Science.gov

Sample records for al fe si

  1. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    PubMed Central

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  2. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    NASA Astrophysics Data System (ADS)

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  3. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal.

    PubMed

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  4. Thermodynamic Assessment of the Aluminum Corner of the Al-Fe-Mn-Si System

    NASA Astrophysics Data System (ADS)

    Lacaze, Jacques; Eleno, Luiz; Sundman, Bo

    2010-09-01

    A new assessment of the aluminum corner of the quaternary Al-Fe-Mn-Si system has been made that extends beyond the COST-507 database. This assessment makes use of a recent, improved description of the ternary Al-Fe-Si system. In the present work, modeling of the Al-rich corner of the quaternary Al-Fe-Mn-Si system has been carried out by introducing Fe solubility into the so-called alpha-AlMnSi and beta-AlMnSi phases of the Al-Mn-Si system. A critical review of the data available on the quaternary system is presented and used for the extension of the description of these ternary phases into the quaternary Al-Fe-Mn-Si.

  5. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-04-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  6. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-06-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  7. (Fe,Si,Al)-based nanocrystalline soft magnetic alloys for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Daniil, Maria; Osofsky, Michael S.; Gubser, Donald U.; Willard, Matthew A.

    2010-04-01

    In this work Al and Si are substituted for Fe in a (Fe,Si,Al)-Nb-B-Cu alloy with the goal of improving its magnetic properties at 77 K. The x-ray diffraction patterns for a series of five alloys annealed at 823 K shows a Fe3(Si,Al) ordered phase with some residual amorphous phase. The lowest coercivity at room temperature was observed for the alloy with composition Fe68Si15.5Al3.5Nb3B9Cu1. At cryogenic temperatures, the saturation magnetization of 99.3 A m2/kg, coercivity of 0.45 A/m, and resistivity of 122 μΩ cm for the Fe63Si17.5Al6Nb3B9Cu1 alloy, compare favorably to commercial alloys at 77 K.

  8. Synthesis, microstructure and magnetic properties of Fe3Si0.7Al0.3@SiO2 core-shell particles and Fe3Si/Al2O3 soft magnetic composite core

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Fan, Xi'an; Wu, Zhaoyang; Li, Guangqiang

    2015-11-01

    Fe3Si0.7Al0.3@SiO2 core-shell particles and Fe3Si/Al2O3 soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe3Si0.7Al0.3 particles could be uniformly coated by insulating SiO2 using the modified stöber method. The Fe3Si0.7Al0.3@SiO2 core-shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO2=2α-Al2O3+3Si took place during the sintering process. As a result the new Fe3Si/Al2O3 composite was formed. The Fe3Si/Al2O3 composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe3Si0.7Al0.3 core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties.

  9. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the β-Al5FeSi, α-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the β platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved α-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of α-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  10. Electronic structure and magnetism on FeSiAl alloy: A DFT study

    NASA Astrophysics Data System (ADS)

    Cardoso Schwindt, V.; Sandoval, M.; Ardenghi, J. S.; Bechthold, P.; González, E. A.; Jasen, P. V.

    2015-09-01

    Density functional theory (DFT) calculation has been performed to study the electronic structure and chemical bonding in FeSiAl alloy. These calculations are useful to understand the magnetic properties of this alloy. Our results show that the mean magnetic moment of Fe atoms decreases due to the crystal structure and the effect of Si and Al. Depending on the environment, the magnetic moment of one Fe site (Fe1) increases to about 14.3% while of the other site (Fe2) decreases to about 25.9% (compared with pure bcc Fe). All metal-metal overlap interactions are bonding and slightly weaker than those found in the bcc Fe structure. The electronic structure (DOS) shows an important hybridization among Fe, Si and Al atoms, thus making asymmetric the PDOS with a very slight polarization of Al and Si atoms. Our study explains the importance of crystal structure in determining the magnetic properties of the alloys. FeSiAl is a good candidate for electromagnetic interference shielding combining low price and good mechanical and magnetic properties.

  11. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited. PMID:27451619

  12. Magnetic properties of ultrasoft-nanocomposite FeAlSiBNbCu alloys

    NASA Astrophysics Data System (ADS)

    Todd, I.; Tate, B. J.; Davies, H. A.; Gibbs, M. R. J.; Kendall, D.; Major, R. V.

    2000-06-01

    The effects of up to 10 at% substitution of Fe by Al on the microstructure and DC and AC magnetic properties of nanocrystalline FeSiBCuNb alloy ribbon are summarised and analysed. The minimum DC H c developed during annealing decreases by 40% for 2 at% Al (to 0.3 A/m) and remains roughly constant for larger Al contents. The largest peak value of μ 0.4 at 50 Hz also corresponds to 2 at% Al. The best frequency response for μ 0.4 occurs for 6 at% Al while there was no improvement in AC power loss behaviour over the 0% Al alloy. The improvements in DC H c and AC μ 0.4 are ascribed to a reduction in K 1 of the Fe-Si-based nanocrystallites by the introduction of Al.

  13. Precipitation during infiltration of A201 aluminum alloy into Al-Fe-V-Si preform

    SciTech Connect

    Yang, C.C.; Chen, Y.C.; Chang, E.

    1996-04-01

    The newly developed Al-Fe-V-Si aluminum alloy, produced by melt spinning into ribbons, comminution of ribbon to particles, and then consolidation of particles by extrusion and forging, is being considered for high temperature applications due to the material`s characteristics of high elevated temperature strength, low density, good toughness and thermal stability. In order to extend the near-net shaping capability of the material, the authors have proposed a new process that Al-Fe-V-Si aluminum alloy particles can be consolidated by casting, in which the liquid aluminum alloy was infiltrated around the Al-Fe-V-Si particles to form a FVS1212/A201 composite material. Preliminary study of the Al-Fe-V-Si particle reinforced A201 aluminum alloy composite demonstrated that the compression strength at 300 C can be twice as high as A201 aluminum alloy. This work constitutes a continuation of the previous efforts to understand the microstructural evolution sequences, particularly the precipitation events during infiltration of the liquid aluminum into Al-Fe-V-Si preform.

  14. Improvement of magnetic and structural stabilities in high-quality Co{sub 2}FeSi{sub 1−x}Al{sub x}/Si heterointerfaces

    SciTech Connect

    Yamada, S.; Tanikawa, K.; Oki, S.; Kawano, M.; Miyao, M.; Hamaya, K.

    2014-08-18

    We study high-quality Co{sub 2}FeSi{sub 1−x}Al{sub x} Heusler compound/Si (0 ≤ x ≤ 1) heterointerfaces for silicon (Si)-based spintronic applications. In thermal treatment conditions, the magnetic and structural stabilities of the Co{sub 2}FeSi{sub 1−x}Al{sub x}/Si heterointerfaces are improved with increasing x in Co{sub 2}FeSi{sub 1−x}Al{sub x}. Compared with L2{sub 1}-ordered Co{sub 2}FeSi/Si, B2-ordered Co{sub 2}FeAl/Si can suppress the diffusion of Si atoms into the Heusler-compound structure. This experimental study will provide an important knowledge for applications in Si-based spin transistors with metallic source/drain contacts.

  15. Electronic structure and soft magnetic properties of Se/FeSiAl (110) films

    NASA Astrophysics Data System (ADS)

    Schwindt, V. Cardoso; Ardenghi, J. S.; Bechthold, P.; Juan, A.; Batic, B. Setina; Jenko, M.; González, E. A.; Jasen, P. V.

    2015-11-01

    The Se adsorption at different coverages on DO3 FeSiAl(110) surface is studied using density functional theory (DFT). Se adsorption is favorable in almost all surface high-symmetry sites, except for the bridge site formed by Fe-Si atoms. The most stable is a hollow site formed by four Fe atoms with adsorption energy of -5.30 eV. When the coverages increase, the energies decrease in the case of hollow sites. The surface present a reconstruction after Se adsorption, being the most important at 1/2 ML. The local magnetic moment for Fe atoms increase for the type A (all nearst neighbours (nn) are Fe atoms) and decrease for the type B (nn are Fe, Si and Al atoms). The most affected metal orbitals are Fe 4s and 4p. In the case of the hollow site the surface Fe-Fe bond is weakened after Se adsorption. A Fe-Se bond is developed at all coverages in both sites being the most important on top (dFe-Se = 2.23 Å, OP: 0.774 at 1/4 ML). The first and second layer Fe-Fe bond increase at 1/4 ML and decrease at 1/2 and 1 ML. Small Se-Se bonding interaction appear at 1/2 ML and increase noticeable for 1 ML. For the top site, the Se-Se bond appears at all coverage. The Fe-Fe surface bonds also decrease its strength with respect to the clean surface at all coverage. The first and second layer Fe-Fe bond increase at all coverage.

  16. Thermoelectric properties of Fe and Al double substituted MnSiγ (γ~1.73)

    NASA Astrophysics Data System (ADS)

    Barczak, S. A.; Downie, R. A.; Popuri, S. R.; Decourt, R.; Pollet, M.; Bos, J. W. G.

    2015-07-01

    Two series of Fe and Al double substituted MnSiγ chimney ladders with a nominal valence electron count, VEC=14 per transition metal were prepared (γ=1.75). Simultaneous replacement of Mn with Fe and Si with Al yielded the Mn1-xFexSi1.75-xAlx series while the second Mn1-xFexSi1.75-1.75xAl2x series follows the pseudo-binary between MnSi1.75 and FeAl2. Scanning electron microscopy and elemental mapping revealed that ~60% of the nominal Al content ends up in the product with the remainder lost to sublimation, and that up to 7% Al can be substituted in the main group sublattice. Profile analysis of X-ray powder diffraction data revealed gradual changes in the cell metrics, consistent with the simultaneous substitution of Fe and Al in a fixed ratio. All samples are p-type with VEC≈13.95 from the structural data and ~1×1021 holes cm-3 from variable temperature Seebeck measurements. The substituted samples have lower electrical resistivities (ρ300 K=2-5 mΩ cm) due to an improved microstructure. This leads to increased thermoelectric power factors (largest S2/ρ=1.95 mW m-1 K-2) compared to MnSiγ. The thermal conductivity for the Mn0.95Fe0.05Si1.66Al0.1 sample is 2.7 W m-1 K-1 between 300 and 800 K, and is comparable to literature data for the parent material.

  17. The precipitation in annealing and its effect on permittivity of Fe-Si-Al powders

    NASA Astrophysics Data System (ADS)

    Li, Gang; Cui, Yin; Zhang, Nan; Wang, Xin; Xie, Jian Liang

    2016-01-01

    SEM images show that some precipitates distributed on the surface of as-annealed Fe-Si-Al powders. Subsequent experimental results indicate that both morphology and microstructure of as-annealed Fe-Si-Al powders change with increasing annealing temperature. Meanwhile, dielectric properties analysis suggesting that both real part ε‧ and imaginary part ε″ of the Fe-Si-Al powders decrease significantly after annealed at 450 °C or higher temperature. We assume that it's the precipitates with low electrical conductivity developed on the surface of powders that increase the surface resistivity of as-annealed powders and leading to a lower imagine part of permittivity. The drop of real part ε‧ ascribed to the weakened interfacial polarization which resulted from the decrease of structural defects such as grain boundaries and interfaces during annealing process.

  18. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the

  19. 3D characterization by tomography of beta Al9Fe2Si2 phase precipitation in a Al6.5Si1Fe alloy

    NASA Astrophysics Data System (ADS)

    Ferdian, D.; Salvo, L.; Lacaze, J.; Tenailleau, C.; Duployer, B.; Malard, B.

    2016-03-01

    The microstructure evolution of beta phase during solidification of a synthetic Al6.5Si1Fe (wt.%) alloy has been investigated by in-situ synchrotron micro-tomography and post-mortem tomography. In-situ solidification was observed at a constant cooling rate of 10°C min-1, from above the alloy's liquidus with the melt at 618°C down to 575°C which is just above the (Al)-Si-beta invariant eutectic reaction. Primary (Al) dendrites nucleated at 608°C, followed by the formation of beta-Al9Fe2Si2 phase starting at 593°C. After a rapid growth stage until 587°C as thin plates, beta phase continued to grow at a paced rate. Thickening of the plates was also evaluated and it was observed that the decrease in the lateral growth rate of the plates did not lead to an increase of their thickening rate. It was noted that the interconnectivity between beta precipitates increased as the solidification progressed. While nucleation of beta phase has previously been reported to occur on the alumina scale formed at the outer surface of the material, it is shown from post mortem tomography that bulk nucleation can occur as well.

  20. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  1. FeAl and Mo-Si-B Intermetallic Coatings Prepared by Thermal Spraying

    SciTech Connect

    Totemeier, T.C.; Wright, R.N.; Swank, W.D.

    2003-04-22

    FeAl and Mo-Si-B intermetallic coatings for elevated temperature environmental resistance were prepared using high-velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques. For both coating types, the effect of coating parameters (spray particle velocity and temperature) on the microstructure and physical properties of the coatings was assessed. Fe-24Al (wt.%) coatings were prepared using HVOF thermal spraying at spray particle velocities varying from 540 m/s to 700 m/s. Mo-13.4Si-2.6B coatings were prepared using APS at particle velocities of 180 and 350 m/s. Residual stresses in the HVOF FeAl coatings were compressive, while stresses in the APS Mo-Si-B coatings were tensile. In both cases, residual stresses became more compressive with increasing spray particle velocity due to increased peening imparted by the spray particles. The hardness and elastic moduli of FeAl coatings also increased with increasing particle velocity, again due to an increased peening effect. For Mo-Si-B coatings, plasma spraying at 180 m/s resulted in significant oxidation of the spray particles and conversion of the T1 phase into amorphous silica and {alpha}-Mo. The T1 phase was retained after spraying at 350 m/s.

  2. The structure-property relationships of powder processed Fe-Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Prichard, Paul Dehnhardt

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape PN processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic%). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (Dsb{84} < 32μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 mum. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 mum to 104 mum. Mechanical property testing was conducted on both extruded and sintered material using small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25sp°C to 550sp°C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase alpha + DOsb3 structure. The extruded material developed higher yield strength at temperatures below the DBTT, but the sintered material developed higher strengths above the DBTT. The fracture energy of these

  3. The structure-property relationships of powder processed Fe-Al-Si alloys

    SciTech Connect

    Prichard, P.D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D{sub 84} < 32 {micro}m). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 {micro}m. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 {micro}m to 104 {micro}m. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase {alpha} + DO{sub 3} structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  4. Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa

    NASA Astrophysics Data System (ADS)

    Shreder, E. I.; Svyazhin, A. D.; Belozerova, K. A.

    2013-11-01

    The results of an investigation of optical properties and the calculations of the electronic structure of Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa Heusler alloys are presented. The main focus of our attention is the study of the spectral dependence of the real part (ɛ1) and imaginary part (ɛ2) of the dielectric constant in the range of wavelengths λ = 0.3-13 μm using the ellipsometric method. An anomalous behavior of the optical conductivity σ(ω) has been found in the infrared range in the Co2CrAl and Co2CrGa alloys, which differs substantially from that in the Co2FeSi and Co2FeAl alloys. The results obtained are discussed based on the calculations of the electronic structure.

  5. Tunnel magnetoresistance in textured Co2FeAl/MgO/CoFe magnetic tunnel junctions on a Si/SiO2 amorphous substrate

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Mitani, Seiji; Inomata, Koichiro

    2011-05-01

    Magnetic tunnel junctions with B2-ordered Co2FeAl full Heusler alloy as a ferromagnetic electrode were fabricated by sputtering on thermally oxidized Si/SiO2 amorphous substrates. A Co2FeAl/MgO/Co50Fe50 structure showed a highly (001)-textured structure and the tunneling magnetoresistance (TMR) ratio of 166% at room temperature and 252% at 48 K were achieved. The temperature dependence of TMR can be fitted with spin wave excitation model, and the bias voltage dependence of differential conductance demonstrated that the high TMR was mainly contributed by coherent tunneling. This work suggests the B2-Co2FeAl is one of the promising candidates for practical spintronic applications.

  6. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-09-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  7. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-06-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  8. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  9. Impact of CrSiTi and NiSi on the Thermodynamics, Microstructure, and Properties of AlCoCuFe-Based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Rong; Wang, Zhao-Qin; Lin, Tie-Song; He, Peng; Sekulic, Dusan P.

    2016-05-01

    Aiming to solve the problem of spontaneous combustion on titanium via electrospark deposition (ESD), two AlCoCuFe-based high-entropy alloys (HEAs), AlCoCuFe- x ( x = CrSiTi, NiSi), were produced by vacuum arc melting as electrodes in ESD process. The thermodynamic analysis of AlCoCuFe-based HEAs were carried out using the concept of mixing enthalpy matrix and a powerful thermodynamic calculation toolbox (HEA-Thermo-Calcu). The microstructure and mechanical properties of the two alloys were investigated. The AlCoCuFeCrSiTi alloy contains a body-centered cubic (BCC) phase and a face-centered cubic (FCC) phase. The AlCoCuFeNiSi alloy is composed of two BCC phases and an FCC phase. Addition of CrSiTi and NiSi to AlCoCuFe-based alloys makes the enthalpy of mixing to be sizably more negative than for the other AlCoCuFe-based HEAs. Notwithstanding the fact that the thermodynamic parameters do not agree with Yang's proposition, the two alloys form simple solid solutions. The electronegativity difference (Δ χ) favors a formation of the solid solution when Δχ ≤ 14.2. The hardness of AlCoCuFe- x ( x = CrSiTi, NiSi) alloys reaches 935 HV and 688 HV, respectively. The yield strength, fracture strength, and ultimate strain of AlCoCuFeNiSi are larger, i.e., 29, 30, and 45%, respectively, than those of the AlCoCuFeCrSiTi alloy.

  10. Impact of CrSiTi and NiSi on the Thermodynamics, Microstructure, and Properties of AlCoCuFe-Based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Rong; Wang, Zhao-Qin; Lin, Tie-Song; He, Peng; Sekulic, Dusan P.

    2016-03-01

    Aiming to solve the problem of spontaneous combustion on titanium via electrospark deposition (ESD), two AlCoCuFe-based high-entropy alloys (HEAs), AlCoCuFe-x (x = CrSiTi, NiSi), were produced by vacuum arc melting as electrodes in ESD process. The thermodynamic analysis of AlCoCuFe-based HEAs were carried out using the concept of mixing enthalpy matrix and a powerful thermodynamic calculation toolbox (HEA-Thermo-Calcu). The microstructure and mechanical properties of the two alloys were investigated. The AlCoCuFeCrSiTi alloy contains a body-centered cubic (BCC) phase and a face-centered cubic (FCC) phase. The AlCoCuFeNiSi alloy is composed of two BCC phases and an FCC phase. Addition of CrSiTi and NiSi to AlCoCuFe-based alloys makes the enthalpy of mixing to be sizably more negative than for the other AlCoCuFe-based HEAs. Notwithstanding the fact that the thermodynamic parameters do not agree with Yang's proposition, the two alloys form simple solid solutions. The electronegativity difference (Δχ) favors a formation of the solid solution when Δχ ≤ 14.2. The hardness of AlCoCuFe-x (x = CrSiTi, NiSi) alloys reaches 935 HV and 688 HV, respectively. The yield strength, fracture strength, and ultimate strain of AlCoCuFeNiSi are larger, i.e., 29, 30, and 45%, respectively, than those of the AlCoCuFeCrSiTi alloy.

  11. Effect of Wavelike Sloping Plate Rheocasting on Microstructures of Hypereutectic Al-18 pct Si-5 pct Fe Alloys

    NASA Astrophysics Data System (ADS)

    Guan, Ren-Guo; Zhao, Zhan-Yong; Lee, Chong Soo; Zhang, Qiu-Sheng; Liu, Chun-Ming

    2012-04-01

    To refine and spheroidize the microstructures of hypereutectic Al-Si-Fe alloys, a novel method of wavelike sloping plate (WSP) rheocasting was proposed, and the effect of the WSP rheocasting on the microstructures of hypereutectic Al-18 pct Si-5 pct Fe alloys was investigated. The results reveal that the morphologies of the primary Si crystal, the Al18Si10Fe5, and the Al8Si2Fe phases can be improved by the WSP rheocasting, and various phases tend to be refined and spheroidized with the decrease of the casting temperature. The alloy ingots with excellent microstructures can be obtained when the casting temperature is between 943 K and 953 K (670 °C and 680 °C). During the WSP rheocasting, the crystal nucleus multiplication, inhibited grain growth, and dendrite break-up take place simultaneously, which leads to grain refinement of the alloys.

  12. High Frequency Properties of Ferrite/Fe-Si-Al Alloy Soft Magnetic Composites

    NASA Astrophysics Data System (ADS)

    Stergiou, Charalampos A.; Zaspalis, Vassilios

    The inclusion of Fe-Si-Al alloy particles in NiCuZn ferrite matrix was investigated with regard to the high frequency electromagnetic properties (complex permeability and permittivity). The resultant composites of relatively low density exhibit a shift of the permeability spectra to higher frequencies and an increase of dielectric polarization, which finally favour the electromagnetic wave attenuation at microwave frequencies. Thus, wider band return loss peaks are attained at frequencies above 6 GHz by thinner composite materials.

  13. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Zehai

    2015-03-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  14. Experimental study on parasitic mode suppression using FeSiAl in Relativistic Klystron Amplifier.

    PubMed

    Zhang, Zehai

    2015-03-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation. PMID:25832258

  15. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    SciTech Connect

    Zhang, Zehai

    2015-03-15

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE{sub 11} is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  16. Assessment of Post-eutectic Reactions in Multicomponent Al-Si Foundry Alloys Containing Cu, Mg, and Fe

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2015-07-01

    Post-eutectic reactions occurring in Al-Si hypoeutectic alloys containing different proportions of Cu, Mg, and Fe were thoroughly investigated in the current study. As-cast microstructures were initially studied by optical and electron microscopy to investigate the microconstituents of each alloy. Differential scanning calorimetry (DSC) was then used to examine the phase transformations occurring during the heating and cooling processes. Thermodynamic calculations were carried out to assess the phase formation under equilibrium and in nonequilibrium conditions. The Q-Al5Cu2Mg8Si6 phase was predicted to precipitate from the liquid phase, either at the same temperature or earlier than the θ-Al2Cu phase depending on the Cu content of the alloy. The AlCuFe-intermetallic, which was hardly observed in the as-cast microstructure, significantly increased after the solution heat treatment in the alloys containing high Cu and Fe contents following a solid-state transformation of the β-Al5FeSi phase. After the solution heat treatment, the AlCuFe-intermetallics were mostly identified with the stoichiometry of the Al7Cu2Fe phase. Thermodynamic calculations and microstructure analysis helped in determining the DSC peak corresponding to the melting temperature of the N-Al7Cu2Fe phase. The effect of Cu content on the formation temperature of π-Al8Mg3FeSi6 is also discussed.

  17. Magnetic properties of spray-formed Fe-6.5%Si and Fe-6.5%Si-1.0%Al after rolling and heat treatment

    NASA Astrophysics Data System (ADS)

    Bolfarini, Claudemiro; Silva, Mário Cézar Alves; Jorge, Alberto Moreira; Kiminami, Claudio Shyinti; Botta, Walter José

    The maximum silicon content in commercial Fe-Si steels is limited to about 3.5 wt%Si, since the ductility declines sharply as this maximum is exceeded, hindering the production of thin sheets by cold/hot rolling. However, the best magnetic properties are attained at about 6.5 wt%Si, a silicon content that renders magnetostriction practically null and minimizes magnetic losses. Using spray-forming, our research group has successfully produced this type of high silicon alloy in thin sheet form by carefully controlling the many variables of the process and subsequent rolling operations. In the present study, we investigated the magnetic properties and the microstructure of spray-formed Fe-6.5 wt%Si and Fe-6.5 wt%Si-1.0 wt%Al alloys after warm rolling and heat treatment. The main cause for the brittleness of Fe-6.5 wt%Si alloy has been attributed to the B2 phase long-range ordering, which leads to premature fractures. The presence of aluminum could avoid B2 formation and improve the alloy's ductility. The binary Fe-6.5 wt% Si alloy showed the best magnetic properties, which were ascribed to a recrystallized, coarse grain size (˜500 μm; and 340 μm for the Al-containing alloy). TEM analysis showed that a well-developed B2 domain structure (about 50-300 nm in size) was formed in the binary alloy when low cooling rates are prevailing after heat treatment. This structure contributed to improve additionally the magnetic properties, but its effect was not so strong as that of the grain size. The addition of Al to the binary alloy suppressed B2 formation, as indicated by Mossbauer spectroscopy, and apparently hindered excessive grain growth, which may explain the slightly poorer magnetic properties when compared with the binary alloy.

  18. X-rays structural analysis and thermal stability studies of the ternary compound {alpha}-AlFeSi

    SciTech Connect

    Roger, J.; Bosselet, F.; Viala, J.C.

    2011-05-15

    From literature data presently available, the decomposition temperature and the nature of the decomposition reaction of the ternary compound {alpha}-AlFeSi (also designated as {alpha}{sub H} or {tau}{sub 5}) are not clearly identified. Moreover, some uncertainties remain concerning its crystal structure. The crystallographic structure and thermochemical behaviour of the ternary compound {alpha}-AlFeSi were meticulously studied. The crystal structure of {alpha}-AlFeSi was examined at room temperature from X-ray single crystal intensity data. It presents hexagonal symmetry, space group P6{sub 3}/mmc with unit cell parameters (293 K) a=12.345(2) A and c=26.210(3) A (V=3459 A{sup 3}). The average chemical formula obtained from refinement is Al{sub 7.1}Fe{sub 2}Si. From isothermal reaction-diffusion experiments and Differential Thermal Analysis, the title compound decomposes peritectically upon heating into {theta}-Fe{sub 4}Al{sub 13}(Si), {gamma}-Al{sub 3}FeSi and a ternary Al-rich liquid. Under atmospheric pressure, the temperature of this reversible transformation has been determined to be 772{+-}12 {sup o}C. -- Graphical abstract: Partial representation of the crystal structure of the {alpha}-Al{sub 7.1}Fe{sub 2}Si compound. Display Omitted Highlights: The main findings of our work are: {yields} a detailed X-rays crystal structure determination of the ternary compound {alpha}-AlFeSi. {yields} The precision of the silicon atoms positions in the crystal structure. {yields} A precised determination of the decomposition temperature of this compound.

  19. Thermodynamics of Nitrogen in Fe-Mn-Al-Si-C Alloy Melts

    NASA Astrophysics Data System (ADS)

    Paek, Min-Kyu; Chatterjee, Saikat; Pak, Jong-Jin; Jung, In-Ho

    2016-04-01

    Thermodynamic behavior of nitrogen in the entire range of the Fe-Mn-Al-Si-C liquid solution was modeled based on the critical evaluation and optimization of all available experimental data. The Gibbs energy of liquid solution was described using the Modified Quasichemical Model (MQM) in the pair approximation, instead of classical Wagner Interaction Parameter Formalism, to consider the strong interactions between species in liquid state. In particular, the dissolution behavior of N and formation of AlN in the entire ternary and higher order liquids were accurately predicted from the MQM only with binary model parameters of N.

  20. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  1. Effects of Melt Thermal-Rate Treatment on Fe-Containing Phases in Hypereutectic Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Qinglei; Geng, Haoran; Zhang, Shuo; Jiang, Huawei; Zuo, Min

    2013-11-01

    In this paper, effects of melt thermal-rate treatment (MTRT) on Fe-containing phases in hypereutectic Al-Si alloy were investigated. Results show that MTRT can refine microstructures and improve castability, mechanical properties, wear characteristics, and corrosion resistance of Fe-containing Al-Si alloy. When Al-15Si-2.7Fe alloy is treated with MTRT by 1203 K (930 °C) melt: coarse primary Si and plate-like Fe-containing phase both can be refined to small blocky morphology, and the long needle-like Fe-containing phase disappears almost entirely; ultimate tensile strength and elongation are 195 MPa and 1.8 pct, and increase by 12.7 and 50 pct, respectively; and the wear loss and coefficient of friction decrease 7 to 17 and 24 to 30 pct, respectively, compared with that obtained with conventional casting technique. Corrosion resistance of the alloy treated with MTRT by 1203 K (930 °C) melt is the best, that is it has the lowest i corr value and the highest E corr value. Besides, effects of MTRT on Al-15Si-xFe (x = 0.2, 0.7, 1.7, 3.7, 4.7) alloys were also studied, MTRT can only refine microstructure and improve mechanical properties of Al-15Si alloy with 0.7 to 3.7 pct Fe content greatly in the present work.

  2. NMR study of rapidly quenched Fe95M5 crystalline alloys (M=C, B, P, Si, and Al)

    NASA Astrophysics Data System (ADS)

    Zhang, Y. D.; Budnick, J. I.; Sanchez, F. H.; Hasegawa, R.

    1990-05-01

    Rapidly quenched crystalline Fe95M5 alloys were studied by spin-echo NMR experiments for frequencies ranging from 10 to 300 MHz at 4.2 K. While x-ray diffraction for all these samples show the same bcc Fe pattern, NMR measurements reveal the details of their local structural character. The C atoms form an interstitial bcc solid solution with Fe as well as Fe3C-like short-range order (SRO). Similarly, an orthorhombic Fe3B-like SRO exists in the B-containing alloy. The Si- and P-containing alloys are substitutional bcc solid solutions in which the Si and P atoms replace Fe randomly. A SRO is also found in Fe95Al5 the Al atoms avoid being close to each other. The results demonstrate that atomic size plays a key role in forming the various kinds of atomic configurations in these alloys.

  3. Thermoelectric properties of Fe and Al double substituted MnSi{sub γ} (γ~1.73)

    SciTech Connect

    Barczak, S.A.; Downie, R.A.; Popuri, S.R.; Decourt, R.; Pollet, M.; Bos, J.W.G.

    2015-07-15

    Two series of Fe and Al double substituted MnSi{sub γ} chimney ladders with a nominal valence electron count, VEC=14 per transition metal were prepared (γ=1.75). Simultaneous replacement of Mn with Fe and Si with Al yielded the Mn{sub 1−x}Fe{sub x}Si{sub 1.75−x}Al{sub x} series while the second Mn{sub 1−x}Fe{sub x}Si{sub 1.75–1.75x}Al{sub 2x} series follows the pseudo-binary between MnSi{sub 1.75} and FeAl{sub 2}. Scanning electron microscopy and elemental mapping revealed that ~60% of the nominal Al content ends up in the product with the remainder lost to sublimation, and that up to 7% Al can be substituted in the main group sublattice. Profile analysis of X-ray powder diffraction data revealed gradual changes in the cell metrics, consistent with the simultaneous substitution of Fe and Al in a fixed ratio. All samples are p-type with VEC≈13.95 from the structural data and ~1×10{sup 21} holes cm{sup −3} from variable temperature Seebeck measurements. The substituted samples have lower electrical resistivities (ρ{sub 300} {sub K}=2–5 mΩ cm) due to an improved microstructure. This leads to increased thermoelectric power factors (largest S{sup 2}/ρ=1.95 mW m{sup −1} K{sup −2}) compared to MnSi{sub γ}. The thermal conductivity for the Mn{sub 0.95}Fe{sub 0.05}Si{sub 1.66}Al{sub 0.1} sample is 2.7 W m{sup −1} K{sup −1} between 300 and 800 K, and is comparable to literature data for the parent material. - Graphical abstract: The crystal structure, microstructure and thermoelectric properties of Fe and Al double substituted MnSi{sub γ} (γ~1.73) have been investigated. - Highlights: • Up to 7% Al can be substituted in MnSi{sub γ} when co-doped with Fe. • Improved microstructure and reduced electrical resistivities for Al substituted samples. • Largest power factor 1.95 mW m{sup −1} K{sup −2} and best estimated ZT=0.5.

  4. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    NASA Astrophysics Data System (ADS)

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-03-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description.

  5. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    PubMed Central

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-01-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description. PMID:26928759

  6. The Viscous Behavior of FeOt-Al2O3-SiO2 Copper Smelting Slags

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Shik; Park, Su Sang; Sohn, Il

    2011-08-01

    Understanding the viscous behavior of copper smelting slags is essential in increasing the process efficiency and obtaining the discrete separation between the matte and the slag. The viscosity of the FeOt-SiO2-Al2O3 copper smelting slags was measured in the current study using the rotating spindle method. The viscosity at a fixed Al2O3 concentration decreased with increasing Fe/SiO2 ratio because of the depolymerization of the molten slag by the network-modifying free oxygen ions (O2-) supplied by FeO. The Fourier transform infrared (FTIR) analyses of the slag samples with increasing Fe/SiO2 ratio revealed that the amount of large silicate sheets decreased, whereas the amount of simpler silicate structures increased. Al2O3 additions to the ternary FeOt-SiO2-Al2O3 slag system at a fixed Fe/SiO2 ratio showed a characteristic V-shaped pattern, where initial additions decreased the viscosity, reached a minimum, and increased subsequently with higher Al2O3 content. The effect of Al2O3 was considered to be related to the amphoteric behavior of Al2O3, where Al2O3 initially behaves as a basic oxide and changes to an acidic oxide with variation in slag composition. Furthermore, Al2O3 additions also resulted in the high temperature phase change between fayalite/hercynite and the modification of the liquidus temperature with Al2O3 additions affecting the viscosity of the copper smelting slag.

  7. Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation

    SciTech Connect

    Jain, Vivek Kumar Jain, Vishal Lakshmi, N. Venugopalan, K.

    2014-04-24

    Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.

  8. Enhancement in soft magnetic and ferromagnetic ordering behaviour through nanocrystallisation in Al substituted CoFeSiBNb alloys

    NASA Astrophysics Data System (ADS)

    Mohanta, Ojaswini; Basumallick, A.; Mitra, A.; Panda, A. K.

    2010-01-01

    The effect of substituting Al for Si in Co 36Fe 36Si 4-xAl xB 20Nb 4, ( X=0, 0.5, 1.0, 1.5, 2.0 at%) alloys prepared in the form of melt-spun ribbons have been investigated. All the alloys were amorphous in their as-cast state. The onset of crystallization as observed using differential scanning calorimetry (DSC) was found to rise at low Al content up to X=1 at% beyond which there was a decreasing trend. The alloys also exhibited glass transition at ' Tg'. Microstructural studies of optimally annealed samples indicated finer dispersions of nanoparticles in amorphous matrix which were identified as bcc-(FeCo)Si and bcc-(FeCo)SiAl nanophases by X-ray diffraction technique. Alloy with optimum content of Al around X=1 at% exhibited stability in coercivity at elevated temperatures. Though Al addition is known to lower magnetostriction, such consistency in coercivity may also be attributed towards lowering in the nanoparticle size compared to X=0 alloy. In the nanostructured state, the alloy containing optimum Al content ( X=1) exhibited further enhancement in ferromagnetic ordering or the Curie temperature by 100 K compared to alloy without Al. Such addition also attributed to better frequency response of coercivity and low core losses.

  9. Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-01

    The Hall effect and the magnetoresistance of Fe2YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3 d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit ( H > 10 kOe), the value and the sign of the normal ( R 0) and anomalous ( R s ) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R s in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio ( R s ∝ ρ 0 3.1 ), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  10. Galvanomagnetic properties of Fe{sub 2}YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-15

    The Hall effect and the magnetoresistance of Fe{sub 2}YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit (H > 10 kOe), the value and the sign of the normal (R{sub 0}) and anomalous (R{sub s}) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R{sub s} in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio (R{sub s} ∝ ρ{sub 0}{sup 3.1}), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  11. Effects of metallurgical parameters on the decomposition of pi-AlFeMgSi phase in Al-Si-Mg alloys and its influence on the mechanical properties

    NASA Astrophysics Data System (ADS)

    Elsharkawi, Ehab A.

    2011-12-01

    The formation of the pi-AlFeMgSi iron intermetallic phase in Al-Si-Mg alloys is known for its detrimental effect on ductility and strength, in that it is controlled by the Fe and Mg content of the alloy, as well as by the cooling rate. The current study was carried out with a view to investigating all the metallurgical parameters affecting the formation of the pi-phase iron intermetallic and, in turn, the role of the pi-phase as it relates to the tensile and impact properties of Al-Si-Mg alloys. Microstructural assessment was carried out by means of quantitative metallography using electron probe microanalysis (EPMA) and scanning electron microscopy (SEM). The results indicate that increasing the Mg and Fe content increases the amount of the pi-AlMgFeSi phase formed. All the alloys containing low levels of iron regardless of the amount of Mg-content show low amounts of pi-phase iron intermetallic. The addition of trace amounts of Be has an observable effect in reducing the amount of the pi-phase formed in all the alloys studied. The pi-phase iron intermetallic particles appear to be segregated away from the modified Si in the Sr-modified alloys, particularly those solidified at a low cooling rate. The effects of different solution treatment times on the decomposition of the pi-phase were investigated in order to examine how this type of decomposition affected the chemistry of the matrix itself. After 8 hours of solution heat treatment and at Mg content of 0.4wt%, the pi-phase showed complete decomposition into fine beta-phase needles. The a-phase, however, showed only partial decomposition into beta-AlFeSi phase needles at Mg levels of over 0.4%wt. This type of decomposition was examined for the purposes of this study over extended periods of solution heat treatment time in Al-7Si-0.55Mg-0.1Fe alloy samples obtained at different cooling rates in order to evaluate the mechanism of pi to beta-phase decomposition. The results obtained show that the volume fraction of

  12. Annealing texture of a cold-rolled Fe-Mn-Al-Si-C alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Basudev; Ray, Ranjit Kumar

    2015-09-01

    The study of recrystallization texture of a cold deformed Fe-Mn-Al-Si-C alloy, with about 30% Mn, has been discussed in this paper. The alloy is fully austenitic at room temperature, and therefore, principal FCC rolling textures were developed in this material at different stages of cold rolling. The present study was undertaken to observe the transformation of FCC rolling texture during recrystallization of a heavily cold deformed specimen. It was observed that isothermal annealing at 750 °C led to a weak recrystallisation texture, which was quite similar to the deformation texture developed at the early stage of cold rolling. During recovery stage, a strong Bs/Goss-type texture was developed, which was identified as a new observation in this work.

  13. Microstructure Evolution and Rheological Behavior of Cooling Slope Processed Al-Si-Cu-Fe Alloy Slurry

    NASA Astrophysics Data System (ADS)

    Das, Prosenjit; Samanta, Sudip K.; Bera, Supriya; Dutta, Pradip

    2016-05-01

    In the present work, microstructure evolution during semi-solid slurry generation of Al-Si-Cu-Fe alloy, using a cooling slope, was studied and the effect of microstructural morphology of the slurry on its rheological behavior was investigated. Microstructure evolution during melt flow along the slope was studied by extracting samples from various locations of the slope and performing rapid oil quenching experiments. Quantitative investigation was performed to evaluate primary phase shape and size for different process conditions of the semi-solid slurry, and subsequently rheological investigations were performed to correlate slurry morphology with its flow behavior. Three different types of rheological experiments were performed: isothermal test, shear jump test, and shear time test, in order to investigate rheological behavior of the semi-solid slurry. In addition, effect of melt treatment, by adding modifier (0.1 wt pct of Al-10Sr) and grain refiner (0.15 wt pct of Al-5Ti-1B), on the microstructure evolution during slurry generation, flow behavior of the slurry, and intermetallics formation was studied.

  14. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    NASA Astrophysics Data System (ADS)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  15. Magnetic and structural properties of Co2FeAl thin films grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Belmeguenai, Mohamed; Tuzcuoglu, Hanife; Gabor, Mihai; Petrisor, Traian; Tiusan, Coriolan; Berling, Dominique; Zighem, Fatih; Mourad Chérif, Salim

    2015-01-01

    The correlation between magnetic and structural properties of Co2FeAl (CFA) thin films of different thicknesses (10 nmSi/SiO2 substrates and annealed at 600 °C has been studied. x-ray diffraction (XRD) measurements revealed an (011) out-of-plane textured growth of the films. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field, measured with the applied field along the easy axis direction, and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-plane anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2.

  16. MgSiO3-FeSiO3-Al2O3 in the Earth's lower mantle: Perovskite and garnet at 1200 km depth

    NASA Technical Reports Server (NTRS)

    O'Neill, Bridget; Jeanloz, Raymond

    1994-01-01

    Natural pyroxene and garnet starting material are used to study the effects of joint Fe and Al substitution into MgSiO3 perovskite at approxmiately 50 GPa. Garnet is found to coexist with perovskite in samples containing both Fe and Al to pressures occurring deep into the lower mantel (approximately 1200 km depth). The volume of the perovskite unit cell is V(sub o(Angstrom(exp 3)) = 162.59 + 5.95x(sub FeSiO3) + 10.80x(sub Al2O3) with aluminum causing a significant increase in the distortion from the ideal cubic cell. On the basis of a proposed extension of the MgSiO3-Al2O3 high-pressure phase diagram toward FeSiO3, Fe is shown to partition preferentially into the garnet phase. The stability of garnet deep into the lower mantel may hinder the penetration of subducted slabs below the transition zone.

  17. Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys

    NASA Astrophysics Data System (ADS)

    Jelinek, B.; Groh, S.; Horstemeyer, M. F.; Houze, J.; Kim, S. G.; Wagner, G. J.; Moitra, A.; Baskes, M. I.

    2012-06-01

    A set of modified embedded-atom method (MEAM) potentials for the interactions between Al, Si, Mg, Cu, and Fe was developed from a combination of each element's MEAM potential in order to study metal alloying. Previously published MEAM parameters of single elements have been improved for better agreement to the generalized stacking fault energy (GSFE) curves when compared with ab initio generated GSFE curves. The MEAM parameters for element pairs were constructed based on the structural and elastic properties of element pairs in the NaCl reference structure garnered from ab initio calculations, with adjustment to reproduce the ab initio heat of formation of the most stable binary compounds. The new MEAM potentials were validated by comparing the formation energies of defects, equilibrium volumes, elastic moduli, and heat of formation for several binary compounds with ab initio simulations and experiments. Single elements in their ground-state crystal structure were subjected to heating to test the potentials at elevated temperatures. An Al potential was modified to avoid formation of an unphysical solid structure at high temperatures. The thermal expansion coefficient of a compound with the composition of AA 6061 alloy was evaluated and compared with experimental values. MEAM potential tests performed in this work, utilizing the universal atomistic simulation environment (ASE), are distributed to facilitate reproducibility of the results.

  18. High-field magnetic properties of Ho 2Fe 15M 2 compounds (M  Al, Ga, Ni and Si)

    NASA Astrophysics Data System (ADS)

    Wang, J. L.; Tang, N.; Li, W. Z.; Qin, W. D.; Pan, H. Y.; Nasunjilegal, B.; Yang, F. M.; de Boer, F. R.

    1996-07-01

    The crystalline structure and magnetic properties of the Ho 2Fe 15M 2 compounds with M  Al, Si, Ni, and Ga have been investigated. X-ray diffraction patterns on powder samples show that all compounds crystallize in the Th 2Ni 17-type structure. The substitution of Al and Ga for Fe leads to an increase in the lattice constants a and c, but a decrease for Si substitution. Substitution of all the M elements for Fe leads to an increase in the Curie temperature and to a decrease in the saturation magnetization. The exchange coupling constants JHoT between Ho and transition metal spins are found to be almost independent of the substituting atom.

  19. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ≤ 70 kOe. It has been shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  20. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    SciTech Connect

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-05-10

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10{sup {minus}3}). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10{sup {minus}2}, however, their densities are usually great than 5 x 10{sup 3} kg m{sup {minus}3}, or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process.

  1. The role of tree uprooting dynamics on the dynamics of Fe (Mn, Al and Si) forms in different forest soils

    NASA Astrophysics Data System (ADS)

    Tejnecký, V.; Samonil, P.; Boruvka, L.; Nikodem, A.; Drabek, O.; Valtera, M.

    2013-12-01

    Tree uprooting dynamics plays an important role in the development of forest ecosystems. This process causes bioturbation of soils and creates new microenvironments which consist of pits and mounds. These microtopographical forms could persist for some thousands of years. Pits and mounds undergo different pedogenesis in comparison to adjacent undisturbed soils. The stage of pedogenesis can be assessed according to the results of fractionation of Fe and also partially Mn, Al and Si. The main aim of this contribution is to assess the fractionation of Fe, Mn, Al and Si for three different soil regions. Soil samples were collected at three localities occurred along hypothetical gradient of soil weathering and leaching processes: The first was a (spruce)-fir-beech natural forest in the Razula region. The second location is the same type of natural forest in Zofin; however it has contrasting lithology. Both these natural forests are located in the Czech Republic (CZ). The third forest was a northern hardwood forest in Upper Peninsula, Michigan, USA. The prevailing soil types - Haplic Cambisols have formed on flysch parent materials in the Razula reserve; Entic Podzols have developed on granite residuum at the Zofin reserve, and Albic Podzols occurred in outwash parent materials at the Michigan sites (Šamonil et al., in press). In total 790 soil samples were analysed. These samples were collected from 5 depths (0-10, 15, 30, 50 and 100 cm) within the pit, mound and control, currently undisturbed position. For each sample, content of Fe (and Mn, Al, Si) forms: exchangeable, crystalline, and amorphous together with organically complexed Fe were determined. We generally observed an increased content of Fe soil forms in the pits of studied treethrows. The content of Fe forms increased along depth gradient at the disturbed sites. However, exchangeable Fe was most abundant in the 0-10cm layer which corresponds to the A horizon. Naturally, if present, the E horizon exhibited

  2. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlO{sub x}/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    SciTech Connect

    Akushichi, T. Shuto, Y.; Sugahara, S.; Takamura, Y.

    2015-05-07

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO{sub x}/n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO{sub x} barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accurately fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels.

  3. Evaluation of bulk β-FeSi2 crystal as a solar cell semiconductor through the photo-response measurements of Al/n-β-FeSi2 Schottky diodes

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Nakayama, Yasuhiko; Makita, Yunosuke

    2008-04-01

    β-FeSi2 has many attracting properties as a semiconductor not consisting of toxic chemical elements and is an ideal semiconductor as a thin film solar cell owing to its extremely high optical absorption coefficient. To evaluate β-FeSi2 as a solar cell, photo-response measurement is critically important and useful. Since β-FeSi2 thin films are normally deposited on Si substrates, intrinsic photo-response of β-FeSi2 is usually difficult to be collected due to the strong contribution from Si substrates. We here present the photo-response from bulk β-FeSi2 crystals, expecting that we can eliminate the contributions coming from the Si substrates and the crystallographic defects existing at the β-FeSi2/Si interfaces when we use β-FeSi2 thin films. We prepared bulk specimens by chemical vapor transport method (CVT) in which needle-like and plate-like β-FeSi2 crystals were obtained. We chose the former specimens for the formation of Al/n-β-FeSi2 Schottky contacts to measure their photo-responses. These contacts were found to form Schottky diodes even though there are large series resistances and leakage currents. Under laser light illumination of 1.31 μm through optical fiber, the positive voltage was observed between the Al contact and the In solder glued to the back-surface of β-FeSi2 bulk specimen. Two-dimensional distribution of photo-responses were measured by scanning the above optical fiber with the spot size of 50 μm. The highest photo-response was obtained in the vicinity of Al wire, and was 7.7 mA/W for the as-grown sample, and 31 mA/W for the annealing one, respectively. These observations state that β-FeSi2 holds appropriate optical features to be used as a solar cell.

  4. The Effects of Individual Metal Contents on Isochrones for C, N, O, Na, Mg, Al, Si, and Fe

    NASA Astrophysics Data System (ADS)

    Beom, Minje; Na, Chongsam; Ferguson, Jason W.; Kim, Y.-C.

    2016-08-01

    The individual characteristics of C, N, O, Na, Mg, Al, Si, and Fe on isochrones have been investigated in this study. Stellar models have been constructed for various mixtures in which the content of each element is changed up to the extreme value reported in recent studies, and the changes in isochrone shape have been analyzed for the various mixtures. To express the abundance variation of different elements with a single parameter, we have focused on the relative changes in the total number of metal ions. A review of the shape changes revealed that Na, Mg, and Al work the same way in stellar models, similar to the well-known fact that C, N, and O have the same reactions in the stellar interior. In addition, it was found that in high-metallicity conditions the influence of Si and Fe on the red giant branch becomes smaller than that of Na, Mg, and Al closer to the tip. Furthermore, the influence of Fe on the main sequence is larger than that of Na, Mg, Al, and even Si.

  5. Deformation characteristics of the rapidly solidified Al-8. 5% Fe-1. 2% V-1. 7% Si alloy

    SciTech Connect

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L. )

    1993-08-15

    Dispersion strengthened Al-8.5% Fe-1.2% V-1.7% Si (8009) alloy containing 40-80 nm diameter dispersoids and exhibiting attractive elevated temperature strengths can be successfully produced by rapid solidification techniques such as Planar Flow Casting (PFC) and Atomized Melt Deposition (AMD). The grain sizes of alloys produced by PFC and AMD are typically O.5 to 1.0 [mu]m. Fine grain sized aluminum alloys have been found to exhibit plastic instabilities such as yield drop, formation of Lueder's bands and positive deviation from Hall-Petch relationship. The stress-strain behavior at room and elevated temperature of the fine grained dispersion strengthened Al-8.5% Fe-1.2% V-1.7% Si alloy produced by PFC and the AMD processes was determined with the objective of delineating the effect of fine grain size on the deformation behavior.

  6. Magnetic Fe, Si, Al-Rich Impact Spherules from the P-T Boundary Layer at Graphite Peak, Antarctica

    NASA Technical Reports Server (NTRS)

    Petaev, M. I.; Jacobsen, S. B.; Basu, A. R.; Becker, L.

    2004-01-01

    The geological boundary between Triassic and Permian strata coincides with the greatest life extinction in the Earth's history. Although the cause of the extinction is still the subject of intense debates, recent discoveries in the P-T boundary layer of shocked quartz grains, fullerenes with the extraterrestrial noble gases, Fe metal nuggets, and chondritic meteorite fragments all point to a powerful collision of Earth with a celestial body in the late Permian. Here we report the discovery of magnetic Fe, Si, Al-rich impact spherules which accompany the chondritic meteorite fragments in some samples from the P-T boundary layer at Graphite Peak, Antarctica.

  7. Heat capacity and phase equilibria of almandine, Fe 3Al 2Si 3O 12

    NASA Astrophysics Data System (ADS)

    Anovitz, L. M.; Essene, E. J.; Metz, G. W.; Bohlen, S. R.; Westrum, E. F., Jr.; Hemingway, B. S.

    1993-09-01

    The heat capacity of a synthetic almandine, Fe 3Al 2Si 3O 12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ± 1.4 J/mol · K and S298o = 342.60 J/mol · K. Mössbauer characterizations show the almandine to contain less than 2 ± 1% of the total iron as Fe 3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ± 0.001 Å and V298o = 115.11 +- 0.01 cm 3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ΔGf,298 o = -4938.3 kJ/mol and ΔHf,298 o= - 5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T/P for almandine and is metastably located at ca. 570°C at P = 1 bar, with a dP/dT of +17 bars/°C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In ‖ O2- T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartzandalmandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks.

  8. Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Essene, E.J.; Metz, G.W.; Bohlen, S.R.; Westrum, E.F., Jr.; Hemingway, B.S.

    1993-01-01

    The heat capacity of a synthetic almandine, Fe3Al2Si3O12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ?? 1.4 J/mol ?? K and S298o = 342.60 J/mol ?? K. Mo??ssbauer characterizations show the almandine to contain less than 2 ?? 1% of the total iron as Fe3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ?? 0.001 A?? and V298o = 115.11 +- 0.01 cm3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ??Gf,298o = -4938.3 kJ/mol and ??Hf,298o= -5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T P for almandine and is metastably located at ca. 570??C at P = 1 bar, with a dP dT of +17 bars/??C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In {norm of matrix}O2-T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartz and almandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks. ?? 1993.

  9. The Perovskite to Post-Perovskite Transition: Atomistic Simulations of Compositions on the MgSiO3-FeSiO3 and MgSiO3-FeAlO3 Joins

    NASA Astrophysics Data System (ADS)

    Mohn, C.; Tronnes, R. G.

    2014-12-01

    Different atomic arrangements of perovskite (pv) and post-perovskite (ppv) in the systems MgSiO3-FeSiO3 and MgSiO3-FeAlO3 (MS-FS and MS-FA) were examined by Boltzmann statistics and density functional theory (GGA+U). The vibrational contribution to the free energy is calculated within the quasi-harmonic approximation. The FS and FA components partition in opposite directions, towards ppv and pv, respectively. The diverse experimental results on the Fe-partitioning between the two phases are broadly consistent with our theoretical investigation. We determined a Clapeyron slope for the pv-ppv transition of 9.6 MPa/K for MS, decreasing to 8.4 and 8.1 MPa/K at 6.3 and 12.5 mol% FS and to 8.2 and 7.3 MPa/K at 6.3 and 12.5 mol% FA. An isochemical pv to ppv transition within the investigated solid solution range (up tp 25 mol% FS and FA) is characterized by decreasing bulk and increasing shear modulus. At a reference pressure of ­­­100 GPa, the bulk modulus for pv and ppv increases by 1.4% and 1.0%, respectively, from MS to MS-FS12.5 and decreases by 0.4% and 0.2%, respectively, from MS to MS-FA12.5 (subscripts indicate mol%). The shear modulus decreases for both pv and ppv along both of the solid solution series from the pure MS composition, with the largest decrese along the FA-join. For pv and ppv the shear modulus decreases with 2.4% and 1.3%, respectively from MS100 to MS-FS12.5 and with 4.4% and 3.0%, respectively, from MS100 to MS-FA12.5. The results for the MS-FS join are in general agreement with previous DFT-studies (Caracas & Cohen, 2005, GRL; Stackhouse et al. 2006, GRL; Stackhouse & Brodholt 2008, PEPI). Boffa Ballaran et al. (2012, EPSL), however, found a decrease in the bulk modulus for pv on the MS-FS join relative to pure MS. The decreasing bulk modulus along the MS-FA join agrees with Boffa Ballaran et al.A chemical reaction from FA-rich pv and reduced Fe to form FS-rich ppv produces additional Al2O3 and MgO:2 FeAlO3 + 3 MgSiO3 + Fe = 3 FeSiO3 + Al2O3

  10. The role of chemical structure on the magnetic and electronic properties of Co2FeAl0.5Si0.5/Si(111) interface

    NASA Astrophysics Data System (ADS)

    Kuerbanjiang, Balati; Nedelkoski, Zlatko; Kepaptsoglou, Demie; Ghasemi, Arsham; Glover, Stephanie E.; Yamada, Shinya; Saerbeck, Thomas; Ramasse, Quentin M.; Hasnip, Philip J.; Hase, Thomas P. A.; Bell, Gavin R.; Hamaya, Kohei; Hirohata, Atsufumi; Lazarov, Vlado K.

    2016-04-01

    We show that Co2FeAl0.5Si0.5 film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitutional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the film leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co2FeAl0.5Si0.5 film into the Si substrate, besides the structural integrity of this junction.

  11. Photovoltaic and phototransient interface states properties of nanocomposite Fe3O4-graphene/n-Si/Al photodiode

    NASA Astrophysics Data System (ADS)

    Alahmed, Z. A.; Phan, D.-T.; Chung, G.-S.; Yakuphanoglu, F.

    2013-11-01

    A photodiode based on Fe3O4-graphene/n-Si/Al diode was fabricated. The electrical and capacitance properties of the diode were investigated by transient current and capacitance measurements. Ag/Fe3O4-graphene/n-Si photovoltaic device gives Isc of 0.111 mA and Voc of 375 mV under 1.5 A.M. The maximum electrical power Pmax value of the device was found to be 7.567 μV. This suggests that the studied photovoltaic device can be used as a microvoltage generator. The capacitance of the device increases with illumination. This indicates that the device exhibits a photocapacitance behavior. This behavior was analyzed by transient photocapacitance measurements. The transient interface states density plots of the diode were obtained. The photocapacitance mechanism was explained with the change in the interface states.

  12. Electrochemical and microstructural study of oxide films formed electrochemically at microcrystalline Al-Fe-V-Si alloys.

    PubMed

    Thomas, S C; Birss, V I; Steele, D; Tessier, D

    1995-07-01

    A recent advance in metallurgical technology has been the application of rapid solidification techniques to Al alloy production. FVS0812 is the designation given to a microcrystalline Al-based alloy consisting of 8 wt% Fe, 1 wt% V and 2 wt% Si. It is a two-phase alloy, consisting of ca. 27 vol percent of approximately spherical Fe-V-Si-rich dispersoids in an essentially pure Al matrix. The high strength, low density properties of this advanced material, and other related alloys, have not yet been realized, however, due, in part, to the inability of the alloy to form a thick, adherent, abrasion-resistant outer surface oxide film, a feature readily achieved at conventional Al alloys by normal anodizing methods. The present research has involved an electro-chemical study of oxide film growth at the 812 alloy, with the specific goals being to seek an understanding of the origin of the oxide film growth problem and ultimately to propose alternative approaches to the formation of a thick, stable oxide film at this material. The techniques used in this research have included electrochemical methodologies such as cyclic voltammetry and electrochemical impedance spectroscopy. Crucial information has been obtained through transmission electron microscopy (TEM) of ultramicrotomed specimens. Experiments were carried out initially in neutral borate solutions to characterize the compact barrier oxide film formed in this environment and expected to be present beneath the porous oxide film formed in the normal sulfuric acid anodizing medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7549001

  13. Extrusion, Properties, and Failure of Spray-Formed Hypereutectic Al-Si Alloys Based on the Optimization of Fe-Bearing Phase

    NASA Astrophysics Data System (ADS)

    Hou, L. G.; Yu, H.; Cui, H.; Cai, Y. H.; Zhuang, L. Z.; Zhang, J. S.

    2013-04-01

    Based on the densification of the spray-formed hypereutectic Al-Si (hyper-AS) alloys, the microstructural evolution, mechanical properties, as well as the failure are studied in this investigation. The appropriate process and parameters for the densification of the deposits are gained from the thermomechanical simulation. Besides of the spray-formed Al-25Si-5Fe-3Cu (3C) alloy, the microstructures of other spray-formed alloys with Mn/Cr addition are stable without coarsening of the refined α-Al(Fe,TM)Si (TM = Mn/Cr/(Mn+Cr)) particles, which can improve the heat resistance. Especially, a great number of the submicrosized α-Al(Fe,TM)Si phases are observed in the hot-extruded TM-containing alloys. The critical ranges of the major parameter TM/Fe mass ratios that can affect the formation of the α-Al(Fe,TM)Si phases in the cast or spray-formed hyper-AS alloys are severally determined. The structure and lattice constant of the refined α-Al(Fe,TM)Si phases also are characterized. The mechanical properties of the current extruded hyper-AS alloys at room or elevated temperatures are close to or higher than some commercial alloys or other published results. Therefore, the hyper-AS alloys can be proposed as new lightweight, heat-resistant, and high-strength alloys, which can be used in the complex working conditions, such as advanced engine systems. The main reason for the enhanced properties would be the formation of a large quantity of microsized/submicrosized α-Al(Fe,TM)Si phases and abundant dislocations, which can greatly reinforce the matrix and transform the brittle fracture of the needle-like Fe-bearing phases into ductile fracture.

  14. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    NASA Astrophysics Data System (ADS)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  15. Properties of a reaction-bonded β-SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments

    NASA Astrophysics Data System (ADS)

    Li, Yan-jun; Yu, Hai-liang; Jin, Hai-yun; Shi, Zhong-qi; Qiao, Guan-jun; Jin, Zhi-hao

    2015-05-01

    An FeMo-alloy-doped β-SiAlON (FeMo/β-SiAlON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, AlN, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investigated. Some properties of the composite, including its bending strength at 700°C and after oxidization at 700°C for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion resistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiAlON composite exhibits strong potential for application to molten aluminum environments.

  16. Interfacial exchange coupling in cubic Heusler Co2FeZ (Z = Al and Si)/tetragonal Mn3Ga bilayers

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K.; Sugihara, A.; Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Ando, Y.; Mizukami, S.

    2015-05-01

    We have fabricated bilayer films of tetragonal Heusler-like D022 Mn3Ga and cubic Heusler Co2FeZ (Z = Si and Al) on (100) single-crystalline MgO substrates and investigated their structural and interfacial exchange coupling. The coupling in the Mn3Ga/Co2FeAl bilayer was either ferromagnetic or antiferromagnetic, depending on annealing temperature, whereas only antiferromagnetic exchange coupling was observed in the Mn3Ga/Co2FeSi bilayers. The effects of annealing on the structure and coupling strength in the bilayers are discussed.

  17. Low temperature magnetization behavior in Co 36Fe 36Si 3Al 1Nb 4B 20 (at%) nanostructured alloy

    NASA Astrophysics Data System (ADS)

    Panda, A. K.; Mohanta, Ojaswini; Basumallick, A.; Mitra, A.

    2010-12-01

    The investigation addresses low temperature magnetization behavior in Co 36Fe 36Si 3Al 1Nb 4B 20 alloy ribbons in their as-spun as well as annealed state. Optimum heat treatment at 875 K led to nanocrystallization whereby bcc-(FeCo)SiAl nanoparticles were dispersed in an amorphous matrix as evidenced from transmission electron microscopy. Low temperature magnetization studies were carried out in the range 77-300 K. Using the method of mathematical fittings, magnetization extrapolated to 0 K was obtained. The dependence of the magnetization with respect to temperature of BT 3/2 was used to determine the Bloch coefficient " B" and spin wave stiffness constant " D". Magnetic softening revealed by lowering in the coercivity in the optimum nanostructured state was also the cause of a drop in the stiffness constant. The range of exchange interaction given by D/ TC was higher in the nanostructured state compared to the as-spun amorphous state. The effect of nanocrystallization and the resulting ferromagnetic coupling was further evidenced by low temperature magnetization studies.

  18. Effect of on-site Coulomb interaction (U) on the electronic and magnetic properties of Fe2MnSi, Fe2MnAl and Co2MnGe

    NASA Astrophysics Data System (ADS)

    Sharma, Sonu; Pandey, Sudhir K.

    2016-04-01

    The electronic band structures, density of states' plots and magnetic moments of Fe2MnSi, Fe2MnAl, and Co2MnGe are studied by using the first principles calculation. The FM solutions using LSDA without U show the presence of half-metallic ferromagnetic (HFM) ground state in Fe2MnSi, whereas the ground state of Fe2MnAl is found to be metallic. In both compounds the maximum contribution to the total magnetic moment is from the Mn atom, while the Fe atom contributes very less. The electronic structures and magnetic moments of Fe-based compounds are affected significantly by U under around-the-mean-field (AMF) double counting scheme, whereas its effect is very less on Co2MnGe. The magnetic moment of Fe atom in Fe2MnSi (Fe2MnAl) increased by ∼70% (∼75%) and in Mn atom it decreases by ∼50% (∼70%) when the value of U is increased from 1 to 5 eV. Hund's like exchange interactions are increasing in Fe atom while decreasing in Mn atom with increase in U. The Fe and Mn moments are ferromagnetically coupled in Fe2MnSi for all values of U, whereas in Fe2MnAl they are coupled antiferromagnetically below U=2 eV and ferromagnetically above it. Above U=2 eV the metallic ground state of Fe2MnAl changes to semiconducting ground state and the ferromagnetic coupling between Fe and Mn atoms appears to be responsible for this. This shows that the validity of AFM double counting scheme is not robust for the entire range of U in the Fe2MnAl compound.

  19. Nuclear magnetic resonance study of thin Co2FeAl0.5Si0.5 Heusler films with varying thickness

    NASA Astrophysics Data System (ADS)

    Alfonsov, A.; Peters, B.; Yang, F. Y.; Büchner, B.; Wurmehl, S.

    2015-02-01

    Type, degree, and evolution of structural order are important aspects for understanding and controlling the properties of highly spin-polarized Heusler compounds, in particular, with respect to the optimal film growth procedure. In this work, we compare the structural order and the local magnetic properties revealed by nuclear magnetic resonance (NMR) spectroscopy with the macroscopic properties of thin Co2FeAl 0.5Si 0.5 Heusler films with varying thickness. A detailed analysis of the measured NMR spectra presented in this paper enables us to find a very high degree of L 21 -type ordering up to 81% concomitantly with excess Fe of 8%-13% at the expense of Al and Si. We show that the formation of certain types of order depends not only on the thermodynamic phase diagrams as in bulk samples, but also that the kinetic control may contribute to the phase formation in thin films. It is an exciting finding that Co2FeAl 0.5Si 0.5 can form an almost ideal L 21 structure in films, though with a considerable amount of Fe-Al/Si off stoichiometry. Moreover, the very good quality of the films as demonstrated by our NMR study suggests that the technique of off-axis sputtering used to grow the films sets the stage for the optimized performance of Co2FeAl 0.5Si 0.5 in spintronic devices.

  20. On the Influence of Dispersoids on the Particle Stimulated Nucleation of Recrystallization in an Al-Fe-Si Model Alloy

    SciTech Connect

    Engler, O.

    1997-12-31

    The recrystallization of Al-alloys is controlled by precipitates. Whereas large particles generally promote recrystallization by particle stimulated nucleation, finely dispersed precipitates - either already present in the as-deformed state or precipitating during the recrystallization anneal - are known to strongly retard recrystallization. It was the aim of the present study to elucidate these concurring effects of large particles and small dispersoids on recrystallization in a ternary Al-Fe-Si model alloy. For that purpose, samples were prepared according to different pre-annealing treatments so as to comprise different states of precipitation and supersaturation. The evolution of microstructure and texture during rolling and recrystallization was characterized by metallography and by conventional X-ray texture analysis. EBSD-local texture investigations were employed to yield information on the efficiency of nucleation at the various nucleation sites and, consequently, on the influence of dispersoids on recrystallization.

  1. 59Co nuclear magnetic resonance study of the local distribution of atoms in the Heusler compound Co2FeAl0.5Si0.5

    NASA Astrophysics Data System (ADS)

    Wurmehl, Sabine; Kohlhepp, Jürgen T.; Swagten, Henk J. M.; Koopmans, Bert

    2012-02-01

    In this work, the spin-echo nuclear magnetic resonance (NMR) technique is used to probe the local structure of Co2FeAl0.5Si0.5 bulk samples. The 59Co NMR spectrum of the Heusler compound Co2FeAl0.5Si0.5 consists of four main resonance lines with an underlying sub-structure. The splitting into the main resonance lines is explained by contributions of the B2 type structure. The sub-lines are attributed to a random distribution of Al and Si. By comparing the experimental results with an appropriate multinomial distribution, the fraction of the Al/Si intermixing and the ratio between the contributing structure types is assigned. The main structural contribution of as-cast bulk samples is of B2 type with 38% of L21 contributions. The L21 contribution can be enhanced to 59% by an appropriate annealing process. However, B2 contributions are still present after annealing. Additional foreign phases such as fcc-Co and Co-Al, with relative contributions of less than one percent, are also found in both as-cast and annealed samples. Resonance lines related to slight amounts of the ternary, parental Heusler compounds Co2FeAl and Co2FeSi are also observed.

  2. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  3. High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: Implications for the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Cottaar, Sanne; Liu, Tao; Stackhouse, Stephen; Militzer, Burkhard

    2016-01-01

    Fe and Al are two of the most important rock-forming elements other than Mg, Si, and O. Their presence in the lower mantle's most abundant minerals, MgSiO3 bridgmanite, MgSiO3 post-perovskite and MgO periclase, alters their elastic properties. However, knowledge on the thermoelasticity of Fe- and Al-bearing MgSiO3 bridgmanite, and post-perovskite is scarce. In this study, we perform ab initio molecular dynamics to calculate the elastic and seismic properties of pure, Fe3+- and Fe2+-, and Al3+-bearing MgSiO3 perovskite and post-perovskite, over a wide range of pressures, temperatures, and Fe/Al compositions. Our results show that a mineral assemblage resembling pyrolite fits a 1D seismological model well, down to, at least, a few hundred kilometers above the core-mantle boundary, i.e. the top of the D″ region. In D″, a similar composition is still an excellent fit to the average velocities and fairly approximate to the density. We also implement polycrystal plasticity with a geodynamic model to predict resulting seismic anisotropy, and find post-perovskite with predominant (001) slip across all compositions agrees best with seismic observations in the D″.

  4. Co2FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Tuzcuoglu, H.; Gabor, M. S.; Petrisor, T.; Tiusan, C.; Zighem, F.; Chérif, S. M.; Moch, P.

    2014-01-01

    10 nm and 50 nm Co2FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (Ta), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing Ta, while the uniaxial anisotropy field is nearly unaffected by Ta within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with Ta. Finally, the FMR linewidth decreases when increasing Ta, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10-3 and 1.3×10-3 for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively).

  5. Crystal Structure and Magnetic Properties of (Fe,Si,Al)-Based Nanocomposite Magnets Designed for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Daniil, Maria; Fonda, Helen M.; Willard, Matthew A.

    2015-06-01

    In this work, we performed a detailed study of the crystallization, crystal structure, and magnetic properties of Fe87- z Si z- x Al x Nb3B9Cu1 nanocrystalline alloys that were designed primarily for low-temperature applications. In addition, their interesting low-temperature [77 K to 300 K (-196 °C to 27 °C)] magnetic properties ( H c and M s) were also investigated. These alloys were produced by annealing their amorphous precursors at 823 K (550 °C). Si and Al substitution do not seem to alter the crystallization procedure and crystal structure of the parent alloy but reduces the lattice parameter, the Curie temperature, and the saturation magnetization. On the other hand, it improves the room temperature coercivity at small amounts ( H c = 0.35 A/m for x = 3.5, z = 19) and changes its temperature dependence. As a result, a remarkably low H c value at 77 K (-196 °C) of 0.45 A/m was observed for x = 6 and z = 23.5.

  6. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    SciTech Connect

    Pint, Bruce A.; Unocic, Kinga A.; Terrani, Kurt A.

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  7. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    SciTech Connect

    Dong, J.X.; Karnezis, P.A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from {approximately}1.7 pct for the gravity die cast LM25 alloy to {approximately}8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated conditions. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25 + Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of {approximately}6.5 pct, compared to that of {approximately}0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  8. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    NASA Astrophysics Data System (ADS)

    Dong, J. X.; Karnezis, P. A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from ˜1.7 pct for the gravity die cast LM25 alloy to ˜8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated condition. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25+Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of ˜6.5 pct, compared to that of ˜0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  9. Analysis of interface states of FeO-Al2O3 spinel composite film/p-Si diode by conductance technique

    NASA Astrophysics Data System (ADS)

    Tataroğlu, Adem; Al-Ghamdi, Ahmed A.; El-Tantawy, Farid; Farooq, W. A.; Yakuphanoğlu, F.

    2016-03-01

    The interface states and series resistance properties of the Al/FeO-Al2O3/p-Si diode were investigated by the capacitance ( C) and conductance ( G) measurements. The measured capacitance and conductance values were corrected to eliminate the effect of series resistance to obtain the real capacitance and conductance values of the diode. The C and G characteristics indicate the presence of interface states at the interface of the diode. The interface states density, N ss, was determined using Hill-Coleman method, and it was found that the density of interface states is decreased with the frequency. The obtained results suggest that the series resistance and interface states affect significantly the electronic parameters of the Al/FeO-Al2O3/p-Si diode.

  10. Sound velocities of Fe3Al2Si3O12 almandine up to 19 GPa and 1700 K

    NASA Astrophysics Data System (ADS)

    Arimoto, Takeshi; Gréaux, Steeve; Irifune, Tetsuo; Zhou, Chunyin; Higo, Yuji

    2015-09-01

    Elastic wave velocities of synthetic Fe3Al2Si3O12 almandine have been determined at simultaneous high pressure and temperature up to 19 GPa and 1700 K by the ultrasonic technique in conjunction with in situ synchrotron X-ray diffraction in a multi-anvil apparatus. Velocities of almandine are found substantially lower than those of other major end-member garnets such as pyrope, grossular, and MgSiO3 majorite, while their pressure and temperature derivatives are comparable to those of the latter garnets. The observed density, and compressional (VP) and shear (VS) velocities were combined and fitted to functions of the Eulerian strain EoS, yielding a adiabatic bulk modulus KS0 = 174.2 (12) GPa and a shear modulus G0 = 94.9 (7) GPa, and their pressure and temperature derivatives ∂KS/∂P = 4.61 (14), ∂G/∂P = 1.06 (6), ∂KS/∂T = -2.67 (7) × 10-2 GPa K-1, and ∂G/∂T = -1.31 (8) × 10-2 GPa K-1. The pressure derivative of the bulk modulus of almandine is similar to those of other garnet end-members, which is in contrast to the substantially higher value (∂KS/∂P = 6.2 (5)) reported for pure almandine in an earlier study based on experiments up to 3 GPa. The present new results combined with those of pyrope, grossular, and MgSiO3 majorite are successfully used to reproduce the sound velocities of majoritic garnet in the pyrolite composition.

  11. Effects of temperature and pressure on phonons in FeSi1–xAlx

    SciTech Connect

    Delaire, O.; Al-Qasir, I. I.; Ma, J.; dos Santos, A. M.; Sales, B. C.; Mauger, L.; Stone, M. B.; Abernathy, D. L.; Xiao, Y.; Somayazulu, M.

    2013-05-31

    The effects of temperature and pressure on phonons in B20 compounds FeSi1–xAlx were measured using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering. The effect of hole doping through Al substitution is compared to results of alloying with Co (electron doping) in Fe₁₋xCoxSi. While the temperature dependence of phonons in FeSi is highly anomalous, doping with either type of carriers leads to a recovery of the normal quasiharmonic behavior. Density functional theory (DFT) computations of the electronic band structure and phonons were performed. The anomaly in the temperature dependence of the phonons in undoped FeSi was related to the narrow band gap, and its sensitivity to the effect of thermal disordering by phonons. On the other hand, the pressure dependence of phonons at room temperature in undoped FeSi follows the quasiharmonic behavior and is well reproduced by the DFT calculations.

  12. Dependence of dynamic magnetization and magneto-transport properties of FeAlSi films with oblique sputtering studied via spin rectification effect

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Zhong, Xiaoxi

    2014-09-15

    FeAlSi (Sendust) is known to possess excellent soft magnetic properties comparable to traditional soft magnetic alloys such as NiFe (Permalloy), while having a relatively higher resistance for lower eddy current losses. However, their dynamic magnetic and magneto-transport properties are not well-studied. Via the spin rectification effect, we electrically characterize a series of obliquely sputtered FeAlSi films at ferromagnetic resonance. The variations of the anisotropy fields and damping with oblique angle are extracted and discussed. In particular, two-magnon scattering is found to dominate the damping behavior at high oblique angles. An analysis of the results shows large anomalous Hall effect and anisotropic magneto-resistance across all samples, which decreases sharply with increasing oblique incidence.

  13. Optimization of exchange bias in Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} Heusler alloy layers

    SciTech Connect

    Hirohata, Atsufumi; Izumida, Keisuke; Ishizawa, Satoshi; Nakayama, Tadachika; Sagar, James

    2014-05-07

    We have fabricated and investigated IrMn{sub 3}/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} stacks to meet the criteria for future spintronic device applications which requires low-temperature crystallisation (<250 °C) and a large exchange bias H{sub ex} (>500 Oe). Such a system would form the pinned layer in spin-valve or tunnel junction applications. We have demonstrated that annealing at 300 °C which can achieve crystalline ordering in the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} layer giving ∼80% of the predicted saturation magnetisation. We have also induced an exchange bias of ∼240 Oe at the interface. These values are close to the above criteria and confirm the potential of using antiferromagnet/Heusler-alloy stacks in current Si-based processes.

  14. Microstructure Evolution in the Near-Surface Region During Homogenization of a Twin-Roll Cast AlFeMnSi Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Junjie; Zhou, Xiaorong; Thompson, George E.; Hunter, John A.; Yuan, Yudie

    2016-06-01

    A near-surface deformed layer, comprising ultrafine grains of 50-500 nm diameters with the grain boundaries being decorated by a high population density of fine cubic α-Al15(FeMn)3Si2 dispersoids and oxide/lubricant particles, was generated in a foil stock AlFeMnSi alloy during twin-roll casting due to severe shear deformation within the near-surface region. During a subsequent multi-step homogenization treatment at temperatures in the range of 713 K and 853 K (440 °C and 580 °C), the fine cubic α-Al15(FeMn)3Si2 dispersoids within the near-surface layer were dissolved, while sparse, large lath-shaped Al3Fe particles formed in the same region. Significant grain growth took place within the near-surface layer due to the loss of grain boundary pinning by the dispersoids, leading to the removal of the ultrafine-grained microstructure within the near-surface region. However, at local regions where the population density of oxide particles was sufficiently high to provide grain boundary pinning, the ultrafine-grained microstructure was preserved within the near-surface layer.

  15. Microstructure Evolution in the Near-Surface Region During Homogenization of a Twin-Roll Cast AlFeMnSi Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Junjie; Zhou, Xiaorong; Thompson, George E.; Hunter, John A.; Yuan, Yudie

    2016-08-01

    A near-surface deformed layer, comprising ultrafine grains of 50-500 nm diameters with the grain boundaries being decorated by a high population density of fine cubic α-Al15(FeMn)3Si2 dispersoids and oxide/lubricant particles, was generated in a foil stock AlFeMnSi alloy during twin-roll casting due to severe shear deformation within the near-surface region. During a subsequent multi-step homogenization treatment at temperatures in the range of 713 K and 853 K (440 °C and 580 °C), the fine cubic α-Al15(FeMn)3Si2 dispersoids within the near-surface layer were dissolved, while sparse, large lath-shaped Al3Fe particles formed in the same region. Significant grain growth took place within the near-surface layer due to the loss of grain boundary pinning by the dispersoids, leading to the removal of the ultrafine-grained microstructure within the near-surface region. However, at local regions where the population density of oxide particles was sufficiently high to provide grain boundary pinning, the ultrafine-grained microstructure was preserved within the near-surface layer.

  16. Heat capacity measurements for cryolite (Na3AlF6) and reactions in the system NaFeAlSiOF

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Hemingway, B.S.; Westrum, E.F., Jr.; Metz, G.W.; Essene, E.J.

    1987-01-01

    The heat capacity of cryolite (Na3AlF6) has been measured from 7 to 1000 K by low-temperature adiabatic and high-temperature differential scanning calorimetry. Low-temperature data were obtained on material from the same hand specimen in the calorimetric laboratories of the University of Michigan and U.S. Geological Survey. The results obtained are in good agreement, and yield average values for the entropy of cryolite of: S0298 = 238.5 J/mol KS0T-S0298 = 145.114 ln T+ 193.009*10-3T- 10.366* 105 T2- 872.89 J/mol K (273-836.5 K)??STrans = 9.9J/mol KS0T-S0298 =198.414 ln T+73.203* 10-3T-63.814* 105 T2-1113.11 J/mol K (836.5-1153 K) with the transition temperature between ??- and ??-cryolite taken at 836.5 K. These data have been combined with data in the literature to calculate phase equilibria for the system NaFeAlSiOF. The resultant phase diagrams allow constraints to be placed on the fO2, fF2, aSiO2 and T conditions of formation for assemblages in alkalic rocks. A sample application suggests that log fO2 is approximately -19.2, log fF2 is -31.9 to -33.2, and aSiO2 is -1.06 at assumed P T conditions of 1000 K, 1 bar for the villiaumite-bearing Ilimaussaq intrusion in southwestern Greenland. ?? 1987.

  17. Effect of the addition of Mn on the tensile properties of a spray-formed and extruded Al-9Si-4Cu-1Fe alloy

    NASA Astrophysics Data System (ADS)

    Benetti, G. D.; Jorge, A. M., Jr.; Kiminami, C. S.; Botta, W. J.; Bolfarini, C.

    2009-01-01

    The microstructure and the tensile properties of a spray-formed and extruded Al- 9Si-4Cu-1Fe alloy were investigated. Manganese (0.3, 1, 2 in wt%) was added to the alloy to avoid the formation of the needle-like β-AlFeSi intermetallic phases that are highly detrimental to the alloy's ductility. The deposits were extruded at 623K with a n area reduction of 5 to 1. Small faceted dispersoids surrounding the equiaxial α-Al matrix, mainly in the form of silicon particles, were identified by SEM-EDS, as well as the Mn-containing α-Al15(Fe,Mn)3Si2 phase. The presence of the needle-like β-Al(Fe,Mn)Si was scanty, even with the lowest Mn content. The room temperature tensile tests of all the extruded alloys showed a significant increase in elongation to fracture when compared with the values observed fo r the as-spray formed deposits.This result can be ascribed to the elimination of porosity promoted by the extrusion process and to the smaller grain size of the extruded samples. PUBLISHER'S NOTE This article by Benetti et al was published in error, it was a duplicate of article 012114 which appears later in this volume, the duplicate PDF and references have been deleted. The missing article by S Jayalakshmi, E Fleury and D J Sordelet, which forms part of the section HYDROGEN IN METASTABLE ALLOYS, now appears at the end of the volume (012120).

  18. Electronic and Magneto-Transport Across the Heusler Alloy (Co2FeAl)/ p-Si Interfacial Structure

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Srivastava, P. C.

    2014-02-01

    Electronic and magneto-transport across the Heusler alloy Co2FeAl (CFA)/ p-Si structure have been studied. The morphology of the Heusler alloy film surface has also been characterized by atomic force microscopy and magnetic force microscopy (MFM). X-ray diffraction data revealed formation of the CFA alloy phase with the L21 structure. MFM results revealed formation of a fine domain structure of average size ˜10 nm and magnetic signal strength 0.23°. The I- V characteristics are strongly temperature-dependent between ˜80 K and 300 K for forward bias, compared with weak temperature dependence on reversing the polarity. At low temperature the I- V characteristics have the features of a backward diode. The observed strong temperature dependence is because of thermionic emission of carriers across the interface. The weak temperature dependence is because of dominant field-emission tunnelling of carriers across the interface. Large magnetic field sensitivity of the reverse current has also been observed. The observed magnetic field sensitivity for the reverse current shows the involvement of electronic spin in transport across the interface, from the Heusler alloy to the silicon. An MR of ˜35% in the presence of a magnetic field was estimated from the I- V data. The study has shown that spin-dependent tunnel transport from the CFA alloy to silicon across the interface results in the observed value of MR, which seems to be because of spin scattering.

  19. The influence of microchemistry on the recrystallization texture of cold-rolled Al-Mn-Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Huang, K.; Li, Y. J.; Marthinsen, K.

    2015-04-01

    The recrystallization textures of a cold-rolled Al-Mn-Fe-Si model alloy with three different microchemistry states after non-isothermal annealing were studied. The microstructure and texture evolution have been characterized by EBSD. It is clearly demonstrated that the actual microchemistry state as determined by the homogenization procedure strongly influence the recrystallized grain size and recrystallization texture after nonisothermal annealing. High Mn content in solid solution promotes stronger concurrent precipitation and retards recrystallization, which finally leads to a coarse grain structure, accompanied by strong P {011}<566> and/or M {113}<110> texture components and a ND- rotated cube {001}<310> component. A refined grain structure with Cube {001}<100> and/or a weak P component as the main texture components were obtained when the pre-existing dispersoids are coarser and fewer, and concurrent precipitation is limited. The different recrystallization textures are discussed with respect to the effect of second-phase particles using two different heating rates.

  20. Cantilever detected ferromagnetic resonance in thin Fe50Ni50, Co2FeAl0.5Si0.5 and Sr2FeMoO6 films using a double modulation technique

    NASA Astrophysics Data System (ADS)

    Alfonsov, Alexey; Ohmichi, Eiji; Leksin, Pavel; Omar, Ahmad; Wang, Hailong; Wurmehl, Sabine; Yang, Fengyuan; Ohta, Hitoshi

    2016-09-01

    In this work we introduce a new method, which employs commercial piezo-cantilevers, for a ferromagnetic resonance (FMR) detection from thin, nm-size, films. Our setup has an option to rotate the sample in the magnetic field and it operates up to the high microwave frequencies of 160 GHz. Using our cantilever based FMR spectrometer we have investigated a set of samples, namely quasi-bulk and 84 nm film Co2FeAl0.5Si0.5 samples, 16 nm Fe50Ni50 film and 150 nm Sr2FeMoO6 film. Low frequency and room temperature test of our setup using 84 nm Co2FeAl0.5Si0.5 film yielded a result identical to a standard X-Band spectrometer, namely a single line with quite small linewidth. Our measurements at low temperatures and high frequencies revealed a quite strong FMR response detected in all samples. The FMR spectra share common features, such as the emergence of the second line with an opposite angular dependence, and a drastic increase of the linewidths with increasing microwave frequency. We believe that these findings are results of the complicated dynamics of the magnetization at low temperatures and high frequencies, which we were able to probe using our cantilever based FMR setup.

  1. Cantilever detected ferromagnetic resonance in thin Fe50Ni50, Co2FeAl0.5Si0.5 and Sr2FeMoO6 films using a double modulation technique.

    PubMed

    Alfonsov, Alexey; Ohmichi, Eiji; Leksin, Pavel; Omar, Ahmad; Wang, Hailong; Wurmehl, Sabine; Yang, Fengyuan; Ohta, Hitoshi

    2016-09-01

    In this work we introduce a new method, which employs commercial piezo-cantilevers, for a ferromagnetic resonance (FMR) detection from thin, nm-size, films. Our setup has an option to rotate the sample in the magnetic field and it operates up to the high microwave frequencies of 160GHz. Using our cantilever based FMR spectrometer we have investigated a set of samples, namely quasi-bulk and 84nm film Co2FeAl0.5Si0.5 samples, 16nm Fe50Ni50 film and 150nm Sr2FeMoO6 film. Low frequency and room temperature test of our setup using 84nm Co2FeAl0.5Si0.5 film yielded a result identical to a standard X-Band spectrometer, namely a single line with quite small linewidth. Our measurements at low temperatures and high frequencies revealed a quite strong FMR response detected in all samples. The FMR spectra share common features, such as the emergence of the second line with an opposite angular dependence, and a drastic increase of the linewidths with increasing microwave frequency. We believe that these findings are results of the complicated dynamics of the magnetization at low temperatures and high frequencies, which we were able to probe using our cantilever based FMR setup. PMID:27498338

  2. Ladle and Continuous Casting Process Models for Reduction of SiO2 in SiO2-Al2O3-CaO Slags by Al in Fe-Al(-Si) Melts

    NASA Astrophysics Data System (ADS)

    Park, Jiwon; Sridhar, S.; Fruehan, Richard J.

    2015-02-01

    Based on a mixed control or two-phase mass transfer model considering mass transport in the metal and the slag phases, process models for ladle and continuous castor mold were developed to predict the changes in the metal and the slag chemistry and viscosity. In the ladle process model, the rate of reaction is primarily determined by stirring gas flow rate, which greatly alters the mass transports of the metal and the slag phases. In the continuous casting process model, the effects of the Al, Si, and SiO2 contents in the incoming flow of the fluid phases, casting speed, mold flux consumption rate, and depth of the liquid mold flux pool on the steady-state compositions of the metal and the mold flux were assessed.

  3. Tensile deformation of 2618 and Al-Fe-Si-V aluminum alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Leng, Y.; Porr, W. C., Jr.; Gangloff, R. P.

    1990-01-01

    The present study experimentally characterizes the effects of elevated temperature on the uniaxial tensile behavior of ingot metallurgy 2618 Al alloy and the rapidly solidified FVS 0812 P/M alloy by means of two constitutive formulations: the Ramberg/Osgood equation and the Bodner-Partom (1975) incremental formulation for uniaxial tensile loading. The elastoplastic strain-hardening behavior of the ingot metallurgy alloy is equally well represented by either formulation. Both alloys deform similarly under decreasing load after only 1-5 percent uniform tensile strain, a response which is not described by either constitutive relation.

  4. Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, G. F.; Dai, P. Q.

    2015-05-01

    An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.

  5. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space

  6. Phase Stability of Al-5Fe-V-Si Coatings Produced by Cold Gas Dynamic Spray Process Using Rapidly Solidified Feedstock Materials

    NASA Astrophysics Data System (ADS)

    Bérubé, G.; Yandouzi, M.; Zúñiga, A.; Ajdelsztajn, L.; Villafuerte, J.; Jodoin, B.

    2012-03-01

    In this study, aluminum alloy Al-5Fe-V-Si (in wt.%) feedstock powder, produced by rapid solidification (RS) using the gas atomization process, was selected to produce high-temperature resistant Al-alloy coatings using the cold gas dynamic spraying process (CGDS). The alloy composition was chosen for its mechanical properties at elevated temperature for potential applications in internal-combustion (IC) engines. The CGDS spray process was selected due to its relatively low operating temperature, thus preventing significant heating of the particles during spraying and as such allowing the original phases of the feedstock powder to be preserved within the coatings. The microstructure and phases stability was investigated by means of Scanning Electron Microscopy, transmission electron microscopy, X-ray diffraction and differential scanning calorimetery techniques. The coatings mechanical properties were evaluated through bond strength and microhardness testing. The study revealed the conservation of the complex microstructure of the rapid solidified powder during the spray process. Four distinct microstructures were observed as well as two different phases, namely a Al13(Fe,V)3Si silicide phase and a metastable (Al,Si) x (Fe,V) Micro-quasicrystalline Icosahedral (MI) phase. Aging of the coating samples was performed and confirmed that the phase transformation of the metastable phases and coarsening of the nanosized precipitates will occurs at around 400 °C. The metastable MI phase was determined to be thermally stable up to 390 °C, after which a phase transformation to silicide starts to occur.

  7. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.

  8. Characterization of Fe/C catalysts supported on Al2O3, SiO2 and TiO2

    NASA Astrophysics Data System (ADS)

    Lodya, J. A. L.; Seda, T.; Strydom, A. M.; Manzini, S. S.

    2010-01-01

    Structural and magnetic properties of Fe/C catalysts synthesized by ball milling and deposited onto Al2O3, SiO2 and TiO2 supports are reported. Ball milling α-Fe and C in the presence of these supports produced peculiar solid solutions in which antiferromagnetic and ferrimagnetic iron phases doped with Al, Si and Ti coexist. Mössbauer spectroscopy and powder X-ray diffraction data show no evidence of any FexC phase. Instead, oxidation took place even though carbon (graphite) was present. All the catalysts were found to exhibit strong metal-support interactions, with the strongest interactions found in the TiO2 supported catalyst.

  9. Modeling of viscosities of the partly crystallized slags in the Al2O3-CaO-``FeO''-SiO2 system

    NASA Astrophysics Data System (ADS)

    Kondratiev, Alex; Jak, Evgueni

    2001-12-01

    A viscosity model of the partly crystallized slag in the Al2O3-CaO-‘FeO’-SiO2 system has been developed in conjunction with the thermodynamic computer package F*A*C*T. Proportions of solids crystallized out of the liquid phase and compositions of the remaining liquid phase predicted by F*A*C*T are used in the viscosity model. Various heterogeneous viscosity models have been tested using large experimental dataset in the Al2O3-CaO-‘FeO’-SiO2 system in reducing conditions close to the equilibrium with metallic iron. The Roscoe equation with new empirical parameters was found to provide reasonable agreement with experimental data. Examples of model application to industrial nonferrous smelting slag systems are presented. This model can also be applied to coal ash slags.

  10. The ferriannite KFe(3)(2+)(Al(0.26)Fe(0.76)(3+)Si(3))O(10)(OH)(2) at 100 and 270 K.

    PubMed

    Redhammer, Günther J; Roth, G

    2004-04-01

    Unusually large and good-quality single crystals of the synthetic trioctahedral mica KFe(3)(2+)(Al(0.26)Fe(0.76)(3+)Si(3))O(10)(OH)(2) [potassium triiron(II) aluminasilaferrate(III) decaoxide dihydroxide] have been grown hydrothermally. X-ray diffraction data measured at 270 and 100 K have been used to refine the crystal structure, including the positions of the H atoms. This synthetic mica is similar to annite, KFe(3)AlSi(3)O(10)(OH)(2), and crystallizes with the same monoclinic C2/m symmetry. No phase transition has been observed down to 100 K. At low temperature, the ditrigonal distortion of the mica structure increases markedly, while the octahedral and tetrahedral bond lengths tend to decrease and increase, respectively. A detailed comparison of structural parameters in various Fe-rich micas is presented. PMID:15071193

  11. Al, Fe, and Si compounds in Tamm and Mehra-Jackson extracts from mucky-peaty-podzolic gley soil: Contents, reserves, and profile and particle-size distributions

    NASA Astrophysics Data System (ADS)

    Sokolova, T. A.; Tolpeshta, I. I.; Maksimova, Yu. G.

    2014-05-01

    Equal or comparable contents of Fe and Al extractable by Tamm and Mehra-Jackson solutions have been revealed in all the horizons of a loamy mucky-peaty-podzolic gley soil on binary deposits. The content of Si extractable by the Mehra-Jackson solution has exceeded that of oxalate-soluble Si by an order of magnitude. The distributions of Al in the Tamm solutions from the entire soil and its fractions of 1-5 and >5 μm are of accumulative type with a maximum in the mucky H horizon and a gradual decrease of the content with depth in relation with the analogous distribution of Al-organic complexes. The maximum content of oxalate-soluble Al in the clay fraction has been found in the eluvial ELg horizon, which can be due to the partial dissolution of Al hydroxide interlayers in soil chlorites. The distribution of Fe in the entire soil has two maximums, in the H horizon due to the accumulation of Fe-organic complexes and in the concretion-rich ELnn,g horizon due to the accumulation of Fe hydroxides. Depletion of oxalate-soluble Fe in the eluvial ELg horizon has been observed in all the fractions, which can be related to its mobilization and removal under strongly acidic conditions and the development of reductive processes, as well as the enrichment of the concretion-rich horizon with these compounds because of an increase in pH and the development of conditions favorable for water stagnation and Fe segregation.

  12. Multiscale modeling of the influence of Fe content in a Al-Si-Cu alloy on the size distribution of intermetallic phases and micropores

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Li, Mei; Allison, John; Lee, Peter D.

    2010-03-01

    A multiscale model was developed to simulate the formation of Fe-rich intermetallics and pores in quaternary Al-Si-Cu-Fe alloys. At the microscale, the multicomponent diffusion equations were solved for multiphase (liquid-solid-gas) materials via a finite difference framework to predict microstructure formation. A fast and robust decentered plate algorithm was developed to simulate the strong anisotropy of the solid/liquid interfacial energy for the Fe-rich intermetallic phase. The growth of porosity was controlled by local pressure drop due to solidification and interactions with surrounding solid phases, in addition to hydrogen diffusion. The microscale model was implemented as a subroutine in a commercial finite element package, producing a coupled multiscale model. This allows the influence of varying casting conditions on the Fe-rich intermetallics, the pores, and their interactions to be predicted. Synchrotron x-ray tomography experiments were performed to validate the model by comparing the three-dimensional morphology and size distribution of Fe-rich intermetallics as a function of Fe content. Large platelike Fe-rich β intermetallics were successfully simulated by the multiscale model and their influence on pore size distribution in shape castings was predicted as a function of casting conditions.

  13. Ferroindialite (Fe2+,Mg)2Al4Si5O18, a new beryl-group mineral from the Eifel volcanic region, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Aksenov, S. M.; Pekov, I. V.; Ternes, B.; Schüller, W.; Belakovskiy, D. I.; Van, K. V.; Blass, G.

    2014-12-01

    A new mineral, ferroindialite, a Fe2+-dominant analog of indialite, has been found in a pyrometamorphosed xenolith of pelitic rock hosted in alkaline basalts. Associated minerals are phlogopite, sanidine, sillimanite, pyroxenes of the enstatite-ferrosilite series, wagnerite, fluorapatite, tridymite, zircon and almandine. Ferroindialite forms brown-purple to gray with a violet-blue tint short prismatic or thick tabular hexagonal crystals up to 1.5 mm in size. The new mineral is brittle, with a Mohs' hardness of 7. Cleavage is not observed. D meas = 2.66(1), D calc = 2.667 g/cm3. IR spectrum shows neither H2O nor OH groups. Ferroindialite is anomalously biaxial (-), α = 1.539(2), β = 1.552(2), γ = 1.554(2), 2 V meas = 30(10)°. The mineral is weakly pleochroic, ranging from colorless on X to pale violet on Z. Dispersion is weak, r < v. The chemical composition (electron microprobe, mean of five point analyses, wt %) is as follows: 0.14 Na2O, 0.46 K2O, 4.95 MgO, 1.13 MnO, 12.66 FeO, 2.64 Fe2O3, 30.45 Al2O3, 47.22 SiO2, total is 99.65. The distribution of total iron content between Fe2+ and Fe3+ was carried out according to structural data. The empirical formula of ferroindialite is: (K0.06Na0.03)(Fe{1.12/2+}Mg0.78Mn0.10)Σ2.00(Al3.79Fe{0.21/3+})Σ4.00Si4.98O18. The simplified formula is: (Fe2+,Mg)2Al4Si5O18. The crystal structure has been refined on a single crystal, R = 0.049. Ferroindialite is hexagonal, space group P6/ mcc; a = 9.8759(3), c = 9.3102(3) Å, V = 786.40(3) Å3, Z = 2. The strongest lines in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 8.59 (100) (100), 4.094 (27) (102), 3.390 (35) (112), 3.147 (19) (202), 3.055 (31) (211), 2.657 (12) (212), 1.695 (9) (224). The type specimen of ferroindialite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4400/1.

  14. Production of Na-22 and Other Radionuclides by Neutrons in Al, SiO2, Si, Ti, Fe and Ni Targets: Implications for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Jones, D. T. L.; Binns, P. J.; Langen, K.; Schroeder, I.; Buthelezi, Z.; Latti, E.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.

    2001-01-01

    Cross section measurements for neutron-induced reactions are summarized. Measured cross sections for 22 Na produced by neutrons in Al and Si are used to calculate the production rate for 22 Na in lunar rock 12002 by galactic cosmic ray particles. Additional information is contained in the original extended abstract.

  15. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are

  16. Compression of Fe-Si-H alloys

    NASA Astrophysics Data System (ADS)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  17. Constraints on silicates formation in the Si-Al-Fe system: Application to hard deposits in steam generators of PWR nuclear reactors

    NASA Astrophysics Data System (ADS)

    Berger, Gilles; Million-Picallion, Lisa; Lefevre, Grégory; Delaunay, Sophie

    2015-04-01

    Introduction: The hydrothermal crystallization of silicates phases in the Si-Al-Fe system may lead to industrial constraints that can be encountered in the nuclear industry in at least two contexts: the geological repository for nuclear wastes and the formation of hard sludges in the steam generator of the PWR nuclear plants. In the first situation, the chemical reactions between the Fe-canister and the surrounding clays have been extensively studied in laboratory [1-7] and pilot experiments [8]. These studies demonstrated that the high reactivity of metallic iron leads to the formation of Fe-silicates, berthierine like, in a wide range of temperature. By contrast, the formation of deposits in the steam generators of PWR plants, called hard sludges, is a newer and less studied issue which can affect the reactor performance. Experiments: We present here a preliminary set of experiments reproducing the formation of hard sludges under conditions representative of the steam generator of PWR power plant: 275°C, diluted solutions maintained at low potential by hydrazine addition and at alkaline pH by low concentrations of amines and ammoniac. Magnetite, a corrosion by-product of the secondary circuit, is the source of iron while aqueous Si and Al, the major impurities in this system, are supplied either as trace elements in the circulating solution or by addition of amorphous silica and alumina when considering confined zones. The fluid chemistry is monitored by sampling aliquots of the solution. Eh and pH are continuously measured by hydrothermal Cormet© electrodes implanted in a titanium hydrothermal reactor. The transformation, or not, of the solid fraction was examined post-mortem. These experiments evidenced the role of Al colloids as precursor of cements composed of kaolinite and boehmite, and the passivation of amorphous silica (becoming unreactive) likely by sorption of aqueous iron. But no Fe-bearing was formed by contrast to many published studies on the Fe

  18. Direct band-gap measurement on epitaxial Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} Heusler-alloy films

    SciTech Connect

    Alhuwaymel, Tariq F.; Carpenter, Robert; Yu, Chris Nga Tung; Kuerbanjiang, Balati; Lazarov, Vlado K.; Abdullah, Ranjdar M.; El-Gomati, Mohamed; Hirohata, Atsufumi

    2015-05-07

    In this study, a newly developed band-gap measurement technique has been used to characterise epitaxial Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS) films. The CFAS films were deposited on MgO(001) substrate by ultra high vacuum molecular beam epitaxy. The band-gap for the as deposited films was found to be ∼110 meV when measured at room temperature. This simple technique provides a macroscopic analysis of the half-metallic properties of a thin film. This allows for simple optimisation of growth and annealing conditions.

  19. Fabrication of highly spin-polarized Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} thin-films

    SciTech Connect

    Vahidi, M.; Zhang, S. K.; Yu, L.; Huang, M.; Newman, N.; Gifford, J. A.; Chen, T. Y.; Krishnamurthy, S.; Yu, Z. G.; Youngbull, C.

    2014-04-01

    Ferromagnetic Heusler Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} epitaxial thin-films have been fabricated in the L2{sub 1} structure with saturation magnetizations over 1200 emu/cm{sup 3}. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  20. Phase Equilibria Study of the ZnO-"FeO"-SiO2-Al2O3 System at Po2 10-8 atm

    NASA Astrophysics Data System (ADS)

    Liu, Hongquan; Cui, Zhixiang; Chen, Mao; Zhao, Baojun

    2016-04-01

    Phase equilibria studies on ZnO-"FeO"-SiO2-Al2O3 system have been carried out in the temperature range between 1523 K and 1573 K (1250 °C and 1300 °C) at Po2 10-8 atm. Experimental techniques applied in the present study include high temperature equilibration, quenching, and electron probe X-ray microanalysis (EPMA). The compositions of the phases present in the quenched samples were measured by EPMA and used to construct phase diagrams of the pseudo-ternary sections at fixed Al2O3 content. The experimental results show that, spinel, SiO2, and willemite are the major primary phase fields in the composition range investigated. With 2 wt pct Al2O3 content in the liquid phase, the liquidus temperature can be increased by 35 K in the spinel primary phase in comparison with Al2O3-free system. The partitioning of ZnO and Al2O3 between the spinel and liquid phases is also discussed in the paper.

  1. Effects of annealing temperature on structure and magnetic properties of CoAl0.2Fe1.8O4/SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, L.; Li, J.; Liu, M.; Zhang, Y. M.; Lu, J. B.; Li, H. B.

    2012-12-01

    CoAl0.2Fe1.8O4/SiO2 nanocomposites were prepared by sol-gel method. The effects of annealing temperature on the structure and magnetic properties of the samples were studied by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy. The results show that the CoAl0.2Fe1.8O4 in the samples exhibits a spinel structure after being annealed. As annealing temperature increases from 800 to 1200 °C, the average grain size of CoAl0.2Fe1.8O4 in the nanocomposites increases from 5 to 41 nm while the lattice constant decreases from 0.8397 to 0.8391 nm, the saturation magnetization increases from 21.96 to 41.53 emu/g. Coercivity reaches a maximum of 1082 Oe for the sample annealed at 1100 °C, and thereafter decreases with further increasing annealing temperature. Mössbauer spectra show that the isomer shift decreases, hyperfine field increases and the samples transfer from mixed state of superparamagnetic and magnetic order to the completely magnetic order with annealing temperature increasing from 800 to 1200 °C.

  2. Partitioning behavior of Al in a nanocrystalline Fe{sub 71.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1}Al{sub 2} alloy

    SciTech Connect

    Warren, P.J.; Todd, I.; Davies, H.A.; Cerezo, A.; Gibbs, M.R.J.; Kendall, D.; Major, R.V.

    1999-11-05

    The nanocrystalline Fe-Si-B-Nb-Cu alloy, known as FINEMET, is now a well established commercial soft magnetic material exhibiting excellent permeability while maintaining a high saturation magnetization. It is produced by melt-spinning to form a ribbon with an amorphous structure. The purpose of this investigation was to use 3-dimensional atom probe microanalysis to experimentally quantify the local phase chemistries of this nanocomposite microstructure, with particular reference to the partitioning behavior of the Al.

  3. Growth of Co2FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering

    PubMed Central

    Husain, Sajid; Akansel, Serkan; Kumar, Ankit; Svedlindh, Peter; Chaudhary, Sujeet

    2016-01-01

    The influence of growth temperature Ts (300–773 K) on the structural phase ordering, static and dynamic magnetization behaviour has been investigated in ion beam sputtered full Heusler alloy Co2FeAl (CFA) thin films on industrially important Si(100) substrate. The B2 type magnetic ordering is established in these films based on the clear observation of the (200) diffraction peak. These ion beam sputtered CFA films possess very small surface roughness of the order of subatomic dimensions (<3 Å) as determined from the fitting of XRR spectra and also by AFM imaging. This is supported by the occurrence of distinct Kiessig fringes spanning over the whole scanning range (~4°) in the x-ray reflectivity (XRR) spectra. The Gilbert damping constant α and effective magnetization 4πMeff are found to vary from 0.0053 ± 0.0002 to 0.0015 ± 0.0001 and 13.45 ± 00.03 kG to 14.03 ± 0.04 kG, respectively. These Co2FeAl films possess saturation magnetization ranging from 4.82 ± 0.09 to 5.22 ± 0.10 μB/f.u. consistent with the bulk L21-type ordering. A record low α-value of 0.0015 is obtained for Co2FeAl films deposited on Si substrate at Ts ~ 573 K. PMID:27357004

  4. Growth of Co2FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Akansel, Serkan; Kumar, Ankit; Svedlindh, Peter; Chaudhary, Sujeet

    2016-06-01

    The influence of growth temperature Ts (300–773 K) on the structural phase ordering, static and dynamic magnetization behaviour has been investigated in ion beam sputtered full Heusler alloy Co2FeAl (CFA) thin films on industrially important Si(100) substrate. The B2 type magnetic ordering is established in these films based on the clear observation of the (200) diffraction peak. These ion beam sputtered CFA films possess very small surface roughness of the order of subatomic dimensions (<3 Å) as determined from the fitting of XRR spectra and also by AFM imaging. This is supported by the occurrence of distinct Kiessig fringes spanning over the whole scanning range (~4°) in the x-ray reflectivity (XRR) spectra. The Gilbert damping constant α and effective magnetization 4πMeff are found to vary from 0.0053 ± 0.0002 to 0.0015 ± 0.0001 and 13.45 ± 00.03 kG to 14.03 ± 0.04 kG, respectively. These Co2FeAl films possess saturation magnetization ranging from 4.82 ± 0.09 to 5.22 ± 0.10 μB/f.u. consistent with the bulk L21-type ordering. A record low α-value of 0.0015 is obtained for Co2FeAl films deposited on Si substrate at Ts ~ 573 K.

  5. Growth of Co2FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering.

    PubMed

    Husain, Sajid; Akansel, Serkan; Kumar, Ankit; Svedlindh, Peter; Chaudhary, Sujeet

    2016-01-01

    The influence of growth temperature Ts (300-773 K) on the structural phase ordering, static and dynamic magnetization behaviour has been investigated in ion beam sputtered full Heusler alloy Co2FeAl (CFA) thin films on industrially important Si(100) substrate. The B2 type magnetic ordering is established in these films based on the clear observation of the (200) diffraction peak. These ion beam sputtered CFA films possess very small surface roughness of the order of subatomic dimensions (<3 Å) as determined from the fitting of XRR spectra and also by AFM imaging. This is supported by the occurrence of distinct Kiessig fringes spanning over the whole scanning range (~4°) in the x-ray reflectivity (XRR) spectra. The Gilbert damping constant α and effective magnetization 4πMeff are found to vary from 0.0053 ± 0.0002 to 0.0015 ± 0.0001 and 13.45 ± 00.03 kG to 14.03 ± 0.04 kG, respectively. These Co2FeAl films possess saturation magnetization ranging from 4.82 ± 0.09 to 5.22 ± 0.10 μB/f.u. consistent with the bulk L21-type ordering. A record low α-value of 0.0015 is obtained for Co2FeAl films deposited on Si substrate at Ts ~ 573 K. PMID:27357004

  6. Microstructural evolution and intermetallic formation in Al-8wt% Si-0.8wt% Fe alloy due to grain refiner and modifier additions

    NASA Astrophysics Data System (ADS)

    Hassani, Amir; Ranjbar, Khalil; Sami, Sattar

    2012-08-01

    An alloy of Al-8wt% Si-0.8wt% Fe was cast in a metallic die, and its microstructural changes due to Ti-B refiner and Sr modifier additions were studied. Apart from usual refinement and modification of the microstructure, some mutual influences of the additives took place, and no mutual poisoning effects by these additives, in combined form, were observed. It was noticed that the dimensions of the iron-rich intermetallics were influenced by the additives causing them to become larger. The needle-shaped intermetallics that were obtained from refiner addition became thicker and longer when adding the modifier. It was also found that α-Al and eutectic silicon phases preferentially nucleate on different types of intermetallic compounds. The more iron content of the intermetallic compounds and the more changes in their dimensions occurred. Formation of the shrinkage porosities was also observed.

  7. Proton induced K X-ray production cross sections of the elements Al, Si, Ti, Fe, and Ni in the 0.7-2.0 MeV energy range

    NASA Astrophysics Data System (ADS)

    Bertol, Ana Paula Lamberti; Hinrichs, Ruth; Vasconcellos, Marcos A. Z.

    2015-12-01

    Proton induced K-shell ionization cross sections were obtained for the elements Al, Si, Ti, Fe, and Ni in the 0.7-2.0 MeV energy range. The accuracy of these fundamental parameters is essential for PIXE analysis and the data in the literature present a considerable spread, mainly for Al and Si. The values obtained for Ti, Fe and Ni are compatible with the current theories and the experimental results reported in the literature. However, Al and Si cross sections present important differences from theoretical and experimental data. We propose values for the fluorescent yields of Al and Si that are compatible with recent results and can be incorporated in the computations of K X-ray production cross sections.

  8. Spin state of iron and elastic properties of (MgFe)(SiAl)O3 under conditions of the lower mantle

    NASA Astrophysics Data System (ADS)

    Glazyrin, K.; Boffa Ballaran, T.; Frost, D. J.; McCammon, C. A.; Kantor, A.; Merlini, M.; Hanfland, M.; Dubrovinsky, L. S.

    2012-12-01

    Iron is incorporated into crystal structures of the dominant lower mantle phases, namely, magnesium silicate perovskite (Pv) and ferropericlase (Fp). There is no doubt that iron is the most abundant transition element of the lower mantle. Depending on conditions imposed by the latter, charge distribution between different electronic orbitals of iron may change, giving rise to spin state transitions (SST) which, in turn, may modify bulk elastic and transport properties of the material. Critical conditions promoting SST vary depending on iron cation charge and crystallographic environment. In the case of Pv, it was shown that Fe2+ will occupy exclusively the distorted dodecahedral (A) site, while Fe3+ can substitute in both the A and the B (octahedral) sites. However, the problem becomes more complicated if we consider Fe/Al coupled substitution in Pv and realistic compositions of the lower mantle. Although SST in Pv is a current and highly debated topic, there is clearly a lack of experimental data, and the literature shows strong controversies between theoretical calculations and experiment. The problem of iron SST in Pv is one of the most challenging and important for our understanding of mantle processes and dynamics. We conducted a single crystal diffraction experiment on Mg0.6Fe0.4Si0.63Al0.37O3 Pv at the ID09 beamline, ESRF, Grenoble. Comprehensive characterization of this sample synthesized in a multianvil apparatus revealed that almost all iron in this material is ferric and occupies exclusively the A site (Fe3+A). We studied the combined effect of compression and temperature on the crystal structure and elastic properties of the material, and we observed that (a) below 77 GPa, 1800K there is no SST for Fe3+A and (b) high pressure-high temperature treatment has no effect on Fe/Al cation distribution between different crystallographic sites. These observations are in good agreement with recent theoretical work. Based on a thermal equation of state derived

  9. Fabrication and characterization of spin injector using a high-quality B2-ordered-Co2FeSi0.5Al0.5/MgO/Si(100) tunnel contact

    NASA Astrophysics Data System (ADS)

    Kawame, Yu; Akushichi, Taiju; Takamura, Yota; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-01

    We successfully fabricate a (100)-orientated B2-type-Co2FeSi0.5Al0.5 (CFSA)/MgO/Si(100) tunnel contact that is promising for an efficient spin injector for Si channels. The MgO barrier is formed by radical oxidation of an Mg thin film deposited on a Si(100) surface at room temperature and successive radical oxygen annealing at 400 °C. The CFSA electrode is grown on the MgO barrier at 400 °C by ultrahigh-vacuum molecular beam deposition, and it exhibits a (100)-orientated columnar polycrystalline structure with a high degree (63%) of B2-order. The MgO barrier near the interface of the CFSA/MgO junction is crystallized with the (100) orientation, i.e., the spin filter effect due to the MgO barrier could be expected for this junction. A three-terminal Si-channel spin-accumulation device with a CFSA/MgO/Si(100) spin injector is fabricated, and the Hanle effect of accumulated spin polarized electrons injected from this contact to the Si channel is observed.

  10. Fabrication and characterization of spin injector using a high-quality B2-ordered-Co{sub 2}FeSi{sub 0.5}Al{sub 0.5}/MgO/Si(100) tunnel contact

    SciTech Connect

    Kawame, Yu Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi; Takamura, Yota

    2015-05-07

    We successfully fabricate a (100)-orientated B2-type-Co{sub 2}FeSi{sub 0.5}Al{sub 0.5} (CFSA)/MgO/Si(100) tunnel contact that is promising for an efficient spin injector for Si channels. The MgO barrier is formed by radical oxidation of an Mg thin film deposited on a Si(100) surface at room temperature and successive radical oxygen annealing at 400 °C. The CFSA electrode is grown on the MgO barrier at 400 °C by ultrahigh-vacuum molecular beam deposition, and it exhibits a (100)-orientated columnar polycrystalline structure with a high degree (63%) of B2-order. The MgO barrier near the interface of the CFSA/MgO junction is crystallized with the (100) orientation, i.e., the spin filter effect due to the MgO barrier could be expected for this junction. A three-terminal Si-channel spin-accumulation device with a CFSA/MgO/Si(100) spin injector is fabricated, and the Hanle effect of accumulated spin polarized electrons injected from this contact to the Si channel is observed.

  11. On the Production of He, Ne, and AR Isotopes from Mg, Al, Si, Ca, Fe, and NI in an Artificially Irradiated Meteoroid

    NASA Astrophysics Data System (ADS)

    Wieler, R.; Signet, P.; Rosel, R.; Herpers, U.; Lupke, M.; Lange, H.-J.; Michel, R.

    1992-07-01

    The production of He, Ne, and Ar isotopes from their main target elements was investigated in an experiment (1) by irradiating a 50-cm-diameter gabbro sphere isotropically with 1.6 GeV protons. The model meteoroid contained, among a large number of other targets, pure element foils of Mg, Al, Si, Fe, and Ni at 10 different depths and wollastonite targets at 3 different depths in central bores. After the irradiation, radionuclide production in these targets was measured by gamma spectrometry. Stable He, Ne, and Ar isotopes were measured in statically operated mass spectrometers. Here, we report the results for stable He, Ne, and Ar isotopes and for ^22Na. The production depth profiles vary widely, ranging from profiles with near-surface production 15% higher than in the center (^22Na from Fe) to such profiles with production in the center 45% higher than near the surface (^20Ne from Mg). The isotope ratios ^3He/^4He and ^3He/^21Ne in Mg, Al, Si and ^22Ne/^21Ne in Mg all decrease significantly with increasing shielding. The production rates of He, Ne, and ^22Na from Mg, Al, and Si in the 1600-MeV simulation experiment are 1.5 to 3 times higher than in the model meteoroid of similar size but irradiated earlier with 600 MeV protons (2). This increase is attributed to the increase of the production of secondary neutrons with primary energies rising from 600 to 1600 MeV. This effect also causes the depth dependences of isotope ratios observed in the 1600-MeV simulation that was not seen in the 600-MeV experiment. Model calculations of the production of He, Ne, and Ar isotopes and of ^22Na were performed for the artificial meteorites of the 600- and 1600 MeV-exposures as well as for real meteoroids. Production rates were calculated from depth-dependent p- and n- spectra, which were derived by Monte Carlo techniques using the HERMES code system (3), and from cross sections for the relevant nuclear reactions as described earlier (4). The cross section database for p

  12. Formation of the icosahedral quasicrystalline phase in a rapidly solidified Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy

    SciTech Connect

    Wang Yan; Zhang Zhonghua . E-mail: zh_zhang@sdu.edu.cn; Geng Haoran; Yang Zhongxi

    2006-04-15

    In the present work, the effect of wheel speed (quenching rate) on the formation of the quasicrystalline phase in a rapidly solidified Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy has been investigated using X-ray diffraction (XRD), differential thermal analysis (DTA), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results show that rapid solidification has no effect on the phase constitution of the Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy. The addition of Si decreases the stability of the quasicrystalline phase in the conventionally cast Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy. The thermal stability of the quasicrystalline phase in the melt-spun alloy depends upon the quenching rate. Moderate-rate rapid solidification can improve the thermal stability of the quasicrystalline phase in the melt-spun alloy. Higher quenching rate instigates the transformation of the quasicrystalline phase into the cubic approximant phase and decreases the stability of the quasicrystalline phase. Furthermore, the transformation temperature decreases with increasing Si addition into the Al{sub (62-x)}Cu{sub 25.5}Fe{sub 12.5}Si{sub x}.

  13. Biogeochemistry of Mariana Islands coastal sediments: terrestrial influence on /gd13, Ash, CaCO3, Al, Fe, Si and P

    NASA Astrophysics Data System (ADS)

    Matson, Ernest A.

    1989-01-01

    Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.

  14. Co{sub 2}FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    SciTech Connect

    Belmeguenai, M. Tuzcuoglu, H.; Zighem, F.; Chérif, S. M.; Moch, P.; Gabor, M. S. Petrisor, T.; Tiusan, C.

    2014-01-28

    10 nm and 50 nm Co{sub 2}FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (T{sub a}), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing T{sub a}, while the uniaxial anisotropy field is nearly unaffected by T{sub a} within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with T{sub a}. Finally, the FMR linewidth decreases when increasing T{sub a}, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10{sup −3} and 1.3×10{sup −3} for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively)

  15. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    SciTech Connect

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the applied magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.

  16. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    DOE PAGESBeta

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less

  17. Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Herbert, F.

    1985-01-01

    A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.

  18. Interfacial tension between immiscible melts in the system K2O - FeO - Fe2O3 - Al2O3 - SiO2

    NASA Astrophysics Data System (ADS)

    Kaehn, J.; Veksler, I. V.; Franz, G.; Dingwell, D. B.

    2009-12-01

    Interfacial tension is a very important parameter of the kinetics of phase nucleation, dissolution and growth. Excess surface energy contributes to the energy barrier for phase nucleation, and works as the main driving force for minimization of phase contact surfaces in heterogeneous systems. Immiscible silicate melts have been found to form in a broad range of basaltic, dacitic and rhyolitic magmas (Philpotts, 1982). However, liquid-liquid interfaces remain poorly studied in comparison with crystal-melt and vapor-melt interfaces. Here we present first experimental measurements of interfacial tension between synthetic Fe-rich and silica-rich immiscible melts composed of Fe oxides, K2O, alumina and silica. According to Naslund (1983), the miscibility gap in the 5-oxide system expands with increasing fO2 and becomes widest in air (fO2 = 0.2). Our goal was to estimate the maximal liquid-liquid interfacial tension for the immiscible liquids composed of silica and Fe oxides. Therefore, we have chosen the most contrasting liquid compositions that coexist in air at and above 1465 °C. Silica-rich and Fe-rich conjugate liquids at these conditions contain 73 and 17 wt. % SiO2, and 14 and 80 wt. % FeOt, respectively. These starting compositions were synthesized by fusion of reagent-grade oxides and K2CO3 at 1600 °C. In addition to interfacial tension, we have measured density and surface tension of individual coexisting liquids. All the measurements were done at 1500, 1527 and 1550 °C. Density was measured by the Archimedean method; surface and interfacial tensions were calculated from the maximal pool on a vertical cylinder (a 3-mm Pt rod attached to a high precision balance). We found interfacial tension between the immiscible liquids to decrease with increasing temperature from 16.4±2 mN/m at 1500 °C to 8.2±0.8 mN/m at 1550 °C. These values are approximately 2 orders of magnitude lower than typical interfacial tensions between silicate melts and crystals (Wanamaker

  19. Epitaxial films of Heusler compound Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} with high crystalline quality grown by off-axis sputtering

    SciTech Connect

    Peters, B.; Hageman, Stephen J.; Yang, F. Y.; Alfonsov, A.; Blum, C. G. F.; Woodward, P. M.; Wurmehl, S.; Büchner, B.

    2013-10-14

    Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} films with a surface roughness of 0.12 nm have been grown epitaxially on lattice-matched MgAl{sub 2}O{sub 4} (001) substrates by off-axis sputtering. X-ray diffraction shows pronounced Laue oscillations, rocking curves as narrow as 0.0043°, and clear Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (111) peaks indicating L2{sub 1} ordering. Magnetic characterizations show a clear magnetocrystalline anisotropy comprising cubic and epitaxy-induced uniaxial terms. Nuclear magnetic resonance measurements reveal L2{sub 1} order of 81% in the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} films. Magnetotransport measurements show a distinct separation of anisotropic magnetoresistance and ordinary magnetoresistance. These results demonstrate the state-of-the-art crystalline quality and magnetic uniformity of the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} films.

  20. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part I

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 in equilibrium with metallic iron have been determined experimentally in the temperature range of 1423 K to 1553 K. The experimental conditions were focused on the composition range relevant to Imperial Smelting Furnace slags. The results are presented in the form of a pseudo-ternary section ZnO-“FeO”-(CaO + SiO2 + Al2O3) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 7.0. It was found that wustite and spinel are the major primary phases and that zincite and melilite are also present in the composition range investigated. Wustite (Fe2+,Zn)O and spinel (Fe2+,Zn)O (A1,Fe3+)2O3 solid solutions are formed in this system, and the ZnO concentration in the spinel phase is found to be much greater than in the liquid phase.

  1. Heat capacity and phase equilibria of almandine, Fe[sub 3]Al[sub 2]Si[sub 3]O[sub 12

    SciTech Connect

    Anovitz, L.M. ); Essene, E.J.; Metz, G.W.; Westrum, E.F. Jr. ); Bohlen, S.R. ); Hemingway, B.S. )

    1993-09-01

    The heat capacity of a synthetic almandine, Fe[sub 3]Al[sub 2]Si[sub 3]O[sub 12], was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp[sub 298] = 342.80 [+-] 1.4 J/mol[center dot]K and S[degrees][sub 298] = 342.60 J/mol[center dot]K. Moessbauer characterizations show the almandine to contain less than 2 [+-] 1% of the total iron as Fe[sup 3+]. X-ray diffraction studies of this synthetic almandine yield a = 11.521 [+-] 0.001 [angstrom] and V[degrees][sub 298] = 115.11 [+-] 0.01 cm[sup 3]/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with T[sub N] = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution).

  2. Electronic, magnetic and thermal properties of Co2CrxFe1-xX (X=Al, Si) Heusler alloys: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Guezlane, M.; Baaziz, H.; El Haj Hassan, F.; Charifi, Z.; Djaballah, Y.

    2016-09-01

    Density functional theory (DFT) based on the full-potential linearized augmented plane wave (FP-LAPW) method is used to investigate the structural, electronic, magnetic and thermal properties of Co2CrxFe1-xX (X=Al, Si) full Heusler alloys, with L21 structure. The structural properties and spin magnetic moments are investigated by the generalized gradient approximations (GGA) minimizing the total energy. For band structure calculations, GGA, the Engel-Vosko generalized gradient approximation (EVGGA) and modified Becke-Johnson (mBJ) schemes are used. Results of density of states (DOS) and band structures show that these alloys are half-metallic ferromagnets (HMFS). A regular-solution model has been used to investigate the thermodynamic stability of the compounds Co2CrxFe1-xX that indicates a phase miscibility gap. The thermal effects using the quasi-harmonic Debye model are investigated within the lattice vibrations. The temperature and pressure effects on the heat capacities, Debye temperatures and entropy are determined from the non-equilibrium Gibbs functions.

  3. The Effects of Microstructure Heterogeneities and Casting Defects on the Mechanical Properties of High-Pressure Die-Cast AlSi9Cu3(Fe) Alloys

    NASA Astrophysics Data System (ADS)

    Timelli, Giulio; Fabrizi, Alberto

    2014-11-01

    Detailed investigations of the salient microstructural features and casting defects of the high-pressure die-cast (HPDC) AlSi9Cu3(Fe) alloy are reported. These characteristics are addressed to the mechanical properties and reliability of separate HPDC tensile bars. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes throughout the tensile specimen. The results indicate that the die-cast microstructure consists of several microstructural heterogeneities such as positive eutectic segregation bands, externally solidified crystals (ESCs), cold flakes, primary Fe-rich intermetallics (sludge), and porosities. In addition, it results that sludge particles, gas porosity, as well as ESCs, and cold flakes are concentrated toward the casting center while low porosity and fine-grained structure is observed on the surface layer of the castings bars. The local variation of the hardness along the cross section as well as the change of tensile test results as a function of gage diameter of the tensile bars seem to be ascribed to the change of porosity content, eutectic fraction, and amount of sludge. Further, this behavior reflects upon the reliability of the die-cast alloy, as evidenced by the Weibull statistics.

  4. Kinetic Analysis of Recovery, Recrystallization, and Phase Precipitation in an Al-Fe-Si Alloy Using JMAEK and Sesták-Berggren Models

    NASA Astrophysics Data System (ADS)

    Luiggi Agreda, Ney José

    2015-02-01

    When studying the phase changes process in a rolled AA8011 alloy using DSC, we find that the peaks associated with phase precipitation under this microstructural condition are different from those obtained in homogenized microstructures. The differences observed are attributable, first, to the recovery process occurring at temperatures below 423 K (150 °C), which interacts with the precipitation of Si-rich precipitates or with Guinier-Preston zones both coexistent in that temperature range; and second, to the recrystallization above 473 K (200 °C), which coexists with precipitation of the α-AlFeSi phase. In this work, the precipitation and recovery-recrystallization kinetics are experimentally obtained and deconvoluted in peaks characteristic for each of the mechanisms involved; i.e., precipitation of GP zones, recovery, precipitation of α phase, and recrystallization. The deconvolution is achieved using functions of Gauss, Weibull, and Fraser-Suzuki; and the characterization of each reaction deconvoluted is realized through both Jhonson-Melh-Avrami-Erofeev-Kolmorokov kinetic models and Sesták-Berggren combined kinetic model. The kinetic study evinces that in addition to the expected reactions, other reactions, necessary for good experimental adjustment, appear. An isoconversional study is undertaken to numerically evaluate the kinetic triplet of every process.

  5. Sound Velocities of Fe-C and Fe-Si alloying liquids at high pressures

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Han, J.; Yu, T.; Wang, Y.

    2014-12-01

    Geophysical and geochemical observations suggest light elements such as S, Si, C, O, H, etc., are likely present in the Earth's outer core and the molten cores of other terrestrial planets and moons including Mercury, Mars, Earth's Moon, and Ganymede. In order to constrain the abundances of light elements in planetary cores, it is crucial to determine the density and sound velocity of Fe-light element alloying liquids under core conditions. In this study, sound velocities of Fe-rich liquids were determined by combining the ultrasonic measurements with synchrotron X-ray radiography and diffraction techniques under high-pressure and temperature conditions from 1 to 6 GPa and 1573 to 1973 K. An Fe-C composition (Fe-5wt%C) and four Fe-Si compositions (Fe-10wt%Si, Fe-17wt%Si, Fe-25wt%Si, and FeSi) were studied. Compared to our previous results on the velocity of Fe and Fe-S liquids at high pressures (Jing et al., 2014, Earth Planet. Sci. Lett. 396, 78-87), the presence of both C and Si increases the velocity of liquid Fe, in contrast to the effect of S. The measured velocities of Fe-C and Fe-Si liquids increase with compression and decrease slightly with increasing temperature. Combined with 1-atm density data in the literature, the high-pressure velocity data provide tight constraints on the equations of state and thermodynamic properties such as the adiabatic temperature gradient for Fe-C and Fe-Si liquids. We will discuss these results with implications to planetary cores.

  6. Perrierite-(La), (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-12-01

    Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is

  7. Menzerite-(Y) a New Species {(Y REE)(Ca Fe2plus)2}[(Mg Fe2plus)(Fe3plus Al)](Si3)O12 from a Felsic Granulite Parry Sound Ontario and a New Garnet End-member (Y2Ca)Mg2(SiO4)3

    SciTech Connect

    E Grew; J Marsh; M Yates; B Lazic; T Armbruster; A Locock; S Bell; M Dyar; H Bernhardt; O Medenbach

    2011-12-31

    Menzerite-(Y), a new mineral species, forms reddish brown cores, n = 1.844 (20), up to 70 {micro}m across, rimmed successively by euhedral almandine containing up to 2.7 wt% Y{sub 2}O{sub 3} and by K-feldspar in a felsic granulite on Bonnet Island in the interior Parry Sound domain, Grenville Orogenic Province, Canada. It is named after Georg Menzer (1897-1989), the German crystallographer who solved the crystal structure of garnet. Single-crystal X-ray-diffraction results yielded space group Ia3d, a = 11.9947(6) {angstrom}. An electron-microprobe analysis of the grain richest in Y (16.93 wt% Y{sub 2}O{sub 3}) gave the following formula, normalized to eight cations and 12 oxygen atoms: {l_brace}Y{sub 0.83}Gd{sub 0.01}Dy{sub 0.05}Ho{sub 0.02}Er{sub 0.07}Tm{sub 0.01}Yb{sub 0.06}Lu{sub 0.02}Ca{sub 1.37}Fe{sub 0.49}{sup 2+}Mn{sub 0.07}{r_brace} [Mg{sub 0.55}Fe{sub 0.42}{sup 2+}Fe{sub 0.58}{sup 3+}Al{sub 0.35} V{sub 0.01}Sc{sub 0.01}Ti{sub 0.08}](Si{sub 2.82}Al{sub 0.18})O{sub 12}, or {l_brace}(Y,REE)(Ca,Fe{sup 2+}){sub 2}{r_brace}[(Mg,Fe{sup 2+})(Fe{sup 3+},Al)](Si{sub 3})O{sub 12}. Synchrotron micro-XANES data gave Fe{sup 3+}/{Sigma}Fe = 0.56(10) versus 0.39(2) calculated from stoichiometry. The scattering power refined at the octahedral Y site, 17.68 epfu, indicates that a relatively light element contributes to its occupancy. Magnesium, as determined by electron-microprobe analyses, would be a proper candidate. In addition, considering the complex occupancy of this site, the average Y-O bond length of 2.0244(16) {angstrom} is in accord with a partial occupancy by Mg. The dominance of divalent cations with Mg > Fe{sup 2+} and the absence of Si at the octahedral Y site (in square brackets) are the primary criteria for distinguishing menzerite-(Y) from other silicate garnet species; the menzerite-(Y) end-member is {l_brace}Y{sub 2}Ca{r_brace}[Mg{sub 2}](Si{sub 3})O{sub 12}. The contacts of menzerite-(Y) with almandine are generally sharp and, in places, cuspate. It is

  8. Tunnel Magnetoresistance and Spin-Transfer-Torque Switching in Polycrystalline Co2FeAl Full-Heusler-Alloy Magnetic Tunnel Junctions on Amorphous Si /SiO2 Substrates

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Kasai, Shinya; Inomata, Koichiro; Mitani, Seiji

    2014-08-01

    We study polycrystalline B2-type Co2FeAl (CFA) full-Heusler-alloy-based magnetic tunnel junctions (MTJs) fabricated on a Si /SiO2 amorphous substrate. Polycrystalline CFA films with a (001) orientation, a high B2 ordering, and a flat surface are achieved by using a MgO buffer layer. A tunnel magnetoresistance ratio up to 175% is obtained for a MTJ with a CFA /MgO/CoFe structure on a 7.5-nm-thick MgO buffer. Spin-transfer-torque-induced magnetization switching is achieved in the MTJs with a 2-nm-thick polycrystalline CFA film as a switching layer. By using a thermal activation model, the intrinsic critical current density (Jc0) is determined to be 8.2×106 A /cm2, which is lower than 2.9×107 A /cm2, the value for epitaxial CFA MTJs [Appl. Phys. Lett. 100, 182403 (2012), 10.1063/1.4710521]. We find that the Gilbert damping constant (α) evaluated by using ferromagnetic resonance measurements for the polycrystalline CFA film is approximately 0.015 and is almost independent of the CFA thickness (2-18 nm). The low Jc0 for the polycrystalline MTJ is mainly attributed to the low α of the CFA layer compared with the value in the epitaxial one (approximately 0.04).

  9. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part II

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and the liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 have been determined experimentally in equilibrium with metallic iron. Specifically, the effects of Al2O3 concentrations in Imperial Smelting Furnace slags are identified, and the results are presented in the form of pseudo-ternary sections ZnO-“FeO”-(Al2O3 + CaO + SiO2) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 5.0 and 3.5, respectively. It was found that, in the presence of Al2O3, the spinel phase is formed, the spinel primary phase field expands, and the wustite and melilite primary phase fields are reduced in size with an increasing Al2O3 concentration. The implications of the findings to industrial practice are discussed.

  10. Incorporation of Ba in Al and Fe pollucite

    NASA Astrophysics Data System (ADS)

    Vance, Eric R.; Gregg, Daniel J.; Griffiths, Grant J.; Gaugliardo, Paul R.; Grant, Charmaine

    2016-09-01

    Ba, the transmutation product of radioactive Cs, can be incorporated at levels of up to ∼0.07 formula units in Cs(1-2x)BaxAlSi2O6 aluminium pollucite formed by sol-gel methods and sintering at 1400 °C, with more Ba forming BaAl2Si2O8 phases. The effect of Ba substitution in pollucite-structured CsFeSi2O6 was also studied and no evidence of Ba substitution in the pollucite structure via cation vacancies or Fe2+ formation was obtained. The Ba entered a Fe-silicate glass structure. Charge compensation was also attempted with a Cs+ + Fe3+ ↔ Ba2+ + Ni2+ scheme but again the Ba formed a glass and NiO was evident. PCT leaching data showed CsFeSi2O6 to be very leach resistant.

  11. Structure - property relationship of permutite-like amorphous silicates, Nax+2yM3+xSi1-xO2+y(M3+= Al, Mn, Fe, Y), for ion-exchange reactions.

    SciTech Connect

    Pless, Jason D.; Nenoff, Tina Maria; Maxwell, Robert S.; Phillips, Mark L. F.; Axness, Marlene

    2005-03-01

    A series of amorphous silicate materials with the general formula Na{sub x+2y}M{sub x}{sup 3+}Si{sub 1-x}O{sub 2+y}(M{sup 3+} = Al, Mn, Fe, Y) were studied. Samples were synthesized by a precipitation reaction at room temperature. The results indicate that the ion-exchange capacity (IEC) decreases as follows: Al > Fe > Mn > Y. Additionally, the IEC increases with increasing aluminum concentration. Structural studies show that the relative amount of octahedrally coordinated aluminum increases with increasing Al content, as does the total amount of AlO{sub 4} species increases. The data suggest that the IEC value of these amorphous aluminosilicates is dependent on the tetrahedrally coordinated aluminum. Regeneration of the Al-silicate with acetic acid does not decrease the IEC significantly.

  12. Discovery of Ahrensite γ-Fe2SiO4 and Tissintite (Ca,Na,[])AlSi2O6, Two New Shock-induced Minerals from the Tissint Martian Meteorite: a Nanomineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.

    2013-12-01

    The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (γ-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.

  13. Effects of breadfruit seed hull ash on the microstructures and properties of Al-Si-Fe alloy/breadfruit seed hull ash particulate composites

    NASA Astrophysics Data System (ADS)

    Atuanya, C. U.; Ibhadode, A. O. A.; Dagwa, I. M.

    2012-01-01

    The microstructures and properties of Al-Si-Fe alloy matrix composites reinforced with different weight fractions of breadfruit seed hull (husk) ash particles of size 500 nm were investigated. Six (6) different weight fractions of breadfruit seed hull ash particles were added to aluminium alloy matrix using a double stir-casting method. Microstructural analysis shows that with the increase of the reinforcement weight fraction, the matrix grain size decreases. The mechanical properties of the composites are improved over the matrix materials, except for the slightly decrease of the impact energy. Fracture surface examination indicates that there is a good interfacial bonding between the aluminium alloy matrix and the breadfruit seed hull ash particles and that fracture initiation does not occur at the particle-matrix interface. Hence, incorporation of breadfruit seed hull ash particles in aluminium matrix can lead to the production of low cost aluminium composites with improved hardness and strength. These composites can find applications in automotive components where light weight materials are required with good stiffness and strength.

  14. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    NASA Technical Reports Server (NTRS)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  15. Microstructure Evolution Associated with a Superior Low-Cycle Fatigue Resistance of the Fe-30Mn-4Si-2Al Alloy

    NASA Astrophysics Data System (ADS)

    Nikulin, Ilya; Sawaguchi, Takahiro; Ogawa, Kazuyuki; Tsuzaki, Kaneaki

    2015-11-01

    The microstructure evolution responsible for the superior low-cycle fatigue (LCF) resistance ( N f > 8000 cycles at a total strain range of 2 pct) was studied in the Fe-30Mn-4Si-2Al alloy susceptible to strain-induced martensitic transformation. To investigate the microstructure effect on the LCF behaviors of the alloy, a series of interrupted fatigue tests at total strain range of 2 pct were carried out. A characteristic softening stage followed by the secondary hardening was observed during cyclic loading of the studied alloy. This softening is associated with the strain localization caused by persistent Lüders bands formation and the transformation of Lüders bands into strain-induced ɛ-martensite is found to have a key role in the delayed fatigue fracture of the alloy being studied. Therefore, the continuous transformation process involving Lüders bands and ɛ-martensite formation associated with intermediate stacking fault energy (SFE) ( γ SF of 14 mJ/m2) is necessary to prevent the rearrangement of dislocations into walls/channels and substructures inherent to high-SFE ( γ SF higher 20 mJ/m2) alloys capable to accelerated fatigue damage. However, sluggish martensite transformation kinetics is necessary to delay the formation of the ɛ-martensite associated with the development and propagation of fatigue crack in alloys with very low SFE.

  16. Effects of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel

    SciTech Connect

    Zhao, Xianming; Shen, Yongfeng; Qiu, Lina; Liu, Yandong; Sun, Xin; Zuo, Liang

    2014-12-09

    A medium Mn steel has been designed to achieve an excellent combination of strength and ductility based on the TRIP (Transformation Induced Plasticity) concept for automotive applications. Following six passes of hot rolling at 850 °C, the Fe-7.9Mn-0.14Si-0.05Al-0.07C (wt.%) steel was warm-rolled at 630 °C for seven passes and subsequently air cooled to room temperature. The sample was subsequently intercritically annealed at various temperatures for 30 min to promote the reverse transformation of martensite into austenite. The obtained results show that the highest volume fraction of austenite is 39% for the sample annealed at 600 °C. This specimen exhibits a yield stress of 910 MPa and a high ultimate tensile stress of 1600 MPa, with an elongation-to-failure of 0.29 at a strain rate of 1 × 10⁻³/s. The enhanced work-hardening ability of the investigated steel is closely related to martensitic transformation and the interaction of dislocations. Especially, the alternate arrangement of acicular ferrite (soft phase) and ultrafine austenite lamellae (50–200 nm, strong and ductile phase) is the key factor contributing to the excellent combination of strength and ductility. On the other hand, the as-warm-rolled sample also exhibits the excellent combination of strength and ductility, with elongation-to-failure much higher than those annealed at temperatures above 630 °C.

  17. Rapidly solidified NiAl and FeAl

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Crimp, M. A.

    1984-01-01

    Melt spinning was used to produce rapidly solidified ribbons of the B2 intermetallics NiAl and FeAl. Both Fe-40Al and Fe-45Al possessed some bend ductility in the as spun condition. The bend ductility of Fe-40Al, Fe-45Al, and equiatomic NiAl increased with subsequent heat treatment. Heat treatment at approximately 0.85 T (sub m) resulted in significant grain growth in equiatomic FeAl and in all the NiAl compositions. Low bend ductility in both FeAl and NiAl generally coincided with intergranular failure, while increased bend ductility was characterized by increasing amounts of transgranular cleavage fracture.

  18. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada

    USGS Publications Warehouse

    Taylor, B.E.; O'Neil, J.R.

    1977-01-01

    Garnet-pyroxene skarns were formed 90 m.y. B.P. in the Osgood Mountains at or near contacts of grandiorite with calcareous rocks of the Cambrian Preble Formation. The metasomatic replacement followed contact metamorphic recrystallization of the Preble. The sources, temperature, and variation in H2O/CO2 ratios of the metasomatic fluid are interpreted from 269 analyses of oxygen, carbon, hydrogen, and sulfur isotopes in whole rocks, minerals and inclusion fluids. Skarns formed in three mineralogical stages. Oxygen isotope data indicate that temperatures during the crystallization of garnet, pyroxene and wollastonite (Stage I) were least 550 ?? C, and that the metasomatic fluid had an {Mathematical expression} ??? 0.035 in the massive skarns, and ??? 0.12 in vein skarns up to 3 cm thick. Pore fluids in isotopic equilibrium with garnet in calc-silicate metamorphic rocks, on the other hand, had {Mathematical expression} ??? 0.15. The metasomatic fluids of Stage I were derived primarily from the crystallizing magma. The isotopic composition of magmatic water was ??18O =+9.0, ??D= -30 to -45. Oxygen isotope temperatures of greater than 620 ?? C were determined for the granodiorite. Isotopic and chemical equilibria between mineral surfaces and the metasomatic fluid were approached simultaneously in parts of the skarn several meters or more apart, while isotopic and chemical disequilibria (i.e. zoning) have been preserved between 20 to 40 ??m-thick zones in grandite garnet. More Fe-, or andradite-rich garnet crystallized in more H2O-rich C-O-H fluids ( {Mathematical expression} ??? 0.01) than present with grossularite-rich garnet ( {Mathematical expression}??? 0.035). Stage II was marked by the replacement of garnet and pyroxene by quartz, amphibole, plagioclase, epidote, magnetite, and calcite. Many of the replacement reactions took place over a relatively narrow range in temperature (480-550 ?? C), as indicated by 18O fractionations between quartz and amphibole. Meteoric

  19. The role of Pt underlayer on the magnetization dynamics of perpendicular magnetic anisotropy Pt/Co2FeAl0.5Si0.5/MgO

    NASA Astrophysics Data System (ADS)

    Besbas, Jean; Loong, Li Ming; Wu, Yang; Yang, Hyunsoo

    2016-06-01

    We investigate the role of Pt on the magnetization dynamics of Pt/Co2FeAl0.5Si0.5/MgO with perpendicular magnetic anisotropy using the time resolved magneto-optic Kerr effect. Pt/Co2FeAl0.5Si0.5/MgO shows ultrafast magnetization dynamics comparable to 3d ferromagnets and can be fully demagnetized. The demagnetization time τd ˜ 0.27 ps and magnetic heat capacity are independent of the Pt underlayer, whereas the value of the electron-phonon coupling time τe ˜ 0.77 ps depends on the presence of the Pt layer. We further measure the effective damping αeff ˜ 1 that does not scale as the inverse demagnetization time (1/τd), but is strongly affected by the Pt layer.

  20. AlN/Fe/AlN nanostructures for magnetooptic magnetometry

    SciTech Connect

    Lišková-Jakubisová, E. Višňovský, Š.; Široký, P.; Hrabovský, D.; Pištora, J.

    2014-05-07

    AlN/Fe/AlN/Cu nanostructures with ultrathin Fe grown by sputtering on Si substrates are evaluated as probes for magnetooptical (MO) mapping of weak currents. They are considered for a laser wavelength of λ = 410 nm (3.02 eV) and operate at oblique light incidence angles, φ{sup (0)}, to enable detection of both in-plane and out-of-plane magnetization. Their performance is evaluated in terms of MO reflected wave electric field amplitudes. The maximal MO amplitudes in AlN/Fe/AlN/Cu are achieved by a proper choice of layer thicknesses. The nanostructures were characterized by MO polar Kerr effect at φ{sup (0)} ≈ 5° and longitudinal Kerr effect spectra (φ{sup (0)} = 45°) at photon energies between 1 and 5 eV. The nominal profiles were refined using a model-based analysis of the spectra. Closed form analytical expressions are provided, which are useful in the search for maximal MO amplitudes.

  1. Optically Stimulated Luminescence Response to Ionizing Radiation of Red Bricks (SiO2, Al2O3, and Fe2O3) Used as Building Materials

    SciTech Connect

    Bogard, James S; Espinosa Garcia, Guillermo

    2007-01-01

    Quartz is the most common mineral in our environment. It is found in granite, hydrothermal veins and volcanic rocks, as well as in sedimentary deposits derived from such solid materials. These sediments are also made into building materials, such as bricks and pottery. Thus the potential use of a dose reconstruction technique based on quartz grains is enormous, whether as a dating tool in archaeology and quaternary geology, or in nuclear accident dosimetry. This work describes the Optically Stimulated Luminescence (OSL) response of red brick to ionizing radiation. The bricks, from the state of Puebla, Mexico, represent another class of materials that can be used in retrospective dosimetry following nuclear or radiological incidents. The chemical composition of fifteen bricks (three samples from five different brick factories) was determined, using energy dispersive spectroscopy (EDS), be primarily SiO{sub 2}, Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} and is believed to be representative for this common building material. Individual aliquots from these bricks were powdered in agate mortars and thermally annealed. Replicate samples of the aliquots were then irradiated with beta particles from a sealed source of {sup 90}Sr/{sup 90}Y. The OSL response was measured with a Daybreak Model 2200 High-Capacity OSL Reader System. We present here for this material the characteristic OSL response to beta particles; the reproducibility of the OSL response; the linearity of the response in the dose range 0.47 Gy to 47 Gy; and the fading characteristics.

  2. Effects of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel

    DOE PAGESBeta

    Zhao, Xianming; Shen, Yongfeng; Qiu, Lina; Liu, Yandong; Sun, Xin; Zuo, Liang

    2014-12-09

    A medium Mn steel has been designed to achieve an excellent combination of strength and ductility based on the TRIP (Transformation Induced Plasticity) concept for automotive applications. Following six passes of hot rolling at 850 °C, the Fe-7.9Mn-0.14Si-0.05Al-0.07C (wt.%) steel was warm-rolled at 630 °C for seven passes and subsequently air cooled to room temperature. The sample was subsequently intercritically annealed at various temperatures for 30 min to promote the reverse transformation of martensite into austenite. The obtained results show that the highest volume fraction of austenite is 39% for the sample annealed at 600 °C. This specimen exhibits amore » yield stress of 910 MPa and a high ultimate tensile stress of 1600 MPa, with an elongation-to-failure of 0.29 at a strain rate of 1 × 10⁻³/s. The enhanced work-hardening ability of the investigated steel is closely related to martensitic transformation and the interaction of dislocations. Especially, the alternate arrangement of acicular ferrite (soft phase) and ultrafine austenite lamellae (50–200 nm, strong and ductile phase) is the key factor contributing to the excellent combination of strength and ductility. On the other hand, the as-warm-rolled sample also exhibits the excellent combination of strength and ductility, with elongation-to-failure much higher than those annealed at temperatures above 630 °C.« less

  3. Fatigue crack growth rates and fracture toughness of rapidly solidified Al-8. 5 pct Fe-1. 2 pct V-1. 7 pct Si alloys

    SciTech Connect

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L. . Mechanical Engineering Dept.); Lederich, R.J. )

    1994-05-01

    The room-temperature fatigue crack growth rates (FCGR) and fracture toughness were evaluated for different crack plane Orientations of an Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloy produced by planar flow casting (PFC) and atomized melt deposition (AMD) processes. For the alloy produced by the PFC process, properties were determined in six different orientations, including the short transverse directions S-T and S-L. Diffusion bonding and adhesive bonding methods were used to prepare specimens for determining FCGR and fracture toughness in the short transverse direction. Interparticle boundaries control fracture properties in the alloy produced by PFC. Fracture toughness of the PFC alloy varies from 13.4 MPa[radical][bar m] to 30.8 MPa[radical][bar m], depending on the orientation of the crack plane relative to the interparticle boundaries. Fatigue crack growth resistance and fracture toughness are greater in the L-T, L-S, and T-S directions than in the T-L, S-T, and S-L orientations. The alloy produced by AMD does not exhibit anisotropy in fracture toughness and fatigue crack growth resistance in the as-deposited condition or in the extruded condition. The fracture toughness varies from 17.2 MPa[radical][bar m] to 18.5 MPa[radical][bar m] for the as-deposited condition and from 19.8 MPa[radical][bar m] to 21.0 MPa[radical][bar m] for the extruded condition. Fracture properties are controlled by intrinsic factors in the alloy produced by AMD. Fatigue crack growth rates of the AMD alloy are comparable to those of the PFC alloy in the L-T orientation. The crack propagation modes were studied by optical metallographic examination of crack-microstructure interactions and scanning electron microscopy of the fracture surfaces.

  4. Fatigue crack growth rates and fracture toughness of rapidly solidified Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloys

    NASA Astrophysics Data System (ADS)

    Hariprasad, S.; Sastry, S. M. L.; Jerina, K. L.; Lederich, R. J.

    1994-05-01

    The room-temperature fatigue crack growth rates (FCGR) and fracture toughness were evaluated for different crack plane orientations of an Al-8.5 Pct Fe-1.2 Pct V-1.7 Pct Si alloy produced by planar flow casting (PFC) and atomized melt deposition (AMD) processes. For the alloy produced by the PFC process, properties were determined in six different orientations, including the short transverse directions S-T and S-L. Diffusion bonding and adhesive bonding methods were used to prepare specimens for determining FCGR and fracture toughness in the short transverse direction. Interparticle boundaries control fracture properties in the alloy produced by PFC. Fracture toughness of the PFC alloy varies from 13.4 MPa√m to 30.8 MPa√m, depending on the orientation of the crack plane relative to the interparticle boundaries. Fatigue crack growth resistance and fracture toughness are greater in the L-T, L-S, and T-S directions than in the T-L, S-T, and S-L orientations. The alloy produced by AMD does not exhibit anisotropy in fracture toughness and fatigue crack growth resistance in the as-deposited condition or in the extruded condition. The fracture toughness varies from 17.2 MPa√m to 18.5 MPa√m for the as-deposited condition and from 19.8 MPa√m to 21.0 MPa√m for the extruded condition. Fracture properties are controlled by intrinsic factors in the alloy produced by AMD. Fatigue crack growth rates of the AMD alloy are comparable to those of the PFC alloy in the L-T orientation. The crack propagation modes were studied by optical metallographic examination of crack-microstructure interactions and scanning electron microscopy of the fracture surfaces.

  5. Thermoelasticity of Fe3+- and Al-bearing bridgmanite: Effects of iron spin crossover

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Cococcioni, Matteo; Wentzcovitch, Renata M.

    2016-06-01

    We report ab initio (LDA + Usc) calculations of thermoelastic properties of ferric iron (Fe3+)- and aluminum (Al)-bearing bridgmanite (MgSiO3 perovskite), the main Earth forming phase, at relevant pressure and temperature conditions and compositions. Three coupled substitutions, namely, [Al]Mg-[Al]Si, [Fe3+]Mg-[Fe3+]Si, and [Fe3+]Mg-[Al]Si have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental data available. In the case of [Fe3+]Mg-[Fe3+]Si substitution, the high-spin (S = 5/2) to low-spin (S = 1/2) crossover in [Fe3+]Si induces a volume collapse and elastic anomalies across the transition region. However, the associated anomalies should disappear in the presence of aluminum in the most favorable substitution, i.e., [Fe3+]Mg-[Al]Si. Calculated elastic properties along a lower mantle model geotherm suggest that the elastic behavior of bridgmanite with simultaneous substitution of Fe2O3 and Al2O3 in equal proportions or with Al2O3 in excess should be similar to that of (Mg,Fe2+)SiO3 bridgmanite. However, excess of Fe2O3 should produce elastic anomalies in the crossover pressure region.

  6. Creep resistance in a new alloy based on Fe[sub 3]Al. [Fe-28Al-5Cr-1. 0Nb-1. 33Ti-1. 0Si-3. 13B-0. 03C-0. 01Zr

    SciTech Connect

    Morris, D.G. . Institute of Structural Metallurgy); Nazmy, M.; Noseda, C. )

    1994-07-15

    Iron aluminide alloys based on the composition Fe[sub 3]Al are receiving considerable attention as structural materials for applications at high temperatures in view of their excellent resistance to oxidation and corrosion as well as reasonable mechanical properties. Recently, problems associated with poor ductility at room temperature have been alleviated by small additions of Cr and by microstructure control, as well by as the realization that the low ductility is, in part, extrinsic behavior due to environmental attack. These materials suffer also from a loss of their good strength at temperatures above about 600 C, and recent attention has led also to the development of creep resistant alloys. The present report considers a new alloy developed for improved creep resistance which shows also good oxidation and erosion resistance. Effort has been devoted to an examination of the dislocation structures that characterize deformation, both cold and hot, during fast tensile straining as well as during creep testing.

  7. Pressure effect on the electronic structure of iron in (Mg,Fe)(Al,Si)O3 perovskite: A combined synchrotron M?ssbauer and x-ray emission spectroscopy study up to 100 GPa

    SciTech Connect

    Li, J; Sturhahn, W; Jackson, J; Struzhkin, V V; Lin, J F; Zhao, J; Mao, H K; Shen, G

    2006-01-23

    We investigated the valence and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample, (Mg{sub 0.88}Fe{sub 0.09})(Si{sub 0.94}Al{sub 0.10})O{sub 3}, at 300 K and up to 100 GPa, using diamond-anvil cells and synchrotron Moessbauer spectroscopy techniques. Under elevated pressures, our Moessbauer time spectra are sufficiently fitted by a ''three-doublet'' model, which assumes two ferrous (Fe{sup 2+}) iron types and one ferric (Fe{sup 3+}) iron type with distinct hyperfine parameters. At pressures above 20 GPa, the fraction of the ferric iron, Fe{sup 3+}/{Sigma}Fe, is about 75% and remains unchanged to the highest pressure, indicating a fixed valence state of iron within this pressure range. Between 20 and 100 GPa, the quadruple splittings of all three iron types do not change with pressure, while the isomer shift between the Fe{sup 3+} types and the Fe{sup 2+} type increases continuously with increasing pressure. In conjunction with previous x-ray emission data on the same sample, the unchanging quadruple splittings and increasing isomer shift suggest that Fe{sup 2+} undergoes a broad spin crossover towards the low-spin state at 100 GPa, while Fe{sup 3+} remains in the high-spin state. The essentially constant quadruple splittings of Fe{sup 2+} can also be taken as an indication for strong resistance against further distortion of the local iron environment after initial compression.

  8. Magnetic properties of Fe/FeSi2/Fe3Si trilayered films prepared by facing targets sputtering deposition

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kazuya; Nakashima, Kazutoshi; Sakai, Ken-Ichiro; Yoshitake, Tsuyoshi

    2015-09-01

    Whereas giant magnetoresistance and tunnel magnetoresistance films generally employ nonmagnetic metal and insulator spacers, respectively, we have studied Fe3Si/FeSi artificial lattices, in which FeSi2 is semiconducting and its employment as spacers is specific to our research. For the formation of parallel/antiparallel alignments of layer magnetizations, the employment of ferromagnetic layers with different coercive forces is required. There have been few studies on the fabrication of Fe-Si system spin valves comprising ferromagnetic layers with different coercive forces. In this work, Fe3Si and Fe were employed as ferromagnetic layer materials with different coercive forces. Fe/FeSi2/Fe3Si trilayered spin valve junctions by facing targets direct-current sputtering deposition combined with a mask method, and their electrical and magnetic properties were studied. An Fe3Si layer was epitaxially grown on Si(111) substrate as a bottom layer. After that, An Fe layer with a large coercive force was deposited as a top layer, posterior to a FeSi2 layer being deposited. From magnetization curves measured by a vibrating sample magnetometer, it was confirmed that the parallel and antiparallel magnetization alignments of ferromagnetic layers are clearly realized. This work was supported by JSPS KAKENHI Grant Number 15K21594.

  9. Thermoelasticity of Al3+- and Fe3+-bearing bridgemanite

    NASA Astrophysics Data System (ADS)

    Valencia-Cardona, Juan; Shukla, Gaurav; Cococcioni, Matteo; Wentzcovitch, Renata

    2015-03-01

    We present quasi-harmonic LDA+U calculations of thermoelastic properties of Fe3+- and Al3+-bearing bridgemanite (MgSiO3), the main Earth forming phase, at relevant P,T conditions and compositions. Three charge-coupled substitutions, namely, Al3+-Al3+, Fe3+-Fe3+, and Fe3+-Al3+ have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental measurements available. The effect of the pressure induced high-spin to low-spin state change in Fe3+ in the B-site has been investigated in great detail since it has potentially dramatic effects on seismic velocities in the Earth's lower mantle. Research supported by NSF/EAR and NSF/CAREER.

  10. High-frequency permeability spectra of FeCoSiN/Al{sub 2}O{sub 3} laminated films: Tuning of damping by magnetic couplings dependent on the thickness of each ferromagnetic layer

    SciTech Connect

    Xu Feng; Zhang Xiaoyu; Nguyen Nguyen Phuoc; Ma Yungui; Ong, C. K.

    2009-02-15

    In this work, we investigate the high-frequency permeability spectra of as-sputtered FeCoSiN/Al{sub 2}O{sub 3} laminated films, and discuss their dependence on the thickness of each FeCoSiN layer, based on the phenomenological Landau-Lifshitz-Gilbert equation. The damping factor and coercivity show their minima with lamination, deviating from the expectation based on the grain size confinement effect. Such dependences on the layer thickness indicate the influence of magnetic coupling. The decreases in the damping factor and the coercivities with lamination can be partially attributed to the decrease in the magnetostatic coupling induced by ripple structures. The enhanced damping and enlarged coercivity values obtained with further lamination are ascribed to the enhanced Neel couplings. The dependences show that the lamination can be effective in tuning the magnetization dynamics by changing the magnetic couplings.

  11. Fe-Si networks in Na2FeSiO4 cathode materials.

    PubMed

    Wu, P; Wu, S Q; Lv, X; Zhao, X; Ye, Z; Lin, Z; Wang, C Z; Ho, K M

    2016-08-24

    Using a combination of adaptive genetic algorithm search, motif-network search scheme and first-principles calculations, we have systematically studied the low-energy crystal structures of Na2FeSiO4. We show that the low-energy crystal structures with different space group symmetries can be classified into several families based on the topologies of their Fe-Si networks. In addition to the diamond-like network which is shared by most of the low-energy structures, another three robust Fe-Si networks are also found to be stable during the charge/discharge process. The electrochemical properties of representative structures from these four different Fe-Si networks in Na2FeSiO4 and Li2FeSiO4 are investigated and found to be strongly correlated with the Fe-Si network topologies. Our studies provide a new route to characterize the crystal structures of Na2FeSiO4 and Li2FeSiO4 and offer useful guidance for the design of promising cathodes for Na/Li ion batteries. PMID:27523264

  12. Three-Dimensional Microstructure Visualization of Porosity and Fe-Rich Inclusions in SiC Particle-Reinforced Al Alloy Matrix Composites by X-Ray Synchrotron Tomography

    SciTech Connect

    Silva, Flávio de Andrade; Williams, Jason J.; Müller, Bernd R.; Hentschel, Manfred P.; Portella, Pedro D.; Chawla, Nikhilesh

    2011-11-15

    Microstructural aspects of composites such as reinforcement particle size, shape, and distribution play important roles in deformation behavior. In addition, Fe-rich inclusions and porosity also influence the behavior of these composites, particularly under fatigue loading. Three-dimensional (3-D) visualization of porosity and Fe-rich inclusions in three dimensions is critical to a thorough understanding of fatigue resistance of metal matrix composites (MMCs), because cracks often initiate at these defects. In this article, we have used X-ray synchrotron tomography to visualize and quantify the morphology and size distribution of pores and Fe-rich inclusions in a SiC particle-reinforced 2080 Al alloy composite. The 3-D data sets were also used to predict and understand the influence of defects on the deformation behavior by 3-D finite element modeling.

  13. Synthesis and equation of state of post-perovskites in the (Mg,Fe)[subscript 3]Al[subscript 2]Si[subscript 3]O[subscript 12] system

    SciTech Connect

    Shieh, Sean R.; Dorfman, Susannah M.; Kubo, Atsushi; Prakapenka, Vitali B.; Duffy, Thomas S.

    2012-02-06

    The formation and properties of the post-perovskite (CaIrO{sub 3}-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe){sub 3}Al{sub 2}Si{sub 3}O{sub 12}) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90 mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148 GPa and temperatures higher than 1600 K. In some cases, evidence for a minor amount of Al{sub 2}O{sub 3} post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite + post-perovskite two-phase region. Pressure-volume data for the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO{sub 3} system. The presence of Al{sub 2}O{sub 3} increases the stability of perovskite relative to post-perovskite, requiring higher pressures (> 148 GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al{sub 2}O{sub 3} may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D* region. The observed synthesis pressures (> 148 GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary ({approx} 135 GPa).

  14. EBSD characterization of high-temperature phase transformations in an Al-Si coating on Cr-Mo steel

    SciTech Connect

    Cheng, Wei-Jen Wang, Chaur-Jeng

    2012-02-15

    5Cr-0.5Mo steel was coated by hot-dipping in a molten bath containing Al-10 wt.% Si. The phase transformation in the aluminide layer during diffusion at 750 Degree-Sign C in static air was analyzed by electron backscatter diffraction. The results show the aluminide layer of the as-coated specimen consisted of an outer Al-Si topcoat, a middle layer formed of scattered {tau}{sub 5(C)}-Al{sub 7}(Fe,Cr){sub 2}Si particles and minor plate-shaped {tau}{sub 4}-Al{sub 4}FeSi{sub 2} and {tau}{sub 6}-Al{sub 4}FeSi phases in the Al-Si matrix and an inner continuous {tau}{sub 5(H)}-Al{sub 7}Fe{sub 2}Si layer, respectively from the coating surface to the steel substrate. The formation of FeAl{sub 3} and Fe{sub 2}Al{sub 5} with {tau}{sub 1}-(Al,Si){sub 5}Fe{sub 3} precipitates can be observed with increasing exposure time at 750 Degree-Sign C. After 5 h of exposure, the Al-Si topcoat has been consumed, and the aluminide layer consisted of Fe{sub 2}Al{sub 5} and a few {tau}{sub 1}-(Al,Si){sub 5}Fe{sub 3} precipitates. The FeAl phase not only formed at the interface between Fe{sub 2}Al{sub 5} and the steel substrate, but also transformed from {tau}{sub 1}-(Al,Si){sub 5}Fe{sub 3} after diffusion for 10 h. With prolonged exposure, the aluminide layer comprised only FeAl{sub 2} and FeAl. - Highlights: Black-Right-Pointing-Pointer EBSD can differentiate phases in aluminide layer with similar chemical compositions. Black-Right-Pointing-Pointer Mapping and EBSPs functions in EBSD provide a reliable phase identification. Black-Right-Pointing-Pointer A phase transformation in the aluminide layer has been described in detail. Black-Right-Pointing-Pointer 5 Fe-Al-Si and 4 Fe-Al intermetallic phases are performed during the diffusion. Black-Right-Pointing-Pointer Cubic {tau}{sub 5(C)}-Al{sub 7} (Fe,Cr){sub 2}Si and hexagonal {tau}{sub 5(H)}-Al{sub 7}(Fe,Cr){sub 2}Si are identified.

  15. Effects of Al2O3 and MgO on Softening, Melting, and Permeation Properties of CaO-FeO-SiO2 on a Coke Bed

    NASA Astrophysics Data System (ADS)

    Ueda, Shigeru; Kon, Tatsuya; Miki, Takahiro; Kim, Sun-Joong; Nogami, Hiroshi

    2016-04-01

    In ironmaking, maintaining gas permeability in blast furnace with low coke rate operation is essential to reduce carbon emissions. The high pressure loss in the cohesive zone decreases the gas permeability and affects the productivity of blast furnace. In order to increase the gas permeability in the cohesive zone, the thickness of the cohesive layer should be decreased. For this purpose, increasing softening temperature and decreasing dripping temperature of the iron ore are desired. In this study, softening, melting, and permeation of SiO2-FeO-CaO-Al2O3-MgO on a coke bed were investigated. The oxide sample in a tablet form was heated under CO/CO2 atmosphere, and the shape of the tablet was observed. The softening and melting temperatures of the SiO2-FeO-CaO system changed with the addition of Al2O3 and MgO. Oxide tablets with and without Al2O3 softened below and above the solidus temperature, respectively. The melting temperatures varied with the ratio of CO/CO2 in the gas. The permeation temperature was independent of the melting temperature, but dependent on the wettability.

  16. Effects of Al2O3 and MgO on Softening, Melting, and Permeation Properties of CaO-FeO-SiO2 on a Coke Bed

    NASA Astrophysics Data System (ADS)

    Ueda, Shigeru; Kon, Tatsuya; Miki, Takahiro; Kim, Sun-Joong; Nogami, Hiroshi

    2016-08-01

    In ironmaking, maintaining gas permeability in blast furnace with low coke rate operation is essential to reduce carbon emissions. The high pressure loss in the cohesive zone decreases the gas permeability and affects the productivity of blast furnace. In order to increase the gas permeability in the cohesive zone, the thickness of the cohesive layer should be decreased. For this purpose, increasing softening temperature and decreasing dripping temperature of the iron ore are desired. In this study, softening, melting, and permeation of SiO2-FeO-CaO-Al2O3-MgO on a coke bed were investigated. The oxide sample in a tablet form was heated under CO/CO2 atmosphere, and the shape of the tablet was observed. The softening and melting temperatures of the SiO2-FeO-CaO system changed with the addition of Al2O3 and MgO. Oxide tablets with and without Al2O3 softened below and above the solidus temperature, respectively. The melting temperatures varied with the ratio of CO/CO2 in the gas. The permeation temperature was independent of the melting temperature, but dependent on the wettability.

  17. Partitioning of Si and platinum group elements between liquid and solid Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Morard, G.; Siebert, J.; Badro, J.

    2014-05-01

    Crystallization of the Earth's inner core fractionates major and minor elements between the solid and liquid metal, leaving physical and geochemical imprints on the Earth's core. For example, the density jump observed at the Inner Core Boundary (ICB) is related to the preferential partitioning of lighter elements in the liquid outer core. The fractionation of Os, Re and Pt between liquid and solid during inner core crystallization has been invoked as a process that explains the observed Os isotopic signature of mantle plume-derived lavas (Brandon et al., 1998; Brandon and Walker, 2005) in terms of core-mantle interaction. In this article we measured partitioning of Si, Os, Re and Pt between liquid and solid metal. Isobaric (2 GPa) experiments were conducted in a piston-cylinder press at temperatures between 1250 °C and 1600 °C in which an imposed thermal gradient through the sample provided solid-liquid coexistence in the Fe-Si system. We determined the narrow melting loop in the Fe-Si system using Si partitioning values and showed that order-disorder transition in the Fe-Si solid phases can have a large effect on Si partitioning. We also found constant partition coefficients (DOs, DPt, DRe) between liquid and solid metal, for Si concentrations ranging from 2 to 12 wt%. The compact structure of Fe-Si liquid alloys is compatible with incorporation of Si and platinum group elements (PGEs) elements precluding solid-liquid fractionation. Such phase diagram properties are relevant for other light elements such as S and C at high pressure and is not consistent with inter-elemental fractionation of PGEs during metal crystallization at Earth's inner core conditions. We therefore propose that the peculiar Os isotopic signature observed in plume-derived lavas is more likely explained by mantle source heterogeneity (Meibom et al., 2002; Baker and Krogh Jensen, 2004; Luguet et al., 2008).

  18. Microstructural and Fracture Behavior of Phosphorus-Containing Fe-30Mn-9Al-1Si-0.9C-0.5Mo Alloy Steel

    NASA Astrophysics Data System (ADS)

    Howell, Ryan A.; Van Aken, David C.

    2015-08-01

    Five different phosphorus (P)-containing heat-treated Fe-Mn-Al-C alloys were tested in accordance with ASTM E 23 Charpy V-notch Energy (CVNE) standards. Room temperature CVNE of solution treated and quenched specimens revealed ductile fracture for 0.001 and 0.006 wt pct (pct P-containing alloys). Brittle cleavage fracture dominated the 0.043 and 0.07 pct P-containing alloys. A hard brittle P eutectic phase was observed in the 0.07 pct P-containing alloy.

  19. Orientation relationship of eutectoid FeAl and FeAl2

    PubMed Central

    Scherf, A.; Kauffmann, A.; Kauffmann-Weiss, S.; Scherer, T.; Li, X.; Stein, F.; Heilmaier, M.

    2016-01-01

    Fe–Al alloys in the aluminium range of 55–65 at.% exhibit a lamellar microstructure of B2-ordered FeAl and triclinic FeAl2, which is caused by a eutectoid decomposition of the high-temperature Fe5Al8 phase, the so-called ∊ phase. The orientation relationship of FeAl and FeAl2 has previously been studied by Bastin et al. [J. Cryst. Growth (1978 ▸), 43, 745] and Hirata et al. [Philos. Mag. Lett. (2008 ▸), 88, 491]. Since both results are based on different crystallographic data regarding FeAl2, the data are re-evaluated with respect to a recent re-determination of the FeAl2 phase provided by Chumak et al. [Acta Cryst. (2010 ▸), C66, i87]. It is found that both orientation relationships match subsequent to a rotation operation of 180° about a 〈112〉 crystallographic axis of FeAl or by applying the inversion symmetry of the FeAl2 crystal structure as suggested by the Chumak data set. Experimental evidence for the validity of the previously determined orientation relationships was found in as-cast fully lamellar material (random texture) as well as directionally solidified material (∼〈110〉FeAl || solidification direction) by means of orientation imaging microscopy and global texture measurements. In addition, a preferential interface between FeAl and FeAl2 was identified by means of trace analyses using cross sectioning with a focused ion beam. On the basis of these habit planes the orientation relationship between the two phases can be described by (01)FeAl || (114) and [111]FeAl || [10]. There is no evidence for twinning within FeAl lamellae or alternating orientations of FeAl lamellae. Based on the determined orientation and interface data, an atomistic model of the structure relationship of Fe5Al8, FeAl and FeAl2 in the vicinity of the eutectoid decomposition is derived. This model is analysed with respect to the strain which has to be accommodated at the interface of FeAl and FeAl2. PMID:27047304

  20. An experimental study of the Fe oxidation states in garnet and clinopyroxene as a function of temperature in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2: implications for garnet-clinopyroxene geothermometry

    NASA Astrophysics Data System (ADS)

    Purwin, Horst; Lauterbach, Stefan; Brey, Gerhard P.; Woodland, Alan B.; Kleebe, Hans-Joachim

    2013-04-01

    Samples with eclogitic composition in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2 were produced from various kinds of starting materials held in graphite-lined Pt capsules at a pressure of 2.5-3.0 GPa and temperatures of 800-1,300 °C using a piston-cylinder or Belt apparatus. Garnets and clinopyroxenes were characterized by analytical transmission electron microscopy and electron probe micro-analysis (EPMA). Fe3+/ΣFe ratios determined by electron energy-loss spectroscopy (EELS) decrease in clinopyroxene from 22.2 ± 3.4 % at 800 °C to 13.3 ± 5.4 % at 1,300 °C, while in garnet, they vary between 10.8 ± 1.5 and 15.4 ± 4.7 %, respectively. Temperature estimates according to Krogh (Contrib Mineral Petrol 99:44-48, 1988) reproduce the experimental temperature to ±60 °C without systematic deviations if total iron is used in the calculation. If only the Fe2+ content is used, which was obtained by combining EPMA and EELS results, the experimental temperature is underestimated by 33 °C on average at 800-1,200 °C and overestimated by 77 °C on average at 1,300 °C. These systematic deviations can be explained by the temperature-dependent ratio of Fe2+/ΣFe in garnet divided by that in clinopyroxene. Since the difference between the calculated and experimental temperature is relatively small, a Fe2+-based recalibration of the thermometer appears not to be necessary for the investigated system in the range of pressure, temperature and composition covered by the experiments of this study.

  1. Origin of biquadratic exchange in Fe/Si/Fe

    PubMed

    Strijkers; Kohlhepp; Swagten; de Jonge WJ

    2000-02-21

    The thickness and temperature dependences of the interlayer exchange coupling in well-defined molecular beam epitaxy-grown Fe/Si/Fe sandwich structures have been studied. The biquadratic coupling shows a strong temperature dependence in contrast to the bilinear coupling. Both depend exponentially on thickness. These observations can be well understood in the framework of Slonczewski's loose spins model [J. Appl. Phys. 73, 5957 (1993)]. No bilinear contribution of the loose spins to the coupling was observed. PMID:11017632

  2. Origin of biquadratic exchange in fe/si/fe.

    PubMed

    Strijkers, G J; Kohlhepp, J T; Swagten, H J; de Jonge, W J

    2000-02-21

    The thickness and temperature dependences of the interlayer exchange coupling in well-defined molecular beam epitaxy-grown Fe/Si/Fe sandwich structures have been studied. The biquadratic coupling shows a strong temperature dependence in contrast to the bilinear coupling. Both depend exponentially on thickness. These observations can be well understood in the framework of Slonczewski's loose spins model [J. Appl. Phys. 73, 5957 (1993)]. No bilinear contribution of the loose spins to the coupling was observed. PMID:21923210

  3. Thermoelectric properties of -FeSi2

    SciTech Connect

    Parker, David S; Singh, David J; Pandey, Tribhuwan; Singh, Abhishek

    2013-01-01

    We investigate the thermoelectric properties of -FeSi2 using first principles electronic structure and Boltzmann trans- port calculations. We report a high thermopower for both p- and n-type -FeSi2 over a wide range of carrier concentra- tion and in addition find the performance for n-type to be higher than for the p-type. Our results indicate that, depending upon temperature, a doping level of 3 1020 - 2 1021 cm 3 may optimize the thermoelectric performance.

  4. Improvement of magnetic and structural stabilities in high-quality Co2FeSi1-xAlx/Si heterointerfaces

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Tanikawa, K.; Oki, S.; Kawano, M.; Miyao, M.; Hamaya, K.

    2014-08-01

    We study high-quality Co2FeSi1-xAlx Heusler compound/Si (0 ≤ x ≤ 1) heterointerfaces for silicon (Si)-based spintronic applications. In thermal treatment conditions, the magnetic and structural stabilities of the Co2FeSi1-xAlx/Si heterointerfaces are improved with increasing x in Co2FeSi1-xAlx. Compared with L21-ordered Co2FeSi/Si, B2-ordered Co2FeAl/Si can suppress the diffusion of Si atoms into the Heusler-compound structure. This experimental study will provide an important knowledge for applications in Si-based spin transistors with metallic source/drain contacts.

  5. Fe stable isotope fractionation in modern and ancient hydrothermal Fe-Si deposits

    NASA Astrophysics Data System (ADS)

    Moeller, K.; Schoenberg, R.; Thorseth, I. H.; Øvreås, L.; Pedersen, R.

    2010-12-01

    -sea sediments and the deposit itself, including abiogenic partial oxidation of hydrothermal Fe(II)aq through mixing with oxygenated seawater, reduction of Fe(III) precipitates by dissimilatory iron reduction (DIR) and re-oxidation by Fe-oxidising bacteria. The Løkken jaspers were postulated to be a combination of Fe-oxyhydroxide precipitation within buoyant and non-buoyant hydrothermal plumes and Si flocculation in a silica-saturated ocean [1]. Observations from a modern basalt-hosted hydrothermal system indicate that Fe(II)aq in a buoyant plume gets fractionated towards heavier isotopic compositions due to precipitation of low-δ56Fe iron sulphides [3]. However, mass balance calculations of plume particles revealed that Fe-oxyhydroxides have δ56Fe values of around -0.2 ‰, thus significantly lighter than the heaviest Løkken signatures of 0.89 ‰. Possible scenarios to explain the Fe isotope compositions of Løkken jaspers and the modern Mohns Ridge Fe-Si deposits will be discussed. [1] Grenne, T. & Slack, J. (2003) Miner Deposita, 38, 625ff. [2] Little, C. et al. (2004) Geomicrobiol J, 21, 415ff. [3] Bennett, S. et al. (2009) Geochim. Cosmochim. Acta., 73, 5619ff.

  6. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  7. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  8. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  9. Energetic ion bombarded Fe/Al multilayers

    SciTech Connect

    Al-Busaidy, M.S.; Crapper, M.D.

    2006-05-15

    The utility of ion-assisted deposition is investigated to explore the possibility of counteracting the deficiency of back-reflected current of Ar neutrals in the case of lighter elements such as Al. A range of energetically ion bombarded Fe/Al multilayers sputtered with applied surface bias of 0, -200, or -400 V were deposited onto Si(111) substrates in an argon atmosphere of 4 mTorr using a computer controlled dc magnetron sputtering system. Grazing incidence reflectivity and rocking curve scans by synchrotron x rays of wavelength of 1.38 A were used to investigate the structures of the interfaces produced. Substantial evidence has been gathered to suggest the gradual suppression of interfacial mixing and reduction in interfacial roughness with increases of applied bias. The densification of the Al microstructure was noticeable and may be a consequence of resputtering attributable to the induced ion bombardment. The average interfacial roughnesses were calculated for the 0, -200, and -400 V samples to be 7{+-}0.5, 6{+-}0.5, and 5{+-}0.5 A respectfully demonstrating a 30% improvement in interface quality. Data from rocking curve scans point to improved long-range correlated roughness in energetically deposited samples. The computational code based on the recursive algorithm developed by Parratt [Phys. Rev. 95, 359 (1954)] was successful in the simulation of the specular reflectivity curves.

  10. Investigation of Liquidus Temperatures and Phase Equilibria of Copper Smelting Slags in the FeO-Fe2O3-SiO2-CaO-MgO-Al2O3 System at PO2 10-8 atm

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Nexhip, Colin; George-Kennedy, David P.; Hayes, P. C.; Jak, E.

    2010-08-01

    Copper concentrates and fluxes can contain variable levels of SiO2, CaO, and MgO in addition to main components Cu, Fe, and S. Metal recovery, slag tapping, and furnace wall integrity all are dependent on phase equilibria and other properties of the phases and are functions of slag composition and operational temperature. Optimal control of the slag chemistry in the copper smelting, therefore, is essential for high recovery and productivity; this, in turn, requires detailed knowledge of the slag phase equilibria. The present work provides new phase equilibrium experimental data in the FeO-Fe2O3-SiO2-CaO-MgO-Al2O3 system at oxygen partial pressure of 10-8 atm within the range of temperatures and compositions directly relevant to copper smelting. For the range of conditions relevant to the Kennecott Utah Copper (South Magna, UT) smelting furnace, it was confirmed experimentally that increasing concentrations of MgO or CaO resulted in significant decreases of the tridymite liquidus temperature and in changes in the position of the tridymite liquidus in the direction of higher silica concentration; in contrast, the spinel liquidus temperatures increase significantly with the increase of MgO or CaO. Olivine and clinopyroxene precipitates appeared at high MgO concentrations in the liquid slag. The liquidus temperature in the spinel primary phase field was expressed as a linear function of 1/(wt pctFe/wt pctSiO2), wt pctCaO, wt pctMgO, and wt pctAl2O3. The positions of each of the liquidus points (wt pctFe)/(wt pctSiO2) at a fixed temperatures in the tridymite primary phase field were expressed as linear functions of wt pctCaO, wt pctMgO, and wt pctAl2O3.

  11. Formation and ferromagnetic properties of FeSi thin films

    SciTech Connect

    Shin, Yooleemi; Anh Tuan, Duong; Hwang, Younghun; Viet Cuong, Tran; Cho, Sunglae

    2013-05-07

    In this work, the growth and ferromagnetic properties of {epsilon}-FeSi thin film on Si(100) substrate prepared by molecular beam epitaxy are reported. The inter-diffusion of Fe layer on Si(100) substrate at 600 Degree-Sign C results in polycrystalline {epsilon}-FeSi layer. The determined activation energy was 0.044 eV. The modified magnetism from paramagnetic in bulk to ferromagnetic states in {epsilon}-FeSi thin films was observed. The saturated magnetization and coercive field of {epsilon}-FeSi film are 4.6 emu/cm{sup 3} and 29 Oe at 300 K, respectively.

  12. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1979-01-01

    Cold pressing and sintering techniques were used to produce ceramic test specimens in which the major phase was either Si3N4 or a solid solution having the beta Si3N4 structure. Additional components were incorporated to promote liquid phase sintering. Glass and/or crystalline phase were consequently retained in boundaries between Si3N4 grains which largely determined the physical properties of the bodies. Systems investigated most extensively included R-Si-Al-O-N (R = rare earth element) Zr-Si-Al-O-N, Y-Si-Be-O-N, and R1-R2-Si-O-N. Room temperature and 1370 C modulus of ruptured, 1370 C creep, and oxidation behavior are discussed in terms of phase relationships in a parent quinery, and relavent oxide systems.

  13. Compression behavior of Fe-Si-H alloys

    NASA Astrophysics Data System (ADS)

    Tagawa, S.; Ohta, K.; Hirose, K.; Ohishi, Y.

    2015-12-01

    Although the light elements in the Earth's core are still enigmatic, hydrogen has recently been receiving much attention. Planetary formation theory suggested that a large amount of water, much more than is in the oceans, could have been brought to the Earth during its accretion. Hydrogen is a strong siderophile element and could be incorporated into the core as a consequence of a reaction between water and molten iron in a magma ocean [Okuchi, 1997 Science]. Nevertheless, the effect of hydrogen on the property of iron is not well known so far. Here, we have experimentally examined the compression behavior of hcp Fe0.88Si0.12Hx (6.5 wt.% Si) at two different hydrogen concentrations (x = 0.7 and 0.9). Fe0.88Si0.12 foil was loaded into a diamond-anvil cell, and then liquid hydrogen was introduced to a sample chamber below 20 K. Hydrogenation occurred upon thermal annealing below 1500 K at 25-62 GPa, and hcp Fe0.88Si0.12Hx was obtained as a single phase. Unlike the Fe-H alloy, hydrogen did not fully occupy the octahedral sites even under hydrogen-saturated conditions. Two compression curves, one from 25 to 136 GPa, and the other from 62 to 128 GPa, were obtained at room temperature. While the effect of hydrogen on the compressibility of iron has been controversial in earlier experimental studies [Hirao et al., 2004 GRL; Pépin et al., 2014 PRL], our data indicate that the compressibility of Fe0.88Si0.12Hx alloy does not change with changing hydrogen content from x = 0 to 0.9. Such compression behavior observed is consistent with the recent ab initio calculations for hcp Fe-H alloys by Caracas[2015 GRL]. The extrapolation of present data to the outer core pressure and temperature range, assuming thermal expansivity is the same as that for iron and there is no density difference between solid and liquid, shows that the density of Fe0.88Si0.12H0.3 matches the PREM in the whole outer core within 1%.

  14. Chemical mixing at “Al on Fe” and “Fe on Al” interfaces

    SciTech Connect

    Süle, P.; Horváth, Z. E.; Kaptás, D.; Bujdosó, L.; Balogh, J.; Nakanishi, A.

    2015-10-07

    The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuum evaporation—support the results of the molecular dynamics calculations.

  15. Reoxidation of Aluminum in Fe- Al- M (M = C, Mn, and Ti) melts with CaO-Al2 O3-Fe t O (3 mass pct) slags

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Ro; Suito, Hideaki

    1996-06-01

    An Fe-0.01 to 0.5 mass pct Al alloy and an Fe-0.003 to 0.71 mass pct Al-1 mass pct M (M = C, Mn, and Ti) alloy were reoxidized with the CaO-Al2O3-FetO (3 mass pct) slags at 1873 K in an Al2O3 or CaO crucible for 5 and 60 minutes. The contents of acid-insoluble Al, total O, and alloying element M in metal as well as those of M and FetO in slag were measured as a function of total Al content. On the basis of the present and previous results for Fe- Al- Te alloys, the effect of alloying elements on the degree of supersaturation with respect to the Al2O3 precipitation was studied. As a result, the supersaturation phenomenon was observed in all experiments at 5 minutes, but in the experiments at 60 minutes, it was observed only in Fe- Al and Fe- Al- Ti alloys. No supersaturation was observed in the reoxidation of Si in Fe-0.13 to 0.98 mass pct Si alloys with the CaO-SiO2-FetO (3 mass pct) slags in a CaO crucible at 5 and 60 minutes.

  16. Investigation of various phases of Fe-Si structures formed in Si by low energy Fe ion implantation

    NASA Astrophysics Data System (ADS)

    Lakshantha, Wickramaarachchige J.; Dhoubhadel, Mangal S.; Reinert, Tilo; McDaniel, Floyd D.; Rout, Bibhudutta

    2015-12-01

    The compositional phases of ion beam synthesized Fe-Si structures at two high fluences (0.50 × 1017 atoms/cm2 and 2.16 × 1017 atoms/cm2) were analyzed using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The distribution of Fe implanted in Si was simulated using a dynamic simulation code (TRIDYN) incorporating target sputtering effects. The Fe depth profiles in the Si matrix were confirmed with Rutherford backscattering spectrometry (RBS) and XPS depth profiling using Ar-ion etching. Based on XPS binding energy shift and spectral asymmetry, the distribution of stable Fe-Si phases in the substrate was analyzed as a function of depth. Results indicate Fe implantation with a fluence of 0.50 × 1017 atoms/cm2 and subsequent thermal annealing produce mainly the β-FeSi2 phase in the whole thickness of the implanted region. But for the samples with a higher fluence Fe implantation, multiple phases are formed. Significant amount of Fe3Si phase are found at depth intervals of 14 nm and 28 nm from the surface. Initially, as-implanted samples show amorphous Fe3Si formation and further thermal annealing at 500 °C for 60 min formed crystalline Fe3Si structures at the same depth intervals. In addition, thermal annealing at 800 °C for 60 min restructures the Fe3Si clusters to form FeSi2 and FeSi phases.

  17. Elastic properties of FeSi

    SciTech Connect

    Petrova, A. E.; Krasnorussky, V. N.; Stishov, S. M.

    2010-09-15

    Measurements of the sound velocities in a single crystal of FeSi were performed in the temperature range 4-300 K. Elastic constants C{sub 11} and C{sub 44} deviate from a quasiharmonic behavior at high temperature; on the other hand, elastic constants C{sub 12} increases anomalously in the entire temperature range, indicating a change in the electron structure of this material.

  18. Investigation of the temperature-dependence of ferromagnetic resonance and spin waves in Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}

    SciTech Connect

    Loong, Li Ming; Kwon, Jae Hyun; Deorani, Praveen; Yang, Hyunsoo; Tung Yu, Chris Nga; Hirohata, Atsufumi

    2014-06-09

    Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS) is a Heusler compound that is of interest for spintronics applications, due to its high spin polarization and relatively low Gilbert damping constant. In this study, the behavior of ferromagnetic resonance as a function of temperature was investigated in CFAS, yielding a decreasing trend of damping constant as the temperature was increased from 13 to 300 K. Furthermore, we studied spin waves in CFAS using both frequency domain and time domain techniques, obtaining group velocities and attenuation lengths as high as 26 km/s and 23.3 μm, respectively, at room temperature.

  19. Investigating and engineering spin-orbit torques in heavy metal/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO thin film structures

    SciTech Connect

    Loong, Li Ming; Deorani, Praveen; Qiu, Xuepeng; Yang, Hyunsoo

    2015-07-13

    Current-induced spin-orbit torques (SOTs) have the potential to revolutionize magnetization switching technology. Here, we investigate SOT in a heavy metal (HM)/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS)/MgO thin film structure with perpendicular magnetic anisotropy (PMA), where the HM is either Pt or Ta. Our results suggest that both the spin Hall effect and the Rashba effect contribute significantly to the effective fields in the Pt underlayer samples. Moreover, after taking the PMA energies into account, current-induced SOT-based switching studies of both the Pt and Ta underlayer samples suggest that the two HM underlayers yield comparable switching efficiency in the HM/CFAS/MgO material system.

  20. Modulus measurements in ordered Co-Al, Fe-Al, and Ni-Al alloys

    NASA Technical Reports Server (NTRS)

    Harmouche, M. R.; Wolfenden, A.

    1985-01-01

    The composition and/or temperature dependence of the dynamic Young's modulus for the ordered B2 Co-Al, Fe-Al, and Ni-Al aluminides has been investigated using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The modulus has been measured in the composition interval 48.49 to 52.58 at. pct Co, 50.87 to 60.2 at. pct Fe, and 49.22 to 55.95 at. pct Ni for Co-Al, Fe-Al, and Ni-Al, respectively. The measured values for Co-Al are in the temperature interval 300 to 1300 K, while those for the other systems are for ambient temperature only. The data points show that Co-Al is stiffer than Fe-Al, which is stiffer than Ni-Al. The data points for Fe-Al and Ni-Al are slightly higher than those reported in the literature.

  1. Release of Si from Silicon, a Ferrosilicon (FeSi) Alloy and a Synthetic Silicate Mineral in Simulated Biological Media

    PubMed Central

    Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger

    2014-01-01

    Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879

  2. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  3. Truncated tetrahedron seed crystals initiating stereoaligned growth of FeSi nanowires.

    PubMed

    Kim, Si-in; Yoon, Hana; Seo, Kwanyong; Yoo, Youngdong; Lee, Sungyul; Kim, Bongsoo

    2012-10-23

    We have synthesized epitaxially grown freestanding FeSi nanowires (NWs) on an m-Al(2)O(3) substrate by using a catalyst-free chemical vapor transport method. FeSi NW growth is initiated from FeSi nanocrystals, formed on a substrate in a characteristic shape with a specific orientation. Cross-section TEM analysis of seed crystals reveals the crystallographic structure and hidden geometry of the seeds. Close correlation of geometrical shapes and orientations of the observed nanocrystals with those of as-grown NWs indicates that directional growth of NWs is initiated from the epitaxially formed seed crystals. The diameter of NWs can be controlled by adjusting the composition of Si in a Si/C mixture. The epitaxial growth method for FeSi NWs via seed crystals could be employed to heteroepitaxial growth of other compound NWs. PMID:22966939

  4. Structural disorder and magnetism in the spin-gapless semiconductor CoFeCrAl

    NASA Astrophysics Data System (ADS)

    Choudhary, Renu; Kharel, Parashu; Valloppilly, Shah R.; Jin, Yunlong; O'Connell, Andrew; Huh, Yung; Gilbert, Simeon; Kashyap, Arti; Sellmyer, D. J.; Skomski, Ralph

    2016-05-01

    Disordered CoFeCrAl and CoFeCrSi0.5Al0.5 alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSi0.5Al0.5 is predicted to increase from 2.01 μB to 2.50 μB per formula unit, in good agreement with experiment.

  5. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: applications to P- T sections and geothermometry

    NASA Astrophysics Data System (ADS)

    Lanari, Pierre; Wagner, Thomas; Vidal, Olivier

    2014-02-01

    We present a new thermodynamic activity-composition model for di-trioctahedral chlorite in the system FeO-MgO-Al2O3-SiO2-H2O that is based on the Holland-Powell internally consistent thermodynamic data set. The model is formulated in terms of four linearly independent end-members, which are amesite, clinochlore, daphnite and sudoite. These account for the most important crystal-chemical substitutions in chlorite, the Fe-Mg, Tschermak and di-trioctahedral substitution. The ideal part of end-member activities is modeled with a mixing-on-site formalism, and non-ideality is described by a macroscopic symmetric (regular) formalism. The symmetric interaction parameters were calibrated using a set of 271 published chlorite analyses for which robust independent temperature estimates are available. In addition, adjustment of the standard state thermodynamic properties of sudoite was required to accurately reproduce experimental brackets involving sudoite. This new model was tested by calculating representative P- T sections for metasediments at low temperatures (<400 °C), in particular sudoite and chlorite bearing metapelites from Crete. Comparison between the calculated mineral assemblages and field data shows that the new model is able to predict the coexistence of chlorite and sudoite at low metamorphic temperatures. The predicted lower limit of the chloritoid stability field is also in better agreement with petrological observations. For practical applications to metamorphic and hydrothermal environments, two new semi-empirical chlorite geothermometers named Chl(1) and Chl(2) were calibrated based on the chlorite + quartz + water equilibrium (2 clinochlore + 3 sudoite = 4 amesite + 4 H2O + 7 quartz). The Chl(1) thermometer requires knowledge of the (Fe3+/ΣFe) ratio in chlorite and predicts correct temperatures for a range of redox conditions. The Chl(2) geothermometer which assumes that all iron in chlorite is ferrous has been applied to partially recrystallized

  6. Carbon Nanostructures Grown on Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Čaplovičová, Mária; Čaplovič, Ľubomír; Búc, Dalibor; Vinduška, Peter; Janík, Ján

    2010-11-01

    The morphology and nanostructure of carbon nanotubes (CNTs), synthesized directly on Fe-Cr-Al-based alloy substrate using an alcohol catalytic chemical vapour deposition method (ACCVD), were examined by transmission electron microscopy (TEM). The grown CNTs were entangled with chain-like, bamboo-like, and necklace-like morphologies. The CNT morphology was affected by the elemental composition of catalysts and local instability of deposition process. Straight and bended CNTs with bamboo-like nanostructure grew mainly on γ-Fe and Fe3C particles. The synthesis of necklace-like nanostructures was influenced by silicon oxide, and growth of chain-like nanostructures was supported by a catalysts consisting of Fe, Si, oxygen and trace of Cr. Most of nanotubes grew according to base growth mechanism.

  7. Moessbauer effect and X-ray distribution function analysis in complex Na{sub 2}O-CaO-ZnO-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glasses and glass-ceramics

    SciTech Connect

    Romero, M.; Rincon, J.M.; Musik, S.; Kozhukharov, V.

    1999-05-01

    Moessbauer spectroscopy at room temperature was carried out to determine the state of iron ions in complex glasses and glass-ceramics in the SiO{sub 2}-CaO-ZnO-Na{sub 2}O-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3} system. Isomer shift values of the glasses suggest that Fe{sup 3+} and Fe{sup 2+} are in tetrahedral and octahedral coordination, respectively. The spectrum of the glass-ceramic shows that about 60 wt% total iron is in the magnetite phase. The Fe{sup +3}/Fe{sup +2} ratio varies with the total iron oxide content of the glasses, indicating that the vitreous network is more distorted when the iron content is greater. X-ray diffraction measurements were carried out to obtain the radial distribution function (RDF). The interatomic distances for Si-Si and Si-O have been determined. The complex composition of these glasses does not allow the estimation of Al-O and Fe-O distances.

  8. Effect of silicon alloying additions on growth temperature and primary spacing of Al{sub 3}Fe in Al-8wt%Fe alloy

    SciTech Connect

    Liang, D.; Jones, H.; Gilgien, P.

    1995-05-15

    Alloys of Al-8.4Fe-1.7Si, Al-8.5Fe-3.4Si and Al-8.5Fe-5.6Si (wt%) designated A, B and C, respectively, were prepared from high purity (99.99%) aluminum, Japanese electrolytic iron (99.9%) and superpure silicon (99.99%). Melting was carried out in a recrystallized alumina crucible by using a Radyne induction furnace and was followed by chill casting under flowing argon into steel molds of cavity dimension 15 mm thick, 50 mm wide and 150 mm high. Rods 3 mm in diameter were fabricated directly from the ingots. Lengths of the rods, which were contained in 3 mm bore tubular alumina crucibles, were melted in a Bridgman growth facility. After maintaining the melt at 100K above the liquidus temperatures liquidus: 1,118, 1,108 and 1,092 K for 1.7, 3.4 and 5.6 wt%Si, respectively, for about 10 minutes, crucibles containing the melt were withdrawn at a speed of 0.34 mm/s into a water bath. The following conclusions can be drawn from analysis of the specimens. Addition of silicon to Al-8wt%Fe alloy results in an increase in growth undercooling and primary spacing of Al{sub 3}Fe dendrites Bridgman grown at 0.34 mm/s and 10K/mm. This increase in growth undercooling, relative to predicted local liquidus temperatures which have been corrected for observed macrosegregation of Fe, is in good accord with the predictions of the Kurz-Giovanola-Trivedi model for needle-like dendrite growth. The silicon content of the Al{sub 3}Fe dendrites obtained is consistent with previously reported measurements for a range of cast Al-Fe-Si alloys.

  9. The mechanical properties of FeAl

    SciTech Connect

    Baker, I.; George, E.P.

    1996-12-31

    Only in the last few years has progress been made in obtaining reproducible mechanical properties data for FeAl. Two sets of observations are the foundation of this progress. The first is that the large vacancy concentrations that exist in FeAl at high temperature are easily retained at low temperature and that these strongly affect the low-temperature mechanical properties. The second is that RT ductility is adversely affected by water vapor. Purpose of this paper is not to present a comprehensive overview of the mechanical properties of FeAl but rather to highlight our understanding of key phenomena and to show how an understanding of the factors which control the yield strength and fracture behavior has followed the discovery of the above two effects. 87 refs, 9 figs.

  10. Geometry controls the stability of FeSi14.

    PubMed

    Chauhan, Vikas; Abreu, Marissa Baddick; Reber, Arthur C; Khanna, Shiv N

    2015-06-28

    First-principles theoretical studies have been carried out to investigate the stability of Sin cages impregnated with a Fe atom. It is shown that FeSi9, FeSi11, and FeSi14 clusters exhibit enhanced local stability as seen through an increase in Si binding energy, Fe embedding energy, the gap between the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), and the Ionization Potential (IP). The conventional picture for the stability of such species combines an assumption of electron precise bonding with the 18-electron rule; however, we find this to be inadequate to explain the enhanced stability in FeSi11 and FeSi14 because the d-band is filled for all FeSin clusters for n≥ 9. FeSi14 is shown to be the most stable due to a compact and highly symmetric Si14 cage with octahedral symmetry that allows better mixing between Fe 3d- and Si 3p-electronic states. PMID:26013325

  11. On the crack growth resistance and strength of the B2 iron aluminides Fe-40Al, Fe-45Al, and Fe-10Ni-40Al (at. %)

    SciTech Connect

    Schneibel, J.H.; Maziasz, P.J.

    1994-09-01

    The crack growth resistance and yield strength of the B2 iron aluminides Fe-40Al, Fe-45Al, are Fe-10Ni-40Al (at. %) have been investigated at room temperature laboratory air. After fast cooling from 1273 K, Fe-45Al and Fe-10Ni-40Al are much stronger than Fe-40Al, and exhibit considerably lower crack growth resistance. The crack growth resistance decreases with decreasing crack propagation velocity. Low crack propagation velocities favor intergranular fracture, whereas high velocities can lead to significant contributions from transgranular fracture. Boron additions to Fe-40Al and Fe-10Ni-40Al improve the crack growth resistance, reduce its dependence on the crack propagation velocity, and cause the path to be predominantly transgranular. In a plot of fracture toughness versus yield strength, the properties of the iron aluminides are similar to those of typical aluminum alloys.

  12. Fabrication of FeSi and Fe3Si compounds by electron beam induced mixing of [Fe/Si]2 and [Fe3/Si]2 multilayers grown by focused electron beam induced deposition

    NASA Astrophysics Data System (ADS)

    Porrati, F.; Sachser, R.; Gazzadi, G. C.; Frabboni, S.; Huth, M.

    2016-06-01

    Fe-Si binary compounds have been fabricated by focused electron beam induced deposition by the alternating use of iron pentacarbonyl, Fe(CO)5, and neopentasilane, Si5H12 as precursor gases. The fabrication procedure consisted in preparing multilayer structures which were treated by low-energy electron irradiation and annealing to induce atomic species intermixing. In this way, we are able to fabricate FeSi and Fe3Si binary compounds from [Fe/Si]2 and [Fe3/Si]2 multilayers, as shown by transmission electron microscopy investigations. This fabrication procedure is useful to obtain nanostructured binary alloys from precursors which compete for adsorption sites during growth and, therefore, cannot be used simultaneously.

  13. Efficiency of impurities removal in pyrophyllite using Fe/Si based heating susceptor

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Ju; Cho, Kang Hee; Choi, Nag-Choul; Park, Cheon-Young

    2016-04-01

    The objective of this study was to efficiency of Fe removal in the pyrophyllite observed the mineralogical phase transformation and elevated temperature using Fe-Si based heating susceptor. The impurities in the pyrophyllite were observed hematite of oxide type and pyrite of sulfide type from photomicrograph and XRD analysis results. The impurities removal experiment were performed under microwave exposure condition(30min), heating susceptor type(Fe/Si) and two type(sulfide, oxide) pyrophyllite. The result showed that increasing of Al2O3 content in two type pyrophyllite with decreasing Fe2O3 and TiO2 content may be attributed to the mineral phase transform of impurities selected by microwave reaction. The microwave exposure for the pyrophyllite showed that the (1) pyrite and hematite phase was transformed pyrrhotite(sulfide type) and magnetite(oxide type), (2) The temperature was increased by Fe based heating susceptor: 932℃(sulfide type), 893℃(oxide type) and Si based heating susceptor: 615℃(sulfide type), 415℃(oxide type). As a result of the microwave Fe-Si based heating susceptor experiments, the Fe2O3 removal rates obtained were in the sulfide type case of 94.4%(Fe), 61.7%(Si) and oxide type case of 88.1%(Fe), 54.6%(Si). Acknowledgment : This subject is supported by Korea Ministry of Environment as "Advanced Technology Program for Environmental Industry"

  14. Melting, Processing, and Properties of Disordered Fe-Al and Fe-Al-C Based Alloys

    NASA Astrophysics Data System (ADS)

    Satya Prasad, V. V.; Khaple, Shivkumar; Baligidad, R. G.

    2014-09-01

    This article presents a part of the research work conducted in our laboratory to develop lightweight steels based on Fe-Al alloys containing 7 wt.% and 9 wt.% aluminum for construction of advanced lightweight ground transportation systems, such as automotive vehicles and heavy-haul truck, and for civil engineering construction, such as bridges, tunnels, and buildings. The melting and casting of sound, porosity-free ingots of Fe-Al-based alloys was accomplished by a newly developed cost-effective technique. The technique consists of using a special flux cover and proprietary charging schedule during air induction melting. These alloys were also produced using a vacuum induction melting (VIM) process for comparison purposes. The effect of aluminum (7 wt.% and 9 wt.%) on melting, processing, and properties of disordered solid solution Fe-Al alloys has been studied in detail. Fe-7 wt.% Al alloy could be produced using air induction melting with a flux cover with the properties comparable to the alloy produced through the VIM route. This material could be further processed through hot and cold working to produce sheets and thin foils. The cold-rolled and annealed sheet exhibited excellent room-temperature ductility. The role of carbon in Fe-7 wt.% Al alloys has also been examined. The results indicate that Fe-Al and Fe-Al-C alloys containing about 7 wt.% Al are potential lightweight steels.

  15. Effect of traveling magnetic field on separation and purification of Si from Al-Si melt during solidification

    NASA Astrophysics Data System (ADS)

    Zou, Q. C.; Jie, J. C.; Liu, S. C.; Wang, T. M.; Yin, G. M.; Li, T. J.

    2015-11-01

    Separation and purification of the Si crystal during solidification process of hypereutectic Al-30Si melt under traveling magnetic field (TMF) were investigated in the present study. The results showed that under a proper condition the Si-rich layer can be formed in the periphery of the ingot while the inner microstructure is mainly the Al-Si eutectic structure. The intense melt flow carries the bulk liquid with higher Si content to promote the growth of the primary Si phase which is first precipitated close to the inner wall of the crucible with a relatively lower temperature, which resulting in the remarkable segregation of the primary Si phase. The impurity contents of the refined Si can be reduced to a very low level. The typical metallic impurities have removal fraction higher than 99.5%. In addition, there is a significant difference in the P contents between the primary and eutectic Si phases, which might be ascribed to the formation of AlP phase that acts as the heterogeneous nucleation sites. Furthermore, a considerable amount of Fe-containing particles with a size about 100-300 nm is found inside the eutectic Si phase, indicating an unintended entrapment of Fe in Si.

  16. Thermal mixing of Al-Fe multilayers

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Mendoza Zélis, L.; Sánchez, F. H.; Traverse, A.

    1994-12-01

    Al-Fe multilayers have been mixed by thermal treatment and their evolution followed by conversion electron Mössbauer spectroscopy. The initial and final states have been characterized by Rutherford backscattering spectrometry. The results are compared with those previously obtained in the ion beam mixing of similar systems.

  17. Boron strengthening in FeAl

    SciTech Connect

    Baker, I.; Li, X.; Xiao, H.; Klein, O.; Nelson, C.; Carleton, R.L.; George, E.P.

    1998-11-01

    The effect of boron on the strength of B2-structured FeAl is considered as a function of composition, grain size and temperature. Boron does not affect the concentrations of antisite atoms or vacancies present, with the former increasing and the latter decreasing with increasing deviation from the stoichiometric composition. When vacancies are absent, the strength increase per at. % B per unit lattice strain, {Delta}{sigma}/({Delta}c x {epsilon}) increases with increasing aluminum concentration, but when vacancies are present (>45 at. % Al), {Delta}{sigma}/({Delta}c x {epsilon}) decreases again. Boron increases grain size strengthening in FeAl. B strengthening is roughly independent of temperature up to the yield strength peak but above the point, when diffusion-assisted deformation occurs, boron strengthening increases dramatically.

  18. Evaluation of photovoltaic properties of nanocrystalline-FeSi2/Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Shaban, Mahmoud; Bayoumi, Amr M.; Farouk, Doaa; Saleh, Mohamed B.; Yoshitake, Tsuyoshi

    2016-09-01

    In this paper, an application of nanocrystalline iron disilicide (NC-FeSi2) combined with nanocrystalline-Si (NC-Si) in a heterostructured solar cell is introduced and numerically evaluated in detail. The proposed cell structure is studied based on an experimental investigation of photovoltaic properties of NC-FeSi2/crystalline-Si heterojunctions, composed of unintentionally-doped NC-FeSi2 thin film grown on Si substrate. Photoresponse measurement of NC-FeSi2/crystalline-Si heterojunction confirmed ability of NC-FeSi2 to absorb NIR light and to generate photocarriers. However, collection of these carriers was not so efficient and a radical improvement in design of the device is required. Therefore, a modified device structure, comprising of NC-FeSi2 layer sandwiched between two heavily-doped p- and n-type NC-Si, is suggested and numerically evaluated. Simulation results showed that the proposed structure would exhibit a relatively high conversion efficiency of 25%, due to an improvement in collection efficiency of photogenerated carriers in the NC-FeSi2 and NC-Si layers. To attain such efficiency, defect densities in NC-FeSi2 and NC-Si layers should be kept less than 1014 and 1016 cm-3 eV-1, respectively. Remarkable optical and electrical properties of NC-FeSi2, employed in the proposed structure, facilitate improving device quantum efficiency spectrum providing significant spectrum extension into the near-infrared region beyond Si bandgap.

  19. Thermodynamic constraints on Fe and Si carbide stabilities in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Golubkova, A.; Schmidt, M. W.; Connolly, J. A.

    2013-12-01

    The ambient Earth mantle is metal saturated at ≥ 250 km, its redox state is buffered close to iron-wustite (IW). At such oxygen fugacity (fO2), oxidized forms of carbon are not stable; thus, the presence of oxidized carbon, as represented by CO2-rich fluid inclusions in diamonds and volatile-rich deep-seated magmas (e.g. kimberlites), indicates a local increase in fO2. Major forms of C within sublithospheric or deep mantle are diamond/graphite or carbides (mostly cementite, Fe3C and moissanite, SiC). Such carbides are reported from mantle-derived rocks and inclusions in diamonds. Furthermore, SiC and associated metallic Fe and Fe-silicides are found in podiform chromitites in ophiolites [Trumbull et al. 2009, Lithos]. Previous experiments on the redox stability of SiC have demonstrated that moissanite becomes stable at fO2 below IW to at least 9 GPa [Ulmer et al. 1998, Neues Jahrb Min]. Since Fe- and C-speciation is strongly fO2 dependent, we calculated ranges of redox conditions allowing for Fe and Si carbides within typical mantle assemblages. We thus added thermodynamic parameters and solution models for alloys (Fe-Si-C and Fe-Cr), stoichiometric compounds (Fe-silicides) and carbides to a thermodynamic database for silicates and oxides [Holland & Powell 2011, J. metamorphic Geol.]. Calculated T-fO2 diagrams indicate that cementite coexists with ol, opx, and gph/diam at ΔlogfO2[IW] ≈ -1 at 2 GPa and ≈ IW at 10 GPa. With decreasing fO2, Fe2+ in mantle silicates is progressively reduced while the XMg of silicates increases, the latter reaching unity at the conditions for SiC stability. Reduced Fe-bearing species occur in the sequence Fe3C → γ-FeSiC alloy → α-FeSiC alloy → ɛ-FeSi. For the dominant α-alloy, Si content increases with decreasing fO2 to XSi ~ 0.3 (molar), thereafter stoichiometric FeSi becomes stable. SiC appears at ΔlogfO2[IW] ≈ -7.5 at 2 GPa and 1300oC and -7.0 at 10 GPa and 1500oC. Chromite solid solution is reduced to σ-Fe

  20. Magnetic phase transitions in Y1-xTbxMn6Sn6, La1-xSmxMn2Si2, Lu2(Fe1-xMnx)17, and La(Fe0.88SixAl0.12-x)13 intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mushnikov, N. V.; Kuchin, A. G.; Gerasimov, E. G.; Terentev, P. B.; Gaviko, V. S.; Serikov, V. V.; Kleinerman, N. M.; Vershinin, A. V.

    2015-06-01

    Magnetic properties have been measured for the Y1-xTbxMn6Sn6, La1-xSmxMn2Si2, Lu2(Fe1-xMnx)17, and La(Fe0.88SixAl0.12-x)13 systems which show up transitions from antiferromagnetic to ferromagnetic state upon changing concentration of the constituents or application of magnetic field. We determined the concentrations and temperatures of the magnetic phase transitions and plotted magnetic phase diagrams. Near a critical concentration, the AF-F transition can be realized in low magnetic fields, which makes these compounds attractive for magnetothermal applications. Using the data of the magnetization measurement, we determined the isothermal magnetic entropy change in a wide temperature range. All the studied systems have a layered magnetic structure with the positive intralayer exchange interaction and the interlayer exchange integrals of different signs depending on the composition and temperature. For the compounds La(Fe0.88SixAl0.12-x)13 with the cubic crystal structure, the origin of formation of a layered magnetic structure is discussed based on the data of Mössbauer studies which revealed a difference in the local surrounding of resonant atoms in the compounds with different magnetic orders.

  1. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  2. X-Ray Videomicroscopy Studies of Eutectic Al-Si Solidification in Al-Si-Cu

    NASA Astrophysics Data System (ADS)

    Mathiesen, R. H.; Arnberg, L.; Li, Y.; Meier, V.; Schaffer, P. L.; Snigireva, I.; Snigirev, A.; Dahle, A. K.

    2011-01-01

    Al-Si eutectic growth has been studied in-situ for the first time using X-ray video microscopy during directional solidification (DS) in unmodified and Sr-modified Al-Si-Cu alloys. In the unmodified alloys, Si is found to grow predominantly with needle-like tip morphologies, leading a highly irregular progressing eutectic interface with subsequent nucleation and growth of Al from the Si surfaces. In the Sr-modified alloys, the eutectic reaction is strongly suppressed, occurring with low nucleation frequency at undercoolings in the range 10 K to 18 K. In order to transport Cu rejected at the eutectic front back into the melt, the modified eutectic colonies attain meso-scale interface perturbations that eventually evolve into equiaxed composite-structure cells. The eutectic front also attains short-range microscale interface perturbations consistent with the characteristics of a fibrous Si growth. Evidence was found in support of Si nucleation occurring on potent particles suspended in the melt. Yet, both with Sr-modified and unmodified alloys, Si precipitation alone was not sufficient to facilitate the eutectic reaction, which apparently required additional undercooling for Al to form at the Si-particle interfaces.

  3. Hillesheimite, (K,Ca,□)2(Mg,Fe,Ca,□)2[(Si,Al)13O23(OH)6](OH) · 8H2O, a new phyllosilicate mineral of the Günterblassite group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Zubkova, N. V.; Pekov, I. V.; Belakovskiy, D. I.; Schüller, W.; Ternes, B.; Blass, G.; Pushcharovsky, D. Yu.

    2013-12-01

    A new mineral, hillesheimite, has been found in the Graulai basaltic quarry, near the town of Hillesheim, the Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. It occurs in the late assemblage comprising nepheline, augite, fluorapatite, magnetite, perovskite, priderite, götzenite, lamprophyllite-group minerals, and åkermanite. Colorless flattened crystals of hillesheimite reaching 0.2 × 1 × 1.5 mm in size and aggregates of the crystals occur in miarolitic cavities in alkali basalt. The mineral is brittle, with Mohs' hard-ness 4. Cleavage is perfect parallel to (010) and distinct on (100) and (001). D calc = 2.174 g/cm3, D meas = 2.16(1) g/cm3. IR spectrum is given. Hillesheimite is biaxial (-), α = 1.496(2), β = 1.498(2), γ = 1.499(2), 2 V meas = 80°. The chemical composition (electron microprobe, mean of 4 point analyses, H2O determined from structural data, wt %) is as follows: 0.24 Na2O, 4.15 K2O, 2.14 MgO, 2.90 CaO, 2.20 BaO, 2.41 FeO, 15.54 Al2O3, 52.94 SiO2, 19.14 H2O, total is 101.65. The empirical formula is: K0.96Na0.08Ba0.16Ca0.56Mg0.58Fe{0.37/2+}[Si9.62Al3.32O23(OH)6][(OH)0.82(H2O)0.18] · 8H2O. The crystal structure has been determined from X-ray single-crystal diffraction data, R = 0.1735. Hillesheimite is orthorhombic, space group Pmmn, the unit-cell dimensions are: a = 6.979(11), b = 37.1815(18), c = 6.5296(15) Å; V=1694(3) Å3, Z = 2. The crystal structure is based on the block [(Si,Al)13O25(OH)4] consisting of three single tetrahedral layers linked via common vertices and is topologically identical to the triple layers in günterblassite and umbrianite. The strong reflections [ d Å ( I %)] in the X-ray powder diffraction pattern are: 6.857(58), 6.545(100), 6.284(53), 4.787(96), 4.499(59), 3.065(86), 2.958(62), 2.767(62). The mineral was named after its type locality. Type specimens are deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.

  4. Microstructures and mechanical properties of dispersion-strengthened high-temperature Al-8.5Fe-1.2V-1.7Si alloys produced by atomized melt deposition process

    NASA Astrophysics Data System (ADS)

    Hariprasad, S.; Sastry, S. M. L.; Jerina, K. L.; Lederich, R. J.

    1993-04-01

    Dispersion-strengthened high-temperature Al-8.5 pct Fe-pct Si-pct V alloys were produced by atomized melt deposition (AMD) process. The effects of process parameters on the evolution of microstructures were determined using optical metallography and scanning and transmission electron microscopy. The extent of undercooling and the rate of droplet solidification were correlated with process parameters, such as melt superheat, metal/gas flow rates, and melt stream diameter. The size distribution and morphology of silicide dispersoids were used to estimate the degree of undercooling and the cooling rate as functions of process parameters. The tensile properties at 25 °C to 425 °C and fracture toughness at 25 °C of these alloys produced with wide variations in dispersoids size and grain size were determined. Under optimum conditions, the alloy has ultimate tensile strength of 281 MPa and 9.5 pct ductility in the as-deposited condition. Upon hot-isostatic pressing and extrusion, the ultimate tensile strength increased to 313 MPa and ductility increased to 18 pct.

  5. Constitution of the Moon: 1. Assessment of thermodynamic properties and reliability of phase relation calculations in the FeO-MgO-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Fabrichnaya, O. B.; Kuskov, O. L.

    1994-06-01

    The thermodynamic functions of minerals in the FeO-MgO-Al2O3-SiO2 (FMAS) system have been assessed using phase equilibria, equations of state and calorimetric data. Phase equilibria in this system have been calculated using ideal, symmetric and asymmetric models of solid solution for minerals to obtain KD of exchange reactions consistent with experimental data. A symmetric model for olivine (Wol = 10 800 J mol-1), spinel (Wsp = 1300 J mol-1) and pyroxene (WFeAlopx = WAlFeopx = -3383 - 2.35T - 0.4723P) and an asymmetric model for garnet (WFeMggr = 230 + 0.01P, WMgFegr = 3720 + 0.06P) were recommended, as these mixing parameters provide a better agreement for the calculated phase equilibria with the totality of experimental data. The THERMOSEISM database which includes experimental and assessed data on thermodynamic and thermoelastic properties (bulk modulus and its pressure derivative, thermal expansion, heat capacity, volume, Debye temperature, enthalpy of formation, entropy and mixing parameters of solid solutions), has been obtained for calculation of mineral assemblages at high pressure and temperature and for the further application to the modelling of the mineral composition of the lunar mantle.

  6. Roll Casting of Al-25%Si

    SciTech Connect

    Haga, Toshio; Harada, Hideto; Watari, Hisaki

    2011-05-04

    Strip casting of Al-25%Si strip was tried using an unequal diameter twin roll caster. The diameter of the lower roll (large roll) was 1000 mm and the diameter of the upper roll (small roll) was 250 mm. Roll material was mild steel. The sound strip could be cast at the speeds ranging from 8 m/min to 12 m/min. The strip did not stick to the roll without the parting material. The primary Si, which existed at centre area of the thickness direction, was larger than that which existed at other area. The size of the primary Si was smaller than 0.2 mm. Eutectic Si was smaller 5 {mu}m. The as-cast strip was ranging from 2 mm to 3 mm thick and its width was 100 mm. The as-cast strip could be hot rolled down to 1 mm. The hot rolled strip was cold rolled. The primary Si became smaller and the pore occurred around the primary Si after the rolling.

  7. Rapid thermal annealing of ion beam synthesized {beta}-FeSi{sub 2} nanoparticles in Si

    SciTech Connect

    Sun, C. M.; Tsang, H. K.; Wong, S. P.; Cheung, W. Y.; Ke, N.; Hark, S. K.

    2008-05-26

    High crystal-quality {beta}-FeSi{sub 2} nanoparticles in silicon, prepared by ion beam synthesis and subjected to rapid thermal annealing (RTA), are investigated. Completely amorphous Fe-Si layers are formed by Fe implantation at cryogenic temperature, with a dosage of 5x10{sup 15} cm{sup -2}, into float-zone silicon. After RTA at 900 deg. C for 60 s, {beta}-FeSi{sub 2} precipitates are aggregated in the Si matrix and give {approx}1.5 {mu}m photoluminescence. High-resolution plan-view transmission electron microscopy revealed that some strain is present in the RTA treated FeSi{sub 2} particles. Silicon dislocations, coming from the strain relaxation during the additional long-term annealing, are observed around {beta}-FeSi{sub 2} particles.

  8. Room temperature luminescence and ferromagnetism of AlN:Fe

    NASA Astrophysics Data System (ADS)

    Li, H.; Cai, G. M.; Wang, W. J.

    2016-06-01

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  9. Magnetron-sputter epitaxy of {beta}-FeSi{sub 2}(220)/Si(111) and {beta}-FeSi{sub 2}(431)/Si(001) thin films at elevated temperatures

    SciTech Connect

    Liu Hongfei; Tan Chengcheh; Chi Dongzhi

    2012-07-15

    {beta}-FeSi{sub 2} thin films have been grown on Si(111) and Si(001) substrates by magnetron-sputter epitaxy at 700 Degree-Sign C. On Si(111), the growth is consistent with the commonly observed orientation of [001]{beta}-FeSi{sub 2}(220)//[1-10]Si(111) having three variants, in-plane rotated 120 Degree-Sign with respect to one another. However, on Si(001), under the same growth conditions, the growth is dominated by [-111]{beta}-FeSi{sub 2}(431)//[110]Si(001) with four variants, which is hitherto unknown for growing {beta}-FeSi{sub 2}. Photoelectron spectra reveal negligible differences in the valance-band and Fe2p core-level between {beta}-FeSi{sub 2} grown on Si(111) and Si(001) but an apparent increased Si-oxidization on the surface of {beta}-FeSi{sub 2}/Si(001). This phenomenon is discussed and attributed to the Si-surface termination effect, which also suggests that the Si/Fe ratio on the surface of {beta}-FeSi{sub 2}(431)/Si(001) is larger than that on the surface of {beta}-FeSi{sub 2}(220)/Si(111).

  10. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  11. Anomalous phonon properties in the silicide superconductors CaAlSi and SrAlSi

    NASA Astrophysics Data System (ADS)

    Kuroiwa, S.; Hasegawa, T.; Kondo, T.; Ogita, N.; Udagawa, M.; Akimitsu, J.

    2008-11-01

    Lattice-dynamical properties of CaAlSi and SrAlSi with a similar layer structure to MgB2 have been first investigated by both Raman-scattering and ab initio calculations. All Raman-active phonons with E' symmetry have been clearly observed for both compounds. Their line shapes are asymmetric but their linewidths are ˜10cm-1 , which is very narrower than that of MgB2 . In addition to the Raman-active modes, several extra peaks have been observed below 160cm-1 . These low-energy extra modes can be assigned to the out-of-plane vibrations of Al perpendicular to Al-Si basal plane. Since these peak intensities are strongly affected by the incident energy (resonance Raman process), the electronic state is important for them. Moreover, in both crystals of CaAlSi and SrAlSi, we point out the energy difference for the different propagation directions along the c axis and the c plane, in spite of the very close wave vector to the Brillouin-zone center. This energy difference cannot be explained by a usual Raman-scattering scenario at this stage.

  12. Measurement and Modeling of the Production of He, Ne, and AR from Mg, Al, Si, Fe, and NI in an Artificial Iron Meteoroid Irradiated Isotropically with 1.6 GeV Protons

    NASA Astrophysics Data System (ADS)

    Busemann, H.; Wieler, R.; Leya, I.; Lange, H.-J.; Michel, R.; Meltzow, B.; Herpers, U.

    1995-09-01

    The production by GCR protons of He, Ne and Ar isotopes from their main target elements was investigated in a simulation experiment [1] by irradiating a 20-cm diameter iron sphere isotropically with 1.6 GeV protons. The model-meteoroid contained, among other targets, pure Mg, Al, Si, Fe, and Ni foils at various depths in central bores. Radionuclide production in these targets was measured by gamma-spectrometry. Stable He, Ne, and Ar isotopes were measured by mass spectrometry. These latter results and the ^22Na data are reported here. As in our earlier simulation with a 50-cm diameter gabbro sphere irradiated with 1.6 GeV protons [2], the present experiment simulates the exposure of meteoroids to galactic protons in space within about 20%, if normalized to the same number of particles. Some systematic deviations are attributed to differences between the monoenergetic irradiation and the exposure to the GCR spectrum and to resulting differences between the secondary particle fields. A comparison of the new production rates with those obtained in the gabbro sphere [2] clearly exhibits the influence of bulk chemical composition on production rates which was discovered earlier by Begemann and Schultz [3] in stony irons. Model calculations of the production of He, Ne, Ar, and ^22Na were performed for all artificial iron and stony meteoroids irradiated by our collaboration [2, 4, 5, this work]. Production rates were calculated from depth-dependent p- and n-spectra derived by Monte Carlo techniques using the HERMES code system [6] and from cross sections for the relevant nuclear reactions. For p-induced reactions all available experimental thin-target cross sections were used [2]. Cross sections for n-induced reactions were calculated by the new AREL code [7] which is a relativistic version of the hybrid model of preequilibrium reactions [8]. In addition to these a priori calculations a posteriori model calculations were performed. Theoretical cross sections for n

  13. Catalytic Methane Decomposition over Fe-Al2 O3.

    PubMed

    Zhou, Lu; Enakonda, Linga Reddy; Saih, Youssef; Loptain, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-06-01

    The presence of a Fe-FeAl2 O4 structure over an Fe-Al2 O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750 °C, Fe-Al2 O3 prepared by means of a fusion method, containing 86.5 wt % FeAl2 O4 and 13.5 wt % Fe(0) , showed a stable CMD activity at 750 °C for as long as 10 h. PMID:27159367

  14. The effect of Si in Al-alloy on electromigration performance in Al filled vias

    NASA Astrophysics Data System (ADS)

    Kageyama, Makiko; Hashimoto, Keiichi; Onoda, Hiroshi

    1998-01-01

    Electromigration performance of vias filled with Al-Si-Cu alloys on Ti glue layers was investigated in comparison with W-stud vias. In Al-Si-Cu filled vias, voids were formed at only a few locations in the test structure, while voids were formed at every via in W-stud via chains. It is supposed that Al moves through the Al-Si-Cu via during electromigration in spite of the existence of a glue layer at the via bottom. This phenomenon was observed only in the vias filled with Al-Si-Cu alloy. Al movement was prohibited in Al-Cu filled vias. In Al-Si-Cu filled vias, an Al-Ti-Si alloy was formed at the via bottom while Al3Ti was formed at Al-Cu filled vias. Al is speculated to move through this Al-Ti-Si alloy during electromigration.

  15. Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Jie, J. C.; Zou, Q. C.; Wang, H. W.; Sun, J. L.; Lu, Y. P.; Wang, T. M.; Li, T. J.

    2014-08-01

    A low-cost and high-efficiency method to purify Si directly from cheap MG-Si at low temperature was proposed and demonstrated in this paper, which used power frequency rotating magnetic field (RMF) to separate the primary Si from a hypereutectic Al-Si alloy and was followed by the acid peeling. The separation mechanism was based on the flow characteristic of melt under RMF and the cooling condition of the liquid metal. A Si-rich layer with Si content of 65-59 wt% was formed in the periphery of alloy, while the inner microstructure of the alloy was mainly the Al-Si eutectic structure. The refined silicon was collected after aqua regia leaching, and had much fewer typical impurities (Fe, Ti, Ca, B, P) than those in MG-Si, and the metallic impurities besides Al had removal fraction higher than 98%, which is mainly ascribed to the segregation effect of Al-30Si alloy during solidification under RMF.

  16. First principles investigation of Fe and Al bearing phase H

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Tsuchiya, T.

    2015-12-01

    The global circulation of water in the earth is important to investigate the evolution history and dynamics of the earth, since the physical properties (e.g. atomic diffusivity, melting temperature, electrical conductivity and seismic velocities) of the constituent minerals are considerably changed by the presence of water. It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) which are also known as alphabet phases (phase A, superhydrous phase B, and phase D etc.) in the descending cold plate. It has been thought that the relay of these hydrous phases was terminated at ~1200 km depth by the dehydration of phase D which was the highest pressure phase of DHMSs. Recently, we have theoretically predicted the high pressure phase of phase D and experimentally confirmed the existence of this new DHMS in lower mantle pressure conditions above ~45 GPa. This phase has MgSiO4H2chemical composition and named as phase H. At the lower mantle pressure conditions, Al and H-bearing SiO2, δ-AlOOH, ɛ-FeOOH and phase H may be the relevant hydrous phases in the subducting slabs. Interestingly, the crystal structure of these hydrous phases are almost same and have CaCl2type structure. This suggests that these hydrous phases may potentially be able to make the wide range of solid solution. Some experimental studies already reported that Al preferentially partitioned into phase H and the stability of phase H drastically increased by incorporation of Al (Nishi et al. 2014, Ohira et al. 2014). The density of subducted MORB is reported to be denser than that of pyrolite in the lower mantle (e.g. Kawai et al. 2009). Therefore, there is a possibility that phase H containing Al and Fe in subducted MORB survive down to the bottom of lower mantle and the melting of phase H at the core mantle boundary may contribute to the cause of ultra-low velocity zones. In this study, we further extends our

  17. Atomic data from the iron project. 3: Rate coefficients for electron impact excitation of boron-like ions: Ne VI, Mg VIII, Al IX, Si X, S XII, Ar XIV, Ca XVI and Fe XXII

    NASA Technical Reports Server (NTRS)

    Zhang, Hong Lin; Graziani, Mark; Pradhan, Anil K.

    1994-01-01

    Collison strengths and maxwellian averaged rate coefficients have been calculated for the 105 transitions among all 15 fine structure levels of the 8 LS terms 2s(sup 2) 2 P(P-2(sup 0 sub 1/, 3/2)), 2s2p(sup 2)(P-4(sub 1/2,3/2,5/2), D-2(sub 3/2, 5/2), S-2(sub 1/2), P-2(sub 1/2, 3/2)), 2p(sup 3)(S-4(sup 0)(sub 3/2), D-2(sup 0 sub 3/2, 5/2), P-2(sup 0 sub 1/2, 3/2)) in highly- charged B-like Ne, Mg, Al, Si, S, Ar, Ca and Fe. Rate coefficients have been tabulated at a wide range of temperatures, depending on the ion charge and abundance in plasma sources. Earlier work for O IV has also been extended to include the high temperature range. A brief discussion of the calculations, sample results, and comparison with earlier works is also given. While much of the new data should be applicable to UV spectral diagnostics, the new rates for the important ground state fine structure transition P-2(sup 0 sub 1/2)-P-2(sup 0 sub 3/2) should result in significant revision of the IR cooling rates in plasmas where B-like ions are prominent constituents, since the new rate coefficients are generally higher by several factors compared with the older data.

  18. Compression of Fe-Si-H alloys to core pressures

    NASA Astrophysics Data System (ADS)

    Tagawa, Shoh; Ohta, Kenji; Hirose, Kei; Kato, Chie; Ohishi, Yasuo

    2016-04-01

    We examined the compression behavior of hexagonal-close-packed (hcp) (Fe0.88Si0.12)1H0.61 and (Fe0.88Si0.12)1H0.79 (in atomic ratio) alloys up to 138 GPa in a diamond anvil cell (DAC). While contradicting experimental results were previously reported on the compression curve of double-hcp (dhcp) FeHx (x ≈ 1), our data show that the compressibility of hcp Fe0.88Si0.12Hx alloys is very similar to those of hcp Fe and Fe0.88Si0.12, indicating that the incorporation of hydrogen into iron does not change its compression behavior remarkably. The present experiments suggest that the inner core may contain up to 0.47 wt % hydrogen (FeH0.26) if temperature is 5000 K. The calculated density profile of Fe0.88Si0.12H0.17 alloy containing 0.32 wt % hydrogen in addition to geochemically required 6.5 wt % silicon matches the seismological observations of the outer core, supporting that hydrogen is an important core light element.

  19. Ferromagnetic Fe2CrAl Nanowires

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra; Dahal, Bishnu; Pegg, Ian L.; Philip, John

    Heusler alloy Fe2CrAl (FCA) nanowires were grown on silicon substrates. Nanowires have diameters in the range 50 to 200 nm and lengths up to 100 µm. They exhibit cubic L21 and A2 type structure with a space group, Pm m. Magnetic characterization reveals that they display ferromagnetic behavior and has a Curie temperature above 400 K. Magnetic behavior of FCA nanowires is different from the reported bulk behavior. Bulk FCA with L21 structure has a Curie temperature around 274 K. National Science Foundation under ECCS-0845501 and NSF-MRI, DMR-0922997.

  20. Günterblassite, (K,Ca)3 - x Fe[(Si,Al)13O25(OH,O)4] · 7H2O, a new mineral: the first phyllosilicate with triple tetrahedral layer

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Aksenov, S. M.; Pekov, I. V.; Zubkova, N. V.; Britvin, S. N.; Belakovskiy, D. I.; Schüller, W.; Ternes, B.

    2012-12-01

    A new mineral, günterblassite, has been found in the basaltic quarry at Mount Rother Kopf near Gerolstein, Rheinland-Pfalz, Germany as a constituent of the late assemblage of nepheline, leucite, augite, phlogopite, åkermanite, magnetite, perovskite, a lamprophyllite-group mineral, götzenite, chabazite-K, chabazite-Ca, phillipsite-K, and calcite. Günterblassite occurs as colorless lamellar crystals up to 0.2 × 1 × 1.5 mm in size and their clusters. The mineral is brittle, with perfect cleavage parallel to (001) and less perfect cleavage parallel to (100) and (010). The Mohs hardness is 4. The calculated and measured density is 2.17 and 2.18(1) g/cm3, respectively. The IR spectrum is given. The new mineral is optically biaxial and positive as follows: α = 1.488(2), β = 1.490(2), γ = 1.493(2), 2 V meas = 80(5)°. The chemical composition (electron microprobe, average of seven point analyses, H2O is determined by gas chromatography, wt %) is as follows: 0.40 Na2O, 5.18 K2O, 0.58 MgO, 3.58 CaO, 4.08 BaO, 3.06 FeO, 13.98 Al2O3, 52.94 SiO2, 15.2 H2O, and the total is 98.99. The empirical formula is Na0.15K1.24Ba0.30Ca0.72Mg0.16F{0.48/2+}[Si9.91Al3.09O25.25(OH)3.75] · 7.29H2O. The crystal structure has been determined from a single crystal, R = 0.049. Günterblassite is orthorhombic, space group Pnm21; the unit-cell dimensions are a = 6.528(1), b = 6.970(1), c = 37.216(5) Å, V = 1693.3(4) Å3, Z = 2. Günterblassite is a member of a new structural type; its structure is based on three-layer block [Si13O25(OH,O)4]. The strong reflections in the X-ray powder diffraction pattern [ d Å ( I, %) are as follows: 6.532 (100), 6.263 (67), 3.244 (49), 3.062 (91), 2.996 (66), 2.955 (63), and 2.763 (60). The mineral was named in honor of Günter Blass (born in 1943), a well-known amateur mineralogist and specialist in electron microprobe and X-ray diffraction. The type specimen of günterblassite is deposited in the collections of the Fersman Mineralogical Museum of the

  1. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1977-01-01

    Cold pressing and sintering techniques were used to produce ceramic bodies in which the major phase was beta prime Si3-Al-O-N4 solid solution. A variety of foreign oxides were used to promote liquid phase sintering, and this resulted in the incorporation of additional solid phases in the ceramic bodies which controlled elevated temperature properties. None of the bodies studied to date exhibited both adequate high temperature mechanical properties and oxidation resistance. Criteria are suggested to guide the formulation of bodies with improved high temperature properties.

  2. Disorder-induced reversal of spin polarization in the Heusler alloy Co{sub 2}FeSi

    SciTech Connect

    Bruski, P.; Ramsteiner, M.; Brandt, O.; Friedland, K.-J.; Farshchi, R.; Herfort, J.; Riechert, H.; Erwin, S. C.

    2011-04-01

    We study the spin polarization in the conduction band of Co{sub 2}FeSi layers with a different degree of structural order. The injected spin polarization in Co{sub 2}FeSi/(Al,Ga)As spin light-emitting diodes as well as the planar Hall effect measured for the Co{sub 2}FeSi injectors exhibit a sign reversal between injectors crystallized in the ordered L2{sub 1} phase and the Fe-Si disordered B2 phase. These results are explained by a disorder-induced change in the spin polarization at the Fermi energy of Co{sub 2}FeSi. Support for the occurrence of such a striking change in the electronic band structure is obtained by first principles calculations.

  3. The post-spinel transition in Fe3O4-Fe2SiO4 and Fe3O4- FeCr2O4 solid solutions

    NASA Astrophysics Data System (ADS)

    Woodland, Alan; Schollenbruch, Klaus; Frost, Daniel; Langenhorst, Falko

    2010-05-01

    Minerals with spinel structure are important phases in the Earth's mantle. Both magnetite (mt, Fe3O4) and chromite (chr, FeCr2O4) are known to transform to denser orthorhombic post-spinel phases at pressures≥10 GPa and ≥12.5 GPa, respectively (Schollenbruch et al. 2009a; Chen et al. 2003). On the other hand, Fe2SiO4 decomposes to its constituent oxides, FeO and SiO2 at high P and no post-spinel polymorph appears to be stable (e.g. Ito & Takahashi 1989). An important question is how spinel solid solutions behave at high pressures and temperatures since such compositions are arguably more petrologically relevant. In addition, since h-Fe3O4 is apparently not quenchable, it is difficult to investigate its structure. In contrast, two high-P polymorphs of FeCr2O4-rich compositions have been found in a meteorite (Chen et al. 2003), suggesting that the addition of Cr might allow us to recover the post-spinel phase of Fe3O4-bearing compositions from experiments. Building on recent results for the Fe3O4 end member (Schollenbruch et al. 2009a, 2009b), we have begun a study of the high-pressure behaviour of solid solutions along the Fe3O4 -Fe2SiO4 and Fe3O4- FeCr2O4 joins. Multianvil experiments were performed at 10 and 13 GPa and 1200-1300°C on pre-synthesised spinels with compositions 85mt-15 Fe2SiO4, 50mt-50chr and 80mt-20chr. For the Si-bearing experiments, stishovite was present in the run products. This occurrence, along with observed twinning in the Fe-oxide phase (Schollenbruch et al. 2009a) allows us to conclude that the original spinel had transformed to a high-P polymorph at a pressure and that Si is essentially excluded from this new structure. However, the powder XRD data from the run products could not be indexed either to magnetite (spinel structure) or to any other expected phase, including the known post-spinel structures. Interestingly, these are the same reflections reported by Koch et al. (2004) for an unidentified phase in their high-P (> 9 GPa

  4. Realization of small intrinsic hysteresis with large magnetic entropy change in La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} by controlling itinerant-electron characteristics

    SciTech Connect

    Fujita, A.; Matsunami, D.; Yako, H.

    2014-03-24

    Tuning of phase-transition characteristics in La(Fe{sub x}Si{sub 1−x}){sub 13} was conducted in view of the correlation between microscopic itinerant electron natures and macroscopic thermodynamic (magnetocaloric) quantities. To realize a small hysteresis loss Q{sub H} accompanied by a large magnetic entropy change ΔS{sub M} in La(Fe{sub x}Si{sub 1−x}){sub 13}, two types of modulation based on itinerant electron characteristics, namely, the Fermi-level shift and the magnetovolume effect were combined by complex partial substitution of Al and Pr. Ab-initio calculations predict the reduction of a transition hysteresis owing to the Fermi-level shift after partial substitution of Al. On the other hand, the chemical pressure arisen from partial substitution of Pr enhances ΔS{sub M} through magnetovolume effect. The selective enhancement of ΔS{sub M} apart from Q{sub H} by the magnetovolume effect is well explained by the phenomenological Landau model. Consequently, ΔS{sub M} of La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} is −18 J/kg K under a magnetic field change of 0–1.2 T, while the maximum value of Q{sub H} becomes 1/6 of that for La(Fe{sub 0.88}Si{sub 0.12}){sub 13}.

  5. Overview of the development of FeAl intermetallic alloys

    SciTech Connect

    Maziasz, P.J.; Liu, C.T.; Goodwin, G.M.

    1995-09-01

    B2-phase FeAl ordered intermetallic alloys based on an Fe-36 at.% Al composition are being developed to optimize a combination of properties that includes high-temperature strength, room-temperature ductility, and weldability. Microalloying with boron and proper processing are very important for FeAl properties optimization. These alloys also have the good to outstanding resistance to oxidation, sulfidation, and corrosion in molten salts or chlorides at elevated temperatures, characteristic of FeAl with 30--40 at.% Al. Ingot- and powder-metallurgy (IM and PM, respectively) processing both produce good properties, including strength above 400 MPa up to about 750 C. Technology development to produce FeAl components for industry testing is in progress. In parallel, weld-overlay cladding and powder coating technologies are also being developed to take immediate advantage of the high-temperature corrosion/oxidation and erosion/wear resistance of FeAl.

  6. Phase relations of Fe-Si alloy in Earth's core

    SciTech Connect

    Lin, J -F; Scott, H P; Fischer, R A; Chang, Y -Y; Kantor, I; Prakapenka, V B

    2009-04-01

    Phase relations of an Fe0.85Si0.15 alloy were investigated up to 240 GPa and 3000 K using in situ X-ray diffraction in a laser-heated diamond anvil cell. An alloy of this composition as starting material is found to result in a stabilized mixture of Si-rich bcc and Si-poor hcp Fe-Si phases up to at least 150 GPa and 3000 K, whereas only hcp-Fe0.85Si0.15 is found to be stable between approximately 170 GPa and 240 GPa at high temperatures. Our extended results indicate that Fe0.85Si0.15 alloy is likely to have the hcp structure in the inner core, instead of the previously proposed mixture of hcp and bcc phases. Due to the volumetric dominance of the hcp phase in the hcp + bcc coexistence region close to the outer-core conditions, the dense closest-packed Fe-Si liquid is more relevant to understanding the properties of the outer core.

  7. Magnetic ordering in Ho2Fe2Si2C

    NASA Astrophysics Data System (ADS)

    Susilo, R. A.; Cadogan, J. M.; Cobas, R.; Hutchison, W. D.; Avdeev, M.; Campbell, S. J.

    2015-05-01

    We have used neutron diffraction and 57Fe Mössbauer spectroscopy, complemented by magnetisation and specific heat measurements, to examine the magnetic ordering of Ho2Fe2Si2C. We have established that Ho2Fe2Si2C orders antiferromagnetically below TN = 16(1) K with a magnetic structure involving ordering of the Ho sublattice along the b-axis with a propagation vector k =[0 0 1/2 ] . 57Fe Mössbauer spectra collected below TN show no evidence of a magnetic splitting, demonstrating the absence of long range magnetic ordering of the Fe sublattice. A small line broadening is observed in the 57Fe spectra below TN, which is due to a transferred hyperfine field—estimated to be around 0.3 T at 10 K—from the Ho sublattice.

  8. Ion implantation and diffusion of Al in a {SiO 2}/{Si} system

    NASA Astrophysics Data System (ADS)

    La Ferla, A.; Galvagno, G.; Rinaudo, S.; Raineri, V.; Franco, G.; Camalleri, M.; Gasparotto, A.; Carnera, A.; Rimini, E.

    1996-08-01

    The diffusion and segregation of ion implanted Al in SiO 2 and Si layers were studied for several experimental conditions. Al ions were implanted into SiO 2, Si and through a SiO 2 layer into Si substrates at several energies (80, 300, 650 and 6000 keV) and doses (3.4 × 10 14-1 × 10 15 cm -2). The Al diffusion coefficient in SiO 2 was measured at 1200°C for times up to 5 days, and it results five orders of magnitude lower than in Si. The experiments show that the Al atoms implanted into Si do not out-diffuse during thermal treatments from the SiO 2 capping layer, but segregate at the {SiO 2}/{Si} interface. The high segregation coefficient gives rise to a trapping of Al into the oxide layer comparable to the out-diffusion of Al from uncapped Si substrates. The determined parameters for Al diffusion and segregation in the {SiO 2}/{Si} system were introduced in a simulation code to calculate the Al diffusion profiles which result in agreement with the experimental data.

  9. Catalystlike behavior of Si adatoms in the growth of monolayer Al film on Si(111).

    PubMed

    Teng, Jing; Zhang, Lixin; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Wang, Enge; Ebert, Philipp; Sakurai, T; Wu, Kehui

    2010-07-01

    The formation mechanism of monolayer Al(111)1x1 film on the Si(111) radical3x radical3-Al substrate was studied by scanning tunneling microscopy and first-principles calculations. We found that the Si adatoms on the radical3x radical3-Al substrate play important roles in the growth process. The growth of Al-1x1 islands is mediated by the formation and decomposition of SiAl(2) clusters. Based on experiments and theoretical simulations we propose a model where free Si atoms exhibit a catalystlike behavior by capturing and releasing Al atoms during the Al film growth. PMID:20614981

  10. Tunneling magnetoresistance in Fe{sub 3}Si/MgO/Fe{sub 3}Si(001) magnetic tunnel junctions

    SciTech Connect

    Tao, L. L.; Liang, S. H.; Liu, D. P.; Wei, H. X.; Han, X. F.; Wang, Jian

    2014-04-28

    We present a theoretical study of the tunneling magnetoresistance (TMR) and spin-polarized transport in Fe{sub 3}Si/MgO/Fe{sub 3}Si(001) magnetic tunnel junction (MTJ). It is found that the spin-polarized conductance and bias-dependent TMR ratios are rather sensitive to the structure of Fe{sub 3}Si electrode. From the symmetry analysis of the band structures, we found that there is no spin-polarized Δ{sub 1} symmetry bands crossing the Fermi level for the cubic Fe{sub 3}Si. In contrast, the tetragonal Fe{sub 3}Si driven by in-plane strain reveals half-metal nature in terms of Δ{sub 1} state. The giant TMR ratios are predicted for both MTJs with cubic and tetragonal Fe{sub 3}Si electrodes under zero bias. However, the giant TMR ratio resulting from interface resonant transmission for the former decreases rapidly with the bias. For the latter, the giant TMR ratio can maintain up to larger bias due to coherent transmission through the majority-spin Δ{sub 1} channel.

  11. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.

  12. Phase relations in the Fe-FeSi system at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2013-07-01

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe-FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe-9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure-temperature, temperature-composition, and pressure-composition space. We find the B2 crystal structure in Fe-9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe-Si outer core is 4380 K, based on the eutectic melting point of Fe-9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe-FeSi system. We predict that alloys containing more than ~4-8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron-silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.

  13. The structure and electronic properties of hexagonal Fe2Si

    NASA Astrophysics Data System (ADS)

    Tang, Chi Pui; Tam, Kuan Vai; Xiong, Shi Jie; Cao, Jie; Zhang, Xiaoping

    2016-06-01

    On the basis of first principle calculations, we show that a hexagonal structure of Fe2Si is a ferromagnetic crystal. The result of the phonon spectra indicates that it is a stable structure. Such material exhibits a spin-polarized and half-metal-like band structure. From the calculations of generalized gradient approximation, metallic and semiconducting behaviors are observed with a direct and nearly 0 eV band gap in various spin channels. The densities of states in the vicinity of the Fermi level is mainly contributed from the d-electrons of Fe. We calculate the reflection spectrum of Fe2Si, which has minima at 275nm and 3300nm with reflectance of 0.27 and 0.49, respectively. Such results may provide a reference for the search of hexagonal Fe2Si in experiments. With this band characteristic, the material may be applied in the field of novel spintronics devices.

  14. Mechanism of Corrosion in Al-Si-Cu

    NASA Astrophysics Data System (ADS)

    Hayasaka, Nobuo; Koga, Yuri; Shimomura, Koji; Yoshida, Yukimasa; Okano, Haruo

    1991-07-01

    An Al-Cu local cell was formed between the Cu precipitation and adjacent Al in an Al-Si-Cu alloy when Cu was added in excess to the alloy. Once an Al-Cu local cell was formed, corrosion took place simply by dipping the alloy in deionized water without any contamination. Furthermore, it was found that corrosion was enhanced at the Al-Si-Cu lines in contact with the p+-n junction of Si. The reason for this is that holes are injected into Al-Si-Cu from p+-Si due to electromotive force produced by light irradiation and an external circuit connecting the alloy and n-Si formed by the adsorption of moisture on the surface. Furthermore, it was found that the irradiation of light with a wavelength between 320 to 380 nm was most effective in enhancing the corrosion reaction.

  15. Swift heavy ion irradiation of a-Si/Fe/c-Si trilayers

    SciTech Connect

    Zhang, K.; Lieb, K. P.; Milinovic, V.; Sahoo, P. K.

    2006-09-01

    Si/Fe/Si trilayers, with 12 nm amorphous Si and 45 nm polycrystalline Fe films deposited on Si(100) wafers, were irradiated with 350 MeV Au{sup 26+} ions at fluences of (0.6-11.3)x10{sup 14} ions/cm{sup 2}. The ion-induced modifications of their structural and magnetic properties were characterized by means of Rutherford backscattering, glancing angle x-ray diffractometry, and the magneto-optical Kerr effect. The mixing rate at the upper a-Si/Fe interface was three times as high as that at the lower Fe/c-Si interface. A simple formula is proposed, which on the basis of (nuclear) thermal-spike mixing reproduces the observed (electronic) mixing rates. Ion irradiation at a moderate fluence (6.7x10{sup 14}/cm{sup 2}) induced a magnetic anisotropy in the sample, which was magnetically isotropic after deposition. At the highest fluence, full interface mixing occurred and the magnetic anisotropy almost disappeared. The results are compared with those obtained in Fe/Si and Ni/Si bilayers ion irradiated in the regimes of nuclear and electronic stopping.

  16. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  17. Sound velocities of Fe and Fe-Si alloy in the Earth’s core

    PubMed Central

    Mao, Zhu; Lin, Jung-Fu; Liu, Jin; Alatas, Ahmet; Gao, Lili; Zhao, Jiyong; Mao, Ho-Kwang

    2012-01-01

    Compressional wave velocity-density (VP - ρ) relations of candidate Fe alloys at relevant pressure-temperature conditions of the Earth’s core are critically needed to evaluate the composition, seismic signatures, and geodynamics of the planet’s remotest region. Specifically, comparison between seismic VP - ρ profiles of the core and candidate Fe alloys provides first-order information on the amount and type of potential light elements—including H, C, O, Si, and/or S—needed to compensate the density deficit of the core. To address this issue, here we have surveyed and analyzed the literature results in conjunction with newly measured VP - ρ results of hexagonal closest-packed (hcp) Fe and hcp-Fe0.85Si0.15 alloy using in situ high-energy resolution inelastic X-ray scattering and X-ray diffraction. The nature of the Fe-Si alloy where Si is readily soluble in Fe represents an ideal solid-solution case to better understand the light-element alloying effects. Our results show that high temperature significantly decreases the VP of hcp-Fe at high pressures, and the Fe-Si alloy exhibits similar high-pressure VP - ρ behavior to hcp-Fe via a constant density offset. These VP - ρ data at a given temperature can be better described by an empirical power-law function with a concave behavior at higher densities than with a linear approximation. Our new datasets, together with literature results, allow us to build new VP - ρ models of Fe alloys in order to determine the chemical composition of the core. Our models show that the VP - ρ profile of Fe with 8 wt % Si at 6,000 K matches well with the Preliminary Reference Earth Model of the inner core. PMID:22689958

  18. Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents

    NASA Astrophysics Data System (ADS)

    Tebib, M.; Ajersch, F.; Samuel, A. M.; Chen, X.-G.

    2013-09-01

    The low coefficient of thermal expansion and good wear resistance of hypereutectic Al-Si-Mg alloys with high Mg contents, together with the increasing demand for lightweight materials in engine applications have generated an increasing interest in these materials in the automotive industry. In the interests of pursuing the development of new wear-resistant alloys, the current study was undertaken to investigate the effects of Mg additions ranging from 6 to 15 pct on the solidification behavior of hypereutectic Al-15Si-4Cu-Mg alloy using thermodynamic calculations, thermal analysis, and extensive microstructural examination. The Mg level strongly influenced the microstructural evolution of the primary Mg2Si phase as well as the solidification behavior. Thermodynamic predictions using ThermoCalc software reported the occurrence of six reactions, comprising the formation of primary Mg2Si; two pre-eutectic binary reactions, forming either Mg2Si + Si or Mg2Si + α-Al phases; the main ternary eutectic reaction forming Mg2Si + Si + α-Al; and two post-eutectic reactions resulting in the precipitation of the Q-Al5Mg8Cu2Si6 and θ-Al2Cu phases, respectively. Microstructures of the four alloys studied confirmed the presence of these phases, in addition to that of the π-Al8Mg3FeSi6 (π-Fe) phase. The presence of the π-Fe phase was also confirmed by thermal analysis. The morphology of the primary Mg2Si phase changed from an octahedral to a dendrite form at 12.52 pct Mg. Any further Mg addition only coarsened the dendrites. Image analysis measurements revealed a close correlation between the measured and calculated phase fractions of the primary Mg2Si and Si phases. ThermoCalc and Scheil calculations show good agreement with the experimental results obtained from microstructural and thermal analyses.

  19. Anomalous Hall effect in Cr doped FeSi

    NASA Astrophysics Data System (ADS)

    Yadam, Sankararao; Lakhani, Archana; Singh, Durgesh; Prasad, Rudra; Ganesan, V.

    2016-05-01

    Investigations of economically affordable bulk materials for the spin based electronics are in huge demand. In this direction, electrical and Hall transport properties of the polycrystalline Cr doped Kondo insulator FeSi, i.e Fe0.975Cr0.025Si is reported. Well agreement between temperature dependence of the Hall and linear resistivity are observed. The observed minimum at ~19K in the resistivity is attributed to the ferromagnetic transition temperature (TC). Anomalous Hall resistivity is seen in the itinerant ferromagnet, Fe0.975Cr0.025Si well below the TC. The obtained Hall resistivity is comparable with that of the spintronic material Fe0.9Co0.1Si. The present study proves that the electrical transport properties of bulk materials made by low cost elements such as Fe, Cr and Si exhibits large magnetic field effects and are useful for the spintronics applications, unlike spintronics material (Ga, Mn)As that demand higher costs.

  20. Long range order and vacancy properties in Al-rich Fe{sub 3}Al and Fe{sub 3}Al(Cr) alloys

    SciTech Connect

    Kim, S.M.; Morris, D.G.

    1998-05-01

    Neutron powder diffraction measurements have been carried out in situ from room temperature to about 100 C in Fe28Al (28 at.% Al), Fe32.5Al (32.5 at.% Al) and Fe28Al15Cr (28 at.% Al, 5 at.% Cr) alloys. X-ray diffraction and TEM studies provided supporting information. The data were analyzed to obtain information about the temperature dependence of the DO{sub 3} and B2 long range order parameters, the location of the Cr atoms and their effect on the ordering energies, and on the vacancy formation and migration properties in Fe28Al and Fe32.5Al alloys. The location of the ternary alloying addition in DO{sub 3} and B2 ordered Al-rich Fe{sub 3}Al is shown to be consistent with considerations of interatomic bond energies.

  1. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; Terzi, S.; Prasad, A.; Felberbaum, M.; StJohn, D. H.

    2016-01-01

    The influence of the ternary alloying elements Cu, Mg and Fe on the Al-Si eutectic microstructure is investigated using a commercial purity Al-10 wt%Si alloy in unmodified and Sr-modified conditions. A change in the Al-Si eutectic microstructure was associated with a change in the nucleation density of the eutectic grains caused by the addition of ternary alloying elements. When the ternary alloying element addition resulted in an increase in the eutectic nucleation frequency, a fibrous to flake-like transition was observed within the eutectic grain. When the ternary alloying element addition decreased the eutectic nucleation frequency significantly, a change in the eutectic morphology from flake-like to a mixture of flake-like and fibrous morphologies was observed. The mechanism of Al-Si eutectic modification is discussed. The growth velocity of the eutectic grain - liquid interface and the constitutional driving force available for growth are proposed as important parameters that influence the degree of eutectic modification in Al-Si alloys.

  2. Electronic and magnetic properties of Si substituted Fe3Ge

    DOE PAGESBeta

    Shanavas, Kavungal Veedu; McGuire, Michael A.; Parker, David S.

    2015-09-23

    Using first principles calculations we studied the effect of Si substitution in the hexagonal Fe3Ge. We find the low temperature magnetic anisotropy in this system to be planar and originating mostly from the spin-orbit coupling in Fe-d states. Reduction of the unitcell volume reduces the in-plane magnetic anisotropy, eventually turning it positive which reorients the magnetic moments to the axial direction. We find that substituting Ge with the smaller Si ions also reduces the anisotropy, potentially enhancing the region of stability of the axial magnetization, which is beneficial for magnetic applications. Thus our experimental measurements on samples of Fe3Ge1–xSix confirmmore » these predictions and show that substitution of about 6% of the Ge with Si increases by approximately 35 K the temperature range over which anisotropy is uniaxial.« less

  3. Electronic structures of nanocrystalline Fe90-xCuxSi10-yBy soft magnets

    NASA Astrophysics Data System (ADS)

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol; Bae, Seok; Kim, Seong-Gon; Choi, Chul-Jin

    2016-05-01

    We have calculated electronic structures of nanocrystalline Fe90-xCuxSi10-yBy using first principles calculations based on density functional theory (DFT) to obtain saturation magnetic flux density (Bs). The Bs of crystalline (Fe3Si) and amorphous (Fe-B) phases in Fe90-xCuxSi10-yBy were separately calculated, and the total Bs of Fe90-xCuxSi10-yBy was derived by the summation of the Bs for the Fe3Si and Fe-B phases. The calculated Bs of Fe3Si is 1.35 T, and that of Fe-B varies from 2.08 to 2.22 T based on Fe to B ratios. Therefore, a total Bs higher than 1.80 T can be obtained with y ≥ 4 for both x = 1 and 2 in Fe90-xCuxSi10-yBy.

  4. Identification of tetrahedrally ordered Si-O-Al environments in molecular sieves by { 27Al}- 29Si REAPDOR NMR

    NASA Astrophysics Data System (ADS)

    Ganapathy, S.; Kumar, Rajiv; Montouillout, V.; Fernandez, C.; Amoureux, J. P.

    2004-05-01

    The silicon sites tetrahedrally connected to aluminum in framework positions of a molecular sieve may be identified by a selective reintroduction of the hetero-nuclear 27Al- 29Si dipolar interaction through Rotational Echo Adiabatic Passage DOuble Resonance (REAPDOR) NMR. In this rotor synchronized 29Si MAS experiment, an effective dipolar dephasing of the Si-O-Al, over Si-O-Si, environments is shown to aid in the identification of silicon sites in the immediate vicinity of aluminum. Application of the method in the structurally interesting and novel molecular sieve ETAS-10 provides valuable insights on the details of aluminum substitution in the zeolite lattice and further leads to the first direct NMR estimate of Al-Si distance ( rAl-Si=323±5 pm) in ETAS-10.

  5. Microstructure of the Al-La-Ni-Fe system

    SciTech Connect

    Vasil’ev, A. L.; Ivanova, A. G.; Bakhteeva, N. D.; Kolobylina, N. N.; Orekhov, A. S.; Presnyakov, M. Yu.; Todorova, E. V.

    2015-01-15

    The microstructure of alloys based on the Al-La-Ni-Fe system, which are characterized by a unique ability to form metal glasses and nanoscale composites in a wide range of compositions, has been investigated. Al{sub 85}Ni{sub 7}Fe{sub 4}La{sub 4} and Al{sub 85}Ni{sub 9}Fe{sub 2}La{sub 4} alloys have been analyzed by electron microscopy (including high-resolution scanning transmission electron microscopy), energy-dispersive X-ray microanalysis, electron diffraction (ED), and X-ray diffraction (XRD). It is found that, along with fcc Al and Al{sub 4}La (Al{sub 11}La{sub 3}) particles, these alloys contain a ternary phase Al{sub 3}Ni{sub 1−x}Fe{sub x} (sp. gr. Pnma) isostructural to the Al{sub 3}Ni phase and a quaternary phase Al{sub 8}Fe{sub 2−x}Ni{sub x}La isostructural to the Al{sub 8}Fe{sub 2}Eu phase (sp. gr. Pbam). The unit-cell parameters of the Al{sub 3}Ni{sub 1−x}Fe{sub x} and Al{sub 8}Fe{sub 2−x}Ni{sub x}La compounds, determined by ED and refined by XRD, are a = 0.664(1) nm, b = 0.734(1) nm, and c = 0.490(1) nm for Al{sub 3}Ni{sub 1−x}Fe{sub x} and a = 1.258(3) nm, b = 1.448(3) nm, and c = 0.405(8) nm for Al{sub 8}Fe{sub 2−x}Ni{sub x}La. In both cases Ni and Fe atoms are statistically arranged, and no ordering is found. Al{sub 8}Fe{sub 2−x}Ni{sub x}La particles contain inclusions in the form of Al{sub 3}Fe δ layers.

  6. Moessbauer study in thin films of FeSi2 and FeSe systems

    NASA Technical Reports Server (NTRS)

    Escue, W. J.; Aggarwal, K.; Mendiratta, R. G.

    1978-01-01

    Thin films of FeSi2 and FeSe were studied using Moessbauer spectroscopy information regarding dangling bond configuration and nature of crystal structure in thin films was derived. A significant influence of crystalline aluminum substrate on film structure was observed.

  7. Effects of temperature and pressure on phonons in FeSi1–xAlx

    DOE PAGESBeta

    Delaire, O.; Al-Qasir, I. I.; Ma, J.; dos Santos, A. M.; Sales, B. C.; Mauger, L.; Stone, M. B.; Abernathy, D. L.; Xiao, Y.; Somayazulu, M.

    2013-05-31

    The effects of temperature and pressure on phonons in B20 compounds FeSi1–xAlx were measured using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering. The effect of hole doping through Al substitution is compared to results of alloying with Co (electron doping) in Fe₁₋xCoxSi. While the temperature dependence of phonons in FeSi is highly anomalous, doping with either type of carriers leads to a recovery of the normal quasiharmonic behavior. Density functional theory (DFT) computations of the electronic band structure and phonons were performed. The anomaly in the temperature dependence of the phonons in undoped FeSi was related to the narrowmore » band gap, and its sensitivity to the effect of thermal disordering by phonons. On the other hand, the pressure dependence of phonons at room temperature in undoped FeSi follows the quasiharmonic behavior and is well reproduced by the DFT calculations.« less

  8. The investigation of the electrical properties of Fe3O4/n-Si heterojunctions in a wide temperature range.

    PubMed

    Deniz, Ali Rıza; Çaldıran, Zakir; Metin, Önder; Meral, Kadem; Aydoğan, Şakir

    2016-07-01

    Monodisperse 8nm Fe3O4 nanoparticles (NPs) were synthesized by the thermal decomposition of iron(III) acetylacetonate in oleylamine and then were deposited onto n-type silicon wafer having the Al ohmic contact. Next, the morphology of the Fe3O4 NPs were characterized by using TEM and XRD. The optical properties of Fe3O4 NPs film was studied by UV-Vis spectroscopoy and its band gap was calculated to be 2.16eV. Au circle contacts with 7.85×10(-3)cm(2) area were provided on the Fe3O4 film via evaporation at 10(-5)Torr and the Au/Fe3O4 NPs/n-Si/Al heterojunction device were fabricated. The temperature-dependent junction parameters of Au/Fe3O4/n-Si/Al device including ideality factor, barrier height and series resistance were calculated by using the I-V characteristics in a wide temperature range of 40-300K. The results revealed that the ideality factor and series resistance increased by the decreasing temperature while the barrier height decreases. The Richardson constant of Au/Fe3O4/n-Si/Al device was calculated to be 2.17A/K(2)cm(2) from the I-V characteristics. The temperature dependence of Au/Fe3O4/n-Si/Al heterojunction device showed a double Gaussian distribution, which is caused by the inhomogeneities characteristics of Fe3O4/n-Si heterojunction. PMID:27078739

  9. Validated thermodynamic prediction of AlP and eutectic (Si) solidification sequence in Al-Si cast alloys

    NASA Astrophysics Data System (ADS)

    Liang, S. M.; Schmid-Fetzer, R.

    2016-03-01

    The eutectic microstructure in hypoeutectic Al-Si cast alloys is strongly influenced by AlP particles which are potent nuclei for the eutectic (Si) phase. The solidification sequence of AlP and (Si) phases is, thus, crucial for the nucleation of eutectic silicon with marked impact on its morphology. This study presents this interdependence between Si- and P-compositions, relevant for Al-Si cast alloys, on the solidification sequence of AlP and (Si). These data are predicted from a series of thermodynamic calculations. The predictions are based on a self-consistent thermodynamic description of the Al-Si-P ternary alloy system developed recently. They are validated by independent experimental studies on microstructure and undercooling in hypoeutectic Al-Si alloys. A constrained Scheil solidification simulation technique is applied to predict the undercooling under clean heterogeneous nucleation conditions, validated by dedicated experimental observations on entrained droplets. These specific undercooling values may be very large and their quantitative dependence on Si and P content of the Al alloy is presented.

  10. Chemical ordering and large tunnel magnetoresistance in Co2FeAl/MgAl2O4/Co2FeAl(001) junctions

    NASA Astrophysics Data System (ADS)

    Scheike, Thomas; Sukegawa, Hiroaki; Inomata, Koichiro; Ohkubo, Tadakatsu; Hono, Kazuhiro; Mitani, Seiji

    2016-05-01

    Epitaxial magnetic tunnel junctions (MTJs) with a Co2FeAl/CoFe (0.5 nm)/MgAl2O4/Co2FeAl(001) structure were fabricated by magnetron sputtering. High-temperature in situ annealing led to a high degree of B2-order in the Co2FeAl layers and cation order of the MgAl2O4 barrier. Large tunnel magnetoresistance (TMR) of up to 342% was obtained at room temperature (616% at 4 K), in contrast to the TMR ratio ( ≲ 160%) suppressed by the band-folding effect in Fe/cation-ordered MgAl2O4/Fe MTJs. The present study reveals that the high degree of B2-order and the resulting high spin polarization in the Co2FeAl electrodes enable us to bypass the band-folding problem in spinel barriers.

  11. Eutectic nucleation in hypoeutectic Al-Si alloys

    SciTech Connect

    Nafisi, S. Ghomashchi, R.; Vali, H.

    2008-10-15

    The nucleation mechanism of eutectic grains in hypoeutectic Al-Si foundry alloys has been investigated by examining deep etched specimens in high-resolution field emission gun scanning electron microscope (FEG-SEM) and by using in-situ Focused Ion Beam (FIB) milling and microscopy. Both unmodified and Sr-modified alloys were studied to characterize the nucleation mechanism of eutectic silicon flakes and fibers. It is proposed that following nucleation of eutectic Al on the primary {alpha}-Al dendrites, fine Si particles form at the solidification front upon which the eutectic Si flakes and fibers could develop. The formation of small Si particles is attributed to Si enrichment of the remaining melt due to the formation of eutectic Al (aluminum spikes) at the eutectic temperature. A hypothesis is then proposed to explain the mechanism of eutectic grains formation with main emphasis on the eutectic Si phase.

  12. Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials

    NASA Astrophysics Data System (ADS)

    Riedl, H.; Zálešák, J.; Arndt, M.; Polcik, P.; Holec, D.; Mayrhofer, P. H.

    2015-09-01

    The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti0.50Al0.50N, Ti0.90Si0.10N, CrN, and Cr0.90Si0.10N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required to implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti0.50Al0.50N, Ti0.90Si0.10N, and Cr0.90Si0.10N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.

  13. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2

  14. Si adatoms as catalyst for the growth of monolayer Al film on Si(111)

    NASA Astrophysics Data System (ADS)

    Teng, Jing; Zhang, Lixin; Wu, Kehui; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Ebert, Philipp; Sakurai, Toshio; Wang, Enge

    2010-03-01

    Recently, we reported the growth of atomically smooth Al(111) films on Si(111) with continuously controllable thickness down to the extreme level of 1 ML. Here, we study the underlying unexpected Si adatom-mediated clustering-melting mechanism by scanning tunneling microscopy and by the first-principles calculations. The Si adatoms in the initial Si(111)3x3-Al surface act as seeds to form SiAl2 clusters. The clusters are then transformed into Al(111)1x1 by incorporating further incoming Al atoms and spontaneously releasing the Si atoms, which then participate in the next cycle of the process. As a result, a two-dimensional growth of monolayer Al(111) is achieved.

  15. Synthetic gedrite: a stable phase in the system MgO-Al2O3-SiO2-H2O (MASH) at 800°C and 10kbar water pressure, and the influence of FeNaCa impurities

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Schreyer, W.; Maresch, W. V.

    Seeded, solid-media piston-cylinder runs of unusually long duration up to 31 days indicate growth or persistence of synthetic gedrite of the composition □Mg6Al[AlSi7O22](OH)2(=6:1:7), prepared from the purest chemicals available, at 10kbar water pressure and 800°C. Conversely, breakdown was observed at 11kbar and 850°C to aluminous enstatite, Al2SiO5, and a melt of the composition MgO.Al2O3.8SiO2. Thus, pure gedrite free of iron, sodium, and calcium is likely to have only a small PT stability field in the MASH system, estimated as 10+/-1kbar, 800+/-20°C, even though metastable growth of gedrite can be observed over a larger PT range. A second starting material with the anhydrous composition 5MgO . 2Al2O3 . 6SiO2 also yielded gedrite of the composition 6:1:7, together with more aluminous phases such as kyanite, corundum or sapphirine, thus suggesting that the end-member gedrite defined as □Mg5Al2[Al2Si6O22](OH)2(=5:2:6) by the IMA Commission on New Minerals and Mineral Names probably does not exist. With the use of this second starting material, which contains FeNaCa impurities, growth of 6:1:7-gedrite was observed over a still wider PT-range. Seeded runs indicate that the true stability field of such slightly impure 6:1:7-gedrites may also be larger than that of the pure MASH phase and extend at least to 15kbar, 800°C. There is, thus, a remarkable stabilization effect on the orthoamphibole structure by impurities amounting only to a total of less than one weight percent of oxides in the starting material. The gedrites synthesized are structurally well ordered amphiboles nearly free of chain multiplicity faults, as revealed by HRTEM. The X-ray diffraction work on the gedrites synthesized yielded the smallest cell volume yet reported for this phase. The small stability field of the pure MASH gedrite is intersected by the upper pressure stability limit of hydrous cordierite for excess-H2O conditions, thus leading to complicated phase relations for both gedrite

  16. Robust diamond-like Fe-Si network in the zero-strain NaxFeSiO4 cathode

    DOE PAGESBeta

    Ye, Zhuo; Zhao, Xin; Li, Shouding; Wu, Shunqing; Wu, Ping; Nguyen, Manh Cuong; Guo, Jianghuai; Mi, Jinxiao; Gong, Zhengliang; Zhu, Zi -Zhong; et al

    2016-07-14

    Sodium orthosilicates Na2MSiO4 (M denotes transition metals) have attracted much attention due to the possibility of exchanging two electrons per formula unit. In this work, we report a group of sodium iron orthosilicates Na2FeSiO4. Their crystal structures are characterized by a diamond-like Fe-Si network. The Fe-Si network is quite robust against the charge/discharge process, which explains the high structural stability observed in experiment. Furthermore, using the density functional theory within the GGA + U framework and X-ray diffraction studies, the crystal structures and structural stabilities during the sodium extraction/re-insertion process are systematically investigated.

  17. Effect of Si addition on AC and DC magnetic properties of (Fe-P)-Si alloy

    NASA Astrophysics Data System (ADS)

    Gautam, Ravi; Prabhu, D.; Chandrasekaran, V.; Gopalan, R.; Sundararajan, G.

    2016-05-01

    We report a new (Fe-P)-Si based alloy with relatively high induction (1.8-1.9 T), low coercivity (< 80 A/m), high resistivity (˜38 μΩ cm) and low core loss (217 W/kg @ 1 T/1 kHz) comparable to the commercially available M530-50 A5 Si-steel. The attractive magnetic and electrical properties are attributed to i) the two phase microstructure of fine nano precipitates of Fe3P dispersed in α-Fe matrix achieved by a two-step heat-treatment process and ii) Si addition enhancing the resistivity of the α-Fe matrix phase. As the alloy processing is by conventional wrought metallurgy method, it has the potential for large scale production.

  18. Magnetoresistance effect in Ag-Fe3O4 and Al-Fe3O4 composite films

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hwa; Chen, Shang-Yi; Chang, Wen-Ming; Jian, T. S.; Chang, Ching-Ray; Lee, Shan-Fan

    2003-05-01

    The Agx-(Fe3O4)1-x and Agx-(Fe3O4)1-x composite films were prepared by dc sputtering on Si(100) substrates. The x-ray diffraction results show that the films contain essentially only the cubic inverse spinal phase from Fe3O4 and face-centered cubic phase from Ag or Al. The transmission electron microscopy images indicate that the metal granules are randomly distributed with Fe3O4 grains. The resistivity determined from the four-probe method decreases rapidly with increasing metal content. At x≒0.5, a percolation occurs. The conducting path is formed from metal granules in series with Fe3O4 grains. The magnetoresistance (MR) is defined to be {R(H=0.8 T)-R(H=0)}/R(H=0). It has been found that MR is isotropic and the appearance of Ag granules has significant impact on the MR effect. Furthermore, a positive MR region appears with 0.011Fe3O4)1-x. On the contrary, the incorporation of Al granules does not have the same effect on MR as in Agx-(Fe3O4)1-x. A slow increase of MR with Al content might be due to Coulomb blockade. The extra contribution to MR in Agx-(Fe3O4)1-x can be attributed to spin injection from Fe3O4 into Ag granules so that spin accumulation in Ag granules impedes the current causing a larger resistance under a field.

  19. Protected Fe valence in quasi-two-dimensional α-FeSi2.

    PubMed

    Miiller, W; Tomczak, J M; Simonson, J W; Smith, G; Kotliar, G; Aronson, M C

    2015-05-01

    We report the first comprehensive study of the high temperature form (α-phase) of iron disilicide. Measurements of the magnetic susceptibility, magnetization, heat capacity and resistivity were performed on well characterized single crystals. With a nominal iron d(6) configuration and a quasi-two-dimensional crystal structure that strongly resembles that of LiFeAs, α-FeSi2 is a potential candidate for unconventional superconductivity. Akin to LiFeAs, α-FeSi2 does not develop any magnetic order and we confirm its metallic state down to the lowest temperatures (T = 1.8 K). However, our experiments reveal that paramagnetism and electronic correlation effects in α-FeSi2 are considerably weaker than in the pnictides. Band theory calculations yield small Sommerfeld coefficients of the electronic specific heat γ = Ce/T that are in excellent agreement with experiment. Additionally, realistic many-body calculations further corroborate that quasi-particle mass enhancements are only modest in α-FeSi2. Remarkably, we find that the natural tendency to vacancy formation in the iron sublattice has little influence on the iron valence and the density of states at the Fermi level. Moreover, Mn doping does not significantly change the electronic state of the Fe ion. This suggests that the iron valence is protected against hole doping and indeed the substitution of Co for Fe causes a rigid-band like response of the electronic properties. As a key difference from the pnictides, we identify the smaller inter-iron layer spacing, which causes the active orbitals near the Fermi level to be of a different symmetry in α-FeSi2. This change in orbital character might be responsible for the lack of superconductivity in this system, providing constraints on pairing theories in the iron based pnictides and chalcogenides. PMID:25837013

  20. Protected Fe valence in quasi-two-dimensional α-FeSi2

    NASA Astrophysics Data System (ADS)

    Miiller, W.; Tomczak, J. M.; Simonson, J. W.; Smith, G.; Kotliar, G.; Aronson, M. C.

    2015-05-01

    We report the first comprehensive study of the high temperature form (α-phase) of iron disilicide. Measurements of the magnetic susceptibility, magnetization, heat capacity and resistivity were performed on well characterized single crystals. With a nominal iron d6 configuration and a quasi-two-dimensional crystal structure that strongly resembles that of LiFeAs, α-FeSi2 is a potential candidate for unconventional superconductivity. Akin to LiFeAs, α-FeSi2 does not develop any magnetic order and we confirm its metallic state down to the lowest temperatures (T = 1.8 K). However, our experiments reveal that paramagnetism and electronic correlation effects in α-FeSi2 are considerably weaker than in the pnictides. Band theory calculations yield small Sommerfeld coefficients of the electronic specific heat γ = Ce/T that are in excellent agreement with experiment. Additionally, realistic many-body calculations further corroborate that quasi-particle mass enhancements are only modest in α-FeSi2. Remarkably, we find that the natural tendency to vacancy formation in the iron sublattice has little influence on the iron valence and the density of states at the Fermi level. Moreover, Mn doping does not significantly change the electronic state of the Fe ion. This suggests that the iron valence is protected against hole doping and indeed the substitution of Co for Fe causes a rigid-band like response of the electronic properties. As a key difference from the pnictides, we identify the smaller inter-iron layer spacing, which causes the active orbitals near the Fermi level to be of a different symmetry in α-FeSi2. This change in orbital character might be responsible for the lack of superconductivity in this system, providing constraints on pairing theories in the iron based pnictides and chalcogenides.

  1. Fe Isotopic Composition of Presolar SiC Mainstream Grains

    NASA Technical Reports Server (NTRS)

    Tripa, C. E.; Pellin, M. J.; Savina, M. R.; Davis, A. M.; Lewis, R. S.; Clayton, R. N.

    2002-01-01

    Iron isotopic distribution was measured in SiC mainstream grains from the Murchison meteorite by time-of-flight resonance ionization mass spectrometry. All grains exhibit 54Fe depletions of 50 to 200, lower than what are predicted by calculations of s-process nucleosynthesis in AGB stars. Additional information is contained in the original extended abstract.

  2. Synthesis of iron silicides starting with Fe/Si multilayers

    NASA Astrophysics Data System (ADS)

    Saul, C. Ketzer; Amaral, L.; Schreiner, W. H.

    1994-12-01

    The iron silicides are considered key materials for silicon integrated optoelectronic devices. This report describes the synthesis of the iron silicides starting with e-beam evaporated multilayered Fe/Si samples. Samples with two chemical wavelengths were studied upon annealing and ion beam mixing. The characterization included X-ray diffraction, CEMS and Rutherford backscattering.

  3. Strength anomaly in B2 FeAl single crystals

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.; Matsumoto, N.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  4. Magnetic moments induce strong phonon renormalization in FeSi.

    PubMed

    Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H v; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F

    2015-01-01

    The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths. PMID:26611619

  5. Dielectric properties of spark plasma sintered AlN/SiC composite ceramics

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Jia, Cheng-chang; Cao, Wen-bin; Wang, Cong-cong; Liang, Dong; Xu, Guo-liang

    2014-06-01

    In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were prepared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt% SiC at 1600°C for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ceramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.

  6. Temperature dependence diode parameters studies of Al/CuPc/n-Si/Al structure

    NASA Astrophysics Data System (ADS)

    Kumar, Ratnesh; Kaur, Ramneek; Sharma, Mamta; Kaur, Maninder; Tripathi, S. K.

    2015-08-01

    This paper presents the fabrication of Al/CuPc/n-Si/Al metal-organic-semiconductor diode. The copper phthalocyanine as organic layer is deposited on Si substrate by thermal evaporation technique. The temperature dependent current-voltage measurements are performed on Al/CuPc/n-Si structure. The important diode parameters i.e. the barrier height and ideality factor have been calculated. The temperature dependence of barrier height and ideality factor has been studied.

  7. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  8. Synthesis and performance of Ca-α/β-SiAlON composites from tailings

    NASA Astrophysics Data System (ADS)

    Hao, Hong-shun; Yang, Yang; Lian, Fang; Gao, Wen-yuan; Liu, Gui-shan; Hu, Zhi-qiang

    2014-05-01

    Ca-α/β-SiAlON composites were prepared using Ca-α/β-SiAlON powder synthesized from gold ore tailings, which contained abundant Si and Al elements as the major raw materials together with minor additives, through a pressure-less sintering method. The influences of sintering temperature on the phase composition and microstructure of the composites were analyzed. The scanning electron microscopy images of the composites show the interlacing of grains with elongated columnar, short columnar and plate-like morphologies. The composites sintered at 1520°C for 6 h have a flexural strength of 352 MPa, Vickers hardness of 11.2 GPa, and fracture toughness of 4.8 MPa·m1/2. The relative content of each phase in the products is I(Ca-α-SiAlON): I(β-SiAlON): I(Fe3Si) = 23:74:3, where I i stands for the diffraction peak intensity of phase i.

  9. Magnetic properties, morphology and interfaces of (Fe/Si)n nanostructures

    NASA Astrophysics Data System (ADS)

    Bartolomé, J.; Badía-Romano, L.; Rubín, J.; Bartolomé, F.; Varnakov, S. N.; Ovchinnikov, S. G.; Bürgler, D. E.

    2016-02-01

    A systematic study of the iron-silicon interfaces formed upon preparation of (Fe/Si) multilayers has been performed by the combination of modern and powerful techniques. Samples were prepared by molecular beam epitaxy under ultrahigh vacuum onto Si wafers or single crystalline Ag(100) buffer layers grown on GaAs(100). The morphology of these films and their interfaces was studied by a combination of scanning transmission electron microscopy, X-ray reflectivity, angle resolved X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The Si-on-Fe interface thickness and roughness were determined to be 1.4(1) nm and 0.6(1) nm, respectively. Moreover, determination of the stable phases formed at both Fe-on-Si and Si-on-Fe interfaces was performed using conversion electron Mössbauer spectroscopy on multilayers with well separated Si-on-Fe and Fe-on-Si interfaces. It is shown that while a fraction of Fe remains as α-Fe, the rest has reacted with Si, forming the paramagnetic FeSi phase and a ferromagnetic Fe rich silicide. We conclude that there is an identical paramagnetic c-Fe1-xSi silicide sublayer in both Si-on-Fe and Fe-on-Si interfaces, whereas an asymmetry is revealed in the composition of the ferromagnetic silicide sublayer.

  10. Oxidation behavior of FeAl+Hf,Zr,B

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Doychak, Joseph

    1988-01-01

    The oxidation behavior of Fe-40Al-1Hf, Fe-40Al-1Hf-0.4B, and Fe-40Al-0.1Zr-0.4B (at. percent) alloys was characterized after 900, 1000, and 100 C exposures. Isothermal tests revealed parabolic kinetics after a period of transitional theta-alumina scale growth. The parabolic growth rates for the subsequent alpha-alumina scales were about five times higher than those for NiAl+0.1Zr alloys. The isothermally grown scales showed a propensity toward massive scale spallation due to both extensive rumpling from growth stresses and to an inner layer of HfO2. Cyclic oxidation for 200 1-hr cycles produced little degradation at 900 or 1000 C, but caused significant spallation at 1100 C in the form of small segments of the outer scale. The major difference in the cyclic oxidation of the three FeAl alloys was increased initial spallation for FeAl+Zr,B. Although these FeAl alloys showed many similarities to NiAl alloys, they were generally less oxidation resistant. It is believed that this resulted from nonoptimal levels of dopants and larger thermal expansion mismatch stresses.

  11. Electrical and optical properties of Fe doped AlGaN grown by molecular beam epitaxy

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Pearton, S. J.

    2010-01-15

    Electrical and optical properties of AlGaN grown by molecular beam epitaxy were studied in the Al composition range 15%-45%. Undoped films were semi-insulating, with the Fermi level pinned near E{sub c}-0.6-0.7 eV. Si doping to (5-7)x10{sup 17} cm{sup -3} rendered the 15% Al films conducting n-type, but a large portion of the donors were relatively deep (activation energy 95 meV), with a 0.15 eV barrier for capture of electrons giving rise to strong persistent photoconductivity (PPC) effects. The optical threshold of this effect was {approx}1 eV. Doping with Fe to a concentration of {approx}10{sup 17} cm{sup -3} led to decrease in concentration of uncompensated donors, suggesting compensation by Fe acceptors. Addition of Fe strongly suppressed the formation of PPC-active centers in favor of ordinary shallow donors. For higher Al compositions, Si doping of (5-7)x10{sup 17} cm{sup -3} did not lead to n-type conductivity. Fe doping shifted the bandedge luminescence by 25-50 meV depending on Al composition. The dominant defect band in microcathodoluminescence spectra was the blue band near 3 eV, with the energy weakly dependent on composition.

  12. Oxidation of Fe-Cr-Al and Fe-Cr-Al-Y Single Crystals

    NASA Astrophysics Data System (ADS)

    Grabke, H. J.; Siegers, M.; Tolpygo, V. K.

    1995-03-01

    Single crystal samples of the alloy Fe-20%Cr-5%Al with and without Y-doping were used to study the "reactive element" (RE) effect, which causes improved oxidation behaviour and formation of a protective Al2O3 layer on this alloy. The oxidation was followed by AES at 10-7 mbar O2 up to about 1000 °C. Most observations were peculiar for this low pO2 environment, but yttrium clearly favors the formation of Al-oxide and stabilizes it also under these conditions, probably by favoring its nucleation. The oxides formed are surface compounds of about monolayer thickness, not clearly related to bulk oxides. Furthermore, the morphologies of oxide scales were investigated by SEM, after oxidation at 1000°C for 100 h at 133 mbar O2. On Fe-Cr-Al the scale is strongly convoluted and tends to spalling, whereas the presence of Y leads to flat scales which are well adherent. This difference is explained by a change in growth mechanism. The tendency for separation of oxide and metal was highest for the samples with low energy metal surface, i.e. (100) and (110), the scale was better adherent on the (111) oriented surface and on the polycrystalline specimen, since in the latter cases the overall energy for scale/metal separation is higher. All observations, from the low and from the high pO2 experiments, are discussed in relation to the approximately ten mechanisms proposed in the literature for explanation of the RE effects.

  13. Fe-Si-Mn-oxyhydroxide encrustations on basalts at east pacific rise near 13°N: An SEM-EDS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyuan; Zeng, Zhigang; Qi, Haiyan; Chen, Shuai; Yin, Xuebo; Yang, Baoju

    2014-12-01

    Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe-Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn-oxyhydroxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrustations on pillow basalts are 1-2 mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrustations are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+Al) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrothermalism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.

  14. Improvement of in-plane anisotropy field in FeCoB/NiFe/Si thin films by Kr sputtering

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Ito, S.; Nakagawa, S.

    2007-03-01

    Deterioration of magnetic anisotropy field in the FeCoB/NiFe/Si trilayers deposited on glass substrates was investigated. It was found that the choice of Kr as sputtering gas instead of Ar was quite effective to improve the soft magnetic characteristics of FeCoB/NiFe/Si thin films deposited on glass substrates. Kr sputtering is effective to reduce compressive residual stress in the film. The rotatable magnetic anisotropy observed in the FeCoB/NiFe/Si films deposited by Ar sputtering disappeared in the film deposited by Kr sputtering, even though they are prepared on glass disk substrates.

  15. The Charpy impact behavior of Fe{sub 3}Al and Fe{sub 3}Al-20 at % Mn alloys

    SciTech Connect

    Liu, J.N.; Yan, W.; Ma, J.L.; Wu, K.H.

    1997-12-31

    A series of experiments were conducted to investigate the impact fracture behavior of Fe{sub 3}Al and Fe{sub 3}Al-20 Mn alloys. The results of this study indicated that: (i) The addition of Mn introduces an ordered L1{sub 2}-type phase in the Fe{sub 3}Al-based alloys. On the other hand, the addition of Mn decreases the order parameter of the DO{sub 3} {alpha} phase. (ii) The total-impact energy of an Fe{sub 3}Al alloy increases with the temperature at the low-temperature range (<600 C), then drops around 700 C, and finally increases again as the temperature further elevates. (iii) The trend of the variation of the impact energy of Fe{sub 3}Al-20 at % Mn alloy with temperature is the same as that of the Fe{sub 3}Al alloy. (iv) And the addition of Mn significantly improves the impact energy of the Fe{sub 3}Al-based alloy, and changes the variation of the crack-growth energy with the testing temperature when the temperature is above 700 C.

  16. Spark plasma sintering of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy

    NASA Astrophysics Data System (ADS)

    Zúñiga, Alejandro; Ajdelsztajn, Leonardo; Lavernia, Enrique J.

    2006-04-01

    The microstructure and aging behavior of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy was studied. The nanocrystalline powders were produced by milling at liquid nitrogen temperature and then consolidated using spark plasma sintering (SPS). The microstructure after SPS consisted of a bimodal aluminum grain structure (coarse-grained and fine-grained regions), along with Al9FeNi and Al2CuMg particles dispersed throughout. The microstructure observed in the as-consolidated sample is rationalized on the basis of high current densities that are generated during sintering. Solution treatment and aging of the SPS Al-Cu-Mg-Fe-Ni-Sc sample resulted in softening instead of hardening. This observation can be explained by the reduced amount of Cu, Mg, and Si in solid solution available to form S' Al2CuMg due to the precipitation of Al7FeCu2 and Si-rich particles, and by the fact that rodlike S' Al2CuMg particles could only precipitate out in the coarse-grained regions, greatly decreasing their influence on the hardness. This lack of precipitation in the fine-grained region is argued to represent a new physical observation and is rationalized on the basis of physical and thermodynamic effects. The nanocrystalline SPS Al-Cu-Mg-Fe-Ni-Sc sample was also extremely thermally stable, retaining a fine-grained structure even after solution treatment at 530°C for 5 h. The observed thermal stability is rationalized on the basis of solute drag and Zener pinning caused by the impurities introduced during the cryomilling process.

  17. Texture development in SiC-seeded AlN

    SciTech Connect

    Sandlin, M.S.; Bowman, K.J.; Root, J.

    1997-01-01

    Polycrystalline AlN specimens containing 15 volume percent SiC seed particles were slip-cast then hot-pressed at 1,800 C. These processing steps resulted in oriented SiC platelets in a nearly random AlN matrix. Samples were then annealed for up to 18 hours at 2,150 C under nitrogen. Quantitative texture measurements of the AlN and SiC basal poles, and powder diffraction measurements were performed using neutron and X-ray diffraction. The results indicate that SiC platelets effectively seed AlN-SiC alloy textures by a coalescence and growth mechanism during annealing. Texture intensification does not occur in AlN specimens without SiC platelet additions, or in specimens containing non-oriented SiC powder. The most effective seeing was observed in specimens containing 15 volume percent SiC platelets. Optical microscopy and electron microscopy were used in conjunction with texture analysis to elucidate texture development mechanisms.

  18. Microstructure Evolution of Atomized Al-0.61 wt pct Fe and Al-1.90 wt pct Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Dahlborg, Ulf; Bao, Cui Min; Calvo-Dahlborg, Monique; Henein, Hani

    2011-06-01

    The microstructure evolution of impulse atomized powders of Al-0.61 wt pct and Al-1.90 wt pct Fe compositions have been investigated with a scanning electron microscope, transmission electron microscope, neutron diffraction, and backscattering electron diffraction (EBSD). Both hypoeutectic and hypereutectic compositions demonstrated similar macrostructure ( i.e., primary α-Al dendrites/cells with eutectic Al-Fe intermetallics decorated at the dendritic/cellular walls). Selected area electron diffraction (SAED) analysis and SAED pattern simulation identified the eutectic Al-Fe intermetallic as AlmFe ( m = 4.0-4.4). This is verified by neutron diffraction analysis. Cubic texture was observed by EBSD on the droplets with dendritic growth direction close to <111>. The possible reasons are discussed.

  19. Fe-Si system: a potential major component of the Earth's core

    NASA Astrophysics Data System (ADS)

    Caracas, R.; Verstraete, M.; Fischer, R. A.; Campbell, A. J.

    2013-12-01

    We investigate Silicon in the Earth's core using first-principles calculations. Specifically we look at the phase diagram of the Fe-Si system, the solubility limits of Si into hcp Fe, and the effect of Si on the thermal and electrical conductivities of iron. We consider several Fe hcp supercells and replace some of the Fe atoms with Si in different amounts and configurations. In this way we mimic the dissolution of silicon into hcp and take into account a realistic solid solution. Silicon slightly increases the specific volume of iron, but the differences levels out at high pressures. We show that the density and seismic profiles of the core can be easily matched by Fe-Si alloys with small amounts of Si. Further phonon analysis suggests that stoichiometric Fe3Si is dynamically unstable at high pressure. This results in decomposition into Si-bearing hcp Fe and Fe-bearing B2 FeSi. Then we follow the evolution of the Fe-FeSi immiscibility gap as a function of pressure. Finally we compute the electrical and thermal conductivities of Si-bearing hcp iron at inner core conditions. We obtain that a relatively small amount of Si decreases the conductivity of iron. Based on these considerations we conclude that Si can be the preferred light element of the Earth's core.

  20. Morphology of α-Si3N4 in Fe-Si3N4 prepared via flash combustion

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Jun-hong; Su, Jin-dong; Yan, Ming-wei; Sun, Jia-lin; Li, Yong

    2015-12-01

    The state and formation mechanism of α-Si3N4 in Fe-Si3N4 prepared by flash combustion were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate that α-Si3N4 crystals exist only in the Fe-Si3N4 dense areas. When FeSi75 particles react with N2, which generates substantial heat, a large number of Si solid particles evaporate. The product between Si gas and N2 is a mixture of α-Si3N4 and β-Si3N4. At the later stage of the flash combustion process, α-Si3N4 crystals dissolve and reprecipitate as β-Si3N4 and the β-Si3N4 crystals grow outward from the dense areas in the product pool. As the temperature decreases, the α-Si3N4 crystals cool before transforming into β-Si3N4 crystals in the dense areas of Fe-Si3N4. The phase composition of flash-combustion-synthesized Fe-Si3N4 is controllable through manipulation of the gas-phase reaction in the early stage and the α→β transformation in the later stage.

  1. Mössbauer analysis of silicate Li2FeSiO4 and delithiated Li2-xFeSiO4 (x = 0.66) compounds

    NASA Astrophysics Data System (ADS)

    Lee, In Kyu; Kim, Sam Jin; Kouh, Taejoon; Kim, Chul Sung

    2013-05-01

    Lithium iron silicate compounds of Li2FeSiO4 and partially delithiated Li2-xFeSiO4 (x = 0.66) were synthesized by vacuum-sealed solid-state and chemical delithiation reactions, and their magnetic properties were characterized based on Mössbauer analysis. Crystal structures of both Li2FeSiO4 and Li2-xFeSiO4 (x = 0.66) compounds are found to be γs-type (P21/n) monoclinic structures with difference in the lattice parameters due to lithium delithiation. Mössbauer spectrum of Li2FeSiO4 below TN1 = 20 K exhibits eight Lorentzians of Fe2+ with antiferromagnetic ordering. However, the spectrum of intermediate Li2-xFeSiO4 (x = 0.66) compound shows the appearance of magnetically ordered Fe3+ sextet below TN2 = 28 K. The temperature-dependent isomer shift of Li2-xFeSiO4 indicates the coexistence of nonequivalent Fe2+/Fe3+ valence states with the partial oxidation of FeO4, enhanced by the lithium ion deficiency. Also, we have observed a considerable change in electric quadrupole interaction between Fe2+/Fe3+ ions in Li2-xFeSiO4, when compared to that of Li2FeSiO4, due to the different lattice and valence electron contributions, being originated from crystalline and valence transitions caused by the lithiation/delithiation process.

  2. Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ming; Chen, Yung-Yu; Felmetsger, Valery V.; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G.; Pisano, Albert P.

    2013-02-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C-SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C-SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C-SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C-SiC/Si multilayer structure exhibits a phase velocity of 5528 m s-1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C-SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C-SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C-SiC layers are applicable to timing and sensing applications in harsh environments.

  3. Magnetic moments induce strong phonon renormalization in FeSi

    PubMed Central

    Krannich, S.; Sidis, Y.; Lamago, D.; Heid, R.; Mignot, J.-M.; Löhneysen, H. v.; Ivanov, A.; Steffens, P.; Keller, T.; Wang, L.; Goering, E.; Weber, F.

    2015-01-01

    The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron–phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron–phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe–Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin–phonon coupling and multiple interaction paths. PMID:26611619

  4. Work of Adhesion in Al/SiC Composites with Alloying Element Addition

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Fan, Tongxiang; Zhang, Di

    2013-11-01

    In the current work, a general methodology was proposed to demonstrate how to calculate the work of adhesion in a reactive multicomponent alloy/ceramic system. Applying this methodology, the work of adhesion of Al alloy/SiC systems and the influence of different alloying elements were predicted. Based on the thermodynamics of interfacial reaction and calculation models for component activities, the equilibrium compositions of the melts in Al alloy/SiC systems were calculated. Combining the work of adhesion models for reactive metal/ceramic systems, the work of adhesion in Al alloy/SiC systems both before and after the reaction was calculated. The results showed that the addition of most alloying elements, such as Mg, Si, and Mn, could increase the initial work of adhesion, while Fe had a slightly decreasing effect. As for the equilibrium state, the additions of Cu, Fe, Mn, Ni, Ti, and La could increase the equilibrium work of adhesion, but the additions of Mg and Zn had an opposite effect. Si was emphasized due to its suppressing effect on the interfacial reaction.

  5. Positive magnetoresistance in Co40Fe40B20/SiO2/Si heterostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Mi, W. B.; Zhang, X. X.

    2016-06-01

    Current-perpendicular-to-plane electronic transport properties and magnetoresistance of amorphous Co40Fe40B20/SiO2/Si heterostructures are investigated systematically. A backward diode-like rectifying behavior was observed due to the formation of a Schottky barrier between Co40Fe40B20 and Si. The junction resistance shows a metal-insulator transition with decreasing temperature in both the forward and reverse ranges. A large positive magnetoresistance (MR) of ∼2300% appears at 200 K. The positive MR can be attributed to the magnetic-field–controlled impact ionization process of carriers. MR shows a temperature-peak–type character under a constant bias current, which is related to the spin-dependent barrier in the Si near the interface.

  6. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  7. First-principles study of spin transport in Fe-SiCNT-Fe magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Choudhary, Sudhanshu; Jalu, Surendra

    2015-08-01

    We report first-principles calculations of spin-dependent quantum transport in Fe-SiCNT-Fe magnetic tunnel junction (MTJ). Perfect spin filtration effect and substantial tunnel magnetoresistance are obtained, which suggests SiCNTs as a suitable candidate over CNTs for implementing 1D MTJs. The calculated tunnel magnetoresistance is several hundred percent at zero bias voltage, it reduces to nearly zero after the bias voltage of about 1 V. When the orientation of magnetic configurations of both electrodes is parallel, the zero bias spin injection factor is staggering 99% and remains reasonably high in the range of 60%-75% after the bias voltage of 0.6 V.

  8. Chemical pressure tuning of URu2Si2 via isoelectronic substitution of Ru with Fe

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Kanchanavatee, N.; Helton, J. S.; Huang, K.; Baumbach, R. E.; Bauer, E. D.; White, B. D.; Burnett, V. W.; Maple, M. B.; Lynn, J. W.; Janoschek, M.

    2015-02-01

    We have used specific heat and neutron diffraction measurements on single crystals of URu2 -xFexSi2 for Fe concentrations x ≤0.7 to establish that chemical substitution of Ru with Fe acts as "chemical pressure" Pc h as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 (2011), 10.1103/PhysRevB.84.245122] based on bulk measurements on polycrystalline samples. Notably, neutron diffraction reveals a sharp increase of the uranium magnetic moment at x =0.1 , reminiscent of the behavior at the "hidden order" to large-moment-antiferromagnetic phase transition observed at a pressure Px≈0.5 -0.7 GPa in URu2Si2 . Using the unit-cell volume determined from our measurements and an isothermal compressibility κT=5.2 ×10-3 GPa-1 for URu2Si2 , we determine the chemical pressure Pc h in URu2 -xFexSi2 as a function of x . The resulting temperature (T )-chemical pressure (Pc h) phase diagram for URu2 -xFexSi2 is in agreement with the established temperature (T )-external pressure (P ) phase diagram of URu2Si2 .

  9. Electronic structure of Fe{sub 3}Si on Si(100) substrates

    SciTech Connect

    Lal, Chhagan; Di Santo, G.; Caputo, M.; Panighel, M.; Goldoni, A.; Taleatu, B. A.; Jain, I. P.

    2014-04-24

    The improved performance of large-scale integrated circuits (LSIs) by the shrinking of devices is becoming difficult due to physical limitations. Here we report, the growth and formation of Fe{sub 3}Si on Si(100) and characterized by x-ray photoemission, UV photoemission and low energy electron diffraction to study the electronic structure. The results revealed that the DO{sub 3} phase formation is exist and photoemission results also support the electron diffraction outcome.

  10. Phase relations in the Fe-FeSi system at high pressures and temperatures

    SciTech Connect

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2013-06-12

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe–FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe–9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure–temperature, temperature–composition, and pressure–composition space. We find the B2 crystal structure in Fe–9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe–Si outer core is 4380 K, based on the eutectic melting point of Fe–9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe–FeSi system. We predict that alloys containing more than ~4–8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron–silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.

  11. Alloy development and processing of FeAl: An overview

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Alexander, D.J.; Viswanathan, S.

    1997-03-01

    In the last few years, considerable progress has been made in developing B2-phase FeAl alloys with improved weldability, room-temperature ductility, and high-temperature strength. Controlling the processing-induced microstructure is also important, particularly for minimizing trade-offs in various properties. FeAl alloys have outstanding resistance to high-temperature oxidation, sulfidation, and corrosion in various kinds of molten salts due to formation of protective Al{sub 2}O{sub 3} scales. Recent work shows that FeAl alloys are carburization-resistant as well. Alloys with 36 to 40 at. % Al have the best combination of corrosion resistance and mechanical properties. Minor alloying additions of Mo, Zr, and C, together with microalloying additions of B, produce the best combination of weldability and mechanical behavior. Cast FeAl alloys, with 200 to 400 {mu}m grain size and finely dispersed ZrC, have 2 to 5% tensile ductility in air at room-temperature, and a yield strength > 400 MPa up to about 700 to 750{degrees}C. Extruded ingot metallurgy (I/M) and powder metallurgy (P/M) materials with refined grain sizes ranging from 2 to 50 {mu}m, can have 10 to 15% ductility in air and be much stronger, and can even be quite tough, with Charpy impact energies ranging from 25 to 105 J at room-temperature. This paper highlights progress made in refining the alloy composition and exploring processing effects on FeAl for monolithic applications. It also includes recent progress on developing FeAl weld-overlay technology, and new results on welding of FeAl alloys. It summarizes some of the current industrial testing and interest for applications.

  12. Enhanced and Retarded SiO2 Growth on Thermally Oxidized Fe-Contaminated n-Type Si(001) Surfaces

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi; Hagiwara, Hiroyuki

    2013-04-01

    At the beginning of the oxidation of Fe-contaminated n-type Si(001) surfaces, Fe reacted with oxygen (O2) on the silicon (Si) substrate to form Fe2O3 and oxygen-induced point defects (emitted Si + vacancies). SiO2 growth was mainly enhanced by catalytic action of Fe. At 650 °C, SiO2 growth of the contaminated samples was faster than in reference samples rinsed in RCA solution during the first 60 min. However, it substantially slowed and became less than that of the reference samples. As the oxidation advanced, approximately half of the contaminated Fe atoms became concentrated close to the surface area of the SiO2 film layer. This Fe2O3-rich SiO2 layer acted as a diffusion barrier against oxygen species. The diffusion of oxygen atoms toward the SiO2/Si interface may have been reduced, and in turn, the emission of Si self-interstitials owing to oxidation-induced strain may have been decreased at the SiO2/Si interface, resulting in the retarded oxide growth. These results are evidence that emitted Si self-interstitials are oxidized not in the Fe2O3-rich SiO2 layer, but at the SiO2/Si interface in accordance with a previously proposed model. A possible mechanism based on the interfacial Si emission model is discussed. The activation energies for the oxide growth are found to be in accord with the enhanced and reduced growths of the Fe-contaminated samples.

  13. Microstructure and Wear Behavior of Solidification Sonoprocessed B390 Hypereutectic Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Khalifa, Waleed; El-Hadad, Shimaa; Tsunekawa, Yoshiki

    2013-12-01

    The hypereutectic Al-Si alloys constitute an important family of alloys because of their excellent wear resistance and low thermal expansion. However, the optimal microstructure and hence the optimal service performance of these alloys cannot be achieved by the conventional melt treatments used in industry today, because of the chemical incompatibility between the primary-Si refiners and the eutectic-Si modifiers used in microstructure control. The current study aimed at using ultrasonic vibrations to improve the microstructure and the properties of these alloys. The results of the current study showed that for the B390 Al-Si alloy (i) the ultrasonic treatment has potential refining effect on the primary Si and Fe intermetallic phases, (ii) the primary Si particles become finer as the pouring temperature decreases from 1033 K (760 °C) to 938 K (665 °C), (iii) pouring and ultrasonic treatment at temperatures below the start of primary Si precipitation result in the coexistence of large and fine Si particles in microstructure, (iv) phosphorous additions of 50 ppm did not show any substantial effect in the ultrasonically treated ingots, (v) ultrasonic-treated samples have uniform hardness over the surface while the untreated samples show large scattering (high standard deviation) in hardness levels and (vi) ultrasonic-treated samples showed better wear resistance in the absence of phosphorous.

  14. Experimental investigations of Si-isotope fractionation associated with Fe-Si co-precipitates in simulated Precambrian seawater

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Beard, B. L.; Reddy, T. R.; Johnson, C.

    2014-12-01

    The Si cycle was dramatically different in the Precambrian ocean due to the absence of marine Si-secreting organisms. Precambrian Si isotopic compositions were largely controlled by chemical precipitation of Si, input of Si with different isotopic compositions (e.g., continental versus hydrothermal sources) and later alteration and diagenetic processes associated with silicification. In Precambrian banded iron formations (BIFs) and chert deposits there is an over 4‰ spread of Si isotopes (δ30Si), which stands in marked contrast to the narrow range (<0.5) measured in igneous rocks, highlighting the potential of using Si isotopes to reconstruct those processes that controlled the Precambrian marine Si cycle. However, unequivocal interpretations of Si isotope compositions measured in Precambrian Fe-Si rich sediments is hampered by a lack of understanding of Si-isotope fractionation factors associated with formation of these sediments and subsequent diagenetic processes. This study experimentally investigates Si isotope fractionation during the formation of Fe-Si co-precipitates, and between aqueous Si and Fe-Si co-precipitates. All experiments are conducted in an artificially prepared medium that mimics Archean seawater (e.g. Si: ~60 ppm), rather than in a simple Fe-Si solution, because previous studies have revealed distinct Fe isotope fractionation behaviors in artificial Archean seawater (AAS) compared to simple solutions. One set of experiments investigated oxidation of Fe2+ in the AAS at room temperature, which produced amorphous Fe-Si precipitates. Preliminary results show that δ30Si values of Fe-Si co-precipitates are ~2‰ lower than the initial AAS (Δ30Siprecip-AAS = -2.13 ± 0.18‰ (2σ)). A second set of experiments trace Si-isotope exchange between aqueous Si (AAS) and Fe-Si co-precipitates in an anaerobic chamber, using a 29Si spike (i.e. three-isotope method). The results of these experiments will form a basis for reliable interpretations of Si

  15. SiAlON ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, M.H.; Park, B.H.

    1994-05-31

    A method of fabricating a SiAlON ceramic body includes: (a) combining quantities of Si[sub 3]N[sub 4], Al[sub 2]O[sub 3] and CeO[sub 2] to produce a mixture; (b) forming the mixture into a desired body shape; (c) heating the body to a densification temperature of from about 1,550 C to about 1,850 C; (d) maintaining the body at the densification temperature for a period of time effective to densify the body; (e) cooling the densified body to a devitrification temperature of from about 1,200 C to about 1,400 C; and (f) maintaining the densified body at the devitrification temperature for a period of time effective to produce a [beta][prime]-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the [beta][prime]-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: (a) an amorphous phase; and (b) a crystalline phase, the crystalline phase comprising [beta][prime]-SiAlON having lattice substituted elemental or compound form Ce.

  16. The influence of the iron content on the reductive decomposition of A{sub 3−x}Fe{sub x}Al{sub 2}Si{sub 3}O{sub 12} garnets (A = Mg, Mn; 0.47 ≤ x ≤ 2.85)

    SciTech Connect

    Aparicio, Claudia Filip, Jan Mashlan, Miroslav Zboril, Radek

    2014-10-27

    Thermally-induced reductive decomposition of natural iron-bearing garnets of the almandine-pyrope and almandine-spessartine series were studied at temperatures up to 1200 °C (heating rate of 10 °C/min) under atmosphere of forming gas (10% of H{sub 2} in N{sub 2}). Crystallochemical formula of the studied garnet was calculated as {sup VIII}(A{sub 3−x}Fe{sub x}{sup 2+}){sup VI}(Al,Fe{sup 3+}){sub 2}Si{sub 3}O{sub 12}, where the amount of Fe{sup 3+} in the octahedral sites is negligible with the exception of pyrope, A = Mg, Mn, and 0.47 ≤ x ≤ 2.85. The observed decomposition temperature, determined from differential scanning calorimetry and thermogravimetry, is greater than 1000 °C in all cases and showed almost linear dependence on the iron content in the dodecahedral sites of the studied garnets, with the exception of garnet with a near-pyrope composition (Prp{sub 80}Alm{sub 20}). The initial garnet samples and decomposition products were characterized in details by means of X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. We found that all studied garnets have common decomposition products such as metallic iron (in general, rounded particles below 4 μm) and Fe-spinel; the other identified decomposition products depend on starting chemical composition of the garnet: Fe-cordierite, olivine (fayalite or tephroite), cristobalite, pyroxene (enstatite or pigeonite), and anorthite. Anorthite and pigeonite were only present in garnets with Ca in the dodecahedral site. All the identified phases were usually well crystallized.

  17. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  18. Refinement of primary Si grains in Al-20%Si alloy slurry through serpentine channel pouring process

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-kai; Mao, Wei-min; Liu, Zhi-yong; Wang, Dong; Yue, Rui

    2016-05-01

    In this study, a serpentine channel pouring process was used to prepare the semi-solid Al-20%Si alloy slurry and refine primary Si grains in the alloy. The effects of the pouring temperature, number of curves in the serpentine channel, and material of the serpentine channel on the size of primary Si grains in the semi-solid Al-20%Si alloy slurry were investigated. The results showed that the pouring temperature, number of the curves, and material of the channel strongly affected the size and distribution of the primary Si grains. The pouring temperature exerted the strongest effect, followed by the number of the curves and then the material of the channel. Under experimental conditions of a four-curve copper channel and a pouring temperature of 701°C, primary Si grains in the semi-solid Al-20%Si alloy slurry were refined to the greatest extent, and the lath-like grains were changed into granular grains. Moreover, the equivalent grain diameter and the average shape coefficient of primary Si grains in the satisfactory semi-solid Al-20%Si alloy slurry were 24.4 μm and 0.89, respectively. Finally, the refinement mechanism and distribution rule of primary Si grains in the slurry prepared through the serpentine channel pouring process were analyzed and discussed.

  19. Influence of FeCrAl Content on Microstructure and Bonding Strength of Plasma-Sprayed FeCrAl/Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Luo, Fa; Zhou, Wancheng; Zhu, Dongmei

    2016-02-01

    Low-power plasma-sprayed FeCrAl/Al2O3 composite coatings with 1.5 mm thickness have been fabricated for radar absorption applications. The effects of FeCrAl content on the coating properties were studied. The FeCrAl presents in the form of a few thin lamellae and numerous particles, demonstrating relatively even distribution in all the coatings. Results show that the micro-hardness and porosity decrease with the increase in FeCrAl content. With FeCrAl content increasing from 28 to 47 wt.%, the bonding strength of the coatings with 1.5 mm thickness increases from 10.5 to 27 MPa, and the failure modes are composed of cohesive and adhesive failure, which are ascribed to the coating microstructure and the residual stress, respectively.

  20. Magnetic properties of epitaxial and polycrystalline Fe/Si multilayers

    SciTech Connect

    Chaiken, A.; Michel, R.P.; Wang, C.T.

    1995-08-01

    Fe/Si multilayers with antiferromagnetic interlayer coupling have been grown via ion-beam sputtering on both glass and single-crystal substrates. X-ray diffraction measurements show that both sets of films have crystalline iron silicide spacer layers and a periodic composition modulation. Films grown on glass have smaller crystallite sizes than those grown on single-crystal substrates and have a significant remanent magnetization. Films grown on single-crystal substrates have a smaller remanence. The observation of magnetocrystalline anisotropy in hysteresis loops and (hkl) peaks in x-ray diffraction demonstrates that the films grown on MgO and Ge are epitaxial. The smaller remanent magnetization in Fe/Si multilayers with better crystallinity suggests that the remanence is not intrinsic.

  1. 57Fe Mössbauer study of Lu2Fe3Si5 iron silicide superconductor

    DOE PAGESBeta

    Ma, Xiaoming; Ran, Sheng; Pang, Hua; Li, Fashen; Canfield, Paul C.; Bud'ko, Sergey L.

    2015-08-01

    With the advent of Fe–As based superconductivity it has become important to study how superconductivity manifests itself in details of 57Fe Mössbauer spectroscopy of conventional, Fe-bearing superconductors. The iron-based superconductor Lu2Fe3Si5 has been studied by 57Fe Mössbauer spectroscopy over the temperature range from 4.4 K to room temperature with particular attention to the region close to the superconducting transition temperature (Tc=6.1 K). Consistent with the two crystallographic sites for Fe in this structure, the observed spectra appear to have a pattern consisting of two doublets over the whole temperature range. Furthermore, the value of Debye temperature was estimated from temperaturemore » dependence of the isomer shift and the total spectral area and compared with the specific heat capacity data. Neither abnormal behavior of the hyperfine parameters at or near Tc, nor phonon softening were observed.« less

  2. An Assessment of the Al- Fe- N System

    NASA Astrophysics Data System (ADS)

    Hillert, Mats; Jonsson, Stefan

    1992-11-01

    The thermodynamic properties of the Al-Fe-N system are assessed, taking various types of information into account. For solid AIN, a description very similar to that given by JANAF is found to yield reasonable predictions for the solubility of A1N in face-centered cubic (fcc) Fe and in liquid Fe. An ionic two-sublattice model is applied to the liquid phase, containing two N species, N-3 and N0 The melting point of A1N is taken as 3068 K, and a required gas pressure of 9.75 bar is predicted. A sublimation point of 2690 K at 1 bar is also predicted. A plot of the liquidus surfaces in the Fe-rich end of the Al-Fe-N system is presented.

  3. Effect of Fe coating of nucleation sites on epitaxial growth of Fe oxide nanocrystals on Si substrates

    NASA Astrophysics Data System (ADS)

    Ishibe, Takafumi; Watanabe, Kentaro; Nakamura, Yoshiaki

    2016-08-01

    We studied the effect of Fe coating on the epitaxial growth of Fe3O4 nanocrystals (NCs) over Fe-coated Ge epitaxial nuclei on Si(111). To completely cover Ge nuclei with Fe, some amount of Fe (>8 monolayers) must be deposited. Such covering is a key to epitaxial growth because an Fe coating layer prevents the oxidation of Ge surfaces during Fe3O4 formation, resulting in the epitaxial growth of Fe3O4 on them. This study demonstrates that an appropriate Fe coating of nucleation sites leads to the epitaxial growth of Fe3O4 NCs on Si substrates, indicating the realization of environmentally friendly and low-cost Fe3O4 NCs as the resistance random access memory material.

  4. Mössbauer and SEM study of Fe Al film

    NASA Astrophysics Data System (ADS)

    Sebastian, Varkey; Sharma, Ram Kripal; Lakshmi, N.; Venugopalan, K.

    2006-04-01

    Fe Al alloy with Fe/Al ratio of 3:1 was first prepared by argon arc melting. It was subsequently coated on glass slide and cellophane tape using an electron beam gun system to have a thickness of 2,000 Å. X-ray diffraction spectrum of the coated sample indicates a definite texture for the film with a preferential growth along the Fe(110) plane. SEM micrographs of the film showed the presence of nano islands of nearly 3 × 1012/m2 surface density. Composition of different parts of the film was determined using EDAX. Room temperature Fe-57 Mössbauer spectrum of coated sample showed the presence a quadrupole doublet with a splitting of 0.46 mm/s, which is typical of Al-rich iron compounds. MOKE study shows an in-plane magnetic moment.

  5. Ion channeling studies of epitaxial Fe and Co silicides on Si

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Onda, N.; Goncalves-Conto, S.; Sirringhaus, H.; von Kanel, H.; Pixley, R. E.

    1994-12-01

    High quality epitaxial Co and Fe silicides have been grown by molecular beam epitaxy on Si(111) and Si(001) substrates with film thicknesses ranging between 25 and 8400 A. We used Rutherford backscattering spectrometry channeling techniques to measure the lattice distortion as a function of film thickness. The critical thickness h(sub c) corresponding to the film thickness at which strain relieving dislocations begin to appear was determined for CoSi2 on Si(111) and Si(001) as well as for Si on CoSi2(111). For CoSi2 on Si(001), a larger critical thickness was obtained on Si(111), where h(sub c) is about 45A. Epitaxial Si on CoSi2(111) was found to be under a compressive strain up to thicknesses of about 350 a depending on substrate misorientation. Strain measurements were also performed on epitaxially stabilized Co and Fe monosilicides with the CsCl structure. Channeling measurements on thick epitaxial films of bcc-Fe, Fe3Si, FeSi, and Fe0.5Si were used to determine the crystalline quality. Excellent channeling minimum yields of 4.0% were found for bcc-Fe/Si(111). The results are compared with structural information obtained from x-ray diffraction and Brillouin scattering spectroscopy.

  6. Epoxy-bonded La-Fe-Co-Si magnetocaloric plates

    NASA Astrophysics Data System (ADS)

    Pulko, Barbara; Tušek, Jaka; Moore, James D.; Weise, Bruno; Skokov, Konstantin; Mityashkin, Oleg; Kitanovski, Andrej; Favero, Chiara; Fajfar, Peter; Gutfleisch, Oliver; Waske, Anja; Poredoš, Alojz

    2015-02-01

    We report the processing, analysis and testing of magnetocaloric composite materials consisting of La-Fe-Co-Si particles of various size fractions and a polymer matrix. All of the composites have working temperatures close to room temperature. The composites were pressed into thin plates, a geometry favorable for testing the composites in an active magnetic regenerator (AMR). In order to investigate the influence of particle size and binder type (epoxy), eight different epoxy-bonded La-Fe-Co-Si plates were made and analyzed. We found that the higher filling factor that can be achieved by using a mixture of several particle size fractions has beneficial influence on the thermal conductivity. Tests in the AMR revealed that a maximum temperature span of approximately ΔT=10 K under magnetic field change of μ0H=1.15 T can be obtained at no cooling load conditions. The stability of the measured ΔT values and the mechanical integrity of sample after cyclic application of a magnetic field have been monitored for 90,000 cycles and showed no significant changes. We therefore conclude that epoxy-bonded La-Fe-Co-Si magnetocaloric composites have good magnetocaloric properties at low material-processing costs and hence represent a competitive way to produce magnetocaloric materials to be used in AMR.

  7. Charge storage in β-FeSi{sub 2} nanoparticles

    SciTech Connect

    Theis, Jens; Küpper, Sebastian; Lorke, Axel; Bywalez, Robert; Wiggers, Hartmut

    2015-02-07

    We report on the observation of a surprisingly high specific capacitance of β-FeSi{sub 2} nanoparticle layers. Lateral, interdigitated capacitor structures were fabricated on thermally grown silicon dioxide and covered with β-FeSi{sub 2} particles by drop or spin casting. The β-FeSi{sub 2}-nanoparticles, with crystallite sizes in the range of 10–30 nm, were fabricated by gas phase synthesis in a hot wall reactor. Compared to the bare electrodes, the nanoparticle-coated samples exhibit a 3–4 orders of magnitude increased capacitance. Time-resolved current voltage measurements show that for short times (seconds to minutes), the material is capable of storing up to 1 As/g at voltages of around 1 V. The devices are robust and exhibit long-term stability under ambient conditions. The specific capacitance is highest for a saturated relative humidity, while for a relative humidity below 40% the capacitance is almost indistinguishable from a nanoparticle-free reference sample. The devices work without the need of a fluid phase, the charge storing material is abundant and cost effective, and the sample design is easy to fabricate.

  8. Structure and optical properties of aSiAl and aSiAlHx magnetron sputtered thin films

    NASA Astrophysics Data System (ADS)

    Thøgersen, Annett; Stange, Marit; Jensen, Ingvild J. T.; Røyset, Arne; Ulyashin, Alexander; Diplas, Spyros

    2016-03-01

    Thin films of homogeneous mixture of amorphous silicon and aluminum were produced with magnetron sputtering using 2-phase Al-Si targets. The films exhibited variable compositions, with and without the presence of hydrogen, aSi1-xAlx and aSi1-xAlxHy. The structure and optical properties of the films were investigated using transmission electron microscopy, X-ray photoelectron spectroscopy, UV-VisNIR spectrometry, ellipsometry, and atomistic modeling. We studied the effect of alloying aSi with Al (within the range 0-25 at. %) on the optical band gap, refractive index, transmission, and absorption. Alloying aSi with Al resulted in a non-transparent film with a low band gap (<1 eV). Hydrogenation of the films increased the band gap to values >1 eV. Variations of the Al and hydrogen content allowed for tuning of the optoelectronic properties. The films are stable up to a temperature of 300 °C. At this temperature, we observed Al induced crystallization of the amorphous silicon and the presence of large Al particles in a crystalline Si matrix.

  9. Dependence of BiFeO3 thickness on exchange bias in BiFeO3/ Co2FeAl multiferroic structures

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, D. L.; Wang, Y. H.; Miao, J.; Xu, X. G.; Jiang, Y.

    2011-01-01

    We have grown BiFeO3 (BFO) thin films with different thickness on Si/SiO2/Ti/Pt(111) substrates by pulsed laser deposition. Half-metallic Co2FeAl (CFA) films with a thickness of 5 nm were then grown on the BFO films by magnetron sputtering. Through the magnetic hysteresis loops of the BFO/CFA heterostructure, we observe a direct correlation between the thickness of the BFO film and exchange bias (EB) field. The EB field exhibits fluctuation behavior with a cyclical BFO thickness of 60 nm, which is close to the spiral modulation wavelength (62 nm) of BFO. It indicates the influence of spiral modulation on the EB in the BFO/CFA multiferroic structure.

  10. Magnetic properties of Fe and Fe-Si alloys with {100}<0vw> texture

    NASA Astrophysics Data System (ADS)

    Kyung Sung, Jin; Mo Koo, Yang

    2013-05-01

    When iron and its alloy sheets with clean metal surfaces undergo the γ to α phase transformation, they develop strong {100}<0vw> texture with grain size being larger than the sheet thickness. For example, when Fe or Fe-1%Si sheets were subjected to the γ to α phase transformation in a reducing gas atmosphere (hydrogen gas having the dew point below -50 °C), strong {100}<0vw> texture developed. Magnetic properties of Fe and Fe-Si alloys show that, by developing the {100}<0vw> texture, the core loss can be reduced by more than 25% and the permeability can be increased by 2-5 times. With 0.35 mm-thick Fe-1%Si with the {100}<0vw> texture, the magnetic properties are W15/50 (core loss at 1.5 T, 50 Hz) = 2.7 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.80 T. The improvement of permeability together with reducing iron loss by texture control will make a significant contribution to improving power density as well as reducing copper losses in induction motors.

  11. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  12. Crystal structure and electronic properties of the new compounds, U 6Fe 16Si 7 and its interstitial carbide U 6Fe 16Si 7C

    NASA Astrophysics Data System (ADS)

    Berthebaud, D.; Tougait, O.; Potel, M.; Lopes, E. B.; Gonçalves, A. P.; Noël, H.

    2007-10-01

    The new compounds U6Fe16Si7 and U6Fe16Si7C were prepared by arc-melting and subsequent annealing at 1500 °C. Single-crystal X-ray diffraction showed that they crystallize in the cubic space group Fm3¯m (No. 225), with unit-cell parameters at room temperature a=11.7206(5) Å for U6Fe16Si7 and a=11.7814(2) Å for U6Fe16Si7C. Their crystal structures correspond to ordered variants of the Th6Mn23 type. U6Fe16Si7 adopts the Mg6Cu16Si7 structure type, whereas U6Fe16Si7C crystallizes with a novel "filled" quaternary variant. The inserted carbon is located in octahedral cages formed by six U atoms, with U-U interatomic distances of 3.509(1) Å. Insertion of carbon in the structure of U6Fe16Si7 has a direct influence on the U-Fe and Fe-Fe interatomic distances. The electronic properties of both compounds were investigated by means of DC susceptibility, electrical resistivity and thermopower. U6Fe16Si7 is a Pauli paramagnet. Its electrical resistivity and thermopower point out that it cannot be classified as a simple metal. The magnetic susceptibility of U 6Fe 16Si 7C is best described over the temperature range 100-300 K by using a modified Curie-Weiss law with an effective magnetic moment of 2.3(2) μB/U, a paramagnetic Weiss temperature, θp=57(2) K and a temperature-independent term χ0=0.057(1) emu/mol. Both the electrical resistivity and thermopower reveal metallic behavior.

  13. Analysis of optical and magnetooptical spectra of Fe{sub 5}Si{sub 3} and Fe{sub 3}Si magnetic silicides using spectral magnetoellipsometry

    SciTech Connect

    Lyashchenko, S. A. Popov, Z. I.; Varnakov, S. N.; Popov, E. A.; Molokeev, M. S.; Yakovlev, I. A.; Kuzubov, A. A.; Ovchinnikov, S. G.; Shamirzaev, T. S.; Latyshev, A. V.; Saranin, A. A.

    2015-05-15

    The optical, magnetooptical, and magnetic properties of polycrystalline (Fe{sub 5}Si{sub 3}/SiO{sub 2}/Si(100)) and epitaxial Fe{sub 3}Si/Si(111) films are investigated by spectral magnetoellipsometry. The dispersion of the complex refractive index of Fe{sub 5}Si{sub 3} is measured using multiangle spectral ellipsometry in the range of 250–1000 nm. The dispersion of complex Voigt magnetooptical parameters Q is determined for Fe{sub 5}Si{sub 3} and Fe{sub 3}Si in the range of 1.6–4.9 eV. The spectral dependence of magnetic circular dichroism for both silicides has revealed a series of resonance peaks. The energies of the detected peaks correspond to interband electron transitions for spin-polarized densities of electron states (DOS) calculated from first principles for bulk Fe{sub 5}Si{sub 3} and Fe{sub 3}Si crystals.

  14. Room-temperature magnetocurrent in antiferromagnetically coupled Fe/Si/Fe

    NASA Astrophysics Data System (ADS)

    Gareev, Rashid; Schmid, Maximilian; Vancea, Johann; Back, Christian; Schreiber, Reinert; Buergler, Daniel; Schneider, Claus; Stromberg, Frank; Wende, Heiko

    2011-03-01

    Epitaxial Si-based ferromagnet/semiconductor structures demonstrate strong antiferromagnetic coupling (AFC) as well as resonant-type tunneling magnetoresistance, which vanishes at temperatures above T ~ 50 K. Magnetoresistance effects in Fe/Si/Fe close to room temperature (RT) were not established yet. By using the ballistic electron magnetomicroscopy (BEMM) techniques, with its nanometer-scaled locality we observed for the first time a spin-dependent ballistic magnetotransport in AFC structures. We found that the hot-electron collector current with energies above the Fe/GaAsP Schottky barrier reflects magnetization alignment and changes from IcAP ~ 50 fA for antiparallel alignment to IcP ~ 150 fA for the parallel one. Thus, the magnetocurrent [(IcP -IcAP) / IcAP ]*100% is near 200 % at RT. The measured BEMM hysteresis loops match nicely with the magnetic MOKE data. This work is supported by the project DFG 9209379.

  15. Preparation of Fe-doped colloidal SiO(2) abrasives and their chemical mechanical polishing behavior on sapphire substrates.

    PubMed

    Lei, Hong; Gu, Qian; Chen, Ruling; Wang, Zhanyong

    2015-08-20

    Abrasives are one of key influencing factors on surface quality during chemical mechanical polishing (CMP). Silica sol, a widely used abrasive in CMP slurries for sapphire substrates, often causes lower material removal rate (MRRs). In the present paper, Fe-doped colloidal SiO2 composite abrasives were prepared by a seed-induced growth method in order to improve the MRR of sapphire substrates. The CMP performance of Fe-doped colloidal SiO2 abrasives on sapphire substrates was investigated using UNIPOL-1502 CMP equipment. Experimental results indicate that the Fe-doped colloidal SiO2 composite abrasives exhibit lower surface roughness and higher MRR than pure colloidal SiO2 abrasives for sapphire substrates under the same testing conditions. Furthermore, the acting mechanism of Fe-doped colloidal SiO2 composite abrasives in sapphire CMP was analyzed by x-ray photoelectron spectroscopy. Analytical results show that the Fe in the composite abrasives can react with the sapphire substrates to form aluminum ferrite (AlFeO3) during CMP, which promotes the chemical effect in CMP and leads to improvement of MRR. PMID:26368752

  16. Recycling of Al-Si die casting scraps for solar Si feedstock

    NASA Astrophysics Data System (ADS)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  17. Iron spin state and site distribution in FeAlO3-bearing bridgmanite

    NASA Astrophysics Data System (ADS)

    Mohn, Chris E.; Trønnes, Reidar G.

    2016-04-01

    DFT at the GGA, GGA + U and hybrid functional levels were used to investigate thousands of different Al and Fe3+ configurations of MgSiO3-FeAlO3 (MS-FA) and MgSiO3-FeAlO3-Al2O3 bridgmanite at deep mantle conditions. Comparison of the different functionals and atomic charge analysis suggests that GGA, frequently used to explain high to low spin transitions observed in several Mössbauer and X-ray emission spectroscopy experiments, is hampered by spurious self-interaction errors in the exchange-correlation energy. Configurational Boltzmann averaging shows that the B site is thermally inaccessible to Fe3+ at the GGA + U and hybrid levels, and we find no evidence for a spin-pairing transition in fully (thermodynamically) equilibrated samples of bridgmanite, even at the lowermost mantle conditions. The comparison of the cation radii of Fe3+ and Mg supports a spin transition accompanied by a site exchange, but the flexibility of Fesbnd O bonds to locally adapt promotes the incorporation of iron in the irregularly coordinated A-site. The concept of ionic radii is therefore unsuitable for analysis of spin state and site exchange in bridgmanite at these conditions. Consistent with previous computational work and experimental studies with glass and gel as starting material, we find that ferric iron kinetically trapped at the B site undergoes a spin transition under lowermost mantle conditions. In bridgmanite with mole fraction of Fe3+ >Al a charge-balancing amount of low spin Fe3+ will be thermodynamically stable at the B site, but because bridgmanite in peridotitic and basaltic lithologies mostly has Al/Fetotal above unity, FA with high spin Fe3+ in the A-site will be the dominant iron component. The lack of a Fe3+ spin transition in the FA-component has important implications for bridgmanite-ferropericlase partitioning of iron and magnesium and the mineral physics of the lowermost mantle.

  18. High performance AlGaN/GaN HEMTs with AlN/SiNx passivation

    NASA Astrophysics Data System (ADS)

    Xin, Tan; Yuanjie, Lü; Guodong, Gu; Li, Wang; Shaobo, Dun; Xubo, Song; Hongyu, Guo; Jiayun, Yin; Shujun, Cai; Zhihong, Feng

    2015-07-01

    AlGaN/GaN high electron-mobility transistors (HEMTs) with 5 nm AlN passivation by plasma enhanced atomic layer deposition (PEALD) were fabricated, covered by 50 nm SiNx which was grown by plasma enhanced chemical vapor deposition (PECVD). With PEALD AlN passivation, current collapse was suppressed more effectively and the devices show better subthreshold characteristics. Moreover, the insertion of AlN increased the RF transconductance, which lead to a higher cut-off frequency. Temperature dependence of DC characteristics demonstrated that the degradations of drain current and maximum transconductance at elevated temperatures for the AlN/SiNx passivated devices were much smaller compared with the devices with SiNx passivation, indicating that PEALD AlN passivation can improve the high temperature operation of the AlGaN/GaN HEMTs. Project supported by the National Natural Science Foundation of China (No. 60890192).

  19. Ab initio studies of Co2FeAl1-xSix Heusler alloys

    NASA Astrophysics Data System (ADS)

    Szwacki, N. Gonzalez; Majewski, Jacek A.

    2016-07-01

    We present results of extensive theoretical studies of Co2FeAl1-xSix Heusler alloys, which have been performed in the framework of density functional theory employing the all-electron full-potential linearized augmented plane-wave scheme. It is shown that the Si-rich alloys are more resistive to structural disorder and as a consequence Si stabilizes the L21 structure. Si alloying changes position of the Fermi level, pushing it into the gap of the minority spin-band. It is also shown that the hyperfine field on Co nuclei increases with the Si concentration, and this increase originates mostly from the changes in the electronic density of the valence electrons.

  20. Sound velocity and density of liquid Fe-Ni-Si under pressure: Application to the composition of planetary molten core

    NASA Astrophysics Data System (ADS)

    Terasaki, H. G.; Kuwabara, S.; Shimoyama, Y.; Takubo, Y.; Urakawa, S.; Nishida, K.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Watanuki, T.; Katayama, Y.; Kondo, T.; Higo, Y.

    2014-12-01

    The cores of Mercury, Mars and Moon are reported to be partially/totally molten (e.g., Margot et al. 2007, Yoder et al. 2003, Williams et al. 2001). In order to constrain the core compositions of those bodies from observed and future-planned seismic data, sound velocity and density of the core material, i.e., liquid Fe-alloy, are necessary. In this study, we have performed simultaneous measurements on these physical properties of liquid Fe-Ni-Si alloys, which is one of the major candidates for the core constituent. The effects of pressure and Si content on these properties were studied. High pressure experiments were performed using 80-ton uniaxial press designed for CT measurement or 180-ton cubic type multi-anvil press installed at BL20XU and BL22XU beamlines of SPring-8 synchrotron facility, respectively. Used samples were Fe-Ni-Si with Si content of 10-30 at%. The sample pellet was sandwiched by the single crystal sapphire buffer rod for sound velocity measurement. P-wave sound velocity was measured using pulse-echo overlapping ultrasonic method. LiNbO3 transducer was attached to the backside of the anvil to generate and receive elastic wave signals. Density was determined based on 3D volume data obtained from CT measurement or X-ray absorption profile. The P-wave velocity (VP) and density of liquid Fe-Ni-Si were successfully measured up to 2.5 GPa and 1773 K. Obtained VP of the Fe-Ni-Si is found to increase rapidly with pressure below 1 GPa and increase gradually above 1 GPa. It is also found that VP increases slightly with Si content on the density-VP plot. These trends provide a constraint on the core composition of the planets and moon by comparing with observed data.

  1. In situ synchrotron tomographic investigation of the solidification of an AlMg4.7Si8 alloy

    PubMed Central

    Tolnai, D.; Townsend, P.; Requena, G.; Salvo, L.; Lendvai, J.; Degischer, H.P.

    2012-01-01

    The solidification sequence of an AlMg4.7Si8 alloy is imaged in situ by synchrotron microtomography. Tomograms with (1.4 μm)3/voxel have been recorded every minute while cooling the melt from 600 °C at a cooling rate of 5 K min−1 to 540 °C in the solid state. The solidification process starts with the three-dimensional evolution of the α-Al dendritic structure at 590 °C. The growth of the α-Al dendrites is described by curvature parameters that represent the coarsening quantitatively, and ends in droplet-like shapes of the secondary dendrite arms at 577 °C. There, the eutectic valley of α-Al/Mg2Si is reached, forming initially octahedral Mg2Si particles preferentially at the bases of the secondary dendrite arms. The eutectic grows with seaweed-like Mg2Si structures, with increasing connectivity. During this solidification stage Fe-aluminides form and expand as thin objects within the interdendritic liquid. Finally, the remaining liquid freezes as ternary α-Al/Mg2Si/Si eutectic at 558 °C, increasing further the connectivity of the intermetallic phases. The frozen alloy consists of four phases exhibiting morphologies characteristic of their mode of solidification: α-Al dendrites, eutectic α-Al/Mg2Si “Chinese script” with Fe-aluminides, and interpenetrating α-Al/Mg2Si/Si ternary eutectic. PMID:23470958

  2. Broad Negative Thermal Expansion Operation-Temperature Window Achieved by Adjusting Fe-Fe Magnetic Exchange Coupling in La(Fe,Si)13 Compounds.

    PubMed

    Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Li, Wen; Wang, Wei; Huang, Chuanjun; Gong, Pifu; Lin, Zheshuai; Li, Laifeng

    2015-08-17

    Cubic La(Fe,Si)13-based compounds have been recently developed as promising negative thermal expansion(NTE) materials, but the narrow NTE operation-temperature window(∼110 K) restricts their actual applications. In this work, we demonstrate that the NTE operation-temperature window of LaFe(13-x)Si(x) can be significantly broadened by adjusting Fe-Fe magnetic exchange coupling as x ranges from 2.8 to 3.1. In particular, the NTE operation-temperature window of LaFe10.1Si2.9 is extended to 220 K. More attractively, the coefficients of thermal expansion of LaFe10.0Si3.0 and LaFe9.9Si3.1 are homogeneous in the NTE operation-temperature range of about 200 K, which is much valuable for the stability of fabricating devices. The further experimental characterizations combined with first-principles studies reveal that the tetragonal phase is gradually introduced into the cubic phase as the Si content increases, hence modifies the Fe-Fe interatomic distance. The reduction of the overall Fe-Fe magnetic exchange interactions contributes to the broadness of NTE operation-temperature window for LaFe(13-x)Si(x). PMID:26196377

  3. Complete fusion of 19F with Al and Si isotopes

    NASA Astrophysics Data System (ADS)

    Chiou, M. S.; Wu, M. W.; Easwar, N.; Maher, J. V.

    1981-12-01

    Complete fusion cross sections have been determined by directly detecting evaporation residuals for the systems 19F + 27Al and 19F + 28,30Si over a 19F laboratory energy range 34-75 MeV. In all cases σfus increases smoothly with energy and eventually saturates at 1200-1250 mb. In the barrier penetration region the cross section for 19F + 28Si is always sufficiently smaller than that for 19F + 30Si to make the reduced barrier radius in a Glas-Mosel parametrization significantly smaller for the former system than for the latter. Three entrance channels are now available for the fused-system 46Ti: Critical angular momentum data from the 16O + 30Si entrance channel approach the statistical yrast line at much lower fused-system excitation energy than do the data from the entrance channels 18O + 28Si and 19F + 27Al. NUCLEAR REACTIONS Measured complete fusion cross sections for the systems 19F + 27Al, 19F + 28Si, 19F + 30Si; E=34-75 MeV. Deduced Glas-Mosel model and statistical yrast model parameters.

  4. B Removal by Zr Addition in Electromagnetic Solidification Refinement of Si with Si-Al Melt

    NASA Astrophysics Data System (ADS)

    Lei, Yun; Ma, Wenhui; Sun, Luen; Dai, Yongnian; Morita, Kazuki

    2016-02-01

    This study investigated a new process of enhancing B removal by adding small amounts of Zr in the electromagnetic solidification refinement of Si with Si-Al melt. B in Si was removed by as much as 97.2 pct by adding less than 1057 ppma Zr, and the added Zr was removed by as much as 99.7 pct. In addition, Zr is more effective in enhancing B removal than Ti in the same electromagnetic solidification refining process.

  5. (Si){sub 5-2y}(AlP){sub y} alloys assembled on Si(100) from Al-P-Si{sub 3} building units

    SciTech Connect

    Watkins, T.; Chizmeshya, A. V. G.; Kouvetakis, J.; Jiang, L.; Xu, C.; Smith, D. J.; Menendez, J.

    2012-01-09

    An original class of IV/III-V hybrid (Si){sub 5-2y}(AlP){sub y}/Si(100) semiconductors have been produced via tailored interactions of molecular P(SiH{sub 3}){sub 3} and atomic Al yielding tetrahedral ''Al-P-Si{sub 3}'' building blocks. Extensive structural, optical, and vibrational characterization corroborates that these units condense to assemble single-phase, monocrystalline alloys containing 60%-90% Si (y = 0.3-1.0) as nearly defect-free layers lattice-matched to Si. Spectroscopic ellipsometry and density functional theory band structure calculations indicate mild compositional bowing of the band gaps, suggesting that the tuning needed for optoelectronic applications should be feasible.

  6. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    NASA Astrophysics Data System (ADS)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    formation of more stable UAl3 within the diffusion layer [14]. In addition, Si will not notably influence the reactor neutronics due to its low absorption cross section for thermal neutrons of σabs = 0.24 barn. Aluminum has σabs = 0.23 barn.Williams [28], Bierlein [29], Green [30] and de Luca [31] showed the first time in the 1950s that alloying Aluminum with some Silicon reduces the Uranium-Aluminum diffusion kinetics in can-type fuel elements. However, up to now uncertainties remained about the most promising Si concentration and the involved mechanisms.Ground powder - possibility 4 - introduces a high density of defects like dislocations, oxide layers and impurities into UMo grains. Fuel prepared with this kind of powder exhibits a larger porosity. It may also be combined with an AlSi matrix. As a consequence, the degree of swelling due to high-burn up is reduced compared to fuel with atomized powder [5,6,25].This study focuses on the metallurgical characterization of as-fabricated samples prepared with ground UMo and UMoX (X = Ti, Nb, Pt) powders and atomized UMo powder. The influence of some Si into the Al matrix and the presence of oxide layers on the UMo is discussed. Details of the differences of samples with ground UMo from atomized UMo will be discussed.The examined samples originate from non-irradiated spare fuel plates from the IRIS-TUM irradiation campaign [5,6]. The samples containing ground UMoX powders and atomized UMo powders with Si addition into the matrix have been produced for this study [32]. Powder mixing: The UMo powder is mixed with Al powder. Compact production: UMo-Al powder is poured into a mould and undergoes compaction under large force. Plate-processing: An AlFeNi frame is placed on an AlFeNi plate and the UMo-Al compact is placed into the frame. Afterwards it is covered with a second AlFeNi plate. This assembly is hot-rolled to reduce the total thickness to 1.4 mm. Subsequently, a blister test (1-2 h at 400-450 °C) ensures that the

  7. Assessment of Mn-Fe-Si-C Melt in Unified Interaction Parameter Formalism

    NASA Astrophysics Data System (ADS)

    Shin, Jung Pil; Lee, Young E.

    2016-02-01

    The solubility of C in Mn-Fe-Si-C melt decreases with increasing Si content, and its decrease becomes greater when the phase in equilibrium with Mn-Fe-Si-C melt changes from carbon to SiC. Such behavior has an industrial implication for low carbon products and processes of steels and Mn alloys. Li and Morris assessed the solution properties of Mn-Fe-Si-C system in the UIP formalism, but the effectiveness of their assessment was limited in applicable ranges of composition to Mn-rich solution and of temperature to around 1673 K (1400 °C). This study develops the information of activity coefficients of C and Si of Mn-Fe-Si-C system from the consistent experimental solubility of C and assesses them in the UIP formalism. This assessment of Mn-Fe-Si-C system describes confidently the behavior of solution properties in a wide range of composition and temperature.

  8. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  9. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  10. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  11. Host Atom Diffusion in Ternary Fe-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Rohrberg, Diana; Spitzer, Karl-Heinz; Dörrer, Lars; Kulińska, Anna J.; Borchardt, Günter; Fraczkiewicz, Anna; Markus, Torsten; Jacobs, Michael H. G.; Schmid-Fetzer, Rainer

    2014-01-01

    In the Fe-rich corner of the Fe-Cr-Al ternary phase diagram, both interdiffusion experiments [1048 K to 1573 K (775 °C to 1300 °C)] and 58Fe tracer diffusion experiments [873 K to 1123 K (600 °C to 850 °C)] were performed along the Fe50Cr50-Fe50Al50 section. For the evaluation of the interdiffusion data, a theoretical model was used which directly yields the individual self-diffusion coefficients of the three constituents and the shift of the original interface of the diffusion couple through inverse modeling. The driving chemical potential gradients were derived using a phenomenological Gibbs energy function which was based on thoroughly assessed thermodynamic data. From the comparison of the individual self-diffusivities of Fe as obtained from interdiffusion profiles and independent 58Fe tracer diffusivities, the influence of the B2-A2 order-disorder transition becomes obvious, resulting in a slightly higher activation enthalpy for the bcc-B2 phase and a significantly lower activation entropy for this phase.

  12. The corrosion behavior of Fe-Mn-Al weld metals

    NASA Astrophysics Data System (ADS)

    Aidun, Daryush K.

    2001-02-01

    The corrosion resistance of a newly developed iron-base, Fe-Mn-Al austenitic, and duplex weld metal has been examined in the NACE solution consisting of 5 wt.% NaCl, 0.5 wt.% acetic acid, and the balance distilled water. The electrochemical techniques such as potentiodynamic polarization, Tafel plots, linear polarization, cyclic polarization, and open-circuit potential versus time were employed. The Fe-Mn-Al weld metals did not passivate and exhibited high corrosion rates. Fe-Cr-Ni (310 and 316) weld and base metals were also examined in the NACE solution at room temperature. The 310 and 316 base metals were more resistant to corrosion than the as-welded 310 and 316 weld metals. Postweld heat treatment (PWHT) improved the corrosion performance of the Fe-Mn-Al weld metals. The corrosion resistance of Fe-Mn-Al weld metals after PWHT was still inferior to that of the 310 and 316 weld and base metals.

  13. Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials

    SciTech Connect

    Riedl, H.; Zálešák, J.; Arndt, M.; Polcik, P.; Holec, D.; Mayrhofer, P. H.

    2015-09-28

    The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, CrN, and Cr{sub 0.90}Si{sub 0.10}N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required to implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, and Cr{sub 0.90}Si{sub 0.10}N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.

  14. Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hao, Hao; Wang, Junbo; Liu, Jiali; Huang, Tao; Yu, Aishui

    2012-07-01

    Li2FeSiO4/C composites doped by vanadium at Fe/Si sites have been investigated as cathode materials for lithium ion batteries. Effects of vanadium substitution at different sites on the structure of Li2FeSiO4/C are examined by X-ray diffraction, X-photoelectron spectroscopy and scanning electron microscopy. XPS results show that the oxidation state of vanadium doped at Fe sites is +3, whereas is +5 when doped at Si sites. Electrochemical measurements show that the Li2FeSi0.9V0.1O4/C sample exhibits the best electrochemical performance with initial discharge capacity of 159 mAh g-1 and excellent cyclability with capacity of 145 mAh g-1 at 30th cycle, which can be ascribed to larger cell volume and higher lithium ion diffusion coefficient, however, the initial discharge of the Li2Fe0.9V0.1SiO4/C sample is only 90% of the undoped Li2FeSiO4, which can be attributed to the loss of Fe content.

  15. Comparison of Fe-AlPILC and Fe-ZSM-5 catalysts used for degradation of methomyl

    NASA Astrophysics Data System (ADS)

    Lázár, Károly; Tomašević, Andjelka; Bošković, Goran; Kiss, Ernő

    2009-07-01

    Catalytic performances of Fe-AlPILC (14 wt.% Fe) and Fe-ZSM-5 (5 wt.% Fe) catalysts are compared in the wet oxidative degradation of methomyl. Fe-ZSM-5 exhibits outstanding whereas Fe-AlPILC shows only mediocre activity. Positions of iron are analysed in the two catalysts by Mössbauer spectroscopy. Iron is in highly dispersed state in Fe-AlPILC whereas in the other case a hematite/ZSM-5 composite is formed. The catalytic activity is attributed to iron located and stabilized in ionic dispersion.

  16. The effect of Fe-coverage on the structure, morphology and magnetic properties of α-FeSi2 nanoislands

    NASA Astrophysics Data System (ADS)

    Tripathi, J. K.; Garbrecht, M.; Kaplan, W. D.; Markovich, G.; Goldfarb, I.

    2012-12-01

    Self-assembled α-FeSi2 nanoislands were formed using solid-phase epitaxy of low (˜1.2 ML) and high (˜21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe-silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi2 island phase, in an α-FeSi2{112} ∥ Si{111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ˜1.9 μB/Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ˜0.8 μB/Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi2 phase, and may open new pathways to high-density magnetic memory storage devices.

  17. The effect of Fe-coverage on the structure, morphology and magnetic properties of α-FeSi2 nanoislands.

    PubMed

    Tripathi, J K; Garbrecht, M; Kaplan, W D; Markovich, G; Goldfarb, I

    2012-12-14

    Self-assembled α-FeSi(2) nanoislands were formed using solid-phase epitaxy of low (~1.2 ML) and high (~21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe-silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi(2) island phase, in an α-FeSi(2){112} // Si{111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ~1.9 μ(B)/Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ~0.8 μ(B)/Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi(2) phase, and may open new pathways to high-density magnetic memory storage devices. PMID:23154191

  18. The Bauschinger effect in a SiC/Al composite

    SciTech Connect

    Shi, N.; Pillai, U.T.S.; Arsenault, R.J.

    1995-09-01

    SiC/Al composites have interesting mechanical properties, the tensile yield stress, whereas, the apparent modulus in tension is greater than that in compression. The Bauschinger effect of SiC/Al composites is also asymmetric with regard to loading directions. Quantitative measurements of the asymmetry of composite Bauschinger Effect was made in this research . An investigation was undertaken to determine the origin of the asymmetrical Bauschinger effect. We have successfully reconstructed the observed asymmetry using an internal stress model based on the development of internal stresses, conveniently referred to as the ``black stress``, and work hardening.

  19. Effect of Different Production Methods on the Mechanical and Microstructural Properties of Hypereutectic Al-Si Alloys

    NASA Astrophysics Data System (ADS)

    Fatih Kilicaslan, M.; Uzun, Orhan; Yilmaz, Fikret; Çağlar, Seyit

    2014-10-01

    In this study, the effects of different production methods like melt spinning, high-energy ball milling, and combined melt spinning and high-energy ball milling on the mechanical and microstructural properties of hypereutectic Al-20Si-5Fe alloys were investigated. While microstructural and spectroscopic analyses were performed using scanning electron microscopy and X-ray diffractometry, mechanical properties were measured using a depth-sensing indentation instrument with a Berkovich tip. Microstructural and spectroscopic analyses demonstrate that high-energy ball milling process applied on the melt-spun Al-20-Si-5Fe alloy for 10 minutes brings about a reduction in the size of silicon particles and intermetallic compounds. However, further increase in milling time does not yield any significant reduction in size. High-energy ball milling for 10 minutes on the starting powders is not enough to form any intermetallic phase. According to the depth-sensing indentation experiments, high-energy milling of melt-spun Al-20Si-5Fe alloys shows an incremental behavior in terms of hardness values. For the Al-20Si-5Fe alloys investigated in this study, the production technique remarkably influences their elastic-plastic response to the indentation process in terms of both magnitude and shape of P- h curves.

  20. Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility.

    PubMed

    Kopova, Ivana; Stráský, Josef; Harcuba, Petr; Landa, Michal; Janeček, Miloš; Bačákova, Lucie

    2016-03-01

    Beta titanium alloys are promising materials for load-bearing orthopaedic implants due to their excellent corrosion resistance and biocompatibility, low elastic modulus and moderate strength. Metastable beta-Ti alloys can be hardened via precipitation of the alpha phase; however, this has an adverse effect on the elastic modulus. Small amounts of Fe (0-2 wt.%) and Si (0-1 wt.%) were added to Ti-35Nb-7Zr-6Ta (TNZT) biocompatible alloy to increase its strength in beta solution treated condition. Fe and Si additions were shown to cause a significant increase in tensile strength and also in the elastic modulus (from 65 GPa to 85 GPa). However, the elastic modulus of TNZT alloy with Fe and Si additions is still much lower than that of widely used Ti-6Al-4V alloy (115 GPa), and thus closer to that of the bone (10-30 GPa). Si decreases the elongation to failure, whereas Fe increases the uniform elongation thanks to increased work hardening. Primary human osteoblasts cultivated for 21 days on TNZT with 0.5Si+2Fe (wt.%) reached a significantly higher cell population density and significantly higher collagen I production than cells cultured on the standard Ti-6Al-4V alloy. In conclusion, the Ti-35Nb-7Zr-6Ta-2Fe-0.5Si alloy proves to be the best combination of elastic modulus, strength and also biological properties, which makes it a viable candidate for use in load-bearing implants. PMID:26706526

  1. Characterization of β-FeSi II films as a novel solar cell semiconductor

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  2. Microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Guan, Ren-guo; Zhang, Yang; Su, Ning; Ji, Lian-ze; Li, Yuan-dong; Chen, Ti-jun

    2016-06-01

    In this paper, heat treatment was carried out on Al/Al-Mg-Si alloy clad wire, and microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment were investigated. During solution, contents of Mg and Si in inner matrix increased due to dissolution of primary Mg2Si, and they also increased in outer matrix because Mg and Si diffused across the interface. Tensile strength of the clad wire increased firstly and then decreased, and elongation continuously increased, while conductivity continuously decreased with the increase in solution time. In aging process, Mg2Si precipitated in both inner core and outer layer, and the content and average diameter of the precipitate increased with the increase in aging time. The content of precipitate was higher, and the average diameter was bigger in inner core. Tensile strength of the clad wire increased firstly and then decreased with the increase in aging time, and the elongation continuously decreased, while the conductivity continuously increased. The peak tensile strength of 202 MPa occurred at 8 h, when the corresponding elongation was 20 % and the conductivity reached 56.07 %IACS. Even tensile strength of the prepared clad wire approximately equaled to that of Al-0.5Mg-0.35Si alloy 203 MPa, the conductivity was obviously improved from 54.2 to 56.07 %IACS.

  3. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    SciTech Connect

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-08-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction.

  4. Anisotropic magnetic properties of EuAl2Si2

    NASA Astrophysics Data System (ADS)

    Maurya, Arvind; Kulkarni, Ruta; Thamizhavel, A.; Bonville, P.; Dhar, S. K.

    2015-03-01

    EuAl2Si2 is known to crystallize in the CaAl2Si2-type trigonal structure. We have grown single crystals of EuAl2Si2 by flux method, using Al-Si eutectic (87.8% Al) as self-flux, and investigated their anisotropic magnetic properties by means of magnetization, electrical resistivity and heat capacity in zero and applied magnetic fields, and 151Eu Mössbauer spectroscopy. Magnetic susceptibility data show an antiferromagnetic transition at TN = 33.3 K in agreement with the previously reported value on polycrystalline sample. The isothermal magnetization at 2 K measured along and perpendicular to the c-axis shows anisotropic behaviour, which is rather unexpected as Eu2+ is an S-state ion. The spin flip fields along the two directions are 2.8 and 4.8 T, respectively, while two closely spaced spin-flop transitions in the ab-plane are observed near 1.4 and 1.6 T. The electrical resistivity shows an upturn between TN and 60 K as the temperature is lowered below ~ 60 K, suggesting the presence of antiferromagnetic correlations in the paramagnetic state. Magnetoresistivity at 2 K in 14 T is nearly 1070 % for H // [0001]. The results of heat capacity and 151Eu Mössbauer spectroscopy are in conformity with a bulk transition at 33.3 K.

  5. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-08-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  6. Si/NiFe seed layers for Ru intermediate layer in perpendicular magnetic recording tape media

    NASA Astrophysics Data System (ADS)

    Saemma, Gaku; Takahashi, Shota; Matsunuma, Satoshi; Inoue, Tetsutaro; Nakagawa, Shigeki

    2012-04-01

    Si/NiFe seed layers prepared at room temperature is effective to attain better c-axis orientation of Ru intermediate layer in the FeCoB/Ru/CoPtCr-SiO2 granular type recording tape media. The crystallinity and c-axis orientation of Ru layer with Si/NiFe seed layers were improved than that without Si/NiFe seed layer deposited on the laminated FeCoB SULs. When the Ru is thicker than 8 nm, Δθ50 of the CoPtCr-SiO2 recording layer shows small value of about 6.5°. Furthermore, even though the Ru thickness was only 3 nm, the Δθ50 retained comparatively small value of 8.0°. Si/NiFe layer is effective as a seed layer for the Ru intermediate layer.

  7. FeAl-TiC and FeAl-WC composites - melt infiltration processing, microstructure and mechanical properties

    SciTech Connect

    Subramanian, R.; Schneibel, J.H.

    1997-04-01

    TiC-based and WC-based cermets were processed with iron aluminide, an intermetallic, as a binder by pressureless melt infiltration to near full density (> 97 % theoretical density). Phase equilibria calculations in the quaternary Fe-Al-Ti-C and Fe-Al-W-C systems at 145{degrees}C were performed to determine the solubility of the carbide phases in liquid iron aluminide. This was done by using Thermocalc{trademark} and the results show that molten Fe-40 at.% Al in equilibrium with Ti{sub 0.512}C{sub 0.488} and graphite, dissolves 4.9 at% carbon and 64 atomic ppm titanium. In the Fe-Al-W-C system, liquid Fe-40 at.% Al in equilibrium with graphite dissolves about 5 at.% carbon and 1 at.% tungsten. Due to the low values for the solubility of the carbide phases in liquid iron aluminide, liquid phase sintering of mixed powders does not yield a dense, homogeneous microstructure for carbide volume fractions greater than 0.70. Melt infiltration of molten FeAl into TiC and WC preforms serves as a successful approach to process cermets with carbide contents ranging from 70 to 90 vol. %, to greater than 97% of theoretical density. Also, the microstructures of cermets prepared by melt infiltration were very homogeneous. Typical properties such as hardness, bend strength and fracture toughness are reported. SEM observations of fracture surfaces suggest the improved fracture toughness to result from the ductility of the intermetallic phase. Preliminary experiments for the evaluation of the oxidation resistance of iron aluminide bonded cermets indicate that they are more resistant than WC-Co cermets.

  8. Abnormal acoustic wave velocities in basaltic and (Fe,Al)-bearing silicate glasses at high pressures

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Lin, Jung-Fu

    2014-12-01

    We have measured acoustic VP and VS velocities of (Fe,Al)-bearing MgSiO3 silicate glasses and an Icelandic basalt glass up to 25 GPa. The velocity profiles of the (Fe,Al)-bearing and basaltic silicate glasses display decreased VP and VS with minima at approximately 5 and 2 GPa, respectively, which could be explained by the mode softening in the aluminosilicate networks. Our results represent the first observation of such velocity softening extending into the chemically complex basaltic glass at a relatively low transition pressure, which is likely due to its degree of polymerization, while the Fe and Al substitutions reduce sound velocities in MgSiO3 glass. If the velocity softening in the basaltic and silicate glasses can be used as analogs for understanding melts in Earth's interior, these observations suggest that the melt fraction needed to account for the velocity reduction in the upper mantle low-velocity zone may be smaller than previously thought.

  9. Infrared observation of thermally activated oxide reduction within Al/SiOx/Si tunnel diodes

    NASA Astrophysics Data System (ADS)

    Brendel, R.; Hezel, R.

    1992-05-01

    Electron-beam-evaporated aluminum/silicon oxide/silicon tunnel diodes with an initial oxide thickness of 1.3 nm have been annealed for up to 1 h at temperatures from 213 to 369 °C. They have been investigated by infrared grazing internal reflection (GIR) spectroscopy and current-voltage measurements. The measured IR spectra were analyzed by computer modeling. All spectral features could be explained self-consistently within a Al/AlOy/SiOx/Si layer model. In the as-deposited state less than 0.6 monolayers of Al—O bonds are formed at the Al/SiOx interface. A thermally activated reduction of the ultrathin oxide film by Al was observed. The changes in the current-voltage curves induced by slight annealing (1 min at 213 °C) are accompanied by changes in the insulator-bonding structure, which GIR is sensitive enough to detect.

  10. Formation of amorphous Fe 50Si 50 alloy by diffusion reaction

    NASA Astrophysics Data System (ADS)

    Yan, Zhihua; Wang, Wenkui; Li, Jingfeng; Wang, Yuming

    1989-02-01

    The solid state reaction in the multilayer film with alternative polycrystalline Fe and amorphous Si layers has been studied with X-ray diffraction. Amorphous Fe 50Si 50 phase was formed after annealing isothermally at 300°C, which is explained in view of the consideration that an amorphous phase can be more favorable to form than a supersaturated solution in thermodynamics as well as than an equilibrium compound FeSi in kenetics.

  11. Mechanical properties of {beta}-SiAlON ceramics joined using composite {beta}-SiAlON-glass adhesives

    SciTech Connect

    Walls, P.A.; Ueki, Masanori

    1995-04-01

    The mechanical properties of {beta}-SiAlON ceramics joined using {beta}-SiAlON-glass-forming adhesives consisting of mixed Si{sub 3}N{sub 4}, Y{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, and SiO{sub 2} powders are described. Use of adhesives with a {beta}-SiAlON:glass ratio of 60:40 gave an optimum joint strength of 650 MPa in four-point bending mode, i.e., 85% of that of unbonded material, when joining was carried out at 1,600-C for 10 min, under an applied uniaxial pressure of 2 MPa. Bonding pressures in excess of 2 MPa caused excessive compressive creep distortion during the joining operation. The strengths of postjoined HIPed material and HIPed, unbonded material, differed by only 4%, i.e., 975 and 1,010 MPa, respectively, which indicates that HIPing reduces the size of critical defects in the joint. Fracture toughness of the joint also improved upon HIPing.

  12. Processing and properties of FeAl-bonded composites

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.; Alexander, K.B.; Becher, P.F.

    1996-12-31

    Iron aluminides are thermodynamically compatible with a wide range of ceramics such as carbides, borides, oxides, and nitrides, which makes them suitable as the matrix in composites or cermets containing fine ceramic particulates. For ceramic contents varying from 30 to 60 vol.%, composites of Fe-40 at. % Al with WC, TiC, TiB{sub 2}, and ZrB{sub 2} were fabricated by conventional liquid phase sintering of powder mixtures. For ceramic contents from 70 to 85 vol.%, pressureless melt infiltration was found to be a more suitable processing technique. In FeAl-60 vol.% WC, flexure strengths of up to 1.8 GPa were obtained, even though processing defects consisting of small oxide clusters were present. Room temperature fracture toughnesses were determined by flexure testing of chevron-notched specimens. FeAl/WC and FeAl/TiC composites containing 60 vol.% carbide particles exhibited K{sub Q} values around 20 MPa m{sup 1/2}. Slow crack growth measurements carried out in water and in dry oxygen suggest a relatively small influence of water-vapor embrittlement. It appears therefore that the mechanical properties of iron aluminides in the form of fine ligaments are quite different from their bulk properties. Measurements of the oxidation resistance, dry wear resistance, and thermal expansion of iron aluminide composites suggest many potential applications for these new materials.

  13. Comparison of the microstructure and magnetic properties of strontium hexaferrite films deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates by pulsed laser technique

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2014-01-01

    Strontium hexaferrite SrFe12O19 (SrM) films have been deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates. The (001) oriented SrFe12O19 films deposited on the Al2O3(0001) and Si(100)/Pt(111) substrates have been confirmed by X-ray diffraction patterns. Higher coercivity in perpendicular direction rather than in-plane direction of the SrM/Al2O3(0001) and SrM/Pt(111) films showed that the films had perpendicular magnetic anisotropy. The (001) orientation and similar microstructure and magnetic properties of the SrM/Al2O3(0001) and SrM/Pt(111) films show the Al2O3(0001) substrate can be replaced by the Si(100)/Pt(111) substrate.

  14. Thermoelectric Properties of n-Type Si0,8Ge0,2-FeSi2 Multiphase Nanostructures

    NASA Astrophysics Data System (ADS)

    Usenko, Andrey; Moskovskikh, Dmitry; Korotitskiy, Andrey; Gorshenkov, Mikhail; Voronin, Andrey; Arkhipov, Dmitry; Lyange, Maria; Isachenko, Grigory; Khovaylo, Vladimir

    2016-07-01

    We report on thermoelectric properties of n-type nanostructured bulk Si0.8Ge0.2 with the addition of FeSi2 prepared via two sintering routes: the conventional spark plasma sintering method and a direct current pressing technique. The thermal conductivity, the electrical conductivity, and the Seebeck coefficient have been determined over the temperature range from 25°C to 900°C in a helium atmosphere. The highest ZT value for the multiphase nanostructured composite was reached at ˜0.6 at 900°C. Embedding of 10 at.% FeSi2 phase had a positive impact on thermal properties but dramatically affected the power factor, which eventually resulted in a drop of the thermoelectric efficiency. It was also shown that the orthorhombic β-FeSi2 phase transforms to a tetragonal α-FeSi2 phase during high temperature sintering.

  15. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  16. Composition and solidification microstructure selection in the interdendritic matrix between primary Al{sub 3}Fe dendrites in hypereutectic Al-Fe alloys

    SciTech Connect

    Liang, D.; Korgul, P.; Jones, H.

    1996-07-01

    The composition and constitution of matrix microstructure between plate-like Al{sub 3}Fe dendrites in Bridgman-grown hypereutectic Al-Fe alloys has been determined as a function of alloy concentration C{sub 0} and growth velocity V in the ranges 2.5 < C{sub 0} < 28.1 wt%Fe and 0.01 < V < 5.0 mm/s. The transition at V = 0.1 mm/s from a fully eutectic matrix at C{sub 0} = 3.5 wt%Fe to one containing {alpha}Al dendrites at C{sub 0} {ge} 4.7 wt%Fe is attributed to growth temperatures of {alpha}Al dendrites that are higher than those of eutectic in a matrix of lower iron-content, which results from these conditions. The matrix eutectic changes from irregular {alpha}-Al-Al{sub 3}Fe to regular {alpha}Al-Al{sub x}Fe with increasing V, the transition velocity increasing from 0.1 to 0.2 mm/s for C{sub 0} values of 9.5 and 14 wt%Fe up to 0.35--1.0 mm/s for C{sub 0} values of 18.7--28.1 wt%Fe. This increased transition velocity, compared with that for {alpha}-Al-Al{sub 3}Fe to {alpha}Al-Al{sub 6}Fe at lower concentration, is indicative of a lower formation temperature for the {alpha}Al-Al{sub x}Fe than the {alpha}Al-Al{sub 6}Fe eutectic.

  17. Low cycle fatigue of FeAl(42 at. % Al) at room temperature

    SciTech Connect

    Hanes, D.B.; Gibala, R.

    1997-12-31

    The monotonic mechanical behavior in tension and compression of FeAl has been well documented. However, very little work has been done on the cyclic deformation behavior of this material. In this work, the behavior of FeAl (42 at. % Al) under low cycle fatigue was studied, including the effects of test environments and surface coatings. It was found that the fatigue life of this alloy is limited by environmental embrittlement. This embrittlement process can be equally well prevented by deformation in an oxygen environment or by coating the alloy with a protective film. The type of film applied appears to have little effect. Similar results were seen in monotonic testing.

  18. Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Li, H.-T.; Stone, I. C.; Fan, Z.

    2012-01-01

    Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.

  19. Directional alignment of FeCo crystallites in Si/NiFe/Ru/FeCoB multilayer with high anisotropy field above 500 Oe.

    PubMed

    Hirata, Ken-Ichiro; Gomi, Shunsuke; Nakagawa, Shigeki

    2011-03-01

    In-plane magnetic anisotropy and crystal structure of FeCoB layer on Si/NiFe/Ru underlayer were investigated by using X-Ray Diffraction (XRD) measurement. A pole-figure measurement of XRD showed directionally tilted alignment of FeCo crystallites in Si/NiFe/Ru/FeCoB multilayered film with high in-plane anisotropy field H(k) but no directional alignment was found in FeCoB single layered film. The higher H(k) appeared in the Si/NiFe/Ru/FeCoB multilayered configuration with the thicker FeCoB layer. Since Ru crystallites in a multiunderlayer configuration exhibited no directional alignment, the surface structure of underlayer should be no main reason for the directional alignment of FeCo crystallites deposited on it. The dependence of hickness of FeCoB layer in Si/NiFe/Ru/FeCoB film on H(k) indicated that the in-plane magnetic anisotropy is caused by not only the structure of Ru underlayer but also oblique incidence effect of sputtered particles, which is attained in configuration of Facing Targets Sputtering (FTS) system. From these experimental results, remarkably high H(k) of 540 Oe was obtained. PMID:21449466

  20. Transport and magnetic properties of the Co2MnSi/Al/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Zhang, H. B.; Jiang, X. F.; Zheng, Y.; Yang, G. W.

    2012-05-01

    Using density functional theory and non-equilibrium Green's function analysis, we studied the interface structure, interface stability, and magnetic and transport properties of the Co2MnSi/Al/Co2MnSi trilayer. It was found that only the CoCo/Al architecture is thermodynamically stable among four interfacial architectures, CoCo/Al, MnSi/Al, MnMn/Al, and SiSi/Al, and the other interface architectures are not accessible within the limits set under thermodynamic equilibrium with other phases. Calculations of the transmission spectrum, conductance, and resistance-area product showed that the Co2MnSi/Al/Co2MnSi trilayer is a promising candidate for the next-generation of recording sensors in ultrahigh-density hard disks.

  1. Effect of Al2O3 on the Viscosity and Structure of CaO-SiO2-MgO-Al2O3-FetO Slags

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sun, Yongqi; Sridhar, Seetharaman; Zhang, Mei; Guo, Min; Zhang, Zuotai

    2015-04-01

    The present paper provided a fundamental investigation on the effect of Al2O3 on the viscosity and structure of CaO-SiO2-MgO-Al2O3-FetO slags for the purpose of efficiently recycling the valuable elements from the steelmaking slags. The results show that the viscosity of CaO-SiO2-Al2O3-MgO-FetO slags slightly increases with increasing Al2O3 content. The degree of the polymerization (DOP) of quenched slags, determined from Raman spectra and magic angle spinning-nuclear magnetic resonance, is also found to increase with increasing Al2O3 content. It can be deduced that the increasing DOP can promote the formation of gehlenite phase (Ca2Al2SiO7), thus facilitating the formation of higher phosphorous (or vanadium) contained solid solution ( n'Ca2SiO4·Ca3((P or V)O4)2). As Al2O3 content increases up to a specific value, the charge compensating ions which present near [AlO4]-tetrahedra and [FeO4]-tetrahedra are not fully supplied due to the scarcity of Ca2+. In this case, the existing Fe3+ in the melt cannot completely form [FeO4]-tetrahedra and part of Fe3+ would form [FeO6]-octahedra to substitute Ca2+ to modify the slags.

  2. Electrical spin injection and detection in Fe/MgO/Si: influence of interface states

    NASA Astrophysics Data System (ADS)

    Pu, Yong; Beardsley, Jonas; Swartz, Adrain; Odenthal, Patrick; Berger, Andrew; Ko, Dongkyun; Bhallamudi, Vydia; Hammel, Chris; Kawakami, Roland; Johnston-Halperin, Ezekiel; Pelz, Jon

    2012-02-01

    We report electrical spin injection and detection in Fe/MgO/Si tunnel diodes using a 3-terminal (3T) geometry. Analysis of our Hanle curves yields an effective spin life-time of ˜0.1 ns and a spin-RA product ˜1 Mφ*μm^2, both of which are in rough agreement with previous 3T studies. However, according to our analysis the spin-RA is ˜ 6 orders of magnitude larger than expectations for bulk Si, and the 0.1 ns effective spin life-time is much smaller than reported value in Si by ESR or non-local methods. Here we provide a detailed analysis of electrical injection and detection in the 3T geometry. We present an alternative expression for the 3T spin signal than is usually used, and we propose that spin is accumulating in localized states (LS) at the MgO/Si interface rather than just in bulk Si. Incorporating a theory of spin accumulation in LS developed by M. Tran et al (PRL 102, 036601), we propose an energy distribution for the density of localized states, and introduce a model that agrees well with our anomalously large spin-RA and can explain the strong bias dependence of both spin and charge transport.

  3. Crystal structure of the NaCa(Fe{sup 2+}, Al, Mn){sub 5}[Si{sub 8}O{sub 19}(OH)](OH){sub 7} {center_dot} 5H{sub 2}O mineral: A new representative of the palygorskite group

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2012-01-15

    A specimen of a new representative of the palygorskite-sepiolite family from Aris phonolite (Namibia) is studied by single-crystal X-ray diffraction. The parameters of the triclinic (pseudomonoclinic) unit cell are as follows: a = 5.2527(2) Angstrom-Sign , b = 17.901(1) Angstrom-Sign , c = 13.727(1) Angstrom-Sign , {alpha} = 90.018(3) Degree-Sign , {beta} = 97.278(4) Degree-Sign , and {gamma} = 89.952(3) Degree-Sign . The structure is solved by the direct methods in space group P1-bar and refined to R = 5.5% for 4168 |F| > 7{sigma}(F) with consideration for twinning by the plane perpendicular to y (the ratio of the twin components is 0.52: 0.48). The crystal chemical formula (Z = 1) is (Na{sub 1.6}K{sub 0.2}Ca{sub 0.2})[Ca{sub 2}(Fe{sub 3.6}{sup 2+}Al{sub 1.6}Mn{sub 0.8})(OH){sub 9}(H{sub 2}O){sub 2}][(Fe{sub 3.9}{sup 2+}Ti{sub 0.1})(OH){sub 5} (H{sub 2}O){sub 2}][Si{sub 16}O{sub 38}(OH){sub 2}] {center_dot} 6H{sub 2}O, where the compositions of two ribbons of octahedra and a layer of Si tetrahedra are enclosed in brackets. A number of specific chemical, symmetrical, and structural features distinguish this mineral from other minerals of this family, in particular, from tuperssuatsiaite and kalifersite, which are iron-containing representatives with close unit cell parameters.

  4. Correlation of the structural properties of a Pt seed layer with the perpendicular magnetic anisotropy features of full Heusler-based Co2FeAl/MgO/Co2Fe6B2 junctions via a 12-inch scale Si wafer process

    NASA Astrophysics Data System (ADS)

    Chae, Kyo-Suk; Lee, Du-Yeong; Shim, Tae-Hun; Hong, Jin-Pyo; Park, Jea-Gun

    2013-10-01

    We elucidated the interfacial-perpendicular magnetic anisotropy (i-PMA) features of full Heusler-based Co2FeAl/MgO/Co2Fe6B2 magnetic-tunnel-junctions as functions of the structural properties of the Pt seed layer including its thickness and ex situ annealing temperature. All of the samples were prepared in a 12-inch silicon wafer process for real industry applications. The observations of the M-H loops emphasize that a thinner Pt seed layer and a high ex situ annealing temperature enhance the surface roughness of the seed layer, providing better i-PMA characteristics. HR-TEM images of the samples were evaluated to understand the structural effects of thin and thick Pt seed layers.

  5. High noise suppression using magnetically isotropic (CoFe-AlN)/(AlN) multilayer films

    NASA Astrophysics Data System (ADS)

    Kijima, Hanae; Ohnuma, Shigehiro; Masumoto, Hiroshi; Shimada, Yutaka; Endo, Yasushi; Yamaguchi, Masahiro

    2015-05-01

    Magnetically isotropic (CoFe-AlN)n/(AlN)n+1 multilayer films, in which the number of CoFe-AlN magnetic layers n ranged from 1 to 27, were prepared by radio frequency sputtering to achieve noise suppression at gigahertz frequencies. The soft CoFe-AlN magnetic layers consisted of nanometer-sized CoFe ferromagnetic grains embedded in an insulating AlN amorphous matrix, while the insulating AlN layers comprised AlN columnar crystals. All films showed a similar frequency dependence of permeability and ferromagnetic resonance of 1.7 GHz. Noise suppression was evaluated using a microstrip line as a noise source by determining the in-line conductive loss and the near-field intensity picked up by magnetic field detective probes. High noise suppression effects were observed in every direction in the film plane. Maximum noise suppression values amounted to 60% for the in-line conductive loss and -20 dB for the magnetic near-field intensity at around 1.7 GHz in the 27-layer film. These high-frequency noise suppression levels may be attributed to eddy current losses and ferromagnetic resonance.

  6. A nano-Si/FeSi2Ti hetero-structure with structural stability for highly reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Jo, Mi Ru; Heo, Yoon-Uk; Lee, Yoon Cheol; Kang, Yong-Mook

    2013-12-01

    A nano-Si/FeSi2Ti hetero-structure has been synthesized for highly reversible Li-ion batteries by using a simple melt-spinning method. We demonstrate that this composite has a very peculiar core/shell structure in which the FeSi2Ti alloy plays various pivotal roles as a mechanically supporting backbone and as an electronic pathway for the active Si attached to its surface, and is responsible for the altered electrochemical reactions with relatively small volume expansion routes. The FeSi2Ti matrix significantly contributes to not only the stabilization of cyclic retention, but also the enhancement of conductivity, as well as a high rate capability unprecedented in research on Si-based anodes. This achievement demonstrates the potency of this novel hybrid design for electrode materials for energy storage.A nano-Si/FeSi2Ti hetero-structure has been synthesized for highly reversible Li-ion batteries by using a simple melt-spinning method. We demonstrate that this composite has a very peculiar core/shell structure in which the FeSi2Ti alloy plays various pivotal roles as a mechanically supporting backbone and as an electronic pathway for the active Si attached to its surface, and is responsible for the altered electrochemical reactions with relatively small volume expansion routes. The FeSi2Ti matrix significantly contributes to not only the stabilization of cyclic retention, but also the enhancement of conductivity, as well as a high rate capability unprecedented in research on Si-based anodes. This achievement demonstrates the potency of this novel hybrid design for electrode materials for energy storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04954j

  7. Corrosion performance of Fe-Cr-Al and Fe aluminide alloys in complex gas environments

    SciTech Connect

    Natesan, K.; Johnson, R.N.

    1995-05-01

    Alumina-forming structural alloys can offer superior resistance to corrosion in the presence of sulfur-containing environments, which are prevalent in coal-fired fossil energy systems. Further, Fe aluminides are being developed for use as structural materials and/or cladding alloys in these systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. In addition, surface coatings of Fe aluminide are being developed to impart corrosion resistance to structural alloys. This paper describes results from an ongoing program that is evaluating the corrosion performance of alumina-forming structural alloys, Fe-Al and Fe aluminide bulk alloys, and Fe aluminide coatings in environments typical of coal-gasification and combustion atmospheres. Experiments were conducted at 650-1000{degrees}C in simulated oxygen/sulfur gas mixtures. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HCl-containing gases. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales and to determine the modes of corrosion degradation that occur in the materials when they are exposed to S/Cl-containing gaseous environments.

  8. Thermal expansion measurements on Fe substituted URu2Si2

    NASA Astrophysics Data System (ADS)

    Ran, Sheng; Wolowiec, Christian; Jeon, Inho; Pouse, Naveen; Kanchanavatee, Noravee; Huang, Kevin; Maple, M. Brian; Dapron, Tyler; Williamsen, Mark; Snow, David; Martien, Dinesh; Spagna, Stefano

    The search for the order parameter of the hidden order (HO) phase in URu2Si2 has attracted an enormous amount of attention for the past three decades. The small antiferromagnetic moment of only ~0.03 μB/U found in the HO phase is too small to account for the entropy of ~0.2Rln(2) derived from the second order mean field BCS-like specific heat anomaly associated with the HO transition that occurs below To = 17.5 K. A first order transition from the HO phase to a large moment antiferromagnetic (LMAFM) phase occurs under pressure. We have recently demonstrated that tuning URu2Si2B>by substitution of Fe for Ru reproduces the temperature vs applied pressure phase diagram.and offers an opportunity to study the HO and LMAFM phases at atmospheric pressure. Motivated by this observation, we performed thermal expansion measurements on URu2-xFexSi2 single crystals for various values of x in both the HO and LMAFM regions of the phase diagram. Interesting preliminary results have emerged from these studies that shed light on the LMAFM phase and its relationship with the elusive HO phase. Research in UCSD is supported by US DOE BES under Grant No. DE-FG02-04-ER46105 (materials synthesis and characterization) and US NSF under Grant No. DMR-1206553 (low temperature measurements).

  9. 57Fe Mössbauer study of Lu2Fe3Si5 iron silicide superconductor

    DOE PAGESBeta

    Ma, Xiaoming; Ran, Sheng; Pang, Hua; Li, Fashen; Canfield, Paul C.; Bud'ko, Sergey L.

    2015-03-28

    With the advent of Fe–As based superconductivity it has become important to study how superconductivity manifests itself in details of 57Fe Mössbauer spectroscopy of conventional, Fe-bearing superconductors. The iron-based superconductor Lu2Fe3Si5 has been studied by 57Fe Mössbauer spectroscopy over the temperature range from 4.4 K to room temperature with particular attention to the region close to the superconducting transition temperature (Tc=6.1 K). Furthermore, consistent with the two crystallographic sites for Fe in this structure, the observed spectra appear to have a pattern consisting of two doublets over the whole temperature range. The value of Debye temperature was estimated from temperaturemore » dependence of the isomer shift and the total spectral area and compared with the specific heat capacity data. As a result, neither abnormal behavior of the hyperfine parameters at or near Tc, nor phonon softening were observed.« less

  10. Anomalous Hall effect in the Co-based Heusler compounds Co2FeSi and Co2FeAI

    NASA Astrophysics Data System (ADS)

    Imort, I.-M.; Thomas, P.; Reiss, G.; Thomas, A.

    2012-04-01

    The anomalous Hall effect (AHE) in the Heusler compounds Co2FeSi and Co2FeAl is studied in dependence of the annealing temperature to achieve a general comprehension of its origin. We have demonstrated that the crystal quality affected by annealing processes is a significant control parameter to tune the electrical resistivity ρxx as well as the anomalous Hall resistivity ρahe. Analyzing the scaling behavior of ρahe in terms of ρxx points to a temperature-dependent skew scattering as the dominant mechanism in both Heusler compounds.

  11. Comparison of the Crystallization Behavior of Fe-Si-B-Cu and Fe-Si-B-Cu-Nb-Based Amorphous Soft Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Smith, Casey; Katakam, Shravana; Nag, Soumya; Zhang, Y. R.; Law, J. Y.; Ramanujan, Raju V.; Dahotre, Narendra B.; Banerjee, Rajarshi

    2014-06-01

    The role of the solute elements, copper, and niobium, on the different stages of de-vitrification or crystallization of two amorphous soft magnetic alloys, Fe73.5Si13.5B9Nb3Cu1, also referred to as FINEMET, and a Fe76.5Si13.5B9Cu1 alloy, a model composition without Nb, has been investigated in detail by coupling atom probe tomography and transmission electron microscopy. The effects of copper clustering and niobium pile-up at the propagating interface between the α-Fe3Si nanocrystals and the amorphous matrix, on the nucleation and growth kinetics have been addressed. The results demonstrate that while Cu clustering takes place in both alloys in the early stages, the added presence of Nb in FINEMET severely restricts the diffusivity of solute elements such as Cu, Si, and B. Therefore, the kinetics of solute partitioning and mobility of the nanocrystal/amorphous matrix interface is substantially slower in FINEMET as compared to the Fe76.5Si13.5B9Cu1 alloy. Consequently, the presence of Nb limits the growth rate of the α-Fe3Si nanocrystals in FINEMET and results in the activation of a larger no. of nucleation sites, leading to a substantially more refined microstructure as compared to the Fe76.5Si13.5B9Cu1 alloy.

  12. Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites

    NASA Astrophysics Data System (ADS)

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Galkin, K. N.; Galkin, N. G.; Gutakovskii, A. K.

    2015-10-01

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p+-Si/p-Si/β-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3-4 and 15-20 nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7 mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2 × 109 cm × Hz1/2/W at a wavelength of 1300 nm at room temperature. In the avalanche mode, the responsivity reached up to 20 mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of β-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600 nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of β-FeSi2.

  13. Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites

    PubMed Central

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Galkin, K. N.; Galkin, N. G.; Gutakovskii, A. K.

    2015-01-01

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p+-Si/p-Si/β-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3–4 and 15–20 nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7 mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2 × 109 cm × Hz1/2/W at a wavelength of 1300 nm at room temperature. In the avalanche mode, the responsivity reached up to 20 mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of β-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600 nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of β-FeSi2. PMID:26434582

  14. Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites.

    PubMed

    Shevlyagin, A V; Goroshko, D L; Chusovitin, E A; Galkin, K N; Galkin, N G; Gutakovskii, A K

    2015-01-01

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p(+)-Si/p-Si/β-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3-4 and 15-20 nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7 mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2 × 10(9) cm × Hz(1/2)/W at a wavelength of 1300 nm at room temperature. In the avalanche mode, the responsivity reached up to 20 mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of β-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600 nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of β-FeSi2. PMID:26434582

  15. Spin injection studies on thin film Fe/MgO/Si tunneling devices

    NASA Astrophysics Data System (ADS)

    Beardsley, Jonas; Pu, Yong; Swartz, Adrian; Bhallamudi, Vidya; Kawakami, Roland; Johnston-Halperin, Ezekiel; Hammel, Chris; Pelz, Jon

    2011-03-01

    We report progress on the injection of spin polarized electrons into 35 nm thick Si films, using Fe/MgO injector/tunnel barrier structures grown by molecular beam epitaxy on SIMOX silicon-on-insulator substrates. The device requires heavy top-surface n-type doping of the Si film to produce a suitable tunnel barrier, accomplished by diffusion from a spin-on phosphorous-doped glass. Measurements indicate a roughly exponential doping profile with 7E20 per cubic cm at the top surface and a 2 nm decay length. Three terminal measurements showed evidence of spin injection similar to reports of Jansen et al., while injection with a thinner MgO barrier shows more complicated behavior. On-going measurements and modeling will be discussed.

  16. Ab initio study of 59Co NMR spectra in Co2FeAl1-xSix Heusler alloys

    NASA Astrophysics Data System (ADS)

    Nishihara, H.; Sato, K.; Akai, H.; Takiguchi, C.; Geshi, M.; Kanomata, T.; Sakon, T.; Wada, T.

    2015-05-01

    Ab initio electronic structure calculation of a series of Co2FeAl1-xSix Heusler alloys has been performed, using the Korringa-Kohn-Rostoker-coherent potential approximation method to explain experimental 59Co NMR spectra. Two prominent features are explained semi-quantitatively-a global shift of the 59Co resonance line due to alloying with Al and Si atoms in Co2FeAl1-xSix, and the effect of local disorder in creating distinct satellite lines of 59Co NMR in Co2FeAl. The importance is stressed of the positive contribution to the 59Co hyperfine field from valence electron polarization, which emerges from the half-metallic band structure inherent in Co-based Heusler alloys.

  17. Ritz wavelengths of Fe I, Si II and Ni II for quasar absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Nave, Gillian

    2016-01-01

    The study of absorption lines in the spectra of galaxies along the line of sight to distant quasars can give important information about the abundances, ionization and kinematics of atoms within these galaxies. They have also been used to study the variability of the fine structure constant at high redshifts. However, the laboratory wavelengths need to be known to better than 6 parts in 108 (20 ms-1). A paper by M. Murphy and J. C. Berengut (2014, MNRAS 438,388) includes a table of spectral lines for which the laboratory wavelength uncertainties are greater than this, including 13 resonance lines of Fe I, 11 lines of Ni II, and 4 lines of Si II.Improved wavelengths for these lines were derived by re-analyzing archival spectra of iron hollow cathode lamps and a silicon carbide Penning discharge lamp. These spectra have previously been used in a comprehensive analysis of the spectrum of Fe I (Nave et al. 1994, ApJS 94, 221) and in a study of Si II, Si IV, and C IV for quasar spectroscopy (Griesmann & Kling, 2000, ApJ 536, L113). By re-optimizing the energy levels of Fe I, the absolute uncertainty of the resonance lines has been reduced by over a factor of 2 and the relative uncertainty by an order of magnitude. A similar analysis for Si II gives a improved values for the resonance lines with wavelength uncertainties of around 4 parts in 108. Analysis of new spectra of Ni II is in progress.

  18. Screened moments and absence of ferromagnetism in FeAl

    NASA Astrophysics Data System (ADS)

    Galler, A.; Taranto, C.; Wallerberger, M.; Kaltak, M.; Kresse, G.; Sangiovanni, G.; Toschi, A.; Held, K.

    2015-11-01

    While the stoichiometric intermetallic compound FeAl is found to be paramagnetic in experiment, standard band-theory approaches predict the material to be ferromagnetic. We show that this discrepancy can be overcome by a better treatment of electronic correlations with density-functional plus dynamical mean-field theory. Our results show no ferromagnetism down to 100 K and since the susceptibility is decreasing at the lowest temperatures studied we also do not expect ferromagnetism at even lower temperatures. This behavior is found to originate from temporal quantum fluctuations that screen short-lived local magnetic moments of 1.6 μB on Fe.

  19. Refinement performance and mechanism of an Al-50Si alloy

    SciTech Connect

    Dai, H.S.; Liu, X.F.

    2008-11-15

    The microstructure and melt structure of primary silicon particles in an Al-50%Si (wt.%) alloy have been investigated by optical microscopy, scanning electron microscopy, electron probe micro-analysis and a high temperature X-ray diffractometer. The results show that the Al-50Si alloy can be effectively refined by a newly developed Si-20P master alloy, and the melting temperature is crucial to the refinement process. The minimal overheating degree {delta}T{sub min} ({delta}T{sub min} is the difference between the minimal overheating temperature T{sub min} and the liquidus temperature T{sub L}) for good refinement is about 260 deg. C. Primary silicon particles can be refined after adding 0.2 wt.% phosphorus amount at sufficient temperature, and their average size transforms from 2-4 mm to about 30 {mu}m. The X-ray diffraction data of the Al-50Si melt demonstrate that structural change occurs when the melting temperature varies from 1100 deg. C to 1300 deg. C. Additionally, the relationship between the refinement mechanism and the melt structure is discussed.

  20. Current Transport in Al-Diffused ZnO/Si Heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Jen; Tong, Chong; Yun, Juhyung; Anderson, Wayne A.

    2015-01-01

    The current-voltage-temperature (I-V-T) characteristics of transparent Al-doped ZnO (AZO) on n-Si heterojunction structures were analyzed with respect to two different Al diffusion temperatures, 200°C and 600°C. Thin films of Al were deposited on top of the ZnO/Si structures, followed by introducing the Al atoms into the ZnO to form AZO through a process of thermal diffusion. Measurements at temperatures of 150-400 K were carried out in order to understand the temperature dependence of the heterostructure diode characteristics for photovoltaic applications. The results indicated the difference in current mechanisms observed in the two diodes with different Al-diffusion temperatures and Al thicknesses. The charge transport mechanism in the 200°C diodes indicated thermionic field emission (TFE) as the dominating mechanism, whereas the 600°C diodes resulted in field emission (FE) as the dominating current transport. The differences in conduction mechanisms explain the better solar cell performance using the 200°C process.

  1. Electromigration performance improvement of Al-Si-Cu/TiN/Ti/n+Si contact

    NASA Astrophysics Data System (ADS)

    Shi, Gang; Sun, Zhen; Xu, Geng-Fu; Min, Yun-Hao; Luo, Jun-Yi; Lu, Yong; Li, Bing-Zong; Qu, Xin-Ping; Qian, Gang; Doan, My T.; Lee, Edmund

    1998-02-01

    In this study, two different processes, with and without rapid thermal annealing (RTA), have been compared for the Al-Si- Cu/TiN/Ti multilayer contact on n+ diffusions. A series of wafer level reliability (WLR) measurement performed on a test structure with two 1.08 X 1.08 micrometer2 contacts on n+ diffusion. The results show that RTA can increase contact electromigration (EM) lifetime dramatically. The XRD, AES and TEM analysis indicate that this improvement is attributed to oxygen stuffing in TiN, phase change of TiN and TiSi2 formation at the interface of Ti and Si.

  2. Effect of electron correlations on the Fe3Si and α -FeSi2 band structure and optical properties

    NASA Astrophysics Data System (ADS)

    Sandalov, Igor; Zamkova, Natalia; Zhandun, Vyacheslav; Tarasov, Ivan; Varnakov, Sergey; Yakovlev, Ivan; Solovyov, Leonid; Ovchinnikov, Sergey

    2015-11-01

    We use the Vienna ab initio simulation package (vasp) for evaluation of the quasiparticle spectra and their spectral weights within Hedin's GW approximation (GWA) for Fe3Si and α -FeSi2 within the non-self-consistent one-shot approximation G0W0 and self-consistent scGWA with the vertex corrections in the particle-hole channel, taken in the form of two-point kernel. As input for G0W0 , the band structure and wave functions evaluated within the generalized gradient corrected local-density approximation to density functional theory (GGA) have been used. The spectral weights of quasiparticles in these compounds deviate from unity everywhere and show nonmonotonic behavior in those parts of bands where the delocalized states contribute to their formation. The G0W0 and scGWA spectral weights are the same within 2%-5%. The scGWA shows a general tendency to return G0W0 bands to their GGA positions for the delocalized states, while in the flat bands it flattens even more. Variable angle spectroscopic ellipsometry measurements at T =296 K on grown single-crystalline ˜50 -nm-thick films of Fe3Si on n -Si(111) wafer have been performed in the interval of energies ω ˜(1.3 -5 ) eV. The comparison of G0W0 and scGW theory with experimental real and imaginary parts of permittivity, refractive index, extinction and absorption coefficients, reflectivity, and electron energy loss function shows that both G0W0 and scGW qualitatively describe experiment correctly, the position of the low-energy peaks is described better by the scGW theory, however, its detailed structure is not observed in the experimental curves. We suggest that the angle-resolved photoemission spectroscopy experiments, which can reveal the fine details of the quasiparticle band structure and spectral weights, could help to understand (i) if the scGWA with this type of vertex correction is sufficiently good for description of these iron silicides and, possibly, (ii) why some features of calculated permittivity are

  3. Study on Viscosity of the La2O3-SiO2-Al2O3 Slag System

    NASA Astrophysics Data System (ADS)

    Deng, Yong-chun; Wu, Sheng-li; Jiang, Yin-ju; Jia, Su-qi

    2016-08-01

    The viscosities and free-running temperatures of slag in a La2O3-SiO2-Al2O3 slag system were measured using an internal rotating cylinder method. For different La2O3 mass contents (45, 50, and 55 pct) in the La2O3-SiO2-Al2O3 ternary slag, the slag viscosity and free-running temperature decreased with a decrease in SiO2 content and an increase in Al2O3 content, and decreased with an increase in La2O3 content. Minor components B2O3, FeO, and MnO could decrease the viscosity and free-running temperature of La2O3-SiO2-Al2O3 ternary slag, especially FeO, and a small amount of FeO and B2O3 had an additive effect on slag viscosity and free-running temperature reduction.

  4. In situ resistivity of endotaxial FeSi{sub 2} nanowires on Si(110)

    SciTech Connect

    Tobler, S. K.; Bennett, P. A.

    2015-09-28

    We present in situ ultra-high vacuum measurements of the resistivity ρ of self-assembled endotaxial FeSi{sub 2} nanowires (NWs) on Si(110) using a variable-spacing two-point method with a moveable scanning tunneling microscope tip and fixed contact pad. The resistivity at room temperature was found to be nearly constant down to NW width W = 4 nm, but rose sharply to nearly double the bulk value at W = 3 nm. These data are not well-fit by a simple Fuch-Sondheimer model for boundary scattering, suggesting that other factors, possibly quantum effects, may be significant at the smallest dimensions. For a NW width of 4 nm, partial oxidation increased ρ by approximately 50%, while cooling from 300 K to 150 K decreased ρ by approximately 10%. The relative insensitivity of ρ to NW size or oxidation or cooling is attributed to a high concentration of vacancies in the FeSi{sub 2} structure, with a correspondingly short length for inelastic electron scattering, which obscures boundary scattering except in the smallest NWs. It is remarkable that the vacancy concentration persists in very small structures.

  5. The lattice structure of nanocrystalline Fe-Cu-Si-B alloys

    NASA Astrophysics Data System (ADS)

    Liu, X. D.; Lu, K.; Ding, B. Z.; Hu, Z. Q.; Zhu, J.; Jiang, J.

    1994-02-01

    Nanocrystalline Fe-Cu-Si-B alloys with different grain sizes were synthesized by crystallization of an amorphous alloy. Two nanophases, α-Fe(Se) and Fe 2B, were noticed in all samples. XRD results reveal that the lattice constant of the α-Fe(Si) phase increases; the a-axis is elongated and the c-axis is shortened in the Fe 2B phase upon reducing the grain size. Based on the thermodynamic analysis, the changes in the lattice parameters were attributed to the solution of vacancies in the above two phases. Owing to the lattice distortion of the α-Fe(Si) and Fe 2B phases, the crystallite with small size is found to exhibit a disordered character to some extent, which is manifested by large values of the half linewidth (HLW) and isomer shift (IS) of various Fe configurations in the Mössbauer parameters.

  6. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  7. Evolution of Intermetallics, Dispersoids, and Elevated Temperature Properties at Various Fe Contents in Al-Mn-Mg 3004 Alloys

    NASA Astrophysics Data System (ADS)

    Liu, K.; Chen, X.-G.

    2015-12-01

    Nowadays, great interests are rising on aluminum alloys for the applications at elevated temperature, driven by the automotive and aerospace industries requiring high strength, light weight, and low-cost engineering materials. As one of the most promising candidates, Al-Mn-Mg 3004 alloys have been found to possess considerably high mechanical properties and creep resistance at elevated temperature resulted from the precipitation of a large number of thermally stable dispersoids during heat treatment. In present work, the effect of Fe contents on the evolution of microstructure as well as high-temperature properties of 3004 alloys has been investigated. Results show that the dominant intermetallic changes from α-Al(MnFe)Si at 0.1 wt pct Fe to Al6(MnFe) at both 0.3 and 0.6 wt pct Fe. In the Fe range of 0.1-0.6 wt pct studied, a significant improvement on mechanical properties at elevated temperature has been observed due to the precipitation of dispersoids, and the best combination of yield strength and creep resistance at 573 K (300 °C) is obtained in the 0.3 wt pct Fe alloy with the finest size and highest volume fraction of dispersoids. The superior properties obtained at 573 K (300 °C) make 3004 alloys more promising for high-temperature applications. The relationship between the Fe content and the dispersoid precipitation as well as the materials properties has been discussed.

  8. Thermal expansion study of a "Direct Chill Casting" AlMgSi alloy

    NASA Astrophysics Data System (ADS)

    Guemini, R.; Boubertakh, A.; Hamamda, S.

    2001-03-01

    This work is concerned with the study of thermal expansion coefficient of Al-0.59 wt.% Mg- 0.88 wt.% Si-0.30 wt.% Fe-0.44 wt.% Mn alloy. The presence of the anisotropy was concluded on the basis of the thermal expansion coefficient α(T) which depends up on the two directions: radial (1) and axial (2). However α(T) measured along the axial direction (2) appeared to be inferior to the measured one along the radial direction (1) in both as-cast and homogenised alloy.

  9. Perpendicular magnetic anisotropy in Ta/Co2FeAl/MgO multilayers

    NASA Astrophysics Data System (ADS)

    Gabor, M. S.; Petrisor, T.; Tiusan, C.; Petrisor, T.

    2013-08-01

    In this paper, we demonstrate the stabilization of perpendicular magnetic anisotropy (PMA) in Ta/Co2FeAl/MgO multilayers sputtered on thermally oxidized Si(100) substrates. The magnetic analysis points out that these films show significant interfacial anisotropy even in the as-deposited state, KS=0.67 erg/cm2, enough to provide PMA for the as-deposited films with thicknesses below 1.5 nm. Moreover, the interfacial anisotropy is enhanced by thermal annealing up to 300 °C. The presence of a magnetic dead layer, whose thickness increases with annealing temperature, was also identified.

  10. Microstructure selection maps for Al-Fe alloys

    SciTech Connect

    Gilgien, P.; Zryd, A.; Kurz, W.

    1995-09-01

    The solidification microstructures for Al-0.5-4 at.% Fe alloys under constrained growth conditions have been calculated using analytical models of the growth kinetics of dendritic, eutectic and plane front interface morphologies of stable and metastable phases. Laser remelting experiments are carried out on an Al-4 at.% Fe alloy with low beam velocity (10 mm/s) in order to complete previous experimental results on the solidification microstructures obtained at intermediate growth rates by Bridgman experiments and at a high growth rates by rapid laser resolidification. Comparison of predicted with experimentally determined solidification microstructure maps shows satisfactory agreement in view of the limited knowledge of the thermophysical properties of this system. These maps are useful for the interpretation of microstructures and phases forming under medium to high solidification rates and for the understanding and development of rapid solidification processing. Further the modeling is useful for improving available phase diagram information.

  11. Itinerant magnetism in doped semiconducting β-FeSi2 and CrSi2

    PubMed Central

    Singh, David J.; Parker, David

    2013-01-01

    Novel or unusual magnetism is a subject of considerable interest, particularly in metals and degenerate semiconductors. In such materials the interplay of magnetism, transport and other Fermi liquid properties can lead to fascinating physical behavior. One example is in magnetic semiconductors, where spin polarized currents may be controlled and used. We report density functional calculations predicting magnetism in doped semiconducting β-FeSi2 and CrSi2 at relatively low doping levels particularly for n-type. In this case, there is a rapid cross-over to a half-metallic state as a function of doping level. The results are discussed in relation to the electronic structure and other properties of these compounds. PMID:24343332

  12. Thermochemistry of glasses and liquids in the systems CaMgSi 2O 6-CaAl 2Si 2O 8-NaAlSi 3O 8, SiO 2-CaAl 2Si 2O 8-NaAlSi 3O 8 and SiO 2-Al 2O 3-CaO-Na 2O

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Hon, R.; Weill, D. F.; Henry, D. J.

    1980-10-01

    Enthalpies of solution in 2PbO· B 2O 3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO 2-SiO 2, Ca 0.5AlO 2-SiO 2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO 2-SiO 2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si 4O 8-CaAl 2Si 2O 8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive. Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by TAYLOR and BROWN (1979a, b) and others for the structure of aluminosilicate glasses.

  13. Tensile properties of Fe-16 at. % Al alloys

    SciTech Connect

    Sikka, V.K.

    1995-02-01

    A newly developed melting method for Fe-16 at. % Al alloy (FAPY) is described. Tensile data on the air-induction-melted (AIM) and vacuum-induction-melted (VIM) heats of FAPY after identical processing are presented. Optical, scanning electron micrographs (SEM), and microprobe analysis were carried out to explain the lower room-temperature ductility and more scatter in the data for the AIM material as opposed to the VIM material.

  14. Synthesis and characterization of Co2FeAl nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Gyawali, Parshu; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2012-06-01

    We report the growth and characterization of Co2FeAl nanowires. Nanowires are grown using electrospinning method and the diameters range from 50 to 500 nm. These nanowires exhibit cubic crystal structure with a lattice constant of a =5.639 Å. The nanowires exhibit ferromagnetic behavior with a very high Curie temperature. The temperature dependent magnetization behavior displays an anomaly in the temperature range 600-850 K, which disappears at higher external magnetic fields.

  15. Dendrite coherency of Al-Si-Cu alloys

    NASA Astrophysics Data System (ADS)

    Veldman, Natalia L. M.; Dahle, Arne K.; Stjohn, David H.; Arnberg, Lars

    2001-01-01

    The dendrite coherency point of Al-Si-Cu alloys was determined by thermal analysis and rheological measurement methods by performing parallel measurements at two cooling rates for aluminum alloys across a wide range of silicon and copper contents. Contrary to previous findings, the two methods yield significantly different values for the fraction solid at the dendrite coherency point. This disparity is greatest for alloys of low solute concentration. The results from this study also contradict previously reported trends in the effect of cooling rate on the dendritic coherency point. Consideration of the results shows that thermal analysis is not a valid technique for the measurement of coherency. Analysis of the results from rheological testing indicates that silicon concentration has a dominant effect on grain size and dendritic morphology, independent of cooling rate and copper content, and thus is the factor that determines the fraction solid at dendrite coherency for Al-Si-Cu alloys.

  16. Insights into Mercury's Core Evolution from the Thermodynamic Properties of Fe-S-Si

    NASA Astrophysics Data System (ADS)

    Edgington, A.; Vocadlo, L.; Stixrude, L. P.; Wood, I. G.; Lord, O. T.

    2015-12-01

    The structure, composition and evolution of Mercury, the innermost planet, are puzzling, as its high uncompressed density implies a body highly enriched in metallic iron, whilst the existence of Mercury's magnetic field and observations of its longitude librations [1] suggest at least a partially molten core. This study uses a combination of experimental and ab-initio computer simulation techniques to determine the properties of Fe-S-Si (relative atomic percentages, 80:10:10) throughout the conditions of the interior of the planet Mercury, and evaluates the implications of this material for the structure and evolution of the planet's core. Previous studies have considered the addition of sulphur to the pure iron system, as this can significantly depress the melting curve of iron, and so may possibly allow Mercury's core to remain molten to the present day [2]. However, important constraints placed by the MESSENGER spacecraft on Mercury's surface abundance of iron [3] suggest that the planet formed in highly reduced conditions, in which significant amounts of silicon could have also dissolved into the core [4]. First-principles molecular dynamics simulations of the thermodynamic properties of liquid Fe-S-Si, alongside laser-heated diamond-anvil-cell experiments to determine the melting behaviour of the same composition, reveal the slopes of the adiabatic gradient and melting curve respectively, which together may allow insight into the evolution of our solar system's smallest planet. [1] Margot, J. L. et al. (2007) Science, 316: 710-714[2] Schubert, G. et al. (1988) in 'Mercury' 429-460[3] Nittler, L. R. et al. (2011) Science, 333, 1847-1850[4] Malavergne, V. et al. (2010) Icarus, 206:199-209

  17. Ac Impedance Spectroscopy Of Al/A-Sic/C-Si(P)/Al Heterostructure under Illumination

    NASA Astrophysics Data System (ADS)

    Perný, Milan; Šály, Vladimír; Váry, Michal; Mikolášek, Miroslav; Huran, Jozef; Packa, Juraj

    2014-05-01

    The amorphous silicon carbide/crystalline silicon heterojunction was prepared and analyzed. The current-voltage (I - V ) measurements showed the barrier properties of prepared sample. Biased impedance spectra of Al/a-SiC/c-Si(p)/Al heterojunction under the standard illumination are reported and analyzed. AC measurements in the illuminated conditions were processed in order to identify electronic behavior using equivalent AC circuit which was suggested and obtained by fitting the measured impedance data. A phenomenon of negative capacitance/resistance in certain frequency range has been observed.

  18. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    SciTech Connect

    Mandal, Durbadal; Viswanathan, Srinath

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1

  19. Atomic arrangement at the AlN/SiC interface

    SciTech Connect

    Ponce, F.A.; Van de Walle, C.G.; Northrup, J.E.

    1996-03-01

    The lattice structure of the AlN/SiC interface has been studied in cross section by high-resolution transmission-electron microscopy. Lattice images show planar and crystallographically abrupt interfaces. The atomic arrangement at the plane of the interface is analyzed based on the image characteristics. Possible bonding configurations are discussed. Variations in local image contrast and interplanar separations are used to identify atomic bonding configurations consistent with the lattice images. {copyright} {ital 1996 The American Physical Society.}

  20. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  1. Yield stress anomaly in B2 FeAl

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.

    1996-12-31

    The studies on yield stress anomaly of B2 FeAl single crystals are reviewed in this paper. A positive temperature dependence of yield stress, so-called yield stress anomaly, is observed in B2 FeAl in which excess vacancies are fully annealed out. Associated with the anomaly, characteristic asymmetry is found between tension and compression. While the strain-rate sensitivity is almost zero in the temperature range of the yield stress anomaly, the stress relaxation becomes significant with increasing temperature, indicating that a recovery process is thermally activated. It is ascertained by the two-surface trace analysis that slip transition from <111> direction at intermediate temperature to <100> at high temperature occurs around the peak temperature. Even at the peak temperature, in addition, operative slip vector for yielding is confirmed to be predominantly <111> by TEM. Also, it is observed that <111>-type superdislocations are frequently climb-dissociated in the temperature range of the anomaly. APB formation on {l_brace}111{r_brace} plane is energetically favorable, which is in agreement with the Flinn`s calculation for the B2 superlattice that APB energy on {l_brace}111{r_brace} plane is lower than that on {l_brace}110{r_brace} plane. Such an anisotropy of APB energy would offer specific driving force for the climb dissociation on <111> superdislocations. On the basis of the observed results, the anomalous strengthening behavior of B2 FeAl single crystals is discussed.

  2. Effect of Fe- and Si-induced flaws on fracture of Si{sub 3}N{sub 4}

    SciTech Connect

    Singh, J.P.

    1997-10-01

    Fracture studies were performed to detect and assess the effect of flaws on the fracture behavior of hot-pressed Si{sub 3}N{sub 4} with Fe or Si inclusions. The addition of 5 and 0.5 wt.% Fe inclusions of 88--250 {micro}m size reduced the strength of Si{sub 3}N{sub 4} specimens by {approx} 40 and 15%, respectively. Similarly, addition of 1 and 0.5 wt.% Si inclusions of < 149 {micro}m size reduced the strength of Si{sub 3}N{sub 4} specimens by {approx} 50 and 39%, respectively. Fractography indicated that failure occurred primarily from internal flaws which included Fe- and Si-rich inclusions and/or regions of Si{sub 3}N{sub 4} matrix that were degraded as a result of reaction between Si{sub 3}N{sub 4} and molten Fe or Si. For inclusion-induced internal flaws, the critical flaw sizes calculated by fracture mechanics were always larger than the fractographically measured flaw sizes. This observation suggested local degradation in fracture toughness of the Si{sub 3}N{sub 4} matrix. A ratio, K, of {approx} 3.5--4.2 appeared to exist between the calculated and measured values of the critical internal flaw sizes of specimens that contained Fe inclusions. A similar ratio of 1.7--3.1 was observed for specimens that contained Si inclusions. The ratio K has important implications for strength predictions that are based on observed flaw size.

  3. Optical Properties Of {beta}-FeSi2 Thin Films Grown By Magnetron Sputtering

    SciTech Connect

    Tatar, B.; Kutlu, K.

    2007-04-23

    {beta}-FeSi2 semiconductor thin films have been grown on Si(100) and Si(111) substrate at room temperature by unbalanced magnetron sputtering. The thicknesses of {beta}-FeSi2 thin films have been prepared to have value between 0.3-1{mu}m. Optical characteristic of the {beta}-FeSi2 films have been deduced using Fourier Transform Infrared Spectroscopy (FT-IR) in the wavelength range 1000-2000nm. The {beta}-FeSi2 films have been determinated to have optical direct band gap from the plot of ({alpha}h{upsilon})2 vs. h{upsilon} The direct band gap values of the films have been observed to vary between 0.82-0.89 eV depending on the type of substrates.

  4. Synthesis of Li2FeSiO4/carbon nano-composites by impregnation method

    NASA Astrophysics Data System (ADS)

    Sun, Shijiao; Matei Ghimbeu, Camelia; Vix-Guterl, Cathie; Sougrati, Moulay-Tahar; Masquelier, Christian; Janot, Raphaël

    2015-06-01

    Nanocrystalline lithium iron silicate/carbon (Li2FeSiO4/C) composites were successfully prepared by impregnation of a commercial porous carbon using ethanolic solutions of the different metallic precursors, followed by thermal annealing at 600 °C. The effects of Li2FeSiO4 loading content on the structure and organization of the Li2FeSiO4/C composites at the nanoscale were investigated. Through optimization of the synthesis conditions, small Li2FeSiO4 nanocrystals (4-12 nm) are formed and well dispersed in the porous conductive carbon. The electrochemical performances of these composites were tested as positive electrodes for lithium-ion batteries. The Li2FeSiO4/C composite with the lowest Li2FeSiO4 loading exhibits the best rate capability with a significant capacity contribution from carbon. It was found that the presence of carbon delays the lowering of the Fe3+/Fe2+ redox voltage usually reported for Li2FeSiO4 (from 3.1/3.0 to 2.8/2.7 V vs. Li+/Li), due to a stabilization effect of the initial Li2FeSiO4 crystal structure. For the Li2FeSiO4/C composite (81/19 weight ratio), a discharge capacity of 81 mAh g-1 can be achieved at 55 °C for a charge/discharge rate of 2C, with 86% capacity retention after 500 cycles, showing the positive effect of the porous carbon addition for long term cycling stability.

  5. Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, X.; Xie, L.; Hu, Z.; Lin, H.; Zhou, Z.; Nan, T.; Yang, X.; Howe, B. M.; Jones, J. G.; Brown, G. J.; Sun, N. X.

    2016-06-01

    It has been challenging to achieve combined strong magnetoelectric coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175 Oe and narrow FMR linewidth of 40 Oe were observed in FeCoSiB/Si/SiO2/PMN-PT heterostructures with substrate clamping effect minimized through removing the Si substrate. As a comparison, FeCoSiB/PMN-PT heterostructures with FeCoSiB film directly deposited on PMN-PT showed a comparable voltage induced effective magnetic field but a significantly larger FMR linewidth of 283 Oe. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for integrated voltage tunable RF magnetic devices.

  6. High temperature properties of equiatomic FeAl with ternary additions

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Vedula, K. M.; Anderson, G. G.

    1984-01-01

    The aluminide intermetallic compounds are considered potential structural materials for aerospace applications. The B2 binary aluminide FeAl has a melting point in excess of 1500 K, is of simple cubic structure, exits over a wide range of composition with solubility for third elements and is potentially self-protecting in extreme environments. The B2 FeAl compound has been alloyed with 1 to 5 at % ternary additions of Si, Ti, Zr, Hf, Cr, Ni, Co, Nb, Ta, Mo, W, and Re. The alloys were prepared by blending a third elemental powder with prealloyed binary FeAl powder. Consolidation was by hot extrusion at 1250 K. Annealing studies on the extruded rods showed that the third element addition can be classified into three categories based upon the amount of homogenization and the extent of solid solutioning. Constant strain rate compression tests were performed to determine the flow stress as a function of temperature and composition. The mechanical strength behavior was dependent upon the third element homogenization classification.

  7. High temperature properties of equiatomic FeAl with ternary additions

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Vedula, K. M.; Anderson, G. G.

    1985-01-01

    The aluminide intermetallic compounds are considered potential structural materials for aerospace applications. The B2 binary aluminide FeAl has a melting point in excess of 1500 K, is of simple cubic structure, exists over a wide range of composition with solubility for third elements and is potentially self-protecting in extreme environments. The B2 FeAl compound has been alloyed with 1 to 5 at. pct ternary additions of Si, Ti, Zr, Hf, Cr, Ni, Co, Nb, Ta, Mo, W, and Re. The alloys were prepared by blending a third elemental powder with pre-alloyed binary FeAl powder. Consolidation was by hot extrusion at 1250 K. Annealing studies on the extruded rods showed that the third element addition can be classified into three categories based upon the amount of homogenization and the extent of solid solutioning. Constant strain rate compression tests were performed to determine the flow stress as a function of temperature and composition. The mechanical strength behavior was dependent upon the third element homogenization classification.

  8. Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode

    NASA Astrophysics Data System (ADS)

    Şenarslan, Elvan; Güzeldir, Betül; Sağlam, Mustafa

    2016-04-01

    In this study, p-type Si semiconductor wafer with (100) orientation, 400 μm thickness and 1-10 Ω cm resistivity was used. The Si wafer before making contacts were chemically cleaned with the Si cleaning procedure which for remove organic contaminations were ultrasonically cleaned at acetone and methanol for 10 min respectively and then rinsed in deionized water of 18 MΩ and dried with high purity N2. Then respectively RCA1(i.e., boiling in NH3+H2O2+6H2O for 10 min at 60°C ), RCA2 (i.e., boiling in HCl+H2O2+6H2O for 10 min at 60°C ) cleaning procedures were applied and rinsed in deionized water followed by drying with a stream of N2. After the cleaning process, the wafer is immediately inserted in to the coating unit. Ohmic contact was made by evaporating of Al on the non-polished side of the p-Si wafer pieces under ~ 4,2 10-6 Torr pressure. After process evaporation, p-Si with omic contac thermally annealed 580°C for 3 min in a quartz tube furnace in N2. Then, the rectifier contact is made by evaporation Al metal diameter of about 1.0 mm on the polished surface of p-Si in turbo molecular pump at about ~ 1 10-6 Torr. Consequently, Al/p-Si/Al Schottky diode was obtained. The I–V measurements of this diode performed by the use of a KEITLEY 487 Picoammeter/Voltage Source and the C–V measurements were performed with HP 4192A (50–13 MHz) LF Impedance Analyzer at room temperature and in dark.

  9. Microstructure analysis of Al-Si-Cu alloys prepared by gradient solidification technique

    NASA Astrophysics Data System (ADS)

    Borkar, Hemant; Seifeddine, Salem; Jarfors, Anders E. W.

    2015-03-01

    Al-Si-Cu alloys were cast with the unique gradient solidification technique to produce alloys with two cooling rates corresponding to secondary dendrite arm spacing (SDAS) of 9 and 27 μm covering the microstructural fineness of common die cast components. The microstructure was studied with optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscattered diffraction (EBSD). The alloy with higher cooling rate, lower SDAS, has a more homogeneous microstructure with well distributed network of eutectic and intermetallic phases. The results indicate the presence of Al-Fe-Si phases, Al-Cu phases and eutectic Si particles but their type, distribution and amount varies in the two alloys with different SDAS. EBSD analysis was also performed to study the crystallographic orientation relationships in the microstructure. One of the major highlights of this study is the understanding of the eutectic formation mechanism achieved by studying the orientation relationships of the aluminum in the eutectic to the surrounding primary aluminum dendrites.

  10. Preliminary Results on FeCrAl Alloys in the As-received and Welded State Designed to Have Enhanced Weldability and Radiation Tolerance

    SciTech Connect

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang; Yamamoto, Yukinori

    2015-09-30

    The present report summarizes and discusses the recent results on developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability. The alloys used for these investigations are modern FeCrAl alloys based on a Fe-13Cr-5Al-2Mo-0.2Si-0.05Y alloy (in wt.%, designated C35M). Development efforts have focused on assessing the influence of chemistry and microstructure on the fabricability and performance of these newly developed alloys. Specific focus was made to assess the weldability, thermal stability, and radiation tolerance.

  11. FeAl and NbAl3 Intermetallic-HVOF Coatings: Structure and Properties

    NASA Astrophysics Data System (ADS)

    Guilemany, J. M.; Cinca, N.; Dosta, S.; Cano, I. G.

    2009-12-01

    Transition metal aluminides in their coating form are currently being explored in terms of resistance to oxidation and mechanical behavior. This interest in transition metal aluminides is mainly due to the fact that their high Al content makes them attractive for high-temperature applications. This is also a reason to study their resistance to wear; they may be suitable for use in applications that produce a lot of wear in aggressive environments, thus replacing established coating materials. In this study, the microstructure, microhardness, and wear and oxidation performance of FeAl and NbAl3 coatings produced by high-velocity oxy-fuel spraying are evaluated with two main aims: (i) to compare these two coating systems—a commonly studied aluminide (FeAl) and, NbAl3, an aluminide whose deposition by thermal spraying has not been attempted to date—and (ii) to analyze the relationship between their microstructure, composition and properties, and so clarify their wear and oxidation mechanisms. In the present study, the higher hardness of niobium aluminide coatings did not correlate with a higher wear resistance and, finally, although pesting phenomena (disintegration in oxidizing environments) were already known of in bulk niobium aluminides, here their behavior in the coating form is examined. It was shown that such accelerated oxidation was inevitable with respect to the better resistance of FeAl, but further improvements are foreseen by addition of alloying elements in that alloy.

  12. Magnetism and electrical transport in Fe 0.9TM 0.1Si, TM=Co, Rh, Ru

    NASA Astrophysics Data System (ADS)

    Paschen, S.; Pushin, D.; Ott, H. R.; Young, D. P.; Fisk, Z.

    1999-01-01

    Our comparative study of magnetic and transport properties of Fe 0.9Co 0.1Si, Fe 0.9Rh 0.1Si, and Fe 0.9Ru 0.1Si indicates that the ferromagnetism previously observed in Fe 0.9Co 0.1Si is not due to localized magnetic moments residing on the Co atoms. It is rather the metallicity of the system which provides the formation of a ferromagnetic state.

  13. A comparative wear study on Al-Li and Al-Li/SiC composite

    SciTech Connect

    Okumus, S. Cem Karslioglu, Ramazan Akbulut, Hatem

    2013-12-16

    Aluminum-lithium based unreinforced (Al-8090) alloy and Al-8090/SiCp/17 vol.% metal matrix composite produced by extrusion after spray co-deposition. A dry ball-on disk wear test was carried out for both alloy and composite. The tests were performed against an Al{sub 2}O{sub 3} ball, 10 mm in diameter, at room temperature and in laboratory air conditions with a relative humidity of 40-60%. Sliding speed was chosen as 1.0 ms{sup −1} and normal loads of 1.0, 3.0 and 5.0 N were employed at a constant sliding distance of 1000 m. The wear damage on the specimens was evaluated via measurement of wear depth and diameter. Microstructural and wear characterization was carried out via scanning electron microscopy (SEM). The results showed that wear loss of the Al-8090/SiC composite was less than that of the Al-8090 matrix alloy. Plastic deformation observed on the wear surface of the composite and the matrix alloy, and the higher the applied load the greater the plastic deformation. Scanning electron microscopy examinations of wear tracks also reveal that delamination fracture was the dominant wear mechanism during the wear progression. Friction coefficient was maximum at the low applied load in the case of the Al-8090/SiC composite while a gradual increase was observed with applied load for the matrix alloy.

  14. A comparative wear study on Al-Li and Al-Li/SiC composite

    NASA Astrophysics Data System (ADS)

    Okumus, S. Cem; Karslioglu, Ramazan; Akbulut, Hatem

    2013-12-01

    Aluminum-lithium based unreinforced (Al-8090) alloy and Al-8090/SiCp/17 vol.% metal matrix composite produced by extrusion after spray co-deposition. A dry ball-on disk wear test was carried out for both alloy and composite. The tests were performed against an Al2O3 ball, 10 mm in diameter, at room temperature and in laboratory air conditions with a relative humidity of 40-60%. Sliding speed was chosen as 1.0 ms-1 and normal loads of 1.0, 3.0 and 5.0 N were employed at a constant sliding distance of 1000 m. The wear damage on the specimens was evaluated via measurement of wear depth and diameter. Microstructural and wear characterization was carried out via scanning electron microscopy (SEM). The results showed that wear loss of the Al-8090/SiC composite was less than that of the Al-8090 matrix alloy. Plastic deformation observed on the wear surface of the composite and the matrix alloy, and the higher the applied load the greater the plastic deformation. Scanning electron microscopy examinations of wear tracks also reveal that delamination fracture was the dominant wear mechanism during the wear progression. Friction coefficient was maximum at the low applied load in the case of the Al-8090/SiC composite while a gradual increase was observed with applied load for the matrix alloy.

  15. Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    2004-01-01

    The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.

  16. Magnetic and structural properties of ferromagnetic Fe5PB2 and Fe5SiB2 and effects of Co and Mn substitutions

    DOE PAGESBeta

    McGuire, Michael A.; Parker, David S.

    2015-10-22

    Crystallographic and magnetic properties of Fe5PB2, Fe4CoPB2, Fe4MnPB2, Fe5SiB2, Fe4CoSiB2, and Fe4MnSiB2 are reported. All adopt the tetragonal Cr5B3 structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe5SiB2 is observed as an anomaly in the magnetization near 170 K, and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggests smaller magnetic anisotropy in the silicides. Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments bymore » 16-20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe5PB2 and Fe5SiB2, with negative thermal expansion seen along the c-axis of Fe5SiB2. First principles calculations of the magnetic properties of Fe5SiB2 and Fe4MnSiB2 are reported. The results, including the magnetic moment and anisotropy, and are in good agreement with experiment.« less

  17. Magnetic and structural properties of ferromagnetic Fe5PB2 and Fe5SiB2 and effects of Co and Mn substitutions

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Parker, David S.

    2015-10-01

    Crystallographic and magnetic properties of Fe5PB2, Fe4CoPB2, Fe4MnPB2, Fe5SiB2, Fe4CoSiB2, and Fe4MnSiB2 are reported. All adopt the tetragonal Cr5B3 structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe5SiB2 is observed as an anomaly in the magnetization near 170 K and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggest smaller magnetic anisotropy in the silicides. Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments by 16%-20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe5PB2 and Fe5SiB2, with negative thermal expansion seen along the c-axis of Fe5SiB2. First principles calculations of the magnetic properties of Fe5SiB2 and Fe4MnSiB2 are reported. The results, including the magnetic moment and anisotropy, are in good agreement with experiment.

  18. Development of dispersion U(Mo)/Al-Si miniplates fabricated at 500 °C with Al 6061 as cladding

    NASA Astrophysics Data System (ADS)

    Mirandou, M. I.; Aricó, S. F.; Balart, S. N.; Fabro, J. O.

    2015-02-01

    In the frame of U(Mo) dispersion fuel elements qualification, Si additions to Al matrix arose as a promising solution to the unacceptable failures found when pure Al is used. Analysis of as-fabricated fuel plates made with Al-Si matrices demonstrated that good irradiation behavior is correlated with the formation during fabrication of a Si-containing interaction layer around the U(Mo) particles. Thus, the analysis of the influence of fabrication parameters becomes important. Studies on Al-Si dispersion miniplates fabricated in CNEA, Argentina, have been initiated to determine how to obtain the better interaction layer characteristics with the lesser modifications to the fabrication process and the smaller amount of Si in the matrix. In this work results for miniplates made of atomized U-7 wt%Mo particles dispersed in Al-2 wt%Si and Al-4 wt%Si matrices, obtained by mixing pure Al and Si powders, and Al 6061 as cladding are presented. Interaction layer grown during fabrication process (500 °C) consists of Si-containing phases being U(Al, Si)3 its principal component. Its uniformity is not satisfactory due to the formation of an oxide layer.

  19. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  20. Identification of an incommensurate FeAl{sub 2} overlayer on FeAl(110) using x-ray diffraction and reflectivity

    SciTech Connect

    Baddorf, A.P.; Chandavarkar, S.S.

    1995-06-30

    FeAl, like NiAl, crystallizes in the CsCl structure. Consequently the (110) planes contain equal amounts of Fe and Al distributed as interlocking rectangles. Unlike the NiAI(110) surface, which retains the (1{times}l) in-plane symmetry of the bulk, FeAl(l10) reconstructs to form an ordered, incommensurate overlayer. The reconstructed layer introduces x-ray diffraction rods at half-order positions along the [1{bar 1}0] direction, and displaced {plus_minus}0.2905 from integer positions along the [001] direction. Peak widths reveal excellent long range order. Specular reflectivity measurements above and below the Fe K{alpha} edge can be reproduced using a model containing a single reconstructed overlayer with an Fe:Al ratio of 1:2, consistent with FeA{sub I}2.

  1. Al-Si/SiC nanoparticles composites synthesized by double stir casting.

    PubMed

    Aigbodion, V S

    2011-11-01

    The present invention provides Al-Si/SiC nanoparticles composites with the composition of 7%Si, 15%SiC with average particle size (APS) of SiC, 20, 30, 40 nm and 65μm using a novel double stir casting method. The inventive nano-composites by double stir casting show a nearly uniform distribution and good dispersion of the nano-particles within the Al matrix, although small agglomeration was found in the matrix of the micro-composite. The enhancement in values of impact strength and tensile strength observed in this study is due to small particle size and good distribution of the nano particles, which were confirmed by SEM spectrum. Patents WO 2010135848 and WO2011/011601 have some relevant information about the topic developed in this study, because the principle in both cases relies on the interactions between metal matrix and the nano-particles. Hence, novel double stir casting method can be used to improve the properties of nano-composites. PMID:21428904

  2. Endotaxially stabilized B2-FeSi nanodots in Si (100) via ion beam co-sputtering

    SciTech Connect

    Cassidy, Cathal Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Lal, Chhagan; Sowwan, Mukhles

    2014-04-21

    We report on the formation of embedded B2-FeSi nanodots in [100]-oriented Si substrates, and investigate the crystallographic mechanism underlying the stabilization of this uncommon, bulk-unstable, phase. The nanodots were approximately 10 nm in size, and were formed by iron thin film deposition and subsequent annealing. Cross-sectional transmission electron microscopy, energy loss spectroscopy mapping, and quantitative image simulation and analysis were utilized to identify the phase, strain, and orientational relationship of the nanodots to the host silicon lattice. X-ray photoelectron spectroscopy was utilized to analyze the surface composition and local bonding. Elasticity calculations yielded a nanodot residual strain value of −18%. Geometrical phase analysis graphically pinpointed the positions of misfit dislocations, and clearly showed the presence of pinned (11{sup ¯}1{sup ¯}){sub Si}//(100){sub FeSi}, and unpinned (2{sup ¯}42){sub Si}//(010){sub FeSi}, interfaces. This partial endotaxy in the host silicon lattice was the mechanism that stabilized the B2-FeSi phase.

  3. Modeling of the solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 in cryolite melts at 1300 K

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshu; Wu, Xiaoxia; Rapp, Robert A.

    2004-02-01

    Experiments to measure the solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 were performed, and the results confirmed existing literature values. The solubilities of NiAl2O4 and FeAl2O4 in Al2O3-saturated cryolite melts at 1300 K were modeled thermodynamically in terms of the Ni-containing complexes Na2NiF4 and Na4NiF6, and the Fe-containing solutes FeF2, Na2FeF4, and Na4FeF6. The experimental solubility data were fitted to multiple simultaneous equilibria. Equilibrium constants and ΔG f 0 values for the formation reactions of the these solutes were thereby estimated. The solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 and solute distributions in Al2O3-undersaturated cryolite melts were calculated for a number of melt compositions from the present model. The existence of several competitive solute species is inherent to highly buffered ionic cryolite solutions where the traditional log-log methodology had previously failed to identify dominant single solutes. In such solutions, individual solutes of oxides are not likely to dominate over a wide composition range so that a more global modeling is required. The principal solute species identified in the present study exhibit reasonable three-dimensional (3-D) anion geometries.

  4. XPS study of the Al/SiO2 interface viewed from the SiO2 side

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Grunthaner, F. J.; Maserjian, J.

    1984-01-01

    The first nondestructive measurement of the chemical and physical characteristics of the interface between bulk SiO2 and thick aluminum films is presented. Both X-ray photoelectron spectroscopy (XPS) and electrical measurements of unannealed resistively evaporated Al films on thermal SiO2 indicate an atomically abrupt interface. Postmetallization annealing (PMA) at 450 C induces reduction of the SiO2 by the aluminum, resulting in the layer ordering SiO2/Al2O3/Si/Al. The XPS measurement is performed from the SiO2 side after removal of the Si substrate after etching with XeF2 gas and thinning of the SiO2 layer with HF:ETOH. This represents a powerful new approach to the study of metal-insulator and other interfaces.

  5. Erosion behavior of Fe-Al intermetallic alloys

    SciTech Connect

    Kim, Y.S.; Song, J.H.; Chang, Y.W.

    1997-04-01

    The Fe-rich Fe-Al intermetallics have generated some interest, especially during the last decade, due to their excellent resistance for oxidation and sulfidation, high specific strength, and low material cost. The aluminide is therefore considered as one of the promising candidates for high-temperature structural materials in a corrosive atmosphere. Research effort has been focused mainly on process, development, and enhancement of room-temperature ductility together with the characterization of physical properties such as mechanical properties, oxidation, corrosion, and abrasive wear behavior. However, there have been only a few works reported to date in regard to the erosion characteristics of the alloy, one of the most important material property of this ordered intermetallic alloy for the use in a fossil-fuel plant. In this study, the solid-particle erosion behavior of the Fe-Al intermetallic alloys containing the various aluminum contents ranging from 25 to 30 at.% has been investigated to clarify the effect of aluminum content and different ordered structures, viz. DO{sub 3} and B2, on the erosion behavior. An attempt has been made to correlate the erosion behavior of these intermetallics to their mechanical properties by carrying out tensile tests together with SEM observation of the eroded surfaces.

  6. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  7. High coercivity of melt-spun Sm2Fe15Al2C1.5 compound

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Xian; Cheng, Zhao-Hua; Shen, Bao-Gen

    1996-04-01

    The magnetic hardening of melt-spun Sm2Fe17Cx was studied and the coercivity of 4.6 kOe for Sm2Fe17C1.5 alloys was reported a few years ago. Recently, we have succeeded in preparing single-phase compounds of Sm2(Fe, M)17Cx (M=Ga, Al, or Si) with high carbon concentration by arc melting. It was found that the substitution of Ga or Al not only facilitated the formation of high carbon concentration rare-earth iron compounds with a 2:17-type structure, but also was very effective in raising the value of the anisotropy field. For example, the sample of Sm2Fe15Al2C1.5 has a saturation magnetization of 110.2 emu/g, a Curie temperature of 576 K, and an anisotropy field of 111 kOe. It is known that melt spinning is an effective means to obtain high coercivity of magnetically hard materials. In this work, the hard magnetic properties of melt-spun Sm2Fe15Al2C1.5 alloys were investigated. It was found that the value of coercivity depends strongly on the quenching rates and an optimum coercivity of 9.4 kOe was obtained at the quenching rate of 20 m/s. X-ray diffraction patterns indicate that the as-quenched ribbons have a phase of the Th2Zn17-type structure. The high coercivity of these as-quenched ribbons originates from the excellent intrinsic magnetic properties of Sm2Fe15Al2C1.5. It can be concluded that the substitution of Al is very effective in raising the coercivity of melt-spun Sm2Fe15Al2C1.5 ribbons.

  8. Structure of AlSi-SiC composite foams surface formed by mechanical and thermal cutting

    NASA Astrophysics Data System (ADS)

    Krajewski, Sławomir; Nowacki, Jerzy

    2015-02-01

    The article presents the geometric structure of AlSi-SiC composite foam surface after thermal, mechanical and erosive cutting with regards to its subsequent practical applications. In stereometric measurements of foam surfaces, confocal microscopy was suggested as a method fit for measuring surfaces of high discontinuity ratio that results from porosity. Basic quality parameters of cutting plane were characterised, and technical as well as methodological problems deriving from atypical porous structure of metallic foams were identified. On the basis of the results obtained, the influence of cutting methods on the geometric parameters of foam plane was established, and most favourable cutting conditions were determined.

  9. Equilibrium point defects in intermetallics with the [ital B]2 structure: NiAl and FeAl

    SciTech Connect

    Fu, C.L.; Ye, Y.; Yoo, M.H. ); Ho, K.M. )

    1993-09-01

    Equilibrium point defects and their relation to the contrasting mechanical behavior of NiAl and FeAl are investigated. For NiAl, the defect structure is dominated by two types of defects---monovacancies on the Ni sites and substitutional antisite defects on the Al sites. The defect structure of FeAl differs from that of NiAl in the occurrence of antisite defects at the transition-metal sites for Al-rich alloys and the tendency for vacancy clustering. The strong ordering (and brittleness) of NiAl is attributed mainly to the difference in atomic size between constituent atoms.

  10. High Curie temperature of Ce-Fe-Si compounds with ThMn12 structure

    SciTech Connect

    Zhou, C; Pinkerton, FE; Herbst, JF

    2015-01-15

    We report the discovery of ternary CeFe(12-x)Si(x)compounds possessing the ThMn12 structure. The samples were prepared by melt spinning followed by annealing. In contrast to other known Ce Fe-based binary and ternary compounds, CeFe12-xSix compounds exhibit exceptionally high Curie temperatures whose values increase with added Si substitution. The highest T. = 583 K in CeFe10Si2 rivals that of the well-established Nd2Fe14B compound. We ascribe the T-c behavior to a combination of Si-induced 3d band structure changes and partial Ce3+ stabilization. (C) 2014 Published by Elsevier Ltd.

  11. Fracture toughness of SiC/Al metal matrix composite

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Parker, B. H.; Chu, H. P.

    1989-01-01

    An experimental study was conducted to evaluate fracture toughness of SiC/Al metal matrix composite (MMC). The material was a 12.7 mm thick extrusion of 6061-T6 aluminum alloy with 40 v/o SiC particulates. Specimen configuration and test procedure conformed to ASTM E399 Standard for compact specimens. It was found that special procedures were necessary to obtain fatigue cracks of controlled lengths in the preparation of precracked specimens for the MMC material. Fatigue loading with both minimum and maximum loads in compression was used to start the precrack. The initial precracking would stop by self-arrest. Afterwards, the precrack could be safely extended to the desired length by additional cyclic tensile loading. Test results met practically all the E399 criteria for the calculation of plane strain fracture toughness of the material. A valid K sub IC value of the SiC/Al composite was established as K sub IC = 8.9 MPa square root of m. The threshold stress intensity under which crack would cease to grow in the material was estimated as delta K sub th = 2MPa square root of m for R = 0.09 using the fatigue precracking data. Fractographic examinations show that failure occurred by the micromechanism involved with plastic deformation although the specimens broke by brittle fracture. The effect of precracking by cyclic loading in compression on fracture toughness is included in the discussion.

  12. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    PubMed

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in < 2 microm particles, respectively. The contents of oxalate-(Al(o)) and pyrophosphate extractable (Al(p)) were 0.08-1.34 g x kg(-10 and 0.11-0.47 g x kg(-1) in 2-250 microm particles, respectively; 2.96-6.20 g x kg(-1) and 0.38-0.78 g x kg(-1) in < 2 microm particles, respectively. And amounts of selective extractable Fe are generally higher in paddy yellow-brown soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in < 2 microm particles, respectively. The ratio of the stable organic carbon and nitrogen (C(stable)/N(stable)) were 9.50-22.0 in 2-250 microm particles and 7.43-11.54 in < 2 microm particles, respectively. The stabilization index (SI(C) and SI(N)) of the organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in < 2 microm particles, respectively. According to SI, it is lower in arid yellow-brown soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective

  13. A thermokinetic model for Mg-Si couple formation in Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Svoboda, J.; Shan, Y. V.; Kozeschnik, E.; Fischer, F. D.

    2016-03-01

    Mg-Si couples formed from atomic Mg and Si represent the first step in Mg-Si cluster formation in a dilute Al-Mg-Si system. Based on the thermodynamic extremal principle, a kinetic model for Mg-Si couple formation is developed. The model utilizes the trapping concept for the calculation of Gibbs energy of the non-equilibrium system and provides a generalized (multiplicative) form of the Oriani equation for description of the equilibrium state. The dissipation in the system accounts for diffusion of both Mg and Si atoms in the lattice. The model is compared with the classical Lidiard and Howard equilibrium theory. Some demonstrative examples are presented. Finally the model is applied to an experimentally studied system. Good quantitative agreement with quenching experiments is obtained, if, simultaneously, the impact of excess quenched-in vacancies and their gradual annihilation in the system, which has been already treated in a previous paper, are accounted for. The model is generally applicable for any couple (and pair) formation.

  14. Novel Fe@C-TiO2 and Fe@C-SiO2 water-dispersible magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Fleaca, Claudiu Teodor; Dumitrache, Florian; Morjan, Ion; Alexandrescu, Rodica; Luculescu, Catalin; Niculescu, Ana; Vasile, Eugeniu; Kuncser, Victor

    2013-08-01

    We report the synthesis of novel nanocomposites based on Fe@C nanoparticles obtained from Fe(CO)5 and C2H4/H2 by laser pyrolysis technique using a three nozzles injector. The αFe-FexCy@C particles (below 24 nm diameter) were first functionalized with hydrophilic groups using Na carboxymethylcellulose. Oxidic precursors (Si(OC2H5)4 or Ti(OC2H5)4) dissolved in ethanol were mixed with ethanolic suspensions of hydrophilized Fe@C nanoparticles using strong ultrasonication, then with water (at different pH values) and finally the Fe-containing composites were recovered by magnetic separation. The SiO2 and TiO2-coated powders were characterized by XRD, FT-IR and TEM techniques and their magnetic hysteresis curves were recorded at different temperatures. Both composites contain submicron aggregates of Fe@C nanoparticles embedded in/surrounded by a disordered porous oxidic matrix/shell. Near superparamagnetic behavior and room temperature and 26 A m2/kg (for Fe@C/SiO2) or 57 A m2/kg (for Fe@C/TiO2) saturation magnetization values were recorded and a blocking temperature around 500 K was extrapolated.

  15. Diffraction at GaAs/Fe3Si core/shell nanowires: The formation of nanofacets

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Hanke, M.; Hilse, M.; Herfort, J.; Trampert, A.; Erwin, S. C.

    2016-05-01

    GaAs/Fe3Si core/shell nanowire structures were fabricated by molecular-beam epitaxy on oxidized Si(111) substrates and investigated by synchrotron x-ray diffraction. The surfaces of the Fe3Si shells exhibit nanofacets. These facets consist of well pronounced Fe3Si{111} planes. Density functional theory reveals that the Si-terminated Fe3Si{111} surface has the lowest energy in agreement with the experimental findings. We can analyze the x-ray diffuse scattering and diffraction of the ensemble of nanowires avoiding the signal of the substrate and poly-crystalline films located between the wires. Fe3Si nanofacets cause streaks in the x-ray reciprocal space map rotated by an azimuthal angle of 30° compared with those of bare GaAs nanowires. In the corresponding TEM micrograph the facets are revealed only if the incident electron beam is oriented along [1 1 ¯ 0] in accordance with the x-ray results. Additional maxima in the x-ray scans indicate the onset of chemical reactions between Fe3Si shells and GaAs cores occurring at increased growth temperatures.

  16. Wear resistance of TiAlSiN thin coatings.

    PubMed

    Silva, F J G; Martinho, R P; Alexandre, R J D; Baptista, A P M

    2012-12-01

    In the last decades TiAIN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAISiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAISiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAIN reported performances, denoting that Si addition does not improve the wear performance of the TiAIN coatings in these wear test conditions. PMID:23447962

  17. Phase relation of C-Mg-Fe-Si-O system under various oxygen fugacity conditions at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ohtani, E.; Terasaki, H.; Ito, Y.; Shibazaki, Y.; Ishii, M.; Funakoshi, K.; Higo, Y.

    2010-12-01

    Many exoplanets have been found recently based on the spectroscopic observation. A carbon-rich circumstellar gas was reported to exist around “beta-Pictoris”, which has an exoplanet (Roberge et al., 2006). In such gas, carbon-enriched planet, “carbon-planet” may be formed. Carbon-bearing phase, such as carbide, carbonate, graphite and diamond are likely to compose the carbon-planet interior. Therefore, it is important to investigate phase relations of carbon-rich systems under high pressure conditions. In this study, C-enriched Mg-Si-Fe-O-C system was investigated at high pressure and temperature in order to understand the internal structure of the carbon-planet. Phase relations were studied based on 2 series of experiments; (I)textural observation and chemical analysis of the recovered sample from 4 GPa and 1873K and (II)in situ X-ray diffraction experiments under high pressure and temperature. For the starting materials, we used several different mineral assemblages, as shown below: (i) MgCO3 + Fe + Si + C, (ii) (Mg1.8,Fe0.2)SiO4 + Fe + SiO2 + C, (iii) (Mg1.8,Fe0.2)SiO4 + Fe + Si + C, (iv) MgO + Fe + SiO2 + C, (v) MgO + Fe + Si + C. Oxygen fugacity (fO2) of the sample vaies dependign on these assembleges due to different O amount in the starting materials. The sample was enclosed in graphite or MgO capsule. MgO capsule enables us to estimate fO2 in the sample based on the FeO content of the capsule contacting with the samples. Chemical analyses of the recovered samples were performed using electron microprobe. In situ X-ray diffraction experiments were conducted at 4 GPa and up to 1873 K at BL04B1 beamline, SPring-8 synchrotron facility. Different mineral assemblages and their compositions were observed in the recovered samples depending on the redox condition of the sample. The compositions of metallic melt phases changes from Fe-C composition (C = 6.9~8.2 wt.%) in oxidizing conditions (ΔIW = -2.4 ~ -1.7) to Fe-Si composition (Si = 18 wt.%) in the more

  18. Investigation of Fe-Si-N films as magnetic overcoat for high density recording disk drives

    SciTech Connect

    Gauvin, M.; Talke, F. E.; Fullerton, E. E.

    2010-09-15

    A 50-nm-thick Fe-Si-N films were deposited via reactive magnetron cosputtering of independent Fe and Si targets, in Ar/N{sub 2} gas mixture, under different dc Fe target power conditions. Magnetic properties, mechanical hardness and tribological properties were characterized as a function of the Fe target power by magnetometry, nanoindentation, and nanoscratch testing, respectively. Deposited samples were found to be ferromagnetic with a coercivity of approximately 20 Oe and a saturation magnetization increasing from 200 to 1100 emu/cm{sup 3} as a function of Fe sputter power, i.e., values typical of soft magnetic materials. The mechanical hardness was found to be between 50% and 70% of the hardness of a pure SiN{sub x} film. Nanotribological properties of films deposited with a Fe target power {>=}80 W degraded rapidly.

  19. Structural and electronic properties of a single Si chain doped zigzag AlN nanoribbon

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Zhang, Jing; Xu, Ke-Wei

    2015-04-01

    The first-principles projector-augmented wave (PAW) potentials within the density function theory (DFT) framework have been used to determine the geometry structures and electronic properties of the zigzag edge AlN nanoribbons (ZAlNNRs) doped with a single Si chain under generalized gradient approximation (GGA). The average Al-Si, Si-Si, Al-N, Si-N, Al-H and N-H bond lengths are 2.39, 2.16, 1.83, 1.74, 1.59 and 1.03 Å, respectively. Pure 7-ZAlNNR is an indirect semiconductor with a large band gap of 2.235 eV, while a semiconductor to metal transformation is taken place after a single Si chain substituting for a single Al-N chain at various positions. In pure 7-ZAlNNR, the HVB and LCB are mainly attributed to the edge N and Al atoms, respectively, while in a single Si chain substituting doped 7-ZAlNNR, the HVB and LCB are mainly attributed to the Si atoms. The Al-N, Al-H and Al-Si bonds are ionic bond, the Si-Si and Si-H bonds are covalent bond, the N-H and N-Si bonds are covalent bond modified ionic bond.

  20. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    SciTech Connect

    Khanbabaee, B. Pietsch, U.; Lützenkirchen-Hecht, D.; Hübner, R.; Grenzer, J.; Facsko, S.

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  1. Structural and magnetic properties of ion beam sputtered Co2FeAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet; Svedlindh, Peter

    2016-05-01

    Co2FeAl full Heusler alloy thin films grown at different temperatures on Si(100) substrates using ion beam sputtering system have been investigated. X-ray diffraction (XRD) patterns revealed the A2 disordered phase in these films. The deduced lattice parameter slightly increases with increase in the growth temperature. The saturation magnetization it is found to increase with increase in growth temperature. The magnetic anisotropy has been studied using angle dependent magneto-optical Kerr effect. In the room temperature deposited film, the combination of cubic and uniaxial anisotropy have been observed with weak in-plane uniaxial anisotropy which increases with growth temperature. The uniaxial anisotropy is attributed to the anisotropic interfacial bonding in these Co2FeAl /Si(100) heterostructures.

  2. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2016-08-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  3. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  4. Magnetotransport Properties of Co2FeAl Nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab; Gyawali, P.; Dahal, Bishnu; Dulal, R.; Pegg, I. L.; Philip, John

    2013-03-01

    Co2FeAl (CFA) nanowire (NW) exhibit interesting magnetic behavior with temperature, which arises from the granular structure.[2] To understand the magnetotransport properties, single CFA NW devices were fabricated using standard electron beam lithography. The magnetoresistance measurements of single CFA NW device were carried out at different temperatures. The magnetoresistance measurements show oscillations as a function of applied external magnetic field. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.

  5. MOKE Study of Fe/Co/Al Multilayers

    SciTech Connect

    Jani, Snehal; Lakshmi, N.; Venugopalan, K.; Rajput, Parasmani; Zajaoc, M.; Rueffer, R.; Reddy, V. R.; Gupta, Ajay

    2011-07-15

    The multilayer system (MLS)-[{sup 57}Fe{sub 25}A/Co{sub 11}A/Al{sub 17}A]x20 has been deposited by Ion beam sputtering (IBS) technique. The MLS has been annealed at 700 deg. C for 1 h. Overall composition of as deposited and annealed MLS have been characterized by EDX and magnetic properties have been studied through angular dependent magneto optic Kerr effect (MOKE) hysteresis curves. The study shows that the as-deposited MLS has excellent soft magnetic properties coupled with perpendicular magnetic isotropy which is destroyed on annealing.

  6. Zener Relaxation Peak in an Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Cun; Cheng, He-Fa; Gong, Chen-Li; Wei, Jian-Ning; Han, Fu-Sheng

    2002-11-01

    We have studied the temperature spectra of internal friction and relative dynamic modulus of the Fe-(25 wt%)Cr-(5 wt%)Al alloy with different grain sizes. It is found that a peak appears in the internal friction versus temperature plot at about 550°C. The peak is of a stable relaxation and is reversible, which occurs not only during heating but also during cooling. Its activation energy is 2.5 (+/- 0.15) eV in terms of the Arrhenius relation. In addition, the peak is not obvious in specimens with a smaller grain size. It is suggested that the peak originates from Zener relaxation.

  7. Annealing of cold-rolled Fe-40Al single crystals

    SciTech Connect

    Yang, Y.; Baker, I.

    1997-12-31

    Single crystals of Fe-40Al were cold-rolled to plastic strains in the range 5% to 48%. Discs cut from the rolled crystals at different rolling strains were heated at 10 K/min in a differential scanning calorimeter from room temperature to 973 K. Three exothermic peaks were observed in the temperature ranges of 440--550 K, 610--650 K, and 860--930 K, all the peaks shifting to lower temperatures with increasing strain. The origins of these peaks are discussed in terms of the disorder and vacancies introduced during rolling.

  8. Effects of 2 mass % Si admixture in a laser-produced Fe plasma

    SciTech Connect

    Krasa, Josef; Laska, Leos; Rohlena, Karel; Velyhan, Andriy; Lorusso, Antonella; Nassisi, Vincenzo; Czarnecka, Agata; Parys, Piotr; Ryc, Leszek; Wolowski, Jerzy

    2008-11-10

    Emission of multiply charged ions and soft x-rays from the plasmas produced by laser pulses focused on (111) surface of Fe and Fe-2 mass % Si single crystals is investigated for wavelengths of 1064 and 248 nm and intensities up to {approx_equal}1x10{sup 10} W/cm{sup 2}. It is demonstrated that the Si admixture in the Fe plasma results in a higher emission of Fe{sup q+} ions (1{<=}q{<=}4) but in a markedly lower x-ray emission. The relation of wavelengths and pulse durations of laser beams used is figured in the fluence dependence of the ion emission.

  9. Angle-dependent photovoltaic effect in Al-Si multilayers

    SciTech Connect

    Kyarad, A.; Lengfellner, H.

    2005-10-31

    Al-Si multilayer stacks have been prepared by an alloying process from aluminum and silicon platelets. Irradiation of a stack with infrared to visible laser radiation generates photovoltaic signals depending on the angle of incidence of the laser beam with respect to the layer planes, with zero signal and a polarity reversal for beam and layers in parallel. Results are explained in terms of photoactive layers connected in series and symmetrically aligned along the stack axis. For light beams inclined with respect to the layer planes, asymmetry is introduced by fractional shadowing of photoactive regions due to the intransparent metallic layers.

  10. A declaration of independence for Mg/Si. [Al/Si intensity ratio predictive usefulness for Mg/Si intensity ratio in lunar X-ray fluorescence

    NASA Technical Reports Server (NTRS)

    Hubbard, N.; Keith, J. E.

    1978-01-01

    The weak covariation that exists between Al/Si and Mg/Si for large areas of the lunar surface is little, if any, stronger than that forced on a random set of numbers that are subject to closure. The Mg and Al variations implied by the Mg/Si and Al/Si intensity ratio data are qualitatively like those seen in lunar soil sample data. Two petrogenetic provinces are suggested for terra materials; one appears to have 50% higher Mg values than the other. Using the improved data, Mg/Si variations can be studied at a signal-to-noise ratio greater than 5/1.

  11. Local formation of a Heusler structure in CoFe-Al alloys

    NASA Astrophysics Data System (ADS)

    Wurmehl, S.; Jacobs, P. J.; Kohlhepp, J. T.; Swagten, H. J. M.; Koopmans, B.; Maat, S.; Carey, M. J.; Childress, J. R.

    2011-01-01

    We systematically study the changes in the local atomic environments of Co in CoFe-Al alloys as a function of Al content by means of nuclear magnetic resonance. We find that a Co2FeAl Heusler type structure is formed on a local scale. The observed formation of a highly spin-polarized Heusler compound may explain the improved magnetotransport properties in CoFe-Al based current-perpendicular-to-the-plane spin-valves.

  12. Enhanced interface mixing of Fe/Si bilayers on preamorphized silicon substrates

    SciTech Connect

    Bibic, N.; Milinovic, V.; Lieb, K. P.; Milosavljevic, M.; Schrempel, F.

    2007-01-29

    Ion-beam mixing of Fe/Si bilayers, induced at room temperature by 100 keV {sup 40}Ar{sup +}, 180 keV {sup 86}Kr{sup +}, and 250 keV {sup 132}Xe{sup +} ions, was investigated. The study focuses on the influence of the preamorphization of the Si(100) substrates by 1.0 keV Ar-ion irradiation. Rutherford backscattering spectroscopy as well as scanning and transmission electron microscopies were applied for structural characterization. The mixing rate across the preamorphized Fe/Si interface was, on average, by 76% higher than that of crystalline Si.

  13. Magnetic dead layers in NiFe/Ta and NiFe/Si/diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Leng, Qunwen; Han, Hua; Mao, Ming; Hiner, Craig; Ryan, Francis

    2000-05-01

    NiFe, Ta films were fabricated by ion beam deposition (IBD) and diamond-like carbon (DLC) films by ion beam chemical vapor deposition (IB-CVD) and filtered cathodic arc (FCA) process. Magnetic dead layers at interfaces of Ta/NiFe/Tn and NiFe/Si/DLC trilayer films were determined by characterizing magnetic flux loss using a B-H loop tracer. Dependence of magnetic dead layer on ion beam voltage and thicknesses of Ta, DLC, and Si layers was investigated. It is found that the thickness of magnetic dead layer increases monotonously with increasing ion beam voltage for Ta and DLC film depositions. The magnetic dead layer of 4-6 Å thick forms at Ta/NiFe and NiFe/Ta interfaces at an ion beam voltage of 1000 V, which can be attributed to the atomic intermixing of incoming energetic adatoms with atoms of grown films at interfaces. Direct ion beam deposition of the DLC film in NiFe/Si/DLC layered structure gives rise to a magnetic thickness loss of 12-18 Å. Transmission electron microscopy cross-sectional observations have confirmed the formation of an amorphous-like interfacial layer, as a result of carbonization or silicidation of NiFe at interfaces of the trilayer film.

  14. One-step electrolytic preparation of Si-Fe alloys as anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Sun, Diankun; Song, Qiqi; Xie, Wenqi; Jiang, Xu; Zhang, Bo

    2016-06-01

    One-step electrolytic formation of uniform crystalline Si-Fe alloy particles was successfully demonstrated in direct electro-reduction of solid mixed oxides of SiO2 and Fe2O3 in molten CaCl2 at 900∘C. Upon constant voltage electrolysis of solid mixed oxides at 2.8V between solid oxide cathode and graphite anode for 5h, electrolytic Si-Fe with the same Si/Fe stoichimetry of the precursory oxides was generated. The firstly generated Fe could function as depolarizers to enhance reduction rate of SiO2, resulting in the enhanced reduction kinetics to the electrolysis of individual SiO2. When evaluated as anode for lithium ion batteries, the prepared SiFe electrode showed a reversible lithium storage capacity as high as 470mAh g‑1 after 100 cycles at 200mA g‑1, promising application in high-performance lithium ion batteries.

  15. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  16. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Deepika; Tripathi, Malvika; Vaibhav, Pratyush; Kumar, Aman; Kumar, Ritesh; Choudhary, R. J.; Phase, D. M.

    2016-12-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn0.97Al0.03O, Zn0.95Fe0.05O and Zn0.92Al0.03Fe0.05O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments.

  17. FeMn Metal Droplet Behavior in the MnO-SiO2-CaO Slag System

    NASA Astrophysics Data System (ADS)

    Jang, Hyoung-Soon; Ryu, Jae Wook; Sohn, Il

    2015-04-01

    Optimization of the MnO-SiO2-CaO-based slag composition in the FeMn decarburization refining process to minimize metal droplet entrainment has been studied. FeMn spherical droplets with average diameter of 2.5 mm were dispersed within the refining slag of the medium carbon grade ferro-manganese alloy process. Approximately 4.2 pct of the slag existed as FeMn droplets contributing to the overall metal yield loss in the current process. Sedimentation tests of slags with various SiO2 content ranging from 26 to 47 pct using Al2O3 crucibles held at 1773 K (1500 °C) for 30 minutes showed an improvement of the metal/slag separation. Estimated and measured viscosity of the slags showed SiO2 at 32 pct to be optimal for metal/slag separation. Changes in the SiO2 content to 32 pct in actual plant trials allowed significant decrease in the amount of metal droplet entrainment resulting in a decrease of metal in slag to 1.3 pct. Refining times for this optimized slag composition required at least 20 minutes holding for increased separation according to Stokes' law.

  18. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGESBeta

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  19. Properties of AlN film grown on Si (111)

    NASA Astrophysics Data System (ADS)

    Dai, Yiquan; Li, Shuiming; Sun, Qian; Peng, Qing; Gui, Chengqun; Zhou, Yu; Liu, Sheng

    2016-02-01

    Stress and strain in an AlN film grown on Si (111) substrate have been evaluated by measuring Raman frequency shifts. Mechanical properties and phonon deformation potentials of AlN are evaluated by first principles calculations. The calculation model is verified by comparing the calculated Raman frequencies and frequencies detected from a bulk single crystal. Results show that the two sets of frequencies agree very well with each other. Thus, with the same verified model and parameters, elastic constants and phonon deformation potentials are calculated. Additionally, we successfully develop a numerical model to verify the calculation above and the model itself is also useful to predict properties of crystal films. Finally, the stress, strain, and piezoelectric properties are analyzed and compared for films on different substrates.

  20. Microstructure Evolution of Cold-Sprayed Al-Si Alloy Coatings on γ-TiAl During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2015-08-01

    This paper investigated the influence of heat treatment on the microstructure of Al-Si alloy coatings on γ-TiAl alloy. The coatings were prepared by cold spraying with Al-12Si and Al-20Si alloy powders as the feedstock, and then the as-sprayed coatings were subjected to heat treatment. The microstructure, chemical composition, and phase transformation of the coatings were studied by SEM, XRD, and EPMA. The diffusing behavior of Al and Si during heat treatment was investigated. The results showed that a silicon-aluminizing coating was formed through the inward diffusion of Al/Si elements into the substrate. The obtained kinetics curve of the formation of silicon-aluminizing coating at 580 °C similarly followed parabolic law.

  1. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Volcanic Rock in Cryolite Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2016-06-01

    Volcanic rock found in the Longgang Volcano Group in Jilin Province of China has properties essentially similar to Apollo lunar soils and previously prepared lunar soil simulants, such as Johnson Space Center Lunar simulant and Minnesota Lunar simulant. In this study, an electrochemical method of preparation of Al-Si master alloy was investigated in 52.7 wt.%NaF-47.3 wt.%AlF3 melt adding 5 wt.% volcanic rock at 1233 K. The cathodic electrochemical process was studied by cyclic voltammetry, and the results showed that the cathodic reduction of Si(IV) is a two-step reversible diffusion-controlled reaction. Si(IV) is reduced to Si(II) by two electron transfers at -1.05 V versus platinum quasi-reference electrode in 52.7 wt.%NaF-47.3 wt.%AlF3 molten salt adding 5 wt.% volcanic rock, while the reduction peak at -1.18 V was the co-deposition of aluminum and silicon. In addition, the cathodic product obtained by galvanostatic electrolysis for 4 h was analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy and energy dispersive spectrometry. The results showed that the phase compositions of the products are Al, Si, Al5FeSi, and Al3.21Si0.47, while the components are 90.5 wt.% aluminum, 4.4 wt.% silicon, 1.9 wt.% iron, and 0.2 wt.% titanium.

  2. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Volcanic Rock in Cryolite Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2016-04-01

    Volcanic rock found in the Longgang Volcano Group in Jilin Province of China has properties essentially similar to Apollo lunar soils and previously prepared lunar soil simulants, such as Johnson Space Center Lunar simulant and Minnesota Lunar simulant. In this study, an electrochemical method of preparation of Al-Si master alloy was investigated in 52.7 wt.%NaF-47.3 wt.%AlF3 melt adding 5 wt.% volcanic rock at 1233 K. The cathodic electrochemical process was studied by cyclic voltammetry, and the results showed that the cathodic reduction of Si(IV) is a two-step reversible diffusion-controlled reaction. Si(IV) is reduced to Si(II) by two electron transfers at -1.05 V versus platinum quasi-reference electrode in 52.7 wt.%NaF-47.3 wt.%AlF3 molten salt adding 5 wt.% volcanic rock, while the reduction peak at -1.18 V was the co-deposition of aluminum and silicon. In addition, the cathodic product obtained by galvanostatic electrolysis for 4 h was analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy and energy dispersive spectrometry. The results showed that the phase compositions of the products are Al, Si, Al5FeSi, and Al3.21Si0.47, while the components are 90.5 wt.% aluminum, 4.4 wt.% silicon, 1.9 wt.% iron, and 0.2 wt.% titanium.

  3. Reaction synthesis of MoSi{sub 2}-Al{sub 2}O{sub 3} composite using MoO{sub 3}, Al and Si powders

    SciTech Connect

    Deevi, S.C.; Deevi, S.

    1995-10-01

    In-situ synthesis of a composite of MoSi{sub 2}-Al{sub 2}O{sub 3} was carried out by reacting a thermite mixture consisting of MoO{sub 3}, Al, and Si powders. The reaction was found to be extremely fast and violent, and a diluent was required to moderate the reaction. Thermal behavior of the thermite mixture was studied using DTA at different heating rates, and DTA was interrupted at different temperatures to determine the reaction mechanism. X-ray characterization of the products obtained at different temperatures reveals that the mechanism consists of a reduction of MoO{sub 3} by Al to MoO{sub 2} followed by a simultaneous oxidation of Al to Al{sub 2}O{sub 3} and synthesis reaction between reduced Mo and Si to form MoSi{sub 2}. The rate determining step is found to be reduction of MoO{sub 2} by Al and oxidation of Al to Al{sub 2}O{sub 3}. The thermite reaction was moderated by adding Mo and Si to the mixture of MoO{sub 3}, Al, and Si such that the ratio of MoSi{sub 2} to the thermite was in the range of 60:40 to 90:10.

  4. Al-Si-Cu/TiN multilayer interconnection and Al-Ge reflow sputtering technologies for quarter-micron devices

    NASA Astrophysics Data System (ADS)

    Kikkawa, Takamaro; Kikuta, Kuniko

    1993-05-01

    Issues of interconnection technologies for quarter-micron devices are the reliability of metal lines with quarter-micron feature sizes and the formation of contact-hole-plugs with high aspect ratios. This paper describes a TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure as a quarter-micron interconnection technology and aluminum-germanium (Al-Ge) reflow sputtering as a contact-hole filling technology. The TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure could suppress stress-induced voiding and improve the electromigration mean-time to failure. These improvements are attributed to the fact that the grain boundaries for the Al-Si-Cu film and the interfaces between the Al-Si-Cu and the TiN films are strengthened by the rigid intermetallic compound, TiAl3. The Al-Ge alloy reflow sputtering is a candidate for contact- and via-hole filling technologies in terms of reducing fabrication costs. The Al-Ge reflow sputtering achieved low temperature contact hole filling at 300 degree(s)C. Contact holes with a diameter of 0.25 micrometers and aspect ratio of 4 could be filled. This is attributed to the low eutectic temperature for Al-Ge (424 degree(s)C) and the effect of thin polysilicon underlayer on the enhancement of Al-Ge reflow.

  5. Local moments and suppression of antiferromagnetism in correlated Zr4Fe4Si7

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Pezzoli, M. E.; Garlea, V. O.; Smith, G. J.; Grose, J. E.; Misuraca, J. C.; Kotliar, G.; Aronson, M. C.

    2013-08-01

    We report magnetic, transport, and neutron diffraction measurements as well as a doping study of the V-phase compound Zr4Fe4Si7. This compound exhibits collinear antiferromagnetic order below TN=98±1 K with a staggered moment of 0.57(3)μB/Fe as T→ 0. The magnetic order can be quenched with Co substitution to the Fe site, but even then a 1.5μB/Fe paramagnetic moment remains. The resistivity and heat capacity of Zr4Fe4Si7 are Fermi-liquid-like below 16 and 7 K, respectively, and reveal correlations on the scale of those observed in superconducting Fe pnictides and chalcogenides. Electronic structure calculations overestimate the ordered moment, suggesting the importance of dynamical effects. The existence of magnetic order, electronic correlations, and spin fluctuations make Zr4Fe4Si7 distinct from the majority of Fe-Si compounds, fostering comparison instead with the parent compounds of Fe-based superconductors.

  6. Bonding of WC with an iron aluminide (FeAl) intermetallic

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.

    1996-08-01

    FeAl, which has high oxidation and sulfidation resistance, was shown to be thermodynamically compatible with WC. Calculations indicate that soly. of WC in liq. Fe-40at.%Al at 1450 C is about 2 at.%. Since liquid FeAl wets WC very well, the WC/FeAl system lends itself to liquid-phase sintering, resulting in close to theoretical densities. Almost fully dense cermets with 20.6 wt% FeAl binder were produced. With one-step infiltration, 98% dense cermets with only 7 wt% FeAl binder were fabricated. RT bend strengths and fracture toughness for WC-20.6 wt% FeAl reached 1680 MPa and 22 MPa{center_dot}m{sup 1/2}. Ductile binder fracture was observed on the fracture surfaces. Pores containing oxide inclusions were found, suggesting that improvements in processing are likely to further improve the mechanical properties. Insufficient process control may explain why WC/FeAlNi cermets did not show improved mechanical properties, although Ni strengthens FeAl. For WC bonded with FeAl, mechanical properties were measured at RT and 800 C. Bend strengths at 800 C in air increased with WC volume fraction, and fracture toughness were higher than at RT.

  7. Impact behavior of FeAl alloy FA-350

    SciTech Connect

    Alexander, D.J.

    1994-09-01

    The tensile properties and impact behavior of the iron aluminide FeAl-type alloy FA-350 [Fe-35.8Al-0.05Zr-0.24B (at. %)] have been studied over the temperature range of {minus}100 to 800C. Half-size Charpy specimens were either oil quenched from 700C or furnace cooled. The energy absorbed during the impact test showed a maximum value at 100 to 200C, with decreasing energy as the temperature was increased, for both heat treatments. The furnace-cooled material had greater energy absorption than the oil-quenched material. The tensile tests showed increasing ductility (as measured by total elongation) with increasing temperature. The furnace-cooled material had lower strength and higher ductility than the oil-quenched material. Fractographic examination of the oil-quenched impact specimens revealed that several different fracture modes operated, depending on the test temperature. Fracture occurred by intergranular and quasicleavage fracture at low temperatures, predominantly quasicleavage at intermediate temperatures, and intergranular fracture at 800C. For the furnace-cooled material fracture was predominantly quasicleavage at all temperatures. The higher ductility and energy absorption for the furnace-cooled material is believed to be the result of softening due to a decrease in the retained vacancy concentration.

  8. Weldability of Fe[sub 3]Al-type Aluminide

    SciTech Connect

    David, S.A.; Zacharia, T. )

    1993-05-01

    An investigation was carried out to determine the weldability of a series of Fe[sub 3]Al-type alloys. Autogenous welds were made on thin sheets of iron aluminide alloys using gas tungsten arc (GTA) and electron beam (EB) welding processes at different travel speeds and power levels. The results indicate that although these alloys can be successfully welded using the EB welding process, some compositions may hot crack during GTA welding. Boron and zirconium additions have been found to promote hot cracking in these alloys. Among the alloys investigated, Fe[sub 3]Al modified with chromium, niobium and carbon (FA-129) showed the most promise for good weldability. Hot-cracking severity of this alloy was further investigated using the Sigmajig test. The minimum threshold stress of 25 ksi measured is within the material range of other aluminides and some commercial stainless steels. Also, some of these alloys exhibited a tendency for cold cracking. This is related to severe hydrogen embrittlement associated with this class of alloys.

  9. An Experimental Investigation of Fe-Si Alloy Corrosion in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Lauretta, Dante S.; Buseck, Peter R.

    2001-01-01

    We have performed an experimental study of Fe-Si alloy corrosion under dust-rich nebular conditions. The reaction products are silica and fayalite. Additional information is contained in the original extended abstract.

  10. Magnetic properties of FeCu (3 d transition metals) SiB alloys with fine grain structure

    SciTech Connect

    Sawa, T. ); Takahashi, Y. )

    1990-05-01

    Soft magnetic properties were investigated together with crystallization process and grain size for FeCu (3{ital d} transition metals) SiB alloys with fine grains. They were rapidly quenched from the melt to achieve amorphous states and then annealed above their crystallization temperatures. In the group of 3{ital d} transition metals studied, low magnetic core loss at high frequency was obtained for V-substituted Fe-based alloys, because only a bcc Fe solid solution with diameter of about 20 nm precipitated. On the other hand, Cr- or Mn-substituted alloys could not be attained with good soft magnetic properties because of the existence of Fe-metalloid compounds besides the bcc phase by annealing above their crystallization temperatures. The effect of grain size on the soft magnetic properties is more prominent at lower frequency. Diffraction peaks which are characteristics of an ordered phase (DO{sub 3}) are observed, which is the origin of excellent soft magnetic properties in FeAlSi alloys.

  11. Multi-technique equation of state for Fe2SiO4 melt and the density of Fe-bearing silicate melts from 0 to 161 GPa

    NASA Astrophysics Data System (ADS)

    Thomas, Claire W.; Liu, Qiong; Agee, Carl B.; Asimow, Paul D.; Lange, Rebecca A.

    2012-10-01

    We have conducted new equation of state measurements on liquid Fe2SiO4in a collaborative, multi-technique study. The liquid density (ρ), the bulk modulus (K), and its pressure derivative (K') were measured from 1 atm to 161 GPa using 1-atm double-bob Archimedean, multi-anvil sink/float, and shock wave techniques. Shock compression results on initially molten Fe2SiO4 (1573 K) fitted with previous work and the ultrasonically measured bulk sound speed (Co) in shock velocity (US)-particle velocity (up) space yields the Hugoniot: US = 1.58(0.03) up + 2.438(0.005) km/s. Sink/float results are in agreement with shock wave and ultrasonic data, consistent with an isothermal KT = 19.4 GPa and K' = 5.33 at 1500°C. Shock melting of initially solid Fe2SiO4 (300 K) confirms that the Grüneisen parameter (γ) of this liquid increases upon compression where γ = γo(ρo/ρ)q yields a qvalue of -1.45. Constraints on the liquid fayalite EOS permit the calculation of isentropes for silicate liquids of general composition in the multicomponent system CaO-MgO-Al2O3-SiO2-FeO at elevated temperatures and pressures. In our model a whole mantle magma ocean would first crystallize in the mid-lower mantle or at the base of the mantle were it composed of either peridotite or simplified "chondrite" liquid, respectively. In regards to the partial melt hypothesis to explain the occurrence and characteristics of ultra-low velocity zones, neither of these candidate liquids would be dense enough to remain at the core mantle boundary on geologic timescales, but our model defines a compositional range of liquids that would be gravitationally stable.

  12. Thermodynamic Phase Relations in the MgO-FeO-SiO2 System in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Caracas, R.; Asimow, P. D.

    2008-12-01

    The perovskite (Pv) to post-perovskite (PPv) phase transition at pressures near the Earth's core-mantle boundary (CMB) is currently the favored candidate for explaining most, if not all, of the peculiarities of the D" layer (~200 km region above core) [1, 2]. Additionally, the pressure- and temperature-dependence of this phase boundary in the Earth provides the possibility of an important new thermo-barometer at the bottom of the convecting mantle. The post-perovskite phase boundary in pure MgSiO3 is fairly well known, but the experimental and calculated results on the partitioning of Fe among the stable coexisting phases and its influence on the transition pressure are currently contradictory [3, 4, 5, 6]. Using density functional theory (DFT), we investigate the MgO-FeO-SiO2 ternary system over the temperatures and pressures relevant to the core-mantle boundary. We use DFT to calculate the energies of the relevant stable phases (Pv, PPv, (Mg,Fe)O magnesio-wustite, and SiO2 stishovite) for a range of Fe compositions along the Mg-Fe binary. These results are fit with a Vinet equation of state, allowing us to parameterize the effect of both pressure and Fe composition. The effect of temperature is modeled using a Grüneisen thermal correction, where the vibrational heat capacities are determined using DFT perturbation calculations and the quasi-harmonic approximation. These pressure-, temperature-, and composition-dependent equations of state are then used to explore the predicted phase relations. The results of this investigation are a complete thermodynamic description of the stable phases for this simplified chemistry and a theoretical prediction for iron partioning in the lower mantle. In particular, we find that there may be a coincidence point (azeotrope) on the Pv-PPv phase loop, across which the sense of Fe-partitioning changes sign, as well as significant immiscibility between Mg-rich and Fe-rich post-perovskite. These findings help explain many of the

  13. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites.

    PubMed

    Mohammadi, M Shah; Ahmed, I; Muja, N; Almeida, S; Rudd, C D; Bureau, M N; Nazhat, S N

    2012-04-01

    Reinforcing biodegradable polymers with phosphate-based glass fibres (PGF) is of interest for bone repair and regeneration. In addition to increasing the mechanical properties, PGF can also release bioinorganics, as they are water soluble, a property that may be controllably translated into a fully degradable composite. Herein, the effect of Si and Fe on the solubility of calcium-containing phosphate-based glasses (PG) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x=0, 5 and 10 mol.%) were investigated. On replacing SiO(2) with Fe(2)O(3), there was an increase in the glass transition temperature and density of the PG, suggesting greater crosslinking of the phosphate chains. This significantly reduced the dissolution rates of degradation and ion release. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into polycaprolactone (PCL). Initially, the flexural strength and modulus significantly increased with PGF incorporation. In deionized water, PCL-Fe(5)Si(5) displayed a significantly greater weight loss and ion release compared with PCL-Fe10. In simulated body fluid, brushite was formed only on the surface of PCL-Fe(5)Si(5). Dynamic mechanical analysis in phosphate buffered saline (PBS) at 37°C revealed that the PCL-Fe10 storage modulus (E') was unchanged up to day 7, whereas the onset of PCL-Fe(5)Si(5)E' decrease occurred at day 4. At longer-term ageing in PBS, PCL-Fe(5)Si(5) flexural strength and modulus decreased significantly. MC3T3-E1 preosteoblasts seeded onto PCL-PGF grew up to day 7 in culture. PGF can be used to control the properties of biodegradable composites for potential application as bone fracture fixation devices. PMID:22248526

  14. Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications

    NASA Astrophysics Data System (ADS)

    Kearney, Brian; Alves, Fabio; Grbovic, Dragoslav; Karunasiri, Gamani

    2013-01-01

    To increase the sensitivity of uncooled thermal sensors in the terahertz (THz) spectral range (1 to 10 THz), we investigated thin metamaterial layers exhibiting resonant absorption in this region. These metamaterial films are comprised of periodic arrays of aluminum (Al) squares and an Al ground plane separated by a thin silicon-rich silicon oxide (SiOx) dielectric film. These standard MEMS materials are also suitable for fabrication of bi-material and microbolometer thermal sensors. Using SiOx instead of SiO2 reduced the residual stress of the metamaterial film. Finite element simulations were performed to establish the design criteria for very thin films with high absorption and spectral tunability. Single-band structures with varying SiOx thicknesses, square size, and periodicity were fabricated and found to absorb nearly 100% at the designed frequencies between three and eight THz. Multiband absorbing structures were fabricated with two or three distinct peaks or a single-broad absorption band. Experimental results indicate that is possible to design very efficient thin THz absorbing films to match specific applications.

  15. Positron annihilation study on the effect of Si-content on the recovery of deformed cast Al-Si alloys

    NASA Astrophysics Data System (ADS)

    El-Gamal, S.

    2013-09-01

    Isochronal annealing of Al-1100 and cast Al-Si alloys (Si-content 2, 4, 6 and 8 wt%) after deformation of 66% thickness reduction was investigated between room temperature (RT) and 500 °C. The annealing of defects was studied using Doppler Broadening Spectroscopy (DBS), Total Strain (εT) and Scanning Electron Microscope (SEM). It was found that; (i) three annealing stages of microstructure have been identified for Al-1100 and Al-Si alloys which are related to recovery, partial recrystallization and complete recrystallization (ii) the interaction between Si-precipitates and dislocations in Al-Si alloys leads to higher values of normalized line shape parameter (Snor) and lower values of εT than those for Al-1100 alloy also, it retarded the recovery and recrystallization with temperature (iii) the S-W plot revealed the presence of one type of defects in Al-1100 alloy but in Al-Si alloys the slope of the trajectory changes, which may indicate the occurrence of another defect type (Si-dislocation interaction) (iv) a negative correlation is observed between εT and Snor while a positive correlation between εT and normalized wing parameter (Wnor) is obvious.

  16. The stability of Al,Fe-bearing phase H and a new pyrite-type hydroxide at high pressures

    NASA Astrophysics Data System (ADS)

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Irifune, T.

    2015-12-01

    Water plays an important role in the structure, dynamics, and evolution of planets because hydrogen can affect the physical properties and stabilities of constituent minerals in the planets. Since alumimous phase H (MgSiO4H2-AlOOH) is stable over the entire pressure range of the lower mantle, the hydrated subducting plate may deliver a certain amount of water into the bottom of the Earth's mantle (Tsuchiya 2013, Nishi et al. 2013, Ohira et al. 2014, Walter et al. 2015). Compositional analysis of phase H grains synthesized from natural serpentine shows the presence of the Fe component in this phase (Nishi et al., 2015). This result suggests that phase H would also form solid solutions with ɛ-FeOOH, since ɛ-FeOOH is isostructural to phase H and δ-AlOOH. Moreover, an ab initio calculation has recently predicted that the new high pressure form of AlOOH, which has pyrite-type structure, would be stabilized at pressures above 170 GPa (Tsuchiya and Tsuchiya, 2011). Although this pyrite-type hydroxide has been found in InOOH, this structure in AlOOH has not been reported by experimental studies. Here we examine the composition and stability of Al,Fe-bearing phase H using a multi-anvil apparatus combined with sintered diamond anvils. Results show that large amounts of Fe and Al are partitioned into phase H relative to bridgmanite. Fe likely affects the stability of phase H in the lower mantle. Also, we conducted high pressure experiments on pure δ-AlOOH by using laser-heated diamond anvil cell (DAC) techniques up to 200 GPa and 2,500 K. In-situ X-ray diffraction (XRD) measurements indicated that the transition from the δ-AlOOH to the pyrite-type structure occurs at high pressures above 190 GPa. Our experimental results exhibited a density reduction of 2.6 wt.% through the structural transition, and both experimental data plots and theoretical calculations showed similar compressibilities of δ-AlOOH and pyrite-type AlOOH. In recent years, hundreds of extra

  17. Equation of State of Amorphous MgSiO3 and (MgFe)SiO3 to Lowermost Mantle Pressures

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Petitgirard, S.; Malfait, W.; Kupenko, I.; Rubie, D. C.

    2014-12-01

    Melting phenomena have a crucial importance during the Earth's formation and evolution. For example, a deep magma ocean of 1000 km or more has lead to the segregation of the core. Tomographic images of the Earth reveal ultra-low velocity zones at the core-mantle boundary that may be due to the presence of dense magmas or remnant zones of a deep basal magma ocean [1]. Unfortunately, measurements of amorphous silicate density over the entire pressure regime of the mantle are scarce and the density contrast between solid and liquid are difficult to assess due to the lack of such data. Only few studies have reported density measurements of amorphous silicates at high-pressure, with limitation up to 60 GPa. High-pressure acoustic velocity measurements have been used to calculate the density of MgSiO3 glass up to 30 GPa [2] but exhibit a large discrepancy compared to recent calculations [3]. SiO2 glass was measured up to 55 GPa using the X-ray absorption method through the diamond anvils [4] and very recently, X-ray diffraction has been used to infer the density of basaltic melt up to 60 GPa [5]. Here we report density measurement of MgSiO3 glass up to 130 GPa and (MgFe)SiO3 glass up to 55 GPa using a novel variation of the X-ray absorption method. The sample contained in a beryllium gasket was irradiated with a micro-focus X-ray beam in two directions: perpendicular and parallel to the compression axis to obtain the absorption coefficient and density under pressure. Our data constrain the first experimental EoS for (Mg,Fe)SiO3 and the first EoS for MgSiO3 up to lowermost mantle pressures. Technical details and EoS parameters will be shown in the presentation. We will address the implications for melts in the deep Earth based on compressibility, bulk modulus and density contrasts between iron-free and iron-bearing glasses. [1] Labrosse S. et al. Nature 2007 [2] Sanchez-Valle C. et al. Earth Planet. Sc. Lett. 2010 [3] Ghosh D. et al Am. Mineral. 2014 [4] Sato T. et al

  18. Seismic parameters of hcp-Fe alloyed with Ni and Si in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Lin, Jung-Fu; Alatas, Ahmet; Hu, Michael Y.; Zhao, Jiyong; Dubrovinsky, Leonid

    2016-02-01

    Iron alloyed with Ni and Si has been suggested to be a major component of the Earth's inner core. High-pressure results on the combined alloying effects of Ni and Si on seismic parameters of iron are thus essential for establishing satisfactory geophysical and geochemical models of the region. Here we have investigated the compressional (VP) and shear (Vs) wave velocity-density (ρ) relations, Poisson's ratio (ν), and seismic heterogeneity ratios (dlnρ/dlnVP, dlnρ/dlnVS, and dlnVP/dlnVS) of hcp-Fe and hcp-Fe86.8Ni8.6Si4.6 alloy up to 206 GPa and 136 GPa, respectively, using multiple complementary techniques. Compared with the literature velocity values for hcp-Fe and Fe-Ni-Si alloys, our results show that the combined addition of 9.0 wt % Ni and 2.3 wt % Si slightly increases the VP but significantly decreases the VS of hcp-Fe at a given density relevant to the inner core. Such distinct alloying effects on velocities of hcp-Fe produce a high ν of about 0.40 for the alloy at inner core densities, which is approximately 20% higher than that for hcp-Fe. Analysis of the literature high P-T results on VP and VS of Fe alloyed with light elements shows that high temperature can further enhance the ν of hcp-Fe alloyed with Ni and Si. Most significantly, the derived seismic heterogeneity ratios of this hcp alloy present a better match with global seismic observations. Our results provide a multifactored geophysical constraint on the compositional model of the inner core which is consistent with silicon being a major light element alloyed with Fe and 5 wt % Ni.

  19. Phase relations in the system Fe-Si determined in an internally-resistive heated DAC

    NASA Astrophysics Data System (ADS)

    Komabayashi, T.; Antonangeli, D.; Morard, G.; Sinmyo, R.; Mezouar, N.

    2015-12-01

    It is believed that the iron-rich Earth's core contains some amounts of light elements on the basis of the density deficit of 7 % compared to pure iron. The identification of the kinds and amounts of the light elements in the core places constraints on the origin, formation, and evolution of the Earth because dissolution of light elements into an iron-rich core should place important constraints on the thermodynamic conditions (pressure (P), temperature (T), and oxygen fugacity) of the equilibration between liquid silicate and liquid iron during the core formation. Among potential light elements, silicon has been attracting attentions because it is abundant in the mantle, partitioned into both solid and liquid irons, and very sensitive to the oxygen fugacity. An important phase relation in iron alloy is a transition between the face-centred cubic (FCC) structure and hexagonal close-packed (HCP) structure. This boundary is a key to infer the stable structure in the inner core and is used to derive thermodynamic properties of the phases (Komabayashi, 2014). In the Fe-Si system, previous reports were based on experiments in laser-heated diamond anvil cells (DAC), which might have included large termperature uncertainties. We have revisited this boundary in the system Fe-Si using an internally resistive-heated DAC combined with synchrotron X-ray diffraction at the beamline ID27, ESRF. The internally-heated DAC (Komabayashi et al., 2009; 2012) provides much more stable heating than the laser-heated DAC and much higher temperature than externally resistive-heated DAC, which enables us to place tight constraints on the P-T locations of the boundaries. Also because the minimum measurable temperature is as low as 1000 K due to the stable electric heating, the internal heating is able to examine the low temperature phase stability which was not studied by the previous studies. We will report the P-T locations of the boundaries and evaluate the effect of Si on the phase

  20. Simulation Study of Al-1Mn/Al-10Si Circular Clad Ingots Prepared by Direct Chill Casting

    NASA Astrophysics Data System (ADS)

    Wu, Li; Kang, Huijun; Chen, Zongning; Fu, Ying; Wang, Tongmin

    2016-02-01

    A modified direct chill casting process based on Novelis FusionTM Technology co-casting process was used recently to prepare Al-1Mn/Al-10Si circular clad ingots. In the current study, a comprehensive simulation model was developed to investigate the direct chill casting process for preparing the Al-1Mn/Al-10Si circular clad ingots, and a parametric study and experimental research of the direct chill casting process was conducted to explore potential success and failure casting conditions. The simulation results revealed the bonding mechanism of the Al-1Mn/Al-10Si interface in the direct chill casting process and identified the effect of certain parameters on casting performance. The results indicated that the effect of casting speed and Al-1Mn casting temperature on the variations of the minimum solid fraction of Al-1Mn at the interface is stronger than that of cooling water flow rate in inner mold, while Al-10Si casting temperature is the weakest of the four casting parameters. The corresponding experimental results verified that Al-1Mn/Al-10Si circular clad ingot with acceptable metallurgical bonding can be successfully prepared by direct chill casting process under the proper casting parameters. The thickness of diffusion zone is about 40 μm, and the fractured position in tensile test was located in the Al-1Mn alloy side which indicated the strength of the interfacial region is higher than that of Al-1Mn alloy.