scanning of the electron microscopy and the secondary ion mass spectrometry. In the ion-modified coating layer the average concentration of titanium, aluminum and nitrogen decreases and those of chromium and boron increase when at a fluence of 4 × 1017 cm-2 the maximum values of Cr and B reach 16 and 23 at %, respectively, and the minimum values of Ti, Al and N amount to 15, 7 and 39 at %. In this layer the columnar structure is broken; its volume is divided into the alternative local nanosize zone-crystalline and amorphous. The phase composition of the crystalline regions is represented by TiN and AlN phases and a new CrB4 phase. The observed decrease of the tribomechanical properties can be due to both the amorphization of the surface layer and the transformation of a high-strength phase in a brittle one.

  19. Biochemical responses of the mycorrhizae in Pinus massoniana to combined effects of Al, Ca and low pH.

    PubMed

    Kong, F X; Liu, Y; Hu, W; Shen, P P; Zhou, C L; Wang, L S

    2000-02-01

    Biochemical responses of Pinus massoniana, with and without the inoculation mycorrhizal fungus Pisolithus tinctorius at the root, to artificial acid rain (pH 2.0) and various Ca/Al ratios were investigated. Some enzymes associated with the nutritive metabolism, such as acid phosphatase, alkaline phosphatase, nitrate reductase, mannitol dehydrogenase and trehalase, in the roots, stems and leaves of plant were obviously inhibited by the artificial acid rain and Al. After treatment with pH 2.0 + Ca/Al (0/1 or 1/10) artificial acid rain, the protein content in the organs was decreased. However, the activities of superoxide dismutase (SOD) and peroxidase (POD) and glutathione (GSH) concentrations were induced. It demonstrated that acid rain and Al could induce oxygen radicals in plant. Compared with the treatments with lower pH or Al, respectively, the combination of lower pH and Al concentration was more toxic to P. massoniana. Al toxicity could be ameliorated by the addition of Ca and the amelioration was the most when the ratio was 1/1 among the various Ca/Al ratio. Infection with mycorrhizal fungus P. tinctorius at the root of P. massoniana increased the ability of the plant to resist the toxicity of artificial acid rain and Al stress.

  20. Influence of Al Addition Upon the Microstructure and Mechanical Property of Dual-Phase 9Cr-ODS Steels

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosheng; Ma, Zongqing; Yu, Liming; Huang, Yuan; Li, Huijun; Liu, Yongchang

    2018-06-01

    With Al addition, dual-phase oxide dispersion strengthened (ODS) steels consisting of martensite and ferrite are fabricated by spark plasma sintering. It is found that Al addition has a negligible effect on martensite lath size, while the amount and size of ferrite grains are related to the Al content. M23C6 (M = Fe, Cr) carbides have been identified within the ferrite grains or along ferrite boundaries. With increasing Al concentration, more fine Y-Al-O oxide nanoparticles are formed. Upon annealing treatment, homogeneous and refined distribution of ferrite grains is obtained, which may involve the particle-stimulated nucleation of recrystallization caused by the large sized M23C6. As Al is increased from 0.05 to 0.1 wt%, the tensile strength of the annealed steel is decreased, as well as its ductility. For the annealed 9Cr-ODS steel containing 0.1 wt% Al, in tensile loading the large sized M23C6 along ferrite boundaries would facilitate the cracking along boundaries between the hard annealed ferrite and soft annealed martensite, producing the mixed fracture of dimple and intergranular fracture.

  1. Density Measurements of Low Silica CaO-SiO2-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Muhmood, Luckman; Seetharaman, Seshadri

    2010-08-01

    Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete {text{SiO}}4^{4 - } tetrahedral units in the silicate melt would exist along with O2- ions. The change in melt expansivity may be attributed to the ionic expansions in the order of {text{Al}}^{ 3+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ - } Structural changes in the ternary slag also could be correlated to a drastic change in the value of enthalpy of mixing.

  2. Site partitioning of Cr3+ in the trichroic alexandrite BeAl2O4:Cr3+ crystal: contribution from x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bordage, Amélie; Rossano, Stéphanie; Horn, Adolf Heinrich; Fuchs, Yves

    2012-06-01

    X-ray absorption spectroscopy measurements at the Cr K-edge of a trichroic crystal of alexandrite BeAl2O4:Cr3+ for different orientations of the crystal with respect to the polarization and direction of the x-ray incident beam have been performed. Analysis of the experimental spectra with the help of first-principles calculations of x-ray absorption spectra allowed us to estimate the proportion of chromium Cr3+ cations among the two different octahedral sites of the alexandrite structure (70% in the Cs site-30% in the Ci site). The methodology presented in this work opens up new possibilities in the field of mineralogy for the study of complex minerals containing several sites potentially occupied by several transition elements or for solid solutions.

  3. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  4. Network topology for the formation of solvated electrons in binary CaO–Al2O3 composition glasses

    PubMed Central

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J. K. Richard; Benmore, Chris J.

    2013-01-01

    Glass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass. PMID:23723350

  5. Corrosion Behavior of Active Screen Plasma Nitrided 38CrMoAl Steel under Marine Environment

    NASA Astrophysics Data System (ADS)

    Yang, Li; He, Yongyong; Mao, JunYuan; Zhang, Lei

    2017-10-01

    The 38CrMoAl steels were nitrided at different temperatures for 7 h using active screen plasma discharge. The analysis showed that the thick compound layer composed of ɛ-Fe2-3N and γ‧-Fe4N was formed on the surface. The corrosion behavior was evaluated by measuring the anodic polarization curves in natural sea water (similar 3.5% NaCl solution), and observation of corroded surface were conducted. The electromechanical measurements indicated that the corrosion potential of the nitrided specimens shifted to a nobler value compared to that of untreated specimens. Passive regions were also observed in the polarization curves for all the nitrided specimens. These results indicate that active screen plasma nitriding can enhance the corrosion resistance of the 38CrMoAl steel under marine environment.

  6. Czochralski growth of 2 in. Ca3Ta(Ga,Al)3Si2O14 single crystals for piezoelectric applications

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Shoji, Yasuhiro; Ohashi, Yuji; Yokota, Yuui; Chani, Valery I.; Kitahara, Masanori; Kudo, Tetsuo; Kamada, Kei; Kurosawa, Shunsuke; Medvedev, Andrey; Kochurikhin, Vladimir

    2016-10-01

    Growth of 2-in. diameter Al-substituted Ca3TaGa3Si2O14 crystals by Czochralski method is reported. The crystals were grown from the melt of Ca3TaGa1.5Al1.5Si2O14 composition and had langasite structure. No inclusions of secondary phases were detected in these crystals. The Ca3Ta(Ga,Al)3Si2O14 mixed crystals produced using non-substituted Ca3TaGa3Si2O14 seeds were defective. They had cracks and/or poly-crystalline structure. However, those grown on the seed of approximately Ca3TaGa1.5Al1.5Si2O14 composition were defect-free. Phase diagram of the Ca3TaGa3Si2O14-Ca3TaAl3Si2O14 pseudo-binary system and segregation phenomenon are discussed in some details. Homogeneity of the crystals was evaluated by measuring 2D-mapping of leaky surface acoustic wave (LSAW) velocities for Y-cut Ca3TaGa1.5Al1.5Si2O14 substrate. Although some inhomogeneities were observed due to slight variations in chemical composition, the crystal had acceptable homogeneity for applications in acoustic wave devices exhibiting the LSAW velocity variation within ±0.048%.

  7. Experimental calibration of Forsterite-Anorthite-Ca-Tschermak-Enstatite (FACE) geobarometer for mantle peridotites

    NASA Astrophysics Data System (ADS)

    Fumagalli, P.; Borghini, G.; Rampone, E.; Poli, S.

    2017-06-01

    The crystallization of plagioclase-bearing assemblages in mantle rocks is witness of mantle exhumation at shallow depth. Previous experimental works on peridotites have found systematic compositional variations in coexisting minerals at decreasing pressure within the plagioclase stability field. In this experimental study we present new constraints on the stability of plagioclase as a function of different Na2O/CaO bulk ratios, and we present a new geobarometer for mantle rocks. Experiments have been performed in a single-stage piston cylinder at 5-10 kbar, 1050-1150 °C at nominally anhydrous conditions using seeded gels of peridotite compositions (Na2O/CaO = 0.08-0.13; X Cr = Cr/(Cr + Al) = 0.07-0.10) as starting materials. As expected, the increase of the bulk Na2O/CaO ratio extends the plagioclase stability to higher pressure; in the studied high-Na fertile lherzolite (HNa-FLZ), the plagioclase-spinel transition occurs at 1100 °C between 9 and 10 kbar; in a fertile lherzolite (FLZ) with Na2O/CaO = 0.08, it occurs between 8 and 9 kbar at 1100 °C. This study provides, together with previous experimental results, a consistent database, covering a wide range of P- T conditions (3-9 kbar, 1000-1150 °C) and variable bulk compositions to be used to define and calibrate a geobarometer for plagioclase-bearing mantle rocks. The pressure sensitive equilibrium: Mg_{2}SiO_{4}^Ol\\limits_{Forsterite} + CaAl_{2}Si_{2}O_{8}^{Pl\\limits_{Anorthite} = CaAl_{2}SiO_{6}^{Cpx}\\limits_{Ca-Tschermak} + Mg_{2}Si_{2}O_{6}^{Opx}\\limits_{Enstatite}, has been empirically calibrated by least squares regression analysis of experimental data combined with Monte Carlo simulation. The result of the fit gives the following equation: P=7.2( ± 2.9)+0.0078( ± 0.0021)T{{ }}+0.0022( ± 0.0001)T ln K, {R^2}=0.93, where P is expressed in kbar and T in kelvin. K is the equilibrium constant K = a CaTs × a en/ a an × a fo, where a CaTs, a en, a an and a fo are the activities of Ca-Tschermak in

  8. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

    PubMed Central

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh

    2016-01-01

    Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807

  9. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries

    NASA Astrophysics Data System (ADS)

    Yuasa, Motohiro; Huang, Xinsheng; Suzuki, Kazutaka; Mabuchi, Mamoru; Chino, Yasumasa

    2015-11-01

    The discharge behaviors of rolled Mg-6 mass%Al-0.3 mass%Mn-2 mass%Ca (AMX602) and Mg-6 mass%Al-0.3 mass%Mn (AM60) alloys used as anodes for Magnesium-air batteries were investigated. The AMX602 alloy exhibited superior discharge properties compared to the AM60 alloy, especially at low current density. The discharge products of the AMX602 alloy were dense and thin, and many cracks were observed at all current densities. In addition, the discharge products were detached at some sites. These sites often corresponded to the positions of Al2Ca particles. The comparison of the discharge and corrosion tests indicated that the dense and thin discharge products of AMX602 were easily cracked by dissolution of the Mg matrix around Al2Ca particles, and the cracks promoted the penetration of the electrolyte into the discharge products, retaining the discharge activity. In contrast, concerning the AM60 alloy, thick discharge products were formed on the surface during discharge, and cracking of the discharge products hardly occurred, degrading the discharge properties. Localized and deeply corroded pits that could result from the detachment of metal pieces from the anode during discharge were partly observed in the AM60 alloy. It is suggested that these detached metal pieces are another reason for the low discharge properties of the AM60 alloy.

  10. Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Zining; Li, Jia; Fang, QiHong; Liu, Bin; Zhang, Liangchi

    2017-09-01

    The mechanical behaviors and deformation mechanisms of scratched AlCrCuFeNi high entropy alloys (HEAs) have been studied by molecular dynamics (MD) simulations, in terms of the scratching forces, atomic strain, atomic displacement, microstructural evolution and dislocation density. The results show that the larger tangential and normal forces and higher friction coefficient take place in AlCrCuFeNi HEA due to its outstanding strength and hardness, and high adhesion and fracture toughness over the pure metal materials. Moreover, the stacking fault energy (SFE) in HEA increases the probability to initiate dislocation and twinning, which is conducive to the formation of complex deformation modes. Compared to the single element metal workpieces, the segregation potency of solutes into twinning boundary (TB) is raised due to the decreasing segregation energy of TB, resulting in the stronger solute effects on improving twinning properties for HEA workpiece. The higher dislocation density and the more activated slipping planes lead to the outstanding plasticity of AlCrCuFeNi HEA. The solute atoms as barriers to hinder the motion of dislocation and the severe lattice distortion to suppress the free slipping of dislocation are significantly stronger obstacles to strengthen HEA. The excellent comprehensive scratching properties of the bulk AlCrCuFeNi HEAs are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This work provides a basis for further understanding and tailoring SFE in mechanical properties and deformation mechanism of HEAs, which maybe facilitate the design and preparation of new HEAs with high performance.

  11. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    PubMed

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  12. Submission of FeCrAl Feedstock for Support of AFC ATR-2 Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Barrett, Kristine E.; Sun, Zhiqian

    The Advanced Test Reactor (ATR) is currently being used to test accident tolerant fuel (ATF) forms destined for commercial nuclear power plant deployment. One irradiation program using the ATR for ATF concepts, Accident Tolerant Fuel-2 (ATF-2), is a water loop irradiation test using miniaturized fuel pins as test articles. This complicated testing configuration requires a series of pre-test experiments and verification including a flowing loop autoclave test and a sensor qualification test (SQT) prior to full test train deployment within the ATR. In support of the ATF-2 irradiation program, Oak Ridge National Laboratory (ORNL) has supplied two different Generation IImore » FeCrAl alloys in rod stock form to Idaho National Laboratory (INL). These rods will be machined into dummy pins for deployment in the autoclave test and SQT. Post-test analysis of the dummy pins will provide initial insight into the performance of Generation II FeCrAl alloys in the ATF-2 irradiation experiment as well as within a commercial nuclear reactor.« less

  13. Polymer coated CaAl-layered double hydroxide nanomaterials for potential calcium supplement.

    PubMed

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-12-05

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement.

  14. Angle-dependent tribological properties of AlCrN coatings with microtextures induced by nanosecond laser under dry friction

    NASA Astrophysics Data System (ADS)

    Xing, Youqiang; Deng, Jianxin; Gao, Peng; Gao, Juntao; Wu, Ze

    2018-04-01

    Microtextures with different groove inclinations are fabricated on the AlCrN-coated surface by a nanosecond laser, and the tribological properties of the textured AlCrN samples sliding against AISI 1045 steel balls are investigated by reciprocating sliding friction tests under dry conditions. Results show that the microtextures can effectively improve the tribological properties of the AlCrN surface compared with the smooth surface. Meanwhile, the angle between the groove inclination and sliding direction has an important influence on the friction and wear properties. The textured sample with the small groove inclination may be beneficial to reducing the friction and adhesions, and the TC-0° sample exhibits the lowest friction coefficient and adhesions of the worn surface. The wear volume of the ball sliding against the TC-0° sample is smaller compared with the UTC sample and the sliding against the TC-45° and TC-90° samples is larger compared with the UTC sample. Furthermore, the mechanisms of the microtextures are discussed.

  15. High Temperature Thermal Stability and Oxidation Resistance of Magnetron-sputtered Homogeneous CrAlON Coatings on 430 Steel

    NASA Astrophysics Data System (ADS)

    Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.; Gorokhovsky, V. I.

    2009-03-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800° C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  16. Effects of Oral Administration of CrCl3 on the Contents of Ca, Mg, Mn, Fe, Cu, and Zn in the Liver, Kidney, and Heart of Chicken.

    PubMed

    Liu, Yanhan; Zhao, Xiaona; Zhang, Xiao; Zhao, Xuejun; Liu, Yongxia; Liu, Jianzhu

    2016-06-01

    This study aimed to investigate the effects of oral administration of trivalent chromium on the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney. Different levels of 1/8, 1/4, and 1/2 LD50 (LD50 = 5000 mg/kg body mass) CrCl3 milligrams per kilogram body mass daily were added into the water to establish the chronic poisoning model. Ca, Mg, Mn, Fe, Cu, and Zn were detected with the flame atomic absorption spectrometry in the organs exposed 14, 28, and 42 days to CrCl3, respectively. Results showed that Cr was accumulated in the heart, liver, and kidney significantly (P < 0.05) with extended time and dose. The contents of Ca and Fe increased, whereas those of Mg, Mn, Cu, and Zn decreased in the heart, liver, and kidney of each treated group, which had a dose- and time-dependent relationship, but the contents of Mg and Zn in the heart took on a fluctuated change. These particular observations were different from those in the control group. In conclusion, the oral administration of CrCl3 could change the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney, which may cause disorders in the absorption and metabolism of the metal elements of chickens.

  17. Study the effect of mechanical alloying parameters on synthesis of Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayesteh, Payam, E-mail: shayesteh.payam@gmail.com; Mirdamadi, Shamseddin; Razavi, Hossein

    2014-01-01

    Graphical abstract: - Highlights: • Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite synthesized through MA. • Effect of BPR, rotating speed, milling time and PCA concentration investigated. • After annealing at 1100 °C crystalline phase were appeared. • Williamson–Hall analysis was used in order to study the grain size of nano composite. - Abstract: In this study, Cr{sub 2}Nb–20 vol.% Al{sub 2}O{sub 3} nanocomposite was prepared successfully by mechanochemical reaction between Al, Nb and Cr{sub 2}O{sub 3} powders. Amorphization of powder occurred during mechanical alloying because of high energy collisions between powders and steel balls in milling container which transfer high degreemore » of energy to powders. Therefore, annealing was needed to form crystalline phases. The influence of different mechanical alloying parameters such as BPR, rotating speed, milling time and PCA concentration on synthesis of composite material were investigated. After mechanical alloying, the powder was encapsulated in quartz and then annealed at 1100 °C for 3 h. After annealing, 3 different phases were appeared (Cr{sub 2}Nb (cubic), Cr{sub 2}Nb (hexagonal) and α-Al{sub 2}O{sub 3}). The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM)« less

  18. Microstructure development and photoluminescence of annealed nanosized Ce:YAG/Al2O3 and Ce:YAG/Cr:Al2O3 powder composites

    NASA Astrophysics Data System (ADS)

    Peter, Samuel; Kuyanov, Paul; Isik Goktas, Nebile; LaPierre, Ray; Kitai, Adrian

    2018-03-01

    In an effort to control aggregation and sintering of phosphor nanoparticles at elevated annealing temperatures, glycothermally synthesized cerium-doped yttrium aluminum garnet (Ce:YAG) nanoparticles were annealed in a matrix of aluminum oxide between 1000 °C and 1200 °C. Scanning electron microscopy images showed that glycothermal synthesis yields ∼100 nm particles, and that the alumina matrix was able to control grain growth of Ce:YAG at annealing temperatures up to 1200 °C. Analysis by x-ray diffraction and Fourier transform infrared spectroscopy showed an increase in the degree of crystallinity at increasing temperatures as well as the evolution of alumina phases. Photoluminescence of the composite product showed the expected broad Ce:YAG spectrum, with characteristic chromium R lines present due to the formation of corundum at 1200 °C with trace chromium content. The same procedure was performed to synthesize a Ce:YAG/Cr:Al2O3 nanocomposite, yielding photoluminescence of both the expected Ce:YAG and Cr:Al2O3 peaks as well as clear evidence of energy transfer between Ce and Cr centers in YAG. The luminescence of these composites was used to determine their CIE colour co-ordinates. It was found that the colour profile of the resulting emission may be tuned by adjusting the Cr content and annealing conditions of the composite materials.

  19. Solute transport during the cyclic oxidation of Ni-Cr-Al alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1982-01-01

    Important requirements for protective coatings of Ni-Cr-Al alloys for gas turbine superalloys are resistance to oxidation accompanied by thermal cycling, resistance to thermal fatigue cracking. The resistance to oxidation accompanied by thermal cycling is discussed. The resistance to thermal fatigue cracking is also considered.

  20. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  1. Interaction of Fe-Al-Cr-C with the melt of an alkali metal carbonate

    NASA Astrophysics Data System (ADS)

    Nikitina, E. V.

    2015-08-01

    The interaction of an Fe-Al-Cr-C (29.5 wt % Fe, 29.35 wt % Cr, 2.56 wt % C, 38.59 wt % Al) alloy with the melt of a lithium, sodium, or potassium carbonate containing 1-5 wt % addition to a salt phase is studied by gravimetry and measuring the corrosion potential and anode polarization curves in the temperature range 500-600°C. As passivators, the substances that decrease the corrosion losses due to hardening and thickening of an oxide film (lithium, sodium, potassium hydroxides) are used. As corrosion stimulators (activators), sodium chloride, fluoride, and sulfate are used. The coalloying of iron with chromium and aluminum results in high corrosion resistance against both frontal (continuous) and local (pitting, intercrystalline) corrosion as a result of formation of chemically resistant and high-adhesion oxide layers with their participation. X-ray diffraction analysis reveals gamma aluminum oxide, spinel (alumochromite) traces, and lithium aluminate at the surface.

  2. A defect density-based constitutive crystal plasticity framework for modeling the plastic deformation of Fe-Cr-Al cladding alloys subsequent to irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique

    2016-02-05

    It is essential to understand the deformation behavior of these Fe-Cr-Al alloys, in order to be able to develop models for predicting their mechanical response under varied loading conditions. Interaction of dislocations with the radiation-induced defects governs the crystallographic deformation mechanisms. A crystal plasticity framework is employed to model these mechanisms in Fe-Cr-Al alloys. This work builds on a previously developed defect density-based crystal plasticity model for bcc metals and alloys, with necessary modifications made to account for the defect substructure observed in Fe-Cr-Al alloys. The model is implemented in a Visco-Plastic Self Consistent (VPSC) framework, to predict the mechanicalmore » behavior under quasi-static loading.« less

  3. Ca2 Al2 SiO7 :Ce3+ phosphors for mechanoluminescence dosimetry.

    PubMed

    Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D P; Sao, Sanjay Kumar; Sahu, Ishwar Prasad

    2016-12-01

    A series of Ce 3+ ion single-doped Ca 2 Al 2 SiO 7 phosphors was synthesized by a combustion-assisted method at an initiating temperature of 600 °C. The samples were annealed at 1100 °C for 3 h and their X-ray diffraction patterns confirmed a tetragonal structure. The phase structure, particle size, surface morphology and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy techniques. Thermoluminescence (TL) intensity increased with increase in ultraviolet (UV) light exposure time up to 15 min. With further increase in the UV irradiation time the TL intensity decreases. The increase in TL intensity indicates that trap concentration increased with UV exposure time. A broad peak at 121 °C suggested the existence of a trapping level. The peak of mechanoluminescence (ML) intensity versus time curve increased linearly with increasing impact velocity of the moving piston. Mechanoluminescence intensity increased with increase in UV irradiation time up to 15 min. Under UV-irradiation excitation, the TL and ML emission spectra of Ca 2 Al 2 SiO 7 :Ce 3+ phosphor showed the characteristic emission of Ce 3+ peaking at 400 nm (UV-violet) and originating from the Ce 3+ transitions of 5d-4f ( 2 F 5/2 and 2 F 7/2 ). The photoluminescence (PL) emission spectra for Ca 2 Al 2 SiO 7 :Ce 3+ were similar to the ML/TL emission spectra. The mechanism of ML excitation and the suitability of the Ca 2 Al 2 SiO 7 :Ce 3+ phosphor for radiation dosimetry are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Novel technique for preparing Ca- and P-containing ceramic coating on Ti-6Al-4V by micro-arc oxidation.

    PubMed

    Yu, Sirong; Yang, Xizhen; Yang, Long; Liu, Yaohui; Yu, Yingjie

    2007-11-01

    A novel technique for preparing the Ca- and P-containing ceramic coating on Ti-6Al-4V alloy by micro-arc oxidation (MAO) was developed successfully in this paper. In the new technique, Ti alloy first was micro-arc oxidated in P-containing electrolyte, and then it was micro-arc oxidated in Ca-containing electrolyte. This technique can avoid the undesired chemical reaction between Ca-containing salt and P-containing salt in electrolyte. The surface morphologies, composition, and phases of MAO coatings were studied by means of SEM, EDS, and XRD. The results show that the P- and Ca-containing coating on Ti-6Al-4V alloy contains Ti, TiO(2) (rutile), alpha-Ca(PO(3))(2), CaTiO(3), and AlTi(3). There are many small and uniform pores in the coating. Most of these pores are coterminous. The microhardness of the coating is 720 HV and higher than that of Ti-6Al-4V alloy (220 HV). The coating is more wear-resistant than Ti-6Al-4V alloy under the lubricant of the artificial saliva and not easy to desquamate from the substrate of Ti-6Al-4V alloy.

  5. Competing magnetic and spin-gapless semiconducting behavior in fully compensated ferrimagnetic CrVTiAl: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Venkateswara, Y.; Gupta, Sachin; Samatham, S. Shanmukharao; Varma, Manoj Raama; Enamullah, Suresh, K. G.; Alam, Aftab

    2018-02-01

    We report the structural, magnetic, and transport properties of the polycrystalline CrVTiAl alloy along with first-principles calculations. The alloy crystallizes in a LiMgPdSn-type structure with a lattice parameter of 6.14 Å at room temperature. The absence of the (111) peak along with the presence of a weak (200) peak indicates the antisite disorder of Al with Cr and V atoms, which is different from the pure DO3 type. Magnetization measurements reveal a magnetic transition near 710 K, a coercive field of ˜100 Oe at 3 K, and a moment of ˜10-3μB/f .u . These observations are indicative of fully compensated ferrimagnetism in the alloy, which is confirmed by theoretical modeling. The temperature coefficient of resistivity is found to be negative, signaling the semiconducting nature. However, the absence of exponential dependence indicates the semiconducting nature with gapless/spin-gapless behavior. Electronic and magnetic properties of CrVTiAl for all three possible crystallographic configurations are studied theoretically. All the configurations are found to be different forms of semiconductors. The ground-state configuration is a fully compensated ferrimagnet with band gaps of 0.58 and 0.30 eV for the spin-up and -down bands, respectively. The next-higher-energy configuration is also fully compensated ferrimagnetic but has a spin-gapless semiconducting nature. The highest-energy configuration corresponds to a nonmagnetic, gapless semiconductor. The energy differences among these configurations are quite small (<1 mRy /atom ), which hints that, at finite temperatures, the alloy exists in a disordered phase, which is a mixture of the three configurations. By taking into account the theoretical and experimental findings, we conclude that CrVTiAl is a fully compensated ferrimagnet with a predominantly spin-gapless semiconducting nature.

  6. Overview of the multifaceted activities towards development and deployment of nuclear-grade FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A

    2016-01-01

    A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanicalmore » characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.« less

  7. Resolving the structure and properties of τ1-Cr-Ni-Al for high temperature protective applications

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Nicasio, J. E.; Ilyas, H.; Pabla, J.; Horvat, K.; Misuraca, J. C.

    Increasing the temperature of the steam in turbine power plants enhances thermal efficiency while reducing CO2 emissions. Exposed steel components, however, must be coated to withstand the harsh environments present in next-generation advanced ultra-supercritical plants. Proposed coating materials must exhibit low density, high hardness, high toughness, excellent oxidation resistance, and low thermal conductivity. With an eye towards satisfying this diverse array of requirements, we report the properties of the so-called τ1 phase of Cr-Ni-Al. We resolve the previously controversial composition and crystal structure of this material. The complex structure is composed of distorted icosahedra and octahedra of Al, with nearest-neighbor transition metal-Al bond lengths as short as 2.4 Å, far shorter than typical distances in Ni-Al and Cr-Al binaries. Accordingly, Vickers hardness is 6 . 88 +/- 0 . 13 GPa, as hard as extra-high-hardness armor plating at only 45% the density. We discuss these properties in light of the result of transport and oxidation resistance measurements. The apparent dependencies of these properties on crystal structure suggests new criteria for materials research. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund, for support of this research under contract 56764-UNI10.

  8. Dual-wavelength Nd:CaLnAlO4 lasers at 1.365 and 1.390 μm

    NASA Astrophysics Data System (ADS)

    Loiko, Pavel; Maria Serres, Josep; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady

    2018-02-01

    Tetragonal calcium rare-earth aluminates, CaLnAlO4, are attractive laser host crystals. The emission of Nd3+ ions at 1.3- 1.4 μm due to the 4F3/2 -> 4I13/2 transition is of interest for medicine, fiber optics, and light conversion. We report on compact Nd:CaLnAlO4 lasers using a plane-plane cavity. With an a-cut 0.8 at.% Nd:CaYAlO4 crystal diode-pumped at 802 nm, a maximum continuous-wave output power of 365 mW was achieved at 1.365 & 1.390 μm corresponding to the σ-polarization. The 4F3/2 -> 4I13/2 laser performance of the Nd:CaLnAlO4 crystals was compared to that from a monoclinic Nd:KGd(WO4)2. At the 4F3/2-> 4I11/2 transition (1.08 μm), a Nd:CaYAlO4 micro-laser generated multi-watt output (>4 W) with a slope efficiency of 39%.

  9. The effects of Cr, Co, Al, Mo and Ta on the cyclic oxidation behavior of a prototype cast Ni-base superalloy based on a 2(5) composite statistically designed experiment

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1984-01-01

    A series of cast Ni-base superalloys were systematically varied at selected levels of Co, Cr, Mo, Ta, and Al. The elemental levels varied were Mo, 0 to 4 percent; Cr, 6 to 18 percent; Co, 0 to 20 percent, Ta, 0 to 8 percent; and Al, 3.25 to 6.25 percent. The cyclic oxidation resistance was determined from specific weight change data as a function of time for 1 hr cycles in static air at 1100 C. The significant terms in decreasing order of their importance were Al, Ta, Cr2, Al-Cr, Cr-Co, Co2, Al-Mo, Cr-Mo, Al-Al, and Mo-Ta. The Al term alone accounted for close to 82 percent of the explained variability. The estimating equation showed that the Al level was the most important and should be at its 6.25 wt % maximum value. The Mo and Ta levels should also be at their maximum 4 and 8 wt % respectively. The cobalt composition should be as low as possible, i.e., 0 wt%. The Cr level optimum varies depending on the other 4 levels. The X-ray diffaction results indicate the most protective scales are alumina/aluminate spinel stabilizized with a tri-rutile oxide high in Ta and Mo.

  10. Simultaneous removal of Cu(II) and Cr(VI) by Mg-Al-Cl layered double hydroxide and mechanism insight.

    PubMed

    Yue, Xianyang; Liu, Weizhen; Chen, Zuliang; Lin, Zhang

    2017-03-01

    Mg-Al-Cl layered double hydroxide (Cl-LDH) was prepared to simultaneously remove Cu(II) and Cr(VI) from aqueous solution. The coexisting Cu(II) (20mg/L) and Cr(VI) (40mg/L) were completely removed within 30min by Cl-LDH in a dosage of 2.0g/L; the removal rate of Cu(II) was accelerated in the presence of Cr(VI). Moreover, compared with the adsorption of single Cu(II) or Cr(VI), the adsorption capacities of Cl-LDH for Cu(II) and Cr(VI) can be improved by 81.05% and 49.56%, respectively, in the case of coexisting Cu(II) (200mg/L) and Cr(VI) (400mg/L). The affecting factors (such as solution initial pH, adsorbent dosage, and contact time) have been systematically investigated. Besides, the changes of pH values and the concentrations of Mg 2+ and Al 3+ in relevant solutions were monitored. To get the underlying mechanism, the Cl-LDH samples before and after adsorption were thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On the basis of these analyses, a possible mechanism was proposed. The coadsorption process involves anion exchange of Cr(VI) with Cl - in Cl-LDH interlayer, isomorphic substitution of Mg 2+ with Cu 2+ , formation of Cu 2 Cl(OH) 3 precipitation, and the adsorption of Cr(VI) by Cu 2 Cl(OH) 3 . This work provides a new insight into simultaneous removal of heavy metal cations and anions from wastewater by Cl-LDH. Copyright © 2016. Published by Elsevier B.V.

  11. EPR study of chromium-doped forsterite crystals: Cr3+( M1) with associated trivalent ions Al3+ and Sc3+

    NASA Astrophysics Data System (ADS)

    Ryabov, I. D.

    2012-10-01

    Electron paramagnetic resonance (EPR) study of single crystals of forsterite co-doped with chromium and scandium has revealed, apart from the known paramagnetic centers Cr3+( M1) and Cr3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2) (Ryabov in Phys Chem Miner 38:177-184, 2011), a new center Cr3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2)-Sc3+ formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position and a Sc3+ ion presumably at the nearest-neighbor M1 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values have been determined as follows: D = 33,172(29) MHz, E = 8,482(13) MHz, g = [1.9808(2), 1.9778(2), 1.9739(2)]. The center has been compared with the known ion pair Cr3+( M1)-Al3+ (Bershov et al. in Phys Chem Miner 9:95-101, 1983), for which the refined EPR data have been obtained. Based on these data, the known sharp M1″ line at 13,967 cm-1 (with the splitting of 1.8 cm-1), observed in low-temperature luminescence spectra of chromium-doped forsterite crystals (Glynn et al. in J Lumin 48, 49:541-544, 1991), has been ascribed to the Cr3+( M1)-Al3+ center. It has been found that the concentration of the new center increases from 0 up to 4.4 × 1015 mg-1, whereas that of the Cr3+( M1) and Cr3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2) centers quickly decreases from 7.4 × 1015 mg-1 down to 3 × 1015 mg-1 and from 2.7 × 1015 mg-1 down to 0.5 × 1015 mg-1, i.e., by a factor of 2.5 and 5.4, respectively, with an increase of the Sc content from 0 up to 0.22 wt % (at the same Cr content 0.25 wt %) in the melt. When the Sc content exceeds that of Cr, the concentration of the new center decreases most likely due to the formation of the Sc3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2)-Sc3+ complex instead of the Cr3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2)-Sc3+ center. The formation of such ordered neutral complex is in agreement with the experimental results, concerning the incorporation of Sc

  12. Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co-Ni nanoferrites

    NASA Astrophysics Data System (ADS)

    Pervaiz, Erum; Gul, I. H.

    2013-10-01

    Aluminum and chromium substituted Co-Ni spinel nanoferrites were prepared by sol-gel auto combustion method. Structural parameters along with electrical and magnetic properties have been investigated in the present work. Crystallite sizes of nano ferrite estimated from the peak (311) lies in the range of 13-21 nm ±2 nm and compared with crystallite sizes calculated from Williamsons-Hall plots. DC electrical resistivity variations due to the concentration of aluminum and chromium in the host ferrite have been measured from 368 K to 573 K. Increase in the room temperature DC electrical resistivity was observed up to a concentration x=0.2 and then decreases for x >0.2. Dielectric parameters (real and imaginary part of complex permittivity, dielectric loss tangent) were studied as a function of frequency (20 Hz-5 MHz) and a decrease in the dielectric parameters was observed due to substitution of nickel, aluminum and chromium ions in cobalt nanoferrites. AC conductivity, complex impedance and complex electrical modulus were studied as a function of frequency for the conduction and relaxation mechanisms in the present ferrite system. Saturation magnetization, coercivity, canting angles and magneto crystalline anisotropy variations with composition were observed and presented for the present ferrites under an applied magnetic field of 10 kOe at room temperature. It was found that both magnetization and coercivity decreases with increase in the concentration of aluminum and chromium along with a decrease in the anisotropy parameters. High DC resistivity with low dielectric parameters of the present nanoferrites make them suitable for high frequency and electromagnetic wave absorbing devices. High purity mixed Co-Ni-Al-Cr nanoferrites have been prepared by sol-gel auto combustion method. DC electrical resistivity increases due to substitution of Al3+ and Cr3+. Complex permittivity decrease for Co-Ni-Al-Cr nanoferrites. Detailed AC response analysis has been presented for

  13. Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuochih

    2018-02-01

    Calcium treatment of Fe-13 pct Cr stainless steel, with inclusion modification as its main purpose, was evaluated on a laboratory scale. The stability diagram of Ca-Al was obtained using the FactSage software and could be divided into three parts based on the [Al] content: the ultra-low-Al region, the low-Al region, and the medium-high-Al region. Each of these regions required different amounts of calcium for inclusion modification. The ferrosilicon deoxidation product could be modified into low melting temperature inclusions by a CaO-SiO2 top slag in the ultra-low-Al region ([Al] content less than 40 ppm). Calcium treatment was necessary to modify the ferrosilicon deoxidation product into low melting temperature inclusions in the low-Al region ([Al] content from 40 to 100 ppm) for the CaO-SiO2-Al2O3 top slag. Calcium addition has a "liquid window" where adding calcium can accelerate inclusion modification. Adding calcium for 15 and 30 minutes resulted in complete modification times of 45 and 60 minutes, respectively, which indicates that early calcium treatment can produce plastic inclusions sooner. The relationship between the steel and inclusion content was determined by fitting the experimental data in the low-Al region. An appropriate range of T.Ca/T.O (total calcium content/total oxygen content) for inclusion modification is 0.99 to 1.44.

  14. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.; ...

    2017-01-07

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  15. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  16. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications.

    PubMed

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-06-01

    12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.

  17. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications

    PubMed Central

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-01-01

    12CaO·7Al2O3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al2O3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al2O3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al2O3 were constructed and exhibited reasonable durability. PMID:27877401

  18. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    NASA Astrophysics Data System (ADS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-03-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  19. Effects of Ca, Cu, Al and La on pectin gel strength: implications for plant cell walls.

    PubMed

    McKenna, Brigid A; Nicholson, Timothy M; Wehr, J Bernhard; Menzies, Neal W

    2010-06-16

    Rheology of Ca-pectate gels is widely studied, but the behaviour of pectate gels formed by Cu, Al and La is largely unknown. It is well known that gel strength increases with increasing Ca concentration, and it is hypothesised that this would also be the case for other cations. Pectins are a critical component of plant cell walls, imparting various physicochemical properties. Furthermore, the mechanism of metal toxicity in plants is hypothesised to be, in the short term, related to metal interactions with cell wall pectin. This study investigated the influence of Ca, Cu, Al and La ion concentrations at pH 4 on the storage modulus as a function of frequency for metal-pectin gels prepared from pectin (1%) with a degree of esterification of 30%. Gels were formed in situ over 6d in metal chloride solution adjusted daily to pH 4. Cation concentration was varied to develop a relationship between gel strength and cation concentration. At similar levels of cation saturation, gel strength increased in the order of La<Ca < or =AlCa gels being the most swollen. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Energy transfer efficiency from Cr(3+) to Nd(3+) in solar-pumped laser using transparent Nd/Cr:Y(3)Al(5)O(12) ceramics.

    PubMed

    Hasegawa, Kazuo; Ichikawa, Tadashi; Mizuno, Shintaro; Takeda, Yasuhiko; Ito, Hiroshi; Ikesue, Akio; Motohiro, Tomoyoshi; Yamaga, Mitsuo

    2015-06-01

    We report energy transfer efficiency from Cr3+ to Nd3+ in Nd (1.0 at.%)/Cr (0.4 at.%) co-doped Y3Al5O12 (YAG) transparent ceramics in the laser oscillation states. The laser oscillation has performed using two pumping lasers operating at 808 nm and 561 nm; the former pumps Nd3+ directly to create the 1064 nm laser oscillation, whereas the latter assists the performance via Cr3+ absorption and sequential energy transfer to Nd3+. From the laser output power properties and laser mode analysis, the energy transfer efficiency was determined to be around 65%, which is close to that obtained from the spontaneous Nd3+ emission.

  1. Understanding the Relationship Between Structure and Thermophysical Properties of CaO-SiO2-MgO-Al2O3 Molten Slags

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Wang, Hao; Zhang, Zuotai

    2018-04-01

    In the present work, the relationship between the microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The Raman spectra quantitatively proved that with increasing Al2O3 content, the concentrations of the symmetric units of Q 0(Si) and Q 2(Si) decreased, while those of the asymmetric units of Q 1(Si) and Q 3(Si) increased; consequently, the degree of polymerization of the networks increased, which resulted in an increase in slag viscosity. The 27Al MAS-NMR spectra demonstrated that three structural units of Al atoms, namely, AlO4, AlO5, and AlO6, mainly existed in the networks. With increasing Al2O3 content, the concentration of AlO4 slightly decreased, while those of AlO5 and AlO6 increased; overall, Al2O3 acted as a network former in the present system. The increasing Al2O3 content led to additional AlO6 and Si-NBO-Ca-NBO-Al frameworks, which replaced Si-NBO-Ca-NBO-Si in the networks (NBO: non-bridging oxygen) and induced a change in the primarily precipitated crystalline phase from Ca2MgSi2O7 and Ca2Al2SiO7 to MgAlO4.

  2. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew

    2012-02-01

    We have prepared the complete delafossite solid solution between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The crystal structure and magnetism were studied with powder x-ray diffraction and magnetometry. The unit cell parameters follow the V'egard law and μeff is equal to the Cr^3+ spin-only S = 3/2 value. θCW is negative and its magnitude increases with Cr substitution. For dilute Cr compositions, JBB was estimated by mean-field theory to be 3.0,eV. Despite the sizable θCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceeded by glassy behavior. For all samples, the 5,isothermal magnetization is sub-Brillouin and does not saturate in fields up to 5,. A scaled inverse susceptibility plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its N'eel temperature. Additionally, the Al-substituted samples exhibit uncompensated short-range behavior and x = 0.75 shows glassy characteristics. It is suggested that reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as do chemical disorder and dilution of magnetic exchange.

  3. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Ravi; Kaur, Davinder, E-mail: dkaurfph@iitr.ac.in

    2016-05-06

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with differentmore » deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.« less

  4. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panda, Padmalochan; Ramaseshan, R.; Krishna, Nanda Gopala; Dash, S.

    2016-05-01

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N2 concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (HIT) of around 28.2 GPa for a nitrogen concentration of 25%.

  5. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Wuxi; Zhou, Kesong; Li, Yuxi; Deng, Chunming; Zeng, Keli

    2017-09-01

    A novel Cr3C2-WC-NiCoCrMo and commercial Cr3C2-NiCr thermal spray-grade powders with particle size of -45 + 15 μm were prepared by an agglomeration and sintering process. Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr coatings were deposited by high velocity oxygen fuel (HVOF) spraying. The fundamental properties of both coatings were evaluated and friction wear test against Al2O3 counterbodies of both coatings at high temperatures (450 °C, 550 °C, 650 °C) were carried out ball-on-disk high temperature tribometer. All specimens were characterized by optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and 3D non-contact surface mapping profiler. The results have shown that the Cr3C2-WC-NiCoCrMo coating exhibited lower porosity, higher micro-hardness compared to the Cr3C2-NiCr coating. The Cr3C2-WC-NiCoCrMo coating also exhibited better wear resistance and higher friction coefficient compared to the Cr3C2-NiCr coating when sliding against the Al2O3 counterpart. Wear rates of both coatings increased with raising temperature. Both coatings experienced abrasive wear; hard phase particles (WC and Cr3C2) with different sizes, distributed in the matrix phase, will effectively improve the resistance against wear at high temperatures.

  6. Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng

    2018-03-01

    To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.

  7. Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Sakita, Shogo; Kakeda, Mitsunori

    2012-10-01

    This study investigated the use of a nanometallic Ca and CaO dispersion mixture for the immobilization of heavy metals (As, Cd, Cr and Pb) in contaminated soil. Simple grinding achieved 85-90% heavy metal immobilization, but it can be enhanced further to 98-100% by addition of a nanometallic Ca/CaO dispersion mixture produced by grinding. Observations using SEM-EDS elemental maps and semi-quantitative analysis showed that the amounts of As, Cd, Cr, and Pb measurable on the soil particle surface decrease after nanometallic Ca/CaO treatment. The leachable heavy metal concentrations were reduced after nanometallic Ca/CaO treatment to concentrations lower than the Japan soil elution standard regulatory threshold: <0.01 mg L(-1) for As, Cd, and Pb; and 0.05 mg L(-1) for Cr. Effects of soil moisture and pH on heavy metal immobilization were not strongly influenced. The most probable mechanisms for the enhancement of heavy metal immobilization capacity with nanometallic Ca/CaO treatment might be due to adsorption and entrapment of heavy metals into newly formed aggregates, thereby prompting aggregation of soil particles and enclosure/binding with Ca/CaO-associated immobile salts. Results suggest that the nanometallic Ca/CaO mixture is suitable for use in immobilization of heavy-metal-contaminated soil under normal moisture conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Interfaces in Oxides Formed on NiAlCr Doped with Y, Hf, Ti, and B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boll, Torben; Unocic, Kinga A.; Pint, Bruce A.

    Abstract This study applies atom probe tomography (APT) to analyze the oxide scales formed on model NiAlCr alloys doped with Hf, Y, Ti, and B. Due to its ability to measure small amounts of alloying elements in the oxide matrix and its ability to quantify segregation, t he technique offers a possibility for detailed studies of the dopant’s fate during high-temperature oxidation. Three model NiAlCr alloys with different additions of Hf, Y, Ti, and B were prepared and oxidized in O 2at 1,100°C for 100 h. All specimens showed an outer region consisting of different spinel oxides with relativelymore » small grains and the protective Al 2O 3-oxide layer below. APT analyses focused mainly on this protective oxide layer. In all the investigated samples segregation of both Hf and Y to the oxide grain boundaries was observed and quantified. Neither B nor Ti were observed in the alumina grains or at the analyzed interfaces. The processes of formation of oxide scales and segregation of the alloying elements are discussed. The experimental challenges of the oxide analyses by APT are also addressed.« less

  9. Interfaces in Oxides Formed on NiAlCr Doped with Y, Hf, Ti, and B

    DOE PAGES

    Boll, Torben; Unocic, Kinga A.; Pint, Bruce A.; ...

    2017-03-20

    Abstract This study applies atom probe tomography (APT) to analyze the oxide scales formed on model NiAlCr alloys doped with Hf, Y, Ti, and B. Due to its ability to measure small amounts of alloying elements in the oxide matrix and its ability to quantify segregation, t he technique offers a possibility for detailed studies of the dopant’s fate during high-temperature oxidation. Three model NiAlCr alloys with different additions of Hf, Y, Ti, and B were prepared and oxidized in O 2at 1,100°C for 100 h. All specimens showed an outer region consisting of different spinel oxides with relativelymore » small grains and the protective Al 2O 3-oxide layer below. APT analyses focused mainly on this protective oxide layer. In all the investigated samples segregation of both Hf and Y to the oxide grain boundaries was observed and quantified. Neither B nor Ti were observed in the alumina grains or at the analyzed interfaces. The processes of formation of oxide scales and segregation of the alloying elements are discussed. The experimental challenges of the oxide analyses by APT are also addressed.« less

  10. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  11. Interdiffusion of NaSi—CaAl in peristerite

    NASA Astrophysics Data System (ADS)

    Yund, Richard A.

    1986-01-01

    The ‘average’ interdiffusion coefficient (bar D) for NaSi—CaAl exchange in plagioclase for the interval from An0 to An26 was estimated from experimentally determined homogenization times for peristerite exsolution lamellae. The average spacing between adjacent (unlike) lamellae is 554±77 Å. Dry heating in air at 1,100°C for 98 days produced no change in the exsolution microstructure; thus bar D(dry)<10-17 cm2/s. This limit is consistent with the recently reported ‘average’ bar D(dry) values for the Huttenlocher interval (An70 90) at this temperature. At 1.5 GPa with about 0.2 weight percent water added the ‘average’ diffusion coefficient from 1,100°C to 900°C is given by: bar D(wet)=18{-15/+108}(cm2/s) exp (-97±5 (kcal/mol)/RT), where R is the gas constant, and T is °K. This bar D(wet) at 1,100°C is more than three orders of magnitude greater than bar D(dry) for Na- and Ca-rich plagioclases.

  12. Letter Report Documenting Progress of Second Generation ATF FeCrAl Alloy Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Y.; Yang, Y.; Field, K. G.

    2014-06-10

    Development of the 2nd generation ATF FeCrAl alloy has been initiated, and a candidate alloy was selected for trial tube fabrication through hot-extrusion and gun-drilling processes. Four alloys based on Fe-13Cr-4.5Al-0.15Y in weight percent were newly cast with minor alloying additions of Mo, Si, Nb, and C to promote solid-solution and second-phase precipitate strengthening. The alloy compositions were selected with guidance from computational thermodynamic tools. The lab-scale heats of ~ 600g were arc-melted and drop-cast, homogenized, hot-forged and -rolled, and then annealed producing plate shape samples. An alloy with Mo and Nb additions (C35MN) processed at 800°C exhibits very finemore » sub-grain structure with the sub-grain size of 1-3μm which exhibited more than 25% better yield and tensile strengths together with decent ductility compared to the other FeCrAl alloys at room temperature. It was found that the Nb addition was key to improving thermal stability of the fine sub-grain structure. Optimally, grains of less than 30 microns are desired, with grains up to and order of magnitude in desired produced through Nb addition. Scale-up effort of the C35MN alloy was made in collaboration with a commercial cast company who has a capability of vacuum induction melting. A 39lb columnar ingot with ~81mm diameter and ~305mm height (with hot-top) was commercially cast, homogenized, hot-extruded, and annealed providing 10mm-diameter bar-shape samples with the fine sub-grain structure. This commercial heat proved consistent with materials produced at ORNL at the lab-scale. Tubes and end caps were machined from the bar sample and provided to another work package for the ATF-1 irradiation campaign in the milestone M3FT-14OR0202251.« less

  13. Chromium substitution in mullite type bismuth aluminate: Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0≤x≤2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Tapas, E-mail: debnath@du.ac.bd; Ullah, Ahamed; Rüscher, Claus H.

    2014-12-15

    Nominal compositions Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0.0≤x≤2.0 (Δx=0.2) were prepared using appropriate amounts of nitrates dissolved in glycerine and heated at 800 °C for 24 h as we previously used for the preparation of solid solution series Bi{sub 2}M{sub x}/M′{sub 4−x}O{sub 9} (M/M′=Fe/Al, Ga/Al and Fe/Ga). The samples were characterized using XRD, FTIR and optical microscopic techniques. Analyses of XRD data show mullite type single phase can be prepared up to x=1.2. The lattice parameters (a, b and c) increases with increasing Cr content. Further increase in x (i.e., x≥1.4) show the presence of some additional phases indicatingmore » a limiting value for Cr doping is in the range of 1.2≤x<1.4. The effect of Cr incorporation could also be observed in the infrared absorption spectra via systematic hard mode shifts of certain lattice modes, e.g. the Bi–O related vibration changes from 96 cm{sup −1} to 93 cm{sup −1} with increasing x up to 1.2 and certain intensity changes together with shift in peak positions. Interestingly, the absence of any splitting and shift of the high energy IR absorption peak at 821 cm{sup −1} as assigned to the characteristic tetrahedral type dimer, Al{sub 2}O{sub 7}, indicate that the Cr thus partially substitutes only the octahedrally coordinated Al. This is confirmed by Rietveld structure refinements, too. - Graphical abstract: Structural model of Cr doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9}. - Highlights: • Chromium doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with mullite type structure are synthesized. • The samples are characterized by XRD and FTIR techniques. • Cr can replace only certain amount of octahedrally coordinated Al in Bi{sub 2}Al{sub 4}O{sub 9} under present experimental conditions.« less

  14. Shear Punch Testing on ATR Irradiated MA956 FeCrAl Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Tarik A.; Quintana, Matthew Estevan; Romero, Tobias J.

    2017-06-13

    The shear punch testing of irradiated and control MA956 (FeCrAl) Alloy from the NSUF-ATR-UCSB irradiation is presented. This is the first data taken on a new shear punch fixture design to test three 1.5mm punches from each 8mm x 0.5mm Disc Multipurpose Coupon (DMC). Samples were irradiated to 6.1dpa at a temperature of 315°C and 6.2 dpa at 400°C.

  15. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  16. Optical properties of white organic light-emitting devices fabricated utilizing a mixed CaAl12O19:Mn4+ and Y3Al5O12:Ce3+ color conversion layer.

    PubMed

    Jeong, H S; Kim, S H; Lee, K S; Jeong, J M; Yoo, T W; Kwon, M S; Yoo, K H; Kim, T W

    2013-06-01

    White organic light-emitting devices (OLEDs) were fabricated by combining a blue OLED with a color conversion layer made of mixed Y3Al5O12:Ce3+ green and Ca2AlO19:Mn4+ red phosphors. The X-ray diffraction patterns showed that Ce3+ ions in the Y3Al5O12:Ce3+ phosphors completely substituted for the Y3+ ions and the Mn4+ ions in the CaAl12O19:Mn4+ phosphors completely substituted for the Ca2+ ions. Electroluminescence spectra at 11 V for the OLEDs fabricated utilizing a color conversion layer showed that the Commission Internationale de l'Eclairage coordinates for the Y3Al5O12:Ce3+ and CaAl12O19:Mn4+ phosphors mixed at the ratio of 1:5 and 1:10 were (0.31, 0.34) and (0.32, 0.37), respectively, indicative of a good white color.

  17. Forsterite-Anorthite-CaTschermak-Enstatite (FACE): A geobarometer for plagioclase-bearing peridotites

    NASA Astrophysics Data System (ADS)

    Fumagalli, P.; Borghini, G.; Rampone, E.; Poli, S.

    2017-12-01

    Plagioclase peridotites can be the result of either metamorphic recrystallization, or diffuse melt-rock interactions. Although they represent an important geodynamic marker of shallow mantle exhumation, the accurate estimation of their barometric evolution is poorly constrained. Systematic correlations between pressure and composition of coexisting minerals within the plagioclase stability field have been reported in previous experimental studies. In this experimental study we present new constraints on the stability of plagioclase as a function of different Na2O/CaO bulk ratios, and we present a new geobarometer for mantle rocks. Experiments have been performed in a single-stage piston cylinder at 5-10 kbar, 1050-1150 °C at nominally anhydrous conditions using seeded gels of peridotite compositions (Na2O/CaO = 0.08-0.13; XCr = Cr/(Cr + Al) = 0.07-0.10). As expected, the increase of the bulk Na2O/CaO extends the plagioclase stability to higher pressure; in the Na2O enriched fertile lherzolite the plagioclase-spinel transition occurs between 9 and 10 kbar, 1100 °C; in the fertile lherzolite with Na2O/CaO = 0.08, it occurs between 8 and 9 kbar, 1100 °C. The present data together with previous experimental results provide a consistent database, covering a wide range of P-T conditions (3-9 kbar, 1000-1150 °C) and variable bulk compositions to be used to define and calibrate a geobarometer for plagioclase-bearing mantle rocks. We have empirically calibrated by least squares regression analysis of experimental data combined with MonteCarlo simulation the following pressure sensitive equilibrium: Mg2SiO4 Ol + CaAl2Si2O8 Pl = CaAl2SiO6 Cpx + Mg2Si2O6 OpxForsterite Anorthite Ca-Tschermak Enstatite We derive the following equation: P = 7.2 (±2.9) + 0.0078 (±0.0021) T + 0.0022 (±0.0001) T lnK R2= 0.93 where P is expressed in kbar and T in kelvin. K is the equilibrium constant K = aCa-Ts*aen / aan *afo, where aCaTs, aen, aan and afo are the activities of Ca-Tschermak in

  18. Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty

    2016-07-01

    (1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.

  19. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae.

    PubMed

    Dalai, Swayamprava; Pakrashi, Sunandan; Bhuvaneshwari, M; Iswarya, V; Chandrasekaran, N; Mukherjee, Amitava

    2014-01-01

    The reactivity and toxicity of the soluble toxicants in the presence of the engineered nanomaterials is not well explored. In this study, the probable effects of TiO2 and Al2O3 nanoparticles (n-TiO2, n-Al2O3) on the toxicity of Cr(VI) were assessed with the dominant freshwater algae, Scenedesmus obliquus, in a low range of exposure concentrations (0.05, 0.5 and 1μg/mL). In the presence of 0.05μg/mL n-TiO2, the toxicity of Cr(VI) decreased considerably, which was presumably due to the Cr(VI) adsorption on the nanoparticle surface leading to its aggregation and precipitation. The elevated n-TiO2 concentrations (0.5 and 1μg/mL) did not significantly influence Cr(VI) bio-availability, and a dose dependent toxicity of Cr(VI) was observed. On the other hand, n-Al2O3 did not have any significant effect on the Cr(VI) toxicity. The microscopic observations presented additional information on the morphological changes of the algal cells in the presence of the binary toxicants. The generation of reactive oxygen species (ROS) suggested contribution of oxidative stress on toxicity and LDH release confirmed membrane permeability of algal cells upon stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Synthesis and effect of Ce and Mn co-doping on photoluminescence characteristics of Ca6AlP5O20:Eu novel phosphors.

    PubMed

    Shinde, K N; Dhoble, S J

    2013-01-01

    A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co-doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg-free excitation, Ca6AlP5O20:Eu exhibited Eu(2+) (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce(3+) emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co-activators of Ce(3+) and Mn(2+) ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce(3+) → Eu(2+) and Eu(2+) → Mn(2+), respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co-doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Padmalochan; Ramaseshan, R., E-mail: seshan@igcar.gov.in; Dash, S.

    2016-05-23

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.

  2. The Influence of Tungsten on the Chemical Composition of a Temporally Evolving Nanostructure of a Model Ni-Al-Cr Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Isheim, Dieter; Noebe, Ronald D.; Jacobson, Nathan S.; Seidman, David N.

    2004-01-01

    The influence of W on the temporal evolution of gamma' precipitation toward equilibrium in a model Ni-Al-Cr alloy is investigated by three-dimensional atom-probe (3DAP) microscopy and transmission electron microscopy (TEM). We report on the alloys Ni-10 Al-8.5 Cr (at.%) and Ni-10 Al-8.5 Cr-2 W (at.%), which were aged isothermally in the gamma + gamma' two-phase field at 1073 K, for times ranging from 0.25 to 264 h. Spheroidal-shaped gamma' precipitates, 5-15 nm diameter, form during quenching from above the solvus temperature in both alloys at a high number density (approx. 10(exp 23/cu m). As gamma' precipitates grow with aging at 1073 K, a transition from spheriodal- to cuboidal-shaped precipitates is observed in both alloys. The elemental partitioning and spatially resolved concentration profiles across the gamma' precipitates are obtained as a function of aging time from three-dimensional atom-by-atom reconstructions. Proximity histogram concentration profiles of the quaternary alloy demonstrate that W concentration gradients exist in gamma' precipitates in the as-quenched and 0.25-h aging states, which disappear after 1 h of aging. The diffusion coefficient of W in gamma' is estimated to be 6.2 x 10(exp -20) sq m/s at 1073 K. The W addition decreases the coarsening rate constant, and leads to stronger partitioning of Al to gamma' and Cr to gamma.

  3. Thermoelectric properties of the Ca(5)Al(2-x)In(x)Sb(6) solid solution.

    PubMed

    Zevalkink, Alex; Swallow, Jessica; Ohno, Saneyuki; Aydemir, Umut; Bux, Sabah; Snyder, G Jeffrey

    2014-11-14

    Zintl phases are attractive for thermoelectric applications due to their complex structures and bonding environments. The Zintl compounds Ca(5)Al(2)In(x)Sb(6)and Ca(5)Al(2)In(x)Sb(6) have both been shown to have promising thermoelectric properties, with zT values of 0.6 and 0.7, respectively, when doped to control the carrier concentration. Alloying can often be used to further improve thermoelectric materials in cases when the decrease in lattice thermal conductivity outweighs reductions to the electronic mobility. Here we present the high temperature thermoelectric properties of the Ca(5)Al(2-x)In(x)Sb(6)solid solution. Undoped and optimally Zn-doped samples were investigated. X-ray diffraction confirms that a full solid solution exists between the Al and In end-members. We find that the Al : In ratio does not greatly influence the carrier concentration or Seebeck effect. The primary effect of alloying is thus increased scattering of both charge carriers and phonons, leading to significantly reduced electronic mobility and lattice thermal conductivity at room temperature. Ultimately, the figure of merit is unaffected by alloying in this system, due to the competing effects of reduced mobility and lattice thermal conductivity.

  4. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    PubMed Central

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839

  5. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology

    PubMed Central

    Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo

    2018-01-01

    Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value (R2 = 0.9807) and low p value (<0.0001) of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils. PMID:29702570

  6. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology.

    PubMed

    Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo

    2018-04-27

    Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value ( R ² = 0.9807) and low p value (<0.0001) of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils.

  7. New series of triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotova, Irina Yu.; Buryat State University, Smolin St. 24a, Ulan-Ude 670000, Buryat Republic; Solodovnikov, Sergey F.

    Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized and single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown. In their structures, the MoO{sub 4} tetrahedra, pairs and trimers of edge-shared (Mg, R)O{sub 6} octahedra are connected by common vertices to form a 3D framework. Large framework cavities involve Ag{sup +} cations disordered on three nearby positions with CN=3+1 or 4+1. Alternating (Mg, R)O{sub 6} octahedra and MoO{sub 4} tetrahedra in the framework form quadrangular windows penetrable for Ag{sup +} at elevated temperatures.more » Above 653–673 K, the newly obtained molybdates demonstrate abrupt reduction of the activation energy to 0.4–0.6 eV. At 773 K, AgMg{sub 3}Al(MoO{sub 4}){sub 5} shows electric conductivity 2.5·10{sup −2} S/cm and E{sub a}=0.39 eV compatible with characteristics of the best ionic conductors of the NASICON type. - Graphical abstract: Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized, AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were structurally characterized, ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} were measured. Display Omitted - Highlights: • Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized. • Single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown and their crystal structures were determined. • Disordering Ag{sup +} ions and penetrable framework structures of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) suggest 2D-character of silver-ion mobility. • Measured ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} are compatible with characteristics of the best ionic conductors of the NASICON type.« less

  8. Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Zhenke; Zhang, F; Miller, Michael K

    2012-01-01

    NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model inmore » the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.« less

  9. Calcium and titanium isotopes in refractory inclusions from CM, CO, and CR chondrites

    NASA Astrophysics Data System (ADS)

    Kööp, Levke; Davis, Andrew M.; Krot, Alexander N.; Nagashima, Kazuhide; Simon, Steven B.

    2018-05-01

    Previous studies have shown that CV and CM chondrites incorporated Ca, Al-rich inclusions (CAIs) with different isotopic characteristics, which may represent different snapshots in the isotopic evolution of the early Solar System. To better understand how the isotopic characteristics of CAIs vary between different chondrite groups, we have studied calcium and titanium isotopes in CAIs from CM, CO, and CR chondrites. We show that all three chondrite groups contain CAIs with large anomalies in 48Ca and/or 50Ti (10s of ‰ or 100s of ε-units) as well as CAIs with no anomalies resolved beyond measurement uncertainties. Isotopically, the anomalous CO and CR chondrite CAIs resemble the platy hibonite crystals (PLACs) from CM chondrites, but they are more mineralogically complex. The new data are consistent with the well-established mutual exclusivity relationship between incorporation of 26Al and the presence of large anomalies in 48Ca and 50Ti. The two highly anomalous CO chondrite CAIs have correlated anomalies in 46Ti and 50Ti, while most other highly anomalous CAIs do not. This result could indicate that the reservoir with coupled 46Ti and 50Ti that was sampled by bulk meteorites and CV chondrite CAIs already existed before arrival and/or homogeneous distribution of 26Al in the protoplanetary disk. Among the studied CM chondrite CAIs are ten spinel-hibonite inclusions (SHIBs) with known oxygen isotopic compositions. Our results show that these objects sampled a reservoir that was well-mixed in oxygen, calcium, and titanium isotopes. We further show that SHIBs tend to be slightly enriched in the heavy calcium isotopes, suggesting that their formation history was different from CV chondrite CAIs.

  10. Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    The oxidation of Nb–silicide-based alloys is improved with Al, Cr, Ge or Sn addition(s). Depending on addition(s) and its(their) concentration(s), alloyed C14-AB2 Laves and A15-A3X phases can be stable in the microstructures of the alloys. In both phases, A is the transition metal(s), and B and X respectively can be Cr, Al, Ge, Si or Sn, and Al, Ge, Si or Sn. The alloying, creep and hardness of these phases were studied using the composition weighted differences in electronegativity (∆χ), average valence electron concentrations (VEC) and atomic sizes. For the Laves phase (i) the VEC and ∆χ were in the ranges 4.976 < VEC < 5.358 and −0.503 < ∆χ < −0.107; (ii) the concentration of B (=Al + Cr + Ge + Si + Sn) varied from 50.9 to 64.5 at %; and (iii) the Cr concentration was in the range of 35.8 < Cr < 51.6 at %. Maps of ∆χ versus Cr, ∆χ versus VEC, and VEC versus atomic size separated the alloying behaviours of the elements. Compared with unalloyed NbCr2, the VEC decreased and ∆χ increased in Nb(Cr,Si)2, and the changes in both parameters increased when Nb was substituted by Ti, and Cr by Si and Al, or Si and Ge, or Si and Sn. For the A15 phase (i) the VEC and ∆χ were in the ranges 4.38 < VEC < 4.89 and 0.857 < ∆χ < 1.04, with no VEC values between 4.63 and 4.72 and (ii) the concentration of X (=Al + Ge + Si + Sn) varied from 16.3 to 22.7 at %. The VEC versus ∆χ map separated the alloying behaviours of elements. The hardness of A15-Nb3X was correlated with the parameters ∆χ and VEC. The hardness increased with increases in ∆χ and VEC. Compared with Nb3Sn, the ∆χ and hardness of Nb3(Si,Sn) increased. The substitution of Nb by Cr had the same effect on ∆χ and hardness as Hf or Ti. The ∆χ and hardness increased with Ti concentration. The addition of Al in Nb3(Si,Sn,Al) decreased the ∆χ and increased the hardness. When Ti and Hf, or Ti, Hf and Cr, were simultaneously present with Al, the ∆χ was decreased and the

  11. Fundamental study of an industrial reactive HPPMS (Cr,Al)N process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Brögelmann, T.; Kruppe, N. C.; Engels, M.; von Keudell, A.; Hecimovic, A.; Ludwig, A.; Grochla, D.; Banko, L.

    2017-07-01

    In this work, a fundamental investigation of an industrial (Cr,Al)N reactive high power pulsed magnetron sputtering (HPPMS) process is presented. The results will be used to improve the coating development for the addressed application, which is the tool coating for plastics processing industry. Substrate-oriented plasma diagnostics and deposition of the (Cr,Al)N coatings were performed for a variation of the HPPMS pulse frequency with values from f = 300 Hz to f = 2000 Hz at constant average power P = 2.5 kW and pulse length ton = 40 μs. The plasma was investigated using an oscilloscope, an intensified charge coupled device camera, phase-resolved optical emission spectroscopy, and an energy-dispersive mass spectrometer. The coating properties were determined by means of scanning electron microscopy, glow discharge optical emission spectroscopy, cantilever stress sensors, nanoindentation, and synchrotron X-ray diffraction. Regarding the plasma properties, it was found that the average energy within the plasma is nearly constant for the frequency variation. In contrast, the metal to gas ion flux ratio is changed from JM/JG = 0.51 to JM/JG = 0.10 for increasing frequency. Regarding the coating properties, a structure refinement as well as lower residual stresses, higher universal hardness, and a changing crystal orientation from (111) to (200) were observed at higher frequencies. By correlating the plasma and coating properties, it can be concluded that the change in the gas ion to metal ion flux ratio results in a competitive crystal growth of the film, which results in changing coating properties.

  12. Estimation of excess energies and activity coefficients for the penternary Ni-Cr-Co-Al-Mo system and its subsystems

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Arslan, H.; Dogan, T.

    2015-06-01

    Using different prediction methods, such as the General Solution Model of Kohler and Muggianu, the excess energy and activities of molybdenum for the sections of the phase diagram for the penternary Ni-Cr-Co-Al-Mo system with mole ratios xNi/ xMo = 1, xCr/ xMo = 1, xCo/ xMo = 1, and xAl/ xMo = r = 0.5 and 1, were thermodynamically investigated at a temperature of 2000 K, whereas the excess energy and activities of Bi for the section corresponding to the ternary Bi-Ga-Sb system with mole ratio xGa/ xSb = 1/9 were thermodynamically investigated at a temperature of 1073 K. In the case of r = 0.5 and 1 in the alloys Ni-Cr-Co-Al-Mo, a positive deviation in the activity coefficient was revealed, as molybdenum content increased. Moreover, in the calculations performed in Chou's GSM model, the obtained values for excess Gibbs energies are negative in the whole concentration range of bismuth at 1073 K and exhibit the minimum of about -2.2 kJ/mol at the mole ratio xGa/ xSb = 1/9 in the alloy Bi-Ga-Sb.

  13. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensilemore » specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.« less

  14. Hot corrosion of four superalloys - HA-188, S-57, IN-617, and TD-NiCrAl

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    Cyclic oxidation and hot corrosion tests of two cobalt-base and two nickel-base alloys are reported. The alloys were exposed to maximum temperatures of 900 and 1000 C in a Mach 0.3 burner rig whose flame was doped with various concentrations of sea salt and sodium sulfate for hot corrosion tests. The test data were subjected to a regression analysis for the development of model equations relating corrosion to temperature and for the effects of salt concentration and composition on corrosion. The corrosion resistance varied with temperature, sea salt concentration, and salt composition, concluding that the S-57 cobalt-base alloy was the most hot corrosion-resistant alloy, and the TD-NiCrAl nickel-base alloy was the least resistant. However, under straight oxidation conditions, the TD-NiCrAl was most resistant, while S-57 was the least resistant alloy.

  15. Influence of oxidation temperature on the oxide scale formation of NiCoCrAl coatings

    NASA Astrophysics Data System (ADS)

    Sugiarti, E.; Zaini, K. A.; Sundawa, R.; Wang, Y.; Ohnuki, S.; Hayashi, S.

    2017-04-01

    Intermetalic coatings of NiCoCrAl have been successfully developed on low carbon steel substrate to improve oxidation resistance in extreme environments. The influence of oxidation temperature on the oxide scale formation was studied in the temperature range of 600-1000 °C. The measurements were made in air under isothermal oxidation test for 100 h. The surface morphology showed that a cauliflower like structure developed entire the oxide scale of sample oxidized at 800 °C and 1000 °C, while partly distributed on the surface of sample oxidized at 600 °C. The XRD analysis identified Cr2O3 phase predominantly formed on the oxidized sample at 600 °C and meta-stable Al2O3 with several polymorphs crystalline structures: η, δ, θ, κ, and α-Al2O3 at relatively high temperatures, i.e. 800 °C and 1000 °C. A Cross-sectional microstructure showed that complex and porous structures formed on the top surface of 600 °C and 1000 °C samples. In contrast, a very thin oxide scale formed on 800 °C oxidized samples and it appeared to act as a diffusion barrier of oxygen to diffuse inward, hence could increase in the service life of carbon steel substrate.

  16. 12CaO-7Al2O3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Williams, John D. (Inventor); Rand, Lauren P. (Inventor); Martinez, Rafael A. (Inventor)

    2017-01-01

    The use of the electride form of 12CaO-7Al2O3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  17. Crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Xu, X. D.; Xia, C. T.; Zheng, L. H.; Aka, G.; Yu, H. H.; Sai, Q. L.; Guo, X. Y.; Zhu, L.

    2016-04-01

    In this paper, the crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal were reported. The segregation coefficient of Yb3+ ions was calculated to be 0.47. The cell parameters were determined to be a  =  b  =  0.3658 nm, c  =  1.1985 nm. The peak absorption cross-section was calculated to be 2.65  ×  10-20 cm2 at 979 nm and the peak stimulated emission cross-section was 2.23  ×  10-20 cm2 at 980 nm for the π polarization. The continuous-wave (CW) laser operations of uncoated Yb:CaGdAlO4 crystals with 5  ×  5  ×  3 mm3 in size were demonstrated. A maximum output power of 1.6 W at 1048 nm was obtained with a slope efficiency of 28%. The results show that Yb:CaGdAlO4 crystal is a promising laser medium.

  18. A deformation-processed Al-matrix/Ca-nanofilamentary composite with low density, high strength, and high conductivity

    DOE PAGES

    Tian, Liang

    2017-03-06

    Light, strong materials with high conductivity are desired for many applications such as power transmission conductors, fly-by-wire systems, and downhole power feeds. However, it is difficult to obtain both high strength and high conductivity simultaneously in a material. In this study, an Al/Ca (20 vol%) nanofilamentary metal-metal composite was produced by powder metallurgy and severe plastic deformation. Fine Ca metal powders (~200 µm) were produced by centrifugal atomization, mixed with pure Al powder, and deformed by warm extrusion, swaging, and wire drawing to a true strain of 12.9. The Ca powder particles became fine Ca nanofilaments that reinforce the compositemore » substantially by interface strengthening. The conductivity of the composite is slightly lower than the rule-of-mixtures prediction due to minor quantities of impurity inclusions. As a result, the elevated temperature performance of this composite was also evaluated by differential scanning calorimetry and resistivity measurements.« less

  19. A deformation-processed Al-matrix/Ca-nanofilamentary composite with low density, high strength, and high conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Liang

    Light, strong materials with high conductivity are desired for many applications such as power transmission conductors, fly-by-wire systems, and downhole power feeds. However, it is difficult to obtain both high strength and high conductivity simultaneously in a material. In this study, an Al/Ca (20 vol%) nanofilamentary metal-metal composite was produced by powder metallurgy and severe plastic deformation. Fine Ca metal powders (~200 µm) were produced by centrifugal atomization, mixed with pure Al powder, and deformed by warm extrusion, swaging, and wire drawing to a true strain of 12.9. The Ca powder particles became fine Ca nanofilaments that reinforce the compositemore » substantially by interface strengthening. The conductivity of the composite is slightly lower than the rule-of-mixtures prediction due to minor quantities of impurity inclusions. As a result, the elevated temperature performance of this composite was also evaluated by differential scanning calorimetry and resistivity measurements.« less

  20. High Temperature Mechanical Properties of Free-Standing HVOF CoNiCrAlY Coatings by Lateral Compression of Circular Tube

    NASA Astrophysics Data System (ADS)

    Waki, Hiroyuki; Nakamura, Kyousuke; Yamaguchi, Itsuki; Kobayashi, Akira

    MCrAlY, M means Co and/or Ni, sprayed coating is used to protect a super alloy substrate from corrosion or oxidation in a gas turbine blade. However, the mechanical properties are not well-known, because there are few proper measurement methods for a thin coating at high temperature. Authors have developed the new easy method to measure the mechanical properties using the lateral compression of a circular tube. The method is useful to apply to a thin coating because it does not need chucking and manufacturing a test piece is very easy. The method is also easily applicable to high temperature measurement. In this study, high temperature mechanical properties, Young's modulus, bending strength and fracture strain, of CoNiCrAlY coatings by HVOF were systematically measured. The results obtained were as follows: Young's modulus and bending strength suddenly decreased beyond 400˜450°C. The Young's modulus and bending strength thermally treated at higher than 1050°C was significantly higher than that of virgin CoNiCrAlY coating. It was found that higher thermal treatment in atmosphere was the most effective in increasing the Young's modulus and bending strength. It was also found that the improvement of Young's modulus was primarily caused by not the effect of TGO but the sintering and diffusion of unfused particles. On the contrary, the fracture strain increased beyond 400°C differently from the bending strength. The fracture strains of CoNiCrAlY thermally treated in vacuum were higher than those of CoNiCrAlY treated in atmosphere. It was found that higher thermal treatment in vacuum was the most effective in increasing the fracture strain.

  1. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Technical Reports Server (NTRS)

    Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst

    1993-01-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  2. The influence of Na + and Ca 2+ ions on the SiO 2-AlPO 4 materials structure — IR and Raman studies

    NASA Astrophysics Data System (ADS)

    Rokita, M.; Mozgawa, W.; Handke, M.

    2001-09-01

    The series of samples containing 0-20 mol% of NaCaPO4 and 20-0 mol% of AlPO4, respectively, with the constant amount of SiO2 (80 mol%) have been selected. The materials were prepared using both sol-gel as well as aerosil pseudo-aqua solution method. The AlPO4·SiO2 and NaCaPO4·SiO2 (80 mol% of SiO2) samples have been prepared. IR and Raman spectra of these samples are presented. The spectra of materials from NaCaPO4-AlPO4-SiO2 system are compared to those of NaCaPO4·SiO2 and AlPO4·SiO2 sample (samples without Al3+ or Na+ and Ca2+ cations, respectively). The studies have enabled us to identify the bands arising from the internal and lattice vibrations. The slight differences between the spectra of sol-gel and aerosil pseudo-aqua solution materials are pointed out and discussed. The influence of Na+ and Ca2+ ions on the AlPO4-SiO2 materials structure is analysed.

  3. Nanostructure and surface activation of mayenite (12CaO·7Al2O3) ceramics via femtosecond laser irradiation in solvents

    NASA Astrophysics Data System (ADS)

    Visbal, Heidy; Hirano, Minami; Omura, Takuya; Shimizu, Masahiro; Takaishi, Taigo; Hirao, Kazuyuki

    2017-07-01

    Mayenite (12CaO·7Al2O3) is a highly interesting functional material due to the wide variety of its possible future applications. In this study, we used femtosecond laser irradiation in several solvents with varying polarities to increase the specific surface area of 12CaO·7Al2O3 ceramics and reduce their particle size without any structural degradation or loss of crystallinity. We observed that when femtosecond laser irradiation was applied to solvents bearing hydroxyl groups, a smaller particle size was obtained with the particle size decreasing as the polarity of the solvent increased. Using infrared spectroscopy, we confirmed the presence of hydroxyl and carbonyl surface functional groups at the surface of 12CaO·7Al2O3 ceramics after femtosecond laser irradiation. This is attributed to the direct chemical bonds breaking of the solvent via multiphoton ionization and/or tunneling ionization, followed by the Coulomb explosion and the subsequent production of ions that are adsorbed on the surfaces of 12CaO·7Al2O3 ceramics. Femtosecond laser irradiation in polar solvents with hydroxyl groups can reduce the particle size and increase the specific surface area without degradation or loss of crystallinity of 12CaO·7Al2O3 ceramics. Additionally, this method can be used for the surface modification and introduction of functional groups on the 12CaO·7Al2O3 ceramics surface.

  4. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei

    2016-07-01

    In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.

  5. Interaction of overlayers of Al and Rb with single-crystalline surfaces of Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Wells, B. O.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1990-03-01

    Photoemission results from Al and Rb interfaces with single crystals of Bi2Sr2CaCu2O8 high-temperature superconductors are reported. The Al and Rb adsorbates are found to react quite differently with the Bi2Sr2CaCu2O8 substrate. While adatoms of Rb significantly affect only the Bi and O atoms in the top atomic layer, the Al adsorbate profoundly disrupts the bonding character of the whole Bi2Sr2CaCu2O8 material. For Al, the Bi and Cu states are strongly reduced, and the Sr and O states show evidence of oxidized components. In addition, Al causes a strong out-diffusion of oxygen from the bulk. The differences in the reactivity of Al and Rb are discussed in terms of the different mobility of the two atoms.

  6. Microchip Yb:CaLnAlO4 lasers with up to 91% slope efficiency.

    PubMed

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Jambunathan, Venkatesan; Navratil, Petr; Lucianetti, Antonio; Mocek, Tomas; Zhang, Xuzhao; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady

    2017-07-01

    Multi-watt continuous-wave (CW) operation of tetragonal rare-earth calcium aluminate Yb:CaLnAlO 4 (Ln=Gd,Y)) crystals in plano-plano microchip lasers was demonstrated with an almost quantum-defect-limited slope efficiency. Pumped at 978 nm by an InGaAs laser diode, a 3.4 mm long 8 at. % Yb:CaGdAlO 4 laser generated 7.79 W at 1057-1065 nm with a slope efficiency of η=84% (with respect to the absorbed pump power). An even higher η=91% was achieved with a 2.5 mm long 3 at. % Yb:CaYAlO 4 laser, from which 5.06 W were extracted at 1048-1056 nm. Both lasers produced linearly polarized output (σ-polarization) with an almost circular diffraction-limited beam (Mx,y2<1.1). The output performance of the developed lasers was modeled, yielding an internal loss coefficient as low as 0.004-0.007  cm -1 . In addition, their spectroscopic properties were revisited.

  7. Understanding the Reaction Chemistry of 2,2':5',2''-Terthiophene Films with Vapor-Deposited Ag, Al, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Lingzi; Matz, Dallas L.; Pemberton, Jeanne E.

    The reaction chemistry of vapor-deposited 2,2':5',2''-terthiophene (α-3T) solid-state thin films with postdeposited Ag, Al, and Ca is investigated in ultrahigh vacuum using Raman spectroscopy. Vapor-deposited Ag forms nanoparticles on these films and induces considerable surface enhanced Raman scattering (SERS) along with a change in molecular symmetry of adjacent α-3T and formation of Ag–S bonds; no other reaction chemistry is observed. Vapor-deposited Al and Ca undergo chemical reaction with α-3T initiated by metal-to-α-3T electron transfer. For Al, the resulting product is predominantly amorphous carbon through initial radical formation and subsequent decomposition reactions. For Ca, the spectral evidence suggests two pathways: onemore » leading to α-3T polymerization and the other resulting in thiophene ring opening, both initiated by radical formation through Ca-to-α-3T electron transfer. These interfacial reactions reflect the complex chemistry that can occur between low work function metals and thiophene-based oligomers. This reactivity is strongly correlated with metal work function.« less

  8. Understanding the Reaction Chemistry of 2,2':5',2"-Terthiophene Films with Vapor-Deposited Ag, Al, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Lingzi; Matz, Dallas L.; Pemberton, Jeanne E.

    The reaction chemistry of vapor-deposited 2,2':5',2''-terthiophene (α-3T) solid-state thin films with postdeposited Ag, Al, and Ca is investigated in ultrahigh vacuum using Raman spectroscopy. Vapor-deposited Ag forms nanoparticles on these films and induces considerable surface enhanced Raman scattering (SERS) along with a change in molecular symmetry of adjacent α-3T and formation of Ag–S bonds; no other reaction chemistry is observed. Vapor-deposited Al and Ca undergo chemical reaction with α-3T initiated by metal-to-α-3T electron transfer. For Al, the resulting product is predominantly amorphous carbon through initial radical formation and subsequent decomposition reactions. For Ca, the spectral evidence suggests two pathways: onemore » leading to α-3T polymerization and the other resulting in thiophene ring opening, both initiated by radical formation through Ca-to-α-3T electron transfer. These interfacial reactions reflect the complex chemistry that can occur between low work function metals and thiophene-based oligomers. This reactivity is strongly correlated with metal work function.« less

  9. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    NASA Astrophysics Data System (ADS)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  10. Single fiber temperature probe configuration using anti-Stokes luminescence from Cr:GdAlO3

    NASA Astrophysics Data System (ADS)

    Eldridge, Jeffrey I.

    2018-06-01

    Single-photon excitation of anti-Stokes-shifted emission from a thermographic phosphor allows operation of a luminescence decay-based single fiber temperature probe with negligible interference from background fiber-generated Raman scattering. While single fiber probe configurations for luminescence-based fiber optic thermometers offer advantages of simple design, compactness, and superior emission light collection efficiency, their effective use has been limited by interference from Raman scattering in the fiber probe and excitation delivery fiber that produces distortion of the luminescence decay that follows the excitation pulse. The near elimination of interference by background fiber-generated Raman scattering was demonstrated by incorporating a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor as the sensing element at the end of a single fiber luminescence decay-based thermometer and detecting anti-Stokes-shifted luminescence centered at 542 or 593 nm produced by 695 nm excitation. Measurements were performed using both silica (up to 1150 °C) and single-crystal YAG (up to 1200 °C) fiber-based thermometers. Selection of emission detection centered at 542 nm greatly benefited the YAG fiber probe measurements by practically eliminating detection of otherwise significant luminescence from Cr3+ impurities in the YAG fiber. For both the silica and YAG fiber probes, the relative benefit of adopting single-photon excitation of anti-Stokes-shifted luminescence was evaluated by comparison with results obtained by conventional 532 nm excitation of Stokes-shifted luminescence.

  11. Al-Mg isotopic evidence for episodic alteration of Ca-Al-rich inclusions from Allende

    NASA Astrophysics Data System (ADS)

    Fagan, T. J.; Guan, Y.; MacPherson, G. J.

    2007-08-01

    Textures, mineral assemblages, and Al-Mg isotope systematics indicate a protracted, episodic secondary mineralization history for Allende Ca-Al-rich inclusions (CAIs). Detailed observations from one type B1 CAI, one B2, one compact type A (CTA), and one fluffy type A (FTA) indicate that these diverse types of CAIs are characterized by two distinct textural and mineralogic types of secondary mineralization: (1) grossular-rich domains, concentrated along melilite grain boundaries in CAI interiors, and (2) feldspathoid-bearing domains, confined mostly to CAI margins just interior to the Wark-Lovering rim sequence. The Al-Mg isotopic compositions of most secondary minerals in the type B1 CAI, and some secondary minerals in the other CAIs, show no resolvable excesses of 26Mg, whereas the primary CAI phases mostly yield correlated excesses of 26Mg with increasing Al/Mg corresponding to "canonical" initial 26Al/27Al ˜ 4.5-5 × 10-5. These secondary minerals formed at least 3 Ma after the primary CAI minerals. All but two analyses of secondary minerals from the fluffy type-A CAI define a correlated increase in 26Mg/24Mg with increasing Al/Mg, yielding (26Al/27Al)0 = (4.9 ± 2.8) × 10-6. The secondary minerals in this CAI formed 1.8-3.2 Ma after the primary CAI minerals. In both cases, the timing of secondary alteration is consistent with, but does not necessarily require, alteration in an asteroidal setting. One grossular from the type B2 CAI, and several grossular and secondary feldspar analyses from the compact type A CAI, have excesses of 26Mg consistent with initial 26Al/27Al ˜ 4.5 × 10-5. Especially in the compact type A CAI, where 26Mg/24Mg in grossular correlates with increasing Al/Mg, these 26Mg excesses are almost certainly due to in situ decay of 26Al. They indicate a nebular setting for formation of the grossular. The preservation of these diverse isotopic patterns indicates that heating on the Allende parent body was not pervasive enough to reset isotopic

  12. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO-MgO-Fe2O3-Al2O3

    NASA Astrophysics Data System (ADS)

    Zöll, Klaus; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2018-02-01

    In the course of a systematic study of a part of the quaternary system Fe2O3-CaO-Al2O3-MgO (FCAM) the previously unknown compound Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 (FCAM-III) has been synthesized. By analogy with the so-called SFCA series [1-5], our investigation in the system of FCAM shows the existence of a stoichiometric homologous series M14+6nO20+8n, where M = Fe, Ca, Al, Mg and n = 1 or 2. In air, we can prove the formation of coexisting FCAM-III and FCAM-I solid solutions at 1400 °C. By increasing the temperature up to 1425 °C FCAM-I disappears completely and FCAM-III co-exists with magnesiumferrite and a variety of calcium iron oxides. At 1450 °C FCAM-III breaks down to a mixture of FCAM-I again as well as magnesioferrite and melt. Small single-crystals of FCAM-III up to 35 μm in size could be retrieved from the 1425 °C experiment and were subsequently characterized using electron microprobe analysis and synchroton X-ray single-crystal diffraction. Finally the Fe2+/Fetot ratio was calculated from the total iron content based on the crystal-chemical formula obtained from EMPA measurements and charge balance considerations. FCAM-III or Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 has a triclinic crystal structure (space group P 1 ̅). The basic crystallographic data are: a = 10.223(22) Å, b = 10.316(21) Å, c = 14.203(15) Å, α = 93.473(50)°, β = 107.418(67)°, γ = 109.646(60)°, V = 1323.85(2) ų, Z = 1. Using Schreinemaker's technique to analyze the phase relations in the system Fe2O3-CaO-Al2O3-MgO it was possible to obtain the semi-quantitative stability relations between the participating phases and construct a topologically correct phase sequence as a function of T and fO2. The analysis shows that Ca2Al0.5Fe1.5O5 (C2A0.25F0.75) and CaAl1.5Fe2.5O7 (CA0.75F1.25) with higher calculated Fe2+ contents are preferably formed at lower oxygen fugacity and react to CaAl0.5Fe1.5O4 (CA0.25F0.75) by increasing fO2. Spinel-type magnesium

  13. SiO2 and CaF2 Behavior During Shielded Metal Arc Welding and Their Effect on Slag Detachability of the CaO-CaF2-SiO2 Type ENiCrFe-7-Covered Electrode

    NASA Astrophysics Data System (ADS)

    Wang, Huang; Qin, Renyao; He, Guo

    2016-09-01

    The metallurgical behavior during shielded metal arc welding (SMAW) and the slag detachability of the CaO-CaF2-SiO2 type ENiCrFe-7-covered electrodes was investigated. The results indicated that the slag detachability could be improved as the SiO2 in the flux coatings decreased. When the SiO2 in the flux coating was 10.9 pct, about 28.3 pct CaF2 resulted in the best slag detachability. The CaF2 and SiO2 in the flux coating interacted during SMAW to form gaseous SiF4 to be evacuated. In the reactions, one SiO2 consumed two CaF2, leading to the reduction of the ratio of CaF2/SiO2. After comparing the slag compositions, the best slag detachability was obtained at CaO:CaF2:SiO2 = 1.7:1.8:1, but the worst slag detachability appeared at CaO:CaF2:SiO2 = 1.3:0.9:1. The XRD analysis revealed that the oxides and fluorides in the slags preferred to gather together to form cuspidine and other complex phases. If the CaF2 was dominant in the slags, they intended to form homogenous porous microstructures that were relatively strong and would most likely detach from the weld metal in blocks, exhibiting good slag detachability. If the cuspidine phase was dominant, the slags exhibited a `rock strata'-like microstructure in the intergranular area. Such microstructure was very fragile and could be broken into fine powders that were easily embedded in the weld ripples, leading to slag adhesions. This work provides the researcher with a wealth of information and data, which will also be beneficial to the welding material producers and users.

  14. Metastable Phase Relations in the System Ca(sub O)-Al2(sub O)3-MgO-TiO(sub 2): Applications to Ca- And Al-Rich Inclusions

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Han, J.

    2017-01-01

    Introduction: High temperature phases such as corundum, hibonite, grossite, and perovskite are among the earliest phases that condensed in the early solar nebula. Recent work has shown that defect-structured phases occur in some ultrarefractory inclusions as metastable, possibly more kinetically-favored alternatives to the thermodynamically predicted stable phase assemblages [1-4]. For example, Han et al. have shown that non-stoichiometry in hibonite is accommodated by extra "spinel" blocks in the structure instead of the equilibrium assemblages hibonite+corundum or hibonite+spinel. To explore these relations, we have conducted a series of experiments in the system CaO-Al2O3- MgO-TiO2. Here we discuss the compositions and mineralogy of the experimental samples and how they relate to phases in refractory inclusions with a focus on perovskite and spinel. Methods: For the series of annealing studies, a CaO-Al2O3 eutectic melt is allowed to react with a pure alumina crucible at 1,530degC for either 4 hours or 5 days, followed by quenching in air. Later experiments were similar except that additions of 5 wt% MgO, and CaTiO(sub 3) were used to explore the effect of minor elements on the phase assemblages. The experimental conditions resulted in reaction zones approximately 100-300 ?m wide consisting of a hibonite layer immediately adjacent to the corundum, followed by a grossite layer, and finally krotite with residual quenched melt. For the experiments with Mg, spinel is distributed in all layers but is mainly concentrated in the krotite layer. In the Ti-bearing experiments, perovskite precipitated in association with the krotite and residual melt. In addition to the experiments, we also analyzed perovskite grains in the FUN inclusion SHAL [5] and a large compact type A CAI from Allende. The experiments and refractory inclusions were analyzed using a JEOL 7600F SEM and quantitative analyses were obtained using the JEOL 8530F field-emission electron microprobe.

  15. High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.

    Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.

  16. Electrochemical sensing of modified ABO3 perovskite: LaFe0.8 R0.2O3(R= Cr, Co, Al)

    NASA Astrophysics Data System (ADS)

    Vidya Rajan, N.; Alexander, L. K.

    2017-06-01

    Perovskite LaFeO3 with orthorhombic structure has been synthesized by citric acid mediated solution method. The effectiveness of ionic radii and Oxidation state of the doping material on ionic conductivity of the host matrix was evaluated by B-site (Fe) doping on LaFeO3 with Cr, Co and Al, resulting LaFe0.8 R0.2O3 (R = Cr, Co, Al). XRD with Rietveld refinement and Raman spectroscopic analysis demonstrate successful synthesis. The effect of the 20% B site doping on electrochemical activity is reported. The doped materials exhibit a decrease in sensing activity towards the non enzymatic detection of H2O2.

  17. Crystallization of Ca-Al-Rich Inclusions: Experimental Studies on the Effects of Repeated Heating Events

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Lofgren, Gary E.; Le, Loan

    2000-01-01

    The observed textures and chemistry of Ca-Al-rich inclusions (CAIs) are presumed to be the culmination of a series of repeated heating and cooling events in the early history of the solar nebula. We have examined the effects of these heating/cooling cycles experimentally on a bulk composition representing an average Type B Ca-Al-rich inclusion composition. We have tested the effect of the nature of the starting material. Although the most recent and/or highest temperature event prior to incorporation into the parent body dominates the texture and chemistry of the CAI, prior events also affect the phase compositions and textures. We have determined that heating precursor grains to about 1275 C prior to the final melting event increases the likelihood of anorthite crystallization in subsequent higher temperature events and a prior high temperature even that produced dendritic melilite results in melilite that shows evidence of rapid crystallization in subsequent lower temperature events. Prior low temperature pre-crystallization events produce final ran products with pyroxene compositions similar to Type B Ca-Al-rich inclusions, and the glass (residual liquid) composition is more anorthitic than any other experiments to date. The addition of Pt powder to the starting material appears to enhance the ability of anorthite to nucleate from this composition.

  18. High-temperature oxidation behavior and mechanism of a new type of wrought Ni-Fe-Cr-Al superalloy up to 1300 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.; Fang, H.; Fu, X.

    The oxidation behavior of a new type of wrought Ni-Fe-Cr-Al superalloys has been investigated systematically in the temperature range of 1,100 to 1,300 C. Results are compared with those of alloy 214, Inconel 600, and GH 3030. It is shown that the oxidation resistance of the new superalloys is excellent and much better than that of the comparison alloys. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD) experiments reveal that the excellent oxidation resistance of the new superalloy is due to the formation of a dense, stable and continuous Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3}more » oxide layer at high temperatures. Differential thermal analysis (DTA) shows that the formation of Cr{sub 2}O{sub 3} and Al{sub 2}O{sub 3} oxide layers on the new superalloy reaches a maximum at 1,060 and 1,356 C, respectively. The Cr{sub 2}O{sub 3} layer peels off easily, and the single dense Al{sub 2}O{sub 3} layer remains, giving good oxidation resistance at temperatures higher than 1,150 C. In addition, the new superalloy possesses high mechanical strength at high temperatures. On-site tests showed that the new superalloy has ideal oxidation resistance and can be used at high temperatures up to 1,300 C in various oxidizing and corrosion atmospheres, such as those containing SO{sub 2}, CO{sub 2} etc., for long periods.« less

  19. The Effects of Dy Addition on Microstructure and Mechanical Properties of the As-Cast Mg-5Al-3Ca-2Nd Alloys.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Yoo, Hyo-Sang

    2018-03-01

    The microstructure of the as-cast Mg-5Al-3Ca-2Nd-xDy alloys consists of α-Mg matrix, (Mg, Al)2Ca eutectic phase, Al-Nd and Al-Dy intermetallic compounds. α-Mg matrix morphology was changed from dendritic to equiaxed with the increase Dy addition. And grain size was remarkably refined. As Dy content was increased, yield strength was improved due to the refined grains and the homogeneous distribution of Al-Dy phase.

  20. Hot-air forming of Al-Mg-Cr alloy and prediction of failure based on Zener-Holloman parameter

    NASA Astrophysics Data System (ADS)

    Kim, W. J.; Kim, W. Y.; Kim, H. K.

    2010-12-01

    The microstructure of an Al-Mg-Cr alloy tube fabricated through indirect extrusion at 673 K showed elongated grains with a mean size of ˜26 μm. The strain rate-stress relationship at high temperatures (753 K to 793 K) revealed that dislocation climb creep was the rate-controlling deformation mechanism. The hot-air forming process was successful at a pressure of 70 bar. The Zener-Hollomon parameter based failure criterion was 3602+, and was used to explain the failure behavior of a deforming body. The forming and fracture behavior of the Al-Mg-Cr alloy tube was analyzed with the aid of finite element (FE) simulation, into which the failure criterion was incorporated. Comparison of the simulation and the experimental results indicated that the proposed fracture criterion was useful in predicting the fracture behavior of aluminum tube deforming by means of gas pressure.

  1. CaMn 2Al 10: Itinerant Mn magnetism on the verge of magnetic order

    DOE PAGES

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; ...

    2015-07-24

    We report the discovery of CaMn 2Al 10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83 μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ [010]/χ [001]more » ≈ 3.5. A strong power-law divergence χ(T) ~ T –1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature T C ~ 0. Our experiments indicate that CaMn 2Al 10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.« less

  2. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al-Zn-Mg-Cu-Zr alloy.

    PubMed

    Wang, Ming; Huang, Lanping; Chen, Kanghua; Liu, Wensheng

    2018-01-01

    This work focuses on controlling grain boundary structure in an ultra-high strength Al-8.6Zn-2.5Mg-2.2Cu-0.16Zr (wt.%) alloy by the combined addition of trace Cr (0.1wt.%) and Pr (0.14wt.%), and evaluating mechanical properties and localized corrosion behaviors of the alloy in the peak aged condition. The introduction of trace Cr and Pr leads to the formation of nanoscale Cr, Pr-containing Al 3 Zr and Zr-containing PrCr 2 Al 20 dispersoids which can obviously inhibit the recrystallization and sub-grain growth of the super-high strength Al-Zn-Mg-Cu alloys, and retain the deformation-recovery microstructure dominated by low-angle grain boundaries. The nearly ellipsoidal dispersoids with a size of 10-35nm are discretely distributed and precipitate free zones are hardly formed in low-angle grain boundaries. This new alloy composition exhibits better combined properties, higher resistance to stress corrosion, exfoliation corrosion and inter-granular corrosion with the undamaged strength, ductility and fracture toughness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Successful Synthesis of the CoCrFeNiAl0.3 Single-Crystal, High-Entropy Alloy by Bridgman Solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, S. G.; Zhang, S. F.; Gao, M. C.

    2013-08-22

    For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking faultmore » energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.« less

  4. Synthesis and luminescence properties of blue-emitting phosphor Ca12 Al14 O32 F2 :Eu2+ for white light-emitting diode.

    PubMed

    Chen, Wanping; Zhang, Xinzhu; Wang, Liping

    2017-09-01

    A blue-emitting phosphor Ca 12 Al 14 O 32 F 2 :Eu 2+ was synthesized using a high-temperature solid-state reaction under a reductive atmosphere. The X-ray diffraction measurements indicate that a pure phase Ca 12 Al 14 O 32 F 2 :Eu 2+ can be obtained for low doping concentration of Eu 2+ . The phosphor has a strong absorption in the range 270-420 nm with a maximum at ~340 nm and blue emission in the range 400-500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as-synthesized phosphor were evaluated by comparison with those of Ca 12 Al 14 O 32 Cl 2 :Eu 2+ and the commercially available phosphor BaMgAl 10 O 17 :Eu 2+ . The emission intensity of Ca 12 Al 14 O 32 F 2 :Eu 2+ was ~72% that of BaMgAl 10 O 17 :Eu 2+ under excitation at λ = 375 nm. The results indicate that Ca 12 Al 14 O 32 F 2 :Eu 2+ has potential application as a near-UV-convertible blue phosphor for white light-emitting diodes. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    NASA Astrophysics Data System (ADS)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-04-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  6. Crystallization of high-Ca chromium garnet upon interaction of serpentine, chromite, and Ca-bearing hydrous fluid

    NASA Astrophysics Data System (ADS)

    Chepurov, A. A.; Turkin, A. I.; Pokhilenko, N. P.

    2017-10-01

    The results of experimental modeling of the conditions of crystallization of high-Ca chromium garnets in the system serpentine-chromite-Ca-Cr-bearing hydrous fluid at a pressure of 5 GPa and temperature of 1300°C are reported. The mineral association including quantitatively predominant high-Mg olivine and diopside-rich clinopyroxene, bright-green garnet, and newly formed chrome spinel was formed. Garnet mostly crystallized around primary chromite grains and was characterized by a high concentration of CaO and Cr2O3. According to the chemical composition, garnets obtained are close to the uvarovite-pyrope varieties, which enter the composition of relatively rare natural paragenesis of garnet wehrlite. The experimental data obtained clearly show that high-Ca chromium garnets are formed in the reaction of chromite-bearing peridotite and Ca-rich fluid at high P-T parameters.

  7. Status of Wrought FeCrAl-UO 2 Capsules Irradiated in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Harp, J.; Core, G.

    2017-07-01

    Candidate cladding materials for accident tolerant fuel applications require extensive testing and validation prior to commercial deployment within the nuclear power industry. One class of cladding materials, FeCrAl alloys, is currently undergoing such effort. Within these activities is a series of irradiation programs within the Advanced Test Reactor. These programs are developed to aid in commercial maturation and understand the fundamental mechanisms controlling the cladding performance during normal operation of a typical light water reactor. Three different irradiation programs are on-going; one designed as a simple proof-of-principle concept, the other to evaluate the susceptibility of FeCrAl to fuel-cladding chemical interaction,more » and the last to fully simulate the conditions of a pressurized water reactor experimentally. To date, nondestructive post-irradiation examination has been completed on the rodlet deemed FCA-L3 from the simple proof-of-concept irradiation program. Initial results show possible breach of the rodlet under irradiation but further studies are needed to conclusively determine whether breach has occurred and the underlying reasons for such a possible failure. Further work includes characterizing additional rodlets following irradiation.« less

  8. Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Rezvukhin, Dmitriy I.; Malkovets, Vladimir G.; Sharygin, Igor S.; Tretiakova, Irina G.; Griffin, William L.; O'Reilly, Suzanne Y.

    2018-05-01

    Cr-pyrope xenocrysts and associated inclusions of crichtonite-group minerals from the Internatsionalnaya kimberlite pipe were studied to provide new insights into processes in the lithospheric mantle beneath the Mirny kimberlite field, Siberian craton. Pyropes are predominantly of lherzolitic paragenesis (Cr2O3 2-6 wt%) and have trace-element spectra typical for garnets from fertile mantle (gradual increase in chondrite-normalized values from LREE to MREE-HREE). Crichtonite-group minerals commonly occur as monomineralic elongated inclusions, mostly in association with rutile, Mg-ilmenite and Cr-spinel within individual grains of pyrope. Sample INT-266 hosts intergrowth of crichtonite-group mineral and Cl-apatite, while sample INT-324 contains polymineralic apatite- and dolomite-bearing assemblages. Crichtonite-group minerals are Al-rich (1.1-4.5 wt% Al2O3), moderately Zr-enriched (1.3-4.3 wt% ZrO2), and are Ca-, Sr-, and occasionally Ba-dominant in terms of A-site occupancy; they also contain significant amounts of Na and LREE. T-estimates and chemical composition of Cr-pyropes imply that samples represent relatively low-T peridotite assemblages with ambient T ranging from 720 to 820°С. Projected onto the 35 mW/m2 cratonic paleogeotherm for the Mirny kimberlite field (Griffin et al., 1999b. Tectonophysics 310, 1-35), temperature estimates yield a P range of 34-42 kbar ( 110-130 km), which corresponds to a mantle domain in the uppermost part of the diamond stability field. The presence of crichtonite-group minerals in Cr-pyropes has petrological and geochemical implications as evidence for metasomatic enrichment of some incompatible elements in the lithospheric mantle beneath the Mirny kimberlite field. The genesis of Cr-pyropes with inclusions of crichtonite-group minerals is attributed to the percolation of Ca-Sr-Na-LREE-Zr-bearing carbonate-silicate metasomatic agents through Mg- and Cr-rich depleted peridotite protoliths. The findings of several potentially

  9. Luminescence, magnetic and vibrational properties of novel heterometallic niccolites [(CH3)2NH2][CrIIIMII(HCOO)6] (MII=Zn, Ni, Cu) and [(CH3)2NH2][AlIIIZnII(HCOO)6]:Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Pietraszko, Adam; Pikul, Adam; Hermanowicz, Krzysztof

    2016-01-01

    We report synthesis of three novel heterometallic MOFs, [(CH3)2NH2][CrIIIMII(HCOO)6] with M=Zn (DMCrZn), Ni (DMCrNi) and Cu (DMCrCu), crystallizing in the niccolite type structure. We also successfully synthesized [(CH3)2NH2][AlCu(HCOO)6] (DMAlCu) and [(CH3)2NH2][AlZn(HCOO)6] doped with 5.8 mol% of Cr3+ (DMAlZn: Cr). X-ray diffraction shows that DMCrZn, DMCrNi and DMAlZn: Cr3+ crystallize in the trigonal structure (space group P 3 bar1c) while DMCrCu and DMAlCu crystallize in the monoclinic structure (space group C2/c). Magnetic investigation of the chromium-based niccolites reveals no magnetic order in DMCrZn and ferromagnetic order in DMCrNi and DMCrCu below 23 and 11 K, respectively. Optical studies show that DMCrZn and DMAlZn: Cr samples exhibit efficient emission typical for chromium ions located at sites of strong crystal field with the Dq/B values 2.62 and 2.67, respectively. We also discuss role of geometrical parameters in stability of the perovskite and niccolite structures.

  10. A study of early corrosion behaviors of FeCrAl alloys in liquid lead-bismuth eutectic environments

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Nam, Hyo On; Hwang, Il Soon; Kim, Ji Hyun

    2010-12-01

    Lead and lead-bismuth eutectic (LBE) alloy have been increasingly receiving attention as heavy liquid metal coolants (HLMC) for future nuclear energy systems. The compatibility of structural materials and components with lead-bismuth eutectic liquid at high temperature is one of key issues for the commercialization of lead fast reactors. In the present study, the corrosion behaviors of iron-based alumina-forming alloys (Kanthal-AF®, PM2000, MA956) were investigated by exposing to stagnant LBE environments at 500 °C and 550 °C for up to 500 h. After exposures, the thickness and chemistry of the oxide layer on the specimens were analyzed by scanning electron microscopy, scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. As a result, the oxide characteristics and the corrosion resistance were compared. In this study, it was shown that the corrosion resistance of FeCrAl ODS steels (PM2000, MA956) are superior to that of FeCrAl ferritic steel (Kanthal-AF®) in higher temperature LBE.

  11. CrAlN coating to enhance the power loss and magnetostriction in grain oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Goel, Vishu; Anderson, Philip; Hall, Jeremy; Robinson, Fiona; Bohm, Siva

    2016-05-01

    Grain oriented electrical steels (GOES) are coated with aluminium orthophosphate on top of a forsterite (Mg2SiO4) layer to provide stress and insulation resistance to reduce the power loss and magnetostriction. In this work Chromium Aluminium Nitride (CrAlN) was coated on GOES samples with electron beam physical vapour deposition and was tested in the single strip and magnetostriction tester to measure the power loss and magnetostriction before and after coating. Power loss was reduced by 2% after coating and 6 % post annealing at 800 °C. For applied compressive stress of 6 MPa, the magnetostrictive strain was zero with the CrAlN coating as compared to 22 and 24 μɛ for fully finished GOES and GOES without phosphate coating. The thickness of the coating was found to be 1.9 ± 0.2 μm estimated with Glow Discharge Optical Emission Spectroscopy (GDOES). The magnetic domain imaging showed domain narrowing after coating. The reduction in power loss and magnetostriction was due to the large residual compressive stress and Young's modulus (270 GPa) of the coating.

  12. Cr/sup 3 +/-doped colquiriite solid state laser material

    DOEpatents

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1988-03-31

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.

  13. Cr.sup.3+ -doped colquiriite solid state laser material

    DOEpatents

    Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.

    1989-01-01

    Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.

  14. Enhanced magnetocaloric properties and critical behavior of (Fe0.72Cr0.28)3Al alloys for near room temperature cooling

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Maheshwar Repaka, D. V.; Chaudhary, V.; Ramanujan, R. V.

    2017-04-01

    Magnetic cooling is an environmentally friendly, energy efficient, thermal management technology relying on high performance magnetocaloric materials (MCM). Current research has focused on low cost, corrosion resistant, rare earth (RE) free MCMs. We report the structural and magnetocaloric properties of novel, low cost, RE free, iron based (Fe0.72Cr0.28)3Al alloys. The arc melted buttons and melt spun ribbons possessed the L21 crystal structure and B2 crystal structure, respectively. A notable enhancement of 33% in isothermal entropy change (-ΔS m) and 25% increase in relative cooling power (RCP) for the ribbons compared to the buttons can be attributed to higher structural disorder in the Fe-Cr and Fe-Al sub-lattices of the B2 structure. The critical behavior was investigated using modified Arrott plots, the Kouvel-Fisher plot and the critical isotherm technique; the critical exponents were found to correspond to the short-range order 3D Heisenberg model. The field and temperature dependent magnetization curves of (Fe0.72Cr0.28)3Al alloys revealed their soft magnetic nature with negligible hysteresis. Thus, these alloys possess promising performance attributes for near room temperature magnetic cooling applications.

  15. Enhancement of Mechanical Properties of Extruded Mg-9Al-1Zn-1MM-0.7CaO-0.3Mn Alloy Through Pre-aging Treatment

    NASA Astrophysics Data System (ADS)

    Jeong, Seok Hoan; Kim, Yong Joo; Kong, Kyung Ho; Cho, Tae Hee; Kim, Young Kyun; Lim, Hyun Kyu; Kim, Won Tae; Kim, Do Hyang

    2018-03-01

    The effect of pre-aging treatment before extrusion has been investigated in Mg-9.0Al-1.0Zn-1MM-0.7CaO-0.3Mn alloy. The as-cast microstructure consists of α-Mg dendrite with secondary solidification phase particles, (Mg, Al)2Ca, β-Mg17Al12 and Al11RE3 at the inter-dendritic region. After extrusion, β-Mg17Al12 precipitates are present, but higher density and more homogeneous distribution in pre-aged alloy. In addition, μm-scale banded bulk β-Mg17Al12 particles are generated during extrusion. Al11RE3 particles are broken into small particles, and are aligned along the extrusion direction. (Mg, Al)2Ca particles are only slightly elongated along the extrusion direction, providing stronger particle stimulated nucleation (PSN) effect by severe deformation during extrusion. The mechanical properties can be significantly enhanced by introducing pre-aging treatment, i.e. β-Mg17Al12 precipitates provide grain refining and strengthening effects and (Mg, Al)2Ca particles provide PSN effect.

  16. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  17. Effect of mechanical alloying and heat treatment on the behavior of fe - 28% al - 5% cr powder with nanocrystalline structure

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Liu, H. L.; Wang, Y. X.; Xu, G. O.; Zheng, Z. X.

    2012-05-01

    Nanocrystalline powders of alloy Fe - 28% Al - 5% Cr (at.%) obtained by mechanical alloying from powdered iron, aluminum, and preliminarily alloyed Fe - 20% Cr are studied. The chemical composition is shown to be homogenized. The changes in the structure and in the morphology of the particles in the process of ball milling and subsequent heat treatment are determined. The alloying is shown to occur by the mechanism of continuous diffusion mixing.

  18. Effect of cold rolling on the microstructure and mechanical properties of Al 0.25CoCrFe 1.25Ni 1.25 high-entropy alloy

    DOE PAGES

    Wang, Z.; Gao, M. C.; Ma, S. G.; ...

    2015-08-05

    Cold rolling can break down the as-cast dendrite microstructure and thus may have pronounced impact on the mechanical behavior of the alloy. In the present study, the effect of cold rolling on the microstructure and mechanical properties of Al 0.25CoCrFe 1.25Ni 1.25 high-entropy alloy in the face-centered cubic structure was investigated. With increasing the thickness reduction from cold rolling, the hardness, the yield strength, and the fracture strength increased at the cost of reducing ductility. At the thickness reduction of 80%, the tensile strength (hardness) was 702 MPa (406 MPa), 1.62 (2.43) times that in the as-cast condition. Compared tomore » traditional alloys, Al 0.25CoCrFe 1.25Ni 1.25 has the highest hardening rate with respect to CR thickness reduction. Lastly, the phase relation and the mixing properties of Gibbs free energy, enthalpy and entropy of Al xCoCrFe 1.25Ni 1.25 were predicted using the CALPHAD method.« less

  19. Thermal Effects on a Low Cr Modification of PS304 Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Yanke, Anne M.; DellaCorte, Christopher

    2004-01-01

    PS304 is a high temperature composite solid lubricant coating composed of Ni-Cr, Cr2O3, BaF2-CaF2 and Ag. The effect of reducing chromium content on the formation of voids in the Ni-Cr particles after heat treatment in PS304 coating was investigated. Coatings were prepared with Ni-20Cr or Ni-10Cr powder and in various combinations with the other constituents of PS304 (i.e., chromia, silver and eutectic BaF2-CaF2 powders) and deposited on metal substrates by plasma spray. Specimens were exposed to 650 C for 24 hr or 1090 C for 15 hr and then examined for changes in thickness, coating microstructure and adhesion strength. Specimens with Ni-10Cr generally had less thickness increase than specimens with Ni-20Cr, but there was great variance in the data. Reduction of chromium concentration in Ni-Cr powder tended to reduce the appearance of voids in the Ni-Cr phase after heat exposure. The presence of BaF2-CaF2 resulted in a significant increase in coating adhesion strength after heat treatment, while coatings without BaF2-CaF2 had no significant change. Chemical composition analysis suggested that the void formation was due to oxidation of chromium in the Ni-Cr constituent.

  20. A New Modal Analysis Method to put Constraints on the Aqueous Alteration of CR Chondrites and Estimate the Unaltered CR Composition

    NASA Technical Reports Server (NTRS)

    Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.

    2007-01-01

    CR carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.

  1. Very Long Term Oxidation of Ti-48Al-2Cr-2Nb at 704 C In Air

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Brady, M. P.; MacKay, R. A.; Smith, J. W.

    1997-01-01

    Introduction Titanium aluminides are of great interest for intermediate-temperature (600 C - 850 C) aerospace and power generation applications because of their high specific properties. Replacement of conventional superalloys by titanium aluminides offers the potential of significant weight savings. Extensive development efforts over the past IO years have led to the identification of y (TiAl) + alpha(sub 2) (Ti3Al) alloys, such as the G.E. alloy Ti48Al-2Cr-2Nb (all composition in at. %), which offer a balance of room temperature mechanical properties and high-temperature strength retention. The two phase gamma + alpha(sub 2) class of titanium aluminides also offers superior oxidation and embrittlement resistance compared to the alpha(sub 2) and orthorhombic classes of titanium aluminides. However, environmental durability is still a major concern. Significant progress has recently been made in understanding the fundamental aspects of the oxidation behavior of binary gamma + alpha(sub 2) Ti-Al alloys. However, most of this work has concentrated on short term (less than 1000 hours), high temperature (900 C - 1000 C) exposures. Also little data are available in the literature regarding the oxidation behavior of the quaternary and higher order gamma + alpha(sub 2) engineering alloys. This is especially true for the very long-term, low temperature conditions likely to be experienced during engineering applications. The present work addresses this regime to fill this gap by characterizing the oxidation behavior of Ti48Al-2Cr-2Nb for periods up to 9000 h at 704 C in air.

  2. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affectedmore » by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.« less

  3. Microstructure, mechanical properties and stretch formability of Mg-3Al-0.5Ca-0.2Gd alloy processed at various finish rolling temperatures

    NASA Astrophysics Data System (ADS)

    Kang, Qiang; Jiang, Haitao; Zhang, Yun

    2018-04-01

    Effects of various finish rolling temperatures on the microstructure, texture, mechanical properties and stretch formability of rolled and annealed Mg-3Al-0.5Ca-0.2Gd (wt%) alloy were investigated in this paper, and it was found that compared with grain size and second phase particles, the basal textures, tensile properties and stretch formability Mg-3Al-0.5Ca-0.2Gd alloy are more sensitive to the increasing finishing rolling temperature. For the rolled and annealed Mg-3Al-0.5Ca-0.2Gd alloy, their grains barely grow up and second phase particles are slightly coarsened, while their basal poles are obviously weakened and tilted with increasing finish rolling temperature. Consequently, the weakened and RD-tilted basal textures are beneficial to the gradually improved elongation and stretch formability of Mg-3Al-0.5Ca-0.2Gd alloy. It is investigated that the gradually activated non-basal slips, e. g. 〈c 〉, 〈c + a〉 dislocations due to the increasing finish rolling temperature could contribute to the weakened RD-tilted textures in rolled and annealed Mg-3Al-0.5Ca-0.2Gd alloy.

  4. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  5. Mechanical Properties of High Entropy Alloy Al0.1CoCrFeNi for Peripheral Vascular Stent Application.

    PubMed

    Alagarsamy, Karthik; Fortier, Aleksandra; Komarasamy, Mageshwari; Kumar, Nilesh; Mohammad, Atif; Banerjee, Subhash; Han, Hai-Chao; Mishra, Rajiv S

    2016-12-01

    High entropy alloys (HEAs) are new class of metallic materials with five or more principal alloying elements. Due to this distinct concept of alloying, the HEAs exhibit unique properties compared to conventional alloys. The outstanding properties of HEAs include increased strength, superior wear resistance, high temperature stability, increased fatigue properties, good corrosion, and oxidation resistance. Such characteristics of HEAs have generated significant interest among the scientific community. However, their applications are yet to be explored. This paper discusses the mechanical behavior and microstructure of Al 0.1 CoCrFeNi HEA subjected to thermo-mechanical processing, and its potential application in peripheral vascular stent implants that are prone to high failure rates. Results show that Al 0.1 CoCrFeNi alloy possesses characteristics that compare well against currently used stent materials and it can potentially find use in peripheral vascular stent implants and extend their life-cycle.

  6. Characterisation of the SOFC material, LaCrO 3, using vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Tompsett, G. A.; Sammes, N. M.

    LaCrO 3 is reported to undergo a low to high temperature (HT) phase transition from orthorhombic ( Pnma) to rhombohedral ( R-3 c), at ca. 255 °C. The phases involved in the low temperature phase transition of LaCrO 3 have been determined using Raman spectroscopy at temperatures from -196 to 300 °C. There are nine Raman bands observed from a total of 24 predicted modes, seven of which are assigned from comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, YMnO 3, as follows: 131(B 2g), 150(B 3g), 174(A g), 252(B 1g), 279(A g), 441(A g) and 590(A g) cm -1. A phase transformation was observed at ca. 260 °C from the change in the Raman profile. The high temperature rhombohedral phase of LaCrO 3 had four bands which are assigned as follows: 58(E g), 161(E g), 288(A 1g) and 434(E g, E g) cm -1, from comparison with the Raman profile and relative band positions observed for the isostructural compound, NdAlO 3. The Fourier transform infrared (FTIR) spectrum of LaCrO 3 showed a total of eight bands discernible at room temperature from 25 predicted modes for the orthorhombic structure. The mode assignments were determined by comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, SmAlO 3, as follows: 138(B 2u), 166(B 3u), 197(B 1u), 240(B 3u), 266(B 2u), 332(B 2u), 357(B 2u), 381(B 3u), 425(B 3u), 446(B 1u), 471(B 3u), 493(B 3u), 573(B 1u), 606(B 3u) and 670 (B 1u) cm -1.

  7. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry

    NASA Astrophysics Data System (ADS)

    Grove, Timothy L.; Baker, Michael B.; Kinzler, Rosamond J.

    1984-10-01

    The rate of CaAl-NaSi interdiffusion in plagioclase feldspar was determined under 1 atm anhydrous conditions over the temperature range 1400° to 1000°C in calcic plagioclase (An 80-81) by homogenizing coherent exsolution lamellae. The dependence of the average interdiffusion coefficient on temperature is given by the expression: D˜ = 10.99 ( cm 2/sec) exp (-123.4( kcal/mol)/RT), (T in °K). This value is for diffusion perpendicular to the (03 1¯) interface of the lamellae. CaAl-NaSi interdiffusion is 4 to 5 orders of magnitude slower than oxygen diffusion in the temperature range 1400° to 1200°C and possibly 10 orders of magnitude slower at subsolidus temperatures. The large differences in diffusion rates explain the apparent contradiction posed by the plagioclases of large layered intrusions ( e.g., the Skaergaard), which retain delicate Ca, Na compositional zoning profiles on the micron scale, but have undergone complete oxygen isotopic exchange with heated meteoric groundwater from the surrounding wall rocks. CaAl-NaSi diffusion is slow, the closure temperature is high (within the solidus-liquidus interval), and Ca-Na zoning is preserved. Oxygen diffusion is faster, the closure temperature is lower (350°-400°C) and the feldspars exchange oxygen with the low-temperature hydrothermal fluids. The complex micron-scale oscillatory zones in plagioclase can also be used as cooling rate speedometers for volcanic and plutonic plagioclase. Cooling histories typical of large mafic intrusions ( e.g. the Stillwater) are slow, begin at high initial temperatures (1200°C) and result in homogenization of oscillatory zones on the scale of 10 microns. The oscillatory zones found in the plagioclase of granodioritic plutons are preserved because cooling is initiated at a lower temperature (1000°C) limiting diffusion to submicron length scales despite the slow cooling rate of the intrusion.

  8. Effect of low current density and low frequency on oxidation resistant and coating activity of coated FeCrAl substrate by γ-Al2O3 powder

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Feriyanto, Dafit; Zakaria, Supaat; Sebayang, D.; Rahman, Fakhrurrazi; Jajuli, Afiqah

    2017-09-01

    High oxidation resistant is the needed material properties for material that operates in high temperature such as catalytic converter material. FeCrAl alloy acts as metallic material and is used as substrate material that is coated by ceramic material i.e. γ-Al2O3. The main purpose of this research is to increase oxidation resistant of metallic material as it will help improve the life time of metallic catalytic converter. Ultrasonic technique (UB) and Nickel electroplating technique (EL) were used to achieve the objective. UB was carried out using various time of 1, 1.5, 2, 2.5 and 3 h, in low frequency of 35 kHz and ethanol as the electrolyte. Meanwhile, EL was conducted using various times of 15, 30, 45, 60 and 75 minutes, DC power supply was 1.28A and sulphamate type as the solution. The characterization and analysis were carried out using Scanning Electron Microscopy (SEM) and box furnace at various temperature of 1000, 1100 and 1200 °C. SEM analysis shows the surface morphology of treated and untreated samples. Untreated samples shows finer surface structure as compared to UB and EL samples. It was caused by γ-Al2O3 which was embedded during UB and EL process on the surface of FeCrAl substrate to develop protective oxide layer. The layer was used to protect the substrate from extreme environment condition and temperature operation. Oxidation resistant analysis shows that treated samples had lower mass change as compared to untreated samples. Lowest mass change of treated samples were located at UB 1.5 h and EL at 30 minute with 0.00475 g and 0.00243 g for temperature of 1000 °C, 0.00495 g and 000284 g for temperature of 1100 °C and 0.00519 g and 0.00304 g for temperature 1200 °C, Based on the overall results, it can be concluded that EL 30 minute samples was the appropriate parameter to coat FeCrAl by γ-Al2O3 to develop metallic catalytic converter that is high oxidation resistant in high temperature operation.

  9. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    PubMed

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  10. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    PubMed Central

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  11. Dielectric properties and nonlinear I-V electrical behavior of (Li1+, Al3+) co-doped CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Li; Ni, Qing; Guo, Jianqin; Cao, Ensi; Hao, Wentao; Zhang, Yongjia; Ju, Lin

    2018-06-01

    (Li1+, Al3+) co-doped CaCu3Ti4O12 ceramics (CaCu3-2 x Li x Al x Ti4O12, x = 0.05, 0.1, 0.15) were prepared by a sol-gel method and were sintered at 1020-1080 °C for 8 h to improve the geometric microstructure, dielectric and nonlinear I-V electrical properties. Notably, very high dielectric constant of 1 × 105 with good dielectric-frequency as well as dielectric-temperature stability can be achieved in CaCu2.8Li0.1Al0.1Ti4O12 ceramic sintered at 1060 °C. The average grain sizes, resistivity and the non-Ohmic properties are also improved compared to pure CaCu3Ti4O12. These results indicate that (Li1+, Al3+) co-doping at the Cu2+ site can improve the dielectric properties of CaCu3Ti4O12, supporting the internal barrier layer capacitance effect of Schottky barriers at grain boundaries.

  12. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  13. Mechanism of adaptability for the nano-structured TiAlCrSiYN-based hard physical vapor deposition coatings under extreme frictional conditions

    NASA Astrophysics Data System (ADS)

    Fox-Rabinovich, G. S.; Endrino, J. L.; Aguirre, M. H.; Beake, B. D.; Veldhuis, S. C.; Kovalev, A. I.; Gershman, I. S.; Yamamoto, K.; Losset, Y.; Wainstein, D. L.; Rashkovskiy, A.

    2012-03-01

    Recently, a family of hard mono- and multilayer TiAlCrSiYN-based coatings have been introduced that exhibit adaptive behavior under extreme tribological conditions (in particular during dry ultrahigh speed machining of hardened tool steels). The major feature of these coatings is the formation of the tribo-films on the friction surface which possess high protective ability under operating temperatures of 1000 °C and above. These tribo-films are generated as a result of a self-organization process during friction. But the mechanism how these films affect adaptability of the hard coating is still an open question. The major mechanism proposed in this paper is associated with a strong gradient of temperatures within the layer of nano-scaled tribo-films. This trend was outlined by the performed thermodynamic analysis of friction phenomena combined with the developing of a numerical model of heat transfer within cutting zone based on the finite element method. The results of the theoretical studies show that the major physical-chemical processes during cutting are mostly concentrated within a layer of the tribo-films. This nano-tribological phenomenon produces beneficial heat distribution at the chip/tool interface which controls the tool life and wear behavior.Results of x-ray photoelectron spectroscopy studies indicate enhanced formation of protective sapphire- and mullite-like tribo-films on the friction surface of the multilayer TiAlCrSiYN/TiAlCrN coating. Comprehensive investigations of the structure and phase transformation within the coating layer under operation have been performed, using high resolution transmission electron microscopy, synchrotron radiation technique: x-ray absorption near-edge structure and XRD methods.The data obtained show that the tribo-films efficiently perform their thermal barrier functions preventing heat to penetrate into the body of coated cutting tool. Due to this the surface damaging process as well as non-beneficial phase

  14. Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios

    NASA Astrophysics Data System (ADS)

    Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun

    2017-06-01

    The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.

  15. Corrosion and Mechanical Properties of Al-5 At. Pct Cr Produced by Cryomilling and Subsequent Consolidation at Various Temperatures

    NASA Astrophysics Data System (ADS)

    Esquivel, J.; Darling, K. A.; Murdoch, H. A.; Gupta, R. K.

    2018-04-01

    An Al-5 at. pct Cr alloy was produced by high-energy ball milling at liquid nitrogen temperature followed by consolidation using equal-channel axial extrusion at 200 °C, 300 °C and 450 °C. The microstructure and corrosion response were compared with a cast alloy of the same composition. Rather than the intermetallics expected by the phase diagram and seen in the cast alloy, consolidated HEBM alloys exhibited extended solid solubility of Cr in the aluminum matrix in addition to a finely dispersed Cr-rich phase. This led to improvement in the corrosion behavior as investigated via potentiodynamic polarization and constant immersion tests in NaCl solution. Hardness and tensile tests were performed to evaluate the mechanical properties. The highest consolidation temperature (450 °C) contributed to significant grain growth and Cr diffusion, lessening the beneficial effects of processing with HEBM.

  16. Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction prior to atomic absorption spectrometric determination.

    PubMed

    Altunay, Nail; Yıldırım, Emre; Gürkan, Ramazan

    2018-04-15

    In the study, a simple, and efficient microextraction approach, which is termed as vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction (VA-IL-DLLME), was developed for flame atomic absorption spectrometric analysis of aluminum (Al) and chromium (Cr) in vegetables. The method is based on the formation of anionic chelate complexes of Al(III) and Cr(VI) with o-hydroxy azo dye, at pH 6.5, and then extraction of the hydrophobic ternary complexes formed in presence of cetyltrimethylammonium bromide (CTAB) into a 125 μL volume of 1-butyl-3-methylimidazolium bis(trifluorosulfonyl)imide [C 4 mim][Tf 2 N]) as extraction solvent. Under optimum conditions, the detection limits were 0.02 µg L -1 in linear working range of 0.07-100 µg L -1 for Al(III), and 0.05 µg L -1 in linear working range of 0.2-80 µg L -1 for Cr(VI). After the validation by analysis of a certified reference material (CRM), the method was successfully applied to the determination of Al and Cr in vegetables using standard addition method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  18. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    NASA Astrophysics Data System (ADS)

    He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai

    2013-06-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ' grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  19. High temperature tensile and creep behaviour of low pressure plasma-sprayed Ni-Co-Cr-Al-Y coating alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1986-01-01

    The high temperature tensile and creep behavior of low pressure plasma-sprayed plates of a typical Ni-Co-Cr-Al-Y alloy has been studied. From room temperature to 800 K, the Ni-Co-Cr-Al-Y alloy studied has nearly a constant low ductility and a high strength. At higher temperatures, it becomes weak and highly ductile. At and above 1123 K, the behavior is highly dependent on strain rate and exhibits classic superplastic characteristics with a high ductility at intermediate strain rates and a strain rate sensitivity of about 0.5. At either higher or lower strain rates, the ductility decreases and the strain rate sensitivities are about 0.2. In the superplastic deformation range, the activation energy for creep is 120 + or - 20 kJ/mol, suggesting a diffusion-aided grain boundary sliding mechanism. Outside the superplastic range, the activation energy for creep is calculated to be 290 + or - 20 kJ/mol.

  20. CrAlN coating to enhance the power loss and magnetostriction in grain oriented electrical steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Vishu; Anderson, Philip; Hall, Jeremy

    Grain oriented electrical steels (GOES) are coated with aluminium orthophosphate on top of a forsterite (Mg{sub 2}SiO{sub 4}) layer to provide stress and insulation resistance to reduce the power loss and magnetostriction. In this work Chromium Aluminium Nitride (CrAlN) was coated on GOES samples with electron beam physical vapour deposition and was tested in the single strip and magnetostriction tester to measure the power loss and magnetostriction before and after coating. Power loss was reduced by 2% after coating and 6 % post annealing at 800 °C. For applied compressive stress of 6 MPa, the magnetostrictive strain was zero with themore » CrAlN coating as compared to 22 and 24 μϵ for fully finished GOES and GOES without phosphate coating. The thickness of the coating was found to be 1.9 ± 0.2 μm estimated with Glow Discharge Optical Emission Spectroscopy (GDOES). The magnetic domain imaging showed domain narrowing after coating. The reduction in power loss and magnetostriction was due to the large residual compressive stress and Young’s modulus (270 GPa) of the coating.« less

  1. Synthesis and Thermochromic Properties of Cr-Doped Al2O3 for a Reversible Thermochromic Sensor

    PubMed Central

    Nguyen, Duy Khiem; Lee, Heesoo; Kim, In-Tae

    2017-01-01

    An inorganic thermochromic material based on Cr-doped Al2O3 is synthesized using a solid-state method. The crystal structure, chemical composition, and morphology of the synthesized material are analyzed using X-ray diffraction, scanning electron microscopy coupled with an energy-dispersive X-ray spectrometer, and Fourier transform infrared (FT-IR) spectroscopy. The color performances of the synthesized material are analyzed using a UV-VIS spectrometer. Finally, the thermochromism exhibited by the powdered samples at high temperatures is investigated. The material exhibits exceptional thermochromic property, transitioning from pink to gray or green in a temperature range of 25–600 °C. The change in color is reversible and is dependent on the surrounding temperature and chromium concentration; however, it is independent of the exposure time. This novel property of Cr-doped Al2O3 can be potentially employed in reversible thermochromic sensors that could be used not only for warning users of damage due to overheating when the environmental temperature exceeds certain limits, but also for detecting and monitoring the temperature of various devices, such as aeronautical engine components, hotplates, and furnaces. PMID:28772834

  2. Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2018-06-01

    FeCrAl and Mo layers were cold-sprayed onto a Zr surface, with the Mo layer introduced between the FeCrAl coating and the Zr matrix preventing high-temperature interdiffusion. Microstructural characterization of the first-deposited Mo layer and the Zr matrix immediately below the Mo/Zr interface was performed using transmission electron microscopy, and near-interface elemental distributions were obtained using energy-dispersive X-ray spectroscopy. The deformation of the coated Mo powder induced the formation of microbands and mechanically interlocked nanoscale structures. The mechanical behavior of Zr with a coating layer was compared with those characteristic of conventional Zr samples. The coated sample showed smaller strength reduction in the test conducted at elevated temperature. The hardness and fracture morphology of the Zr matrix near the interface region were investigated to determine the effect of impacting Mo particles on the matrix microstructure. The enhanced hardness and cleavage fracture morphology of the Zr matrix immediately below the Mo/Zr interface indicated the occurrence of localized deformation owing to Mo particle impact.

  3. Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle recorded by coexisting Al-rich and Cr-rich chromitites in the Purang peridotite massif, SW Tibet (China)

    NASA Astrophysics Data System (ADS)

    Xiong, Fahui; Yang, Jingsui; Xu, Xiangzhen; Kapsiotis, Argyrios; Hao, Xiaolin; Liu, Zhao

    2018-06-01

    The Purang harzburgite massif in SW Tibet (China) hosts abundant chrome ore deposits. Ores consist of 20 to >95% modal chromian spinel (Cr-spinel) with mylonitic fabric in imbricate shaped pods. The composition of Cr-spinel in these ores ranges from Al-rich [Cr#Sp or Cr/(Cr + Al) × 100 = 47.60-57.56] to Cr-rich (Cr#Sp: 62.55-79.57). Bulk platinum-group element (PGE) contents of chromitites are also highly variable ranging from 17.5 ppb to ∼2.5 ppm. Both metallurgical and refractory chromitites show a general enrichment in the IPGE (Os, Ir and Ru) with respect to the PPGE (Rh, Pt and Pd), resulting mostly in right-sloping primitive mantle (PM)-normalized PGE profiles. The platinum-group mineral (PGM) assemblages of both chromitite types are dominated by heterogeneously distributed, euhedral Os-bearing laurite inclusions in Cr-spinel. The Purang chromitites have quite inhomogeneous 187Os/188Os ratios (0.12289-0.13194) that are within the range of those reported for mantle-hosted chromitites from other peridotite massifs. Geochemical calculations demonstrate that the parental melts of high-Cr chromitites were boninitic, whereas those of high-Al chromitites had an arc-type tholeiitic affinity. Chromite crystallization was most likely stimulated by changes in magma compositions due to melt-peridotite interaction, leading to the establishment of a heterogeneous physicochemical environment during the early crystallization of the PGM. The highly variable PGE contents, inhomogeneous Os-isotopic compositions and varying Cr#Sp ratios of these chromitites imply a polygenetic origin for them from spatially distinct melt inputs. The generally low γOs values (<1) of chromitites indicate that their parental melts originated within different sections of a heterogeneously depleted mantle source region. These melts were most likely produced in the mantle wedge above a downgoing lithospheric slab.

  4. Cyclic Corrosion and Chlorination of an FeCrAl Alloy in the Presence of KCl

    DOE PAGES

    Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; ...

    2015-05-30

    The KCl-induced corrosion of the FeCrAl alloy Kanthal® APMT in an O 2 + N 2 + H 2O environment was studied at 600 °C. The samples were pre-oxidized prior to exposure in order to investigate the protective nature of alumina scales in the present environment. The microstructure and composition of the corroded surface was investigated in detail. Corrosion started at flaws in the pre-formed α-alumina scales, i.e. α-alumina was protective in itself. Consequently, KCl-induced corrosion started locally and, subsequently, spread laterally. An electrochemical mechanism is proposed here by which a transition metal chloride forms in the alloy and Kmore » 2CrO 4 forms at the scale/gas interface. Scale de-cohesion is attributed to the formation of a sub-scale transition metal chloride.« less

  5. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF6 crystal

    NASA Astrophysics Data System (ADS)

    Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka

    2015-06-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF6 crystal. Eu doped and Eu, Y co-doped LiCaAlF6 were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.

  6. Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Deng, Lin; Shi, Zhou; Wang, Li; Zhou, Shiqing

    2017-05-01

    A novel magnetic NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite (NiFe2O4/ZnAl-EDTA LDH) was prepared through modified coprecipitation method and employed for adsorptive removal of Cr(VI) from aqueous solution. The adsorbents were characterized using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). Factors affecting the Cr(VI) adsorption, such as initial solution pH, adsorbent dosage, contact time, initial Cr(VI) concentration, temperature and coexisting ions, were studied systematically. Experiments results show that the magnetic NiFe2O4/ZnAl-EDTA LDH exhibits high adsorption efficiency within a wide pH range of 3.0-7.0 (R>80% at Cr(VI) concentration 50 mg L-1, contact time 360 min, and adsorbent dosage 2 g/L) and quick separation property. The adsorption process is fitted well with the Langmuir isotherm and pseudo-second-order kinetic model. The maximum theoretical adsorption capacity is found to be 77.22 mg g-1 at pH 6.0 and 318 K. The positive ΔH value (2.907 kJ mol-1) and negative ΔG value (-4.722 kJ mol-1) at 298-318 K reveals that the adsorption process is feasible, spontaneous and endothermic. Coexisting anions (PO43-, SO42-, CO32-, HCO3-, Cl-, and NO3-) have no significant effect on Cr(VI) removal. The mechanism study indicates that the adsorption of Cr(VI) onto NiFe2O4/ZnAl-EDTA LDH mainly involves electrostatic attraction and ion exchange interaction. It is interesting to note that a proportion of Cr(VI) adsorbed on the adsorbent surface are reduced to Cr(III) during the adsorption process. Results from this study demonstrate the potential utility of the magnetic NiFe2O4/ZnAl-EDTA LDH that could be developed into a viable technology for efficient removal of Cr(VI) from aqueous solution.

  7. [Treatment of wastewater containing Cr(VI) by LDH synthesizing in situ].

    PubMed

    Chen, Tian-hu; Feng, You-liang; Xu, Hui-fang; Peng, Shu-chuan; Huang, Chuan-hui; Tang, Shu-pei

    2004-03-01

    The objective of this work was to investigate the efficiency and factors impacting of removal Cr(VI) from wastewater by layer double hydroxide synthesizing in situ. Principle of the method may be described as follow: Mg2+ and Al3+ hydrolysis and forms Mg/Al-LDH by adding Mg2+, Al3+ and NaOH into wastewater containing Cr(VI), Cr(VI) anions are selectively intercalated into interlayer of LDH to balance positive structural charge. While Mg2+ and Al3+ co-precipitates and forms LDH, the Cr(VI) in wastewater is removal by settle of LDH synthesizing in situ, which are confirmed by analysis of X-ray diffraction on settle and chemical analysis on aqueous. The results indicate that factors of impacting on efficiency of removal Cr(VI) include in amount of adding Mg2+ and Al3+, Mg/Al ratio, pH and concentration of Cr(VI) in wastewater. The maximal removal efficiency of Cr(VI) can be reached when pH values are between 8.5 and 9, and Mg/Al ratios are between 1:1 and 2:1, meanwhile, Mg and Al added can be taken good use of. This technology has present extraordinary efficiency of wastewater treatment.

  8. Low-Temperature Sintering of AlN Ceramics by Sm2O3-Y2O3-CaO Sintering Additives Formed via Decomposition of Nitrate Solutions

    NASA Astrophysics Data System (ADS)

    Zhan, Jun; Cao, Ye; Zhang, Hao; Guo, Jun; Zhang, Jianhua; Geng, Chunlei; Shi, Changdong; Cui, Song; Tang, Wenming

    2017-01-01

    The Sm, Y and Ca anhydrous nitrates were mixed with the AlN powder in ethanol and then decomposed into the Sm2O3-Y2O3-CaO sintering additives via calcining. Low-temperature sintering of the AlN ceramics was carried out at temperature range from 1675 to 1750 °C. Effects of the composition and adding amount of the sintering additives on the phases, microstructures and properties of the AlN ceramics were investigated. During sintering the AlN ceramics, main secondary phases of CaYAl3O7 and CaSmAl3O7 form. The relative density, bending strength and thermal conductivity of the AlN ceramics increase with the increase in the rare-earth oxides in them. The thermal conductivity of the sintered AlN ceramics is also greatly affected by the distribution of the secondary phases. As sintered at 1750 °C, the AlN ceramics by adding the sintering additives of 2 wt.% Sm2O3, 2 wt.% Y2O3 and 1 wt.% CaO formed via decomposition of their nitrates is fully dense and have the optimal bending strength and thermal conductivity of 402.1 MPa and 153.7 W/(m K), respectively.

  9. A New Modal Analysis Method to put Constraints on the Aqueous Alteration of CR Chondrites and Estimate the Unaltered CR Composition

    NASA Technical Reports Server (NTRS)

    Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.

    2007-01-01

    carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.

  10. Magnetic Nature of the CrIII-LnIII Interactions in [CrIII2LnIII3] Clusters with Slow Magnetic Relaxation.

    PubMed

    Zhao, Xiao-Qing; Xiang, Shuo; Wang, Jin; Bao, Dong-Xu; Li, Yun-Chun

    2018-02-01

    Two 3 d -4 f hetero-metal pentanuclear complexes with the formula {[Cr III 2 Ln III 3 L 10 (OH) 6 (H 2 O) 2 ]Et 3 NH} [Ln=Tb ( 1 ), Dy ( 2 ); HL=pivalic acid, Et 3 N=triethylamine] have been produced. The metal core of each cluster is made up of a trigonal bipyramid with three Ln III ions (plane) and two Cr III ions (above and below) held together by six μ 3 -OH bridges. Also reported with this series is the diamagnetic Cr III -Y III analogue ( 3 ). Fortunately, we successfully prepared Al III -Ln III analogues with the formula {[Al III 2 Ln III 3 L 10 (OH) 6 (H 2 O) 2 ]Et 3 NH⋅H 2 O} [Ln=Tb ( 4 ), Dy ( 5 )], containing diamagnetic Al III ions, which can be used to evaluate the Cr III -Ln III magnetic nature through a diamagnetic substitution method. Subsequently, static (dc) magnetic susceptibility studies reveal dominant ferromagnetic interactions between Cr III and Ln III ions. Dynamic (ac) magnetic susceptibility studies show frequency-dependent out-of-phase ( χ '') signals for [Cr III 2 Tb III 3 ] ( 1 ), [Cr III 2 Dy III 3 ] ( 2 ), and [Al III 2 Dy III 3 ] ( 5 ), which are derived from the single-ion behavior of Ln III ions and/or the Cr III -Ln III ferromagnetic interactions.

  11. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  12. High strength kiloampere Bi 2Sr 2CaCu 2O x cables for high-field magnet applications

    DOE PAGES

    Shen, Tengming; Li, Pei; Jiang, Jianyi; ...

    2015-04-17

    Multifilamentary Ag-sheathed Bi 2Sr 2CaCu 2O x (Bi-2212) wire can carry sufficient critical current density J c for the development of powerful superconducting magnets. But, the range of its applications is limited by the low mechanical strength of the Ag/Bi-2212 strand. A potential solution is to cable Ag/Bi-2212 wire with high-strength materials that are compatible with the Bi-2212 heat treatment in an oxygen atmosphere. Past attempts have not always been successful, because the high-strength materials reacted with Bi-2212 wires, significantly reducing their J c. We examined the nature of reactions occurring when Ag/Bi-2212 wires are heat-treated in direct contact withmore » several commonly used high-strength alloys and a new Fe-Cr-Al alloy. INCONEL X750 and INCONEL 600 resulted in significant J c loss, whereas Ni80-Cr caused little or no J c loss; however, all of them formed chromium oxide that subsequently reacted with silver, creating cracks in the silver sheath. We found that Fe-Cr-Al did not show significant reactions with Ag/Bi-2212 strands. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) examinations revealed that the Fe-Cr-Al alloy benefits from the formation of a uniform, crack-free, continuous alumina layer on its surface that does not react with Ag and that helps minimize the Cu loss found with INCONEL X750 and INCONEL 600. We then fabricated prototype 6-around-1 cables with six Bi-2212 strands twisted and transposed around an Fe-Cr-Al alloy core coated with TiO 2. After standard 1 bar melt processing, the cable retained 100% of the total current-carrying capability of its strands, and, after a 10 bar overpressure processing, the cable reached a total current of 1025 A at 4.2 K and 10 T. Tensile tests showed that Fe-Cr-Al becomes brittle after being cooled to 4.2 K, whereas INCONEL X750 remains ductile and retains a modulus of 183 GPa. Finally. we proposed new cable designs that take advantage of the chemical compatibility of Fe-Cr-Al

  13. High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.

    2009-03-01

    Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of

  14. Crystallization Behavior of the CaO-Al2O3-MgO System Studied with a Confocal Laser Scanning Microscope

    NASA Astrophysics Data System (ADS)

    Jung, Sung Suk; Sohn, Il

    2012-12-01

    The crystallization behavior of a calcium-aluminate system with various MgO content from 2.5 to 7.5 wt pct and CaO/Al2O3 ratios between 0.8 and 1.2 has been examined using a confocal laser scanning microscope (CLSM). CCT (continuous cooling transformation) and time temperature transformation (TTT) diagrams were constructed to identify the primary crystal phase of slag at different compositions and at cooling rates between 25 and 800 K/minutes. In the slag at a CaO/Al2O3 ratio of 1.0, crystallization temperature increased during isothermal and continuous cooling with higher MgO content, and the shortest incubation time was observed at 5 wt pct MgO. When MgO content was fixed to be 5 wt pct, crystallization temperature increased with lower CaO/Al2O3 ratio. According to the slag composition, cooling rates and temperature, the primary phase could be CA, or C5A3, or C3A, or C3MA2, or MgO, and the crystal morphology changes from dendrites to faceted crystals to columnar crystals in this composition range.

  15. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    NASA Astrophysics Data System (ADS)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  16. Trace element and petrologic clues to the formation of forsterite-bearing Ca-Al-rich inclusions in the Allende meteorite

    NASA Astrophysics Data System (ADS)

    Wark, D. A.; Boynton, W. V.; Keays, R. R.; Palme, H.

    1987-03-01

    This work presents new trace element and petrographic data for three forsterite-bearing, Ca-Al-rich inclusions from the Allende meteorite: TE, 818a, and 110-A. Such inclusions form a continuum with Type B1 and B2 Ca-Al-rich inclusions (CAIs), and the authors refer to them as "Type B3" CAIs. Textures, mineral chemistries, crystal-chemically fractionated REE patterns, and other properties suggest that Type B3 crystallized from partly molten evaporative residues. They also present evidence that 818a was strongly re-heated and modified in the nebula after its initial crystallization: it consists of a core of coarse-grained Ti-Al-pyroxene (Tpx), forsterite, spinel and metal grains and a thick, surrounding mantle of melilite.

  17. A molecular dynamics study of the atomic structure of (CaO)x(Al2O3)1-x glass with x = 0.625 close to the eutectic

    NASA Astrophysics Data System (ADS)

    Thomas, B. W. M.; Mead, R. N.; Mountjoy, G.

    2006-05-01

    Aluminate glasses are difficult to prepare as they do not contain traditional network formers, but they are promising materials for optical applications. The atomic structure of calcium aluminate glasses has been studied using several experimental techniques. The current study uses molecular dynamics to obtain a model of a (CaO)0.625(Al2O3)0.375 glass close to the eutectic. The glass consists of a tetrahedral alumina network with average network polymerization \\langle Q^{n}\\rangle of n = 3.3. Ca acts as a network modifier with average coordination of 6.2. Ca is typically coordinated to three bridging oxygens (Ob) and three non-bridging oxygens (Onb), with Ca-Onb bonds noticeably shorter than the Ca-Ob bonds. A new method of analysing modifier cation coordination is presented, which specifically shows the distribution of Ca coordination NCaO in terms of combinations of NCaOb and NCaOnb. Ob is most often coordinated to two Al plus two Ca, and Onb is most often coordinated to one Al plus three Ca. The typical coordinations of Ca, Ob, and Onb all have a noticeable similarity to those for the 5CaO·3Al2O3 crystal. The Ca-Ca distribution shows a clear similarity to that for (CaO)0.5(SiO2)0.5 glass, and this is attributed to the equal atomic number densities of Ca in these glasses.

  18. Thermal Shock and Oxidation Behavior of HiPIMS TiAlN Coatings Grown on Ti-48Al-2Cr-2Nb Intermetallic Alloy

    PubMed Central

    Badini, Claudio; Deambrosis, Silvia M.; Padovano, Elisa; Fabrizio, Monica; Ostrovskaya, Oxana; Miorin, Enrico; D’Amico, Giuseppe C.; Montagner, Francesco; Biamino, Sara; Zin, Valentina

    2016-01-01

    A High Power Impulse Magnetron Sputtering (HiPIMS) method for depositing TiAlN environmental barrier coatings on the surface of Ti-48Al-2Cr-2Nb alloy was developed in view of their exploitation in turbine engines. Three differently engineered TiAlN films were processed and their performance compared. Bare intermetallic alloy coupons and coated specimens were submitted to thermal cycling under oxidizing atmosphere up to 850 °C or 950 °C, at high heating and cooling rates. For this purpose, a burner rig able to simulate the operating conditions of the different stages of turbine engines was used. Microstructures of the samples were compared before and after each test using several techniques (microscopy, XRD, and XPS). Coating-intermetallic substrate adhesion and tribological properties were investigated too. All the TiAlN films provided a remarkable increase in oxidation resistance. Good adhesion properties were observed even after repeated thermal shocks. HiPIMS pretreatments of the substrate surfaces performed before the coating deposition significantly affected the oxidation rate, the oxide layer composition and the coating/substrate adhesion. PMID:28774082

  19. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, Following Extended Aging in Air at 300 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Li, Nan; Parker, Stephen S.; Wood, Elizabeth S.; Nelson, Andrew T.

    2018-07-01

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high-temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21 wt pct Cr-5 wt pct Al-3 wt pct Mo (Kanthal APMT). Aging treatments were performed for 100 to 1000 hours in stagnant air at 300 °C, 400 °C, 500 °C, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  20. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, Following Extended Aging in Air at 300 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Li, Nan; Parker, Stephen S.; Wood, Elizabeth S.; Nelson, Andrew T.

    2018-05-01

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high-temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21 wt pct Cr-5 wt pct Al-3 wt pct Mo (Kanthal APMT). Aging treatments were performed for 100 to 1000 hours in stagnant air at 300 °C, 400 °C, 500 °C, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  1. Effects of X-ray irradiation on the Eu3+ → Eu2+ conversion in CaAl2O4 phosphors

    NASA Astrophysics Data System (ADS)

    Gomes, Manassés A.; Carvalho, Jéssica C.; Andrade, Adriano B.; Rezende, Marcos V.; Macedo, Zélia S.; Valerio, Mário E. G.

    2018-01-01

    This paper reports structural and luminescence properties of Eu-doped CaAl2O4 produced by an alternative sol-gel method using coconut water. Results of differential thermal analysis (DTA), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) allowed us to identify the best synthesis conditions for sample preparation. Simultaneous measurements of X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) were also performed in the X-ray energy range of the Eu LIII edge. Results from photoluminescence (PL) showed only the characteristic Eu3+ emission. However, radioluminescence emission spectra from Eu-doped CaAl2O4 shows a process of conversion of Eu3+ to Eu2+, which is induced by X-ray irradiation and is dependent on the radiation dose energy. X-ray absorption near edge structure (XANES) measurements corroborate Eu reduction due to irradiation, showing that only the Eu3+ ion is present in stable form in the CaAl2O4.

  2. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, Robert; Polcik, Peter; Anders, André

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  3. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE PAGES

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  4. Unusual Oxidative Limitations for Al-MAX Phases

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2017-01-01

    Alumina-forming MAX phases are well-known for their excellent oxidation resistance, rivaling many metallic NiAl, NiCrAl, and FeCrAl counterparts and with upper temperature capability possible to approximately1400C. However a number of limitations have been emerging that need to be acknowledged to permit robust performance in demanding applications. Ti2AlC and Ti3AlC2 possess excellent scale adhesion, cyclic oxidation/moisture/volatility resistance, and TBC compatibility. However they are very sensitive to Al content and flux in order to maintain an exclusive Al2O3 scale without runaway oxidation of ubiquitous TiO2 transient scales. Accelerated oxidation has been shown to occur for Al-depleted, damaged, or roughened surfaces at temperatures less than 1200C. Conversely, Cr2AlC is less sensitive to transients, but exhibits volatile losses at 1200C or above if common Cr7C3 impurity phases are present. Poor scale adhesion is exhibited after oxidation at 1150C or above, where spallation occurs at the Cr7C3 (depletion zone) interface. Delayed spallation is significant and suggests a moisture-induced phenomenon similar to non-adherent metallic systems. Re-oxidation of this surface does not reproduce the initial pure Al2O3 behavior, but initiates a less-protective scale. Cr2AlC has also been shown to have good long term bonding with superalloys at 800C, but exhibits significant Beta-NiAl + Cr7C3 diffusion zones at 1100C and above. This may set limits on Cr2AlC as a high temperature TBC bond coat on Ni-based superalloys, while improving corrosion resistance in lower temperature applications.

  5. RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers.

    PubMed

    Han, Bin; Wang, Zesong; Devi, Neena; Kondamareddy, K K; Wang, Zhenguo; Li, Na; Zuo, Wenbin; Fu, Dejun; Liu, Chuansheng

    2017-12-01

    (Ti, Al)N/MoN and CrN/MoN multilayered films were synthesized on Si (100) surface by multi-cathodic arc ion plating system with various bilayer periods. The elemental composition and depth profiling of the films were investigated by Rutherford backscattering spectroscopy (RBS) using 2.42 and 1.52 MeV Li 2+ ion beams and different incident angles (0°, 15°, 37°, and 53°). The microstructures of (Ti, Al)N/MoN multilayered films were evaluated by X-ray diffraction. The multilayer periods and thickness of the multilayered films were characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and then compared with RBS results.

  6. Three-dimensional heat transfer effects during the growth of LiCaAlF 6 in a modified Bridgman furnace

    NASA Astrophysics Data System (ADS)

    Brandon, Simon; Derby, Jeffrey J.; Atherton, L. Jeffrey; Roberts, David H.; Vital, Russel L.

    1993-09-01

    A novel process modification, the simultaneous growth of three cylindrical Cr:LiCaAlf 6 (Cr:LiCAF) crystals grown from a common seed in a vertical Bridgman furnace of rectangular cross section, is assessed using computational modeling. The analysis employs the FIDAP finite-element package and accounts for three-dimensional, steady-state, conductive heat transfer throughout the system. The induction heating system is rigorously simulated via solution of Maxwell's equations. The implementation of realistic thermal boundary conditions and furnace details is shown to be important. Furnace design features are assessed through calculations, and simulations indicate expected growth conditions to be favorable. In addition, the validity of using ampoules containing "dummy" charges for experimental furnace characterization measurements is examined through test computations.

  7. Magnetic Nature of the CrIII–LnIII Interactions in [CrIII 2LnIII 3] Clusters with Slow Magnetic Relaxation

    PubMed Central

    Xiang, Shuo; Wang, Jin; Bao, Dong‐Xu; Li, Yun‐Chun

    2018-01-01

    Abstract Two 3d‐4f hetero‐metal pentanuclear complexes with the formula {[CrIII 2LnIII 3L10(OH)6(H2O)2]Et3NH} [Ln=Tb (1), Dy (2); HL=pivalic acid, Et3N=triethylamine] have been produced. The metal core of each cluster is made up of a trigonal bipyramid with three LnIII ions (plane) and two CrIII ions (above and below) held together by six μ 3‐OH bridges. Also reported with this series is the diamagnetic CrIII–YIII analogue (3). Fortunately, we successfully prepared AlIII–LnIII analogues with the formula {[AlIII 2LnIII 3L10(OH)6(H2O)2]Et3NH⋅H2O} [Ln=Tb (4), Dy (5)], containing diamagnetic AlIII ions, which can be used to evaluate the CrIII–LnIII magnetic nature through a diamagnetic substitution method. Subsequently, static (dc) magnetic susceptibility studies reveal dominant ferromagnetic interactions between CrIII and LnIII ions. Dynamic (ac) magnetic susceptibility studies show frequency‐dependent out‐of‐phase (χ′′) signals for [CrIII 2TbIII 3] (1), [CrIII 2DyIII 3] (2), and [AlIII 2DyIII 3] (5), which are derived from the single‐ion behavior of LnIII ions and/or the CrIII–LnIII ferromagnetic interactions. PMID:29435404

  8. Micelle-Assisted Synthesis of Al2O3 ·CaO Nanocatalyst: Optical Properties and Their Applications in Photodegradation of 2,4,6-Trinitrophenol

    PubMed Central

    Imtiaz, Ayesha; Khaleeq-ur-rahman, Muhammad; Adnan, Rohana

    2013-01-01

    Calcium oxide (CaO) nanoparticles are known to exhibit unique property due to their high adsorption capacity and good catalytic activity. In this work the CaO nanocatalysts were prepared by hydrothermal method using anionic surfactant, sodium dodecyl sulphate (SDS), as a templating agent. The as-synthesized nanocatalysts were further used as substrate for the synthesis of alumina doped calcium oxide (Al2O3 ·CaO) nanocatalysts via deposition-precipitation method at the isoelectric point of CaO. The Al2O3 ·CaO nanocatalysts were characterized by FTIR, XRD, TGA, TEM, and FESEM techniques. The catalytic efficiencies of these nanocatalysts were studied for the photodegradation of 2,4,6-trinitrophenol (2,4,6-TNP), which is an industrial pollutant, spectrophotometrically. The effect of surfactant and temperature on size of nanocatalysts was also studied. The smallest particle size and highest percentage of degradation were observed at critical micelle concentration of the surfactant. The direct optical band gap of the Al2O3 ·CaO nanocatalyst was found as 3.3 eV. PMID:24311980

  9. Identification of Cr valence states in Cr and Nd co-doped Lu3Al5O12 laser ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Pande; Jiang, Benxue; Fan, Jintai; Mao, Xiaojian; Zhang, Long

    2017-09-01

    Cr and Nd co-doped laser ceramics, as the potential gain materials in inertial confinement fusion (ICF), have been widely investigated. And the study on valence states of chromium ions is important. The effects of sintering additives and annealing atmosphere on the valence state of chromium were studied in detail, and the results shown that the Cr valence states were demonstrated to be Cr2+ and Cr3+ ions in HIP-sintered Cr(0.2 at.%), Nd(0.8 at.%): LuAG laser ceramics. And the intensity of the near-infrared absorption band caused by Cr2+ ions was attenuated with the decreasing SiO2 concentration and increasing MgO amount. The near-infrared absorption could be eliminated by annealing in air. And the transformation of valence states of Cr ions in the Cr,Nd:LuAG ceramics were also confirmed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.

  10. Removal of Cr(VI) from groundwater by Fe(0)

    NASA Astrophysics Data System (ADS)

    Gao, Yanjiao; Liu, Rui

    2017-11-01

    This research was conducted to investigate the treatment of hexavalent chromium (Cr(VI)) by iron powder (Fe(0)) columns of simulated permeable reactive barriers with and without calcium carbonate (CaCO3). Two columns filled with Fe(0) were used as Cr(VI) removal equipment running at a flow velocity of 10 ml/min at room temperature. After 200 days running of the two columns, the results showed that Fe(0) was an effective material for Cr(VI) reduction with an average removal rate of above 84.6%. The performance of Column 2 with CaCO3 was better than Column 1 without CaCO3 in terms of average Cr(VI) removal rate. The presence of CaCO3 buffered the increasing pH caused by Fe(0) corrosion in Column 2 and enhanced the removal rate of Column 2. Scanning Electron Microscopy (SEM) images of Fe(0) in the three stages of running of the two columns illustrated that the coat layer of Column 1 was a little thicker than that of Column 2. Energy-dispersive spectrometry (EDS) results showed that the surface of Fe(0) of Column 2 contained more chromium elements. Raman spectroscopy found that all iron oxide was generated on the Fe(0) surface of Column 1 and Column 2 and chromium class objects were only detected on Fe(0) surface in Column 2.

  11. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  12. Second Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori

    2016-12-30

    The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.

  13. Dielectric Properties of Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC)-CaCu3Ti4O12 (CCTO) Composite

    NASA Astrophysics Data System (ADS)

    Mallmann, E. J. J.; Silva, M. A. S.; Sombra, A. S. B.; Botelho, M. A.; Mazzetto, S. E.; de Menezes, A. S.; Almeida, A. F. L.; Fechine, P. B. A.

    2015-01-01

    The main object of this work is to study two materials with giant dielectric constants: CaCu3Ti4O12 (CCTO) and Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC). CBTC1- x -CCTO x composites were also obtained to create a new dielectric material with dielectric properties between these two phases. Structural properties were studied by x-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and dielectric measurements. CCTO showed a cubic phase and CBTC an orthorhombic phase. An interesting result was that the dielectric constant ( K) did not follow the rule of the mixture of Lichtnecker, and this happened due to the presence of other phases of its crystalline structure, which decreases the value of K when compared to the predicted values of Lichtnecker. It was also found that the dielectric properties of the composite are very promising for use in microelectronics, according to the miniaturization factor, which is crucial for those applications.

  14. Vitality and chemistry of roots of red spruce in forest floors of stands with a gradient of soil Al/Ca ratios in the northeastern United States

    USGS Publications Warehouse

    Wargo, P.M.; Vogt, K.; Vogt, D.; Holifield, Q.; Tilley, J.; Lawrence, G.; David, M.

    2003-01-01

    Number of living root tips per branch, percent dead roots, percent mycorrhizae and mycorrhizal morphotype, response of woody roots to wounding and colonization by fungi, and concentrations of starch, soluble sugars, phenols, percent C and N and C/N ratio, and Al Ca, Fe, K, Mg, Mn, and P were measured for 2 consecutive years in roots of red spruce (Picea rubens Sarg.) in stands in the northeastern United States (nine in 1993 and two additional in 1994) dominated by red spruce and with a gradient of forest floor exchangeable Al/Ca ratios. Root vitality was measured for nonwoody and coarse woody roots; chemical variables were measured for nonwoody (<1 mm), fine woody (1 to <2 mm), and coarse woody (2 to <5 mm) roots. There were significant differences among sites for all variables, particularly in 1993, although few were related to the Al/Ca ratio gradient. Percent mycorrhizae decreased, while some morphotypes increased or decreased as the Al/Ca ratio increased. In nonwoody roots, N increased as the Al/Ca ratio increased. Most sampled trees appeared to be in good or fair health, suggesting that an adverse response of these root variables to high Al concentrations may be apparent only after a significant change in crown health.

  15. Experimental study on the relationship between the mineral production capability and the physiochemical properties in the coproduction of Q phase-3CaO·3Al2O3·CaSO4 cement clinker.

    PubMed

    He, Chao; Tian, Chaochao; Li, Gang; Mei, Yahe; Zhang, Quanguo; Jiao, Youzhou

    2018-01-01

    A coproduction tests of quaternary (Q) phase(6CaO·4Al2O3·MgO·SiO2) -3CaO·3Al2O3·CaSO4 cement clinker and an experimental study on the relationship between the mineral production capability and the physiochemical properties are conducted in a two-stage multiphase reaction test bed with Changguang coal. X-ray diffractometer (XRD) analyses are performed on the coproduction clinker samples. The results demonstrate that, with the reduction in particle sizes of the coal powder and the additives and expanded screening level differences between them, both the proportion of Q phase and the mass of 3CaO·3Al2O3·CaSO4 in the clinker increase accordingly. When mixed coal powder particles are prepared through reducing particle sizes and expanding screening level differences between coal powder and additives, the additives CaO and MgO are more likely to be enclosed by coal powder to form globular polymerized particles. In addition, this preparation aids in polymerization and promotes even distribution of CaO, MgO and coal minerals, thus facilitating clinker mineral formation reactions of inorganic substances in the mixed coal powder. Target minerals, such as 2CaO·SiO2 and Q phase, are found in both industrial high-calcium limestone and low-calcium limestone coproduction clinker samples. A diffraction peak of free CaO is also evident in both samples. Compared with a coproduction clinker sample of high-calcium limestone, that of low-calcium limestone exhibits higher diffraction peaks for 2CaO·SiO2 and Q phase. With the current state of the art, it is not yet the optimum choice to substitute CaCO3 for CaO in Q-phase cement clinker coproduction. Before the technology matures and gains practical application, further study on the form and the mixing process of calcium-based additives for cement clinker coproduction will be required.

  16. Experimental study on the relationship between the mineral production capability and the physiochemical properties in the coproduction of Q phase-3CaO·3Al2O3·CaSO4 cement clinker

    PubMed Central

    Tian, Chaochao; Li, Gang; Mei, Yahe; Zhang, Quanguo; Jiao, Youzhou

    2018-01-01

    A coproduction tests of quaternary (Q) phase(6CaO·4Al2O3·MgO·SiO2) -3CaO·3Al2O3·CaSO4 cement clinker and an experimental study on the relationship between the mineral production capability and the physiochemical properties are conducted in a two-stage multiphase reaction test bed with Changguang coal. X-ray diffractometer (XRD) analyses are performed on the coproduction clinker samples. The results demonstrate that, with the reduction in particle sizes of the coal powder and the additives and expanded screening level differences between them, both the proportion of Q phase and the mass of 3CaO·3Al2O3·CaSO4 in the clinker increase accordingly. When mixed coal powder particles are prepared through reducing particle sizes and expanding screening level differences between coal powder and additives, the additives CaO and MgO are more likely to be enclosed by coal powder to form globular polymerized particles. In addition, this preparation aids in polymerization and promotes even distribution of CaO, MgO and coal minerals, thus facilitating clinker mineral formation reactions of inorganic substances in the mixed coal powder. Target minerals, such as 2CaO·SiO2 and Q phase, are found in both industrial high-calcium limestone and low-calcium limestone coproduction clinker samples. A diffraction peak of free CaO is also evident in both samples. Compared with a coproduction clinker sample of high-calcium limestone, that of low-calcium limestone exhibits higher diffraction peaks for 2CaO·SiO2 and Q phase. With the current state of the art, it is not yet the optimum choice to substitute CaCO3 for CaO in Q-phase cement clinker coproduction. Before the technology matures and gains practical application, further study on the form and the mixing process of calcium-based additives for cement clinker coproduction will be required. PMID:29634732

  17. Platelet aggregation caused by Carybdea rastonii toxins (CrTX-I, II and III) obtained from a jellyfish, Carybdea rastonii.

    PubMed

    Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T

    1986-05-01

    The pharmacological mechanisms of platelet aggregation induced by highly toxic proteins (CrTX-I, CrTX-II, and CrTX-III) obtained from tentacles of a jellyfish, Carybdea rastonii, were investigated. When the partially purified toxin (pCrTX) and CrTXs were added to the citrated platelet-rich plasma (PRP), aggregation was produced in a concentration-dependent manner. The activity of CrTXs was approximately 100 times more potent than pCrTX. The CrTXs-induced aggregation was little affected by indomethacin and quinacrine at concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. The CrTXs-induced aggregation in washed platelets was significantly augmented in the presence of Ca2+. The pretreatment with verapamil failed to modify this augmentation of aggregation. The concentration of cytoplasmic-free calcium ([Ca2+]i) of platelets was increased by CrTXs at the same concentrations that produced aggregation. This effect of CrTXs was again little affected by verapamil. CrTXs at the same concentrations as those that produced aggregation and increased [Ca2+]i caused depolarization of platelets, which was unchanged after pretreatment with sodium or potassium transport inhibitors. CrTX-I significantly increased the 22Na flux into platelets and this effect of CrTX-I was unaffected by tetrodotoxin. The CrTX-I-induced aggregation, depolarization, and increase in [Ca2+]i were all significantly attenuated in the low Na+ medium. These results suggest that CrTXs cause a massive depolarization by increasing cation permeability and this generalized depolarization permits an inward movement of Ca2+ down its electrochemical gradient which, in turn, triggers platelet aggregation.

  18. Effects of temperature on the irradiation responses of Al 0.1 CoCrFeNi high entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tengfei; Xia, Songqin; Guo, Wei

    Structural damage and chemical segregation in Al 0.1CoCrFeNi high entropy alloy irradiated at elevated temperatures are studied using transmission electron microscopy (TEM) and atom probe tomography (APT). Irradiation-induced defects include dislocation loops, long dislocations and stacking-fault tetrahedra, but no voids can be observed. Furthermore, as irradiation temperature increases, defect density is decreased but defect size is increased, which is induced by increasing defect mobility. Finally, APT characterization reveals that ion irradiation at elevated temperatures can induce an enrichment of Ni and Co as well as a depletion of Fe and Cr at defect clusters, mainly including dislocation loops and longmore » dislocations.« less

  19. Effects of temperature on the irradiation responses of Al 0.1 CoCrFeNi high entropy alloy

    DOE PAGES

    Yang, Tengfei; Xia, Songqin; Guo, Wei; ...

    2017-09-29

    Structural damage and chemical segregation in Al 0.1CoCrFeNi high entropy alloy irradiated at elevated temperatures are studied using transmission electron microscopy (TEM) and atom probe tomography (APT). Irradiation-induced defects include dislocation loops, long dislocations and stacking-fault tetrahedra, but no voids can be observed. Furthermore, as irradiation temperature increases, defect density is decreased but defect size is increased, which is induced by increasing defect mobility. Finally, APT characterization reveals that ion irradiation at elevated temperatures can induce an enrichment of Ni and Co as well as a depletion of Fe and Cr at defect clusters, mainly including dislocation loops and longmore » dislocations.« less

  20. Characterization of oxide nanoparticles in Al-free and Al-containing oxide dispersion strengthened ferritic steels.

    PubMed

    Lee, Jae Hoon; Kim, Jeoung Han

    2013-09-01

    Oxide nanoparticles in oxide dispersion strengthened (ODS) ferritic steels with and without Al have been characterized by transmission electron microscopy. It is confirmed that most of the complex oxide particles consist of Y2TiO5 for 18Cr-ODS steel and YAlO3 or YAl5O12 for 18Cr5Al-ODS steel, respectivley. The addition of 5% Al in 18Cr-ODS steel leads to the formation of larger oxide particles and the reduction in their number density. For 18Cr-ODS steel, 87% of the oxide particles are coherent. The misfit strain of the coherent particles and a few semi-coherent particles is about 0.034 and 0.056, respectively. For 18Cr5Al-ODS steel, 75% of the oxide particles are semi-coherent, of which the misfit strain is 0.091 and 0.125, respectively. These results suggest that for the Al-containing ODS steel the Al addition accelerates the formation of semi-coherent oxide particles and its larger coherent and semi-coherent particles result in the larger misfit strain between the oxide particle and alloy matrix, indicating that the coherence of oxide nanoparticles in ODS steels is size-dependent.