Science.gov

Sample records for al fe si

  1. Structure of Fe3Si/Al/Fe3Si thin film stacks on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Jahn, U.; Nikulin, A.; Herfort, J.; Kirmse, H.

    2015-11-01

    Fe3Si/Al/Fe3Si/GaAs(001) structures were deposited by molecular-beam epitaxy and characterized by transmission and scanning electron microscopy, and x-ray diffraction. The first Fe3Si film on GaAs(001) grew epitaxially as a (001) oriented single crystal. The subsequent Al film grew almost {111} oriented in a fibrous texture although the underlying Fe3Si is exactly (001) oriented. The growth in this orientation is triggered by a thin transition region which is formed at the Fe3Si/Al interface. In the end, after the growth of the second Fe3Si layer on top of the Al, the final properties of the whole stack depended on the substrate temperature T s during deposition of the last film. The upper Fe3Si films are mainly {110} oriented although they are poly-crystalline. At lower T s, around room temperature, all the films retain their original structural properties.

  2. Electron Diffraction Study of ?- and ? T -AlFeSi

    NASA Astrophysics Data System (ADS)

    Jensen, C. L.; Wyss, R. K.

    1988-04-01

    Electron diffraction patterns from a-AIFeSi and ? T -AlFeSi are compared. Unusual Kikuchi band patterns are found in both a and ? T . Structure factor calculations can be used to explain these patterns. Additional higher order Laue zone (HOLZ) rings are seen in ? T . Reflections located at n/9[521] are seen in some zero order Laue zones (ZOLZ) in ? T . These additional reflections are responsible for the additional HOLZ rings found in ? T . Most atomic positions in a and ? T are similar. The specific structural feature which causes the additional reflections in ? T is not known. Lattice imaging and image calculation will be necessary to determine the exact structure of ? T .

  3. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the ?-Al5FeSi, ?-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the ? platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved ?-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of ?-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  4. CEMS Study on Fe-Si-Al Alloy Flakes-Polymer Composites

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Suzuki, K.; Sawada, T.; Ujihira, Y.; Yoshida, S.

    2003-06-01

    The composites of Fe-Si-Al alloy flakes and dielectric polymer fabricated for a new noise suppression filter in high-frequency bands were characterized by transmission and conversion electron Mössbauer spectrometry (TMS and CEMS). The Fe-Si-Al flakes were prepared by sand milling the atomized sendust powder (9.7 wt.% Si, 5.4 wt.% Al, and balance Fe) in n-hexane for several hours and days. The deformed structures were estimated by magnetic hyperfine field (Hin) distributions, and the annealing effects were investigated. The composites of Fe-Si-Al alloy forged for less than 100 hours recovered the high permeability with production of D03 structure after annealing at 650°C for 2 hours in Ar atmosphere. However, the Fe-Si-Al alloy flakes forged for 180 hours gave the broad Hin with high magnetic fields, and were decomposed into ?-Fe in the bulk and Fe species dispersed in the interface beneath the Si and Al oxides surface.

  5. Electronic structure and soft magnetic properties of Se/FeSiAl (110) films

    NASA Astrophysics Data System (ADS)

    Schwindt, V. Cardoso; Ardenghi, J. S.; Bechthold, P.; Juan, A.; Batic, B. Setina; Jenko, M.; González, E. A.; Jasen, P. V.

    2015-11-01

    The Se adsorption at different coverages on DO3 FeSiAl(110) surface is studied using density functional theory (DFT). Se adsorption is favorable in almost all surface high-symmetry sites, except for the bridge site formed by Fe-Si atoms. The most stable is a hollow site formed by four Fe atoms with adsorption energy of -5.30 eV. When the coverages increase, the energies decrease in the case of hollow sites. The surface present a reconstruction after Se adsorption, being the most important at 1/2 ML. The local magnetic moment for Fe atoms increase for the type A (all nearst neighbours (nn) are Fe atoms) and decrease for the type B (nn are Fe, Si and Al atoms). The most affected metal orbitals are Fe 4s and 4p. In the case of the hollow site the surface Fe-Fe bond is weakened after Se adsorption. A Fe-Se bond is developed at all coverages in both sites being the most important on top (dFe-Se = 2.23 Å, OP: 0.774 at 1/4 ML). The first and second layer Fe-Fe bond increase at 1/4 ML and decrease at 1/2 and 1 ML. Small Se-Se bonding interaction appear at 1/2 ML and increase noticeable for 1 ML. For the top site, the Se-Se bond appears at all coverage. The Fe-Fe surface bonds also decrease its strength with respect to the clean surface at all coverage. The first and second layer Fe-Fe bond increase at all coverage.

  6. Improvement of magnetic and structural stabilities in high-quality Co{sub 2}FeSi{sub 1?x}Al{sub x}/Si heterointerfaces

    SciTech Connect

    Yamada, S.; Tanikawa, K.; Oki, S.; Kawano, M.; Miyao, M.; Hamaya, K.

    2014-08-18

    We study high-quality Co{sub 2}FeSi{sub 1?x}Al{sub x} Heusler compound/Si (0 ? x ? 1) heterointerfaces for silicon (Si)-based spintronic applications. In thermal treatment conditions, the magnetic and structural stabilities of the Co{sub 2}FeSi{sub 1?x}Al{sub x}/Si heterointerfaces are improved with increasing x in Co{sub 2}FeSi{sub 1?x}Al{sub x}. Compared with L2{sub 1}-ordered Co{sub 2}FeSi/Si, B2-ordered Co{sub 2}FeAl/Si can suppress the diffusion of Si atoms into the Heusler-compound structure. This experimental study will provide an important knowledge for applications in Si-based spin transistors with metallic source/drain contacts.

  7. Compaction behavior of rapidly solidified Al-Si-Fe-Cr alloy powders

    SciTech Connect

    Kin, H.S.; Lee, H.R.; Won, C.W.; Cho, S.S.; Chun, B.S.; Kim, S.J.

    1997-12-01

    Recently, the powder forging process of rapidly solidified Al alloys was investigated in order to develop an inexpensive alternative process to produce high strength parts with complex shapes. It has been shown that the mechanical properties of powder-forged parts are as good as those produced by extrusion. In this study, the consolidation behaviors of rapidly solidified Al-Si-Fe-Cr alloy powders with different shapes and sizes have been investigated using the Al-Si-Fe-Cr alloy powders made by three different rapid solidification processes: gas atomization, centrifugal atomization, and twin roll quenching.

  8. The precipitation in annealing and its effect on permittivity of Fe-Si-Al powders

    NASA Astrophysics Data System (ADS)

    Li, Gang; Cui, Yin; Zhang, Nan; Wang, Xin; Xie, Jian Liang

    2016-01-01

    SEM images show that some precipitates distributed on the surface of as-annealed Fe-Si-Al powders. Subsequent experimental results indicate that both morphology and microstructure of as-annealed Fe-Si-Al powders change with increasing annealing temperature. Meanwhile, dielectric properties analysis suggesting that both real part ?? and imaginary part ?? of the Fe-Si-Al powders decrease significantly after annealed at 450 °C or higher temperature. We assume that it's the precipitates with low electrical conductivity developed on the surface of powders that increase the surface resistivity of as-annealed powders and leading to a lower imagine part of permittivity. The drop of real part ?? ascribed to the weakened interfacial polarization which resulted from the decrease of structural defects such as grain boundaries and interfaces during annealing process.

  9. The structure-property relationships of powder processed Fe-Al-Si alloys

    SciTech Connect

    Prichard, P.D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D{sub 84} < 32 {micro}m). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 {micro}m. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 {micro}m to 104 {micro}m. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase {alpha} + DO{sub 3} structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  10. Effect of Wavelike Sloping Plate Rheocasting on Microstructures of Hypereutectic Al-18 pct Si-5 pct Fe Alloys

    NASA Astrophysics Data System (ADS)

    Guan, Ren-Guo; Zhao, Zhan-Yong; Lee, Chong Soo; Zhang, Qiu-Sheng; Liu, Chun-Ming

    2012-04-01

    To refine and spheroidize the microstructures of hypereutectic Al-Si-Fe alloys, a novel method of wavelike sloping plate (WSP) rheocasting was proposed, and the effect of the WSP rheocasting on the microstructures of hypereutectic Al-18 pct Si-5 pct Fe alloys was investigated. The results reveal that the morphologies of the primary Si crystal, the Al18Si10Fe5, and the Al8Si2Fe phases can be improved by the WSP rheocasting, and various phases tend to be refined and spheroidized with the decrease of the casting temperature. The alloy ingots with excellent microstructures can be obtained when the casting temperature is between 943 K and 953 K (670 °C and 680 °C). During the WSP rheocasting, the crystal nucleus multiplication, inhibited grain growth, and dendrite break-up take place simultaneously, which leads to grain refinement of the alloys.

  11. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Zehai

    2015-03-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  12. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    SciTech Connect

    Zhang, Zehai

    2015-03-15

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE{sub 11} is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  13. Experimental study on parasitic mode suppression using FeSiAl in Relativistic Klystron Amplifier.

    PubMed

    Zhang, Zehai

    2015-03-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation. PMID:25832258

  14. Assessment of Post-eutectic Reactions in Multicomponent Al-Si Foundry Alloys Containing Cu, Mg, and Fe

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2015-07-01

    Post-eutectic reactions occurring in Al-Si hypoeutectic alloys containing different proportions of Cu, Mg, and Fe were thoroughly investigated in the current study. As-cast microstructures were initially studied by optical and electron microscopy to investigate the microconstituents of each alloy. Differential scanning calorimetry (DSC) was then used to examine the phase transformations occurring during the heating and cooling processes. Thermodynamic calculations were carried out to assess the phase formation under equilibrium and in nonequilibrium conditions. The Q-Al5Cu2Mg8Si6 phase was predicted to precipitate from the liquid phase, either at the same temperature or earlier than the ?-Al2Cu phase depending on the Cu content of the alloy. The AlCuFe-intermetallic, which was hardly observed in the as-cast microstructure, significantly increased after the solution heat treatment in the alloys containing high Cu and Fe contents following a solid-state transformation of the ?-Al5FeSi phase. After the solution heat treatment, the AlCuFe-intermetallics were mostly identified with the stoichiometry of the Al7Cu2Fe phase. Thermodynamic calculations and microstructure analysis helped in determining the DSC peak corresponding to the melting temperature of the N-Al7Cu2Fe phase. The effect of Cu content on the formation temperature of ?-Al8Mg3FeSi6 is also discussed.

  15. X-rays structural analysis and thermal stability studies of the ternary compound {alpha}-AlFeSi

    SciTech Connect

    Roger, J.; Bosselet, F.; Viala, J.C.

    2011-05-15

    From literature data presently available, the decomposition temperature and the nature of the decomposition reaction of the ternary compound {alpha}-AlFeSi (also designated as {alpha}{sub H} or {tau}{sub 5}) are not clearly identified. Moreover, some uncertainties remain concerning its crystal structure. The crystallographic structure and thermochemical behaviour of the ternary compound {alpha}-AlFeSi were meticulously studied. The crystal structure of {alpha}-AlFeSi was examined at room temperature from X-ray single crystal intensity data. It presents hexagonal symmetry, space group P6{sub 3}/mmc with unit cell parameters (293 K) a=12.345(2) A and c=26.210(3) A (V=3459 A{sup 3}). The average chemical formula obtained from refinement is Al{sub 7.1}Fe{sub 2}Si. From isothermal reaction-diffusion experiments and Differential Thermal Analysis, the title compound decomposes peritectically upon heating into {theta}-Fe{sub 4}Al{sub 13}(Si), {gamma}-Al{sub 3}FeSi and a ternary Al-rich liquid. Under atmospheric pressure, the temperature of this reversible transformation has been determined to be 772{+-}12 {sup o}C. -- Graphical abstract: Partial representation of the crystal structure of the {alpha}-Al{sub 7.1}Fe{sub 2}Si compound. Display Omitted Highlights: The main findings of our work are: {yields} a detailed X-rays crystal structure determination of the ternary compound {alpha}-AlFeSi. {yields} The precision of the silicon atoms positions in the crystal structure. {yields} A precised determination of the decomposition temperature of this compound.

  16. Equation of State of Lower Mantle (Al,Fe)-MgSiO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Prewitt, C. T.; Andrault, D.; Bolfan-Casanova, N.; Guignot, N.

    2001-12-01

    The compression behavior of various (Al,Fe)-MgSiO3 perovskites was investigated by powder X-ray diffraction up to 70 GPa on the ID30 beamline of ESRF (Grenoble). We used diamond anvil cell coupled with CO2 laser-heating, a most powerful technique to relax stresses and perform reliable equation of state up to typical lower mantle pressures. In contrast to Fe which essentially increases the room pressure unit cell volume [1], the effect of Al is to increase the bulk modulus of silicate perovskite. This result contrast with previous determinations performed at pressures below 10 GPa on samples synthesized in the multi-anvil press [2, 3]. Such a difference can be explained by a change in the substitution mechanism of Al in MgSiO3 with increasing pressure and temperature, in agreement with recent ab-initio calculations [4]. Our results confirm that the Earth's lower mantle (Mg+Fe)/Si ratio is greater than unity, because of the high stiffness of silicate perovskite. 1- H.K. Mao, R.J. Hemley, Y. Fei, J.F. Shu, L.C. Chen, A.P. Jephcoat, Y. Wu and W.A. Basset, Journal of Geophysical Research 96(B5), 8069-8079, 1991. 2- A. Kubo, T. Yagi, S. Ono and M. Akaogi, in: Proceeding of the Japan Academy 76, pp. 103-107, 2000. 3- J. Zhang and D.J. Weidner, Science 284, 782-784, 1999. 4- J.P. Brodholt, Nature 407, 620-622, 2000.

  17. Synthesis and equation of state of perovskites in the Mg3Al2Si3O12- Fe3Al2Si3O12 system

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Mao, Z.; Shieh, S. R.; Meng, Y.; Prakapenka, V. B.; Duffy, T. S.

    2008-12-01

    Fe and Al are two of the most abundant minor elements in the lower mantle and may have significant effects on the stability and elastic properties of the region's dominant phase, MgSiO3 perovskite. In order to predict the chemical and physical behavior of lower mantle chemical heterogeneities enriched in Fe and Al, we investigated perovskites synthesized from pyrope-almandine garnet compositions at high pressures. Previous studies of this system above 30 GPa are limited, and no in situ studies were reported before in this pressure range (Ahmed-Zaid and Madon, 1995; Kesson et al., 1995;; Miyajima et al., 1999; Tateno et al., 2005). Five compositions along the Mg3Al2Si3O12 (pyrope)- Fe3Al2Si3O12 (almandine) join were examined: three natural garnets (Alm38, Alm54, and Alm73) and two synthetic garnet glasses (Alm90 and Alm100). X-ray diffraction experiments were performed using the laser-heated diamond anvil cell at the GSECARS (13-ID-D) and HPCAT (16-ID-B) sectors of the Advanced Photon Source. Garnet powders were mixed with 10-15 wt % Au (with Alm54, Alm73, Alm90, and Alm100) or Pt (with Alm38) as pressure calibrant and loaded between foils of NaCl as thermal insulator, pressure medium, and secondary pressure standard. All compositions were initially cold compressed to 74-77 GPa and then laser heated to 1820-2480K. Samples were decompressed gradually to 41-50 GPa with laser annealing at 5-10 GPa intervals. For Alm90 and Alm100, synthesis experiments were also carried out near 41 GPa and then the samples were compressed up to 76 GPa with laser annealing at 10 GPa intervals. Over the pressure range studied, all compositions formed orthorhombic GdFeO3- type perovskites, with trace CaCl2-type SiO2. The unit cell volume of the perovskite structure increases with iron content, with that of the almandine end-member composition 3% larger than that of pyrope-composition perovskite and 4% larger than the corresponding MgSiO3 perovskite. As with MgSiO3 perovskite, the a lattice parameter is the most compressible. The degree of distortion from the cubic structure increases with pressure; however, the addition of a large amount of Fe to the structure appears to retard this effect.

  18. Critical Experiments with Highly Enriched Uranium and Matrix Elements (Si, Mg, Al, Gd, and Fe)

    SciTech Connect

    Sanchez, Rene; Loaiza, David; Brunson, Glenn; Kimpland, Robert

    2004-07-15

    Scientists at the Los Alamos National Laboratory measured the critical masses of square prisms of highly enriched uranium diluted in various X/{sup 235}U with matrix material and polyethylene. The configuration cores were 22.86 and 45.72 cm square and were reflected with 8.13-cm-thick and 10.16-cm-thick side polyethylene reflectors, respectively. The configurations had 10.16-cm-thick top and bottom polyethylene reflectors. For some configurations, the Rossi-{alpha}, which is an eigenvalue characteristic for a particular configuration, was measured to establish a reactivity scale based on the degree of subcriticality. These experiments provided critical mass data in the thermal energy range for systems containing Si, Mg, Al, Gd, and Fe. The measured k{sub eff} from these experiments was compared with the calculated k{sub eff} from MCNP using ENDF/B-V and ENDF/B-VI cross-section data. The observed biases were +0.005 {delta}k and +0.008 {delta}k for Si, +0.0006 {delta}k and +0.008 {delta}k for Al, +0.0023 {delta}k for Mg, +0.004 {delta}k and +0.01304 {delta}k for Gd, and +0.0123 {delta}k and -0.00106 {delta}k for Fe.

  19. The Viscous Behavior of FeOt-Al2O3-SiO2 Copper Smelting Slags

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Shik; Park, Su Sang; Sohn, Il

    2011-08-01

    Understanding the viscous behavior of copper smelting slags is essential in increasing the process efficiency and obtaining the discrete separation between the matte and the slag. The viscosity of the FeOt-SiO2-Al2O3 copper smelting slags was measured in the current study using the rotating spindle method. The viscosity at a fixed Al2O3 concentration decreased with increasing Fe/SiO2 ratio because of the depolymerization of the molten slag by the network-modifying free oxygen ions (O2-) supplied by FeO. The Fourier transform infrared (FTIR) analyses of the slag samples with increasing Fe/SiO2 ratio revealed that the amount of large silicate sheets decreased, whereas the amount of simpler silicate structures increased. Al2O3 additions to the ternary FeOt-SiO2-Al2O3 slag system at a fixed Fe/SiO2 ratio showed a characteristic V-shaped pattern, where initial additions decreased the viscosity, reached a minimum, and increased subsequently with higher Al2O3 content. The effect of Al2O3 was considered to be related to the amphoteric behavior of Al2O3, where Al2O3 initially behaves as a basic oxide and changes to an acidic oxide with variation in slag composition. Furthermore, Al2O3 additions also resulted in the high temperature phase change between fayalite/hercynite and the modification of the liquidus temperature with Al2O3 additions affecting the viscosity of the copper smelting slag.

  20. Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation

    SciTech Connect

    Jain, Vivek Kumar Jain, Vishal Lakshmi, N. Venugopalan, K.

    2014-04-24

    Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 ?{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.

  1. Microstructural development during consolidation of rapidly solidified Al-Fe-V-Si powder by VHP, extrusion and rolling

    SciTech Connect

    Wang, Y.; Lorimer, G.W.; Sale, F.R. . Manchester Materials Science Centre)

    1994-11-15

    The rapid solidification of powder results in a high cooling rate which leads to microstructural refinement and extended solid solubility of alloying elements and thereby precipitation of fine dispersive phases during powder solidification and consolidation. During the last decade considerable research work has been done in the development of high temperature powder metallurgy aluminum alloys capable of competing with titanium alloys on a specific strength basis with the use of rapid solidification processes. The Al-Fe-V-Si family of alloys are one of the most promising on a basis of elevated temperature strength, stiffness and thermal stability. In previous studies, the Al-Fe-V-Si alloys were usually produced by melt spinning (both jet casting and planar flow casting) followed by consolidation of the resulting ribbons. The aim of the present study was to investigate the microstructural development of atomized Al-Fe-V-Si alloy powder during consolidation by vacuum hot pressing (VHP), extrusion and rolling.

  2. The Study of an Al-Fe-Si Alloy After Equal-Channel Angular Pressing (ECAP) and Subsequent Semisolid Heating

    NASA Astrophysics Data System (ADS)

    Aghaie-Khafri, M.; Azimi-Yancheshme, D.

    2012-05-01

    The effects of coupling equal-channel angular pressing (ECAP) and heating at semisolid temperature on the microstructure of an Al-Fe-Si alloy were investigated. The microstructure of the equal-channel, angular-pressed samples after semisolid heating was found to be globular, fine, and uniform. Both the globularity and the grain size of the semisolid samples increased by increasing the holding temperature and holding time. The kinetics of grain coarsening was studied and the apparent activation energy was calculated on the basis of Lifshitz, Slyozov, and Wagner theory. Coupling ECAP and semisolid heating resulted in an enhanced microstructure and mechanical properties in the Al-Fe-Si alloy.

  3. Effects of metallurgical parameters on the decomposition of pi-AlFeMgSi phase in Al-Si-Mg alloys and its influence on the mechanical properties

    NASA Astrophysics Data System (ADS)

    Elsharkawi, Ehab A.

    2011-12-01

    The formation of the pi-AlFeMgSi iron intermetallic phase in Al-Si-Mg alloys is known for its detrimental effect on ductility and strength, in that it is controlled by the Fe and Mg content of the alloy, as well as by the cooling rate. The current study was carried out with a view to investigating all the metallurgical parameters affecting the formation of the pi-phase iron intermetallic and, in turn, the role of the pi-phase as it relates to the tensile and impact properties of Al-Si-Mg alloys. Microstructural assessment was carried out by means of quantitative metallography using electron probe microanalysis (EPMA) and scanning electron microscopy (SEM). The results indicate that increasing the Mg and Fe content increases the amount of the pi-AlMgFeSi phase formed. All the alloys containing low levels of iron regardless of the amount of Mg-content show low amounts of pi-phase iron intermetallic. The addition of trace amounts of Be has an observable effect in reducing the amount of the pi-phase formed in all the alloys studied. The pi-phase iron intermetallic particles appear to be segregated away from the modified Si in the Sr-modified alloys, particularly those solidified at a low cooling rate. The effects of different solution treatment times on the decomposition of the pi-phase were investigated in order to examine how this type of decomposition affected the chemistry of the matrix itself. After 8 hours of solution heat treatment and at Mg content of 0.4wt%, the pi-phase showed complete decomposition into fine beta-phase needles. The a-phase, however, showed only partial decomposition into beta-AlFeSi phase needles at Mg levels of over 0.4%wt. This type of decomposition was examined for the purposes of this study over extended periods of solution heat treatment time in Al-7Si-0.55Mg-0.1Fe alloy samples obtained at different cooling rates in order to evaluate the mechanism of pi to beta-phase decomposition. The results obtained show that the volume fraction of pi-AlFeMgSi phase decreases significantly at prolonged solution treatment times. The highest amount of the newly-formed beta-phase was observed in the solution treatment time range of 60 to 80 hours. An analysis of the chemical composition of the matrix using wavelength-dispersive spectroscopy (WDS) at different stages of solution heat treatment revealed that the pi to beta-phase decomposition during solution heat treatment results in a distinct increase in the Mg content of the matrix. Furthermore, no changes were observed in the calculated stoichiometries of the pi-phase or the beta-phase intermetallics during solution treatment in all the alloy samples studied. The study also investigated the decomposition of pi-AlFeMgSi into beta-phase needles during extended periods of solution heat treatment and its effects on the mechanical properties of Al-7Si-0.55Mg-0.1Fe alloys. The results obtained from the calculated quality index values show that the optimum solution treatment time for Sr-modified alloys is of the order of 12 hours. Using prolonged solution treatment time leads to the decomposition of a large amount of pi-phase into beta-phase needles, approximately 85%, thereby providing a slight improvement in the tensile properties at 80 hrs compared to standard heat treatment times; this improvement may be attributed to the increased amount of Mg in the matrix resulting from the decomposition of the pi-phase, and which is then available for precipitation as Mg2Si upon subsequent aging. An analysis of the results obtained from the Charpy impact test using unnotched samples shows that the greatest improvement in the initiation and propagation energies is obtained for the as-cast and heat-treated alloys when these alloys are solidified at a low cooling rate and modified with strontium. An increase in the solution treatment time improves the impact properties of the alloys compared to the as-cast condition. In accordance with this finding, the recommended solution treatment time at which the maximum initiation and propagation energy values can be obtained is 20 hou

  4. Effects of temperature and pressure on phonons in FeSi1–xAlx

    SciTech Connect

    Delaire, O.; Al-Qasir, I. I.; Ma, J.; dos Santos, A. M.; Sales, B. C.; Mauger, L.; Stone, M. B.; Abernathy, D. L.; Xiao, Y.; Somayazulu, M.

    2013-05-31

    The effects of temperature and pressure on phonons in B20 compounds FeSi1–xAlx were measured using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering. The effect of hole doping through Al substitution is compared to results of alloying with Co (electron doping) in Fe??xCoxSi. While the temperature dependence of phonons in FeSi is highly anomalous, doping with either type of carriers leads to a recovery of the normal quasiharmonic behavior. Density functional theory (DFT) computations of the electronic band structure and phonons were performed. The anomaly in the temperature dependence of the phonons in undoped FeSi was related to the narrow band gap, and its sensitivity to the effect of thermal disordering by phonons. On the other hand, the pressure dependence of phonons at room temperature in undoped FeSi follows the quasiharmonic behavior and is well reproduced by the DFT calculations.

  5. MgSiO3-FeSiO3-Al2O3 in the Earth's lower mantle: Perovskite and garnet at 1200 km depth

    NASA Technical Reports Server (NTRS)

    O'Neill, Bridget; Jeanloz, Raymond

    1994-01-01

    Natural pyroxene and garnet starting material are used to study the effects of joint Fe and Al substitution into MgSiO3 perovskite at approxmiately 50 GPa. Garnet is found to coexist with perovskite in samples containing both Fe and Al to pressures occurring deep into the lower mantel (approximately 1200 km depth). The volume of the perovskite unit cell is V(sub o(Angstrom(exp 3)) = 162.59 + 5.95x(sub FeSiO3) + 10.80x(sub Al2O3) with aluminum causing a significant increase in the distortion from the ideal cubic cell. On the basis of a proposed extension of the MgSiO3-Al2O3 high-pressure phase diagram toward FeSiO3, Fe is shown to partition preferentially into the garnet phase. The stability of garnet deep into the lower mantel may hinder the penetration of subducted slabs below the transition zone.

  6. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ? 70 kOe. It has been shown that the high-field ( H ? 20 kOe) magnetization is described within the Stoner model.

  7. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    NASA Astrophysics Data System (ADS)

    Tao, Lei; Li, Heqin; Shen, Jiong; Qiao, Kai; Wang, Wei; Zhou, Chu; Zhang, Jing; Tang, Qiong

    2015-02-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H2SO4 solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film.

  8. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlO{sub x}/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    SciTech Connect

    Akushichi, T. Shuto, Y.; Sugahara, S.; Takamura, Y.

    2015-05-07

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO{sub x}/n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO{sub x} barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accurately fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels.

  9. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlOx/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    NASA Astrophysics Data System (ADS)

    Akushichi, T.; Takamura, Y.; Shuto, Y.; Sugahara, S.

    2015-05-01

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlOx/n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlOx barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accurately fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels.

  10. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    SciTech Connect

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-05-10

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10{sup {minus}3}). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10{sup {minus}2}, however, their densities are usually great than 5 x 10{sup 3} kg m{sup {minus}3}, or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process.

  11. Post-irradiation examination of AlFeNi cladded U 3Si 2 fuel plates irradiated under severe conditions

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Koonen, E.; Parthoens, Y.; Lemoine, P.; Van den Berghe, S.

    2008-04-01

    Three full size AlFeNi cladded U 3Si 2 fuel plates were irradiated in the BR2 reactor of the Belgian Nuclear Research Centre (SCK·CEN) under relatively severe, but well defined conditions. The irradiation was part of the qualification campaign for the fuel to be used in the future Jules Horowitz reactor in Cadarache, France. After the irradiation, the fuel plates were submitted to an extensive post-irradiation campaign in the hot cell laboratory of SCK·CEN. The PIE shows that the fuel plates withstood the irradiation successfully, as no detrimental defects have been found. At the cladding surface, a multilayered corrosion oxide film has formed. The U-Al-Si layer resulting from the interaction between the U 3Si 2 fuel and the Al matrix, has been quantified as U(Al,Si) 4.6. It is found that the composition of the fuel particles is not homogenous; zones of USi and U 3Si 2 are observed and measured. The fission gas-related bubbles generated in both phases show a different morphology. In the USi fuel, the bubbles are small and numerous while in U 3Si 2 the bubbles are larger but there are fewer.

  12. Magnetic Fe, Si, Al-Rich Impact Spherules from the P-T Boundary Layer at Graphite Peak, Antarctica

    NASA Technical Reports Server (NTRS)

    Petaev, M. I.; Jacobsen, S. B.; Basu, A. R.; Becker, L.

    2004-01-01

    The geological boundary between Triassic and Permian strata coincides with the greatest life extinction in the Earth's history. Although the cause of the extinction is still the subject of intense debates, recent discoveries in the P-T boundary layer of shocked quartz grains, fullerenes with the extraterrestrial noble gases, Fe metal nuggets, and chondritic meteorite fragments all point to a powerful collision of Earth with a celestial body in the late Permian. Here we report the discovery of magnetic Fe, Si, Al-rich impact spherules which accompany the chondritic meteorite fragments in some samples from the P-T boundary layer at Graphite Peak, Antarctica.

  13. Heat capacity and phase equilibria of almandine, Fe 3Al 2Si 3O 12

    NASA Astrophysics Data System (ADS)

    Anovitz, L. M.; Essene, E. J.; Metz, G. W.; Bohlen, S. R.; Westrum, E. F., Jr.; Hemingway, B. S.

    1993-09-01

    The heat capacity of a synthetic almandine, Fe 3Al 2Si 3O 12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ± 1.4 J/mol · K and S298o = 342.60 J/mol · K. Mössbauer characterizations show the almandine to contain less than 2 ± 1% of the total iron as Fe 3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ± 0.001 Å and V298o = 115.11 +- 0.01 cm 3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ?Gf,298 o = -4938.3 kJ/mol and ?Hf,298 o= - 5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T/P for almandine and is metastably located at ca. 570°C at P = 1 bar, with a dP/dT of +17 bars/°C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In ? O2- T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartzandalmandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks.

  14. Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Essene, E.J.; Metz, G.W.; Bohlen, S.R.; Westrum, E.F., Jr.; Hemingway, B.S.

    1993-01-01

    The heat capacity of a synthetic almandine, Fe3Al2Si3O12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ?? 1.4 J/mol ?? K and S298o = 342.60 J/mol ?? K. Mo??ssbauer characterizations show the almandine to contain less than 2 ?? 1% of the total iron as Fe3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ?? 0.001 A?? and V298o = 115.11 +- 0.01 cm3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ??Gf,298o = -4938.3 kJ/mol and ??Hf,298o= -5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T P for almandine and is metastably located at ca. 570??C at P = 1 bar, with a dP dT of +17 bars/??C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In {norm of matrix}O2-T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartz and almandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks. ?? 1993.

  15. High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Butler, T. M.; Alfano, J. P.; Martens, R. L.; Weaver, M. L.

    2015-01-01

    High-entropy alloys (HEAs) are a class of alloys that are being considered for a number of applications. In the present study, the microstructures and 1050°C oxidation behaviors of two HEAs, Al10Cr22.5Co22.5Ni22.5Fe22.5 (at.%) and Al20Cr25Co25Ni25Si5 have been investigated along with Al15Cr10Co35Ni35Si5, which is a high-temperature shape-memory alloy. Oxide formation occurred via selective oxidation in a manner that was consistent with the oxide formation model devised by Giggins and Pettit for model Ni-Cr-Al alloys. The lower Al content alloy formed an external Cr2O3 scale and an internal subscale consisting of Al2O3 and AlN precipitates. The higher Al content alloys exhibited smaller mass gains and formed external Al2O3 scales without any internal oxidation of the alloys.

  16. Physics of the Earth and Planetary Interiors 155 (2006) 96103 Al, Fe substitution in the MgSiO3 perovskite structure

    E-print Network

    Jacobsen, Steven D.

    2006-01-01

    perovskite structure: A single-crystal X-ray diffraction study C.B. Vanpeteghema,, R.J. Angela, N.L. Rossa, S substitution of Al and Fe into the perovskite structure are: (i) MgA 2+ + SiB 4+ FeA 3+ + AlB 3+ , where and experimental work and solves the long-debated issue of Fe3+ occupancy in the perovskite structure. © 2005

  17. Electrochemical and microstructural study of oxide films formed electrochemically at microcrystalline Al-Fe-V-Si alloys.

    PubMed

    Thomas, S C; Birss, V I; Steele, D; Tessier, D

    1995-07-01

    A recent advance in metallurgical technology has been the application of rapid solidification techniques to Al alloy production. FVS0812 is the designation given to a microcrystalline Al-based alloy consisting of 8 wt% Fe, 1 wt% V and 2 wt% Si. It is a two-phase alloy, consisting of ca. 27 vol percent of approximately spherical Fe-V-Si-rich dispersoids in an essentially pure Al matrix. The high strength, low density properties of this advanced material, and other related alloys, have not yet been realized, however, due, in part, to the inability of the alloy to form a thick, adherent, abrasion-resistant outer surface oxide film, a feature readily achieved at conventional Al alloys by normal anodizing methods. The present research has involved an electro-chemical study of oxide film growth at the 812 alloy, with the specific goals being to seek an understanding of the origin of the oxide film growth problem and ultimately to propose alternative approaches to the formation of a thick, stable oxide film at this material. The techniques used in this research have included electrochemical methodologies such as cyclic voltammetry and electrochemical impedance spectroscopy. Crucial information has been obtained through transmission electron microscopy (TEM) of ultramicrotomed specimens. Experiments were carried out initially in neutral borate solutions to characterize the compact barrier oxide film formed in this environment and expected to be present beneath the porous oxide film formed in the normal sulfuric acid anodizing medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7549001

  18. Crystal-induced anisotropy of spin accumulation in Si/MgO/Fe and Si/Al2O3/ferromagnet tunnel devices

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Spiesser, A.; Saito, H.; Yuasa, S.; van Wees, B. J.; Jansen, R.

    2013-02-01

    The effect of crystalline order on the anisotropy of spin accumulation in Si/oxide/ferromagnet tunnel devices has been investigated. The spin accumulation induced electrically in the silicon changes when the magnetization of the ferromagnet is rotated either from in-plane to perpendicular to the tunnel interface or when it is rotated within the plane of the magnetic layer. A fourfold in-plane anisotropy, which reflects the crystalline nature of the tunnel contact, is observed not only for crystalline MgO/Fe contacts, but also for devices with amorphous Al2O3 tunnel barrier and polycrystalline ferromagnetic electrode. The in-plane anisotropy is attributed to the direct coupling of states from the ferromagnet to those in the Si, as in coherent tunneling, causing anisotropy in devices in which only the nonmagnetic (Si) electrode is crystalline.

  19. Nuclear magnetic resonance study of thin Co2FeAl0.5Si0.5 Heusler films with varying thickness

    NASA Astrophysics Data System (ADS)

    Alfonsov, A.; Peters, B.; Yang, F. Y.; Büchner, B.; Wurmehl, S.

    2015-02-01

    Type, degree, and evolution of structural order are important aspects for understanding and controlling the properties of highly spin-polarized Heusler compounds, in particular, with respect to the optimal film growth procedure. In this work, we compare the structural order and the local magnetic properties revealed by nuclear magnetic resonance (NMR) spectroscopy with the macroscopic properties of thin Co2FeAl 0.5Si 0.5 Heusler films with varying thickness. A detailed analysis of the measured NMR spectra presented in this paper enables us to find a very high degree of L 21 -type ordering up to 81% concomitantly with excess Fe of 8%-13% at the expense of Al and Si. We show that the formation of certain types of order depends not only on the thermodynamic phase diagrams as in bulk samples, but also that the kinetic control may contribute to the phase formation in thin films. It is an exciting finding that Co2FeAl 0.5Si 0.5 can form an almost ideal L 21 structure in films, though with a considerable amount of Fe-Al/Si off stoichiometry. Moreover, the very good quality of the films as demonstrated by our NMR study suggests that the technique of off-axis sputtering used to grow the films sets the stage for the optimized performance of Co2FeAl 0.5Si 0.5 in spintronic devices.

  20. High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: implications for the Earth's lower mantle

    E-print Network

    Zhang, Shuai; Liu, Tao; Stackhouse, Stephen; Militzer, Burkhard

    2015-01-01

    Fe and Al are two of the most important rock-forming elements other than Mg, Si, and O. Their presence in the lower mantle's most abundant minerals, MgSiO_3 bridgmanite, MgSiO_3 post-perovskite and MgO periclase, alters their elastic properties. However, knowledge on the thermoelasticity of Fe- and Al-bearing MgSiO_3 bridgmanite, and post-perovskite is scarce. In this study, we perform ab initio molecular dynamics to calculate the elastic and seismic properties of pure, Fe^{3+}- and Fe^{2+}-, and Al^{3+}-bearing MgSiO_3 perovskite and post-perovskite, over a wide range of pressures, temperatures, and Fe/Al compositions. Our results show that a mineral assemblage resembling pyrolite fits a 1D seismological model well, down to, at least, a few hundred kilometers above the core-mantle boundary, i.e. the top of the D'' region. In D'', a similar composition is still an excellent fit to the average velocities and fairly approximate to the density. We also implement polycrystal plasticity with a geodynamic model to ...

  1. High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: Implications for the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Cottaar, Sanne; Liu, Tao; Stackhouse, Stephen; Militzer, Burkhard

    2016-01-01

    Fe and Al are two of the most important rock-forming elements other than Mg, Si, and O. Their presence in the lower mantle's most abundant minerals, MgSiO3 bridgmanite, MgSiO3 post-perovskite and MgO periclase, alters their elastic properties. However, knowledge on the thermoelasticity of Fe- and Al-bearing MgSiO3 bridgmanite, and post-perovskite is scarce. In this study, we perform ab initio molecular dynamics to calculate the elastic and seismic properties of pure, Fe3+- and Fe2+-, and Al3+-bearing MgSiO3 perovskite and post-perovskite, over a wide range of pressures, temperatures, and Fe/Al compositions. Our results show that a mineral assemblage resembling pyrolite fits a 1D seismological model well, down to, at least, a few hundred kilometers above the core-mantle boundary, i.e. the top of the D? region. In D?, a similar composition is still an excellent fit to the average velocities and fairly approximate to the density. We also implement polycrystal plasticity with a geodynamic model to predict resulting seismic anisotropy, and find post-perovskite with predominant (001) slip across all compositions agrees best with seismic observations in the D?.

  2. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    SciTech Connect

    Pint, Bruce A.; Unocic, Kinga A.; Terrani, Kurt A.

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  3. Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Zongning; Wang, Tongmin; Zhao, Yufei; Zheng, Yuanping; Kang, Huijun

    2015-05-01

    NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.

  4. Sound velocities of Fe3Al2Si3O12 almandine up to 19 GPa and 1700 K

    NASA Astrophysics Data System (ADS)

    Arimoto, Takeshi; Gréaux, Steeve; Irifune, Tetsuo; Zhou, Chunyin; Higo, Yuji

    2015-09-01

    Elastic wave velocities of synthetic Fe3Al2Si3O12 almandine have been determined at simultaneous high pressure and temperature up to 19 GPa and 1700 K by the ultrasonic technique in conjunction with in situ synchrotron X-ray diffraction in a multi-anvil apparatus. Velocities of almandine are found substantially lower than those of other major end-member garnets such as pyrope, grossular, and MgSiO3 majorite, while their pressure and temperature derivatives are comparable to those of the latter garnets. The observed density, and compressional (VP) and shear (VS) velocities were combined and fitted to functions of the Eulerian strain EoS, yielding a adiabatic bulk modulus KS0 = 174.2 (12) GPa and a shear modulus G0 = 94.9 (7) GPa, and their pressure and temperature derivatives ?KS/?P = 4.61 (14), ?G/?P = 1.06 (6), ?KS/?T = -2.67 (7) × 10-2 GPa K-1, and ?G/?T = -1.31 (8) × 10-2 GPa K-1. The pressure derivative of the bulk modulus of almandine is similar to those of other garnet end-members, which is in contrast to the substantially higher value (?KS/?P = 6.2 (5)) reported for pure almandine in an earlier study based on experiments up to 3 GPa. The present new results combined with those of pyrope, grossular, and MgSiO3 majorite are successfully used to reproduce the sound velocities of majoritic garnet in the pyrolite composition.

  5. Dependence of dynamic magnetization and magneto-transport properties of FeAlSi films with oblique sputtering studied via spin rectification effect

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Zhong, Xiaoxi

    2014-09-15

    FeAlSi (Sendust) is known to possess excellent soft magnetic properties comparable to traditional soft magnetic alloys such as NiFe (Permalloy), while having a relatively higher resistance for lower eddy current losses. However, their dynamic magnetic and magneto-transport properties are not well-studied. Via the spin rectification effect, we electrically characterize a series of obliquely sputtered FeAlSi films at ferromagnetic resonance. The variations of the anisotropy fields and damping with oblique angle are extracted and discussed. In particular, two-magnon scattering is found to dominate the damping behavior at high oblique angles. An analysis of the results shows large anomalous Hall effect and anisotropic magneto-resistance across all samples, which decreases sharply with increasing oblique incidence.

  6. Optimization of exchange bias in Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} Heusler alloy layers

    SciTech Connect

    Hirohata, Atsufumi; Izumida, Keisuke; Ishizawa, Satoshi; Nakayama, Tadachika; Sagar, James

    2014-05-07

    We have fabricated and investigated IrMn{sub 3}/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} stacks to meet the criteria for future spintronic device applications which requires low-temperature crystallisation (<250?°C) and a large exchange bias H{sub ex} (>500?Oe). Such a system would form the pinned layer in spin-valve or tunnel junction applications. We have demonstrated that annealing at 300?°C which can achieve crystalline ordering in the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} layer giving ?80% of the predicted saturation magnetisation. We have also induced an exchange bias of ?240?Oe at the interface. These values are close to the above criteria and confirm the potential of using antiferromagnet/Heusler-alloy stacks in current Si-based processes.

  7. Chemical mixing at "Al on Fe" and "Fe on Al" interfaces

    NASA Astrophysics Data System (ADS)

    Süle, P.; Kaptás, D.; Bujdosó, L.; Horváth, Z. E.; Nakanishi, A.; Balogh, J.

    2015-10-01

    The chemical mixing at the "Al on Fe" and "Fe on Al" interfaces was studied by molecular dynamics simulations of the layer growth and by 57Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp "Al on Fe" interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the "Fe on Al" interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/57Fe/Al and Al/57Fe/Ag grown simultaneously over Si(111) substrate by vacuum evaporation—support the results of the molecular dynamics calculations.

  8. Heat capacity measurements for cryolite (Na3AlF6) and reactions in the system NaFeAlSiOF

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Hemingway, B.S.; Westrum, E.F., Jr.; Metz, G.W.; Essene, E.J.

    1987-01-01

    The heat capacity of cryolite (Na3AlF6) has been measured from 7 to 1000 K by low-temperature adiabatic and high-temperature differential scanning calorimetry. Low-temperature data were obtained on material from the same hand specimen in the calorimetric laboratories of the University of Michigan and U.S. Geological Survey. The results obtained are in good agreement, and yield average values for the entropy of cryolite of: S0298 = 238.5 J/mol KS0T-S0298 = 145.114 ln T+ 193.009*10-3T- 10.366* 105 T2- 872.89 J/mol K (273-836.5 K)??STrans = 9.9J/mol KS0T-S0298 =198.414 ln T+73.203* 10-3T-63.814* 105 T2-1113.11 J/mol K (836.5-1153 K) with the transition temperature between ??- and ??-cryolite taken at 836.5 K. These data have been combined with data in the literature to calculate phase equilibria for the system NaFeAlSiOF. The resultant phase diagrams allow constraints to be placed on the fO2, fF2, aSiO2 and T conditions of formation for assemblages in alkalic rocks. A sample application suggests that log fO2 is approximately -19.2, log fF2 is -31.9 to -33.2, and aSiO2 is -1.06 at assumed P T conditions of 1000 K, 1 bar for the villiaumite-bearing Ilimaussaq intrusion in southwestern Greenland. ?? 1987.

  9. Anomalous Hall effect and current spin polarization in Co2Fe X Heusler compounds (X =Al , Ga , In , Si , Ge , and Sn ): A systematic ab initio study

    NASA Astrophysics Data System (ADS)

    Huang, Hung-Lung; Tung, Jen-Chuan; Guo, Guang-Yu

    2015-04-01

    Co-based Heusler compounds are ferromagnetic with a high Curie temperature and a large magnetization density, and thus are promising for spintronic applications. In this paper, we perform a systematic ab initio study of two principal spin-related phenomena, namely, anomalous Hall effect and current spin polarization, in Co2-based Heusler compounds Co2Fe X (X =Al , Ga , In , Si , Ge , Sn ) in the cubic L2 1 structure within the density functional theory with the generalized gradient approximation (GGA). The accurate all-electron full-potential linearized augmented plane-wave method is used. First, we find that the spin polarization of the longitudinal current (PL) in Co2Fe X (X =Al , Ga , In , Al0.5Si0.5 , and Sn ) is ˜100 % even though that of the electronic states at the Fermi level (PD) is not. Further, the other compounds also have a high current spin polarization with PL>85 %. This indicates that all the Co2Fe X compounds considered are promising for spin-transport devices. Interestingly, PD is negative in Co2Fe X (X =Si , Ge , and Sn ), differing in sign from the PL as well as that from the transport experiments. Second, the calculated anomalous Hall conductivities (AHCs) are moderate, being within 200 S/cm, and agree well with the available experiments on a highly L2 1 ordered Co2FeSi specimen although they differ significantly from the reported experiments on other compounds where the B2 antisite disorders were present. Surprisingly, the AHC in Co2FeSi decreases and then changes sign when Si is replaced by Ge and finally by Sn. Third, the calculated total magnetic moments agree well with the corresponding experimental ones in all the studied compounds except Co2FeSi where a difference of 0.3 ?B/f .u . exists. We also perform the GGA plus on-site Coulomb interaction U calculations in the GGA + U scheme. We find that including the U affects the calculated total magnetic moment, spin polarization and AHC significantly, and in most cases, unfortunately, results in a disagreement with the available experimental results. All these interesting findings are discussed in terms of the underlying band structures.

  10. Synthesis and equation of state of post-perovskites in the (Mg,Fe) 3Al 2Si 3O 12 system

    NASA Astrophysics Data System (ADS)

    Shieh, Sean R.; Dorfman, Susannah M.; Kubo, Atsushi; Prakapenka, Vitali B.; Duffy, Thomas S.

    2011-12-01

    The formation and properties of the post-perovskite (CaIrO 3-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe) 3Al 2Si 3O 12) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90 mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148 GPa and temperatures higher than 1600 K. In some cases, evidence for a minor amount of Al 2O 3 post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite + post-perovskite two-phase region. Pressure-volume data for the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO 3 system. The presence of Al 2O 3 increases the stability of perovskite relative to post-perovskite, requiring higher pressures (> 148 GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al 2O 3 may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D? region. The observed synthesis pressures (> 148 GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary (~ 135 GPa).

  11. Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, G. F.; Dai, P. Q.

    2015-05-01

    An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into ? and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the ? phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the ? phase and the microstructure coarsening.

  12. Synthesis and equation of state of perovskite with almandine composition (Fe3Al2Si3O12) to 149 GPa

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Shieh, S. R.; Meng, Y.; Prakapenka, V.; Duffy, T. S.

    2009-12-01

    Fe and Al are important elements in Earth’s mantle and they may be concentrated in lower mantle chemical heterogeneities associated with subducting slabs, mantle plumes, or core-mantle reaction products. We studied an almandine garnet composition to explore the stability and physical properties of phases in this system at high P-T. Previous multi-anvil and diamond cell studies (Akaogi et al. 1998, Kesson et al. 1995) reported that end-member almandine dissociated to oxides, but no previous work has examined almandine in situ at lower mantle pressures and temperatures. Synthetic Fe3Al2Si3O12 glass powder was mixed with 10-15 wt% Au as pressure calibrant and loaded with NaCl or Ne as thermal insulator and pressure medium. X-ray diffraction experiments were performed in the laser-heated diamond anvil cell at the GSECARS (13-ID-D) and HPCAT (16-ID-B) sectors of the Advanced Photon Source. Heating to 2500K at 43 GPa produced a mixture of orthorhombic perovskite, stishovite, and wüstite. However, by heating at 80-90 GPa, we synthesized single-phase orthorhombic GdFeO3-type perovskite, (Fe0.75Al0.25)(Si0.75Al0.25)O3. We examined this perovskite phase under both compression and decompression from 5-149 GPa as calibrated by the Au pressure scale of Fei et al. (2007). Perovskite volume data were fit to a Birch-Murnaghan equation of state with V0 of 170.3 (0.9) Å3, K0 of 257 (13) GPa and K0’ of 3.95 (0.14). This represents a significant volume increase, but the bulk modulus is comparable to that of MgSiO3 perovskite (Lundin et al. 2008, Nishio-Hamane et al. 2008). At 100 GPa, we find a 4.5% volume increase and 1.6% bulk modulus decrease for our sample compared with MgSiO3 perovskite at this pressure.

  13. Synthesis and equation of state of perovskites in the (Mg, Fe)3Al2Si3O12 system to 177 GPa

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Shieh, Sean R.; Meng, Yue; Prakapenka, Vitali B.; Duffy, Thomas S.

    2012-12-01

    Natural and synthetic pyrope-almandine compositions from 38 to 100 mol% almandine (Alm38-Alm100) were studied by synchrotron X-ray diffraction in the laser-heated diamond anvil cell to 177 GPa. Single-phase orthorhombic GdFeO3-type perovskites were synthesized across the entire examined compositional range at deep lower mantle pressures, with higher Fe-contents requiring higher synthesis pressures. The formation of perovskite with Alm100 (Fe3Al2Si3O12) composition at 80 GPa marks the first observation of a silicate perovskite in a Fe end-member. Fe-enrichment broadens and lowers the pressure range of the post-perovskite transition for intermediate compositions such as Alm54, but the more Fe-rich Alm100-composition perovskite remains stable to pressures as high as 149 GPa. Volume compression data for the Alm54 and Alm100 compositions were fit to the Birch-Murnaghan equation of state. The compressibility of perovskites synthesized from compositions along the pyrope-almandine join is not strongly sensitive to Fe-content. The compression curves were smooth over the entire measured range, and no evidence for a volume anomaly associated with a spin transition was observed.

  14. Ferroindialite (Fe2+,Mg)2Al4Si5O18, a new beryl-group mineral from the Eifel volcanic region, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Aksenov, S. M.; Pekov, I. V.; Ternes, B.; Schüller, W.; Belakovskiy, D. I.; Van, K. V.; Blass, G.

    2014-12-01

    A new mineral, ferroindialite, a Fe2+-dominant analog of indialite, has been found in a pyrometamorphosed xenolith of pelitic rock hosted in alkaline basalts. Associated minerals are phlogopite, sanidine, sillimanite, pyroxenes of the enstatite-ferrosilite series, wagnerite, fluorapatite, tridymite, zircon and almandine. Ferroindialite forms brown-purple to gray with a violet-blue tint short prismatic or thick tabular hexagonal crystals up to 1.5 mm in size. The new mineral is brittle, with a Mohs' hardness of 7. Cleavage is not observed. D meas = 2.66(1), D calc = 2.667 g/cm3. IR spectrum shows neither H2O nor OH groups. Ferroindialite is anomalously biaxial (-), ? = 1.539(2), ? = 1.552(2), ? = 1.554(2), 2 V meas = 30(10)°. The mineral is weakly pleochroic, ranging from colorless on X to pale violet on Z. Dispersion is weak, r < v. The chemical composition (electron microprobe, mean of five point analyses, wt %) is as follows: 0.14 Na2O, 0.46 K2O, 4.95 MgO, 1.13 MnO, 12.66 FeO, 2.64 Fe2O3, 30.45 Al2O3, 47.22 SiO2, total is 99.65. The distribution of total iron content between Fe2+ and Fe3+ was carried out according to structural data. The empirical formula of ferroindialite is: (K0.06Na0.03)(Fe{1.12/2+}Mg0.78Mn0.10)?2.00(Al3.79Fe{0.21/3+})?4.00Si4.98O18. The simplified formula is: (Fe2+,Mg)2Al4Si5O18. The crystal structure has been refined on a single crystal, R = 0.049. Ferroindialite is hexagonal, space group P6/ mcc; a = 9.8759(3), c = 9.3102(3) Å, V = 786.40(3) Å3, Z = 2. The strongest lines in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 8.59 (100) (100), 4.094 (27) (102), 3.390 (35) (112), 3.147 (19) (202), 3.055 (31) (211), 2.657 (12) (212), 1.695 (9) (224). The type specimen of ferroindialite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4400/1.

  15. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are assumed to ideally mix allowing for interpolation between end-member compositions. Results show the chondrite critical isentrope intersecting its liquidus at the core-mantle boundary with a potential temperature (TP) of 2400 K, whereas the peridotite critical isentrope has a TP of 2800 K and first crystallizes at 85 GPa. An identical calculation fails to recover the Hd isentrope (Hd = Di+0.5Fa-0.5Fo). This failure is likely due to the very different partial molar volumes of FeO in Hd and Fa, which have average Fe2+ coordination states of ~4.5 and ~6, respectively [5]. Consequently the simple ideal model is likely to only support mixing among like-coordinated Fe2+ liquids. We hope to further investigate this hypothesis for linear-mixing by constraining the EOS of An-Hd (50:50), and An-Di-Hd (33:33:33) melts using pre-heated shock wave techniques. [1] Ghiorso & Kress (2004) AJS 304, 679-751.[2] Ai & Lange(2008) JGR 113,B04203.[3] Fiquet et al. (2010) Science 329, 1516-1518.[4]Andrault et al. (2011) EPSL 304, 251-259.[5]Lange et al. (2012) Goldschmidt meeting, abstract.

  16. Structure alterations in microporous (Mg,Fe) 2Al 4Si 5O 18 crystals induced by energetic heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Miletich, Ronald; Diego Gatta, G.; Redhammer, Günther J.; Burchard, Michael; Meyer, Hans-Peter; Weikusat, Christian; Rotiroti, Nicola; Glasmacher, Ulrich A.; Trautmann, Christina; Neumann, Reinhard

    2010-10-01

    The microporous framework structure of (Mg 1- xFe x) 2Al 4Si 5O 18 (=cordierite) has been subject to a comparative study on the effect of structural alterations originating from exposure to high-energy heavy ions. Oriented samples (with x=0.061, 0.122, and 0.170) were irradiated with swift 124Xe, 197Au and 96Ru ions with 11.1 MeV per nucleon energy and fluences of 1×10 12 and 1×10 13 ions/cm 2. Irradiated and non-irradiated samples were investigated by means of X-ray diffraction, Mössbauer spectroscopy and optical absorption spectroscopy. Structural investigations reveal an essentially unchanged Al,Si ordering, which appears to be unaffected by irradiation. The most remarkable macroscopic change is the ion-beam induced colouration, which could be assigned to electronic charge transfer transitions involving the Fe cations. Mössbauer spectra indicate an increased amount of [4]Fe 3+ for the irradiated sample. The most noticeable structural alteration concerns irradiation-induced dehydration of extra-framework H 2O, which is accompanied by a reduction in the molar volume by ˜0.2 vol%.

  17. A new garnet, {(Y, REE)(Ca, Fe2+)2}[(Mg,Fe2+)(Fe3+,Al)](Si3)O12, and its role in the yttrium and rare-earth element budget in a granulite

    NASA Astrophysics Data System (ADS)

    Grew, E. S.; Marsh, J. H.; Yates, M. G.; Locock, A.

    2009-12-01

    A pyroxene-plagioclase granulite on Bonnet Island in the interior Parry Sound domain, Central Gneiss Belt, Grenville Orogenic Province, Canada contains 4 minerals with essential Y and rare-earth elements (REE): monazite(Ce), xenotime-(Y), allanite-(Ce) and a new Y garnet. There are only a few grains of Y-REE phosphate. Monazite grains (to 20 µm) are contiguous to or enclosed in apatite. Xenotime grains (to 7 µm) are enclosed in apatite or sandwiched between it and zircon. Allanite is coarser (to 400 µm), more abundant and not restricted in association. Fresh allanite (ThO2 < 0.4 wt%) has 18-30 mol% epidote, 29-10 mol% ferriallanite; Fe3+/Fe ~ 0.36. The new garnet (IMA 2009-050, submitted) forms cores to 75 µm rimmed along sharp, irregular contacts by euhedral almandine-grossular (Alm59Grs18Prp9Adr5Sps4other5; <2 wt% Y2O3). Locally the new garnet contacts K-feldspar, apatite and allanite - the last where both phases are enclosed in euhedral Alm-Grs. The formula for the new garnet is {Y0.83Gd0.01Dy0.05Ho0.02Er0.07Tm0.01Yb0.06Lu0.02Ca1.37Fe2+0.49Mn0.07}[Mg0.55Fe2+0.42Fe3+0.58Al0.35V0.01Sc0.01Ti0.08](Si2.82Al0.18)O12. Incorporation of Y + REE is largely through the components {Y2Ca}[Mg2](Si3)O12 = YMg and {Y2Ca}[Fe2+2](Si3)O12 = YFe instead of {Y3}[Al2](Al3)O12 (YAG) and {Y3}[Fe3+2](Fe3+3)O12 (YIG) as reported in many Y + REE enriched garnets. Equations such as 3YMg + 5Al2O3 = 2YAG + 3Di + 3En relate YMg and YFe to YAG and YIG, that is, YMg and YFe incorporation would be expected in rocks with pyroxene. Prior to growth of Alm-Grs the new garnet and allanite presumably equilibrated with ferrosilite (Fs56-60En41-37Wo~1 and ~1%MnSiO3), oligoclase (An27), quartz, magnetite, ilmenite and possibly coarse-grained augite during the first stage of metamorphism estimated to be at T > 830 °C, P ~ 11 kbar. The second stage assemblage included biotite, ferropargasite, fined-grained augite and Alm-Grs + Qtz ± augite symplectite; the later augite has less Na, Al and higher Mg/(Mg+Fe). The Y-REE phosphates could be later phases formed by reaction of apatite with Y + REE released by the breakdown of the new garnet and allanite. The host granulite is silica saturated and poor in K (66.06 wt% SiO2; 0.85 wt% K2O) and meta-aluminous (ASI 0.90). Selected trace elements in ppm: Cr, Ni < 20, Zr 668, Nb 15.5, Y 80.4, La 42.4, Ce 95.9, Pr 12, Nd 46.5, Sm 10.6, Eu 3.21, Gd 12, Tb 2, Dy 12.7, Ho 2.92, Er 9.85, Tm 1.62, Yb 11, Lu 1.65 ppm, which gives Eu/Eu* 0.87, LaN/YbN 2.62, Y + HREE 51-68*chondrite. The appearance of a Y + HREE silicate is most likely due to (1) the major constituents (Pl, Opx, Qz, Mgt, Ilm) and allanite being unable to accommodate the relatively high bulk Y + HREE content at the peak of metamorphism and (2) the instability of xenotime and titanite in this bulk composition. Two other granulites have similar bulk composition and nearly identical Y + REE contents, but more hornblende, less allanite and none of the new garnet. If hornblende had been stable at the metamorphic peak in these rocks, it could have incorporated more of the Y + REE. There would have been less LREE available for allanite, and insufficient Y + HREE to form the new garnet.

  18. Fabrication of highly spin-polarized Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} thin-films

    SciTech Connect

    Vahidi, M.; Zhang, S. K.; Yu, L.; Huang, M.; Newman, N.; Gifford, J. A.; Chen, T. Y.; Krishnamurthy, S.; Yu, Z. G.; Youngbull, C.

    2014-04-01

    Ferromagnetic Heusler Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} epitaxial thin-films have been fabricated in the L2{sub 1} structure with saturation magnetizations over 1200 emu/cm{sup 3}. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  19. Ilmenite-Silicate Relations In The System Fe-Mg-Ti-Cr-Al-Si-O As A Function Of Pressure, Temperature And Bulk Composition

    NASA Astrophysics Data System (ADS)

    Semytkivska, N.; Ulmer, P.

    2008-12-01

    We performed high-pressure experiments in the Fe-Mg-Ti-Cr-Si-O system with additional runs in the Fe- and Si-free systems. A limited number of Al-bearing experiments were done as well. Experiments were conducted at temperature between 1000 and 1400°C and pressure of 2.5, 3.5, 5 and 7 GPa using different bulk compositions with variable Mg/Fe, Cr/Al ratios, and silica activities under relatively reducing conditions by employing graphite containers sealed into Pt-capsule. Experiments were run in solid-media piston cylinders and multi-anvil apparatus. Stability of ilmenite in equilibrium with silicates (olivine, opx) and oxides (spinel, rutile) have been experimentally determined. Ilmenite is stable together with olivine + opx + spinel at bulk XMg of less than 0.8, rutile + olivine + opx + spinel are coexisting phases at a bulk XMg of 0.85. Compositions with lower SiO2 contents and low XMg values are characterized by the presence of three oxides: ilm+ru+spi coexisting with olivine and opx. Changing composition to high XMg (0.85) and keeping lower amounts of SiO2 results in the disappearance of opx and rutile; present phases are ol+spi+ilm. In the iron-free system phase parageneses are similar to runs with high Mg# and high SiO2 contents: ol+opx+spi+ru. For composition with lower amount of SiO2 only olivine is present as silicate phase and three oxides are observed: spi+ru+ilm(geikilite). In experiments without Si ilmenite stabilizes at pressure above 3.5 GPa. Other phases are spi and MgO with high iron content (Ferri-periclase). Compositional variations of ilmenite and spinel correlate with temperature: depletion in trivalent cations is observed with increasing temperature for spinel whereas the compositions of ilmenite exhibit enrichment in trivalent cations with increasing temperature. Currently, we investigate the quantitative effect of Cr3+ on the ilmenite solid solution by thermodynamic analysis of the experimental results

  20. Constraints on silicates formation in the Si-Al-Fe system: Application to hard deposits in steam generators of PWR nuclear reactors

    NASA Astrophysics Data System (ADS)

    Berger, Gilles; Million-Picallion, Lisa; Lefevre, Grégory; Delaunay, Sophie

    2015-04-01

    Introduction: The hydrothermal crystallization of silicates phases in the Si-Al-Fe system may lead to industrial constraints that can be encountered in the nuclear industry in at least two contexts: the geological repository for nuclear wastes and the formation of hard sludges in the steam generator of the PWR nuclear plants. In the first situation, the chemical reactions between the Fe-canister and the surrounding clays have been extensively studied in laboratory [1-7] and pilot experiments [8]. These studies demonstrated that the high reactivity of metallic iron leads to the formation of Fe-silicates, berthierine like, in a wide range of temperature. By contrast, the formation of deposits in the steam generators of PWR plants, called hard sludges, is a newer and less studied issue which can affect the reactor performance. Experiments: We present here a preliminary set of experiments reproducing the formation of hard sludges under conditions representative of the steam generator of PWR power plant: 275°C, diluted solutions maintained at low potential by hydrazine addition and at alkaline pH by low concentrations of amines and ammoniac. Magnetite, a corrosion by-product of the secondary circuit, is the source of iron while aqueous Si and Al, the major impurities in this system, are supplied either as trace elements in the circulating solution or by addition of amorphous silica and alumina when considering confined zones. The fluid chemistry is monitored by sampling aliquots of the solution. Eh and pH are continuously measured by hydrothermal Cormet© electrodes implanted in a titanium hydrothermal reactor. The transformation, or not, of the solid fraction was examined post-mortem. These experiments evidenced the role of Al colloids as precursor of cements composed of kaolinite and boehmite, and the passivation of amorphous silica (becoming unreactive) likely by sorption of aqueous iron. But no Fe-bearing was formed by contrast to many published studies on the Fe-clay interactions in the nuclear waste storage, and by contrast with basic thermodynamic predictions. Conclusion: The Fe-clays and steam generators contexts imply relatively close aqueous environments: hydrothermal, reduced, diluted, neutral to slightly alkaline. The main difference is the status of iron: ferric/ferrous (magnetite) in the steam generators, metallic in the Fe-clay experiments. The concentration of aqueous iron when supplied by magnetite is low and does not allow its incorporation in secondary phases. By contrast, aqueous ferrous iron released by the corrosion of steel is not limited by the source, rather by the sink, and produces Fe-rich silicates. This example illustrates the discrepancy between complex mineral reactions and oversimplified predictions when sorption/passivation and nucleation/growth constraints are ignored. Reference: [1] Lanson et al. (2012) Amer. Min. 97, 864-871. [2] Lantenois et al. (2005) Clays & Clay Min. 53, 597-612. [3] Mosser-Ruck et al. (2010) Clays & Clay Min. 58, 280-291. [4] Perronnet et al. (2008) App. Clay Sci. 38, 187-202. [5] Osacky et al. (2010) App. Clay Sci. 50, 237-244. [6] Guillaume et al. (2003) Clay Min. 38, 281-302. [7] Rivard et al. (2013) Amer. Mineral. 98, 163-180. [8] Svensson and Hansen (2013) Clays & Clay Min. 61, 566-579.

  1. Effects of annealing temperature on structure and magnetic properties of CoAl0.2Fe1.8O4/SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, L.; Li, J.; Liu, M.; Zhang, Y. M.; Lu, J. B.; Li, H. B.

    2012-12-01

    CoAl0.2Fe1.8O4/SiO2 nanocomposites were prepared by sol-gel method. The effects of annealing temperature on the structure and magnetic properties of the samples were studied by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy. The results show that the CoAl0.2Fe1.8O4 in the samples exhibits a spinel structure after being annealed. As annealing temperature increases from 800 to 1200 °C, the average grain size of CoAl0.2Fe1.8O4 in the nanocomposites increases from 5 to 41 nm while the lattice constant decreases from 0.8397 to 0.8391 nm, the saturation magnetization increases from 21.96 to 41.53 emu/g. Coercivity reaches a maximum of 1082 Oe for the sample annealed at 1100 °C, and thereafter decreases with further increasing annealing temperature. Mössbauer spectra show that the isomer shift decreases, hyperfine field increases and the samples transfer from mixed state of superparamagnetic and magnetic order to the completely magnetic order with annealing temperature increasing from 800 to 1200 °C.

  2. Study of structural and magnetic properties of Fe73.5Si3.8C14Mn0.7B4Al4 alloy

    NASA Astrophysics Data System (ADS)

    Tapkir, P.; Satalkar, M.; Shah, M.; Ghodke, N.; Varga, L. K.; Araujo, J. P.; Kane, S. N.

    2014-09-01

    Present work, reports the influence of thermal annealing on magnetic and structural properties of Ci92B4Al4 (Fe73.5Si3.8C14Mn0.7= Ci - Cast iron) alloy using, magnetic measurements, differential scanning calorimetry (DSC) and x-ray diffraction (XRD) to obtain information on structure, formed nano-crystalline phases and their influence on soft magnetic properties. Structural changes were achieved by annealing of the samples performed at 350, 370, 400, 425 and 450 °C for one hour. Studied specimen shows two-step crystallization, and the activation energy of crystallization, obtained using Kissinger's method, was 3.79 ± 0.6 eV (for main peak) and 3.02 ± 0.3 eV (for pre peak). Coercive field Hc of the studied samples varies between 22.06 - 838.67 A/m. Best coercivity (Hc) value of 22.06 A/m was obtained for the as cast sample. The measured saturation induction (B2000) values range between 0.89 and 1.31 Tesla. Best saturation induction (B2000) value of 1.31 Tesla was obtained for the as cast sample. XRD data shows that apart from ?-Fe, phase (lattice parameter ~ 0.2859 nm) an additional Fe-Al phase is also formed, with Al ranging between 53 - 64 %, responsible for the reduction of magnetic induction as well as the increase of coercivity.

  3. Effect of annealing on Co2FeAl0.5Si0.5 thin films: A magneto-optical and x-ray absorption study

    NASA Astrophysics Data System (ADS)

    Trudel, Simon; Wolf, Georg; Hamrle, Jaroslav; Hillebrands, Burkard; Klaer, Peter; Kallmayer, Michael; Elmers, Hans-Joachim; Sukegawa, Hiroaki; Wang, Wenhong; Inomata, Koichiro

    2011-03-01

    A series of Al and MgO-capped Co2FeAl0.5Si0.5 epitaxial thin films grown on MgO with various levels of L21 ordering was obtained by in situ annealing. The films were studied by means of x-ray absorption spectroscopy, x-ray magnetic circular dichroism (XMCD), magneto-optical Kerr effect magnetometry, and Brillouin light scattering. We find the anisotropy constants decrease, while the spin wave stiffness increases as the samples are annealed to higher temperatures. The magnetization as determined by Brillouin light scattering reveals a maximum value at intermediate annealing temperatures. Surprisingly, the orbital-to-spin-moment ratio (as seen from XMCD) is essentially stable through the sample series and does not change upon annealing, despite the observed changes in anisotropy and exchange.

  4. The Perovskite to Post-Perovskite phase transition in Al-bearing (Mg,Fe)SiO3: A XANES in-situ analysis at the Fe K-edge

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Munoz, M.; Bolfan-Casanova, N.; Guignot, N.; Perrillat, J.; Aquilanti, G.; Pascarelli, S.

    2008-12-01

    Phase transition from perovskite (Pv) to Post-Pv (PPv) phase in MgSiO3 has been studied by many groups since its discovery in 2004 (1,2) and the different studies find similar transition pressures. The effect of Al and Fe on the phase transition remains more controversial. The most recent studies suggest an increase of the transition pressure with increasing Fe-content (3,4), but other experimental work (5) as well as ab-initio calculations (6) show the opposite effect. The effect of Al was reported to increase slightly the pressure transition to the CaIrO3 form (4,7), but its influence on the Fe3+ content in the PPv phase has not been documented yet. By means of in situ study of the Fe K-edge fine structures (XANES), we investigated the phase relations between Pv and PPv phases for three different Al-(Mg,Fe)SiO3 compositions. For this, we synthesized various Pv and PPv mixtures using laser-heated diamond anvil cell (DAC) for pressures between 60 and 170 GPa. The sample's mineralogy, i.e. the Pv and PPv phase fractions, was determined using in-situ X-ray diffraction at the ID27 beamline of the ESRF (8,9). Then, we probed the Fe speciation, i.e. the Fe concentration in each phases, in-situ in the DAC using the µ-XANES mapping technique available at the ID24 beamline (10,11). Both pieces of information were combined to retrieve the Fe partitioning coefficient between the two high-pressure phases. Our results show that Fe partitions strongly into the PPv phase, which implies a very large binary loop of coexistence of the two phases. Thus, at the core-mantle boundary pressure (135 GPa), the Pv and PPv phase always coexist for all geophysically relevant Al-(Mg,Fe)SiO3 compositions, and the Fe-content in the PPv-phase is only a few percent. References: 1. M. Murakami, K. Hirose, K. Kawamura, N. Sata, Y. Ohishi, Science 304, 855 (2004). 2. A. R. Oganov, S. Ono, Nature 430, 445 (2004). 3. S. Tateno, K. Hirose, N. Sata, Y. Ohishi, Phys. Earth Planet. Inter. 160, 319 (2007). 4. D. Nishio-Hamane, T. Nagai, K. Fujino, Y. Seto, N. Takafuji, Geophys. Res. Lett. 32, L16306 (2005). 5. W. L. Mao et al., PNAS 101, 15867 (2004). 6. J. P. Brodholt, A. R. Oganov, personal communication. 7. S. Ono, A. R. Oganov, T. Koyama, H. Shimizu, Earth Planet. Sci. 246, 326 (2006). 8. N. Guignot, D. Andrault, G. Morard, M. Mezouar, Earth Planet. Sci. 256, 162 (2007). 9. E. Schultz et al., High Press. Res. 25, 71 (2005). 10. S. Pascarelli, O. Mathon, M. Muñoz, T. Mairs, J. Susini, J. Synch. Rad. 13, 351 (2006). 11. M. Muñoz et al., Geochemistry Geophysics Geosystems 7, Q11020 (2006).

  5. Fabrication and characterization of spin injector using a high-quality B2-ordered-Co2FeSi0.5Al0.5/MgO/Si(100) tunnel contact

    NASA Astrophysics Data System (ADS)

    Kawame, Yu; Akushichi, Taiju; Takamura, Yota; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-01

    We successfully fabricate a (100)-orientated B2-type-Co2FeSi0.5Al0.5 (CFSA)/MgO/Si(100) tunnel contact that is promising for an efficient spin injector for Si channels. The MgO barrier is formed by radical oxidation of an Mg thin film deposited on a Si(100) surface at room temperature and successive radical oxygen annealing at 400 °C. The CFSA electrode is grown on the MgO barrier at 400 °C by ultrahigh-vacuum molecular beam deposition, and it exhibits a (100)-orientated columnar polycrystalline structure with a high degree (63%) of B2-order. The MgO barrier near the interface of the CFSA/MgO junction is crystallized with the (100) orientation, i.e., the spin filter effect due to the MgO barrier could be expected for this junction. A three-terminal Si-channel spin-accumulation device with a CFSA/MgO/Si(100) spin injector is fabricated, and the Hanle effect of accumulated spin polarized electrons injected from this contact to the Si channel is observed.

  6. Formation of the icosahedral quasicrystalline phase in a rapidly solidified Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy

    SciTech Connect

    Wang Yan; Zhang Zhonghua . E-mail: zh_zhang@sdu.edu.cn; Geng Haoran; Yang Zhongxi

    2006-04-15

    In the present work, the effect of wheel speed (quenching rate) on the formation of the quasicrystalline phase in a rapidly solidified Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy has been investigated using X-ray diffraction (XRD), differential thermal analysis (DTA), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results show that rapid solidification has no effect on the phase constitution of the Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy. The addition of Si decreases the stability of the quasicrystalline phase in the conventionally cast Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy. The thermal stability of the quasicrystalline phase in the melt-spun alloy depends upon the quenching rate. Moderate-rate rapid solidification can improve the thermal stability of the quasicrystalline phase in the melt-spun alloy. Higher quenching rate instigates the transformation of the quasicrystalline phase into the cubic approximant phase and decreases the stability of the quasicrystalline phase. Furthermore, the transformation temperature decreases with increasing Si addition into the Al{sub (62-x)}Cu{sub 25.5}Fe{sub 12.5}Si{sub x}.

  7. Co{sub 2}FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    SciTech Connect

    Belmeguenai, M. Tuzcuoglu, H.; Zighem, F.; Chérif, S. M.; Moch, P.; Gabor, M. S. Petrisor, T.; Tiusan, C.

    2014-01-28

    10?nm and 50?nm Co{sub 2}FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (T{sub a}), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing T{sub a}, while the uniaxial anisotropy field is nearly unaffected by T{sub a} within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with T{sub a}. Finally, the FMR linewidth decreases when increasing T{sub a}, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10{sup ?3} and 1.3×10{sup ?3} for films of 50?nm thickness annealed at 615?°C grown on MgO and on Si, respectively)

  8. Sound Velocities of Fe-C and Fe-Si alloying liquids at high pressures

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Han, J.; Yu, T.; Wang, Y.

    2014-12-01

    Geophysical and geochemical observations suggest light elements such as S, Si, C, O, H, etc., are likely present in the Earth's outer core and the molten cores of other terrestrial planets and moons including Mercury, Mars, Earth's Moon, and Ganymede. In order to constrain the abundances of light elements in planetary cores, it is crucial to determine the density and sound velocity of Fe-light element alloying liquids under core conditions. In this study, sound velocities of Fe-rich liquids were determined by combining the ultrasonic measurements with synchrotron X-ray radiography and diffraction techniques under high-pressure and temperature conditions from 1 to 6 GPa and 1573 to 1973 K. An Fe-C composition (Fe-5wt%C) and four Fe-Si compositions (Fe-10wt%Si, Fe-17wt%Si, Fe-25wt%Si, and FeSi) were studied. Compared to our previous results on the velocity of Fe and Fe-S liquids at high pressures (Jing et al., 2014, Earth Planet. Sci. Lett. 396, 78-87), the presence of both C and Si increases the velocity of liquid Fe, in contrast to the effect of S. The measured velocities of Fe-C and Fe-Si liquids increase with compression and decrease slightly with increasing temperature. Combined with 1-atm density data in the literature, the high-pressure velocity data provide tight constraints on the equations of state and thermodynamic properties such as the adiabatic temperature gradient for Fe-C and Fe-Si liquids. We will discuss these results with implications to planetary cores.

  9. Interfacial tension between immiscible melts in the system K2O - FeO - Fe2O3 - Al2O3 - SiO2

    NASA Astrophysics Data System (ADS)

    Kaehn, J.; Veksler, I. V.; Franz, G.; Dingwell, D. B.

    2009-12-01

    Interfacial tension is a very important parameter of the kinetics of phase nucleation, dissolution and growth. Excess surface energy contributes to the energy barrier for phase nucleation, and works as the main driving force for minimization of phase contact surfaces in heterogeneous systems. Immiscible silicate melts have been found to form in a broad range of basaltic, dacitic and rhyolitic magmas (Philpotts, 1982). However, liquid-liquid interfaces remain poorly studied in comparison with crystal-melt and vapor-melt interfaces. Here we present first experimental measurements of interfacial tension between synthetic Fe-rich and silica-rich immiscible melts composed of Fe oxides, K2O, alumina and silica. According to Naslund (1983), the miscibility gap in the 5-oxide system expands with increasing fO2 and becomes widest in air (fO2 = 0.2). Our goal was to estimate the maximal liquid-liquid interfacial tension for the immiscible liquids composed of silica and Fe oxides. Therefore, we have chosen the most contrasting liquid compositions that coexist in air at and above 1465 °C. Silica-rich and Fe-rich conjugate liquids at these conditions contain 73 and 17 wt. % SiO2, and 14 and 80 wt. % FeOt, respectively. These starting compositions were synthesized by fusion of reagent-grade oxides and K2CO3 at 1600 °C. In addition to interfacial tension, we have measured density and surface tension of individual coexisting liquids. All the measurements were done at 1500, 1527 and 1550 °C. Density was measured by the Archimedean method; surface and interfacial tensions were calculated from the maximal pool on a vertical cylinder (a 3-mm Pt rod attached to a high precision balance). We found interfacial tension between the immiscible liquids to decrease with increasing temperature from 16.4±2 mN/m at 1500 °C to 8.2±0.8 mN/m at 1550 °C. These values are approximately 2 orders of magnitude lower than typical interfacial tensions between silicate melts and crystals (Wanamaker and Kohlstedt, 1991), or 20-40 times lower than the surface tension of natural lavas in air (Walker and Mullins, 1981). Interfacial tension between natural, less compositionally contrasting ferrobasaltic and rhyolitic melts should be even lower by a factor of 2 or 3. Very low interfacial tension implies easy nucleation of immiscible liquid droplets, and very slow coarsening of silicate emulsions. The results of interfacial tension measurements corroborate protracted stability of sub-micron immiscible silicate emulsions that we observed in our previous immiscibility experiments. References Naslund H.R. (1983) Am. J. Sci. 283, 1034-1059. Philpotts A.R. (1982) Contrib. Mineral. Petrol. 80, 201-218. Walker D. and Mullins Jr. O. (1981) Contrib. Mineral. Petrol. 76, 455-462. Wanamaker B.J. and Kohlstedt D.L. (1991) Phys. Chem. Minerals, 18, 26-36.

  10. Interfacial structure and magnetic properties of Co2FeAl0.5Si0.5/MgO heterostructures

    NASA Astrophysics Data System (ADS)

    Hassan, Sameh S. A.; Xu, Yongbing; Hirohata, Atsufumi; Sukegawa, Hiroaki; Wang, Wenhong; Inomata, Koichiro; van der Laan, Gerrit

    2010-05-01

    The interfacial properties of the Co2FeAl0.5Si0.5/MgO based magnetic tunnel junction have been investigated using x ray absorption spectroscopy (XAS), angle resolved x ray photoelectron spectroscopy (ARXPS), x ray magnetic circular dichroism (XMCD), and element-specific hysteresis loops. The XAS demonstrates a multiplet structure at the Co L3 edge which could be attributed to the formation of CoO at the interface due to the high annealing temperature. The XMCD sum-rule analysis and the element-specific hysteresis loops show a higher magnetic moment, a change in the loop shape, and an increase in the Co coercive field when probing more close to the interface layer. The chemical and structural disorder at the interface has been further revealed by the ARXPS measurements.

  11. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    SciTech Connect

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 ?m/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the applied magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.

  12. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    DOE PAGESBeta

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 ?m/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore »magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less

  13. Epitaxial films of Heusler compound Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} with high crystalline quality grown by off-axis sputtering

    SciTech Connect

    Peters, B.; Hageman, Stephen J.; Yang, F. Y.; Alfonsov, A.; Blum, C. G. F.; Woodward, P. M.; Wurmehl, S.; Büchner, B.; Institute for Solid State Physics, Technische Universität Dresden, D-01062 Dresden

    2013-10-14

    Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} films with a surface roughness of 0.12 nm have been grown epitaxially on lattice-matched MgAl{sub 2}O{sub 4} (001) substrates by off-axis sputtering. X-ray diffraction shows pronounced Laue oscillations, rocking curves as narrow as 0.0043°, and clear Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (111) peaks indicating L2{sub 1} ordering. Magnetic characterizations show a clear magnetocrystalline anisotropy comprising cubic and epitaxy-induced uniaxial terms. Nuclear magnetic resonance measurements reveal L2{sub 1} order of 81% in the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} films. Magnetotransport measurements show a distinct separation of anisotropic magnetoresistance and ordinary magnetoresistance. These results demonstrate the state-of-the-art crystalline quality and magnetic uniformity of the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} films.

  14. Heat capacity and phase equilibria of almandine, Fe[sub 3]Al[sub 2]Si[sub 3]O[sub 12

    SciTech Connect

    Anovitz, L.M. ); Essene, E.J.; Metz, G.W.; Westrum, E.F. Jr. ); Bohlen, S.R. ); Hemingway, B.S. )

    1993-09-01

    The heat capacity of a synthetic almandine, Fe[sub 3]Al[sub 2]Si[sub 3]O[sub 12], was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp[sub 298] = 342.80 [+-] 1.4 J/mol[center dot]K and S[degrees][sub 298] = 342.60 J/mol[center dot]K. Moessbauer characterizations show the almandine to contain less than 2 [+-] 1% of the total iron as Fe[sup 3+]. X-ray diffraction studies of this synthetic almandine yield a = 11.521 [+-] 0.001 [angstrom] and V[degrees][sub 298] = 115.11 [+-] 0.01 cm[sup 3]/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with T[sub N] = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution).

  15. Influence of (Al, Fe, Mg) Impurities on Triclinic Ca3SiO5: Interpretations from DFT Calculations

    E-print Network

    Pandey, Ravi

    bracket the production of OPC, there is increasing emphasis on designing newer, more efficient OPC manipulations of their impurity distributions. 1. INTRODUCTION AND BACKGROUND Second to water, concrete hydraulic reactivity and ability for rapid strength gain. Ca3SiO5 assembles itself in different polymorphs

  16. Discovery of Ahrensite ?-Fe2SiO4 and Tissintite (Ca,Na,[])AlSi2O6, Two New Shock-induced Minerals from the Tissint Martian Meteorite: a Nanomineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.

    2013-12-01

    The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (?-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.

  17. Effects of breadfruit seed hull ash on the microstructures and properties of Al-Si-Fe alloy/breadfruit seed hull ash particulate composites

    NASA Astrophysics Data System (ADS)

    Atuanya, C. U.; Ibhadode, A. O. A.; Dagwa, I. M.

    2012-01-01

    The microstructures and properties of Al-Si-Fe alloy matrix composites reinforced with different weight fractions of breadfruit seed hull (husk) ash particles of size 500 nm were investigated. Six (6) different weight fractions of breadfruit seed hull ash particles were added to aluminium alloy matrix using a double stir-casting method. Microstructural analysis shows that with the increase of the reinforcement weight fraction, the matrix grain size decreases. The mechanical properties of the composites are improved over the matrix materials, except for the slightly decrease of the impact energy. Fracture surface examination indicates that there is a good interfacial bonding between the aluminium alloy matrix and the breadfruit seed hull ash particles and that fracture initiation does not occur at the particle-matrix interface. Hence, incorporation of breadfruit seed hull ash particles in aluminium matrix can lead to the production of low cost aluminium composites with improved hardness and strength. These composites can find applications in automotive components where light weight materials are required with good stiffness and strength.

  18. Microstructure Evolution Associated with a Superior Low-Cycle Fatigue Resistance of the Fe-30Mn-4Si-2Al Alloy

    NASA Astrophysics Data System (ADS)

    Nikulin, Ilya; Sawaguchi, Takahiro; Ogawa, Kazuyuki; Tsuzaki, Kaneaki

    2015-11-01

    The microstructure evolution responsible for the superior low-cycle fatigue (LCF) resistance ( N f > 8000 cycles at a total strain range of 2 pct) was studied in the Fe-30Mn-4Si-2Al alloy susceptible to strain-induced martensitic transformation. To investigate the microstructure effect on the LCF behaviors of the alloy, a series of interrupted fatigue tests at total strain range of 2 pct were carried out. A characteristic softening stage followed by the secondary hardening was observed during cyclic loading of the studied alloy. This softening is associated with the strain localization caused by persistent Lüders bands formation and the transformation of Lüders bands into strain-induced ?-martensite is found to have a key role in the delayed fatigue fracture of the alloy being studied. Therefore, the continuous transformation process involving Lüders bands and ?-martensite formation associated with intermediate stacking fault energy (SFE) ( ? SF of 14 mJ/m2) is necessary to prevent the rearrangement of dislocations into walls/channels and substructures inherent to high-SFE ( ? SF higher 20 mJ/m2) alloys capable to accelerated fatigue damage. However, sluggish martensite transformation kinetics is necessary to delay the formation of the ?-martensite associated with the development and propagation of fatigue crack in alloys with very low SFE.

  19. Effects of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel

    SciTech Connect

    Zhao, Xianming; Shen, Yongfeng; Qiu, Lina; Liu, Yandong; Sun, Xin; Zuo, Liang

    2014-12-09

    A medium Mn steel has been designed to achieve an excellent combination of strength and ductility based on the TRIP (Transformation Induced Plasticity) concept for automotive applications. Following six passes of hot rolling at 850 °C, the Fe-7.9Mn-0.14Si-0.05Al-0.07C (wt.%) steel was warm-rolled at 630 °C for seven passes and subsequently air cooled to room temperature. The sample was subsequently intercritically annealed at various temperatures for 30 min to promote the reverse transformation of martensite into austenite. The obtained results show that the highest volume fraction of austenite is 39% for the sample annealed at 600 °C. This specimen exhibits a yield stress of 910 MPa and a high ultimate tensile stress of 1600 MPa, with an elongation-to-failure of 0.29 at a strain rate of 1 × 10?³/s. The enhanced work-hardening ability of the investigated steel is closely related to martensitic transformation and the interaction of dislocations. Especially, the alternate arrangement of acicular ferrite (soft phase) and ultrafine austenite lamellae (50–200 nm, strong and ductile phase) is the key factor contributing to the excellent combination of strength and ductility. On the other hand, the as-warm-rolled sample also exhibits the excellent combination of strength and ductility, with elongation-to-failure much higher than those annealed at temperatures above 630 °C.

  20. Microstructure Evolution Associated with a Superior Low-Cycle Fatigue Resistance of the Fe-30Mn-4Si-2Al Alloy

    NASA Astrophysics Data System (ADS)

    Nikulin, Ilya; Sawaguchi, Takahiro; Ogawa, Kazuyuki; Tsuzaki, Kaneaki

    2015-09-01

    The microstructure evolution responsible for the superior low-cycle fatigue (LCF) resistance (N f > 8000 cycles at a total strain range of 2 pct) was studied in the Fe-30Mn-4Si-2Al alloy susceptible to strain-induced martensitic transformation. To investigate the microstructure effect on the LCF behaviors of the alloy, a series of interrupted fatigue tests at total strain range of 2 pct were carried out. A characteristic softening stage followed by the secondary hardening was observed during cyclic loading of the studied alloy. This softening is associated with the strain localization caused by persistent Lüders bands formation and the transformation of Lüders bands into strain-induced ?-martensite is found to have a key role in the delayed fatigue fracture of the alloy being studied. Therefore, the continuous transformation process involving Lüders bands and ?-martensite formation associated with intermediate stacking fault energy (SFE) (? SF of 14 mJ/m2) is necessary to prevent the rearrangement of dislocations into walls/channels and substructures inherent to high-SFE (? SF higher 20 mJ/m2) alloys capable to accelerated fatigue damage. However, sluggish martensite transformation kinetics is necessary to delay the formation of the ?-martensite associated with the development and propagation of fatigue crack in alloys with very low SFE.

  1. Microstructures and mechanical properties of dispersion-strengthened high-temperature Al-8. 5Fe-1. 2V-1. 7Si alloys produced by atomized melt deposition process

    SciTech Connect

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L. ); Lederich, R.J. )

    1993-04-01

    Dispersion-strengthened high-temperature Al-8.5% FeSiV alloys were produced by atomized melt deposition (AMD) process. The effects of process parameters on the evolution of microstructures were determined using optical metallography and scanning and transmission electron microscopy. The extent of undercooling and the rate of droplet solidification wee correlated with process parameters, such as melt superheat, metal/gas flow rates, and melt stream diameter. The size distribution and morphology of silicide dispersoids were used to estimate the degree of undercooling and the cooling rate as functions of process parameters. The tensile properties at 25C to 425C and fracture toughness at 25C of these alloys produced with wide variations in dispersoids size and grain size were determined. Under optimum conditions, the alloy has ultimate tensile strength of 281 MPa and 9.5% ductility in the as-deposited condition. Upon hot-isostatic pressing and extrusion, the ultimate tensile strength increased to 313 MPa and ductility increased to 18%.

  2. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    NASA Technical Reports Server (NTRS)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  3. Effects of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel

    DOE PAGESBeta

    Zhao, Xianming; Shen, Yongfeng; Qiu, Lina; Liu, Yandong; Sun, Xin; Zuo, Liang

    2014-12-09

    A medium Mn steel has been designed to achieve an excellent combination of strength and ductility based on the TRIP (Transformation Induced Plasticity) concept for automotive applications. Following six passes of hot rolling at 850 °C, the Fe-7.9Mn-0.14Si-0.05Al-0.07C (wt.%) steel was warm-rolled at 630 °C for seven passes and subsequently air cooled to room temperature. The sample was subsequently intercritically annealed at various temperatures for 30 min to promote the reverse transformation of martensite into austenite. The obtained results show that the highest volume fraction of austenite is 39% for the sample annealed at 600 °C. This specimen exhibits amore »yield stress of 910 MPa and a high ultimate tensile stress of 1600 MPa, with an elongation-to-failure of 0.29 at a strain rate of 1 × 10?³/s. The enhanced work-hardening ability of the investigated steel is closely related to martensitic transformation and the interaction of dislocations. Especially, the alternate arrangement of acicular ferrite (soft phase) and ultrafine austenite lamellae (50–200 nm, strong and ductile phase) is the key factor contributing to the excellent combination of strength and ductility. On the other hand, the as-warm-rolled sample also exhibits the excellent combination of strength and ductility, with elongation-to-failure much higher than those annealed at temperatures above 630 °C.« less

  4. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada

    USGS Publications Warehouse

    Taylor, B.E.; O'Neil, J.R.

    1977-01-01

    Garnet-pyroxene skarns were formed 90 m.y. B.P. in the Osgood Mountains at or near contacts of grandiorite with calcareous rocks of the Cambrian Preble Formation. The metasomatic replacement followed contact metamorphic recrystallization of the Preble. The sources, temperature, and variation in H2O/CO2 ratios of the metasomatic fluid are interpreted from 269 analyses of oxygen, carbon, hydrogen, and sulfur isotopes in whole rocks, minerals and inclusion fluids. Skarns formed in three mineralogical stages. Oxygen isotope data indicate that temperatures during the crystallization of garnet, pyroxene and wollastonite (Stage I) were least 550 ?? C, and that the metasomatic fluid had an {Mathematical expression} ??? 0.035 in the massive skarns, and ??? 0.12 in vein skarns up to 3 cm thick. Pore fluids in isotopic equilibrium with garnet in calc-silicate metamorphic rocks, on the other hand, had {Mathematical expression} ??? 0.15. The metasomatic fluids of Stage I were derived primarily from the crystallizing magma. The isotopic composition of magmatic water was ??18O =+9.0, ??D= -30 to -45. Oxygen isotope temperatures of greater than 620 ?? C were determined for the granodiorite. Isotopic and chemical equilibria between mineral surfaces and the metasomatic fluid were approached simultaneously in parts of the skarn several meters or more apart, while isotopic and chemical disequilibria (i.e. zoning) have been preserved between 20 to 40 ??m-thick zones in grandite garnet. More Fe-, or andradite-rich garnet crystallized in more H2O-rich C-O-H fluids ( {Mathematical expression} ??? 0.01) than present with grossularite-rich garnet ( {Mathematical expression}??? 0.035). Stage II was marked by the replacement of garnet and pyroxene by quartz, amphibole, plagioclase, epidote, magnetite, and calcite. Many of the replacement reactions took place over a relatively narrow range in temperature (480-550 ?? C), as indicated by 18O fractionations between quartz and amphibole. Meteoric water comprised 20 to 50% of the metasomatic fluid during Stage II. Calcite was formed along with pyrite, minor pyrrhotite, and chalcopyrite during Stage III, although the crystallization of pyrite and calcite had begun earlier, during Stages I and II, respectively. Carbon and sulfur isotope compositions of calcite and pyrite indicate a magmatic source for most of the C and S in the metasomatic fluids of Stage III. By the end of Stage III, meteoric water constituted as much as 100% of the metasomatic fluid. Minerals from grandiorite and skarn do not show large depletions in 18O because the oxygen isotope composition of the metasomatic fluid was buffered by the calcareous wall rocks and the grandiorite. Meteoric water in the vicinity of the Osgood Mountains during the Late Crectaceous (??18Ocale. ??? -14.0, ??D = - 107) was slightly enriched in 18O and D relative to present-day meteoric water (??18O = 15.9, ??D = - 117) ?? 1977 Springer-Verlag.

  5. A study on the medium range order in molten Fe3Si and FeSi alloys

    NASA Astrophysics Data System (ADS)

    Qin, Jingyu; Gu, Tingkun; Bian, Xiufang

    2004-07-01

    Prepeaks are observed in the x-ray diffraction patterns of molten Fe3Si and FeSi alloys and the mechanism of their microstructures is discussed. The distance in real space corresponding to the prepeak positions resembles that of the Si-Si distances in the D03 type crystal of Fe3Si within a deviation of 2.4%. Furthermore, by the reverse Monte Carlo (RMC) simulation, the prepeak is only found in the partial structure SSiSi(Q) for molten Fe3Si alloy, while in molten FeSi alloy prepeaks are found in both SSiSi(Q) and SFeFe(Q) with similar height. The Gaussian distribution is found in the partial coordination number distribution of Fe atoms around a Si atom in the two alloys. The dominant 7-coordination in molten FeSi alloy suggests that Fe7Si and FeSi7 type clusters are kept in the molten state from FeSi crystal. Si-Si coherent packing should be responsible for the medium range order (MRO) of molten Fe3Si while Fe-Fe and Si-Si coherent packing for that of molten FeSi.

  6. Compatibility of Fe-40Al with various fibers

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Gaydosh, D. J.; Nathal, M. V.; Misra, A. K.

    1990-01-01

    Chemical reaction can occur at the fiber/matrix interface of intermetallic matrix composites, leading to a degradation of mechanical properties. Fe-40Al matrix composites were fabricated using SiC, B, W, Mo-base, and Al2O3 fibers. Composite samples were heat treated up to 1500 K to study the reaction kinetics, and reaction rates were determined from reaction zone thickness measurements. The Al2O3 and W fibers were found to be compatible with the Fe-40Al matrix, while the Mo-based fibers reacted moderately and the B and SiC fibers reacted severely. Experimental results are compared to theoretical thermodynamic predictions.

  7. Optically Stimulated Luminescence Response to Ionizing Radiation of Red Bricks (SiO2, Al2O3, and Fe2O3) Used as Building Materials

    SciTech Connect

    Bogard, James S; Espinosa Garcia, Guillermo

    2007-01-01

    Quartz is the most common mineral in our environment. It is found in granite, hydrothermal veins and volcanic rocks, as well as in sedimentary deposits derived from such solid materials. These sediments are also made into building materials, such as bricks and pottery. Thus the potential use of a dose reconstruction technique based on quartz grains is enormous, whether as a dating tool in archaeology and quaternary geology, or in nuclear accident dosimetry. This work describes the Optically Stimulated Luminescence (OSL) response of red brick to ionizing radiation. The bricks, from the state of Puebla, Mexico, represent another class of materials that can be used in retrospective dosimetry following nuclear or radiological incidents. The chemical composition of fifteen bricks (three samples from five different brick factories) was determined, using energy dispersive spectroscopy (EDS), be primarily SiO{sub 2}, Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} and is believed to be representative for this common building material. Individual aliquots from these bricks were powdered in agate mortars and thermally annealed. Replicate samples of the aliquots were then irradiated with beta particles from a sealed source of {sup 90}Sr/{sup 90}Y. The OSL response was measured with a Daybreak Model 2200 High-Capacity OSL Reader System. We present here for this material the characteristic OSL response to beta particles; the reproducibility of the OSL response; the linearity of the response in the dose range 0.47 Gy to 47 Gy; and the fading characteristics.

  8. Anisotropic layered high-temperature thermoelectric materials based on the two-phase CrSi2-?-FeSi2 system

    NASA Astrophysics Data System (ADS)

    Solomkin, F. Yu.; Zaitsev, V. K.; Novikov, S. V.; Samunin, A. Yu.; Pshenai-Severin, D. A.; Isachenko, G. N.

    2014-08-01

    The feasibility of synthesizing a wide spectrum of multiphase microstructurally ordered high-temperature thermoelectrics with highly anisotropic thermoelectric parameters is demonstrated with an aluminum-doped CrSi2-?-FeSi2 system the composition of which varies from Cr0.1Fe0.9Si2- x Al x to Cr0.9Fe0.1Si2- x Al x ( x = 0.0-0.4). Doping of either phase (CrSi2 and ?-FeSi2) is viewed as a promising way for synthesizing n- and p-type domains inside the same sample.

  9. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like ?/?-AlFeSi white intermetallics, and Chinese script-like ?-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like ?-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like ?-phase does not show any morphological and size changes. Phase transitions from ?-AlFeSi to ?-AlFeSi and from ?-AlFeSi to ?-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  10. Abnormal acoustic wave velocities in basaltic and (Fe,Al)-bearing silicate glasses

    E-print Network

    Lin, Jung-Fu "Afu"

    Abnormal acoustic wave velocities in basaltic and (Fe,Al)-bearing silicate glasses at high of (Fe,Al)-bearing MgSiO3 silicate glasses and an Icelandic basalt glass up to 25GPa. The velocity profiles of the (Fe,Al)-bearing and basaltic silicate glasses display decreased VP and VS with minima

  11. Three-Dimensional Microstructure Visualization of Porosity and Fe-Rich Inclusions in SiC Particle-Reinforced Al Alloy Matrix Composites by X-Ray Synchrotron Tomography

    SciTech Connect

    Silva, Flávio de Andrade; Williams, Jason J.; Müller, Bernd R.; Hentschel, Manfred P.; Portella, Pedro D.; Chawla, Nikhilesh

    2011-11-15

    Microstructural aspects of composites such as reinforcement particle size, shape, and distribution play important roles in deformation behavior. In addition, Fe-rich inclusions and porosity also influence the behavior of these composites, particularly under fatigue loading. Three-dimensional (3-D) visualization of porosity and Fe-rich inclusions in three dimensions is critical to a thorough understanding of fatigue resistance of metal matrix composites (MMCs), because cracks often initiate at these defects. In this article, we have used X-ray synchrotron tomography to visualize and quantify the morphology and size distribution of pores and Fe-rich inclusions in a SiC particle-reinforced 2080 Al alloy composite. The 3-D data sets were also used to predict and understand the influence of defects on the deformation behavior by 3-D finite element modeling.

  12. Thermoelasticity of Al3+- and Fe3+-bearing bridgemanite

    NASA Astrophysics Data System (ADS)

    Valencia-Cardona, Juan; Shukla, Gaurav; Cococcioni, Matteo; Wentzcovitch, Renata

    2015-03-01

    We present quasi-harmonic LDA+U calculations of thermoelastic properties of Fe3+- and Al3+-bearing bridgemanite (MgSiO3), the main Earth forming phase, at relevant P,T conditions and compositions. Three charge-coupled substitutions, namely, Al3+-Al3+, Fe3+-Fe3+, and Fe3+-Al3+ have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental measurements available. The effect of the pressure induced high-spin to low-spin state change in Fe3+ in the B-site has been investigated in great detail since it has potentially dramatic effects on seismic velocities in the Earth's lower mantle. Research supported by NSF/EAR and NSF/CAREER.

  13. Thermoelectric properties of -FeSi2

    SciTech Connect

    Parker, David S; Singh, David J; Pandey, Tribhuwan; Singh, Abhishek

    2013-01-01

    We investigate the thermoelectric properties of -FeSi2 using first principles electronic structure and Boltzmann trans- port calculations. We report a high thermopower for both p- and n-type -FeSi2 over a wide range of carrier concentra- tion and in addition find the performance for n-type to be higher than for the p-type. Our results indicate that, depending upon temperature, a doping level of 3 1020 - 2 1021 cm 3 may optimize the thermoelectric performance.

  14. Synthesis and equation of state of post-perovskites in the (Mg,Fe)[subscript 3]Al[subscript 2]Si[subscript 3]O[subscript 12] system

    SciTech Connect

    Shieh, Sean R.; Dorfman, Susannah M.; Kubo, Atsushi; Prakapenka, Vitali B.; Duffy, Thomas S.

    2012-02-06

    The formation and properties of the post-perovskite (CaIrO{sub 3}-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe){sub 3}Al{sub 2}Si{sub 3}O{sub 12}) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90 mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148 GPa and temperatures higher than 1600 K. In some cases, evidence for a minor amount of Al{sub 2}O{sub 3} post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite + post-perovskite two-phase region. Pressure-volume data for the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO{sub 3} system. The presence of Al{sub 2}O{sub 3} increases the stability of perovskite relative to post-perovskite, requiring higher pressures (> 148 GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al{sub 2}O{sub 3} may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D* region. The observed synthesis pressures (> 148 GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary ({approx} 135 GPa).

  15. Fe stable isotope fractionation in modern and ancient hydrothermal Fe-Si deposits

    NASA Astrophysics Data System (ADS)

    Moeller, K.; Schoenberg, R.; Thorseth, I. H.; Øvreås, L.; Pedersen, R.

    2010-12-01

    Modern iron-silica deposits of small yellow to rust coloured mounds and chimney-like structures were found in a low-temperature venting area distal to a white smoker type hydrothermal vent site at the south-western part of the Mohns Ridge, North Atlantic. Individual stratified mm to cm thick laminated layers within these structures are largely composed of branching, twisted filaments resembling encrusted stalks of Fe-oxidising bacteria. DNA analyses have confirmed the presence of both Fe-oxidising (Mariprofundus ferrooxidans and other ?-Proteobacteria) and Fe-reducing bacteria (Shewanellaceae). Similar morphologic features, such as several mm thick red hematite-rich laminae and micron-scale filamentous structures concentrated in discrete laminae, have also been found in Early Ordovician volcanogenic massive sulphide (VMS) hosted jasper deposits in the Løkken-Høydal area, Norway [1]. These filamentous structures are believed to be formed by Fe-oxidising bacteria similar to Mariprofundus ferrooxidans [2]. Here, we compare the Fe isotope composition of these two different types of Fe-Si deposits with the aim to gain further information about deposition mechanisms and the role of microorganisms in Fe redox cycling of deep-sea hydrothermal systems. Fe isotope compositions of the modern biogenic Fe-Si deposit vary between -2.09 and -0.66 ‰ in ?56Fe values, a range that is comparable to late Archaean to early Proterozoic banded iron formations. The ~490 Ma old Løkken jaspers show a similar variation, but with significantly higher ?56Fe values ranging from -0.39 to +0.89 ‰. The Fe isotopic composition of the Løkken jaspers clearly correlates with morphological features with the lowest ?56Fe values in layered and the highest ones in brecciform jaspers. Our data demonstrate that variations in Fe isotope compositions of the modern Fe-Si deposit cannot be explained by a single process, but rather reflect the full complexity of Fe redox cycling within deep-sea sediments and the deposit itself, including abiogenic partial oxidation of hydrothermal Fe(II)aq through mixing with oxygenated seawater, reduction of Fe(III) precipitates by dissimilatory iron reduction (DIR) and re-oxidation by Fe-oxidising bacteria. The Løkken jaspers were postulated to be a combination of Fe-oxyhydroxide precipitation within buoyant and non-buoyant hydrothermal plumes and Si flocculation in a silica-saturated ocean [1]. Observations from a modern basalt-hosted hydrothermal system indicate that Fe(II)aq in a buoyant plume gets fractionated towards heavier isotopic compositions due to precipitation of low-?56Fe iron sulphides [3]. However, mass balance calculations of plume particles revealed that Fe-oxyhydroxides have ?56Fe values of around -0.2 ‰, thus significantly lighter than the heaviest Løkken signatures of 0.89 ‰. Possible scenarios to explain the Fe isotope compositions of Løkken jaspers and the modern Mohns Ridge Fe-Si deposits will be discussed. [1] Grenne, T. & Slack, J. (2003) Miner Deposita, 38, 625ff. [2] Little, C. et al. (2004) Geomicrobiol J, 21, 415ff. [3] Bennett, S. et al. (2009) Geochim. Cosmochim. Acta., 73, 5619ff.

  16. Growth of ?-FeSi2 Layers on Si(100) Substrates by Exchange Reaction between Si and Molten Salts

    NASA Astrophysics Data System (ADS)

    Yoneyama, Tsuyoshi; Yoshikawa, Takeshi; Morita, Kazuki

    2007-08-01

    The growth of ?-FeSi2 layers on Si(100) substrates by a cation exchange reaction between Si and molten NaCl-KCl-FeCl2 salts, namely, 5Si(s)+2FeCl2(l)=2?-FeSi2(s)+SiCl4(g), has been investigated. A single-crystal Si(100) substrate was reacted with the molten salt at 1173 K for 1-64 h in Ar or He atmosphere. The grown layers were characterized by X-ray diffraction (XRD) measurement, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). When the FeCl2 concentration in molten salt was as low as 0.02 mol %, a ?-FeSi2 single layer was obtained, although the double layer of FeSi/?-FeSi2 formed with a higher FeCl2 concentration of 0.1-1.0 mol %. The ?-FeSi2 single layer grown at low FeCl2 concentration had a rough surface structure due to the decrease in driving force caused by the consumption of FeCl2 during the reaction. By annealing a flat double layer of FeSi/?-FeSi2 formed with a higher FeCl2 concentration where the driving force could be kept constant, a flat ?-FeSi2 single layer was obtained on the Si(100) substrate.

  17. An experimental study of the Fe oxidation states in garnet and clinopyroxene as a function of temperature in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2: implications for garnet-clinopyroxene geothermometry

    NASA Astrophysics Data System (ADS)

    Purwin, Horst; Lauterbach, Stefan; Brey, Gerhard P.; Woodland, Alan B.; Kleebe, Hans-Joachim

    2013-04-01

    Samples with eclogitic composition in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2 were produced from various kinds of starting materials held in graphite-lined Pt capsules at a pressure of 2.5-3.0 GPa and temperatures of 800-1,300 °C using a piston-cylinder or Belt apparatus. Garnets and clinopyroxenes were characterized by analytical transmission electron microscopy and electron probe micro-analysis (EPMA). Fe3+/?Fe ratios determined by electron energy-loss spectroscopy (EELS) decrease in clinopyroxene from 22.2 ± 3.4 % at 800 °C to 13.3 ± 5.4 % at 1,300 °C, while in garnet, they vary between 10.8 ± 1.5 and 15.4 ± 4.7 %, respectively. Temperature estimates according to Krogh (Contrib Mineral Petrol 99:44-48, 1988) reproduce the experimental temperature to ±60 °C without systematic deviations if total iron is used in the calculation. If only the Fe2+ content is used, which was obtained by combining EPMA and EELS results, the experimental temperature is underestimated by 33 °C on average at 800-1,200 °C and overestimated by 77 °C on average at 1,300 °C. These systematic deviations can be explained by the temperature-dependent ratio of Fe2+/?Fe in garnet divided by that in clinopyroxene. Since the difference between the calculated and experimental temperature is relatively small, a Fe2+-based recalibration of the thermometer appears not to be necessary for the investigated system in the range of pressure, temperature and composition covered by the experiments of this study.

  18. Investigation of the temperature-dependence of ferromagnetic resonance and spin waves in Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}

    SciTech Connect

    Loong, Li Ming; Kwon, Jae Hyun; Deorani, Praveen; Yang, Hyunsoo; Tung Yu, Chris Nga; Hirohata, Atsufumi

    2014-06-09

    Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS) is a Heusler compound that is of interest for spintronics applications, due to its high spin polarization and relatively low Gilbert damping constant. In this study, the behavior of ferromagnetic resonance as a function of temperature was investigated in CFAS, yielding a decreasing trend of damping constant as the temperature was increased from 13 to 300?K. Furthermore, we studied spin waves in CFAS using both frequency domain and time domain techniques, obtaining group velocities and attenuation lengths as high as 26?km/s and 23.3??m, respectively, at room temperature.

  19. Microstructural and Fracture Behavior of Phosphorus-Containing Fe-30Mn-9Al-1Si-0.9C-0.5Mo Alloy Steel

    NASA Astrophysics Data System (ADS)

    Howell, Ryan A.; Van Aken, David C.

    2015-08-01

    Five different phosphorus (P)-containing heat-treated Fe-Mn-Al-C alloys were tested in accordance with ASTM E 23 Charpy V-notch Energy (CVNE) standards. Room temperature CVNE of solution treated and quenched specimens revealed ductile fracture for 0.001 and 0.006 wt pct (pct P-containing alloys). Brittle cleavage fracture dominated the 0.043 and 0.07 pct P-containing alloys. A hard brittle P eutectic phase was observed in the 0.07 pct P-containing alloy.

  20. Enhanced ductility in Al-Si-Cu-Mg foundry alloys with high Si content

    NASA Astrophysics Data System (ADS)

    Cáceres, C. H.; Taylor, J. A.

    2006-12-01

    It has recently been suggested that the ?-Al5FeSi and ?-Al2Cu intermetallic particles are refined and dispersed in the presence of high silicon, thereby improving the ductility of Al-Si-Cu-Mg alloys. However, limited metallographic evidence was presented to support these claims. Therefore, a study of the effect of Si content in the range of 4.5 to 9 pct on the morphology and distribution of Fe-rich and Cu-rich intermetallic phases has now been conducted. It is shown that Si, indeed, exerts a refining effect on the iron-containing particles ( ? and ?) and disperses clusters of intermetallics (including the Cu-rich particles). In alloys with low Si content, the Fe- and Cu-rich particles form long and closely intertwined clusters. Microcracks originating from cracked intermetallic particles extend and propagate along the clusters with little plasticity, resulting in the low ductility of the alloys. At a high Si content, the intermetallic phases appear more dispersed and the clusters of particles are small and isolated from each other. Microcracks resulting from the cracked intermetallics are short and are isolated, as well, thereby increasing the ductility of the alloys. The mechanisms by which the refinement and dispersion of intermetallic phases occur are discussed.

  1. Structure alterations in microporous (Mg,Fe){sub 2}Al{sub 4}Si{sub 5}O{sub 18} crystals induced by energetic heavy-ion irradiation

    SciTech Connect

    Miletich, Ronald; Diego Gatta, G.; Redhammer, Guenther J.; Burchard, Michael; Meyer, Hans-Peter; Weikusat, Christian; Rotiroti, Nicola; Glasmacher, Ulrich A.; Trautmann, Christina; Neumann, Reinhard

    2010-10-15

    The microporous framework structure of (Mg{sub 1-x}Fe{sub x}){sub 2}Al{sub 4}Si{sub 5}O{sub 18} (=cordierite) has been subject to a comparative study on the effect of structural alterations originating from exposure to high-energy heavy ions. Oriented samples (with x=0.061, 0.122, and 0.170) were irradiated with swift {sup 124}Xe, {sup 197}Au and {sup 96}Ru ions with 11.1 MeV per nucleon energy and fluences of 1x10{sup 12} and 1x10{sup 13} ions/cm{sup 2}. Irradiated and non-irradiated samples were investigated by means of X-ray diffraction, Moessbauer spectroscopy and optical absorption spectroscopy. Structural investigations reveal an essentially unchanged Al,Si ordering, which appears to be unaffected by irradiation. The most remarkable macroscopic change is the ion-beam induced colouration, which could be assigned to electronic charge transfer transitions involving the Fe cations. Moessbauer spectra indicate an increased amount of {sup [4]}Fe{sup 3+} for the irradiated sample. The most noticeable structural alteration concerns irradiation-induced dehydration of extra-framework H{sub 2}O, which is accompanied by a reduction in the molar volume by {approx}0.2 vol%. - Graphical abstract: Cordierite single-crystal specimen showing the color change from pale blue (unirradiated) to a yellowish brown layer (irradiated) after exposure to relativistic {sup 124}Xe ions at a fluence of 1x10{sup 12} ions per cm{sup 2}.

  2. Release of Si from Silicon, a Ferrosilicon (FeSi) Alloy and a Synthetic Silicate Mineral in Simulated Biological Media

    PubMed Central

    Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger

    2014-01-01

    Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879

  3. Release of Si from silicon, a ferrosilicon (FeSi) alloy and a synthetic silicate mineral in simulated biological media.

    PubMed

    Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger

    2014-01-01

    Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879

  4. Geometry controls the stability of FeSi14.

    PubMed

    Chauhan, Vikas; Abreu, Marissa Baddick; Reber, Arthur C; Khanna, Shiv N

    2015-06-28

    First-principles theoretical studies have been carried out to investigate the stability of Sin cages impregnated with a Fe atom. It is shown that FeSi9, FeSi11, and FeSi14 clusters exhibit enhanced local stability as seen through an increase in Si binding energy, Fe embedding energy, the gap between the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), and the Ionization Potential (IP). The conventional picture for the stability of such species combines an assumption of electron precise bonding with the 18-electron rule; however, we find this to be inadequate to explain the enhanced stability in FeSi11 and FeSi14 because the d-band is filled for all FeSin clusters for n? 9. FeSi14 is shown to be the most stable due to a compact and highly symmetric Si14 cage with octahedral symmetry that allows better mixing between Fe 3d- and Si 3p-electronic states. PMID:26013325

  5. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1979-01-01

    Cold pressing and sintering techniques were used to produce ceramic test specimens in which the major phase was either Si3N4 or a solid solution having the beta Si3N4 structure. Additional components were incorporated to promote liquid phase sintering. Glass and/or crystalline phase were consequently retained in boundaries between Si3N4 grains which largely determined the physical properties of the bodies. Systems investigated most extensively included R-Si-Al-O-N (R = rare earth element) Zr-Si-Al-O-N, Y-Si-Be-O-N, and R1-R2-Si-O-N. Room temperature and 1370 C modulus of ruptured, 1370 C creep, and oxidation behavior are discussed in terms of phase relationships in a parent quinery, and relavent oxide systems.

  6. A First Result of Isothermal Annealing of an Fe-SiO Smoke

    NASA Astrophysics Data System (ADS)

    Karner, J. M.; Rietmeijer, F. J. M.

    1996-03-01

    Laboratory studies of thermally annealed smokes will advance the understanding of silicate dust evolution in O-rich protostellar environments. Previous condensation experiments on (Mg,Fe)-SiO vapors yielded amorphous solids of approximately olivine and pyroxene compositions. Condensation in refractory AlSiO, Fe-Al-SiO, and Fe-SiO vapors similarily produced amorphous solids but with cation proportions fixed at discrete values of existing Al, Fe-silicates. Thermal annealing of an MgSiO smoke at 1000 K for up to 30 hrs. showed increased crystallinity and coarsening of forsterite and tridymite grains prior to the formation of thermodynamically stable enstatite. In a related isothermal annealing study of an Fe-bearing MgSiO smoke, fayalite and ferrosilite formed at 1000 K from thier Mg-counterparts. After 167 hrs., this study documented partial evaporation of the smoke and recondensation of a metallic-Mg vapor. These studies showed that thermal metamorphism of smokes produced metastable high-temperature end members of the appropriate solid solution. This study represents the first data from a thermally annealed FeSiO condensate at 1000 K for 4 hrs. first studied in 1991.

  7. Density measurement of core forming Fe Si liquids at high pressure

    NASA Astrophysics Data System (ADS)

    Ryuji, T.; Ohtani, E.; Terasaki, H. G.; Nishida, K.; Suzuki, A.; Kikegawa, T.

    2009-12-01

    Density of liquid Fe alloys is fundamental physical property in order to understand physical properties and the composition of the Earth’s core. Compositional dependence on the density of liquid Fe-alloy under high pressure is closely related to the composition of the outer core. Silicon is one of the most plausible candidates of the light elements in the core due to its high cosmic abundance and depletion from the mantle compared to the chondritic abundance. In this study, we performed density measurement of Fe-Si liquid at 4 GPa and 1650 C using sink/float method and investigated the effect of Si content on the density of liquid Fe. For sink/float method, we have used a composite density marker which is composed of a Pt disk core and alumina tube mantle. The Si contents of the Fe-Si liquid used for the present experiments varied with an interval of 10 at% from pure Fe to pure Si. The experiments revealed that the addition of Si to liquid Fe decreases its density and this effect of Si content on the density become to be larger in the Si-rich composition. In other words, the density of liquid Fe-Si decreases nonlinearly with increasing Si content. The molar volume of Fe-Si liquid calculated from the measured density gradually decreases with increasing Si content. It is noted that the estimated molar volume is different from the molar volume of the ideal mixing between Fe and Si. This behavior is similar to Fe-S liquid (Nishida et al. 2008). However, the excess molar volume of Fe-Si liquid is smaller than that of Fe-S liquid. While excess molar volume of the liquid with 50 at% of S is -3.7 cm3/mol, that of the liquid with 50 at% of Si is -2.4 cm3/mol. The results of this study indicate that the amount of Si in the core may be larger than that estimated previously.

  8. Four-terminal nonlocal signals in lateral spin transport devices with variously ordered Co2FeAl0.5Si0.5 full-Heusler alloy electrodes

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuya; Tezuka, Nobuki; Matsuura, Masashi; Sugimoto, Satoshi

    2013-09-01

    The structural ordering of the Co2FeAl0.5Si0.5 (CFAS) full-Heusler alloy, the electrical transport properties, and the four-terminal (4T) nonlocal signals were investigated in lateral spin transport devices with CFAS/n-GaAs Schottky tunnel junctions as a function of the deposition temperature of CFAS (TCFAS). The 4T nonlocal signals increased with increasing TCFAS, in contrast to the trend in three-terminal Hanle measurements [Jpn. J. Appl. Phys., Part 1 52, 063001 (2013)]. No relationship between interface resistance and 4T nonlocal signal was confirmed, indicating that conductance mismatch problems did not affect the tendency of signal values.

  9. Preparation and characterization of highly L2{sub 1}-ordered full-Heusler alloy Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} thin films for spintronics device applications

    SciTech Connect

    Wang Wenhong; Sukegawa, Hiroaki; Shan Rong; Furubayashi, Takao; Inomata, Koichiro

    2008-06-02

    We report the investigation of structure and magnetic properties of full-Heusler alloy Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS) thin films grown on MgO-buffered MgO (001) substrates through magnetron sputtering. It was found that single-crystal CFAS thin films with high degree of L2{sub 1} ordering and sufficiently flat surface could be obtained after postdeposition annealing. All the films show a distinct uniaxial magnetic anisotropy with the easy axis of magnetization along the in-plane [110] direction. These results indicate that the use of the MgO buffer for CFAS is a promising approach for achieving a higher tunnel magnetoresistance ratio, and thus for spintronics device applications.

  10. Hillesheimite, (K,Ca,?)2(Mg,Fe,Ca,?)2[(Si,Al)13O23(OH)6](OH) · 8H2O, a new phyllosilicate mineral of the Günterblassite group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Zubkova, N. V.; Pekov, I. V.; Belakovskiy, D. I.; Schüller, W.; Ternes, B.; Blass, G.; Pushcharovsky, D. Yu.

    2013-12-01

    A new mineral, hillesheimite, has been found in the Graulai basaltic quarry, near the town of Hillesheim, the Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. It occurs in the late assemblage comprising nepheline, augite, fluorapatite, magnetite, perovskite, priderite, götzenite, lamprophyllite-group minerals, and åkermanite. Colorless flattened crystals of hillesheimite reaching 0.2 × 1 × 1.5 mm in size and aggregates of the crystals occur in miarolitic cavities in alkali basalt. The mineral is brittle, with Mohs' hard-ness 4. Cleavage is perfect parallel to (010) and distinct on (100) and (001). D calc = 2.174 g/cm3, D meas = 2.16(1) g/cm3. IR spectrum is given. Hillesheimite is biaxial (-), ? = 1.496(2), ? = 1.498(2), ? = 1.499(2), 2 V meas = 80°. The chemical composition (electron microprobe, mean of 4 point analyses, H2O determined from structural data, wt %) is as follows: 0.24 Na2O, 4.15 K2O, 2.14 MgO, 2.90 CaO, 2.20 BaO, 2.41 FeO, 15.54 Al2O3, 52.94 SiO2, 19.14 H2O, total is 101.65. The empirical formula is: K0.96Na0.08Ba0.16Ca0.56Mg0.58Fe{0.37/2+}[Si9.62Al3.32O23(OH)6][(OH)0.82(H2O)0.18] · 8H2O. The crystal structure has been determined from X-ray single-crystal diffraction data, R = 0.1735. Hillesheimite is orthorhombic, space group Pmmn, the unit-cell dimensions are: a = 6.979(11), b = 37.1815(18), c = 6.5296(15) Å; V=1694(3) Å3, Z = 2. The crystal structure is based on the block [(Si,Al)13O25(OH)4] consisting of three single tetrahedral layers linked via common vertices and is topologically identical to the triple layers in günterblassite and umbrianite. The strong reflections [ d Å ( I %)] in the X-ray powder diffraction pattern are: 6.857(58), 6.545(100), 6.284(53), 4.787(96), 4.499(59), 3.065(86), 2.958(62), 2.767(62). The mineral was named after its type locality. Type specimens are deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.

  11. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800/sup 0/C. [NASAUT 4G-Al: Fe-15Mn-15Cr-2Mo-1. 5C-1Nb-1Si

    SciTech Connect

    Titran, R.H.; Scheuermann, C.M.

    1987-08-01

    As part of the DOE/NASA Stirling Engine Systems Project, an iron-base cast alloy was developed, designated NASAUT 4G-Al. Its nominal composition, in percent by weight, is Fe-15Mn-15Cr-2Mo-1.5C-1Nb-1Si. This report presents the results of a study of this alloy, 4G-Al, performed to determine its creep-rupture properties. The alloy was studied in the directionally solidified (DS) form with a 650/sup 0/C/100 h anneal recommended by UTRC to optimize properties and in the investment-cast (IC) form with either a 760/sup 0/C/20 h anneal recommended by UTRC to optimize properties, or a solution anneal of 790/sup 0/C/20 h followed by a simulated brazing cycle of 1065/sup 0/C/15 min + a heat treatment of 760/sup 0/C/16 h + 650/sup 0/C/16 h. Alloy 4G-Al exhibited typical 3-stage creep response under all conditions tested. The most creep resistant condition was the DS material. This condition compares very favorably to the prototype (HS-31) and prime candidate (XF-818) alloys for the automotive Stirling engine cylinder/regenerator housing. 14 refs., 7 figs., 6 tabs.

  12. Fabrication of SiC-Particles-Shielded Al Spheres upon Recycling Al/SiC Composites

    NASA Astrophysics Data System (ADS)

    Madarasz, D.; Budai, I.; Kaptay, G.

    2011-06-01

    Wettability of liquid A359 alloy on SiC particles under molten salt NaCl-KCl-NaF is found at 180 deg, meaning that SiC particles prefer the molten salt phase against the Al phase or the Al/molten salt interface. Thus, this molten salt can be used for recycling, i.e., to separate the phases in the SiC reinforced Al matrix composites. If the separation process is interrupted, Al droplets (submillimeter solidified powder) can be produced, stabilized/surrounded by a monolayer of shielding SiC particles.

  13. Thermodynamic constraints on Fe and Si carbide stabilities in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Golubkova, A.; Schmidt, M. W.; Connolly, J. A.

    2013-12-01

    The ambient Earth mantle is metal saturated at ? 250 km, its redox state is buffered close to iron-wustite (IW). At such oxygen fugacity (fO2), oxidized forms of carbon are not stable; thus, the presence of oxidized carbon, as represented by CO2-rich fluid inclusions in diamonds and volatile-rich deep-seated magmas (e.g. kimberlites), indicates a local increase in fO2. Major forms of C within sublithospheric or deep mantle are diamond/graphite or carbides (mostly cementite, Fe3C and moissanite, SiC). Such carbides are reported from mantle-derived rocks and inclusions in diamonds. Furthermore, SiC and associated metallic Fe and Fe-silicides are found in podiform chromitites in ophiolites [Trumbull et al. 2009, Lithos]. Previous experiments on the redox stability of SiC have demonstrated that moissanite becomes stable at fO2 below IW to at least 9 GPa [Ulmer et al. 1998, Neues Jahrb Min]. Since Fe- and C-speciation is strongly fO2 dependent, we calculated ranges of redox conditions allowing for Fe and Si carbides within typical mantle assemblages. We thus added thermodynamic parameters and solution models for alloys (Fe-Si-C and Fe-Cr), stoichiometric compounds (Fe-silicides) and carbides to a thermodynamic database for silicates and oxides [Holland & Powell 2011, J. metamorphic Geol.]. Calculated T-fO2 diagrams indicate that cementite coexists with ol, opx, and gph/diam at ?logfO2[IW] ? -1 at 2 GPa and ? IW at 10 GPa. With decreasing fO2, Fe2+ in mantle silicates is progressively reduced while the XMg of silicates increases, the latter reaching unity at the conditions for SiC stability. Reduced Fe-bearing species occur in the sequence Fe3C ? ?-FeSiC alloy ? ?-FeSiC alloy ? ?-FeSi. For the dominant ?-alloy, Si content increases with decreasing fO2 to XSi ~ 0.3 (molar), thereafter stoichiometric FeSi becomes stable. SiC appears at ?logfO2[IW] ? -7.5 at 2 GPa and 1300oC and -7.0 at 10 GPa and 1500oC. Chromite solid solution is reduced to ?-Fe-Cr alloy at lower fO2 than IW, but is, nonetheless, stable at conditions that are ~ 4 log units more oxidizing than SiC. Based on these phase relations, the variety of Fe-, Si- and C-bearing phases in mantle-derived inclusions can only be explained by extraordinary mantle heterogeneity in terms of redox conditions. Subducted organic sediments are a possible source for such ultra-reducing environments, a hypothesis that is consistent with the light C isotopic composition of moissanite [Trumbull et al., 2009]. The temperature of interaction between mantle minerals and recycled material must be low (<800-1000oC) to prevent the homogenization of ultra-reduced regions by diffusion. Moissanite is reported in podiform chromitites, but our analysis indicates that chromite and SiC do not stably coexist. Therefore, we attribute natural SiC + chromite assemblages to kinetic inhibition. The involvement of recycled components transported by fluids into the source region of deeply generated magmas has been proposed based on isotopic and trace-element chemistry. Evidently, the interaction between mantle peridotites and subducted material at different P-T-fO2 results in the formation of mantle regions with highly contrasting redox environments. The change of Fe and C redox states in such regions is one of important mechanisms initiating melting or freezing within the mantle [Rohrbach & Schmidt 2011, Nature].

  14. Modulus measurements in ordered Co-Al, Fe-Al, and Ni-Al alloys

    NASA Technical Reports Server (NTRS)

    Harmouche, M. R.; Wolfenden, A.

    1985-01-01

    The composition and/or temperature dependence of the dynamic Young's modulus for the ordered B2 Co-Al, Fe-Al, and Ni-Al aluminides has been investigated using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The modulus has been measured in the composition interval 48.49 to 52.58 at. pct Co, 50.87 to 60.2 at. pct Fe, and 49.22 to 55.95 at. pct Ni for Co-Al, Fe-Al, and Ni-Al, respectively. The measured values for Co-Al are in the temperature interval 300 to 1300 K, while those for the other systems are for ambient temperature only. The data points show that Co-Al is stiffer than Fe-Al, which is stiffer than Ni-Al. The data points for Fe-Al and Ni-Al are slightly higher than those reported in the literature.

  15. Synthesis and equation of state of perovskites in the (Mg, Fe)3Al2Si3O12 system to 177 GPa

    E-print Network

    Duffy, Thomas S.

    a c t Natural and synthetic pyrope­almandine compositions from 38 to 100 mol% almandine (Alm38­ Alm100) were studied by synchrotron X-ray diffraction in the laser-heated diamond anvil cell to 177 GPa. Single lower mantle pressures, with higher Fe-contents requiring higher synthesis pressures. The formation

  16. Magnetron-sputter epitaxy of {beta}-FeSi{sub 2}(220)/Si(111) and {beta}-FeSi{sub 2}(431)/Si(001) thin films at elevated temperatures

    SciTech Connect

    Liu Hongfei; Tan Chengcheh; Chi Dongzhi

    2012-07-15

    {beta}-FeSi{sub 2} thin films have been grown on Si(111) and Si(001) substrates by magnetron-sputter epitaxy at 700 Degree-Sign C. On Si(111), the growth is consistent with the commonly observed orientation of [001]{beta}-FeSi{sub 2}(220)//[1-10]Si(111) having three variants, in-plane rotated 120 Degree-Sign with respect to one another. However, on Si(001), under the same growth conditions, the growth is dominated by [-111]{beta}-FeSi{sub 2}(431)//[110]Si(001) with four variants, which is hitherto unknown for growing {beta}-FeSi{sub 2}. Photoelectron spectra reveal negligible differences in the valance-band and Fe2p core-level between {beta}-FeSi{sub 2} grown on Si(111) and Si(001) but an apparent increased Si-oxidization on the surface of {beta}-FeSi{sub 2}/Si(001). This phenomenon is discussed and attributed to the Si-surface termination effect, which also suggests that the Si/Fe ratio on the surface of {beta}-FeSi{sub 2}(431)/Si(001) is larger than that on the surface of {beta}-FeSi{sub 2}(220)/Si(111).

  17. The molar volume of cubic garnets in the system SiO2-Al2O3-TiO2-Fe2O3-Cr2O3-FeO-MnO-MgO-CaO-Na2O

    NASA Astrophysics Data System (ADS)

    Hamecher, E. A.; Antoshechkina, P. M.; Ghiorso, M. S.; Asimow, P. D.

    2012-12-01

    Garnet is a critical phase that controls major and trace element partitioning at pressures above ~3 GPa during partial melting of the Earth's upper mantle. A molar volume model is calibrated for cubic garnets (space group Ia3d) in the oxide system listed in the title. This model and a recent calibration of spinel molar volume (Hamecher et al., in press, CMP) will be used in calibration of thermodynamic activity-composition models of garnet and pyroxene solid solutions. The activity and molar volume models will be incorporated into the next generation MELTS (Ghiorso & Sack, 1995, CMP) model, xMELTS. A new garnet volume model calibrated with recent in situ high-P, T diffraction data is crucial for accurately modeling key mineralogical transitions in the mantle, e.g., the spinel-garnet transition and the mantle transition zone. Above 5 GPa a majorite component is an essential part of any thermodynamic model of mantle garnets, which to be useful must accurately predict garnet stability with respect to spinel, pyroxene, perovskites, and melt. Our model system contains nine independent end members: Ca3Al2Si3O12, Mg3Al2Si3O12, Fe2+3Al2Si3O12, Mg3Cr2Si3O12, Mg3Fe3+2Si3O12, Mn3Al2Si3O12, Na2(MgSi2)Si3O12, Mg3(TiMg)Si3O12, and cubic majorite component Mg3(MgSi)Si3O12. An inclusive set of end-member components is formed by linear combinations of these explicit end members. Approximately 950 published X-ray diffraction experiments performed on garnets at ambient and in situ high-P, T conditions are used to calibrate end-member equations of state and an excess volume model for this system. Optimal values of the bulk modulus and its pressure derivative are obtained by analyzing published compression and/or ultrasonic data for the end members for which such studies exist; for other end members, density functional theory results are used. For any cubic garnet in this chemical system, the model molar volume is obtained by adding excess volume terms to a linear combination of the nine independent end-member volumes. In the first step of our least squares fitting procedure we calculate volumes of the explicit end members as a function of P and T using the high-T Vinet equation of state. We allow standard state volumes and coefficients of thermal expansion to vary for those independent end members where pure compositional data exist, either for the phase itself or for an appropriate dependent end member. For each dependent end member for which there are data, we calculate the volume of reaction for formation of the phase from the independent end members, ?V. We then fit the binary and mixed composition data, using the singular value analysis method of Lawson & Hanson (1974) to ensure that the calibrated combinations of excess parameters obey the nine ?V constraints from the first step. A key plausibility check on the model results from comparing the predicted T-dependence of the bulk modulus to high-T ultrasonic results that were not used in the calibration. The calculated pressure of the spinel-garnet transition using the new volume models is compared to that obtained with the previous models. The implications our model has for the density of the lithospheric mantle are explored.

  18. Fe-Si-Mn-oxyhydroxide encrustations on basalts at east pacific rise near 13°N: An SEM-EDS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyuan; Zeng, Zhigang; Qi, Haiyan; Chen, Shuai; Yin, Xuebo; Yang, Baoju

    2014-12-01

    Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe-Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn-oxyhydroxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrustations on pillow basalts are 1-2 mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrustations are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+Al) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrothermalism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.

  19. Melting, Processing, and Properties of Disordered Fe-Al and Fe-Al-C Based Alloys

    NASA Astrophysics Data System (ADS)

    Satya Prasad, V. V.; Khaple, Shivkumar; Baligidad, R. G.

    2014-09-01

    This article presents a part of the research work conducted in our laboratory to develop lightweight steels based on Fe-Al alloys containing 7 wt.% and 9 wt.% aluminum for construction of advanced lightweight ground transportation systems, such as automotive vehicles and heavy-haul truck, and for civil engineering construction, such as bridges, tunnels, and buildings. The melting and casting of sound, porosity-free ingots of Fe-Al-based alloys was accomplished by a newly developed cost-effective technique. The technique consists of using a special flux cover and proprietary charging schedule during air induction melting. These alloys were also produced using a vacuum induction melting (VIM) process for comparison purposes. The effect of aluminum (7 wt.% and 9 wt.%) on melting, processing, and properties of disordered solid solution Fe-Al alloys has been studied in detail. Fe-7 wt.% Al alloy could be produced using air induction melting with a flux cover with the properties comparable to the alloy produced through the VIM route. This material could be further processed through hot and cold working to produce sheets and thin foils. The cold-rolled and annealed sheet exhibited excellent room-temperature ductility. The role of carbon in Fe-7 wt.% Al alloys has also been examined. The results indicate that Fe-Al and Fe-Al-C alloys containing about 7 wt.% Al are potential lightweight steels.

  20. Magnetic phase transitions in Y1-xTbxMn6Sn6, La1-xSmxMn2Si2, Lu2(Fe1-xMnx)17, and La(Fe0.88SixAl0.12-x)13 intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mushnikov, N. V.; Kuchin, A. G.; Gerasimov, E. G.; Terentev, P. B.; Gaviko, V. S.; Serikov, V. V.; Kleinerman, N. M.; Vershinin, A. V.

    2015-06-01

    Magnetic properties have been measured for the Y1-xTbxMn6Sn6, La1-xSmxMn2Si2, Lu2(Fe1-xMnx)17, and La(Fe0.88SixAl0.12-x)13 systems which show up transitions from antiferromagnetic to ferromagnetic state upon changing concentration of the constituents or application of magnetic field. We determined the concentrations and temperatures of the magnetic phase transitions and plotted magnetic phase diagrams. Near a critical concentration, the AF-F transition can be realized in low magnetic fields, which makes these compounds attractive for magnetothermal applications. Using the data of the magnetization measurement, we determined the isothermal magnetic entropy change in a wide temperature range. All the studied systems have a layered magnetic structure with the positive intralayer exchange interaction and the interlayer exchange integrals of different signs depending on the composition and temperature. For the compounds La(Fe0.88SixAl0.12-x)13 with the cubic crystal structure, the origin of formation of a layered magnetic structure is discussed based on the data of Mössbauer studies which revealed a difference in the local surrounding of resonant atoms in the compounds with different magnetic orders.

  1. A nuclear magnetic resonance probe of Fe-Al and Al20V2Eu intermetallics 

    E-print Network

    Chi, Ji

    2009-05-15

    by specific heat measurements in Fe2Al5. Both Fe4 Al13 and Fe2Al5 are non-magnetic systems with dilute magnetic defects, while FeAl2 is a concentrated local magnetic moment system. In Al20V2Eu, a crossover was observed in NMR, magnetization and transport...

  2. The crystal structures of Fe-Ni and Fe-Si alloys in Earth's inner core conditions

    NASA Astrophysics Data System (ADS)

    Tateno, S.; Hirose, K.; Ohishi, Y.

    2012-12-01

    Determining the crystal structure of the Earth's inner core is a key piece of information required to decipher the complex seismic structures observed there. Although recent static ultrahigh-pressure and -temperature (P-T) experiments [Tateno et al. 2010] revealed that iron adopts the hexagonal closed-packed structure up to 377 GPa and 5700 K under inner core P-T conditions, the effect of impurity element(s) on the stable crystal structure still remains controversial. We have studied stable form of Fe-10wt.%Ni and Fe-9wt.%Si in the inner core conditions by synchrotron X-ray diffraction measurements in-situ at ultrahigh P-T in a laser-heated diamond-anvil cell at BL10XU, SPring-8. We found that hcp phase of Fe-Ni alloy is stable throughout the experimental conditions to 340 GPa and 4700 K, which is evident from the spotty diffraction ring [Tateno et al., 2012]. Any other phases such as body-centered cubic (bcc) or face-centered cubic (fcc) phases was not observed. Similarly, we found wide stability of hcp-structured Fe-Si alloy. Pressure-volume data of hcp Fe-Si alloy to 305 GPa was collected after laser annealing at 1300-3000 K depending on pressure, which was fitted to Vinet's equation of state. Subsequently, phase relations of Fe-Si alloy was investigated from 320 GPa at 2000 K to 410 GPa at 5900 K. Appearance of diffraction peak from bcc in addition to hcp was observed above 5000 K, indicating decomposition to the mixture of Si rich bcc and Si poor hcp phase. This shows limited solubility of Si in hcp being close to 9wt.% in the inner core conditions. Si content in the inner core has been proposed to be 3-5wt.%, which is much less than maximum solubility in hcp phase [e.g., Alfe, 2002; Badro et al., 2007]. If silicon is major light element in the inner core, Fe-Ni-Si alloy crystalizes to an hcp structure at inner core conditions.

  3. Fe-implanted 6H-SiC: Direct evidence of Fe3Si nanoparticles observed by atom probe tomography and 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Diallo, M. L.; Lechevallier, L.; Fnidiki, A.; Lardé, R.; Debelle, A.; Thomé, L.; Viret, M.; Marteau, M.; Eyidi, D.; Declémy, A.; Cuvilly, F.; Blum, I.

    2015-05-01

    In order to understand ferromagnetic ordering in SiC-based diluted magnetic semiconductors, Fe-implanted 6H-SiC subsequently annealed was studied by Atom Probe Tomography, 57Fe Mössbauer spectroscopy and SQUID magnetometry. Thanks to its 3D imaging capabilities at the atomic scale, Atom Probe Tomography appears as the most suitable technique to investigate the Fe distribution in the 6H-SiC host semiconductor and to evidence secondary phases. This study definitely evidences the formation of Fe3Si nano-sized clusters after annealing. These clusters are unambiguously responsible for the main part of the magnetic properties observed in the annealed samples.

  4. Constitution of the Moon: 1. Assessment of thermodynamic properties and reliability of phase relation calculations in the FeO-MgO-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Fabrichnaya, O. B.; Kuskov, O. L.

    1994-06-01

    The thermodynamic functions of minerals in the FeO-MgO-Al2O3-SiO2 (FMAS) system have been assessed using phase equilibria, equations of state and calorimetric data. Phase equilibria in this system have been calculated using ideal, symmetric and asymmetric models of solid solution for minerals to obtain KD of exchange reactions consistent with experimental data. A symmetric model for olivine (Wol = 10 800 J mol-1), spinel (Wsp = 1300 J mol-1) and pyroxene (WFeAlopx = WAlFeopx = -3383 - 2.35T - 0.4723P) and an asymmetric model for garnet (WFeMggr = 230 + 0.01P, WMgFegr = 3720 + 0.06P) were recommended, as these mixing parameters provide a better agreement for the calculated phase equilibria with the totality of experimental data. The THERMOSEISM database which includes experimental and assessed data on thermodynamic and thermoelastic properties (bulk modulus and its pressure derivative, thermal expansion, heat capacity, volume, Debye temperature, enthalpy of formation, entropy and mixing parameters of solid solutions), has been obtained for calculation of mineral assemblages at high pressure and temperature and for the further application to the modelling of the mineral composition of the lunar mantle.

  5. Thermodynamic aspects of steel reoxidation behavior by the ladle slag system of CaO-MgO-SiO{sub 2}-Al{sub 2}O{sub 3}-Fe{sub t}O-MnO-P{sub 2}O{sub 5}

    SciTech Connect

    Kim, S.H.; Song, B.

    1999-06-01

    The reoxidation behavior of steels by slag in the secondary steelmaking process was addressed by investigating the thermodynamic equilibria between the liquid iron containing Mn and P and CaO-MgO-SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-MnO-Fe{sub t}O ladle slag at 1873 K. The activity coefficient of Fe{sub t}O shows a maximum value in the vicinity of the basicity ((X{sub CaO} + X{sub MgO} + X{sub MnO})/(X{sub SiO{sub 2}} + X{sub Al{sub 2}O{sub 3}} + XP{sub 2}O{sub 5})) = 2.5 at the specific mole fraction range of Fe{sub t}O, while that of MnO seems to increase gradually with increasing the basicity. However, the values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} showed minima with respect to P{sub 2}O{sub 5} content of slag. In addition, the values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} increased as (pct CaO)/(pct Al{sub 2}O{sub 3}) ratio increased at given SiO{sub 2}, MgO, and P{sub 2}O{sub 5} contents. The conversion equations between the Fe{sub t}O and MnO activities and their calculated activities via regular solution model were derived by the correlation between the measured and calculated activities over the limited ranges of Fe{sub t}O and MnO contents. The regular solution model was used to estimate the oxygen potential in the slag. For MgO saturated slags, a{sub Fe{sub t}O{sub (l)}} = 0.864a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 6.38a{sub MnO{sub (R.S.)}}. For Al{sub 2}O{sub 3} saturated slags, a{sub Fe{sub t}O{sub (l)}} = 2.086a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 14.39a{sub MnO{sub (R.S.)}}.

  6. Optical properties of isostructural ?-FeSi 2,OsSi 2,Fe 0.5Os 0.5Si 2 and Os 0.5Fe 0.5Si 2

    NASA Astrophysics Data System (ADS)

    Migas, D. B.; Henrion, W.; Rebien, M.; Shaposhnikov, V. L.; Borisenko, V. E.; Miglio, Leo

    2001-06-01

    We have performed a comparative study of optical properties of isostructural ?-FeSi 2,OsSi 2, and two ternary configurations of (FeOs)Si 2 by first-principle calculations of band structure and the imaginary part of the dielectric function. The latter for ?-FeSi 2 and OsSi 2 were compared to those deduced from ellipsometric measurements, indicating an excellent agreement. From theoretical calculations both binaries are found to be indirect gap semiconductors, whereas one ternary is characterised by a direct transition with high oscillator strength.

  7. Magnetic ordering in Ho2Fe2Si2C

    NASA Astrophysics Data System (ADS)

    Susilo, R. A.; Cadogan, J. M.; Cobas, R.; Hutchison, W. D.; Avdeev, M.; Campbell, S. J.

    2015-05-01

    We have used neutron diffraction and 57Fe Mössbauer spectroscopy, complemented by magnetisation and specific heat measurements, to examine the magnetic ordering of Ho2Fe2Si2C. We have established that Ho2Fe2Si2C orders antiferromagnetically below TN = 16(1) K with a magnetic structure involving ordering of the Ho sublattice along the b-axis with a propagation vector k =[0 0 1/2 ] . 57Fe Mössbauer spectra collected below TN show no evidence of a magnetic splitting, demonstrating the absence of long range magnetic ordering of the Fe sublattice. A small line broadening is observed in the 57Fe spectra below TN, which is due to a transferred hyperfine field—estimated to be around 0.3 T at 10 K—from the Ho sublattice.

  8. Petrologic mapping of the Moon using Fe, Mg, and Al abundances A.A. Berezhnoy a,*, N. Hasebe a

    E-print Network

    Berezhnoi, Aleksei A.

    .elsevier.com/locate/asr Advances in Space Research xxx (2006) xxx­xxx ARTICLE IN PRESS #12;as Fe and Th content and Al/Si, MgPetrologic mapping of the Moon using Fe, Mg, and Al abundances A.A. Berezhnoy a,*, N. Hasebe a , M samples is performed. Lunar Prospector shows higher Mg and Al content and lower Si content in western

  9. Fabrication and Current-Voltage Characteristics of Fe3Si/CaF2/Fe3Si Magnetic Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Harianto, Teddy; Sadakuni, Kenji; Akinaga, Hiro; Suemasu, Takashi

    2008-08-01

    The possibility of selective wet chemical etching and the current-voltage characteristics (I-V) of Fe3Si (9 nm)/CaF2 (2 nm)/Fe3Si (13 nm) magnetic-tunnel-junctions structures have been investigated. It was found that the Fe3Si and CaF2 layers were selectively etched using a mixture of hydrofluoric and nitric acids (HF:HNO3:H2O = 1:2:400) and a sulfuric solution (H2SO4:H2O = 1:20), respectively. The etch rates were 120 and 45 nm/min at 0 °C for Fe3Si and CaF2, respectively. The I-V characteristics measured at room temperature were well fitted to Simmons' equation within the bias voltages of ±0.3 V using the barrier height ?= 2.5 eV and barrier thickness d = 2.0 nm.

  10. The mechanical properties of FeAl

    SciTech Connect

    Baker, I.; George, E.P.

    1999-07-01

    In the last few years, considerable progress has been made in obtaining reproducible mechanical properties data for binary FeAl alloys. Two sets of observations are the foundation of this progress. The first is that the large equilibrium vacancy concentrations that exist in FeAl at high temperature are easily retained during cooling, and that these strongly affect the low-temperature mechanical properties. The second is that room-temperature ductility is adversely affected by water vapor. The purpose of this paper is to highlight their understanding of key phenomena and to show how an understanding of the factors which control the yield strength and fracture behavior has followed from the discovery of the above two effects. 94 refs., 8 figs.

  11. High Pressure Melting, Phase Diagrams, and Equations of State in the Fe-FeSi System with Application to Earth's Core

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Campbell, A. J.; Reaman, D. M.; Heinz, D. L.; Dera, P. K.; Prakapenka, V.

    2012-12-01

    The Earth's core is comprised mostly of iron, with some nickel and several weight percent of one or more light elements. The light element(s) dictate phase relations, structure, and dynamic behaviour, so it is crucial to evaluate various candidates at conditions of planetary interiors. We present results on high P-T phase diagrams and equations of state in the Fe-FeSi system with application to the structure and composition of Earth's core. X-ray diffraction measurements were performed on stoichiometric FeSi and on Fe-Si alloys containing 9 and 16 wt% silicon in a laser-heated diamond anvil cell at the APS, NSLS, and ALS. Pressures were determined from the lattice parameter of KBr. We have investigated the phase diagram of Fe-9Si to 100 GPa and over 3000 K. Our melting curve agrees with previous results on similar alloys [1,2], as demonstrated using multiple methods of detecting melting. Our subsolidus results are similar to those of Lin et al. [3], though we find the B2 structure instead of bcc, and a shallower slope for the hcp+B2 to fcc+B2 boundary. We studied phase relations of Fe-16Si to over 135 GPa, finding agreement with previous melting curves [2,4]. Below 45 GPa, this alloy has the D0_3 structure. At high pressures, Fe-16Si breaks down into a mixture of B2 and hcp phases, with this mixture stable to pressures of the Earth's outer core. This is the first study on the B2 phase of FeSi with in situ X-ray diffraction at high pressures and temperatures. We report a wide B2+B20 two-phase field in FeSi, with complete conversion to the B2 structure by ~42 GPa. A melting experiment on FeSi agrees with the results of Lord et al. [5]. We have synthesized our results with previous studies to construct T-X and P-X phase diagrams, and we have determined thermal equations of state of each alloy. Our measured densities can be used to constrain the maximum amount of silicon in the Earth's outer core by comparison to the equation of state of hcp-Fe [6] and the seismologically-determined density. Assuming a core-mantle boundary (CMB) temperature of 4000 +/- 500 K and a 1-2% density decrease upon melting, the amount of silicon in the outer core required to match PREM at the CMB is 11.3 +/- 1.5 weight percent, under the simplifying assumption of a purely Fe-Ni-Si outer core. The minimum temperature of an Fe-Si outer core is 4380 K, based on the eutectic melting point of Fe-FeSi alloys, and silicon is shown not to significantly depress the melting point of iron at core conditions. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe-FeSi system. We predict that alloys containing more than ~4-8 wt% Si will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron-silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases. [1] Kuwayama and Hirose (2004) Am Mineral 89, 273-276 [2] Morard et al. (2011) PCM 38, 767-776 [3] Lin et al (2002) Science 295, 313-315 [4] Asanuma et al. (2010) PCM 37, 353-359 [5] Lord et al. (2010) JGR 115, B06208 [6] Dewaele et al. (2006) PRL 97, 215504

  12. Characterization of Dendritic Microstructure, Intermetallic Phases, and Hardness of Directionally Solidified Al-Mg and Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Brito, Crystopher; Costa, Thiago A.; Vida, Talita A.; Bertelli, Felipe; Cheung, Noé; Spinelli, José Eduardo; Garcia, Amauri

    2015-08-01

    Despite the widespread application of Al-Mg-Si alloys, especially in the automotive industry, interrelations of solidification thermal parameters (cooling rate and growth rate), microstructure, and hardness are not properly established. For instance, the control of the scale of the microstructure on both Al-Mg and Al-Mg-Si alloys by adequate pre-programming of the solidification thermal parameters remains a task to be accomplished. In the present study, the directional solidification (DS) of these alloys under unsteady-state solidification conditions is investigated in an attempt to characterize the evolution of microstructural features, macrosegregation, and hardness as a function of local solidification thermal parameters along the DS castings length. Silicon addition to the Al-Mg alloy was found not to affect the sizes of primary and secondary dendrite arm spacings, but induced the onset of tertiary dendritic branches and affected also the size and distribution of intermetallic particles within the interdendritic regions. The Al-Mg-Si alloy is characterized by a more complex arrangement of phases, including binary ( ?-Al + Mg2Si) and refined ternary ( ?-Al + Mg2Si + AlFe(Si) eutectic mixtures. As a consequence, a higher Vickers hardness profile is shown to be associated with the ternary Al-Mg-Si alloy DS casting. For both alloys examined, hardness is shown to increase with the increase in the microstructural spacing according to Hall-Petch type equations.

  13. Tunneling magnetoresistance in Fe{sub 3}Si/MgO/Fe{sub 3}Si(001) magnetic tunnel junctions

    SciTech Connect

    Tao, L. L.; Liang, S. H.; Liu, D. P.; Wei, H. X.; Han, X. F.; Wang, Jian

    2014-04-28

    We present a theoretical study of the tunneling magnetoresistance (TMR) and spin-polarized transport in Fe{sub 3}Si/MgO/Fe{sub 3}Si(001) magnetic tunnel junction (MTJ). It is found that the spin-polarized conductance and bias-dependent TMR ratios are rather sensitive to the structure of Fe{sub 3}Si electrode. From the symmetry analysis of the band structures, we found that there is no spin-polarized ?{sub 1} symmetry bands crossing the Fermi level for the cubic Fe{sub 3}Si. In contrast, the tetragonal Fe{sub 3}Si driven by in-plane strain reveals half-metal nature in terms of ?{sub 1} state. The giant TMR ratios are predicted for both MTJs with cubic and tetragonal Fe{sub 3}Si electrodes under zero bias. However, the giant TMR ratio resulting from interface resonant transmission for the former decreases rapidly with the bias. For the latter, the giant TMR ratio can maintain up to larger bias due to coherent transmission through the majority-spin ?{sub 1} channel.

  14. Atomic data from the iron project. 3: Rate coefficients for electron impact excitation of boron-like ions: Ne VI, Mg VIII, Al IX, Si X, S XII, Ar XIV, Ca XVI and Fe XXII

    NASA Technical Reports Server (NTRS)

    Zhang, Hong Lin; Graziani, Mark; Pradhan, Anil K.

    1994-01-01

    Collison strengths and maxwellian averaged rate coefficients have been calculated for the 105 transitions among all 15 fine structure levels of the 8 LS terms 2s(sup 2) 2 P(P-2(sup 0 sub 1/, 3/2)), 2s2p(sup 2)(P-4(sub 1/2,3/2,5/2), D-2(sub 3/2, 5/2), S-2(sub 1/2), P-2(sub 1/2, 3/2)), 2p(sup 3)(S-4(sup 0)(sub 3/2), D-2(sup 0 sub 3/2, 5/2), P-2(sup 0 sub 1/2, 3/2)) in highly- charged B-like Ne, Mg, Al, Si, S, Ar, Ca and Fe. Rate coefficients have been tabulated at a wide range of temperatures, depending on the ion charge and abundance in plasma sources. Earlier work for O IV has also been extended to include the high temperature range. A brief discussion of the calculations, sample results, and comparison with earlier works is also given. While much of the new data should be applicable to UV spectral diagnostics, the new rates for the important ground state fine structure transition P-2(sup 0 sub 1/2)-P-2(sup 0 sub 3/2) should result in significant revision of the IR cooling rates in plasmas where B-like ions are prominent constituents, since the new rate coefficients are generally higher by several factors compared with the older data.

  15. Experimental investigations of Si-isotope fractionation associated with Fe-Si co-precipitates in simulated Precambrian seawater

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Beard, B. L.; Reddy, T. R.; Johnson, C.

    2014-12-01

    The Si cycle was dramatically different in the Precambrian ocean due to the absence of marine Si-secreting organisms. Precambrian Si isotopic compositions were largely controlled by chemical precipitation of Si, input of Si with different isotopic compositions (e.g., continental versus hydrothermal sources) and later alteration and diagenetic processes associated with silicification. In Precambrian banded iron formations (BIFs) and chert deposits there is an over 4‰ spread of Si isotopes (?30Si), which stands in marked contrast to the narrow range (<0.5) measured in igneous rocks, highlighting the potential of using Si isotopes to reconstruct those processes that controlled the Precambrian marine Si cycle. However, unequivocal interpretations of Si isotope compositions measured in Precambrian Fe-Si rich sediments is hampered by a lack of understanding of Si-isotope fractionation factors associated with formation of these sediments and subsequent diagenetic processes. This study experimentally investigates Si isotope fractionation during the formation of Fe-Si co-precipitates, and between aqueous Si and Fe-Si co-precipitates. All experiments are conducted in an artificially prepared medium that mimics Archean seawater (e.g. Si: ~60 ppm), rather than in a simple Fe-Si solution, because previous studies have revealed distinct Fe isotope fractionation behaviors in artificial Archean seawater (AAS) compared to simple solutions. One set of experiments investigated oxidation of Fe2+ in the AAS at room temperature, which produced amorphous Fe-Si precipitates. Preliminary results show that ?30Si values of Fe-Si co-precipitates are ~2‰ lower than the initial AAS (?30Siprecip-AAS = -2.13 ± 0.18‰ (2?)). A second set of experiments trace Si-isotope exchange between aqueous Si (AAS) and Fe-Si co-precipitates in an anaerobic chamber, using a 29Si spike (i.e. three-isotope method). The results of these experiments will form a basis for reliable interpretations of Si isotopes recorded in Precambrian sediments.

  16. Elasticity of AlFeO3 and FeAlO3 perovskite and post-perovskite from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Caracas, R.

    2010-10-01

    We use state-of-the-art ab initio calculations based on the generalized gradient approximation of the density functional theory in the planar augmented wavefunction formalism to determine the elastic constants tensor of perovskite and post-perovskite with formulas AlFeO3 and FeAlO3 in which Fe or Al respectively occupy only octahedral sites, for the stable magnetic configurations. The phase transition between perovskite and post-perovskite is associated with a site exchange, during which Fe from the inter-octahedral site in perovskite moves into the octahedral site in post-perovskite. Following this transition path the elastic moduli show positive jumps, considerably larger than for MgSiO3. The phase transition is marked by a positive jump of 0.04 km/s (0.33%) in the velocity of the compressional waves and by a negative jump of -0.15 km/s (-1.87%) in shear wave velocity. We find that the effects of the Mg + Si <=> Al + Fe substitution on the seismic properties of MgSiO3 perovskite and post-perovskite depend on the crystallography of the substitution, namely the position the exchanged cations take in the structure.

  17. Localized Corrosion Behavior of Al-Si-Mg Alloys Used for Fabrication of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Pech-Canul, M. A.; Giridharagopal, R.; Pech-Canul, M. I.; Coral-Escobar, E. E.

    2013-12-01

    The relationship between microstructure and localized corrosion behavior in neutral aerated chloride solutions was investigated with SEM/EDAX, conventional electrochemical techniques, and with scanning Kelvin probe force microscopy (SKPFM) for two custom-made alloys with Si/Mg molar ratios of 0.12 and 0.49. In this order, Al3Fe, Al3Mg2, and Mg2Si intermetallics were identified in the first alloy and Al(FeMn)Si and Mg2Si particles in the second one. Anodic polarization curves and corrosion morphology showed that the alloy with higher Si/Mg molar ratio exhibited a better corrosion performance and evidence was shown that it had a more corrosion-resistant passive film. The corrosion process for both alloys in aerated 0.1 M NaCl solutions was localized around the Fe-rich intermetallics. They acted as local cathodes and produced dissolution of the aluminum matrix surrounding such particles. Mg2Si and Al3Mg2 exhibited anodic behavior. SKPFM was successfully used to map the Volta potential distribution of main intermetallics. The localized corrosion behavior was correlated with a large Volta potential difference between the Fe-rich intermetallics and the matrix. After immersion in the chloride solution, such Volta potential difference decreased.

  18. Sound velocities of Fe and Fe-Si alloy in the Earth's core.

    PubMed

    Mao, Zhu; Lin, Jung-Fu; Liu, Jin; Alatas, Ahmet; Gao, Lili; Zhao, Jiyong; Mao, Ho-Kwang

    2012-06-26

    Compressional wave velocity-density (V(P)--?) relations of candidate Fe alloys at relevant pressure-temperature conditions of the Earth's core are critically needed to evaluate the composition, seismic signatures, and geodynamics of the planet's remotest region. Specifically, comparison between seismic V(P)--? profiles of the core and candidate Fe alloys provides first-order information on the amount and type of potential light elements--including H, C, O, Si, and/or S-needed to compensate the density deficit of the core. To address this issue, here we have surveyed and analyzed the literature results in conjunction with newly measured V(P)--? results of hexagonal closest-packed (hcp) Fe and hcp-Fe(0.85)Si(0.15) alloy using in situ high-energy resolution inelastic X-ray scattering and X-ray diffraction. The nature of the Fe-Si alloy where Si is readily soluble in Fe represents an ideal solid-solution case to better understand the light-element alloying effects. Our results show that high temperature significantly decreases the V(P) of hcp-Fe at high pressures, and the Fe-Si alloy exhibits similar high-pressure V(P)--? behavior to hcp-Fe via a constant density offset. These V(P)--? data at a given temperature can be better described by an empirical power-law function with a concave behavior at higher densities than with a linear approximation. Our new datasets, together with literature results, allow us to build new V(P)--? models of Fe alloys in order to determine the chemical composition of the core. Our models show that the V(P)--? profile of Fe with 8 wt % Si at 6,000 K matches well with the Preliminary Reference Earth Model of the inner core. PMID:22689958

  19. Sound velocities of Fe and Fe-Si alloy in the Earth’s core

    PubMed Central

    Mao, Zhu; Lin, Jung-Fu; Liu, Jin; Alatas, Ahmet; Gao, Lili; Zhao, Jiyong; Mao, Ho-Kwang

    2012-01-01

    Compressional wave velocity-density (VP - ?) relations of candidate Fe alloys at relevant pressure-temperature conditions of the Earth’s core are critically needed to evaluate the composition, seismic signatures, and geodynamics of the planet’s remotest region. Specifically, comparison between seismic VP - ? profiles of the core and candidate Fe alloys provides first-order information on the amount and type of potential light elements—including H, C, O, Si, and/or S—needed to compensate the density deficit of the core. To address this issue, here we have surveyed and analyzed the literature results in conjunction with newly measured VP - ? results of hexagonal closest-packed (hcp) Fe and hcp-Fe0.85Si0.15 alloy using in situ high-energy resolution inelastic X-ray scattering and X-ray diffraction. The nature of the Fe-Si alloy where Si is readily soluble in Fe represents an ideal solid-solution case to better understand the light-element alloying effects. Our results show that high temperature significantly decreases the VP of hcp-Fe at high pressures, and the Fe-Si alloy exhibits similar high-pressure VP - ? behavior to hcp-Fe via a constant density offset. These VP - ? data at a given temperature can be better described by an empirical power-law function with a concave behavior at higher densities than with a linear approximation. Our new datasets, together with literature results, allow us to build new VP - ? models of Fe alloys in order to determine the chemical composition of the core. Our models show that the VP - ? profile of Fe with 8 wt?% Si at 6,000 K matches well with the Preliminary Reference Earth Model of the inner core. PMID:22689958

  20. Effects of temperature and pressure on phonons in FeSi1–xAlx

    DOE PAGESBeta

    Delaire, O.; Al-Qasir, I. I.; Ma, J.; dos Santos, A. M.; Sales, B. C.; Mauger, L.; Stone, M. B.; Abernathy, D. L.; Xiao, Y.; Somayazulu, M.

    2013-05-31

    The effects of temperature and pressure on phonons in B20 compounds FeSi1–xAlx were measured using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering. The effect of hole doping through Al substitution is compared to results of alloying with Co (electron doping) in Fe??xCoxSi. While the temperature dependence of phonons in FeSi is highly anomalous, doping with either type of carriers leads to a recovery of the normal quasiharmonic behavior. Density functional theory (DFT) computations of the electronic band structure and phonons were performed. The anomaly in the temperature dependence of the phonons in undoped FeSi was related to the narrowmore »band gap, and its sensitivity to the effect of thermal disordering by phonons. On the other hand, the pressure dependence of phonons at room temperature in undoped FeSi follows the quasiharmonic behavior and is well reproduced by the DFT calculations.« less

  1. Realization of small intrinsic hysteresis with large magnetic entropy change in La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} by controlling itinerant-electron characteristics

    SciTech Connect

    Fujita, A.; Matsunami, D.; Yako, H.

    2014-03-24

    Tuning of phase-transition characteristics in La(Fe{sub x}Si{sub 1?x}){sub 13} was conducted in view of the correlation between microscopic itinerant electron natures and macroscopic thermodynamic (magnetocaloric) quantities. To realize a small hysteresis loss Q{sub H} accompanied by a large magnetic entropy change ?S{sub M} in La(Fe{sub x}Si{sub 1?x}){sub 13}, two types of modulation based on itinerant electron characteristics, namely, the Fermi-level shift and the magnetovolume effect were combined by complex partial substitution of Al and Pr. Ab-initio calculations predict the reduction of a transition hysteresis owing to the Fermi-level shift after partial substitution of Al. On the other hand, the chemical pressure arisen from partial substitution of Pr enhances ?S{sub M} through magnetovolume effect. The selective enhancement of ?S{sub M} apart from Q{sub H} by the magnetovolume effect is well explained by the phenomenological Landau model. Consequently, ?S{sub M} of La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} is ?18?J/kg K under a magnetic field change of 0–1.2?T, while the maximum value of Q{sub H} becomes 1/6 of that for La(Fe{sub 0.88}Si{sub 0.12}){sub 13}.

  2. Moessbauer study in thin films of FeSi2 and FeSe systems

    NASA Technical Reports Server (NTRS)

    Escue, W. J.; Aggarwal, K.; Mendiratta, R. G.

    1978-01-01

    Thin films of FeSi2 and FeSe were studied using Moessbauer spectroscopy information regarding dangling bond configuration and nature of crystal structure in thin films was derived. A significant influence of crystalline aluminum substrate on film structure was observed.

  3. Thermal annealing and magnetic anisotropy of NiFe thin films on n+-Si for spintronic device applications

    NASA Astrophysics Data System (ADS)

    Lu, Q. H.; Huang, R.; Wang, L. S.; Wu, Z. G.; Li, C.; Luo, Q.; Zuo, S. Y.; Li, J.; Peng, D. L.; Han, G. L.; Yan, P. X.

    2015-11-01

    To ensure that the magnetic metal electrodes can meet the requirements of the spin injection, NiFe films prepared both on HfO2 dielectric layer and n+-Si directly by sputtering deposition, and treated by conventional furnace annealing and/or high vacuum magnetic field annealing were investigated. It was found that thermal annealing at 250 °C improved the crystalline quality and reduced surface roughness of the NiFe films, thus enhancing its saturation magnetization intensity. The 100 nm thick NiFe films had too large coercive force and saturation magnetization intensity in vertical direction to meet the requirements of Hanle curve detection. While, 30 nm thick NiFe films showed paramagnetic hysteresis loops in vertical direction, and the magnetization intensity of the sample after annealing at 250 °C for 30 min was less than 2% to the parallel when the external magnetic field was given between ±10 Oe. This was preferred to Hanle curve detection. The thin HfO2 dielectric layer between metal and Si partially suppressed the diffusion of Ni in NiFe into Si substrate and formation of NiSi, greatly enhancing the saturation magnetization intensity of the Al/NiFe/HfO2/Si sample by thermal annealing. Those results suggest that Al/NiFe/HfO2/Si structure, from the point view of magnetic electrodes, would be suitable for spin injection and detection applications.

  4. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1977-01-01

    Cold pressing and sintering techniques were used to produce ceramic bodies in which the major phase was beta prime Si3-Al-O-N4 solid solution. A variety of foreign oxides were used to promote liquid phase sintering, and this resulted in the incorporation of additional solid phases in the ceramic bodies which controlled elevated temperature properties. None of the bodies studied to date exhibited both adequate high temperature mechanical properties and oxidation resistance. Criteria are suggested to guide the formulation of bodies with improved high temperature properties.

  5. Phase Diagram and Electrostatic Levitation Undercooling Studies of Polytetrahedral Phases in Ti-Fe-Si-O and Ti-Zr-Ni Alloys

    E-print Network

    Floss, Christine

    approximants, and Laves phases. The required oxygen concentration in Ti-(Cr,Mn,Fe)- Si alloys is high, betweenPhase Diagram and Electrostatic Levitation Undercooling Studies of Polytetrahedral Phases in Ti, Huntsville, AL. ABSTRACT New information on the phase diagrams of Ti-Fe-Si-O and Ti-Zr-Ni alloys near

  6. Characterization of ?-FeSi II films as a novel solar cell semiconductor

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    ?-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (?>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality ?-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of ?-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain ?-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into ?-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial ?-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into ?-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-?-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  7. Photonic crystals composed of ?-FeSi2 with amorphous Si cladding layers

    NASA Astrophysics Data System (ADS)

    Tokushige, Hiroki; Endo, Takashi; Hiidome, Keita; Saiki, Kenta; Kitamura, Shigehiro; Katsuyama, Toshio; Ikeda, Naoki; Sugimoto, Yoshimasa; Maeda, Yoshihito

    2015-07-01

    Photonic crystals (PhCs) composed of ?-FeSi2 with amorphous Si (a-Si) cladding layers are systematically studied to realize silicon photonics devices incorporating Si-based light-emitting layers. The bandgap characteristics of two types of triangular-lattice-type PhC in the telecommunication wavelength region of approximately 1.55 µm are calculated. They are composed of a-Si circular holes surrounded by ?-FeSi2 (hole type) and ?-FeSi2 circular columns surrounded by a-Si (column type). As a result, the bandgap for the hole-type PhC is obtained for TE polarization, while that for the column-type PhC is obtained for TM polarization. Furthermore, the PhC lattice constant range giving a bandgap for the column-type PhC is much wider than that for the hole-type PhC. The column-type PhC can be easily fabricated compared with the hole-type PhC. Thus, the column-type PhC is useful for actual applications from the viewpoint of fabrication and the bandgap characteristics themselves.

  8. Magnetic moments induce strong phonon renormalization in FeSi

    PubMed Central

    Krannich, S.; Sidis, Y.; Lamago, D.; Heid, R.; Mignot, J.-M.; Löhneysen, H. v.; Ivanov, A.; Steffens, P.; Keller, T.; Wang, L.; Goering, E.; Weber, F.

    2015-01-01

    The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron–phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron–phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe–Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin–phonon coupling and multiple interaction paths. PMID:26611619

  9. Magnetic moments induce strong phonon renormalization in FeSi.

    PubMed

    Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H V; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F

    2015-01-01

    The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths. PMID:26611619

  10. Formation of ?-FeSi 2 thin films by partially ionized vapor deposition

    NASA Astrophysics Data System (ADS)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of ?-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of ?-FeSi 2 films deposited on Si substrates. It was confirmed that ?-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of ?-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  11. (Fe, Al)-bearing post-perovskite in the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Bian, H.; Mao, Z.; Lin, J. F.; Yang, J.; Liu, J.; Watson, H. C.; Chen, J.; Prakapenka, V.; Xiao, Y.; Chow, P.

    2014-12-01

    In the past two decades, a number of seismic velocity anomalies have been identified in the bottom 200-300 km of the lower mantle above the core-mantle boundary (CMB). Deciphering the observed seismic anomalies in the region has attracted extensive research interests. Of particular importance is the discovery of Mg-silicate perovskite (Pv) to post-perovskite (PPv) phase transition, which has shed light on understanding the abnormal behavior above the CMB. In this study, we have investigated the combined effect of Fe and Al on the electronic spin and valence states as well as the equation of state of PPv using synchrotron X-ray diffraction and Mössbauer spectroscopy in high-pressure diamond anvil cells. We have synthesized two PPv samples, Mg0.6Fe0.15Al0.5Si0.75O3 and Mg0.66Fe0.13Al0.28Si0.86O3, at ~165 GPa and 2200-2500 K. By analyzing the collected Mössbauer spectra, we found that most Fe2+ and Fe3+ occupy the large bipolar prismatic sites in both of our samples. All of the Fe remains in the high-spin state at ~165-168 GPa and 300 K, which is consistent with theoretical predications. Together with the X-ray diffraction results, we have noted that the unit cell volume and density of PPv are significantly affected by the spin and valence states of Fe and the Al substitution. Using these results, we have further modeled the density and velocity change across the perovskite and PPv phase transition. The combined effect of Fe and Al will cause an increase in density but a decrease in the bulk sound velocity. As a result, the Fe and Al rich PPv existing above the CMB would be shown as relatively high-density and low-velocity regions.

  12. Pyrosmalite-(Fe), Fe8Si6O15(OH,Cl)10

    PubMed Central

    Yang, Hexiong; Downs, Robert T.; Yang, Yongbo W.; Allen, Warren H.

    2012-01-01

    Pyrosmalite-(Fe), ideally FeII 8Si6O15(OH,Cl)10 [refined composition in this study: Fe8Si6O15(OH0.814Cl0.186)10·0.45H2O, octa­iron(II) hexa­silicate deca­(chloride/hydroxide) 0.45-hydrate], is a phyllosilicate mineral and a member of the pyrosmalite series (Fe,Mn)8Si6O15(OH,Cl)10, which includes pyrosmalite-(Mn), as well as friedelite and mcgillite, two polytypes of pyrosmalite-(Mn). This study presents the first structure determination of pyrosmalite-(Fe) based on single-crystal X-ray diffraction data from a natural sample from Burguillos del Cerro, Badajos, Spain. Pyrosmalite-(Fe) is isotypic with pyrosmalite-(Mn) and its structure is characterized by a stacking of brucite-type layers of FeO6-octa­hedra alternating with sheets of SiO4 tetra­hedra along [001]. These sheets consist of 12-, six- and four-membered rings of tetra­hedra in a 1:2:3 ratio. In contrast to previous studies on pyrosmalite-(Mn), which all assumed that Cl and one of the four OH-groups occupy the same site, our data on pyrosmalite-(Fe) revealed a split-site structure model with Cl and OH occupying distinct sites. Furthermore, our study appears to suggest the presence of disordered structural water in pyrosmalite-(Fe), consistent with infrared spectroscopic data measured from the same sample. Weak hydrogen bonding between the ordered OH-groups that are part of the brucite-type layers and the terminal silicate O atoms is present. PMID:22259315

  13. 57Fe Mössbauer study of Lu2Fe3Si5 iron silicide superconductor

    DOE PAGESBeta

    Ma, Xiaoming; Ran, Sheng; Pang, Hua; Li, Fashen; Canfield, Paul C.; Bud'ko, Sergey L.

    2015-08-01

    With the advent of Fe–As based superconductivity it has become important to study how superconductivity manifests itself in details of 57Fe Mössbauer spectroscopy of conventional, Fe-bearing superconductors. The iron-based superconductor Lu2Fe3Si5 has been studied by 57Fe Mössbauer spectroscopy over the temperature range from 4.4 K to room temperature with particular attention to the region close to the superconducting transition temperature (Tc=6.1 K). Consistent with the two crystallographic sites for Fe in this structure, the observed spectra appear to have a pattern consisting of two doublets over the whole temperature range. Furthermore, the value of Debye temperature was estimated from temperaturemore »dependence of the isomer shift and the total spectral area and compared with the specific heat capacity data. Neither abnormal behavior of the hyperfine parameters at or near Tc, nor phonon softening were observed.« less

  14. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; Terzi, S.; Prasad, A.; Felberbaum, M.; StJohn, D. H.

    2016-01-01

    The influence of the ternary alloying elements Cu, Mg and Fe on the Al-Si eutectic microstructure is investigated using a commercial purity Al-10 wt%Si alloy in unmodified and Sr-modified conditions. A change in the Al-Si eutectic microstructure was associated with a change in the nucleation density of the eutectic grains caused by the addition of ternary alloying elements. When the ternary alloying element addition resulted in an increase in the eutectic nucleation frequency, a fibrous to flake-like transition was observed within the eutectic grain. When the ternary alloying element addition decreased the eutectic nucleation frequency significantly, a change in the eutectic morphology from flake-like to a mixture of flake-like and fibrous morphologies was observed. The mechanism of Al-Si eutectic modification is discussed. The growth velocity of the eutectic grain - liquid interface and the constitutional driving force available for growth are proposed as important parameters that influence the degree of eutectic modification in Al-Si alloys.

  15. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  16. Electronic structure of Fe{sub 3}Si on Si(100) substrates

    SciTech Connect

    Lal, Chhagan; Di Santo, G.; Caputo, M.; Panighel, M.; Goldoni, A.; Taleatu, B. A.; Jain, I. P.

    2014-04-24

    The improved performance of large-scale integrated circuits (LSIs) by the shrinking of devices is becoming difficult due to physical limitations. Here we report, the growth and formation of Fe{sub 3}Si on Si(100) and characterized by x-ray photoemission, UV photoemission and low energy electron diffraction to study the electronic structure. The results revealed that the DO{sub 3} phase formation is exist and photoemission results also support the electron diffraction outcome.

  17. Long range order and vacancy properties in Al-rich Fe{sub 3}Al and Fe{sub 3}Al(Cr) alloys

    SciTech Connect

    Kim, S.M.; Morris, D.G.

    1998-05-01

    Neutron powder diffraction measurements have been carried out in situ from room temperature to about 100 C in Fe28Al (28 at.% Al), Fe32.5Al (32.5 at.% Al) and Fe28Al15Cr (28 at.% Al, 5 at.% Cr) alloys. X-ray diffraction and TEM studies provided supporting information. The data were analyzed to obtain information about the temperature dependence of the DO{sub 3} and B2 long range order parameters, the location of the Cr atoms and their effect on the ordering energies, and on the vacancy formation and migration properties in Fe28Al and Fe32.5Al alloys. The location of the ternary alloying addition in DO{sub 3} and B2 ordered Al-rich Fe{sub 3}Al is shown to be consistent with considerations of interatomic bond energies.

  18. Low Temperature Studies of Fe-Al and Ni-Al Mixed Oxide Nanoparticles

    E-print Network

    Jackson, Sophie

    a resin-gel method. It was expected that Fe/Al and Ni/Al would form a defect spinel dispersive X-ray spectroscopy (EDS). Figure 1. The spinel structure1 , viewed down % Fe contained peaks corresponding to the spinel structure. Samples with over 80% Fe

  19. Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials

    NASA Astrophysics Data System (ADS)

    Riedl, H.; Zálešák, J.; Arndt, M.; Polcik, P.; Holec, D.; Mayrhofer, P. H.

    2015-09-01

    The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti0.50Al0.50N, Ti0.90Si0.10N, CrN, and Cr0.90Si0.10N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required to implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti0.50Al0.50N, Ti0.90Si0.10N, and Cr0.90Si0.10N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.

  20. Chemical pressure tuning of URu2Si2 via isoelectronic substitution of Ru with Fe

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Kanchanavatee, N.; Helton, J. S.; Huang, K.; Baumbach, R. E.; Bauer, E. D.; White, B. D.; Burnett, V. W.; Maple, M. B.; Lynn, J. W.; Janoschek, M.

    2015-02-01

    We have used specific heat and neutron diffraction measurements on single crystals of URu2 -xFexSi2 for Fe concentrations x ?0.7 to establish that chemical substitution of Ru with Fe acts as "chemical pressure" Pc h as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 (2011), 10.1103/PhysRevB.84.245122] based on bulk measurements on polycrystalline samples. Notably, neutron diffraction reveals a sharp increase of the uranium magnetic moment at x =0.1 , reminiscent of the behavior at the "hidden order" to large-moment-antiferromagnetic phase transition observed at a pressure Px?0.5 -0.7 GPa in URu2Si2 . Using the unit-cell volume determined from our measurements and an isothermal compressibility ?T=5.2 ×10-3 GPa-1 for URu2Si2 , we determine the chemical pressure Pc h in URu2 -xFexSi2 as a function of x . The resulting temperature (T )-chemical pressure (Pc h) phase diagram for URu2 -xFexSi2 is in agreement with the established temperature (T )-external pressure (P ) phase diagram of URu2Si2 .

  1. Chemical pressure tuning of URu2Si2 via isoelectronic substitution of Ru with Fe

    DOE PAGESBeta

    Das, Pinaki; Kanchanavatee, N.; Helton, J. S.; Huang, K.; Baumbach, R. E.; Bauer, E. D.; White, B. D.; Burnett, V. W.; Maple, M. B.; Lynn, J. W.; et al

    2015-02-26

    We have used specific heat and neutron diffraction measurements on single crystals of URu2–xFexSi? for Fe concentrations x ? 0.7 to establish that chemical substitution of Ru with Fe acts as “chemical pressure” Pch as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 (2011)] based on bulk measurements on polycrystalline samples. Neutron diffraction reveals a sharp increase of the uranium magnetic moment at x = 0.1, reminiscent of the behavior at the “hidden order” to large moment antiferromagnetic (LMAFM) phase transition observed at a pressure Px ? 0.5-0.7 GPa in URu?Si?. Using the unit cell volume determinedmore »from our measurements and an isothermal compressibility ?T = 5.2×10?³ GPa?¹ for URu?Si?, we determine the chemical pressure Pch in URu2?xFexSi? as a function of x. The resulting temperature T-chemical pressure Pch phase diagram for URu2?xFexSi? is in agreement with the established temperature T-external pressure P phase diagram of URu?Si?.« less

  2. Magnetic properties of epitaxial and polycrystalline Fe/Si multilayers

    SciTech Connect

    Chaiken, A.; Michel, R.P.; Wang, C.T.

    1995-08-01

    Fe/Si multilayers with antiferromagnetic interlayer coupling have been grown via ion-beam sputtering on both glass and single-crystal substrates. X-ray diffraction measurements show that both sets of films have crystalline iron silicide spacer layers and a periodic composition modulation. Films grown on glass have smaller crystallite sizes than those grown on single-crystal substrates and have a significant remanent magnetization. Films grown on single-crystal substrates have a smaller remanence. The observation of magnetocrystalline anisotropy in hysteresis loops and (hkl) peaks in x-ray diffraction demonstrates that the films grown on MgO and Ge are epitaxial. The smaller remanent magnetization in Fe/Si multilayers with better crystallinity suggests that the remanence is not intrinsic.

  3. The Sintering, Sintered Microstructure and Mechanical Properties of Ti-Fe-Si Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Y. F.; Luo, S. D.; Schaffer, G. B.; Qian, M.

    2012-12-01

    A systematic study has been conducted of the sintering, sintered microstructure and tensile properties of a range of lower cost Ti-Fe-Si alloys, including Ti-3Fe-(0-4)Si, Ti-(3-6)Fe-0.5Si, and Ti-(3-6)Fe-1Si (in wt pct throughout). Small additions of Si (?1 pct) noticeably improve the as-sintered tensile properties of Ti-3Fe alloy, including the ductility, with fine titanium silicides (Ti5Si3) being dispersed in both the ? and ? phases. Conversely, additions of >1 pct Si produce coarse and/or networked Ti5Si3 silicides along the grain boundaries leading to predominantly intergranular fracture and, hence, poor ductility, although the tensile strength continues to increase because of the reinforcement by Ti5Si3. Increasing the Fe content in the Ti- xFe-0.5/1.0Si alloys above 3 pct markedly increases the average grain size and changes the morphology of the ?-phase phase to much thinner and more acicular laths. Consequently, the ductility drops to <1 pct. Si reacts exothermically with Fe to form Fe-Si compounds prior to the complete diffusion of the Fe into the Ti matrix during heating. The heat thus released in conjunction with the continuous external heat input melts the silicides leading to transient liquid formation, which improves the densification during heating. No Ti-TiFe eutectoid was observed in the as-sintered Ti-Fe-Si alloys. The optimum PM Ti-Fe-Si compositions are determined to be Ti-3Fe-(0.5-1.0)Si.

  4. Structure determination of Fe-Al-Ge alloys

    NASA Astrophysics Data System (ADS)

    Gargicevich, D.; Galván Josa, V. M.; Blanco, C.; Lambri, A.; Cuello, G. J.

    2015-11-01

    We studied the crystalline structure of Fe - 8at.%Al - 4at.%Ge alloy between 300 and 1300 K and its relation to the mechanical response by means of neutron diffraction and mechanical spectroscopy. At room temperature we observe a Fe3Al-type ordered structure with a deficiency of Al in the 8c sites. The Ge atoms are distributed in the 4a and Al atoms in 8c sites. At high temperature we observe an order-disorder transformation when the crystal structure becomes Fe-? type. This loss of order gives rise to the hysteresis behavior of damping between the heating and cooling runs.

  5. Microstructural and mechanical characterization of Al–Zn–Si nanocomposites

    SciTech Connect

    García-Villarreal, S.; Chávez-Valdez, A.; Moreno, K.J.; Leyva, C.; Aguilar-Martínez, J.A.; Hurtado, A.; Arizmendi-Morquecho, A.

    2013-09-15

    In this paper the addition of silicon nanoparticles into Al–Zn alloys to form metallic matrix nanocomposites by mechanical alloying process was investigated. The influence of various process parameters such as milling time and Si concentration in the Al–Zn matrix has an interesting effect on the microstructure and mechanical properties of the synthesized nanocomposites. The microstructural characterization of the nanocomposites was evaluated by transmission electron microscopy and energy dispersive X-ray spectroscopy (TEM–EDXS) and the mechanical properties were measured by nanoindentation and micro-hardness tests. The results showed that during mechanical milling Si is added to the Al–Zn matrix achieving a uniform and homogeneous dispersion. After solidification, it forms small particles of AlZnSi with blocky morphology in interdendritic regions. The nanoindentation profiles showed that the elastic modulus and hardness properties increase with increasing milling time. However, a high concentration of Si (> 1.2 wt.%) results in a saturation of Si in the Al–Zn matrix, which adversely affects the mechanical properties. Thus, it is important to tune the milling time and concentration of Si added to the Al–Zn alloys to control the growth of brittle phases that result in reduction of the mechanical properties of the material. - Highlights: • A novel technique for addition of Si nanocomposites into Al–Zn liquid alloy is reported. • Good dispersion and homogeneity of Si in the Al–Zn matrix are obtained. • Increasing Si content above 1.2 wt.% decreases the mechanical properties of Al–Zn alloy. • The saturation point of Si in 1.2 wt.% differs from Galvalume® composition. • The Al–Zn–1.5Si alloy with addition of nanocomposite shows 5.7 GPa of hardness.

  6. Effects of Sc content on the microstructure of As-Cast Al-7 wt.% Si alloys

    SciTech Connect

    Zhang Wenda; Liu Yun; Yang Jing; Dang Jinzhi; Xu Hong; Du Zhenmin

    2012-04-15

    The effects of Sc content on the microstructure of as-cast Al-Si alloys were investigated by adding 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.4 wt.% Sc to hypoeutectic Al-7 wt.% Si alloys. The results show that there are significant changes in the microstructure when the Sc content is increased to 0.15%. The volume fraction of the primary {alpha}-Al phase increased nearly monotonically with increasing Sc content in the as-cast state. As the Sc content increased, the average length of the eutectic Si in the as-cast Al-7Si-xSc alloy decreased sharply from 150 {mu}m (without Sc content) to 20 {mu}m (0.4 wt.% Sc content). The Sc atoms are concentrated in the interdendritic regions. A fish-bone structure composed of Al, Si, Sc, and Fe, which might be the Fe-rich phase precipitated on the AlSc{sub 2}Si{sub 2} (V-phase) was detected adjacent to the grain boundary by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). - Highlights: Black-Right-Pointing-Pointer Significant changes in the microstructure when the Sc content is increased to 0.15%. Black-Right-Pointing-Pointer Volume fraction of the primary a-Al phase increased with increasing Sc content. Black-Right-Pointing-Pointer Average length of Si decreased sharply from 150 to 20 {mu}m with increasing Sc content. Black-Right-Pointing-Pointer The Sc atoms are concentrated in the interdendritic regions.

  7. Electromagnetic and microwave absorbing properties of raw and milled FeSiCr particles

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Chen, C. C.; Choi, S. T.

    2014-05-01

    FeSiCr alloy (Fe: 90%, Si: 7.9%, and Cr: 2.1%) with pre-milled flaky shape was re-milled in a planetary ball-mill for 30 h. The complex permittivity (?'-j??) and permeability (?'-j??) are measured by using the transmission/reflection method for two different aspect ratios of flake-shaped FeSiCr/epoxy composites for 30%, 40%, and 50% weight ratios. Dielectric loss tangent and magnetic loss tangent of re-milled FeSiCr powder show larger electromagnetic wave energy dissipation than those of the raw flaky FeSiCr powder. For 30 wt. % of FeSiCr/epoxy absorbers with 2 mm thickness, the calculated reflection loss reaches -25 dB at 13.0 GHz for raw flaky powder, -40 dB at 11.4 GHz for the re-milled FeSiCr powder with higher aspect ratios.

  8. Eutectic nucleation in hypoeutectic Al-Si alloys

    SciTech Connect

    Nafisi, S. Ghomashchi, R.; Vali, H.

    2008-10-15

    The nucleation mechanism of eutectic grains in hypoeutectic Al-Si foundry alloys has been investigated by examining deep etched specimens in high-resolution field emission gun scanning electron microscope (FEG-SEM) and by using in-situ Focused Ion Beam (FIB) milling and microscopy. Both unmodified and Sr-modified alloys were studied to characterize the nucleation mechanism of eutectic silicon flakes and fibers. It is proposed that following nucleation of eutectic Al on the primary {alpha}-Al dendrites, fine Si particles form at the solidification front upon which the eutectic Si flakes and fibers could develop. The formation of small Si particles is attributed to Si enrichment of the remaining melt due to the formation of eutectic Al (aluminum spikes) at the eutectic temperature. A hypothesis is then proposed to explain the mechanism of eutectic grains formation with main emphasis on the eutectic Si phase.

  9. Charge storage in ?-FeSi2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Theis, Jens; Bywalez, Robert; Küpper, Sebastian; Lorke, Axel; Wiggers, Hartmut

    2015-02-01

    We report on the observation of a surprisingly high specific capacitance of ?-FeSi2 nanoparticle layers. Lateral, interdigitated capacitor structures were fabricated on thermally grown silicon dioxide and covered with ?-FeSi2 particles by drop or spin casting. The ?-FeSi2-nanoparticles, with crystallite sizes in the range of 10-30 nm, were fabricated by gas phase synthesis in a hot wall reactor. Compared to the bare electrodes, the nanoparticle-coated samples exhibit a 3-4 orders of magnitude increased capacitance. Time-resolved current voltage measurements show that for short times (seconds to minutes), the material is capable of storing up to 1 As/g at voltages of around 1 V. The devices are robust and exhibit long-term stability under ambient conditions. The specific capacitance is highest for a saturated relative humidity, while for a relative humidity below 40% the capacitance is almost indistinguishable from a nanoparticle-free reference sample. The devices work without the need of a fluid phase, the charge storing material is abundant and cost effective, and the sample design is easy to fabricate.

  10. Current-Voltage and Capacitance-Conductance-Voltage Characteristics of Al/SiO2/p-Si and Al/Methyl Green (MG)/p-Si Structures

    NASA Astrophysics Data System (ADS)

    Duman, Songül; Ozcelik, Fikriye Seyma; Gürbulak, Bekir; Gülnahar, Murat; Turut, Abdulmecit

    2015-01-01

    The organic methyl green (MG) has been investigated for the first time for its electronic applications. In order to see the effect of organic MG layer on electrical characteristics of Al/p-Si diode, Al/MG/p-Si structure has been fabricated by inexpensive and simple "drop coating" method. The current-voltage ( I- V) and capacitance-conductance-voltage ( C- G- V) characteristics of Al/SiO2/p-Si and Al/MG/p-Si structures have been investigated. The parameters such as ideality factor ( n), barrier height (), series and shunt resistance, and the density of interface states have been investigated using current-voltage measurements, in dark and under illumination conditions at room temperature. The n and values of 1.56 and 0.81 eV for Al/SiO2/p-Si and 1.36 and 0.80 eV for Al/MG/p-Si are calculated from the forward bias I- V characteristics. The value of the Al/SiO2/p-Si structure at room temperature is larger than that of conventional Al/p-Si diode. It is seen that the n value of 1.36 calculated for the Al/MG/p-Si structure is lower than most of the metal/organic compound/inorganic semiconductor devices.

  11. 57 Fe Mössbauer study of iron-silicide superconductor Lu2Fe3Si5

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoming; Ran, Sheng; Pang, Hua; Li, Fashen; Canfield, Paul; Bud'Ko, Sergey

    2015-03-01

    In order to investigate the changes of the hyperfine parameters of a compound when it goes into a superconducting state from a normal state, we studied Lu2Fe3Si5. Lu2Fe3Si5 is a superconductor with a transition temperature, TC ~ 6 K and the Fe has been proved to be non-magnetic in a previous Mössbauer study[1]. We performed detailed 57Fe Mössbauer spectra measurement on Lu2Fe3Si5 from room temperature down to 4.4 K with particular attention paid to region near TC. No clear feature that can be associated with the superconducting transition was found in the hyperfine parameters. Detailed hyperfine parameters and recoilless fraction as a function of temperature will be presented and discussed. The authors gratefully acknowledge the financial support from China Scholarship Council and this work is supported by the US DOE, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  12. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys

    PubMed Central

    Asghar, Z.; Requena, G.; Boller, E.

    2011-01-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of ?-Al matrix and a rigid long-range 3-D network of Al7Cu4Ni, Al4Cu2Mg8Si7, Al2Cu, Al15Si2(FeMn)3 and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 °C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ?15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si. PMID:21977004

  13. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys.

    PubMed

    Asghar, Z; Requena, G; Boller, E

    2011-09-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of ?-Al matrix and a rigid long-range 3-D network of Al(7)Cu(4)Ni, Al(4)Cu(2)Mg(8)Si(7), Al(2)Cu, Al(15)Si(2)(FeMn)(3) and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 °C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ?15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si. PMID:21977004

  14. Oxidation behavior of FeAl+Hf,Zr,B

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Doychak, Joseph

    1988-01-01

    The oxidation behavior of Fe-40Al-1Hf, Fe-40Al-1Hf-0.4B, and Fe-40Al-0.1Zr-0.4B (at. percent) alloys was characterized after 900, 1000, and 100 C exposures. Isothermal tests revealed parabolic kinetics after a period of transitional theta-alumina scale growth. The parabolic growth rates for the subsequent alpha-alumina scales were about five times higher than those for NiAl+0.1Zr alloys. The isothermally grown scales showed a propensity toward massive scale spallation due to both extensive rumpling from growth stresses and to an inner layer of HfO2. Cyclic oxidation for 200 1-hr cycles produced little degradation at 900 or 1000 C, but caused significant spallation at 1100 C in the form of small segments of the outer scale. The major difference in the cyclic oxidation of the three FeAl alloys was increased initial spallation for FeAl+Zr,B. Although these FeAl alloys showed many similarities to NiAl alloys, they were generally less oxidation resistant. It is believed that this resulted from nonoptimal levels of dopants and larger thermal expansion mismatch stresses.

  15. Influence of Some Trace Elements on Solidification Path and Microstructure of Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Schaffer, Paul Louis; Arnberg, Lars

    2013-08-01

    In the present study, Ca, Ni, V, and Zn were added to a high purity binary Al-7wt pct Si and commercial purity A356 foundry alloy in the nominal range of 50 to 600 ppm in order to study their effect on the solidification path and the resultant microstructure. Thermal analysis was used to assess nucleation and growth of the various phases. It was found that Ca and Ni additions suppress characteristic temperatures associated with nucleation and growth of the eutectic by up to 4 and 1.5 K, respectively. Additionally, Ca was observed to modify the eutectic Si and a concentration as low as 39 ppm Ca was sufficient to precipitate the geometrically unfavored polyhedral Al2Si2Ca phase. Furthermore, Ni addition resulted in the formation of two intermetallic phases when the Ni concentration exceeded 300 ppm. These phases have been quantified as Al3Ni and Al9FeNi by SEM-EDS. V and Zn had no apparent effect on the cooling curve and the microstructure. Even though it could be shown that V accumulates preferably in ?-Al5FeSi particles, V concentrations of 600 ppm were too low to have any influence on the phase's morphology.

  16. The influence of the iron content on the reductive decomposition of A{sub 3?x}Fe{sub x}Al{sub 2}Si{sub 3}O{sub 12} garnets (A = Mg, Mn; 0.47 ? x ? 2.85)

    SciTech Connect

    Aparicio, Claudia Filip, Jan Mashlan, Miroslav Zboril, Radek

    2014-10-27

    Thermally-induced reductive decomposition of natural iron-bearing garnets of the almandine-pyrope and almandine-spessartine series were studied at temperatures up to 1200 °C (heating rate of 10 °C/min) under atmosphere of forming gas (10% of H{sub 2} in N{sub 2}). Crystallochemical formula of the studied garnet was calculated as {sup VIII}(A{sub 3?x}Fe{sub x}{sup 2+}){sup VI}(Al,Fe{sup 3+}){sub 2}Si{sub 3}O{sub 12}, where the amount of Fe{sup 3+} in the octahedral sites is negligible with the exception of pyrope, A = Mg, Mn, and 0.47 ? x ? 2.85. The observed decomposition temperature, determined from differential scanning calorimetry and thermogravimetry, is greater than 1000 °C in all cases and showed almost linear dependence on the iron content in the dodecahedral sites of the studied garnets, with the exception of garnet with a near-pyrope composition (Prp{sub 80}Alm{sub 20}). The initial garnet samples and decomposition products were characterized in details by means of X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. We found that all studied garnets have common decomposition products such as metallic iron (in general, rounded particles below 4 ?m) and Fe-spinel; the other identified decomposition products depend on starting chemical composition of the garnet: Fe-cordierite, olivine (fayalite or tephroite), cristobalite, pyroxene (enstatite or pigeonite), and anorthite. Anorthite and pigeonite were only present in garnets with Ca in the dodecahedral site. All the identified phases were usually well crystallized.

  17. Sound velocity and density of liquid Fe-Ni-Si under pressure: Application to the composition of planetary molten core

    NASA Astrophysics Data System (ADS)

    Terasaki, H. G.; Kuwabara, S.; Shimoyama, Y.; Takubo, Y.; Urakawa, S.; Nishida, K.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Watanuki, T.; Katayama, Y.; Kondo, T.; Higo, Y.

    2014-12-01

    The cores of Mercury, Mars and Moon are reported to be partially/totally molten (e.g., Margot et al. 2007, Yoder et al. 2003, Williams et al. 2001). In order to constrain the core compositions of those bodies from observed and future-planned seismic data, sound velocity and density of the core material, i.e., liquid Fe-alloy, are necessary. In this study, we have performed simultaneous measurements on these physical properties of liquid Fe-Ni-Si alloys, which is one of the major candidates for the core constituent. The effects of pressure and Si content on these properties were studied. High pressure experiments were performed using 80-ton uniaxial press designed for CT measurement or 180-ton cubic type multi-anvil press installed at BL20XU and BL22XU beamlines of SPring-8 synchrotron facility, respectively. Used samples were Fe-Ni-Si with Si content of 10-30 at%. The sample pellet was sandwiched by the single crystal sapphire buffer rod for sound velocity measurement. P-wave sound velocity was measured using pulse-echo overlapping ultrasonic method. LiNbO3 transducer was attached to the backside of the anvil to generate and receive elastic wave signals. Density was determined based on 3D volume data obtained from CT measurement or X-ray absorption profile. The P-wave velocity (VP) and density of liquid Fe-Ni-Si were successfully measured up to 2.5 GPa and 1773 K. Obtained VP of the Fe-Ni-Si is found to increase rapidly with pressure below 1 GPa and increase gradually above 1 GPa. It is also found that VP increases slightly with Si content on the density-VP plot. These trends provide a constraint on the core composition of the planets and moon by comparing with observed data.

  18. Synthesis of ternary Si clathrates in the A-Al-Si (A = Na and K) system

    NASA Astrophysics Data System (ADS)

    Imai, Motoharu; Singh, Shiva Kumar; Nishio, Mitsuaki; Yamada, Takahiro; Yamane, Hisanori

    2015-07-01

    With the aim of producing functional materials based on earth-abundant elements, we examined the synthesis of the ternary type-I clathrates A8AlxSi46-x (A = Na and K). The type-I Si clathrate K7.9(1)Al7.1(1)Si38.9(4), having a lattice parameter of 10.434(1) Å, was successfully synthesized via the direct reaction of K, Al, and Si by optimization of both the synthesis temperature and the molar ratios among the raw ingredients. K8Al7Si39 exhibited metallic conduction: its electrical resistivity increased with increasing temperature. The high pressure synthesis of Na8AlxSi46-x was also examined, using a belt-type apparatus and employing a mixture of NaSi, Al, and Si as the reagents. In this manner, the type-I Si clathrate Na8.7(9)Al0.5(1)Si45(2), having a lattice parameter of 10.211(1) Å, was synthesized at 5.5 GPa and 1570 K.

  19. Texture development in SiC-seeded AlN

    SciTech Connect

    Sandlin, M.S.; Bowman, K.J.; Root, J.

    1997-01-01

    Polycrystalline AlN specimens containing 15 volume percent SiC seed particles were slip-cast then hot-pressed at 1,800 C. These processing steps resulted in oriented SiC platelets in a nearly random AlN matrix. Samples were then annealed for up to 18 hours at 2,150 C under nitrogen. Quantitative texture measurements of the AlN and SiC basal poles, and powder diffraction measurements were performed using neutron and X-ray diffraction. The results indicate that SiC platelets effectively seed AlN-SiC alloy textures by a coalescence and growth mechanism during annealing. Texture intensification does not occur in AlN specimens without SiC platelet additions, or in specimens containing non-oriented SiC powder. The most effective seeing was observed in specimens containing 15 volume percent SiC platelets. Optical microscopy and electron microscopy were used in conjunction with texture analysis to elucidate texture development mechanisms.

  20. Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite

    E-print Network

    Duffy, Thomas S.

    Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite Susannah 2012 Editor: L. Stixrude Available online 8 December 2012 Keywords: perovskite post-perovskite lower and temperatures up to 3000 K. Single- phase orthorhombic GdFeO3-type perovskite was synthesized by heating

  1. Nucleation and Growth of Eutectic Si in Al-Si Alloys with Na Addition

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Barrirero, J.; Engstler, M.; Aboulfadl, H.; Mücklich, F.; Schumacher, P.

    2015-03-01

    Al-5 wt pct Si-based alloys with Na additions (19 and 160 ppm) have been produced by controlled sand casting and melt spinning. Entrained droplet technique and differential scanning calorimetry were employed to investigate the nucleation behavior of eutectic Si. High-resolution transmission electron microscopy and atom probe tomography were used to investigate the distribution of Na atoms within eutectic Si and at the interfaces between eutectic Si and eutectic Al. It was found that (i) only 19 ppm Na addition results into a high undercooling (49 K (49 °C)) of the entrained eutectic droplet. However, further increasing Na addition up to 160 ppm exerts no positive effect on the nucleation of eutectic Si, instead a decreased undercooling (29 K (29 °C)) was observed. (ii) Na addition suppresses the growth of eutectic Si due to the Na segregation at the interface between eutectic Si and eutectic Al, and (iii) Na addition promotes significant multiple Si twins, which can be attributed to the proposed adsorption of Na atoms at the intersection of Si twins and along the <112>Si growth direction of Si. The present investigation demonstrates, for the first time, a direct observation on the distribution of Na atoms within eutectic Si and thereby provides strong experimental supports to the well-accepted impurity-induced twinning growth mechanism and poisoning of the twin plane re-entrant edge growth mechanism.

  2. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  3. The Effect of Plasma Spraying on the Microstructure and Aging Kinetics of the Al-Si Matrix Alloy and Al-Si/SiC Composites

    NASA Astrophysics Data System (ADS)

    Altunpak, Yahya; Akbulut, Hatem; Üstel, Fatih

    2010-02-01

    The Al-Si (LM 13)-based matrix alloy reinforced with SiC particles containing 10, 20, and 30 vol.% SiC particles were spray-formed onto Al-Si substrates. The sprayed samples were directly subjected to a standard aging treatment (T551). From the experiments, it was observed that the high rate of solidification resulted in very fine silicon particles which were observed as continuous islands in the matrix and each island exhibited several very fine silicon crystals. Analysis showed that plasma-spraying caused an increased solid solubility of the silicon in the aluminum matrix. DSC measurements in the permanent mold-cast Al-Si matrix alloy and plasma-sprayed Al-Si matrix alloy showed that plasma-spraying causes an increase in the amount of GP-zone formation owing to the very high rate solidification after plasma-spraying. In the plasma-sprayed Al-Si/SiC composites GP zones were suppressed, since particle-matrix interfaces act as a sink for vacancies during quenching from high plasma process temperature. Introduction of SiC particles to the Al-Si age-hardenable alloy resulted in a decrease in the time required to reach plateau matrix hardness owing to acceleration of aging kinetics by ceramic SiC particles.

  4. Alloy development and processing of FeAl: An overview

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Alexander, D.J.; Viswanathan, S.

    1997-03-01

    In the last few years, considerable progress has been made in developing B2-phase FeAl alloys with improved weldability, room-temperature ductility, and high-temperature strength. Controlling the processing-induced microstructure is also important, particularly for minimizing trade-offs in various properties. FeAl alloys have outstanding resistance to high-temperature oxidation, sulfidation, and corrosion in various kinds of molten salts due to formation of protective Al{sub 2}O{sub 3} scales. Recent work shows that FeAl alloys are carburization-resistant as well. Alloys with 36 to 40 at. % Al have the best combination of corrosion resistance and mechanical properties. Minor alloying additions of Mo, Zr, and C, together with microalloying additions of B, produce the best combination of weldability and mechanical behavior. Cast FeAl alloys, with 200 to 400 {mu}m grain size and finely dispersed ZrC, have 2 to 5% tensile ductility in air at room-temperature, and a yield strength > 400 MPa up to about 700 to 750{degrees}C. Extruded ingot metallurgy (I/M) and powder metallurgy (P/M) materials with refined grain sizes ranging from 2 to 50 {mu}m, can have 10 to 15% ductility in air and be much stronger, and can even be quite tough, with Charpy impact energies ranging from 25 to 105 J at room-temperature. This paper highlights progress made in refining the alloy composition and exploring processing effects on FeAl for monolithic applications. It also includes recent progress on developing FeAl weld-overlay technology, and new results on welding of FeAl alloys. It summarizes some of the current industrial testing and interest for applications.

  5. Competitive stochastic growth model for the 3D morphology of eutectic Si in Al-Si alloys

    E-print Network

    Schmidt, Volker

    Competitive stochastic growth model for the 3D morphology of eutectic Si in Al-Si alloys Gerd for the simulation of the 3D morphology of eutectic silicon in Al-Si alloys, which represents the colonies-Si alloys, coral-like eutectic Si, stochastic growth model, multivariate time series, FIB-SEM tomography

  6. Natural dissociation of olivine to (Mg,Fe)SiO3 perovskite and magnesiowüstite in a shocked Martian meteorite

    PubMed Central

    Miyahara, Masaaki; Ohtani, Eiji; Ozawa, Shin; Kimura, Makoto; El Goresy, Ahmed; Sakai, Takeshi; Nagase, Toshiro; Hiraga, Kenji; Hirao, Naohisa; Ohishi, Yasuo

    2011-01-01

    We report evidence for the natural dissociation of olivine in a shergottite at high-pressure and high-temperature conditions induced by a dynamic event on Mars. Olivine (Fa34-41) adjacent to or entrained in the shock melt vein and melt pockets of Martian meteorite olivine-phyric shergottite Dar al Gani 735 dissociated into (Mg,Fe)SiO3 perovskite (Pv)+magnesiowüstite (Mw), whereby perovskite partially vitrified during decompression. Transmission electron microscopy observations reveal that microtexture of olivine dissociation products evolves from lamellar to equigranular with increasing temperature at the same pressure condition. This is in accord with the observations of synthetic samples recovered from high-pressure and high-temperature experiments. Equigranular (Mg,Fe)SiO3 Pv and Mw have 50–100 nm in diameter, and lamellar (Mg,Fe)SiO3 Pv and Mw have approximately 20 and approximately 10 nm in thickness, respectively. Partitioning coefficient, KPv/Mw = [FeO/MgO]/[FeO/MgO]Mw, between (Mg,Fe)SiO3 Pv and Mw in equigranular and lamellar textures are approximately 0.15 and approximately 0.78, respectively. The dissociation of olivine implies that the pressure and temperature conditions recorded in the shock melt vein and melt pockets during the dynamic event were approximately 25 GPa but 700?°C at least. PMID:21444781

  7. Natural dissociation of olivine to (Mg,Fe)SiO3 perovskite and magnesiowustite in a shocked Martian meteorite.

    PubMed

    Miyahara, Masaaki; Ohtani, Eiji; Ozawa, Shin; Kimura, Makoto; El Goresy, Ahmed; Sakai, Takeshi; Nagase, Toshiro; Hiraga, Kenji; Hirao, Naohisa; Ohishi, Yasuo

    2011-04-12

    We report evidence for the natural dissociation of olivine in a shergottite at high-pressure and high-temperature conditions induced by a dynamic event on Mars. Olivine (Fa(34-41)) adjacent to or entrained in the shock melt vein and melt pockets of Martian meteorite olivine-phyric shergottite Dar al Gani 735 dissociated into (Mg,Fe)SiO(3) perovskite (Pv)+magnesiowüstite (Mw), whereby perovskite partially vitrified during decompression. Transmission electron microscopy observations reveal that microtexture of olivine dissociation products evolves from lamellar to equigranular with increasing temperature at the same pressure condition. This is in accord with the observations of synthetic samples recovered from high-pressure and high-temperature experiments. Equigranular (Mg,Fe)SiO(3) Pv and Mw have 50-100 nm in diameter, and lamellar (Mg,Fe)SiO(3) Pv and Mw have approximately 20 and approximately 10 nm in thickness, respectively. Partitioning coefficient, K(Pv/Mw) = [FeO/MgO]/[FeO/MgO](Mw), between (Mg,Fe)SiO(3) Pv and Mw in equigranular and lamellar textures are approximately 0.15 and approximately 0.78, respectively. The dissociation of olivine implies that the pressure and temperature conditions recorded in the shock melt vein and melt pockets during the dynamic event were approximately 25 GPa but 700?°C at least. PMID:21444781

  8. Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility.

    PubMed

    Kopova, Ivana; Stráský, Josef; Harcuba, Petr; Landa, Michal; Jane?ek, Miloš; Ba?ákova, Lucie

    2016-03-01

    Beta titanium alloys are promising materials for load-bearing orthopaedic implants due to their excellent corrosion resistance and biocompatibility, low elastic modulus and moderate strength. Metastable beta-Ti alloys can be hardened via precipitation of the alpha phase; however, this has an adverse effect on the elastic modulus. Small amounts of Fe (0-2wt.%) and Si (0-1wt.%) were added to Ti-35Nb-7Zr-6Ta (TNZT) biocompatible alloy to increase its strength in beta solution treated condition. Fe and Si additions were shown to cause a significant increase in tensile strength and also in the elastic modulus (from 65GPa to 85GPa). However, the elastic modulus of TNZT alloy with Fe and Si additions is still much lower than that of widely used Ti-6Al-4V alloy (115GPa), and thus closer to that of the bone (10-30GPa). Si decreases the elongation to failure, whereas Fe increases the uniform elongation thanks to increased work hardening. Primary human osteoblasts cultivated for 21days on TNZT with 0.5Si+2Fe (wt.%) reached a significantly higher cell population density and significantly higher collagen I production than cells cultured on the standard Ti-6Al-4V alloy. In conclusion, the Ti-35Nb-7Zr-6Ta-2Fe-0.5Si alloy proves to be the best combination of elastic modulus, strength and also biological properties, which makes it a viable candidate for use in load-bearing implants. PMID:26706526

  9. Melting phase relations in MgO-FeO-SiO2 ternary system at high pressure

    NASA Astrophysics Data System (ADS)

    Morishita, A.; Nomura, R.; Hirose, K.

    2014-12-01

    Seismological observations show that the presence of a small fraction of partial melt at the base of the mantle. The knowledge of chemical composition of such partial melt is key to understand its buoyancy and stability in the lowermost mantle. Recent melting experiments performed in the deep lower mantle conditions demonstrated that 1) MgSiO3-rich perovskite (bridgemanite) is the first phase to crystallize from melts with a wide range of (Mg + Fe)/ Si ratios in the middle to deep lower mantle and 2) iron is preferentially partitioned into melt rather than solid [Nomura et al., 2011 Nature; Tateno et al., 2014 JGR], suggesting that melts evolves towards a FeO-rich / SiO2-poor composition upon crystallization. Here we carried out melting experiments under both shallow and deep lower mantle pressures using a laser-heated diamond-anvil cell (DAC), in order to determine melting phase equilibria in the MgO-FeO-SiO2 ternary system. Several different starting materials were used. After heating at high pressure, sample was recovered from a DAC, and then examined with dual beam scanning microprobe (FIB + FE-SEM) (Versa 3DTM, FEI) and field-emission-type electron probe microanalyzer (FE-EPMA) (JXA-8530F, JEOL). On the basis of X-ray maps and quantitative point-analyses, quenched partial melt with non-stoichiometric composition was found at the center of the sample (the hottest part) and surrounded by a liquidus phase. The partial melts were sometimes in direct contact with more than one solid phases such as bridgemanite + ferropericlase or bridgemanite + stishovite, which can tightly constrain the locations of cotectic lines. These results imply that eutectic melt is strongly enriched in FeO in the MgO-FeO-SiO2 ternary system in a wide range of lower mantle pressures.

  10. Spin transport and accumulation in n+-Si using Heusler compound Co2FeSi/MgO tunnel contacts

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mizue; Sugiyama, Hideyuki; Inokuchi, Tomoaki; Hamaya, Kohei; Saito, Yoshiaki

    2015-08-01

    We investigate spin transport and accumulation in n+-Si using Heusler compound Co2FeSi/MgO/Si on insulator (SOI) devices. The magnitudes of the non-local four- and three-terminal Hanle effect signals when using Heusler compound Co2FeSi/MgO/SOI devices are larger than when using CoFe/MgO/SOI devices, whereas the preparation methods of MgO layers on SOI are exactly same in both devices. Different bias voltage dependencies on the magnitude of spin accumulation signals are also observed between these devices. Especially, Co2FeSi/MgO/SOI devices show large spin accumulation signals compared with CoFe/MgO/SOI devices in the low bias voltage region less than ˜1000 mV in which the increase of the spin polarization is expected from the estimation of the density of states in Heusler compound Co2FeSi and CoFe under spin extraction conditions. These results indicate that the species of ferromagnetic material definitely affects the magnitude and behavior of the spin signals. The use of highly polarized ferromagnets such as Heusler compounds would be important for improving the spin polarization and the magnitude of spin signals through Si channels.

  11. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  12. SiAlON ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, M.H.; Park, B.H.

    1994-05-31

    A method of fabricating a SiAlON ceramic body includes: (a) combining quantities of Si[sub 3]N[sub 4], Al[sub 2]O[sub 3] and CeO[sub 2] to produce a mixture; (b) forming the mixture into a desired body shape; (c) heating the body to a densification temperature of from about 1,550 C to about 1,850 C; (d) maintaining the body at the densification temperature for a period of time effective to densify the body; (e) cooling the densified body to a devitrification temperature of from about 1,200 C to about 1,400 C; and (f) maintaining the densified body at the devitrification temperature for a period of time effective to produce a [beta][prime]-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the [beta][prime]-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: (a) an amorphous phase; and (b) a crystalline phase, the crystalline phase comprising [beta][prime]-SiAlON having lattice substituted elemental or compound form Ce.

  13. Charge storage in ?-FeSi2 nanoparticle layers

    NASA Astrophysics Data System (ADS)

    Lorke, Axel; Theis, Jens; Küpper, Sebastian; Bywalez, Robert; Wiggers, Hartmut

    2014-03-01

    We report on the observation of a surprisingly high specific capacitance of ?-FeSi2 nanoparticle layers. Lateral, interdigitated capacitor structures were fabricated on silicon dioxide and covered by FeSi2 particles in the size range 10-30 nm. Compared to the bare electrodes, the nanoparticle-coated samples exhibit a 3-4 orders of magnitude increased capacitance. Time-resolved current-voltage measurements show that for short times (seconds to minutes), the material is capable of storing up to 1 As/g at voltages of around 1 V. The devices are rugged and exhibit long-term stability under ambient conditions. The specific capacitance is the highest for a relative humidity of ~ 95%, while for a relative humidity below 40% the capacitance is almost indistinguishable from the bare electrodes. This strongly suggests that the storage mechanism is not purely geometric and that a -yet unexplored- electrochemical process may be responsible for the observed high specific capacitance. Our findings may also be of technological interest: The devices work without the need of a fluid phase, the charge storing material is earth abundant and cost-effective, and the sample design is easy to fabricate.

  14. Crystal structure of the compound Lu/sub 3/FeSi/sub 6/

    SciTech Connect

    Krivulya, L.V.; Bodak, O.I.; Gorelenko, Yu.K.

    1987-04-01

    The crystal structure of Lu/sub 3/FeSi/sub 6/ was determined by the powder method. The filling coefficient and thermal and atomic parameters are given for the title structure. The results of calculation and experimental diffraction pattern of the title structure are given. Also shown are the atomic parameters of structural types CeNiSi/sub 2/ and ZrSi/sub 2/ and compound Lu/sub 3/FeSi/sub 6/. The parameters and volume of the unit cell of R/sub 3/FeSi/sub 6/ (R = Y, Tb, Ho, Er, Tm, Lu) are listed.

  15. Precipitation In Al-Mg-Si Alloys with Cu Additions and the Role of the Q' and Related Phases

    E-print Network

    Laughlin, David E.

    Precipitation In Al-Mg-Si Alloys with Cu Additions and the Role of the Q' and Related Phases D Keywords: Al-Mg-Si, Al-Mg-Si-Cu, Balanced alloy, Excess-Si, Precipitation, Q, Metastable phase, Q of Al-Mg-Si and Al-Mg-Si-Cu alloys. Ternary Al-Mg-Si alloys have been reported to go through

  16. Effect of AL on Electric Conductivity and Superconductivity of NB-Si-AL-O Ceramic

    NASA Astrophysics Data System (ADS)

    Koba, S.; Higo, S.; Hakuraku, Y.; Kawano, I.; Ogushi, T.; Nakao, A.

    Metal-insulator transition and superconductivity with changing Al composition were observed in the Nb-Si-Al-O system. Semiconductor-like characteristic and normal conductive characteristic were observed for Al<40% and Al>50% respectively. Super-conductive compositions are distributed around the boundary between those two types of conductivity, such as NbxSiAl(?-x)Oz((?, x)=(1.5, 0.7), (2.0,0.8), (3.0, 0.7~1.4)). The superconductivity was confirmed by resistive transitions and diamagnetic transitions. The superconductors in this study have Tc=10.0~11.5 K with resistive transitions, and the amplitudes of the diamagnetism reach 30~58% of that of pure Nb powder. X-ray diffraction patterns of any other superconducting Nb-systems such as Nb, Nb3Al, Nb3Si, NbN, and NbC, have not been observed in Nb-Si-Al-O.

  17. Hydrogen effects on an amorphous Fe-Si-B alloy

    NASA Astrophysics Data System (ADS)

    Eliaz, N.; Eliezer, D.

    2000-10-01

    Hydrogen absorption in and desorption from an amorphous Fe80B11Si9 alloy, hydrogen effects on the microstructure of this alloy, and the possible mechanism of hydrogen embrittlement (HE) in this alloy have been studied. Ribbons were electrochemically charged with hydrogen at room temperature. The interaction of hydrogen with structural defects and the characteristics of hydrogen desorption were studied by means of thermal desorption spectroscopy (TDS). The effects of hydrogen on the microstructure and thermal stability were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), electrical resistivity measurements, and differential scanning calorimetry (DSC). The phenomenon of HE was investigated using scanning electron microscopy (SEM) and various mechanical testing techniques. The absence of hydride-forming elements resulted in low hydrogen solubility and low desorption temperatures. Hydrogenation at room temperature is reported for the first time to lead to either local nanocrystallization of the amorphous phase or transformation of nanocrystalline phases such as Fe˜3.5B, originally present in the uncharged material, to a new nanocrystalline Fe23B6 phase. The susceptibility of this alloy to HE is explained in terms of high-pressure bubble formation.

  18. Iron silicide formation at different layers of (Fe/Si){sub 3} multilayered structures determined by conversion electron Mössbauer spectroscopy

    SciTech Connect

    Badía-Romano, L. Bartolomé, J.; Rubín, J.; Magén, C.; Bürgler, D. E.

    2014-07-14

    The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si){sub 3} multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active {sup 57}Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness d{sub Fe}?=?2.6?nm and Si spacers of d{sub Si}?=?1.5?nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe{sub 1?x}Si phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains ?-Fe and an Fe{sub 1?x}Si{sub x} alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe{sub 1?x}Si{sub x} alloy with a Si concentration of ?0.15, but no ?-Fe.

  19. Enhancement of the Si p-n diode NIR photoresponse by embedding ?-FeSi2 nanocrystallites

    NASA Astrophysics Data System (ADS)

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Galkin, K. N.; Galkin, N. G.; Gutakovskii, A. K.

    2015-10-01

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p+-Si/p-Si/?-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3-4 and 15-20?nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7?mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2?×?109?cm?×?Hz1/2/W at a wavelength of 1300?nm at room temperature. In the avalanche mode, the responsivity reached up to 20?mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of ?-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600?nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of ?-FeSi2.

  20. Enhancement of the Si p-n diode NIR photoresponse by embedding ?-FeSi2 nanocrystallites

    PubMed Central

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Galkin, K. N.; Galkin, N. G.; Gutakovskii, A. K.

    2015-01-01

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p+-Si/p-Si/?-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3–4 and 15–20?nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7?mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2?×?109?cm?×?Hz1/2/W at a wavelength of 1300?nm at room temperature. In the avalanche mode, the responsivity reached up to 20?mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of ?-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600?nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of ?-FeSi2. PMID:26434582

  1. Enhancement of the Si p-n diode NIR photoresponse by embedding ?-FeSi2 nanocrystallites.

    PubMed

    Shevlyagin, A V; Goroshko, D L; Chusovitin, E A; Galkin, K N; Galkin, N G; Gutakovskii, A K

    2015-01-01

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p(+)-Si/p-Si/?-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3-4 and 15-20?nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7?mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2?×?10(9)?cm?×?Hz(1/2)/W at a wavelength of 1300?nm at room temperature. In the avalanche mode, the responsivity reached up to 20?mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of ?-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600?nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of ?-FeSi2. PMID:26434582

  2. B Removal by Zr Addition in Electromagnetic Solidification Refinement of Si with Si-Al Melt

    NASA Astrophysics Data System (ADS)

    Lei, Yun; Ma, Wenhui; Sun, Luen; Dai, Yongnian; Morita, Kazuki

    2015-11-01

    This study investigated a new process of enhancing B removal by adding small amounts of Zr in the electromagnetic solidification refinement of Si with Si-Al melt. B in Si was removed by as much as 97.2 pct by adding less than 1057 ppma Zr, and the added Zr was removed by as much as 99.7 pct. In addition, Zr is more effective in enhancing B removal than Ti in the same electromagnetic solidification refining process.

  3. Effect of electron correlations on the Fe3Si and ? -FeSi2 band structure and optical properties

    NASA Astrophysics Data System (ADS)

    Sandalov, Igor; Zamkova, Natalia; Zhandun, Vyacheslav; Tarasov, Ivan; Varnakov, Sergey; Yakovlev, Ivan; Solovyov, Leonid; Ovchinnikov, Sergey

    2015-11-01

    We use the Vienna ab initio simulation package (vasp) for evaluation of the quasiparticle spectra and their spectral weights within Hedin's GW approximation (GWA) for Fe3Si and ? -FeSi2 within the non-self-consistent one-shot approximation G0W0 and self-consistent scGWA with the vertex corrections in the particle-hole channel, taken in the form of two-point kernel. As input for G0W0 , the band structure and wave functions evaluated within the generalized gradient corrected local-density approximation to density functional theory (GGA) have been used. The spectral weights of quasiparticles in these compounds deviate from unity everywhere and show nonmonotonic behavior in those parts of bands where the delocalized states contribute to their formation. The G0W0 and scGWA spectral weights are the same within 2%-5%. The scGWA shows a general tendency to return G0W0 bands to their GGA positions for the delocalized states, while in the flat bands it flattens even more. Variable angle spectroscopic ellipsometry measurements at T =296 K on grown single-crystalline ˜50 -nm-thick films of Fe3Si on n -Si(111) wafer have been performed in the interval of energies ? ˜(1.3 -5 ) eV. The comparison of G0W0 and scGW theory with experimental real and imaginary parts of permittivity, refractive index, extinction and absorption coefficients, reflectivity, and electron energy loss function shows that both G0W0 and scGW qualitatively describe experiment correctly, the position of the low-energy peaks is described better by the scGW theory, however, its detailed structure is not observed in the experimental curves. We suggest that the angle-resolved photoemission spectroscopy experiments, which can reveal the fine details of the quasiparticle band structure and spectral weights, could help to understand (i) if the scGWA with this type of vertex correction is sufficiently good for description of these iron silicides and, possibly, (ii) why some features of calculated permittivity are not seen in optical experiments.

  4. Interdiffusion in Diffusion Couples: U-Mo v. Al and Al-Si

    SciTech Connect

    D. D. Keiser, Jr.; E. Perez; B. Yao; Y. H. Sohn

    2009-11-01

    Interdiffusion and microstructural development in the U-Mo-Al system was examined using solid-tosolid diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo vs. pure Al, annealed at 600°C for 24 hours. The influence of Si alloying addition (up to 5 wt.%) in Al on the interdiffusion microstructural development was also examined using solid-to-solid diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo vs. pure Al, Al-2wt.%Si, and Al-5wt.%Si annealed at 550°C up to 20 hours. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) were employed to examine the development of a very fine multiphase intermetallic layer. In ternary U-Mo-Al diffusion couples annealed at 600°C for 24 hours, interdiffusion microstructure varied of finely dispersed UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases while the average composition throughout the interdiffusion zone remained constant at approximately 80 at.% Al. Interdiffusion microstructure observed by SEM/TEM analyses and diffusion paths drawn from concentration profiles determined by EPMA appear to deviate from the assumption of “local thermodynamic equilibrium,” and suggest that interdiffusion occurs via supersaturated UAl4 followed by equilibrium transformation into UAl3, U6Mo4Al43, UAl4 and UMo2Al20 phases. Similar observation was made for U-Mo vs. Al diffusion couples annealed at 550°C. The addition of Si (up to 5 wt.%) in Al significantly reduced the thickness of the intermetallic layer by changing the constituent phases of the interdiffusion zone developed in U-Mo vs. Al-Si diffusion couples. Specifically, the formation of (U,Mo)(Al,Si)3 with relatively large solubility for Mo and Si, along with UMo2Al20 phases was observed along with disappearance of U6Mo4Al43 and UAl4 phases. Simplified understanding based on U-Al, U-Si, and Mo-Si binary phase diagrams is discussed in the light of the beneficial effect of Si alloying addition.

  5. In situ resistivity of endotaxial FeSi2 nanowires on Si(110)

    NASA Astrophysics Data System (ADS)

    Tobler, S. K.; Bennett, P. A.

    2015-09-01

    We present in situ ultra-high vacuum measurements of the resistivity ? of self-assembled endotaxial FeSi2 nanowires (NWs) on Si(110) using a variable-spacing two-point method with a moveable scanning tunneling microscope tip and fixed contact pad. The resistivity at room temperature was found to be nearly constant down to NW width W = 4 nm, but rose sharply to nearly double the bulk value at W = 3 nm. These data are not well-fit by a simple Fuch-Sondheimer model for boundary scattering, suggesting that other factors, possibly quantum effects, may be significant at the smallest dimensions. For a NW width of 4 nm, partial oxidation increased ? by approximately 50%, while cooling from 300 K to 150 K decreased ? by approximately 10%. The relative insensitivity of ? to NW size or oxidation or cooling is attributed to a high concentration of vacancies in the FeSi2 structure, with a correspondingly short length for inelastic electron scattering, which obscures boundary scattering except in the smallest NWs. It is remarkable that the vacancy concentration persists in very small structures.

  6. Dry (Mg,Fe)SiO3 perovskite in the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Panero, Wendy R.; Pigott, Jeffrey S.; Reaman, Daniel M.; Kabbes, Jason E.; Liu, Zhenxian

    2015-02-01

    Combined synthesis experiments and first-principles calculations show that MgSiO3-perovskite with minor Al or Fe does not incorporate significant OH under lower mantle conditions. Perovskite, stishovite, and residual melt were synthesized from natural Bamble enstatite samples (Mg/(Fe + Mg) = 0.89 and 0.93; Al2O3 < 0.1 wt % with 35 and 2065 ppm weight H2O, respectively) in the laser-heated diamond anvil cell at 1600-2000 K and 25-65 GPa. Combined Fourier transform infrared spectroscopy, X-ray diffraction, and ex situ transmission electron microscopy analysis demonstrates little difference in the resulting perovskite as a function of initial water content. Four distinct OH vibrational stretching bands are evident upon cooling below 100 K (3576, 3378, 3274, and 3078 cm-1), suggesting four potential bonding sites for OH in perovskite with a maximum water content of 220 ppm weight H2O, and likely no more than 10 ppm weight H2O. Complementary, Fe-free, first-principles calculations predict multiple potential bonding sites for hydrogen in perovskite, each with significant solution enthalpy (0.2 eV/defect). We calculate that perovskite can dissolve less than 37 ppm weight H2O (400 ppm H/Si) at the top of the lower mantle, decreasing to 31 ppm weight H2O (340 ppm H/Si) at 125 GPa and 3000 K in the absence of a melt or fluid phase. We propose that these results resolve a long-standing debate of the perovskite melting curve and explain the order-of-magnitude increase in viscosity from upper to lower mantle.

  7. Ritz wavelengths of Fe I, Si II and Ni II for quasar absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Nave, Gillian

    2016-01-01

    The study of absorption lines in the spectra of galaxies along the line of sight to distant quasars can give important information about the abundances, ionization and kinematics of atoms within these galaxies. They have also been used to study the variability of the fine structure constant at high redshifts. However, the laboratory wavelengths need to be known to better than 6 parts in 108 (20 ms-1). A paper by M. Murphy and J. C. Berengut (2014, MNRAS 438,388) includes a table of spectral lines for which the laboratory wavelength uncertainties are greater than this, including 13 resonance lines of Fe I, 11 lines of Ni II, and 4 lines of Si II.Improved wavelengths for these lines were derived by re-analyzing archival spectra of iron hollow cathode lamps and a silicon carbide Penning discharge lamp. These spectra have previously been used in a comprehensive analysis of the spectrum of Fe I (Nave et al. 1994, ApJS 94, 221) and in a study of Si II, Si IV, and C IV for quasar spectroscopy (Griesmann & Kling, 2000, ApJ 536, L113). By re-optimizing the energy levels of Fe I, the absolute uncertainty of the resonance lines has been reduced by over a factor of 2 and the relative uncertainty by an order of magnitude. A similar analysis for Si II gives a improved values for the resonance lines with wavelength uncertainties of around 4 parts in 108. Analysis of new spectra of Ni II is in progress.

  8. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  9. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  10. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  11. (Si)5-2y(AlP)y alloys assembled on Si(100) from Al-P-Si3 building units

    NASA Astrophysics Data System (ADS)

    Watkins, T.; Jiang, L.; Xu, C.; Chizmeshya, A. V. G.; Smith, D. J.; Menéndez, J.; Kouvetakis, J.

    2012-01-01

    An original class of IV/III-V hybrid (Si)5-2y(AlP)y/Si(100) semiconductors have been produced via tailored interactions of molecular P(SiH3)3 and atomic Al yielding tetrahedral "Al-P-Si3" building blocks. Extensive structural, optical, and vibrational characterization corroborates that these units condense to assemble single-phase, monocrystalline alloys containing 60%-90% Si (y = 0.3-1.0) as nearly defect-free layers lattice-matched to Si. Spectroscopic ellipsometry and density functional theory band structure calculations indicate mild compositional bowing of the band gaps, suggesting that the tuning needed for optoelectronic applications should be feasible.

  12. Host Atom Diffusion in Ternary Fe-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Rohrberg, Diana; Spitzer, Karl-Heinz; Dörrer, Lars; Kuli?ska, Anna J.; Borchardt, Günter; Fraczkiewicz, Anna; Markus, Torsten; Jacobs, Michael H. G.; Schmid-Fetzer, Rainer

    2014-01-01

    In the Fe-rich corner of the Fe-Cr-Al ternary phase diagram, both interdiffusion experiments [1048 K to 1573 K (775 °C to 1300 °C)] and 58Fe tracer diffusion experiments [873 K to 1123 K (600 °C to 850 °C)] were performed along the Fe50Cr50-Fe50Al50 section. For the evaluation of the interdiffusion data, a theoretical model was used which directly yields the individual self-diffusion coefficients of the three constituents and the shift of the original interface of the diffusion couple through inverse modeling. The driving chemical potential gradients were derived using a phenomenological Gibbs energy function which was based on thoroughly assessed thermodynamic data. From the comparison of the individual self-diffusivities of Fe as obtained from interdiffusion profiles and independent 58Fe tracer diffusivities, the influence of the B2-A2 order-disorder transition becomes obvious, resulting in a slightly higher activation enthalpy for the bcc-B2 phase and a significantly lower activation entropy for this phase.

  13. Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field

    E-print Network

    Qin, Lu-Chang

    Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field ZHEN Liang( )1 27599-3255, USA Received 29 June 2006; accepted 15 January 2007 Abstract: Structural and magnetic properties of Fe-25Cr-12Co-1Si alloy thermo-magnetically treated under different external magnetic field

  14. Mechanochemical Behavior of NiO-Al-Fe Powder Mixtures to Produce (Ni, Fe)3Al-Al2O3 Nanocomposite Powder

    NASA Astrophysics Data System (ADS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M. H.

    2012-09-01

    (Ni, Fe)3Al-30 vol pct Al2O3 nanocomposite powder was synthesized by mechanochemical reaction of Fe-NiO-Al powder mixtures. Structural evolution during mechanical alloying was studied by employing X-ray diffractometry (XRD), differential thermal analysis (DTA), and transmission electron microscopy (TEM). After 78 minutes of milling, the (Ni, Fe)3Al-30 vol pct Al2O3 nanocomposite can be synthesized by reaction 3Fe + 7Al + 6NiO with a combustion mode. DTA results revealed that milling for 60 minutes decreases the temperature of reaction from 1040 K to 898 K (767 °C to 625 °C). TEM images corroborate a homogenous dispersion of reinforcements in the matrix of the nanocomposite proving that the reduction in the crystallite size of both reinforcements and matrix is within the nanometer range.

  15. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    NASA Astrophysics Data System (ADS)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable ?-UMo phases partly decomposed into two different ?-UMo phases, U2Mo and ?'-U in ground powder or ??-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the ?-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ?1 ?m - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some ?m diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the ?-UMo with respect to ?-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the formation of more stable UAl3 within the diffusion layer [14]. In addition, Si will not notably influence the reactor neutronics due to its low absorption cross section for thermal neutrons of ?abs = 0.24 barn. Aluminum has ?abs = 0.23 barn.Williams [28], Bierlein [29], Green [30] and de Luca [31] showed the first time in the 1950s that alloying Aluminum with some Silicon reduces the Uranium-Aluminum diffusion kinetics in can-type fuel elements. However, up to now uncertainties remained about the most promising Si concentration and the involved mechanisms.Ground powder - possibility 4 - introduces a high density of defects like dislocations, oxide layers and impurities into UMo grains. Fuel prepared with this kind of powder exhibits a larger porosity. It may also be combined with an AlSi matrix. As a consequence, the degree of swelling due to high-burn up is reduced compared to fuel with atomized powder [5,6,25].This study focuses on the metallurgical characterization of as-fabricated samples prepared with ground UMo and UMoX (X = Ti, Nb, Pt) powders and atomized UMo powder. The influence of some Si into the Al matrix and the presence of oxide layers on the UMo is discussed. Details of the differences of samples with ground UMo from atomized UMo will be discussed.The examined samples originate from non-irradiated spare fuel plates from the IRIS-TUM irradiation campaign [5,6]. The samples containing ground UMoX powders and atomized UMo powders with Si addition into the matrix have been produced for this study [32]. Powder mixing: The UMo powder is mixed with Al powder. Compact production: UMo-Al powder is poured into a mould and undergoes compaction under large force. Plate-processing: An AlFeNi frame is placed on an AlFeNi plate and the UMo-Al compact is placed into the frame. Afterwards it is covered with a second AlFeNi plate. This assembly is hot-rolled to reduce the total thickness to 1.4 mm. Subsequently, a blister test (1-2 h at 400-450 °C) ensures that the fuelplate is sealed. After this step, the UMo particles are tightly covered with Al as shown in Fig. 1.

  16. Phase Identification and Microstructure Analysis of Interface Al-Si/SiC Composites

    NASA Astrophysics Data System (ADS)

    Abdullah, Yusof; Daud, Abdul Razak; Harun, Mohd B.; Shamsudin, Roslinda

    2010-01-01

    Phase composition determined by X-ray diffraction (XRD) and microstructure analysis using scanning electron microscopy (SEM) have been performed on Al-Si/15% SiC composites prepared by stir casting method to investigate interface properties. Energy-dispersive X-ray spectroscopy (EDS) was also used to examine the product at interface where crystallisation was prominent. The interface reaction between particles and matrix was indicated that the nucleation of MgAl2O4, Mg2Si and MgO phases growth in the composites. These Interface reaction products play an important role to ensure good physical and mechanical properties of composites.

  17. Fabrication and characterization of novel Fe(Os)Si 2 semiconductor

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Liu, H. W.; Lin, Y.; Shao, G.

    Ternary Fe(Os)Si2 alloys, a novel semiconducting opto-electronic material with a tuneable direct band gap property, was designed by energy-band engineering. The electronic structures of FeSi2,OsSi2 and (FeOs)Si2 were theoretically calculated using the density functional theory (DFT) method. The thin films were fabricated by magnetic co-sputtering deposition, so as to substitute the Fe sublattice sites by Os. X-ray diffraction, energy dispersion X-ray spectrometry and optical absorption spectroscopy were used to characterize the structural properties of the thin films. Experimental results showed that all the Fe1-xOsxSi2 films have a direct band gap property. The strongest optical absorption was obtained when x is equal to 0.5, which is consistent with the theoretical prediction.

  18. Thermoelasticity of (Mg,Fe)SiO3 perovskite

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Wu, Zhongqing; Hsu, Han; Cococcioni, Matteo; Wentzcovitch, Renata

    2015-03-01

    We present LDA+U calculations of high temperature elastic properties of (Mg(1 - x)Fex2+)SiO3 bridgemanite (0 <= x <= 0 . 125), the most abundant constituent of Earth's lower mantle. Calculations of aggregate elastic moduli and acoustic velocities for the Mg-end member (x=0) are in excellent agreement with the latest high pressure and high temperature experimental measurements. In the iron bearing system, we particularly focus on the change in thermoelastic parameters across the state change that occurs in ferrous iron above ~30 GPa, often attributed to a high-spin (HS) to intermediate spin (IS) crossover but explained by calculations as a lateral displacement of substitutional iron in the perovskite cage. We show that the measured effect on the equation of state of this change in the state of iron can be explained by the lateral displacement of substitutional iron, not by the HS to IS crossover. Calculated elastic properties of (Mg0.875 Fe0.125 2 +)SiO3 along an adiabatic mantle geotherm, somewhat overestimate longitudinal velocities but produce densities and shear velocities consistent with Preliminary Reference Earth Model data throughout most of the lower mantle. Research supported by NSF/EAR and NSF/CAREER.

  19. Synthesis of Li2FeSiO4/carbon nano-composites by impregnation method

    NASA Astrophysics Data System (ADS)

    Sun, Shijiao; Matei Ghimbeu, Camelia; Vix-Guterl, Cathie; Sougrati, Moulay-Tahar; Masquelier, Christian; Janot, Raphaël

    2015-06-01

    Nanocrystalline lithium iron silicate/carbon (Li2FeSiO4/C) composites were successfully prepared by impregnation of a commercial porous carbon using ethanolic solutions of the different metallic precursors, followed by thermal annealing at 600 °C. The effects of Li2FeSiO4 loading content on the structure and organization of the Li2FeSiO4/C composites at the nanoscale were investigated. Through optimization of the synthesis conditions, small Li2FeSiO4 nanocrystals (4-12 nm) are formed and well dispersed in the porous conductive carbon. The electrochemical performances of these composites were tested as positive electrodes for lithium-ion batteries. The Li2FeSiO4/C composite with the lowest Li2FeSiO4 loading exhibits the best rate capability with a significant capacity contribution from carbon. It was found that the presence of carbon delays the lowering of the Fe3+/Fe2+ redox voltage usually reported for Li2FeSiO4 (from 3.1/3.0 to 2.8/2.7 V vs. Li+/Li), due to a stabilization effect of the initial Li2FeSiO4 crystal structure. For the Li2FeSiO4/C composite (81/19 weight ratio), a discharge capacity of 81 mAh g-1 can be achieved at 55 °C for a charge/discharge rate of 2C, with 86% capacity retention after 500 cycles, showing the positive effect of the porous carbon addition for long term cycling stability.

  20. Abnormal acoustic wave velocities in basaltic and (Fe,Al)-bearing silicate glasses at high pressures

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Lin, Jung-Fu

    2014-12-01

    We have measured acoustic VP and VS velocities of (Fe,Al)-bearing MgSiO3 silicate glasses and an Icelandic basalt glass up to 25 GPa. The velocity profiles of the (Fe,Al)-bearing and basaltic silicate glasses display decreased VP and VS with minima at approximately 5 and 2 GPa, respectively, which could be explained by the mode softening in the aluminosilicate networks. Our results represent the first observation of such velocity softening extending into the chemically complex basaltic glass at a relatively low transition pressure, which is likely due to its degree of polymerization, while the Fe and Al substitutions reduce sound velocities in MgSiO3 glass. If the velocity softening in the basaltic and silicate glasses can be used as analogs for understanding melts in Earth's interior, these observations suggest that the melt fraction needed to account for the velocity reduction in the upper mantle low-velocity zone may be smaller than previously thought.

  1. Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion

    NASA Astrophysics Data System (ADS)

    Fuxiao, Yu; Fang, Liu; Dazhi, Zhao; Toth, Laszlo S.

    2014-08-01

    Al-Fe alloys are attractive for applications at temperatures beyond those normally associated with the conventional aluminum alloys. Under proper solidification condition, a full eutectic microstructure can be generated in Al-Fe alloys at Fe concentration well in excess of the eutectic composition of 1.8 wt.% Fe. The microstructure in this case is characterized by the metastable regular eutectic Al-Al6Fe fibers of nano-scale in diameter, instead of the equilibrium eutectic Al-Al3Fe phase. In this study, the microstructure and mechanical properties of the Al-3Fe alloy with metastable Al6Fe particles deformed by equal channel angular extrusion were investigated. Severe plastic deformation results in a microstructure consisting of submicron equiaxed Al grains with a uniform distribution of submicron Al6Fe particles on the grain boundaries. The room temperature tensile properties of the alloy with this microstructure will be presented.

  2. FeAl-TiC and FeAl-WC composites - melt infiltration processing, microstructure and mechanical properties

    SciTech Connect

    Subramanian, R.; Schneibel, J.H.

    1997-04-01

    TiC-based and WC-based cermets were processed with iron aluminide, an intermetallic, as a binder by pressureless melt infiltration to near full density (> 97 % theoretical density). Phase equilibria calculations in the quaternary Fe-Al-Ti-C and Fe-Al-W-C systems at 145{degrees}C were performed to determine the solubility of the carbide phases in liquid iron aluminide. This was done by using Thermocalc{trademark} and the results show that molten Fe-40 at.% Al in equilibrium with Ti{sub 0.512}C{sub 0.488} and graphite, dissolves 4.9 at% carbon and 64 atomic ppm titanium. In the Fe-Al-W-C system, liquid Fe-40 at.% Al in equilibrium with graphite dissolves about 5 at.% carbon and 1 at.% tungsten. Due to the low values for the solubility of the carbide phases in liquid iron aluminide, liquid phase sintering of mixed powders does not yield a dense, homogeneous microstructure for carbide volume fractions greater than 0.70. Melt infiltration of molten FeAl into TiC and WC preforms serves as a successful approach to process cermets with carbide contents ranging from 70 to 90 vol. %, to greater than 97% of theoretical density. Also, the microstructures of cermets prepared by melt infiltration were very homogeneous. Typical properties such as hardness, bend strength and fracture toughness are reported. SEM observations of fracture surfaces suggest the improved fracture toughness to result from the ductility of the intermetallic phase. Preliminary experiments for the evaluation of the oxidation resistance of iron aluminide bonded cermets indicate that they are more resistant than WC-Co cermets.

  3. Lower Mantle Electrical Conductivity Based on Measurements of Al, Fe-Bearing Perovskite Under Lower Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Pesce, G.; Greenberg, E.; McCammon, C. A.; Dubrovinsky, L. S.

    2014-12-01

    Laboratory measurements of the electrical conductivities of minerals provide important constraints on the chemistry and structure of the Earth's interior. We have measured the electrical conductivity of Al, Fe-bearing perovskite (Pv), the most abundant lower mantle phase, using a laser-heated diamond-anvil cell (LHDAC). The sample with composition Mg0.83Fe0.21Al0.06Si0.91O3 (Fe3+/?Fe ratio ~ 0.4) was synthesized at 26 GPa and 2073 K using a multianvil press. Sample resistance was measured in situ at high pressure and high temperature up to 82 GPa and 2000 K. Results show a continuous increase in electrical conductivity with increasing pressure, in contrast to some previous studies of (Mg,Fe)SiO3 perovskite and a pyrolite assemblage where a decrease in conductivity was observed at higher pressure. Our results suggest that (1) incorporation of aluminum in Pv has a strong effect on its electrical conductivity and evolution with pressure; (2) spin crossover of Fe3+ does not occur or its effect on the conductivity is small in Al, Fe-bearing Pv, and (3) the contribution of ferropericlase to the electrical conductivity of pyrolite may be significant. The electrical conductivity profile of the Earth's lower mantle derived from geomagnetic data can be better explained by a pyrolitic bulk chemical composition rather than a non-pyrolitic model such as one based solely on perovskite.

  4. Crystal structure of the NaCa(Fe{sup 2+}, Al, Mn){sub 5}[Si{sub 8}O{sub 19}(OH)](OH){sub 7} {center_dot} 5H{sub 2}O mineral: A new representative of the palygorskite group

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2012-01-15

    A specimen of a new representative of the palygorskite-sepiolite family from Aris phonolite (Namibia) is studied by single-crystal X-ray diffraction. The parameters of the triclinic (pseudomonoclinic) unit cell are as follows: a = 5.2527(2) Angstrom-Sign , b = 17.901(1) Angstrom-Sign , c = 13.727(1) Angstrom-Sign , {alpha} = 90.018(3) Degree-Sign , {beta} = 97.278(4) Degree-Sign , and {gamma} = 89.952(3) Degree-Sign . The structure is solved by the direct methods in space group P1-bar and refined to R = 5.5% for 4168 |F| > 7{sigma}(F) with consideration for twinning by the plane perpendicular to y (the ratio of the twin components is 0.52: 0.48). The crystal chemical formula (Z = 1) is (Na{sub 1.6}K{sub 0.2}Ca{sub 0.2})[Ca{sub 2}(Fe{sub 3.6}{sup 2+}Al{sub 1.6}Mn{sub 0.8})(OH){sub 9}(H{sub 2}O){sub 2}][(Fe{sub 3.9}{sup 2+}Ti{sub 0.1})(OH){sub 5} (H{sub 2}O){sub 2}][Si{sub 16}O{sub 38}(OH){sub 2}] {center_dot} 6H{sub 2}O, where the compositions of two ribbons of octahedra and a layer of Si tetrahedra are enclosed in brackets. A number of specific chemical, symmetrical, and structural features distinguish this mineral from other minerals of this family, in particular, from tuperssuatsiaite and kalifersite, which are iron-containing representatives with close unit cell parameters.

  5. Magnetic and structural properties of ferromagnetic Fe5PB2 and Fe5SiB2 and effects of Co and Mn substitutions

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Parker, David S.

    2015-10-01

    Crystallographic and magnetic properties of Fe5PB2, Fe4CoPB2, Fe4MnPB2, Fe5SiB2, Fe4CoSiB2, and Fe4MnSiB2 are reported. All adopt the tetragonal Cr5B3 structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe5SiB2 is observed as an anomaly in the magnetization near 170 K and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggest smaller magnetic anisotropy in the silicides. Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments by 16%-20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe5PB2 and Fe5SiB2, with negative thermal expansion seen along the c-axis of Fe5SiB2. First principles calculations of the magnetic properties of Fe5SiB2 and Fe4MnSiB2 are reported. The results, including the magnetic moment and anisotropy, are in good agreement with experiment.

  6. Spin glass behavior in FeAl

    E-print Network

    Lue, CS; Oner, Y.; Naugle, Donald G.; Ross, JH.

    2001-01-01

    Magnetic and transport measurements indicate FeAl2 to be an ordered intermetallic spin glass, with canonical behavior including a susceptibility cusp at T-f = 35 K and frequency-dependent susceptibility below T-f. The field-cooled and zero...

  7. Processing and properties of FeAl-bonded composites

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.; Alexander, K.B.; Becher, P.F.

    1996-12-31

    Iron aluminides are thermodynamically compatible with a wide range of ceramics such as carbides, borides, oxides, and nitrides, which makes them suitable as the matrix in composites or cermets containing fine ceramic particulates. For ceramic contents varying from 30 to 60 vol.%, composites of Fe-40 at. % Al with WC, TiC, TiB{sub 2}, and ZrB{sub 2} were fabricated by conventional liquid phase sintering of powder mixtures. For ceramic contents from 70 to 85 vol.%, pressureless melt infiltration was found to be a more suitable processing technique. In FeAl-60 vol.% WC, flexure strengths of up to 1.8 GPa were obtained, even though processing defects consisting of small oxide clusters were present. Room temperature fracture toughnesses were determined by flexure testing of chevron-notched specimens. FeAl/WC and FeAl/TiC composites containing 60 vol.% carbide particles exhibited K{sub Q} values around 20 MPa m{sup 1/2}. Slow crack growth measurements carried out in water and in dry oxygen suggest a relatively small influence of water-vapor embrittlement. It appears therefore that the mechanical properties of iron aluminides in the form of fine ligaments are quite different from their bulk properties. Measurements of the oxidation resistance, dry wear resistance, and thermal expansion of iron aluminide composites suggest many potential applications for these new materials.

  8. Stability of FeAl(110) alloy surface structures: a first-principles study

    NASA Astrophysics Data System (ADS)

    Pan, J. L.; Ni, J.; Yang, B.

    2010-02-01

    We have studied the stability of FeAl(110) alloy surface structures by first-principles calculations. A general method is employed to determine the allowed chemical potential range for the surface structures of alloys with several bulk ground state structures. We show that there are three stable surface structures, the Fe:Al=1:1, Fe:Al=1:2 and Fe:Al=1:3 surface structures, within the allowed chemical potential range for FeAl bulk. In the three stable surface structures, surface buckling extends deep into the bulk layers. For the Fe:Al=1:1 surface structure, the surface Al atoms displace outwards and surface Fe atoms move inwards relative to their bulk positions. The Fe:Al=1:2 and Fe:Al=1:3 surfaces show large surface rippling due to composition reconstruction of the surface.

  9. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material

    E-print Network

    Zheng, Yufeng

    tests in Hank's solution till 6 months, cytotoxicity and hemolysis tests. It's found that Fe30Mn6Si application and the hemolysis percentage is less than 2%. In conclusion, Fe30Mn6Si alloy is a promising, cytotoxicity and hemolysis of Fe30Mn6Si alloy was further studied. 2. Materials and methods Commercial pure

  10. Development of a Cast Al-Mg2Si-Si In Situ Composite: Microstructure, Heat Treatment, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Georgatis, E.; Lekatou, A.; Karantzalis, A. E.; Petropoulos, H.; Katsamakis, S.; Poulia, A.

    2013-03-01

    An Al-11Mg2Si-Si in situ composite was prepared by a modified investment casting technique that employs sub-pressure for castability improvement and immersion of ceramic shell molds in fluidized beds of silica sand and iron particles for heat extraction improvement. The microstructure of the as-cast composite is explained according to the pseudoeutectic Al-Mg2Si phase diagram. The positive effect of a decreased number of mold investment layers and cooling assisted by immersion of the mold in a metallic bed on the tensile strength and hardness of the heat treated composite is noted. A minor presence of Fe in the master alloys constitutes an essential factor for the brittleness of the composite. Solution treatment notably improves the tensile strength of the composite; however, prolonged treatment deteriorates its ductility. The effect of time and temperature of the aging treatment on the hardness of the composite is investigated. The positive influence of cooling assisted by a metallic fluidized bed on the effectiveness of the aging treatment is noticed.

  11. Endotaxially stabilized B2-FeSi nanodots in Si (100) via ion beam co-sputtering

    SciTech Connect

    Cassidy, Cathal Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Lal, Chhagan; Sowwan, Mukhles

    2014-04-21

    We report on the formation of embedded B2-FeSi nanodots in [100]-oriented Si substrates, and investigate the crystallographic mechanism underlying the stabilization of this uncommon, bulk-unstable, phase. The nanodots were approximately 10?nm in size, and were formed by iron thin film deposition and subsequent annealing. Cross-sectional transmission electron microscopy, energy loss spectroscopy mapping, and quantitative image simulation and analysis were utilized to identify the phase, strain, and orientational relationship of the nanodots to the host silicon lattice. X-ray photoelectron spectroscopy was utilized to analyze the surface composition and local bonding. Elasticity calculations yielded a nanodot residual strain value of ?18%. Geometrical phase analysis graphically pinpointed the positions of misfit dislocations, and clearly showed the presence of pinned (11{sup ¯}1{sup ¯}){sub Si}//(100){sub FeSi}, and unpinned (2{sup ¯}42){sub Si}//(010){sub FeSi}, interfaces. This partial endotaxy in the host silicon lattice was the mechanism that stabilized the B2-FeSi phase.

  12. Structural study on nickel doped Li2FeSiO4

    NASA Astrophysics Data System (ADS)

    Jaén, Juan A.; Jiménez, Miguel; Flores, Eibar; Muñoz, Alcides; Tabares, Jesús A.; Pérez Alcázar, Germán A.

    2015-06-01

    The effect of nickel doping on the structure of Li2FeSiO4 is examined by X-ray diffraction, Mössbauer spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectrometer, and magnetization measurements. Both, the pristine and nickel doped Li2FeSiO4, crystallize in a monoclinic structure with ( P21/ n) symmetry. Their lattice parameters are similar, which suggests that Ni2+ doesn't destroy the lattice structure. Some small amounts of Fe3+ impurity phases and unreacted Li2SiO3 are detected. Samples doped with more than 10 mol% contain some magnetic impurity of Fe-Ni alloy. Magnetic measurements indicated that Li2FeSiO4 is paramagnetic and becomes antiferromagnetic below 23 K. Nickel dopant does not modify the paramagnetic nature of this material.

  13. Transport and magnetic properties of the Co2MnSi/Al/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Zhang, H. B.; Jiang, X. F.; Zheng, Y.; Yang, G. W.

    2012-05-01

    Using density functional theory and non-equilibrium Green's function analysis, we studied the interface structure, interface stability, and magnetic and transport properties of the Co2MnSi/Al/Co2MnSi trilayer. It was found that only the CoCo/Al architecture is thermodynamically stable among four interfacial architectures, CoCo/Al, MnSi/Al, MnMn/Al, and SiSi/Al, and the other interface architectures are not accessible within the limits set under thermodynamic equilibrium with other phases. Calculations of the transmission spectrum, conductance, and resistance-area product showed that the Co2MnSi/Al/Co2MnSi trilayer is a promising candidate for the next-generation of recording sensors in ultrahigh-density hard disks.

  14. Photoelectric properties of p-?-FeSi2/n-4H-SiC heterojunction near-infrared photodiode

    NASA Astrophysics Data System (ADS)

    Chunlei, Zheng; Hongbin, Pu; Hong, Li; Zhiming, Chen

    2015-05-01

    We give the first report on the experimental investigation of a p-?-FeSi2/n-4H-SiC heterojunction. A p-?-FeSi2/n-4H-SiC heterojunction near-infrared photodiode was fabricated on 4H-SiC substrate by magnetron sputtering and rapid thermal annealing (RTA). Sharp film—substrate interfaces were confirmed by scanning electron microscopy (SEM). The current density—voltage and photoresponse characteristics were measured. The measurements showed that the device exhibited good rectifying properties. The photocurrent density was about 1.82 mA/cm2 at a bias voltage of -1 V under illumination by a 5 mW, 1.31 ?m laser, and the dark current density was approximately 0.537 mA/cm2. The detectivity was estimated to be 8.8 × 109 cmHz1/2/W at 1.31 ?m. All of the measurements were made at room temperature. The results suggest that the p-?-FeSi2/n-4H-SiC heterojunctions can be used as near-infrared photodiodes that are applicable to optically-activated SiC-based devices. Project supported by the National Natural Science Foundation of China (No. 51177134).

  15. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    SciTech Connect

    Khanbabaee, B. Pietsch, U.; Lützenkirchen-Hecht, D.; Hübner, R.; Grenzer, J.; Facsko, S.

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5?keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1?×?10{sup 17} and 5?×?10{sup 17} ions cm{sup ?2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  16. Ab initio study of 59Co NMR spectra in Co2FeAl1-xSix Heusler alloys

    NASA Astrophysics Data System (ADS)

    Nishihara, H.; Sato, K.; Akai, H.; Takiguchi, C.; Geshi, M.; Kanomata, T.; Sakon, T.; Wada, T.

    2015-05-01

    Ab initio electronic structure calculation of a series of Co2FeAl1-xSix Heusler alloys has been performed, using the Korringa-Kohn-Rostoker-coherent potential approximation method to explain experimental 59Co NMR spectra. Two prominent features are explained semi-quantitatively-a global shift of the 59Co resonance line due to alloying with Al and Si atoms in Co2FeAl1-xSix, and the effect of local disorder in creating distinct satellite lines of 59Co NMR in Co2FeAl. The importance is stressed of the positive contribution to the 59Co hyperfine field from valence electron polarization, which emerges from the half-metallic band structure inherent in Co-based Heusler alloys.

  17. Cordierite-garnet-sillimanite-quartz equilibrium: I. New experimental calibration in the system FeO-Al2O3-SiO2-H2O and certain P-T- X H2O relations

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Biswajit; Holdaway, Michael J.

    1994-05-01

    The equilibrium in which hydrous Fe-cordierite breaks down to almandine, sillimanite, quartz, and water was previously experimentally determined by Richardson (1968) and Holdaway and Lee (1977) using QMF buffer and by Weisbrod (1973) using QIF buffer. All these studies yielded similar results — a negative dP/dT slope for the equilibrium curve. However, based on theoretical arguments, Martignole and Sisi (1981), and based on Fe-Mg partitioning experiments on coexisting cordierite and garnet in equilibrium with sillimanite and quartz, Aranovich and Podlesskii (1983) suggested that this equilibrium curve has a positive dP/dT slope and its position depends on the water content of the equilibrium cordierite. We have redetermined this equilibrium using a much improved tecnique of detecting reaction direction, and cordierite starting material that contained virtually no hercynite. Hercynite was present as a contaminant in the cordierites of previous experimental studies and possibly reacted with quartz during the experimental runs to expand the apparent stability field of Fe-cordierite. We synthesized Fe-cordierite from reagent grade oxides at 710°C and 2 kbar (using QMF buffer) with two intermediate stages of grinding and mixing. The cordierite has a unit cell volume of 1574.60 Å3 (molar volume=23.706 J/bar) and no Fe3+ as indicated by X-ray diffraction and room temperature Mössbauer studies respectively. Reaction direction was concluded by noting?20% change of the ratios of intensities of two key X-ray diffraction peaks of cordierite and almandine. Our results show that the four-phase equilibrium curve passes through the points 2.1 kbar, 650°C and 2.5 kbar, 750°C. This disagrees with all previous experimental studies. H2O in the Fe-cordierite, equilibrated at 2.2 kbar and 700°C and determined by H-extraction line in the stable isotope laboratory, is 1.13 wt% ( n=0.41 moles). H2O content of pure Mg-cordierite equilibrated under identical conditions and determined by thermogravimentric conditions and determined by thermogravimetric analysis is 1.22 wt% ( n=0.40). Similar determinations on Fe-cordierite and Mg-cordierite equilibrated at 2.0 kbar and 650°C show 1.27 wt% ( n=0.46) and 1.47 wt% ( n=0.48) of H2O respectively. Thus, H2O content appears to be independent of Fe/Mg ratio in cordierite, a conclusion which supports previous experimental determinations. The experimentally determined equilibrium curve represents conditions of PH2O=Ptotal. From this we calculated the anhydrous curve representing equilibrium under conditions of X {H2O/V}=0.0. A family of calculated equilibrium curves of constant n {H2O/ Cord } cut the experimentally determined curve at a very small angle indicating a slight variation in n {H2O/ Cord } in cordierite in equilibrium with almandine, sillimanite, and quartz under the conditions of constant X {H2O/V}. Ancther set of calculated equilibrium curves, each representing constant a {H2O/V} demonstrate that the slopes of the curves vary with X {H2O/V}, and are all positive in the full range of 0.0? X {H2O/V}?1.0.

  18. Screened moments and absence of ferromagnetism in FeAl

    NASA Astrophysics Data System (ADS)

    Galler, A.; Taranto, C.; Wallerberger, M.; Kaltak, M.; Kresse, G.; Sangiovanni, G.; Toschi, A.; Held, K.

    2015-11-01

    While the stoichiometric intermetallic compound FeAl is found to be paramagnetic in experiment, standard band-theory approaches predict the material to be ferromagnetic. We show that this discrepancy can be overcome by a better treatment of electronic correlations with density-functional plus dynamical mean-field theory. Our results show no ferromagnetism down to 100 K and since the susceptibility is decreasing at the lowest temperatures studied we also do not expect ferromagnetism at even lower temperatures. This behavior is found to originate from temporal quantum fluctuations that screen short-lived local magnetic moments of 1.6 ?B on Fe.

  19. Transmission electron microscopy characterization of laser-clad iron-based alloy on Al-Si alloy

    SciTech Connect

    Mei, Z. . E-mail: mikemei_99@yahoo.com; Wang, W.Y.; Wang, A.H.

    2006-04-15

    Microstructure characterization is important for controlling the quality of laser cladding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the iron-based alloy laser-clad on Al-Si alloy and an unambiguous identification of phases in the coating was accomplished. It was found that there is austenite, Cr{sub 7}C{sub 3} and Cr{sub 23}C{sub 6} in the clad region; {alpha}-Al, NiAl{sub 3}, Fe{sub 2}Al{sub 5} and FeAl{sub 2} in the interface region; and {alpha}-Al and silicon in the heat-affected region. A brief discussion was given for their existence based on both kinetic and thermodynamic principles.

  20. The Origin of the Galactic 26Al and 60Fe

    NASA Astrophysics Data System (ADS)

    Suades, Moisès; Hernanz, Margarita; de Séréville, Nicolas

    The radioactive nucleus 26Al (1Myr lifetime) was the first cosmic radioactivity ever detected, through its gamma ray emission line at 1.809MeV, with the HEAO-3 satellite in the 80's. More recently, COMPEL instrument onboard CGRO made the first all-sky map of its diffuse emission in the Galaxy, which revealed that 1.8MeV photons trace the massive star population, but with room to other potential important producers like AGB stars and novae. The SPI instrument of the current ESA mission INTEGRAL has corroborated the detection of the 26Al line with excellent spectroscopic resolution, and has also detected the two lines at 1.173 and 1.333MeV of 60Fe (2Myr lifetime), yielding an observed 60Fe/26Al gamma ray flux ratio which can not be reproduced with current theoretical determinations based solely on massive stars. We will discuss the contribution of the different stellar scenarios to the global 26Al and 60Fe content of the Milky Way and give an interpretation of the recent INTEGRAL observations.

  1. Refinement performance and mechanism of an Al-50Si alloy

    SciTech Connect

    Dai, H.S.; Liu, X.F.

    2008-11-15

    The microstructure and melt structure of primary silicon particles in an Al-50%Si (wt.%) alloy have been investigated by optical microscopy, scanning electron microscopy, electron probe micro-analysis and a high temperature X-ray diffractometer. The results show that the Al-50Si alloy can be effectively refined by a newly developed Si-20P master alloy, and the melting temperature is crucial to the refinement process. The minimal overheating degree {delta}T{sub min} ({delta}T{sub min} is the difference between the minimal overheating temperature T{sub min} and the liquidus temperature T{sub L}) for good refinement is about 260 deg. C. Primary silicon particles can be refined after adding 0.2 wt.% phosphorus amount at sufficient temperature, and their average size transforms from 2-4 mm to about 30 {mu}m. The X-ray diffraction data of the Al-50Si melt demonstrate that structural change occurs when the melting temperature varies from 1100 deg. C to 1300 deg. C. Additionally, the relationship between the refinement mechanism and the melt structure is discussed.

  2. Current Transport in Al-Diffused ZnO/Si Heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Jen; Tong, Chong; Yun, Juhyung; Anderson, Wayne A.

    2015-01-01

    The current-voltage-temperature (I-V-T) characteristics of transparent Al-doped ZnO (AZO) on n-Si heterojunction structures were analyzed with respect to two different Al diffusion temperatures, 200°C and 600°C. Thin films of Al were deposited on top of the ZnO/Si structures, followed by introducing the Al atoms into the ZnO to form AZO through a process of thermal diffusion. Measurements at temperatures of 150-400 K were carried out in order to understand the temperature dependence of the heterostructure diode characteristics for photovoltaic applications. The results indicated the difference in current mechanisms observed in the two diodes with different Al-diffusion temperatures and Al thicknesses. The charge transport mechanism in the 200°C diodes indicated thermionic field emission (TFE) as the dominating mechanism, whereas the 600°C diodes resulted in field emission (FE) as the dominating current transport. The differences in conduction mechanisms explain the better solar cell performance using the 200°C process.

  3. Influence of extra La and annealing temperature on microstructure and magnetocaloric properties of La-Fe-Co-Si alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongtian; He, Chun; Zhang, Mingxiao; Liu, Jian

    2015-11-01

    The microstructure, phase constitution and magnetocaloric properties of non-stoichiometric La1.7Fe11Co0.8Si1.2 alloys were investigated. Compared with stoichiometric La(Fe,Co,Si)13 alloys, a complex phase, including La(Fe,Co,Si)13 phase, La5Si3 phase, La(Fe,Co)Si phase, ?-Fe phase and La oxide, can rapidly form upon annealing at 1323 K for 24 h in the present alloy. The resulting alloy exhibits a large magnetic entropy change of 7.5 J kg-1 K-1 at 271 K in a magnetic field change of 2 T. In addition, the annealed La1.7Fe11Co0.8Si1.2 alloy shows a reversible magnetic phase transition with zero hysteresis. These characteristics indicate that the present La-rich La-Fe-Co-Si compounds have potential for the applications as ambient magnetic refrigeration materials.

  4. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    SciTech Connect

    Mandal, Durbadal; Viswanathan, Srinath

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1-48 hrs. • A layer of 50-75 nm is formed at interface after heat treatment. • No Carbide formation and SiC dissolution is observed at this temperature. • MgAl{sub 2}O{sub 4}, CuMgAl{sub 2} phases are segregated at interface of Al-SiC composite. • Mg and Cu are also segregated at near to the grain boundary.

  5. Room-temperature fabrication of ?-FeSi2 microprecipitates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2004-10-01

    We have developed a room-temperature fabrication process for ?-FeSi2 microprecipitates through the active use of droplets generated by pulsed laser deposition. The droplets generated by KrF excimer laser ablation of an ?-FeSi2 metallic target were characterized by micro-Raman spectroscopy with a spatial resolution of 1 ?m and X-ray diffraction measurements. As a result, it was confirmed that the micron-sized droplets precipitated as the ?-FeSi2 semiconducting phase on silicon and silica glass substrates maintained even at room temperature, whereas the rest of the deposited film was amorphous. It was also found that films containing a high density of ?-FeSi2 microprecipitates exhibited 1.55 ?m photoluminescence at low temperature after annealing at 800°C for 6 h in an argon atmosphere.

  6. Templated fabrication and characterization of SiO{sub 2} nanotube covered Fe nanowires

    SciTech Connect

    Dastagir, Tawab; Yu, Hongbin

    2014-05-07

    In this study, Fe nanowires coated with SiO{sub 2} nanotubes have been synthesized by electrodeposition method using anodic alumina oxide template. Before growing Fe nanowires, 6–8?nm thick SiO{sub 2} nanotubes are grown inside the template using a “surface sol-gel” technique. The nanotube structures were characterized by field emission scanning electron microscopy and energy dispersive x-ray spectroscopy. Magnetic properties of the SiO{sub 2} insulated Fe nanowires inside the membrane are characterized by superconducting quantum interference device. Coercivities of around 120?Oe with field parallel to the nanowire axis and 240?Oe with field perpendicular the nanowire axis are observed at room temperature. These values are comparable to Fe nanowires without insulating layer in membrane. The magnetic hysteresis loop suggests that the SiO{sub 2} insulated nanowires have uniaxial magnetic anisotropy with the easy axis magnetization direction along the nanowire arrays due to their large shape anisotropy.

  7. Ferromagnetism and nonmetallic transport of thin-film ?-FeSi(2): a stabilized metastable material.

    PubMed

    Cao, Guixin; Singh, D J; Zhang, X-G; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E Andrew; Biegalski, Michael; Ward, T Z; Mandrus, David; Stocks, G M; Gai, Zheng

    2015-04-10

    A metastable phase ?-FeSi_{2} was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on ?-FeSi_{2} (111) thin films, while the bulk material of ?-FeSi_{2} is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of ?-FeSi_{2} obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding sheds light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications. PMID:25910157

  8. Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber

    NASA Astrophysics Data System (ADS)

    Kim, Moon Suk; Min, Eui Hong; Koh, Jae Gui

    2009-03-01

    The raw materials of FeSiCr were processed in the ball mill for 30 h and the shape of the FeSiCr particles was changed from sphere to flake type, which was observed using a scanning electron microscope. And FeSiCr composite microwave absorbers were mixed with silicone for mobile phones and the effects of the thickness of the samples on the absorption were measured using a network analyzer in order to investigate the relationship between the microwave absorption and the material constants. The flake-type FeSiCr-rubber composite showed high reflection loss, which was due to the high complex permittivity and permeability. Also, the matching frequency shifted toward lower frequency range with microwave absorber thickness, and the maximum reflection loss of -8.7 dB was observed in 1.85 GHz for a 1.6 mm thickness.

  9. Ferromagnetism and Nonmetallic Transport of Thin-Film ? - FeSi 2 : A Stabilized Metastable Material

    DOE PAGESBeta

    Cao, Guixin; Singh, D.?J.; Zhang, X.-G.; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; et al

    2015-04-07

    A metastable phase ?-FeSi? was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on ?-FeSi? (111) thin films, while the bulk material of ?-FeSi? is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of ?-FeSi? obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding shedsmore »light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.« less

  10. Electronic and optical properties of isostructural {beta}-FeSi{sub 2} and OsSi{sub 2}

    SciTech Connect

    Migas, D. B.; Miglio, Leo; Henrion, W.; Rebien, M.; Marabelli, F.; Cook, B. A.; Shaposhnikov, V. L.; Borisenko, V. E.

    2001-08-15

    We present both theoretical and experimental investigations of electronic and optical properties of isostructural {beta}-FeSi{sub 2} and OsSi{sub 2} by means of a full-potential linear augmented plane wave method and optical measurements. We report also ellipsometric and reflectance measurements on samples of polycrystalline osmium disilicide prepared by mechanical alloying. From ab initio calculations these compounds are found to be indirect band-gap semiconductors with the fundamental gap of OsSi{sub 2} larger some 0.3--0.4 eV than the one of {beta}-FeSi{sub 2}. In addition to that, a low value of the oscillator strength is predicted for the first direct transitions in both cases. Computed optical functions for these materials were compared to the ones deduced from optical measurements, indicating very good agreement and the presence of some anisotropic effects.

  11. Elasticity and inelasticity of the SiC/Al-13Si-9Mg biomorphic metal ceramics

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Orlova, T. S.; Smirnov, B. I.; Wilkes, T. E.; Faber, K. T.

    2008-10-01

    The acoustic investigations of the elastic (Young’s modulus) and microplastic properties of a composite material, the SiC/Al-13Si-9Mg biomorphic metal ceramic, were performed. The ceramic was prepared by infiltration of the Al-13Si-9Mg melt into porous silicon carbide derived from wood of two species of trees, beech and sapele. The measurements were performed with a composite piezoelectric vibrator under resonance conditions, with rod-shaped samples vibrated longitudinally at about 100 kHz over a wide range of vibrational strain amplitudes, which included both the linear (amplitude-independent) and nonlinear (microplastic) regions. It was shown that the Young’s modulus and the microplastic properties of the composite are anisotropic and depend substantially on the tree species, particularly when longitudinal vibrations are excited in samples cut along the tree fibers.

  12. Phosphorus Equilibrium Between Liquid Iron and CaO-SiO2-MgO-Al2O3-FeO-P2O5 Slag Part 1: Literature Review, Methodology, and BOF Slags

    NASA Astrophysics Data System (ADS)

    Assis, Andre N.; Tayeb, Mohammed A.; Sridhar, Seetharaman; Fruehan, Richard J.

    2015-10-01

    Although the phosphorus reaction in steelmaking has been extensively studied, it continues to be a relevant topic as low phosphorus iron sources become less available and more expensive, necessitating the need for more accurate predictions of the partitioning of phosphorous as function of slag composition and temperature. The current study revisits some of the relevant literature on the topic and details the methodology and experimental setup used in recent studies on phosphorus equilibrium between liquid iron and slags. New data for BOF-type slags are presented, where equilibrium was approached from both metal and slag sides i.e., phosphorus was transferred from metal to slag and vice versa. It was found that slags with basicities higher than 2.5 and FeO contents around 20 to 25 wt pct can promote extensive dephosphorization, and high L P, ((pct P)/[pct P]), values were observed i.e., greater than 500.

  13. Missing superconductivity in BaAlSi with the AlB 2 type structure

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shoji; Otsuki, Teruyoshi; Ide, Takayuki; Fukuoka, Hiroshi; Kumashiro, Ryotaro; Rachi, Takeshi; Tanigaki, Katsumi; Guo, FangZhun; Kobayashi, Keisuke

    2007-01-01

    The solid solutions BaAl 1- xSi 1+ x (0 ? x ? 0.5) were prepared. The compound with the stoichiometric composition ( x = 0) did not show superconductivity as reported by other investigators, but the solid solutions with x > 0 became superconductors with a transition temperature Tc = 2.8 K. The comparison of the lattice parameters with those of the other isotypic ternary superconductors MAlSi (M = Ca, Sr) suggested that the superconductivity could be related to the lattice parameter within the (AlSi) plane rather than the interlayer spacing. The band structures near the Fermi level of MAlSi (M = Ca, Sr, Ba) were measured using soft X-ray photoelectron spectroscopy, which were in good agreement with the calculated ones, confirming that the contribution of the d orbitals of the alkaline-earth metals were predominant in the conduction bands.

  14. Properties of Si-doped GaN and AlGaN/GaN heterostructures grown by RF-MBE on high resistivity Fe-doped GaN

    NASA Astrophysics Data System (ADS)

    Iliopoulos, E.; Zervos, M.; Adikimenakis, A.; Tsagaraki, K.; Georgakilas, A.

    2006-10-01

    Silicon-doped GaN epilayers and AlGaN/GaN heterostructures were developed by nitrogen plasma-assisted molecular beam epitaxy on high resistivity iron-doped GaN (0001) templates and their properties were investigated by atomic force microscopy, x-ray diffraction and Hall effect measurements. In the case of high electron mobility transistors heterostructures, the AlN mole fraction and the thickness of the AlGaN barrier employed were in the range of from 0.17 to 0.36 and from 7.5 to 30 nm, respectively. All structures were capped with a 2 nm GaN layer. Despite the absence of Ga droplets formation on the surface, growth of both GaN and AlGaN by RF-MBE on the GaN (0001) surfaces followed a step-flow growth mode resulting in low surface roughness and very abrupt heterointerfaces, as revealed by XRD. Reciprocal space maps around the (101¯5) reciprocal space point reveal that the AlGaN barriers are fully coherent with the GaN layer. GaN layers, n-doped with silicon in the range from 10 15 to 10 19 cm -3 exhibited state of the art electrical properties, consistent with a low unintentional background doping level and low compensation ratio. The carrier concentration versus silicon cell temperatures followed an Arhenius behaviour in the whole investigated doping range. The degenerate 2DEG, at the AlGaN/GaN heteroiterfaces, exhibited high Hall mobilities reaching 1860 cm 2/V s at 300 K and 10 220 cm 2/V s at 77 K for a sheet carrier density of 9.6E12 cm -2. The two dimensional degenerate electron gas concentration in the GaN capped AlGaN/GaN structures was also calculated by self-consistent solving the Schrödinger-Poisson equations. Comparison with the experimental measured values reveals a Fermi level pinning of the GaN (0001) surface at about 0.8 eV below the GaN conduction band.

  15. High temperature properties of equiatomic FeAl with ternary additions

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Vedula, K. M.; Anderson, G. G.

    1985-01-01

    The aluminide intermetallic compounds are considered potential structural materials for aerospace applications. The B2 binary aluminide FeAl has a melting point in excess of 1500 K, is of simple cubic structure, exists over a wide range of composition with solubility for third elements and is potentially self-protecting in extreme environments. The B2 FeAl compound has been alloyed with 1 to 5 at. pct ternary additions of Si, Ti, Zr, Hf, Cr, Ni, Co, Nb, Ta, Mo, W, and Re. The alloys were prepared by blending a third elemental powder with pre-alloyed binary FeAl powder. Consolidation was by hot extrusion at 1250 K. Annealing studies on the extruded rods showed that the third element addition can be classified into three categories based upon the amount of homogenization and the extent of solid solutioning. Constant strain rate compression tests were performed to determine the flow stress as a function of temperature and composition. The mechanical strength behavior was dependent upon the third element homogenization classification.

  16. High temperature properties of equiatomic FeAl with ternary additions

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Vedula, K. M.; Anderson, G. G.

    1984-01-01

    The aluminide intermetallic compounds are considered potential structural materials for aerospace applications. The B2 binary aluminide FeAl has a melting point in excess of 1500 K, is of simple cubic structure, exits over a wide range of composition with solubility for third elements and is potentially self-protecting in extreme environments. The B2 FeAl compound has been alloyed with 1 to 5 at % ternary additions of Si, Ti, Zr, Hf, Cr, Ni, Co, Nb, Ta, Mo, W, and Re. The alloys were prepared by blending a third elemental powder with prealloyed binary FeAl powder. Consolidation was by hot extrusion at 1250 K. Annealing studies on the extruded rods showed that the third element addition can be classified into three categories based upon the amount of homogenization and the extent of solid solutioning. Constant strain rate compression tests were performed to determine the flow stress as a function of temperature and composition. The mechanical strength behavior was dependent upon the third element homogenization classification.

  17. Magnetic ordering in Ho{sub 2}Fe{sub 2}Si{sub 2}C

    SciTech Connect

    Susilo, R. A. Cadogan, J. M.; Cobas, R.; Hutchison, W. D.; Campbell, S. J.; Avdeev, M.

    2015-05-07

    We have used neutron diffraction and {sup 57}Fe Mössbauer spectroscopy, complemented by magnetisation and specific heat measurements, to examine the magnetic ordering of Ho{sub 2}Fe{sub 2}Si{sub 2}C. We have established that Ho{sub 2}Fe{sub 2}Si{sub 2}C orders antiferromagnetically below T{sub N}?=?16(1) K with a magnetic structure involving ordering of the Ho sublattice along the b-axis with a propagation vector k=[0?0?1/2 ]. {sup 57}Fe Mössbauer spectra collected below T{sub N} show no evidence of a magnetic splitting, demonstrating the absence of long range magnetic ordering of the Fe sublattice. A small line broadening is observed in the {sup 57}Fe spectra below T{sub N}, which is due to a transferred hyperfine field—estimated to be around 0.3?T at 10?K—from the Ho sublattice.

  18. Atomic arrangement at the AlN/SiC interface

    SciTech Connect

    Ponce, F.A.; Van de Walle, C.G.; Northrup, J.E.

    1996-03-01

    The lattice structure of the AlN/SiC interface has been studied in cross section by high-resolution transmission-electron microscopy. Lattice images show planar and crystallographically abrupt interfaces. The atomic arrangement at the plane of the interface is analyzed based on the image characteristics. Possible bonding configurations are discussed. Variations in local image contrast and interplanar separations are used to identify atomic bonding configurations consistent with the lattice images. {copyright} {ital 1996 The American Physical Society.}

  19. Preparation of Fe-doped colloidal SiO2 abrasives and their chemical mechanical polishing behavior on sapphire substrates.

    PubMed

    Lei, Hong; Gu, Qian; Chen, Ruling; Wang, Zhanyong

    2015-08-20

    Abrasives are one of key influencing factors on surface quality during chemical mechanical polishing (CMP). Silica sol, a widely used abrasive in CMP slurries for sapphire substrates, often causes lower material removal rate (MRRs). In the present paper, Fe-doped colloidal SiO2 composite abrasives were prepared by a seed-induced growth method in order to improve the MRR of sapphire substrates. The CMP performance of Fe-doped colloidal SiO2 abrasives on sapphire substrates was investigated using UNIPOL-1502 CMP equipment. Experimental results indicate that the Fe-doped colloidal SiO2 composite abrasives exhibit lower surface roughness and higher MRR than pure colloidal SiO2 abrasives for sapphire substrates under the same testing conditions. Furthermore, the acting mechanism of Fe-doped colloidal SiO2 composite abrasives in sapphire CMP was analyzed by x-ray photoelectron spectroscopy. Analytical results show that the Fe in the composite abrasives can react with the sapphire substrates to form aluminum ferrite (AlFeO3) during CMP, which promotes the chemical effect in CMP and leads to improvement of MRR. PMID:26368752

  20. Properties of Intruder States in 34Al and 34Si

    NASA Astrophysics Data System (ADS)

    Rotaru, F.; Lica, R.; Negoita, F.; Grévy, S.; Marginean, N.; Dessagne, Ph.; Stora, T.; Borcea, C.; Borcea, R.; Calinescu, S.; Daugas, J. M.; Filipescu, D.; Kuti, I.; Fraille, L. M.; Franchoo, S.; Gheorghe, I.; Marginean, R.; Mihai, C.; Morfouace, P.; Mrazek, J.; Morel, P.; Negret, A.; Pietreanu, D.; Sava, T.; Sohler, D.; Stanoiu, M.; Stefan, I.; Suvaila, R.; Toma, S.

    We report on two experimental results for nuclei located in the region of the N = 20 island of inversion. In the first experiment, performed at GANIL, we have discovered and studied the 02 + state in 34Si and made the hypothesis that it was fed by the beta-decay of a predicted isomeric 1+ state in 34Al. In the second experiment, performed at ISOLDE, we have studied the beta-decay of 34Mg in order to obtain information on the structure of 34Al and in particular the position of the isomeric 1+ state.

  1. Microstructure analysis of Al-Si-Cu alloys prepared by gradient solidification technique

    NASA Astrophysics Data System (ADS)

    Borkar, Hemant; Seifeddine, Salem; Jarfors, Anders E. W.

    2015-03-01

    Al-Si-Cu alloys were cast with the unique gradient solidification technique to produce alloys with two cooling rates corresponding to secondary dendrite arm spacing (SDAS) of 9 and 27 ?m covering the microstructural fineness of common die cast components. The microstructure was studied with optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscattered diffraction (EBSD). The alloy with higher cooling rate, lower SDAS, has a more homogeneous microstructure with well distributed network of eutectic and intermetallic phases. The results indicate the presence of Al-Fe-Si phases, Al-Cu phases and eutectic Si particles but their type, distribution and amount varies in the two alloys with different SDAS. EBSD analysis was also performed to study the crystallographic orientation relationships in the microstructure. One of the major highlights of this study is the understanding of the eutectic formation mechanism achieved by studying the orientation relationships of the aluminum in the eutectic to the surrounding primary aluminum dendrites.

  2. Large-scale synthesis of ear-like Si{sub 3}N{sub 4} dendrites from SiO{sub 2}/Fe composites and Si powders

    SciTech Connect

    Wang Feng; Jin Guoqiang; Wang Yingyong; Guo Xiangyun

    2008-07-01

    Large-scale ear-like Si{sub 3}N{sub 4} dendrites were prepared by the reaction of SiO{sub 2}/Fe composites and Si powders in N{sub 2} atmosphere. The product was characterized by field emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The results reveal that the product mainly consists of ear-like Si{sub 3}N{sub 4} dendrites with crystal structures, which have a length of several microns and a diameter of 100-200 nm. Nanosized ladder-like Si{sub 3}N{sub 4} was also obtained when changing the Fe content in the SiO{sub 2}/Fe composites. The Si{sub 3}N{sub 4} nanoladders have a length of hundreds nanometers to several microns and a width of 100-300 nm. The ear-like Si{sub 3}N{sub 4} dendrites are formed from a two-step growth process, the formation of inner stem structures followed by the epitaxial growth of secondary branches.

  3. Behavior of insoluble particles during parabolic flight solidification processing of Fe-C-Si and Fe-C-V alloys

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Fiske, M. R.; Curreri, P. A.

    1986-01-01

    In a high-g rapid solidification environment, Fe-base alloy insoluble particles at the solidification interface may be pushed ahead of the interface or may be trapped in the solid, depending on the correlation of various interface energies, the solidification rates, and the Stokes force; particle agglomeration due to buoyancy-driven convection further complicates the problem. Attention is presently given to results obtained for directionally solidified Fe-C-Si and Fe-C-V alloys during parabolic low-g flight and ground experiments. In these systems, graphite and vanadium carbide can be considered to be the insoluble particles.

  4. Microstructure and degradation behavior of forged Fe-Mn-Si alloys

    NASA Astrophysics Data System (ADS)

    Xu, Zhigang; Hodgson, Michael A.; Cao, Peng

    2015-03-01

    This work presents a comparative study of a series of Fe-Mn-Si alloys proposed as degradable biomaterials for medical applications. Five Fe-28wt.%Mn-xSi (where x = 0 to 8 wt.%) alloys were fabricated by an arc-melting method. All the as-cast alloys were subsequently subjected to homogenization treatment and hot forging. The microstructure and phase constituents were investigated. It is found that the grain size of the as-forged alloys ranged approximately from 30 to 50 ?m. The as-forged Fe-Mn-Si alloys containing Si from 2 to 6 wt.% was comprised of duplex martensitic ? and austenitic ? phases; however, the Si-free and 8 wt.% Si alloys only consisted of a single ? phase. After 30 days of static immersion test in a simulated body fluid (SBF) medium, it is found that pitting and general corrosion occur on the sample surfaces. Potentiodynamic analysis reveals that the degradation rate of the Fe-Mn-Si alloys increased gradually with Si content up to 6 wt.%, beyond which the degradation slows down.

  5. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in-situ composite

    SciTech Connect

    Farahany, Saeed; Nordin, Nur Azmah; Ourdjini, Ali; Abu Bakar, TutyAsma; Hamzah, Esah; Idris, Mohd Hasbullah; Hekmat-Ardakan, Alireza

    2014-12-15

    The phase transformation sequence and solidification behaviour of an Al–13Mg–7Si–2Cu in-situ composite was examined using a combination of computer-aided cooling curve thermal analysis and interrupted quenching techniques. Five different phases were identified by analysing the derivative cooling curves, the X-ray diffraction profile, optical and scanning electron microscopy images and the corresponding energy dispersive spectroscopy. It has been found that the solidification of this alloy begins with primary Mg{sub 2}Si precipitation and continues with the formation of eutectic Al–Mg{sub 2}Si, followed by Al{sub 5}FeSi and simultaneous precipitation of Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 2}Cu complex intermetallic phases. The formation of the last three intermetallic compounds changes the solidification behaviour of these composites remarkably due to their complex eutectic formation reactions. The solidification of the alloy, calculated using the Factsage thermochemical analysis software, has demonstrated a good agreement with the experiments in terms of compound prediction, their weight fractions and reaction temperatures. - Highlights: • Solidification path of a commercial Al-13Mg-7Si-2Cu composite was characterized. • Five different phases were identified and then confirmed with EDS and XRD results. • Mg{sub 2}Si, Al-Mg{sub 2}Si,Al{sub 5}FeSi (?),Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) and Al{sub 2}Cu(?) precipitated respectively. • Solidification was predicted using the Factsage thermochemical analysis software.

  6. Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    2004-01-01

    The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.

  7. High-pressure synthesis and superconductivity of the Laves phase compound Ca(Al,Si)2 composed of truncated tetrahedral cages Ca@(Al,Si))12.

    PubMed

    Tanaka, Masashi; Zhang, Shuai; Inumaru, Kei; Yamanaka, Shoji

    2013-05-20

    The Zintl compound CaAl2Si2 peritectically decomposes to a new ternary cubic Laves phase Ca(Al,Si)2 and an Al-Si eutectic at temperatures above 750 °C under a pressure of 13 GPa. The ternary Laves phase compound can also be prepared as solid solutions Ca(Al(1-x)Si(x))2 (0.35 ? x ? 0.75) directly from the ternary mixtures under high-pressure and high-temperature conditions. The cubic Laves phase structure can be regarded as a type of clathrate compound composed of face-sharing truncated tetrahedral cages with Ca atoms at the center, Ca@(Al,Si)12. The compound with a stoichiometric composition CaAlSi exhibits superconductivity with a transition temperature of 2.6 K. This is the first superconducting Laves phase compound composed solely of commonly found elements. PMID:23654286

  8. XPS study of the Al/SiO2 interface viewed from the SiO2 side

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Grunthaner, F. J.; Maserjian, J.

    1984-01-01

    The first nondestructive measurement of the chemical and physical characteristics of the interface between bulk SiO2 and thick aluminum films is presented. Both X-ray photoelectron spectroscopy (XPS) and electrical measurements of unannealed resistively evaporated Al films on thermal SiO2 indicate an atomically abrupt interface. Postmetallization annealing (PMA) at 450 C induces reduction of the SiO2 by the aluminum, resulting in the layer ordering SiO2/Al2O3/Si/Al. The XPS measurement is performed from the SiO2 side after removal of the Si substrate after etching with XeF2 gas and thinning of the SiO2 layer with HF:ETOH. This represents a powerful new approach to the study of metal-insulator and other interfaces.

  9. Investigation of the {Fe}/{Si} interface and its phase transformations

    NASA Astrophysics Data System (ADS)

    Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.

    1997-04-01

    Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.

  10. Equation of State of Amorphous MgSiO3 and (MgFe)SiO3 to Lowermost Mantle Pressures

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Petitgirard, S.; Malfait, W.; Kupenko, I.; Rubie, D. C.

    2014-12-01

    Melting phenomena have a crucial importance during the Earth's formation and evolution. For example, a deep magma ocean of 1000 km or more has lead to the segregation of the core. Tomographic images of the Earth reveal ultra-low velocity zones at the core-mantle boundary that may be due to the presence of dense magmas or remnant zones of a deep basal magma ocean [1]. Unfortunately, measurements of amorphous silicate density over the entire pressure regime of the mantle are scarce and the density contrast between solid and liquid are difficult to assess due to the lack of such data. Only few studies have reported density measurements of amorphous silicates at high-pressure, with limitation up to 60 GPa. High-pressure acoustic velocity measurements have been used to calculate the density of MgSiO3 glass up to 30 GPa [2] but exhibit a large discrepancy compared to recent calculations [3]. SiO2 glass was measured up to 55 GPa using the X-ray absorption method through the diamond anvils [4] and very recently, X-ray diffraction has been used to infer the density of basaltic melt up to 60 GPa [5]. Here we report density measurement of MgSiO3 glass up to 130 GPa and (MgFe)SiO3 glass up to 55 GPa using a novel variation of the X-ray absorption method. The sample contained in a beryllium gasket was irradiated with a micro-focus X-ray beam in two directions: perpendicular and parallel to the compression axis to obtain the absorption coefficient and density under pressure. Our data constrain the first experimental EoS for (Mg,Fe)SiO3 and the first EoS for MgSiO3 up to lowermost mantle pressures. Technical details and EoS parameters will be shown in the presentation. We will address the implications for melts in the deep Earth based on compressibility, bulk modulus and density contrasts between iron-free and iron-bearing glasses. [1] Labrosse S. et al. Nature 2007 [2] Sanchez-Valle C. et al. Earth Planet. Sc. Lett. 2010 [3] Ghosh D. et al Am. Mineral. 2014 [4] Sato T. et al Phys. Rev. Lett. 2008 [5] Sanloup C. et al Nature 2013

  11. Wear and Friction Behavior of the Spray-Deposited SiCp/Al-20Si-3Cu Functionally Graded Material

    NASA Astrophysics Data System (ADS)

    Su, B.; Yan, H. G.; Chen, J. H.; Zeng, P. L.; Chen, G.; Chen, C. C.

    2013-05-01

    The spray-deposited SiCp/Al-20Si-3Cu functionally graded material (FGM) can meet the structure design requirements of brake disk. The effects of rotational speed and load on the wear and friction behaviors of the SiCp/Al-20Si-3Cu FGM sliding against the resin matrix friction material were investigated. For comparison, the wear and friction behaviors of a commercially used cast iron (HT250) brake rotor were also studied. The results indicate that the friction coefficient of the SiCp/Al-20Si-3Cu FGM decreases constantly with the increase of load or rotational speed and is affected by the gradient distribution of SiC particles. The wear rate of the SiCp/Al-20Si-3Cu FGM firstly increases, then decreases and finally increases again with increasing load or speed, and is about 1/10 of that of HT250. Based on observations and analyses on the morphology and substructure of the worn surface, the mechanical mixing layer acts as a protective coating and lubricant, and its thickness reduces with the SiC content increasing. Furthermore, it is proposed that the dominant wear mechanism of SiCp/Al-20Si-3Cu FGM changes from the abrasive wear to the oxidative wear and further to the delamination wear with increasing load or speed.

  12. Structural Evolution of Fe Particles in Fe-Al2O3 Granular Films by Ar Ion Irradiations

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiro; Ishida, Tomoya; Kinoshita, Ryosuke; Purwanto, Setyo; Sakamoto, Isao; Honda, Shigeo; Koike, Masaki; Yasumoto, Masato; Hayashi, Nobuyuki; Toriyama, Tamotsu

    2013-01-01

    Fe-Al2O3 granular films were prepared by helicon plasma sputtering. Fe64(Al2O3)36 in volume percent of as-prepared films was irradiated with 400 keV Ar ions in the fluence range of 1×1015-5×1016 ions/cm2. The growth of Fe particles with increasing ion fluence was observed from X-ray diffraction (XRD) patterns, magnetization curves, and conversion electron Mössbauer (CEM) spectra. The magnetization curves and CEM spectra of as-prepared Fe-Al2O3 films indicated the superparamagnetic nature and the ferromagnetic nature with increasing ion fluence. In addition, the reduction of Fe3+ component to the Fe2+ and metallic Fe components by ion irradiation was observed from CEM spectra.

  13. Synthesis and characterization of Fe2O3/SiO2 nanocomposites.

    PubMed

    Bogatyrev, V M; Gun'ko, V M; Galaburda, M V; Borysenko, M V; Pokrovskiy, V A; Oranska, O I; Polshin, E V; Korduban, O M; Leboda, R; Skubiszewska-Zieba, J

    2009-10-15

    Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (S(BET)=337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400-900 degrees C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6-17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500-600 degrees C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only alpha-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12-0.15 g/cm3 and S(BET)=265-310 m2/g. PMID:19596124

  14. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    NASA Astrophysics Data System (ADS)

    Xu, Hu-ping; Wang, Ru-wu; Wei, Ding; Zeng, Chun

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis-Bennett model were 476 kJ/mol and 5.5×1018 s-1, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson-Mehl-Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability ?e, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a "percent permeability" of more than 82% at H=100 Oe.

  15. Anomalous microstructure and magnetocaloric properties in off-stoichiometric La-Fe-Si and its hydride

    NASA Astrophysics Data System (ADS)

    He, Chun; Zhang, Ming-Xiao; Shao, Yan-Yan; Dong, Jing-Du; Yan, A.-Ru; Liu, Jian

    2015-07-01

    In the present work we reported the phase formation, microstructure, magnetocaloric effect and hydrogenation behavior of La-rich La1.7Fe11.6Si1.4 alloy. In this off-stoichiometric La(Fe,Si)13 alloy, the NaZn13-type La(Fe,Si)13 matrix phase shows faceted grains, with the Cr5B3-type La5Si3 used as the secondary phase distributed intergranularly. Such a peculiar morphology quickly forms upon one day annealing. In La1.7Fe11.6Si1.4 alloy, we have observed a significant field dependence of magnetostructural transition temperature (˜ 6.3 K/T), resulting in a large and table-like entropy change (?S ˜ 18 J/kg·K in 2 T) over a broad temperature range (˜ 10 K). Upon hydrogenation, the maximum value of ?S keeps almost unchanged, while the Curie temperature increases up to 350 K. These results indicate that the investigated off-stoichiometric La(Fe,Si)13 alloy is a promising magnetic material for magnetic refrigerators. Project supported by the National Natural Science Foundation of China (Grant No. 51371184) and the Outstanding Youth Fund of Zhejiang Province, China (Grant No. LR14E010001).

  16. Enhanced thermal conductivity in off-stoichiometric La-(Fe,Co)-Si magnetocaloric alloys

    NASA Astrophysics Data System (ADS)

    Shao, Yanyan; Zhang, Mingxiao; Luo, Hubin; Yan, Aru; Liu, Jian

    2015-10-01

    A dual-phase structure consisting of the NaZn13-type (1:13) matrix and a secondary (Fe,Co)-Si phase is designed in Fe-rich La-(Fe,Co)-Si compounds. As the extra-Fe doping altered Co content of the 1:13 phase, the magnetic entropy change keeps to be a relatively large magnitude of 6.7-7.7 J/kg K in 265-290 K for 2 T field change. In addition, mechanical properties were apparently improved by second-phase strengthening. The primary significance in this work is that the composition modification in matrix phase brings about a drastic increase in the thermal conductivity, which can be ascribed to the weakening effect of phonon point-defect-scattering. On the basis of Neilsen two-phase system model, the electrical conductivity of dispersed (Fe,Co)-Si phase plays very limited contribution to the enhanced thermal transport properties in composites. Our results demonstrate that the combined merits of high thermal conductivity, improved mechanical properties, large magnetic entropy change, and tunable transition temperature can be simultaneously realized in Fe-rich La-(Fe,Co)-Si composite materials.

  17. Solute redistribution during phase separation of ternary Fe-Cu-Si alloy

    NASA Astrophysics Data System (ADS)

    Luo, S. B.; Wang, W. L.; Xia, Z. C.; Wu, Y. H.; Wei, B.

    2015-06-01

    Ternary Fe48Cu48Si4 immiscible alloy was rapidly solidified under the containerless microgravity condition inside a drop tube. Liquid phase separation took place in the alloy melt and led to the formation of various segregated structures. The core-shell structure consisting of Fe-rich and Cu-rich zones and the homogenously dispersed structure were the major structural morphologies. Phase field simulation results revealed that the two-layer core-shell was the final structure of liquid phase separation. The solute redistribution of liquid Fe48Cu48Si4 alloy experienced the macroscopic solute distribution induced by liquid phase separation, the secondary phase separation within the separated liquid phases and the solute trapping during rapid solidification. Energy dispersive spectroscopy analysis showed that the solute Si was enriched in the Fe-rich zone whereas depleted in the Cu-rich zone. In addition, both ?Fe and (Cu) phases in the Fe-rich zone exhibited a conspicuous solute trapping effect. As compared with (Cu) phase, ?Fe phase had a stronger affinity with solute Si.

  18. Tailoring of a metastable material: alfa-FeSi2 thin film

    SciTech Connect

    Cao, Guixin; Singh, David J; Zhang, Xiaoguang; Samolyuk, German D; Qiao, Liang; Parish, Chad M; Ke, Jin; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E Andrew; Biegalski, Michael D; Ward, Thomas Zac; Sales, Brian C; Mandrus, D.; Stocks, George Malcolm; Gai, Zheng

    2015-01-01

    The epitaxially stabilized metallic -FeSi2 thin films on Si(001) were grown using pulsed laser deposition. While the bulk material of -FeSi2 is a high temperature metastable phase and nonmagnetic, the thin film is stabilized at room temperature and shows unusual electronic transport and magnetic properties due to strain modification. The transport renders two different conducting states with a strong crossover at 50 K accompanied by an onset of ferromagnetism as well as a substantial magnetocaloric effect and magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of -FeSi2 obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our findings provide an example of a tailored material with interesting physics properties for practical applications.

  19. The change in magnetic properties of Fe 3Al compound due to substitution of Fe by Co

    NASA Astrophysics Data System (ADS)

    Coelho, Adelino A.; Imaizumi, Momotaro; Laks, Bernardo; Araújo, Alexandre A.; Mota, Marilsa A.; Gama, Sergio; Jafelicci, Miguel; Varanda, Laudemir C.

    2004-05-01

    The magnetic moment using self-consistent spin-polarized energy band calculations of Fe 3Al and Fe 2CoAl Heusler phases are presented. These results are compared with the experimental values obtained from the magnetization curves of these materials.

  20. In Situ Al Based Composites Fabricated in Al-SiO2-C System by Reaction Sintering

    NASA Astrophysics Data System (ADS)

    Mokhnache, El Oualid; Wang, Guisong; Geng, Lin; Kaveendran, Balasubramaniam; Henniche, Abdelkhalek; Ramdani, Noureddine

    2015-07-01

    In situ Al-based composites with different SiO2/C/Al molar ratios were fabricated by reaction hot pressing. Differential scanning calorimetry (DSC) was used to investigate the reaction mechanisms in the Al-SiO2-C system. X-ray diffraction results revealed that no new resultant phase was observed below the melting temperature of aluminum except the SiO2, C and Al phases. Heating at different synthesis temperatures showed that, up to 1000°C with a holding time of 1 h, the reactions in the Al-SiO2-C system took place completely, where the final products were Al2O3, SiC, Al4C3 and Si. Microstructural observation showed that the in situ synthesized Al2O3, SiC, Al4C3, and Si were dispersed uniformly and had fine sizes less than 2 µm. The formed interfaces between the reinforcements and Al matrix are clean and free from any interfacial phase. During cooling, the synthesized Si formed a multilayer growth in the (111) direction. When the SiO2/C/Al molar ratio was (6/3/9), more Al2O3 and Si were produced along with the complete prevention of Al4C3 in the Al-SiO2-C system. The yield strength, ultimate tensile strength and Brinell hardness of the in situ fabricated composites are significantly higher than those of pure aluminum matrix, with a decrease of ductility. Mechanisms governing the tensile fracture process are also discussed.

  1. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-12-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  2. Impact of SiO2 on Al-Al thermocompression wafer bonding

    NASA Astrophysics Data System (ADS)

    Malik, Nishant; Schjølberg-Henriksen, Kari; Poppe, Erik U.; Taklo, Maaike M. V.; Finstad, Terje G.

    2015-03-01

    Al-Al thermocompression bonding suitable for wafer level sealing of MEMS devices has been investigated. This paper presents a comparison of thermocompression bonding of Al films deposited on Si with and without a thermal oxide (SiO2 film). Laminates of diameter 150?mm containing device sealing frames of width 200?µm were realized. The wafers were bonded by applying a bond force of 36 or 60?kN at bonding temperatures ranging from 300-550?°C for bonding times of 15, 30 or 60?min. The effects of these process variations on the quality of the bonded laminates have been studied. The bond quality was estimated by measurements of dicing yield, tensile strength, amount of cohesive fracture in Si and interfacial characterization. The mean bond strength of the tested structures ranged from 18-61?MPa. The laminates with an SiO2 film had higher dicing yield and bond strength than the laminates without SiO2 for a 400?°C bonding temperature. The bond strength increased with increasing bonding temperature and bond force. The laminates bonded for 30 and 60?min at 400?°C and 60?kN had similar bond strength and amount of cohesive fracture in the bulk silicon, while the laminates bonded for 15?min had significantly lower bond strength and amount of cohesive fracture in the bulk silicon.

  3. Fracture toughness of SiC/Al metal matrix composite

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Parker, B. H.; Chu, H. P.

    1989-01-01

    An experimental study was conducted to evaluate fracture toughness of SiC/Al metal matrix composite (MMC). The material was a 12.7 mm thick extrusion of 6061-T6 aluminum alloy with 40 v/o SiC particulates. Specimen configuration and test procedure conformed to ASTM E399 Standard for compact specimens. It was found that special procedures were necessary to obtain fatigue cracks of controlled lengths in the preparation of precracked specimens for the MMC material. Fatigue loading with both minimum and maximum loads in compression was used to start the precrack. The initial precracking would stop by self-arrest. Afterwards, the precrack could be safely extended to the desired length by additional cyclic tensile loading. Test results met practically all the E399 criteria for the calculation of plane strain fracture toughness of the material. A valid K sub IC value of the SiC/Al composite was established as K sub IC = 8.9 MPa square root of m. The threshold stress intensity under which crack would cease to grow in the material was estimated as delta K sub th = 2MPa square root of m for R = 0.09 using the fatigue precracking data. Fractographic examinations show that failure occurred by the micromechanism involved with plastic deformation although the specimens broke by brittle fracture. The effect of precracking by cyclic loading in compression on fracture toughness is included in the discussion.

  4. A comparative wear study on Al-Li and Al-Li/SiC composite

    SciTech Connect

    Okumus, S. Cem Karslioglu, Ramazan Akbulut, Hatem

    2013-12-16

    Aluminum-lithium based unreinforced (Al-8090) alloy and Al-8090/SiCp/17 vol.% metal matrix composite produced by extrusion after spray co-deposition. A dry ball-on disk wear test was carried out for both alloy and composite. The tests were performed against an Al{sub 2}O{sub 3} ball, 10 mm in diameter, at room temperature and in laboratory air conditions with a relative humidity of 40-60%. Sliding speed was chosen as 1.0 ms{sup ?1} and normal loads of 1.0, 3.0 and 5.0 N were employed at a constant sliding distance of 1000 m. The wear damage on the specimens was evaluated via measurement of wear depth and diameter. Microstructural and wear characterization was carried out via scanning electron microscopy (SEM). The results showed that wear loss of the Al-8090/SiC composite was less than that of the Al-8090 matrix alloy. Plastic deformation observed on the wear surface of the composite and the matrix alloy, and the higher the applied load the greater the plastic deformation. Scanning electron microscopy examinations of wear tracks also reveal that delamination fracture was the dominant wear mechanism during the wear progression. Friction coefficient was maximum at the low applied load in the case of the Al-8090/SiC composite while a gradual increase was observed with applied load for the matrix alloy.

  5. Alloying effects of Ni, Si, and S on the phase diagram and sound velocities of Fe under high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Lin, J.; Fei, Y.; Sturhahn, W.; Zhao, J.; Mao, H.; Hemley, R.

    2004-05-01

    Iron-nickel is the most abundant constituent of the Earth's core. The amount of Ni in the core is about 5.5 wt%. Geophysical and cosmochemical studies suggest that the Earth's outer core also contains approximately 10% of light element(s) and a certain amount of light element(s) may be present in the inner core. Si and S are believed to be alloying light elements in the iron-rich planetary cores such as the Earth and Mars. Therefore, understanding the alloying effects of Ni, Si, and S on the phase diagram and physical properties of Fe under core conditions is crucial for geophysical and geochemical models of planetary interiors. The addition of Ni and Si does not appreciably change the compressibility of hcp-Fe under high pressures. Studies of the phase relations of Fe and Fe-Ni alloys indicate that Fe with up to 10 wt% Ni is likely to be in the hcp structure under inner core conditions. On the other hand, adding Si into Fe strongly stabilizes the bcc structure to much higher pressures and temperatures (Lin et al., 2002). We have also studied the sound velocities and magnetic properties of Fe0.92Ni0.08, Fe0.85Si0.15, and Fe3S alloys with nuclear resonant inelastic x-ray scattering and nuclear forward scattering up to 106 GPa, 70 GPa, and 57 GPa, respectively. The sound velocities of the alloys are obtained from the measured partial phonon density of states for 57Fe incorporated in the alloys. Addition of Ni slightly decreases the VP and VS of Fe under high pressures (Lin et al., 2003). Si or S alloyed with Fe increases the VP and VS under high pressures, which provides a better match to seismological data of the Earth's core. We note that the increase in the VP and VS of Fe0.85Si0.15 and Fe3S is mainly contributed from the density decrease of adding Si and S in iron. Time spectra of the nuclear forward scattering reveal that the most iron rich sulfide, Fe3S, undergoes a magnetic to non-magnetic transition at approximately 18 GPa from a low-pressure magnetically ordered state to a high-pressure non-magnetic ordered state. The magnetic transition significantly affects the elastic, thermodynamic, and vibrational properties of Fe3S. It is conceivable that the magnetic collapse of Fe3S may also affect the binary phase diagram of the iron-sulfur system, changing the solubility of sulfur in iron under higher pressures. Study of the non-magnetic phase is more relevant to understand the properties of the Fe3S under planetary core conditions where high pressures and high temperature ensure the non-magnetic ordering state, affecting the interpretation of the amount and properties of sulfur being in the planetary cores. If the Martian core is in the solid state containing 14.2 wt% sulfur, it is likely that the non-magnetic Fe3S phase is a dominant component and that our measured sound velocities of Fe3S can be used to understand the velocity profile in the Martian core.

  6. Disproportionation of (Mg,Fe)SiO? perovskite in Earth's deep lower mantle.

    PubMed

    Zhang, Li; Meng, Yue; Yang, Wenge; Wang, Lin; Mao, Wendy L; Zeng, Qiao-Shi; Jeong, Jong Seok; Wagner, Andrew J; Mkhoyan, K Andre; Liu, Wenjun; Xu, Ruqing; Mao, Ho-kwang

    2014-05-23

    The mineralogical constitution of the Earth's mantle dictates the geophysical and geochemical properties of this region. Previous models of a perovskite-dominant lower mantle have been built on the assumption that the entire lower mantle down to the top of the D? layer contains ferromagnesian silicate [(Mg,Fe)SiO3] with nominally 10 mole percent Fe. On the basis of experiments in laser-heated diamond anvil cells, at pressures of 95 to 101 gigapascals and temperatures of 2200 to 2400 kelvin, we found that such perovskite is unstable; it loses its Fe and disproportionates to a nearly Fe-free MgSiO3 perovskite phase and an Fe-rich phase with a hexagonal structure. This observation has implications for enigmatic seismic features beyond ~2000 kilometers depth and suggests that the lower mantle may contain previously unidentified major phases. PMID:24855264

  7. Structural, Optical, and Electrical Characterization of Al/ n-ZnO/ p-Si/Al Heterostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Rajender; Chand, Subhash

    2015-01-01

    For heterojunction fabrication, zinc oxide thin films were grown on p-Si by pulsed laser deposition. X-ray diffraction patterns were used to study the grain size and morphology of the films. The optical properties of the films were studied by UV-visible and photoluminescence spectroscopy. Experimental observations confirmed that the deposited films have potential for sharp emission in the visible region. High-purity (99.999%) vacuum evaporated aluminium metal was used to make contacts to the n-ZnO and p-Si. The current-voltage characteristics of the Al/ n-ZnO/ p-Si(100)/Al heterostructure measured over the temperature range 60-300 K were studied on the basis of the thermionic emission diffusion mechanism. The equivalent Schottky barrier height and the diode ideality factor were determined by fitting measured current-voltage data to the thermionic emission diffusion equation. It was observed that the barrier height decreased and the ideality factor increased with decreasing temperature, and that the activation energy plot was non-linear at low temperature. These characteristics are attributed to the Gaussian distribution of barrier heights. The capacitance-voltage characteristics of the Al/ n-ZnO/ p-Si(100)/Al heterostructure diode were studied over a wide temperature range. The impurity concentration in deposited n-type ZnO films was estimated from measured capacitance-voltage data.

  8. Structural and magnetic stability of Fe{sub 2}NiSi

    SciTech Connect

    Gupta, Dinesh C. Bhat, Idris Hamid Chauhan, Mamta

    2014-04-24

    Full-potential ab-initio calculations in the stable F-43m phase have been performed to investigate the structural and magnetic properties of Fe{sub 2}NiSi inverse Heusler alloys. The spin magnetic moment distributions show that present material is ferromagnetic in stable F-43m phase. Further, spin resolved electronic structure calculations show that the discrepancy in magnetic moments of Fe-I and Fe-II depend upon the hybridization of Fe with the main group element. It is found that the main group electron concentration is predominantly responsible in establishing the magnetic properties, formation of magnetic moments and the magnetic order for present alloy.

  9. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  10. Speciation and crystal chemistry of Iron(III) chloride hydrolyzed in the presence of SiO{sub 4} ligands. 1. An Fe K-edge EXAFS study

    SciTech Connect

    Doelsch, E.; Rose, J.; Masion, A.; Bottero, J.Y.; Nahon, D.; Bertsch, P.M.

    2000-05-16

    The hydrolysis of Fe-Si systems with Si/Fe ratios between 0 and 4 leads to the formation of poorly crystalline or, more frequently, of long-range disorganized precipitates. The increase of Si/Fe molar ratios results in a dramatic change of Fe polymerization. The formation of double and single corner-sharing Fe linkages is reduced compared to pure Fe hydrolysis products. The growth regime depends on the Si concentration in the system. Three-dimensional and two-dimensional growth of Fe colloids occurs at low and high Si/Fe ratios, respectively, systems with Si/Fe ratios around 1 representing a crossover between these two regimes. Though Si neighbors cannot be detected unequivocally by Fe K-edge EXAFS, their presence in the close environment of Fe atoms is evident from the change in Fe speciation.

  11. Atomic scale study of CU clustering and pseudo-homogeneous Fe-Si nanocrystallization in soft magnetic FeSiNbB(CU) alloys.

    PubMed

    Pradeep, K G; Herzer, G; Raabe, D

    2015-12-01

    A local electrode atom probe has been employed to trace the onset of Cu clustering followed by their coarsening and subsequent growth upon rapid (10s) annealing of an amorphous Fe73.5Si15.5Cu1Nb3B7 alloy. It has been found that the clustering of Cu atoms introduces heterogeneities in the amorphous matrix, leading to the formation of Fe rich regions which crystallizes pseudo-homogeneously into Fe-Si nanocrystals upon annealing. In this paper, we present the data treatment method that allows for the visualization of these different phases and to understand their morphology while still quantifying them in terms of their size, number density and volume fraction. The crystallite size of Fe-Si nanocrystals as estimated from the atom probe data are found to be in good agreement with other complementary techniques like XRD and TEM, emphasizing the importance of this approach towards accurate structural analysis. In addition, a composition driven data segmentation approach has been attempted to determine and distinguish nanocrystalline regions from the remaining amorphous matrix. Such an analysis introduces the possibility of retrieving crystallographic information from extremely fine (2-4nm sized) nanocrystalline regions of very low volume fraction (< 5Vol%) thereby providing crucial in-sights into the chemical heterogeneity induced crystallization process of amorphous materials. PMID:25907803

  12. Behavior of iron in (Mg,Fe)SiO3 post-perovskite assemblages at Mbar pressures

    E-print Network

    Jackson, Jennifer M.

    Behavior of iron in (Mg,Fe)SiO3 post-perovskite assemblages at Mbar pressures Jennifer M. Jackson,1- perovskite (PPv) structured (57 Fe,Mg)SiO3 has been measured in-situ at 1.12 and 1.19 Mbar at room. Sturhahn, O. Tschauner, M. Lerche, and Y. Fei (2009), Behavior of iron in (Mg,Fe)SiO3 post-perovskite

  13. Importance of Doping and Frustration in Itinerant Fe-doped Cr2Al

    SciTech Connect

    Susner, Michael A; Parker, David S; Safa-Sefat, Athena

    2015-01-01

    We have performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x 0.125 after which point increasing paramagnetic behavior is exhibited. This is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  14. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    NASA Astrophysics Data System (ADS)

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-10-01

    We have performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a Néel temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to ?170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x?0.125 after which point increasing paramagnetic behavior is exhibited. This is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two causes: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  15. Size Effect of SiC Particle on Microstructures and Mechanical Properties of SiCp/Al Composites

    E-print Network

    Qin, Qinghua

    matrix composites reinforced with ceramic particles have some attractive properties such as high strengthCp/Al composites were fabricated using aluminum alloy ZL101 as the matrix material, and SiC particles a composite is stretched, most of external load transfers from soft Al matrix to hard SiCp reinforcement

  16. In situ Ultrasonic Velocity Measurements Across the Olivine-spinel Transformation in Fe2Si04

    SciTech Connect

    Liu, Q.; Liu, W; Whitaker, M; Wang, L; Li, B

    2010-01-01

    Compressional (P) and shear (S) wave velocities across the olivine-spinel transformation in Fe{sub 2}SiO{sub 4} were investigated in situ using combined synchrotron X-ray diffraction, X-ray imaging, and ultrasonic interferometry up to 5.5 GPa along the 1173 K isotherm. The onset of the spinel to olivine transformation at 4.5 GPa and olivine to spinel transition for Fe{sub 2}SiO{sub 4} at 4.8 GPa was concurrently observed from X-ray diffraction, the amplitude of the ultrasonic signals, the calculated velocities, and the ratio of P and S wave velocities (v{sub P}/v{sub S}). No velocity softening was observed prior to the fayalite to spinel transition. The velocity contrasts across the Fe{sub 2}SiO{sub 4} spinel to fayalite phase transition are derived directly from the measured velocities, which are 13 and 12% for P and S waves, respectively, together with a density contrast of 9.4%. A comparison with literature data indicates that the changes in compressional-wave velocity and density across the olivine-spinel transformation in Fe{sub 2}SiO{sub 4} are comparable to those with different iron concentrations in the (Mg,Fe){sub 2}SiO{sub 4} solid solution, whereas the shear wave velocity contrast decreases slightly with increasing iron concentration.

  17. Research on the property of electro-deposited Ni-Fe-SiC alloy for MEMS

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaohu; Gu, Feng

    2011-11-01

    Electrolytic codeposition technique was adopted in the deposition of Ni-Fe-SiC composite coating on stainless steel substrate, using nickel alloyed with iron as the binder phase with SiC as dispersed particles. The results indicated that the deposit with SiC nanoparticles was level and compact; the crystal-planes of the deposit were (111), (220) and (200). The resistivity of deposit was about 30??•cm. when the Fe(wt.%) ranged from 10% to 50% in the deposit, the electrodeposit Ni-20%Fe-SiC has a strong paramagnetism effect with the smallest coercivity of 2.75×10-2 A/m. The remanence showed a monotonic decrease with the increasing iron content in deposit. Which proved that the electroformed Ni-Fe-SiC alloy has good electromagnetic property and higher corrosion resistance (with the corrosion rate 0.17 mg/dm2 per hour) than those of electroforming Ni-Fe alloy. It is a promising material in the fabrication of micro actuator.

  18. Preparation of Fe-Si-Ni soft magnetic composites with excellent high-frequency properties

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Wu, Chen; Yan, Mi

    2015-05-01

    Fe-Si-Ni powders were firstly prepared into soft magnetic composites (SMCs) by ball milling, surface passivation and subsequent compaction. The morphology, phase composition, and magnetic properties of the Fe-Si-Ni powders and their high-frequency performance as SMCs were investigated. The Fe-Si-Ni powders, with saturation magnetization (Ms) of 254.40 emu/g after annealing, were milled down to particle sizes ranging from 40 ?m to 150 ?m. Surface passivation of the powders was carried out with 0.2-1.0 wt% phosphoric acid solution prior to compaction. Evolution of the high-frequency properties for the Fe-Si-Ni SMCs with the passivator concentration and the molding pressure was studied. With optimized preparation parameters, high saturation flux density (Bs) of 1.23 T, stable permeability, and superior dc-bias property with a percentage permeability above 70% while H=50 Oe were achieved for the Fe-Si-Ni SMC. Minimum core loss (285 mW/cm3) was also measured at 50 kHz for Bm=50 mT.

  19. Magnetic properties of FeAlMnC steels

    NASA Astrophysics Data System (ADS)

    Jen, S. U.; Yao, Y. D.; Huang, P. L.; Lee, C. C.; Chang, S. C.

    1990-05-01

    A series of high yielding strength (90-180 ksi) and high-elongation (30%-45%) FeAlMnC steels have been made. The magnetic, microstructural, and thermal expansion properties of these steels have been studied. Basically, their magnetic transitions on cooling can be classified into three groups according to their microstructures: (i) For fully austenitic (?) steels, the transition is from paramagnetic to antiferromagnetic. TN is lowered with the addition of Al; (ii) for ?+? phase steel (volume fraction of ??0.3%), the transition is from superparamagnetic to antiferromagnetic, and (iii) for the mixed phase steel, whose ? phase has percolated, it is ferromagnetic with TC?200 C. The susceptibility of austenitic steels is low. Their nonmagnetic properties are comparable to commercial 304 or 25/12 stainless steel. An Invar-like property in the thermal expansion was observed around TN. Their volume magnetostriction values are in the range of 10-6-10-5.

  20. Structure of Ti-Al-Si-N gradient coatings

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. V.; Korotaev, A. D.; Pinzhin, Yu. P.

    2015-05-01

    The microstructure, the stresses, and the elemental composition of Ti-Al-Si-N gradient coatings are studied by transmission electron microscopy and electron-probe microanalysis of thin foils prepared in the cross section of the coatings. As the concentration of the elements that alloy titanium nitride increases across the coating thickness, the structure of the coating changes from submicrocrystalline columnar grains to nanocrystalline grains. In these structural states, the structural characteristics (lattice parameter, lattice bending-torsion, crystal size, type of intragranular defect structure) and the residual stresses change. The magnitude and the sign of residual stresses change when the type of structural state changes.

  1. Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe

    NASA Astrophysics Data System (ADS)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2014-01-01

    The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.

  2. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  3. Sulfidation-Oxidation Behavior of FeCrAl and TiCrAl and the Third-Element Effect

    SciTech Connect

    Brady, Michael P; Tortorelli, Peter F; More, Karren Leslie; Walker, Larry R

    2010-01-01

    Short-term sulfidation-oxidation exposures were conducted under high pS2 and low pO2 conditions for TiCrAl and FeCrAl alloys at 600 and 800 C. Low mass gains and submicron Al-rich oxide scales were formed on the TiCrAl, while high mass gains and FeS-based scale formation were observed for FeCrAl. Based on the good behavior of the TiCrAl, third-element effect additions of Cr are not inherently detrimental under sulfidation-oxidation conditions. Rather, differences in the mechanistic action of the third-element addition of Cr between FeCrAl and TiCrAl alloys and its relevance to low oxygen potential sulfidation-oxidation environments were the key factors in determining whether or not a protective alumina scale was established. For FeCrAl, no internal oxidation of Al was observed, which suggested that effects related to secondary gettering were not sufficient to yield protective Al2O3 formation in these environments. Rather, it was proposed that additional third-element effect benefits of Cr based on the existence of solid solutions among Al, Cr, and Fe oxides to mitigate rapid transient Fe-oxide formation were rendered ineffective because FeS formation was thermodynamically favored over Fe-oxide in the environment. In the case of TiCrAl, the stability of Ti-oxide in the sulfidation-oxidation environment and the non-classical third-element effects of Cr on promoting protective Al2O3 scale led to good corrosion resistance.

  4. Surface structure and electronic states of epitaxial ?-FeSi2(100)/Si(001) thin films: Combined quantitative LEED, ab initio DFT, and STM study

    NASA Astrophysics Data System (ADS)

    Romanyuk, O.; Hattori, K.; Someta, M.; Daimon, H.

    2014-10-01

    The surface structure of epitaxial ?-FeSi2(100) thin film grown on Si(001) was analyzed using the quantitative low-energy electron diffraction intensity-voltage (LEED I-V) method, ab initio density functional theory (DFT) calculations, and scanning tunneling microscopy (STM). LEED patterns measured on the ?-FeSi2(100) surface reveal two domains of a p (2×2) reconstruction with p2gg diffraction symmetry. The iron-silicide film truncation and atomic surface structure were determined by LEED I-V method: The smallest Pendry's reliability factor RP=0.22±0.02 was achieved for the bare ?-FeSi2 film truncated by an Si layer, whereas Si and Fe ad-atom structures were excluded. Significant atomic relaxations within the topmost surface layers were revealed by the LEED I-V method and confirmed by DFT. The simulated STM patterns from the best-fit model agree well with the measured STM images on the ?-FeSi2(100)/Si(001)-p(2×2) surface: Four Si atoms on a surface form one bright protrusion on STM patterns. Electronic band structure analysis of the bulk and epitaxial ?-FeSi2(100) was carried out. A bare truncated epitaxial film was found to be metallic. Surface electronic states were identified by a partial k-resolved atomic-orbital based local density-of-state analysis.

  5. Influence of FeO and sulfur on solid state reaction between MnO-SiO2-FeO oxides and an Fe-Mn-Si solid alloy during heat treatment at 1473 K

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-song; Yang, Shu-feng; Kim, Kyung-ho; Li, Jing-she; Shibata, Hiroyuki; Kitamura, Shin-ya

    2015-08-01

    To clarify the influence of FeO and sulfur on solid state reaction between an Fe-Mn-Si alloy and MnO-SiO2-FeO oxides under the restricted oxygen diffusion flux, two diffusion couples with different sulfur contents in the oxides were produced and investigated after heat treatment at 1473 K. The experimental results were also compared with previous work in which the oxides contained higher FeO. It was found that although the FeO content in the oxides decreased from 3wt% to 1wt% which was lower than the content corresponding to the equilibrium with molten steel at 1873 K, excess oxygen still diffused from the oxides to solid steel during heat treatment at 1473 K and formed oxide particles. In addition, increasing the sulfur content in the oxides was observed to suppress the diffusion of oxygen between the alloy and the oxides.

  6. Dopant species with Al-Si and N-Si bonding in the MOCVD of AlN implementing trimethylaluminum, ammonia and silane

    NASA Astrophysics Data System (ADS)

    dos Santos, R. B.; Rivelino, R.; de Brito Mota, F.; Gueorguiev, G. K.; Kakanakova-Georgieva, A.

    2015-07-01

    We have investigated gas-phase reactions driven by silane (SiH4), which is the dopant precursor in the metalorganic chemical vapor deposition (MOCVD) of aluminum nitride (AlN) doped by silicon, with prime focus on determination of the associated energy barriers. Our theoretical strategy is based on combining density-functional methods with minimum energy path calculations. The outcome of these calculations is suggestive for kinetically plausible and chemically stable reaction species with Al-Si bonding such as (CH3)2AlSiH3 and N-Si bonding such as H2NSiH3. Within this theoretical perspective, we propose a view of these reaction species as relevant for the actual MOCVD of Si-doped AlN, which is otherwise known to be contributed by the reaction species (CH3)2AlNH2 with Al-N bonding. By reflecting on experimental evidence in the MOCVD of various doped semiconductor materials, it is anticipated that the availability of dopant species with Al-Si, and alternatively N-Si bonding near the hot deposition surface, can govern the incorporation of Si atoms, as well as other point defects, at the AlN surface.

  7. Epitaxial growth of MgO and Fe /MgO/Fe magnetic tunnel junctions on (100)-Si by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Miao, G. X.; Chang, J. Y.; van Veenhuizen, M. J.; Thiel, K.; Seibt, M.; Eilers, G.; Münzenberg, M.; Moodera, J. S.

    2008-10-01

    Epitaxial growth of MgO barrier on Si is of technological importance due to the symmetry filtering effect of the MgO barrier in conjunction with bcc-ferromagnets. We study the epitaxial growth of MgO on (100)-Si by molecular beam epitaxy. MgO matches Si with 4:3 cell ratio, which renders Fe to be 45° rotated relative to Si, in sharp contrast to the direct epitaxial growth of Fe on Si. The compressive strains from Si lead to the formation of small angle grain boundaries in MgO below 5nm, and also affect the transport characteristics of Fe /MgO/Fe magnetic tunnel junctions formed on top.

  8. The structure of Fe-Si alloy in Earth's inner core

    NASA Astrophysics Data System (ADS)

    Tateno, Shigehiko; Kuwayama, Yasuhiro; Hirose, Kei; Ohishi, Yasuo

    2015-05-01

    Phase relations of iron-silicon alloy (Fe-6.5 wt.% Si and Fe-9 wt.% Si) were investigated up to 407 GPa and 5960 K in a laser-heated diamond-anvil cell, which likely covers the entire pressure and temperature conditions of the Earth's inner core. Synchrotron X-ray diffraction measurements show that Fe-9 wt.% Si with a hexagonal close-packed (hcp) structure is stable to 4800 K at 330 GPa, corresponding to the pressure at the inner/outer core boundary, and decomposes into a mixture of Si-poor hcp and Si-rich CsCl-type (B2) phases at higher temperatures. We also found that the solubility of silicon in solid iron is relatively insensitive to temperature, decreasing from 9 to >6.5 wt.% over a range of 1500 K at 70 GPa. These suggest that the inner core is composed solely of the hcp phase, when the silicon content is up to 7 wt.% that likely accounts for the inner core density deficit as well as for the Mg/Si ratio and the Si isotopic composition of the mantle. Additionally, the present experiments demonstrate that the incorporation of silicon in iron expands the stability of hcp with respect to that of fcc.

  9. Effect of nitrogen upon structural and magnetic properties of FePt in FePt/AlN multilayer structures

    SciTech Connect

    Gao, Tenghua Zhang, Cong; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji

    2014-09-01

    This paper investigates the effect of the addition of nitrogen in FePt layers for ultrathin FePt/AlN multilayer structures. X-ray diffraction results reveal that a compressive stress relaxation occurs after annealing owing to the release of interstitial nitrogen atoms in the FePt layers. The introduction of nitrogen also induces a large in-plane compressive strain during grain growth not seen in FePt deposited without nitrogen. This strain is considered to decrease the driving force for (111) grain growth and FePt ordering.

  10. Lattice anharmonicity and thermal properties of strongly correlated Fe1- x Co x Si alloys

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Nogovitsyna, T. A.; Filanovich, A. N.

    2015-10-01

    The temperature dependences of the thermal and elastic properties of strongly correlated metal alloys Fe1- x Co x Si ( x = 0.1, 0.3, 0.5) with different atomic chiralities have been calculated in the framework of the self-consistent thermodynamic model taking into account the influence of lattice anharmonicity. The lattice contributions to the heat capacity and thermal expansion coefficient of the alloys have been determined using the experimental data. It has been demonstrated that the invar effect in the thermal expansion of the lattice observed in the magnetically ordered region of Fe0.7Co0.3Si and Fe0.5Co0.5Si is not related to the lattice anharmonicity, even though its appearance correlates with variations in the atomic chirality.

  11. Cryogenic abnormal thermal expansion properties of carbon-doped La(Fe,Si)13 compounds.

    PubMed

    Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Wang, Wei; Li, Laifeng

    2015-11-18

    Recently, La(Fe,Si)13-based compounds have attracted much attention due to their isotropic and tunable abnormal thermal expansion (ATE) properties as well as bright prospects for practical applications. In this research, we have prepared cubic NaZn13-type carbon-doped La(Fe,Si)13 compounds by the arc-melting method, and their ATE and magnetic properties were investigated by means of variable-temperature X-ray diffraction, strain gauge and the physical property measurement system (PPMS). The experimental results indicate that both micro and macro negative thermal expansion (NTE) behaviors gradually weaken with the increase of interstitial carbon atoms. Moreover, the temperature region with the most remarkable NTE properties has been broadened and near zero thermal expansion (NZTE) behavior occurs in the bulk carbon-doped La(Fe,Si)13 compounds. PMID:26549525

  12. Macroscopic anisotropy characterization of SiFe using a rotational single sheet tester

    SciTech Connect

    Nencib, N.; Spornic, S.; Kedous-Lebouc, A.; Cornut, B.

    1995-11-01

    Macroscopic magnetic anisotropy of two electrical steel samples of GO and NO SiFe materials are characterized thanks to a rotational single sheet tester. This nonstandard set up allows one to perform magnetic measurements under both a rotating excitation field and an alternating one applied along any direction of the sheet plane. The anisotropy of the magnetic losses and of the exciting field of each material quality is discussed. As expected, the GOSS texture of the GO SiFe is well pointed out with its very easy magnetization rolling direction. The hard magnetization axis at 55{degree} emerges as the induction increases and replaces the transverse direction. The NO SiFe shows closely similar magnetic characteristics but remains anisotropic. The vectorial aspect of B(H) law is also highlighted. Such characteristics will be useful in many fields e.g. material elaboration, magnetic law behavior modeling and construction of electrical machines.

  13. Reaction synthesis of MoSi{sub 2}-Al{sub 2}O{sub 3} composite using MoO{sub 3}, Al and Si powders

    SciTech Connect

    Deevi, S.C.; Deevi, S.

    1995-10-01

    In-situ synthesis of a composite of MoSi{sub 2}-Al{sub 2}O{sub 3} was carried out by reacting a thermite mixture consisting of MoO{sub 3}, Al, and Si powders. The reaction was found to be extremely fast and violent, and a diluent was required to moderate the reaction. Thermal behavior of the thermite mixture was studied using DTA at different heating rates, and DTA was interrupted at different temperatures to determine the reaction mechanism. X-ray characterization of the products obtained at different temperatures reveals that the mechanism consists of a reduction of MoO{sub 3} by Al to MoO{sub 2} followed by a simultaneous oxidation of Al to Al{sub 2}O{sub 3} and synthesis reaction between reduced Mo and Si to form MoSi{sub 2}. The rate determining step is found to be reduction of MoO{sub 2} by Al and oxidation of Al to Al{sub 2}O{sub 3}. The thermite reaction was moderated by adding Mo and Si to the mixture of MoO{sub 3}, Al, and Si such that the ratio of MoSi{sub 2} to the thermite was in the range of 60:40 to 90:10.

  14. Compositions and morphologies of TiAlSi intermetallics in different diffusion couples

    SciTech Connect

    Gao, Tong; Liu, Guiliang; Liu, Xiangfa

    2014-09-15

    Two kinds of diffusion couples were designed to investigate the formation of ternary TiAlSi phases in Al–Si–Ti alloys. It was found that different diffusion processes result in various compositions and morphologies of TiAlSi intermetallics. The melted Al, Si and Ti atoms in the diffusion couple leads to the formation of flake-like TiAlSi phase through liquid–liquid reaction. Besides, unidirectional diffusion of Al and Si atoms into blocky TiAl{sub 3} particles or Ti powders via a liquid–solid diffusion process also results in the formation of TiAlSi, while keeping the block-like morphology. This kind of diffusion is a gradual process, driven by the concentration gradient. The reactions in the diffusion couples are helpful to understand the compositional and morphological evolutions of TiAlSi as reported in previous work. - Highlights: • Two diffusion couples were designed to investigate the formation of TiAlSi phases. • Compositions and morphologies of TiAlSi are influenced by the diffusion process. • Liquid–liquid and liquid–solid diffusions were detected. • The corresponding mechanisms were discussed.

  15. First-principles study of nitridoaluminosilicate CaAlSiN3

    NASA Astrophysics Data System (ADS)

    Mikami, Masayoshi; Uheda, Kyota; Kijima, Naoto

    2006-09-01

    Atomic and electronic structure of nitridoaluminosilicate CaAlSiN3 (Cmc 21, No. 36), a distorted AlN-based wurtzite superstructure with Al and Si disordered on 8b site and Ca occupying 4a site, has been investigated by first-principles pseudopotential method based on density functional theory. The random distribution of Al/Si atoms is treated in two ways: (1) virtual crystal approximation (VCA) with a mixed Al/Si pseudopotential, (2) several assumptions of Al/Si distribution order in the primitive unit cell. Geometry optimization based on the aliovalent VCA reproduces the experimental orthorhombic structure as well as the bond lengths. The calculations of Al/Si-ordered models lead to monoclinic structures that appear sufficiently close to the experimental structure, with the averages of the optimized Al-N/Si-N bond lengths corresponding to the experimental ones. Relative stability among the Al/Si-ordered models appears consistent with Pauling's second crystal rule. The random Al/Si distribution leading to the experimental determination of the system as Cmc 21 can be explained by crystal symmetry, energetics among the ordered models, and configurational entropy effect. The electronic structure based on the VCA appears similar with those of the Al/Si-ordered models. All the band structures indicate that the system has indirect band gap.

  16. Microstructure Evolution of Cold-Sprayed Al-Si Alloy Coatings on ?-TiAl During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2015-08-01

    This paper investigated the influence of heat treatment on the microstructure of Al-Si alloy coatings on ?-TiAl alloy. The coatings were prepared by cold spraying with Al-12Si and Al-20Si alloy powders as the feedstock, and then the as-sprayed coatings were subjected to heat treatment. The microstructure, chemical composition, and phase transformation of the coatings were studied by SEM, XRD, and EPMA. The diffusing behavior of Al and Si during heat treatment was investigated. The results showed that a silicon-aluminizing coating was formed through the inward diffusion of Al/Si elements into the substrate. The obtained kinetics curve of the formation of silicon-aluminizing coating at 580 °C similarly followed parabolic law.

  17. Thermal Conductivity of the Molten CaO-SiO2-FeO x System

    NASA Astrophysics Data System (ADS)

    Kang, Youngjo; Nomura, Kiyoshi; Tokumitsu, Kazuto; Tobo, Hiroyuki; Morita, Kazuki

    2012-12-01

    Thermal conductivity measurements were carried out on synthetic steelmaking slag using the hot-wire method. Furthermore, local structure analysis in the melts was carried out in order to investigate the relationship with the composition dependence. The thermal conductivity of the CaO-SiO2-FeO x melts significantly decreased as the content of FeO x increases, particularly at lower basicity. Both chemical analysis and the observation show that the amount of Fe2+ increases when CaO/SiO2 is smaller, implying more basic behavior of FeO than FeO1.5. According to further analyses by Mössbauer spectroscopy, the degree of basicity of FeO1.5 remains virtually unchanged in the composition range of interest. From the experimental results, it could be concluded that the thermal conductivity of the silicate melt containing iron oxide is highly dependent on the valence of the Fe ion and comparatively independent of the amphoteric behavior of FeO1.5.

  18. High-quality epitaxial CoFe/Si(111) heterostructures fabricated by low-temperature molecular beam epitaxy

    SciTech Connect

    Maeda, Y.; Yamada, S.; Ando, Y.; Yamane, K.; Miyao, M.; Hamaya, K.

    2010-11-08

    We demonstrate atomically controlled heterojunctions consisting of ferromagnetic CoFe alloys and silicon (Si) using low-temperature molecular beam epitaxy with a good atomic matching at the (111) plane. The saturation magnetization of the CoFe layers grown reaches {approx}85% of the value of bulk samples reported so far, and can be systematically controlled by tuning the ratio of Co to Fe, indicating that the silicidation reactions between CoFe and Si are suppressed and the heterojunctions are very high quality. We find that the Schottky barrier height of the high-quality CoFe/Si(111) junctions is unexpectedly low compared to the previous data for other metal/Si ones, implying the reduction in the Fermi-level-pinning effect. We can expand the available high-quality ferromagnet/Si heterostructures in the field of Si-based spintronics.

  19. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Li, Jiehua; Schaffer, Paul Louis; Schumacher, Peter; Arnberg, Lars

    2015-01-01

    The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

  20. Experimental realization of a semiconducting full-Heusler compound: Fe2TiSi

    NASA Astrophysics Data System (ADS)

    Meinert, Markus; Geisler, Manuel P.; Schmalhorst, Jan; Heinzmann, Ulrich; Arenholz, Elke; Hetaba, Walid; Stöger-Pollach, Michael; Hütten, Andreas; Reiss, Günter

    2014-08-01

    Single-phase films of the full-Heusler compound Fe2TiSi have been prepared by magnetron sputtering. The compound is found to be a semiconductor with a gap of 0.4 eV. The electrical resistivity has a logarithmic temperature dependence up to room temperature due to Kondo scattering of a dilute free electron gas off superparamagnetic impurities. The origin of the electron gas is extrinsic due to residual off-stoichiometry. Density functional theory calculations of the electronic structure are in excellent agreement with electron energy loss, optical, and x-ray absorption experiments. Fe2TiSi may find applications as a thermoelectric material.

  1. Iron-rich eutectic liquid composition in Fe-Si system at core pressures: Ex-situ textural and chemical characterization of DAC samples

    NASA Astrophysics Data System (ADS)

    Hirose, K.; Ozawa, H.

    2014-12-01

    Melting phase diagram of iron-light-element system is helpful to identify the light component in the core. If the outer core contains a single light element and the relevant binary phase diagram has a eutectic point, the core composition must lie on the iron-rich side of the eutectic. The eutectic liquid compositions in such binary systems have been examined at high pressure in a diamond-anvil cell (DAC), based on the disappearance of one of solid phases from in-situ X-ray diffraction patterns (e.g., Seagle et al., 2008 EPSL for Fe-FeO; Morard et al., 2008 EPSL for Fe-Fe3S). However, the loss of a given solid phase from the X-ray diffraction pattern does not necessarily mean its disappearance from a sample but is sometimes caused by extensive grain growth. And, it is difficult to eliminate a solid phase when axial temperature gradient is strong in a laser-heated sample. Alternatively, ex-situ textual and chemical characterization of a DAC sample could provide more solid information on the compositions of quenched liquid and coexisting solid. Here we estimated the eutectic liquid composition and the difference in silicon abundance in coexisting liquid and solid in an iron-rich portion of the Fe-FeSi binary system at high pressures to 134 GPa. Partially melted samples (Fe with 2, 4, 6.5, and 9 wt.% Si) were recovered from a DAC, and then examined with dual beam scanning microprobe (FIB + FE-SEM) (Versa 3DTM, FEI) or field-emission-type electron probe microanalyzer (FE-EPMA) (JXA-8530F, JEOL). The X-ray map of Si demonstrated the differentiation of silicon between coexisting liquid and solid phases quantitatively. The results demonstrate that the Si content in eutectic liquid decreases rapidly with increasing pressure. If the outer core includes ~12 wt.% Si as a single light element, it crystallizes the CsCl-type (B2) phase that is more enriched in silicon than coexisting liquid. Therefore, silicon cannot be the sole light component in the core, although its presence is strongly supported by Si isotopic composition as well as Mg/Si ratio of the mantle.

  2. Si-rich Fe-Ni grains in highly unequilibrated chondrites

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Sears, D. W.; Wasson, J. T.

    1980-01-01

    Consideration is given to the Si contents of Fe-Ni grains in highly unequilibrated chondrites, which have undergone little metamorphosis and thus best preserve the record of processes in the solar nebula. Electron microprobe determinations of silicon content in grains of the Bishunpur chondrite are presented for the six Si-bearing Fe-Ni grains for which data could be obtained, five of which were found to be embedded in olivine chondrules. In addition, all grains are found to be Cr-rich, with Cr increased in concentration towards the grain edge, and to be encased in FeS shells which evidently preserved the Si that entered the FeNi at higher temperatures. A mechanism for the production of Si-bearing metal during the condensation of the cooling solar nebula is proposed which considers the metal to have condensed heterogeneously while the mafic silicates condensed homogeneously with amounts of required undercooling in the low-pressure regions where ordinary and carbonaceous chondrites formed, resulting in Si mole fractions of 0.003 at nebular pressures less than 0.000001 atm.

  3. Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications

    NASA Astrophysics Data System (ADS)

    Kearney, Brian; Alves, Fabio; Grbovic, Dragoslav; Karunasiri, Gamani

    2013-01-01

    To increase the sensitivity of uncooled thermal sensors in the terahertz (THz) spectral range (1 to 10 THz), we investigated thin metamaterial layers exhibiting resonant absorption in this region. These metamaterial films are comprised of periodic arrays of aluminum (Al) squares and an Al ground plane separated by a thin silicon-rich silicon oxide (SiOx) dielectric film. These standard MEMS materials are also suitable for fabrication of bi-material and microbolometer thermal sensors. Using SiOx instead of SiO2 reduced the residual stress of the metamaterial film. Finite element simulations were performed to establish the design criteria for very thin films with high absorption and spectral tunability. Single-band structures with varying SiOx thicknesses, square size, and periodicity were fabricated and found to absorb nearly 100% at the designed frequencies between three and eight THz. Multiband absorbing structures were fabricated with two or three distinct peaks or a single-broad absorption band. Experimental results indicate that is possible to design very efficient thin THz absorbing films to match specific applications.

  4. Effect of Al/Si Substitutions and Silanol Nests on the Local Geometry of Si and Al Framework Sites in Silicone-Rich Zeolites: A Combined High Resolution 27

    E-print Network

    Sklenak, Stepan

    Effect of Al/Si Substitutions and Silanol Nests on the Local Geometry of Si and Al Framework Sites to investigate the effect of Al/Si substitutions and the presence of silanol nests on the 29 Si and 27 Al NMR atoms by up to 3 ppm. (V) The presence of a silanol "nest" (vacant T site) as a nearest (H

  5. Influence of SiC surface polarity on the wettability and reactivity in an Al/SiC system

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Wang, Yi; Ren, Lihua; Li, Shixin; Liu, Yuhua; Jiang, Qichuan

    2015-11-01

    The wetting of (0 0 0 1) 6H-SiC single crystals by molten Al was investigated using a dispensed sessile drop method in a high vacuum at 973-1173 K. The wettability and reactivity in this system are sensitive to the surface polarity of SiC. The interfacial reaction on the Si-terminated surface is rapid. The formation of a continuous Al4C3 product layer at the interface leads to an equilibrium contact angle of 56 ± 1° at 1173 K. In comparison, the interfacial reaction on the C-terminated surface is sluggish. The interface is only partially covered by discrete Al4C3 platelets even after dwelling at 1173 K for 2 h. The final wettability, however, is much better (?F = 41 ± 1°) than that of the Si-terminated surface which was covered by a dense Al4C3 layer, suggesting that the formation of Al4C3 should not always contribute to the wetting in the Al/SiC system. A plausible explanation is that the clean (i.e., deoxidized) C-terminated surface should be well wetted by molten Al in nature, owing to the strong chemical interactions between liquid Al and the surface atoms of the C-terminated SiC. It is likely that the presence of the oxide film at the surface of the molten Al drop or the SiC substrate and the rapid formation of Al4C3, which prevent the establishment of a real Al/SiC interface, conceal the intrinsic wettability of this system.

  6. Letter Report Documenting Progress of Second Generation ATF FeCrAl Alloy Fabrication

    SciTech Connect

    Yamamoto,, Y.; Yang, Y.; Field, K. G.; Terrani, K.; Pint, B. A.; Snead, L. L.

    2014-06-10

    Development of the 2nd generation ATF FeCrAl alloy has been initiated, and a candidate alloy was selected for trial tube fabrication through hot-extrusion and gun-drilling processes. Four alloys based on Fe-13Cr-4.5Al-0.15Y in weight percent were newly cast with minor alloying additions of Mo, Si, Nb, and C to promote solid-solution and second-phase precipitate strengthening. The alloy compositions were selected with guidance from computational thermodynamic tools. The lab-scale heats of ~ 600g were arc-melted and drop-cast, homogenized, hot-forged and -rolled, and then annealed producing plate shape samples. An alloy with Mo and Nb additions (C35MN) processed at 800°C exhibits very fine sub-grain structure with the sub-grain size of 1-3?m which exhibited more than 25% better yield and tensile strengths together with decent ductility compared to the other FeCrAl alloys at room temperature. It was found that the Nb addition was key to improving thermal stability of the fine sub-grain structure. Optimally, grains of less than 30 microns are desired, with grains up to and order of magnitude in desired produced through Nb addition. Scale-up effort of the C35MN alloy was made in collaboration with a commercial cast company who has a capability of vacuum induction melting. A 39lb columnar ingot with ~81mm diameter and ~305mm height (with hot-top) was commercially cast, homogenized, hot-extruded, and annealed providing 10mm-diameter bar-shape samples with the fine sub-grain structure. This commercial heat proved consistent with materials produced at ORNL at the lab-scale. Tubes and end caps were machined from the bar sample and provided to another work package for the ATF-1 irradiation campaign in the milestone M3FT-14OR0202251.

  7. Breakdown mechanism in AlGaN/GaN HEMTs on Si substrate

    E-print Network

    Lu, Bin

    AlGaN/GaN high electron mobility transistors (HEMTs) grown on Si substrates have attracted a great interest for power electronics applications. Despite the low cost of the Si substrate, the breakdown voltage (V[subscript ...

  8. Mössbauer spectroscopy study of Al distribution in BaAl{sub x}Fe{sub 12?x}O{sub 19} thin films

    SciTech Connect

    Przybylski, M. ?ukrowski, J.; Harward, I.; Celi?ski, Z.

    2015-05-07

    Barium hexagonal ferrite (BaM) films grown on Si are a good candidate material for new-generations of on-wafer microwave devices operating at frequencies above 40 GHz. Doping BaM with Al increases the value of anisotropy field even more, and in combination with a large value of remanence, would allow one to create a self-biasing material/structure that would eliminate the need for permanent bias magnets in millimeter wave devices. To examine the occupation of Fe sublattices by Al ions, we carried out Conversion Electron Mössbauer Spectroscopy (CEMS) measurements at room temperature and zero magnetic field (after magnetizing the samples in a strong magnetic field). The spectra can be reasonably fitted with three components (sub-spectra) corresponding to different Fe sublattices. There are significant changes in the spectra with the addition of Al: The magnetic hyperfine field decreases for all three components, and their relative contributions also change remarkably. These observations are in agreement with the fact that the Al substitutes Fe, thus lowering the component contributions and the value of the hyperfine field. In addition, our previous XRD analysis indicates increasing grain misalignment with Al content, further supporting the CEMS data.

  9. CBED and FE Study of Thin Foil Relaxation in Cross-Section Samples of Si /Si1-xGex and Si /Si1-xGex /Si Heterostructures

    NASA Astrophysics Data System (ADS)

    Alexandre, L.; Jurczak, G.; Alfonso, C.; Saikly, W.; Grosjean, C.; Charai, A.; Thibault, J.

    In order to determine residual stress/strain fields in CMOS devices and validate tools used to quantify the strain field, we first studied residual strains in Si/Si1-xGex and Si/Si1-xGex/Si TEM samples. Because of sample thinning for TEM observations, elastic relaxation occurs and modifies the initial stress present in the bulk sample. Nevertheless, if the main parameters which play a role on the elastic relaxation process can be determined, we show that it is possible to reproduce from FE and diffraction simulations the complex profile of the HOLZ lines observed on experimental CBED patterns which makes possible the determination of the initial stress state.

  10. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    SciTech Connect

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  11. Moessbauer spectroscopy of Mg(0.9)Fe(0.1)SiO3 perovskite

    NASA Technical Reports Server (NTRS)

    Jeanloz, Raymond; O'Neill, Bridget; Pasternak, Moshe P.; Taylor, R. D.; Bohlen, Steven R.

    1992-01-01

    Ambient pressure Moessbauer spectra of Mg(0.9)Fe-57(0.1)SiO3 perovskite synthesized at pressure-temperature conditions of about 50 GPa and 1700 K show that the iron is entirely high-spin Fe(2+) and appears to be primarily located in the octahedral site within the crystal structure. We observe broad Moessbauer lines, suggesting a distribution of electric-field gradients caused by disorder associated with the Fe ions. Also, the perovskite exhibits magnetic ordering at temperatures lower than 5 K, implying that there is a magnetic contribution to the absolute ('third-law') entropy of this phase.

  12. Nanostructure evolution in joining of Al and Fe nanoparticles with femtosecond laser irradiation

    SciTech Connect

    Jiao, Z.; Huang, H.; Zhou, Y. E-mail: nzhou@uwaterloo.ca; Liu, L.; Hu, A.; Duley, W.; He, P. E-mail: nzhou@uwaterloo.ca

    2014-04-07

    The joining of Al-Fe nanoparticles (NPs) by femtosecond (fs) laser irradiation is reported in this paper. Fe and Al NPs were deposited on a carbon film in vacuum via fs laser ablation. Particles were then exposed to multiple fs laser pulses at fluences between 0.5 and 1.3?mJ/cm{sup 2}. Transmission Electron Microscopy (TEM) and Electron Diffraction X-ray observations indicate that Al and Fe NPs bond to each other under these conditions. For comparison, bonding of Al to Al and Fe to Fe NPs was also investigated. The nanostructure, as observed using TEM, showed that individual Al NPs were monocrystalline while individual Fe NPs were polycrystalline prior to joining and that these structures are retained after the formation of Al-Al and Fe-Fe NPs. Al-Fe NPs produced by fs laser joining exhibited a mixed amorphous and crystalline phase at the interface. Bonding is suggested to originate from intermixing within a region of high field intensity between particles.

  13. FEM simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO?/Si(100).

    PubMed

    Kaletta, Udo Christian; Wenger, Christian

    2014-01-01

    A simulation study of Rayleigh wave devices based on a stacked AlN/SiO?/Si(100) device was carried out. Dispersion curves with respect to acoustic phase velocity, reflectivity and electromechanical coupling efficiency for tungsten W and aluminium Al electrodes and different layer thicknesses were quantified by 2D FEM COMSOL simulations. Simulated acoustic mode shapes are presented. The impact of these parameters on the observed Rayleigh wave modes was discussed. High coupling factors of 2% and high velocities up to 5000 m/s were obtained by optimizing the AlN/SiO? thickness ratio. PMID:23684473

  14. Microstructure and magnetic properties of nanostructured (Fe0.8Al0.2)100-xSix alloy produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Boukherroub, N.; Guittoum, A.; Laggoun, A.; Hemmous, M.; Martínez-Blanco, D.; Blanco, J. A.; Souami, N.; Gorria, P.; Bourzami, A.; Lenoble, O.

    2015-07-01

    We report on how the microstructure and the silicon content of nanocrystalline ternary (Fe0.8Al0.2)100-xSix powders (x=0, 5, 10, 15 and 20 at%) elaborated by high energy ball milling affect the magnetic properties of these alloys. The formation of a single-phase alloy with body centred cubic (bcc) crystal structure is completed after 72 h of milling time for all the compositions. This bcc phase is in fact a disordered Fe(Al,Si) solid solution with a lattice parameter that reduces its value almost linearly as the Si content is increased, from about 2.9 Å in the binary Fe80Al20 alloy to 2.85 Å in the powder with x=20. The average nanocrystalline grain size also decreases linearly down to 10 nm for x=20, being roughly half of the value for the binary alloy, while the microstrain is somewhat enlarged. Mössbauer spectra show a sextet thus suggesting that the disordered Fe(Al,Si) solid solution is ferromagnetic at room temperature. However, the average hyperfine field diminishes from 27 T (x=0) to 16 T (x=20), and a paramagnetic doublet is observed for the powders with higher Si content. These results together with the evolution of both the saturation magnetization and the coercive field are discussed in terms of intrinsic and extrinsic properties.

  15. Positron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures

    NASA Astrophysics Data System (ADS)

    Edwardson, C. J.; Coleman, P. G.; Li, T.-T. A.; Cuevas, A.; Ruffell, S.

    2012-03-01

    Film and film/substrate interface characteristics of 30 and 60 nm-thick AlOx films grown on Si substrates by thermal atomic layer deposition (ALD), and 30 nm-thick AlOx films by sputtering, have been probed using variable-energy positron annihilation spectroscopy (VEPAS) and Doppler-broadened spectra ratio curves. All samples were found to have an interface which traps positrons, with annealing increasing this trapping response, regardless of growth method. Thermal ALD creates an AlOx/SiOx/Si interface with positron trapping and annihilation occurring in the Si side of the SiOx/Si boundary. An induced positive charge in the Si next to the interface reduces diffusion into the oxides and increases annihilation in the Si. In this region there is a divacancy-type response (20 ± 2%) before annealing which is increased to 47 ± 2% after annealing. Sputtering seems to not produce samples with this same electrostatic shielding; instead, positron trapping occurs directly in the SiOx interface in the as-deposited sample, and the positron response to it increases after annealing as an SiO2 layer is formed. Annealing the film has the effect of lowering the film oxygen response in all film types. Compared to other structural characterization techniques, VEPAS shows larger sensitivity to differences in film preparation method and between as-deposited and annealed samples.

  16. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Ziegler, Karen; Young, Edward D.; Ricolleau, Angele; Schauble, Edwin A.; Fei, Yingwei

    2009-10-01

    Stable isotope fractionation amongst phases comprising terrestrial planets and asteroids can be used to elucidate planet-forming processes. To date, the composition of the Earth's core remains largely unknown though cosmochemical and geophysical evidence indicates that elements lighter than iron and nickel must reside there. Silicon is often cited as a light element that could explain the seismic properties of the core. The amount of silicon in the core, if any, can be deduced from the difference in 30Si/ 28Si between meteorites and terrestrial rocks if the Si isotope fractionation between silicate and Fe-rich metal is known. Recent studies (e.g., [Georg R.B., Halliday A.N., Schauble E.A., Reynolds B.C., 2007. Silicon in the Earth's core. Nature 447 (31), 1102-1106.]; [Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., Reynolds, B. C., 2009. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth Planet. Sci. Lett. 287, 77-85.]) showing (sometimes subtle) differences between 30Si/ 28Si in meteorites and terrestrial rocks suggest that Si missing from terrestrial rocks might be in the core. However, any conclusion based on Earth-meteorite comparisons depends on the veracity of the 30Si/ 28Si fractionation factor between silicates and metals at appropriate conditions. Here we present the first direct experimental evidence that silicon isotopes are not distributed uniformly between iron metal and rock when equilibrated at high temperatures. High-precision measurements of the silicon isotope ratios in iron-silicon alloy and silicate equilibrated at 1 GPa and 1800 °C show that Si in silicate has higher 30Si/ 28Si than Si in metal, by at least 2.0‰. These findings provide an experimental foundation for using isotope ratios of silicon as indicators of terrestrial planet formation processes. They imply that if Si isotope equilibrium existed during segregation of Earth's core-forming metal and silicate mantle, there should be an isotopic signature of Si in the core. Our experiments, combined with previous measurements of Si isotope ratios in meteorites and rocks representing the bulk silicate Earth, suggest that the formation of the Earth's core imparted a high 30Si/ 28Si signature to the bulk silicate Earth due to dissolution of ~ 6 wt% Si into the early core.

  17. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. PMID:25262081

  18. Simulation Study of Al-1Mn/Al-10Si Circular Clad Ingots Prepared by Direct Chill Casting

    NASA Astrophysics Data System (ADS)

    Wu, Li; Kang, Huijun; Chen, Zongning; Fu, Ying; Wang, Tongmin

    2015-10-01

    A modified direct chill casting process based on Novelis FusionTM Technology co-casting process was used recently to prepare Al-1Mn/Al-10Si circular clad ingots. In the current study, a comprehensive simulation model was developed to investigate the direct chill casting process for preparing the Al-1Mn/Al-10Si circular clad ingots, and a parametric study and experimental research of the direct chill casting process was conducted to explore potential success and failure casting conditions. The simulation results revealed the bonding mechanism of the Al-1Mn/Al-10Si interface in the direct chill casting process and identified the effect of certain parameters on casting performance. The results indicated that the effect of casting speed and Al-1Mn casting temperature on the variations of the minimum solid fraction of Al-1Mn at the interface is stronger than that of cooling water flow rate in inner mold, while Al-10Si casting temperature is the weakest of the four casting parameters. The corresponding experimental results verified that Al-1Mn/Al-10Si circular clad ingot with acceptable metallurgical bonding can be successfully prepared by direct chill casting process under the proper casting parameters. The thickness of diffusion zone is about 40 ?m, and the fractured position in tensile test was located in the Al-1Mn alloy side which indicated the strength of the interfacial region is higher than that of Al-1Mn alloy.

  19. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    NASA Technical Reports Server (NTRS)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  20. Lamellar Spacing Selection in Al-Si Eutectic System: a Theoretical Investigation

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Curreri, Peter A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    It is well known that irregular eutectics such as Al-Si and Fe-C exhibit larger lamellar spacings and undercoolings compared to the predictions made by the Jackson and Hunt (JH) theory. In this paper, we reexamine the JH theory and relax some of the assumptions used in that treatment. The modified theoretical model has enhanced capabilities to predict the lamellar spacing in both regular and irregular eutectics. For the Al-Si system in particular we identified two different spacing selection mechanisms:a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing in the microstructure (lambda(sub av) greater than lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semi-empirical expression has been developed to account for the influence of the temperature gradient. Application of a Mullin and Sekerka type stability analysis for eutectics will also be presented and the results compared to the modified JH model. It will be shown that the both theoretical approaches are in good agreement with each other and also with the published experimental measurements.

  1. Behcet brain tissue identified with increased levels of Si and Al

    NASA Astrophysics Data System (ADS)

    Aranyosiova, Monika; Kopani, Martin; Rychly, Boris; Jakubovsky, Jan; Velic, Dusan

    2008-12-01

    Behcet disease is a multi-system disorder with still uncertain chemical causality. Chemical composition of molecules and elements in a human brain tissue of Behcet diseased patient is of interest. Time-of-flight secondary ion mass spectrometry is used to provide complex composition in Behcet disease and control tissues. Determined organic compounds are represented by fragments of carbohydrates, phospholipids, amino acids, and peptides in both samples without any qualitative differences. Trace heavy elements as Fe, Zn, and Cu are identified in Behcet disease tissue with increased intensities by only an averaged factor of 2.2 in comparison to the control. The significant differences between the control and Behcet disease tissues are in the presence of Si and Al. These two elements have significantly higher intensities by an averaged factor of 10.0 in Behcet disease tissue. The origin of Al and Si occurrence and the chronology of their accumulation are not clear, moreover this observation supports a significance of chemical characterization in an early stage of disease.

  2. Effect of Physical Properties of Al-Si Electrode Films on the Deformation Behaviors and the Strength of Thick Al Wire Bonds during Thermal Cycle Test

    NASA Astrophysics Data System (ADS)

    Shimizu, Yousuke; Tomota, Yo; Onuki, Jin; Khoo, Khyou Pin; Kurosu, Toshiki

    2009-06-01

    The deformation behaviors of Al-Si films and the strength change of Al wire bonds on Al-Si films during heating and cooling cycles have been investigated as a function of substrate temperature of the sputtering process; the purpose was to clarify reliability of both Al wire bonds and Al-Si films for use in insulated gate bipolar transistor (IGBT) modules. The extent of deformation in Al-Si films sputtered at 593 K during heating and cooling cycles was the smallest among films sputtered at room temperature (RT), 473 K, and 593 K. The strength of Al wire bonds on Al-Si films sputtered at the three temperatures was the highest for Al-Si films sputtered at 593 K. The reliability of Al wire bonds on Al-Si films formed at 593 K was about two times higher than the bond reliability on Al-Si films formed at RT and 473 K.

  3. ac impedance techniques to study oxidation process of tunnel barriers in CoFeAlOxCoFe magnetic tunnel junctions

    E-print Network

    Huang, Jung-Chun

    ac impedance techniques to study oxidation process of tunnel barriers in CoFe­AlOx­CoFe magnetic September 2005 The complex impedance spectra of CoFe­AlOx­CoFe tunnel junctions with under-, proper-, and overoxidized tunnel barriers have been investigated by ac impedance techniques. Two sets of parallel resistance

  4. Influence of n{sup +} and p{sup +} doping on the lattice sites of implanted Fe in Si

    SciTech Connect

    Silva, D. J.; Araújo, J. P.; Wahl, U.; Correia, J. G.

    2013-09-14

    We report on the lattice location of implanted {sup 59}Fe in n{sup +}- and p{sup +}-type Si by means of emission channeling. We found clear evidence that the preferred lattice location of Fe changes with the doping of the material. While in n{sup +}-type Si Fe prefers displaced bond-centered (BC) sites for annealing temperatures up to 600 °C, changing to ideal substitutional sites above 700 °C, in p{sup +}-type Si, Fe prefers to be in displaced tetrahedral interstitial positions after all annealing steps. The dominant lattice sites of Fe in n{sup +}-type Si therefore seem to be well characterized for all annealing temperatures by the incorporation of Fe into vacancy-related complexes, either into single vacancies which leads to Fe on ideal substitutional sites, or multiple vacancies, which leads to its incorporation near BC sites. In contrast, in p{sup +}-type Si, the major fraction of Fe is clearly interstitial (near-T or ideal T) for all annealing temperatures. The formation and possible lattice sites of Fe in FeB pairs in p{sup +}-Si are discussed. We also address the relevance of our findings for the understanding of the gettering effects caused by radiation damage or P-diffusion, the latter involving n{sup +}-doped regions.

  5. A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al-Si alloy and subsequent thermal oxidation.

    PubMed

    Hwang, Gaeun; Park, Hyungmin; Bok, Taesoo; Choi, Sinho; Lee, Sungjun; Hwang, Inchan; Choi, Nam-Soon; Seo, Kwanyong; Park, Soojin

    2015-03-14

    Nanostructured micrometer-sized Al-Si particles are synthesized via a facile selective etching process of Al-Si alloy powder. Subsequent thin Al2O3 layers are introduced on the Si foam surface via a selective thermal wet oxidation process of etched Al-Si particles. The resulting Si/Al2O3 foam anodes exhibit outstanding cycling stability (a capacity retention of 78% after 300 cycles at the C/5 rate) and excellent rate capability. PMID:25679301

  6. Microstructural development of rapid solidification in Al-Si powder

    SciTech Connect

    Jin, F.

    1995-11-01

    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 {mu}m to 150 {mu}m diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  7. Microstructural Development in Al-Si Powder During Rapid Solidification

    SciTech Connect

    Amber Lynn Genau

    2004-12-19

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  8. Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys

    SciTech Connect

    Choonho Jung

    2006-12-12

    Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10{sup -3} m/sec and with a temperature gradient of 7.5 x 10{sup 3} K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristic spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.

  9. Melting of Fe and Fe120Si8 at the Earth's Core Pressures by ab Initio Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Belonoshko, A. B.; Rosengren, A.; Burakovsky, L.; Preston, D. L.; Johansson, B.

    2008-12-01

    The solid Earth's inner core (IC) consists mainly of iron likely alloyed with some light elements. At low temperature iron is stable in hexagonal close packed (hcp) phase up to very high pressures. However, there is an accumulating evidence that under pressures (~ 364 GPa) and temperatures (above 6000 K) in the Earth's IC iron, either pure or alloyed with light elements (e.g. Si), might be stable in the body-centred cubic (bcc) phase1,2. The melting temperature of this phase in the IC is unknown. Conditions of the IC are not achieved in experiment. Previous theoretical studies concentrated mostly on the melting of the hcp phase3. We show, by combination of ab initio molecular dynamics and Z-method4 that pure bcc Fe melts at at the pressure in the center of IC at ~7000 K. Iron, alloyed with 6.25% of Si, melts at a temperature of ~7200 K. While light elements depress hcp Fe melting temperatures5, we show that Si addition has opposite effect on bcc Fe. Melting temperatures of bcc and hcp 2,3 are within mutual error bars, even though bcc melts at a higher temperature. However, the melting temperature of Si-alloyed bcc iron is clearly above that of Si-alloyed hcp phase5. This is because of different bonding of Si-Fe within the bcc as compared to the hcp structure. Therefore, the existing estimates of core temperatures have to be corrected upwards. 1. Brown, J.M. & McQueen, R.G. J. Geophys. Res. 91, 7485(1986). 2. Belonoshko, A.B., Ahuja, R. & Johansson, B. Nature 424, 1032(2003); Belonoshko, A.B., Skorodumova, N.V., Rosengren, A. & Johansson, B. Science 319, 797(2008). 3. Belonoshko, A.B., Ahuja, R. & Johansson, B. Phys. Rev. Lett. 84, 3638(2000); Alfé, D., Gillan, M.J. & Price, G.D. Nature 401, 462(1999). 4. Kresse, G. & Furthmüller, J. J. Phys. Rev. B 54, 11169(1996); Belonoshko, A.B., Skorodumova, N.V., Rosengren, A. & Johansson, B. Phys. Rev. B 73, 012201(2006). 5. Alfé, D., Price, G.D. & Gillan, M.J. Cont. Phys. 48, 63 (2007).

  10. Growth and characterization of GaSb/AlSb multiple quantum well structures on Si(111) and Si(001) substrates

    NASA Astrophysics Data System (ADS)

    Toyota, H.; Fujie, S.; Haneta, M.; Mikami, A.; Endoh, T.; Jinbo, Y.; Uchitomi, N.

    2010-01-01

    For the purpose of investigating their structural and optical properties, GaSb thin films and GaSb/AlSb multiple quantum well (MQW) structures were grown on Si(111) substrates. A GaSb/AlSb MQW structure was also grown on Si(001) substrate as a control sample. Surface morphologies and a XRD measurements of GaSb films grown on Si(111) substrates showed that the GaSb film with a 5 nm thick AlSb initiation layer has good crystal quality. Observation of the RHEED patterns of both MQWs suggests that both GaSb films are under tensile strain at growth temperature. In-plane XRD measurement of MQW on Si(111) showed that the (111) face of the GaSb film is aligned to the Si(111) surface upon rotation by 30°. Photoluminescence (PL) spectra consisting of two peaks at 1250˜1400 nm were observed for both MQWs.

  11. Characterization of near-infrared n-type {beta}-FeSi{sub 2}/p-type Si heterojunction photodiodes at room temperature

    SciTech Connect

    Shaban, Mahmoud; Nomoto, Keita; Izumi, Shota; Yoshitake, Tsuyoshi

    2009-06-01

    n-type {beta}-FeSi{sub 2}/p-type Si heterojunctions were fabricated from {beta}-FeSi{sub 2} films epitaxially grown on Si(111) by facing-target direct-current sputtering. Sharp film-substrate interfaces were confirmed by scanning electron microscopy. The current-voltage and photoresponse characteristics were measured at room temperature. They exhibited good rectifying properties and a change of approximately one order of magnitude in the current at a bias voltage of -1 V under illumination by a 6 mW, 1.31 {mu}m laser. The estimated detectivity was 1.5x10{sup 9} cm {radical}Hz W at 1.31 {mu}m. The results suggest that the {beta}-FeSi{sub 2}/Si heterojunctions can be used as near-infrared photodetectors that are compatible with silicon integrated circuits.

  12. Magnetic and structural properties of (Ru1-xCox)2FeSi alloys

    NASA Astrophysics Data System (ADS)

    Deka, Bhargab; Srinivasan, A.

    2015-11-01

    In this work, we report a systemetic study of Co substitution for Ru in Ru2FeSi. Our previous studies showed that Ru2FeSi and Co2FeSi are antiferromagnetic and ferromagnetic, respectively. In order to understand the influence of Co substitution for Ru, (Ru1-xCox)2FeSi alloys were prepared by arc melting, followed by annealing at 1273 K for 3 days. Structural and magnetic studies were carried out on the quaternary alloys by powder X-ray diffraction and vibrating sample magnetometry, respectively. At room temperature, Ru rich compositions i.e., x=0 and x=0.25 exhibited disordered B2 structure, but with increase in Co concentration L21 ordering appeared in the alloys. From magnetization measurements, it is seen that with increasing x, the ferromagnetic state becomes dominant with the appearance of spontaneous magnetization and increase in the value of magnetization of the alloys. Saturation magnetization measured at 15 kOe increased from 1.02 emu/g to 149.96 emu/g as x was increased from 0 to 1.

  13. Transition metal interaction and Ni-Fe-Cu-Si phases in silicon T. Buonassisi,b

    E-print Network

    Transition metal interaction and Ni-Fe-Cu-Si phases in silicon M. Heuer,a T. Buonassisi,b A. A into the observed phases. Our results indicate that chemical reactions between metals and silicon during precipitation may reduce the lattice mismatch compared to single-metal precipitates, rendering mixed-metal

  14. The boson peak of silicate glasses: the role of Si-O, Al-O, and Si-N bonds.

    PubMed

    Richet, Nicolas F; Kawaji, Hitoshi; Rouxel, Tanguy

    2010-07-28

    The role of Si-O, Al-O, and Si-N bonds on the boson peak of silicate glasses has been investigated from a study of amorphous Si, SiO(2), and two calcium aluminosilicates with 0 (Ca28-O) and 4.4 (Ca28-N) mol % Si(3)N(4). The low-frequency part of the vibrational density of states g(omega) has been calculated from inversion of literature data and new heat capacity measurements. As defined by g(omega)/omega(2), the boson peak correlates with the excess heat capacity observed with respect to Debye T(3) limiting law. That libration of SiO(4) tetrahedra represents the main source of low-frequency excitations in silica glass is illustrated by the strong difference between the anomalies of amorphous Si and SiO(2) glass and the marked decrease observed for SiO(2) phases of increasing density. When Al substitutes for Si, libration of AlO(4) tetrahedra appears hampered by the presence of a charge-compensating cation. Rigidification of the silicate network resulting from substitution of N for O causes the boson peak of Ca28-N to be smaller than that of Ca28-O and shifted toward higher frequencies as increased cross-linking hinders libration of SiO(4) or AlO(4) tetrahedra. In agreement with their universal phenomenology, the calorimetric boson anomalies of Ca28-O and Ca28-N plot on the master curve defined previously by SiO(2) and alkali silicate glasses. PMID:20687666

  15. Effects of solute and vacancy segregation on antiphase boundary migration in stoichiometric and Al-rich Fe?Al: a phase-field simulation study

    E-print Network

    Koizumi, Yuichiro

    Effects of segregation of solute atoms and vacancies on migration of antiphase boundaries (APBs) in stoichiometric (Fe-25 at%Al) and Al-rich (Fe-28 at%Al) Fe?Al at 673 K have been studied using a phase-field method in which ...

  16. Inhibiting the interaction between FeO and Al2O3 during chemical looping production of hydrogen

    E-print Network

    Liu, Wen; Ismail, Mohammad; Dunstan, Matthew T.; Hu, Wenting; Zhang, Zili; Fennel, Paul S.; Scott, Stuart A.; Dennis, J. S.

    2014-11-28

    to inhibit the formation of FeAl2O4 by forming NaAlO2 or MgAl2O4, respectively. The performance of the modified oxygen carriers for producing hydrogen, i.e. cyclic transitions between Fe2O3 (or Fe3O4) and metallic Fe at 1123 K were investigated...

  17. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    SciTech Connect

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A.

    2006-07-01

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10{sup 6} cm{sup -2}. A threshold current density of J{sub th}{approx}1.65 kA/cm{sup 2} for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods.

  18. Infrared Brazing Fe3Al Using Ag-Based Filler Metals

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Li, Yao; Wu, Shyi-Kaan; Wu, Ling-Mei

    2010-11-01

    The microstructural evolution and bonding shear strength of infrared brazed Fe3Al using Ag and BAg-8 (72Ag-28Cu in wt pct) braze alloys have been studied. The Ag-rich phase alloyed with Al dominates the entire Ag brazed joints, and the shear strength is independent of the brazing time. The BAg-8 brazed joint contains Ag-Cu eutectic for all brazing conditions, and its shear strength increases slightly with increasing brazing time. The highest shear strength of 181 MPa is acquired from the joint infrared brazed at 1073 K (800 °C) for 600 seconds. A thin layer of Fe3Al is identified at the interface between the brazed zone and the substrate for both braze alloys. An Al depletion zone in the Fe3Al substrate next to the interfacial Fe3Al is identified as the ?-Fe phase. The dissolution of Al from the Fe3Al substrate into the molten braze causes the formation of ?-Fe in the Fe3Al substrate.

  19. Magnetostructural transition and magnetocaloric effect in MnNiSi-Fe2Ge system

    NASA Astrophysics Data System (ADS)

    Zhang, C. L.; Shi, H. F.; Ye, E. J.; Nie, Y. G.; Han, Z. D.; Qian, B.; Wang, D. H.

    2015-11-01

    Magnetostructural transition from ferromagnetic orthorhombic phase to paramagnetic hexagonal phase can be obtained by chemically alloying appropriate amount of Fe2Ge into MnNiSi. The magnetostructural transition temperature is tunable in a wide temperature range of about 280 K. Saturation moment of the ferromagnetic orthorhombic phase increases from 2.62 ?B/f.u. to 3.17 ?B/f.u. with Fe2Ge-doping. The magnetostructural transition is accompanied by a large change of magnetization over 80 Am2/kg under magnetic field of 5 T. Relatively large magnetic entropy changes and working temperature ranges were observed in the vicinity of room temperature. Our findings suggest that MnNiSi-Fe2Ge material system is a promising platform for tunable magnetostructural transition and the associated magnetocaloric effect.

  20. GaN/Fe core/shell nanowires for nonvolatile spintronics on Si

    SciTech Connect

    Gao Cunxu; Farshchi, Rouin; Roder, Claudia; Dogan, Pinar; Brandt, Oliver

    2011-06-15

    We explore the relationship between the structural and magnetic properties of GaN/Fe core/shell nanowires grown epitaxially on Si substrates. The magnetic properties are consistent with the coexistence of two magnetic contributions: a ferromagnetic response from the single-crystalline Fe particles formed at the nanowire tips, and a superparamagnetic response originating from the granular Fe clusters grown on the nanowire sidewalls, giving them a corncob-like morphology. We show that our interpretation of the origin of the magnetic behavior can be confirmed by the viscous decay of magnetic remanence in the nanowires. Ferromagnetic remanence is observed both parallel and perpendicular to the nanowire axis, making such structures appealing as high-density nonvolatile spintronic components on Si.

  1. Stability of the perovskite structure and possibility of the transition to the post-perovskite structure in CaSiO 3, FeSiO 3, MnSiO 3 and CoSiO 3

    NASA Astrophysics Data System (ADS)

    Fujino, Kiyoshi; Nishio-Hamane, Daisuke; Suzuki, Keisuke; Izumi, Hiroyuki; Seto, Yusuke; Nagai, Takaya

    2009-12-01

    High pressure and high temperature experiments on CaSiO 3, FeSiO 3, MnSiO 3 and CoSiO 3 using a laser-heated diamond anvil cell combined with synchrotron X-ray diffraction were conducted to explore the perovskite structure of these compounds and the transition to the post-perovskite structure. The experimental results revealed that MnSiO 3 has a perovskite structure from relatively low pressure (ca. 20 GPa) similarly to CaSiO 3, while the stable forms of FeSiO 3 and CoSiO 3 are mixtures of mono-oxide (NaCl structure) + high pressure polymorph of SiO 2 even at very high pressure and temperature (149 GPa and 1800 K for FeSiO 3 and 79 GPa and 2000 K for CoSiO 3). This strongly suggests that the crystal field stabilization energy (CFSE) of Fe 2+ with six 3d electrons and Co 2+ with seven 3d electrons at the octahedral site of mono-oxides favors a mixture of mono-oxide + SiO 2 over perovskite where Fe 2+ and Co 2+ would occupy the distorted dodecahedral sites having a smaller CFSE (Mn 2+ has five 3d electrons and has no CFSE). The structural characteristics that the orthorhombic distortion of MnSiO 3 perovskite decreases with pressure and the tolerance factor of CaSiO 3 perovskite (0.99) is far from the orthorhombic range suggest that both MnSiO 3 and CaSiO 3 perovskites will not transform to the CaIrO 3-type post-perovskite structure even at the Earth's core-mantle boundary conditions, although CaSiO 3 perovskite has a potentiality to transform to the CaIrO 3-type post-perovskite structure at still higher pressure as long as another type of transformation does not occur.

  2. Mössbauer spectroscopy study of Al distribution in BaAlxFe12-xO19 thin films

    NASA Astrophysics Data System (ADS)

    Przybylski, M.; ?ukrowski, J.; Harward, I.; Celi?ski, Z.

    2015-05-01

    Barium hexagonal ferrite (BaM) films grown on Si are a good candidate material for new-generations of on-wafer microwave devices operating at frequencies above 40 GHz. Doping BaM with Al increases the value of anisotropy field even more, and in combination with a large value of remanence, would allow one to create a self-biasing material/structure that would eliminate the need for permanent bias magnets in millimeter wave devices. To examine the occupation of Fe sublattices by Al ions, we carried out Conversion Electron Mössbauer Spectroscopy (CEMS) measurements at room temperature and zero magnetic field (after magnetizing the samples in a strong magnetic field). The spectra can be reasonably fitted with three components (sub-spectra) corresponding to different Fe sublattices. There are significant changes in the spectra with the addition of Al: The magnetic hyperfine field decreases for all three components, and their relative contributions also change remarkably. These observations are in agreement with the fact that the Al substitutes Fe, thus lowering the component contributions and the value of the hyperfine field. In addition, our previous XRD analysis indicates increasing grain misalignment with Al content, further supporting the CEMS data.

  3. Oxidation and microstructure evolution of Al-Si coated Ni3Al based single crystal superalloy with high Mo content

    NASA Astrophysics Data System (ADS)

    Tu, Xiaolu; Peng, Hui; Zheng, Lei; Qi, Wenyan; He, Jian; Guo, Hongbo; Gong, Shengkai

    2015-01-01

    A Si modified aluminide (Al-Si) coating was prepared on a Ni3Al based single crystal superalloy with high Mo content by high-activity pack cementation. Cyclic oxidation test at 1150 °C was carried out and the microstructure evolution of the coating was investigated. The results show that the oxidation resistance of the substrate was greatly increased by applying an Al-Si coating. During oxidation, outward diffusion of Mo was effectively blocked due to its high affinity with Si. Besides, a layered structure was formed as a result of the elements inter-diffusion. An obvious degradation of the Al-Si coating was observed after 100 h oxidation. Possible mechanisms related to the oxidation and elements inter-diffusion behaviours were also discussed.

  4. (Mg,Fe)SiO3-perovskite stability under lower mantle conditions

    PubMed

    Serghiou; Zerr; Boehler

    1998-06-26

    In three different experiments up to 100 gigapascals and 3000 kelvin, (Mg,Fe)SiO3-perovskite, the major component of the lower mantle, remained stable and did not decompose to its component oxides (Mg, Fe)O and SiO2. Perovskite was formed from these oxides when heated in a diamond anvil cell at pressures up to 100 gigapascals. Both MgSiO3 crystals and glasses heated to 3000 kelvin at 75 gigapascals also formed perovskite as a single phase, as evident from Raman spectra. Moreover, fluorescence measurements on chromium-doped samples synthesized at these conditions gave no indication of the presence of MgO. PMID:9641909

  5. Dissolution of Precipitates During Solution Treatment of Al-Mg-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xukai; Guo, Mingxing; Zhang, Jishan; Zhuang, Linzhong

    2015-11-01

    A model combining classical diffusion-controlled dissolution equation for a single spherical particle and Johnson-Mehl-Avrami-like equation is used to deal with dissolution process for different kinds of precipitations (Si, Mg2Si, Q(Al1.9Mg4.1Si3.3Cu)) in Al-Mg-Si-Cu alloys. The results reveal that the dissolution time of precipitates increases with increasing their sizes and solute concentrations in the alloy matrix; for the same size and concentration, their dissolution times follow Si > Q(Al1.9Mg4.1Si3.3Cu) > Mg2Si. Two precipitates (Mg2Si and Al1.9Mg4.1Si3.3Cu) with a size of about 700 nm were obtained in a cold rolled Al-Mg-Si-Cu-Zn alloy, and the complete dissolution time is about 15 seconds, which is basically the same as the calculated time by the developed model. The theoretical prediction of dissolution time can be greatly used to design solution treatment and thermomechanical processing parameters of Al-Mg-Si-Cu alloys.

  6. Ductility and fracture of FeAl: Effects of composition and environment

    SciTech Connect

    Cohron, J.W.; Lin, Y.; Zee, R.H.; George, E.P.

    1999-07-01

    In ultrahigh vacuum (UHV), the ductility of FeAl decreases with increasing Al content and fracture becomes increasingly intergranular. Boron improves ductility by segregating to the grain boundaries and suppressing grain-boundary fracture. However, with increasing Al concentration, even the B-doped alloys become brittle and fracture intergranularly. Hydrogen gas at low pressures embrittles FeAl, although not as severely as atmospheric moisture. Ductility is highest in UHV followed by that in O{sub 2}, vacuum, and air.

  7. Influence of Si on the microstructure of reactive sintered TiAl

    SciTech Connect

    Alman, David E.

    2005-02-01

    TiAl with between 0 and 20 volume percent (v%)Ti5Si3 was produced by reactive sintering of cold pressed compacts of elemental Ti, Al and Si powder mixtures at 700C for 15 minutes in vacuum. The results show that adding Si to Ti and Al reduces the swelling associated with reactive sintering of TiAl, as composites containing more than 5 v%Ti5Si3 densified during reactive sintering. However, composites containing more than 10v% Ti5Si3 did not retain their shape during processing, and the TiAl+20v% Ti5Si3 composite completely melted during the sintering process. The formation of pre-reaction liquid phase and the increase in adiabatic flame temperature with simultaneous compound formation resulted in the melting that occurred and the enhanced densification (minimization of swelling) during reactive sintering of the insitu composites.

  8. Reactive sintering of TiAl–Ti5Si3 in situ composites

    SciTech Connect

    Alman, David E.

    2005-06-01

    TiAl with between 0 and 20 vol%Ti5Si3 was produced by reactive sintering (700 °C for 15 min in vacuum) of cold pressed compacts of elemental Ti, Al and Si powder. The results show that adding Si to Ti and Al reduces the swelling associated with reactive sintering of TiAl, as composites containing more than 5 vol%Ti5Si3 densified during reactive sintering. However, composites containing more than 10 vol%Ti5Si3 did not retain their shape and the TiAl+20 vol%Ti5Si3 composite completely melted during the sintering process. A thermodynamic analysis indicated that the simultaneous formation of TiAl and Ti5Si3 increases the adiabatic flame temperature during the reaction between the powders. In fact, the analysis predicted that the maximum temperature of the reaction associated with the formation TiAl+20 vol%Ti5Si3 should exceed the melting point of TiAl, and this was observed experimentally. Differential thermal analysis (DTA) revealed that an Al–Si eutectic reaction occurred in mixtures of Ti, Al and Si powders prior to the formation of the TiAl and Ti5Si3 phases. There was no such pre-reaction formation of a eutectic liquid in Ti and Al powder mixtures. The formation of the pre-reaction liquid and the increase in adiabatic flame temperature resulted in the melting that occurred and the enhanced densification (minimization of swelling) during reactive sintering of the in situ composites.

  9. Interactions at the Al-S-Fe interface: S inhibition of aluminum oxidation

    SciTech Connect

    Addepalli, S.G.; Lin, J.S.; Ekstrom, B.; Kelber, J.A.

    1999-08-01

    The deposition of aluminum on S/Fe(111) (1 x 1) at 300 K in UHV results in the formation of a disordered S-modified Al adlayer. Insertion of Al between the sulfur atoms and the Fe substrate is indicated by an increase of the S Auger signal with increasing Al deposition. Room-temperature oxidation of AlS/Fe(111) in UHV is inhibited compared to the oxidation of aluminum deposited on the sulfur-free Fe(111). The oxygen-uptake curves and variations in the S(LVV), Fe(MVV) intensities with oxygen exposure are also consistent with the insertion of the aluminum atoms between the S overlayer and the Fe substrate.

  10. Laser ablation plume of FeSi2 alloy target studied by TOF mass and optical emission spectroscopies

    NASA Astrophysics Data System (ADS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2003-02-01

    Time-of-flight (TOF) mass and optical emission spectroscopies have been performed on the ablation plume from ?-FeSi2 alloy target under KrF excimer laser irradiation at a fluence of 0.35-2.5J/cm2 to characterize the mass, kinetic energies and excited states of the ejected species. According to the TOF mass measurements in vacuum, the most prominent species were Si and Fe atoms and ions over the entire fluence range, in addition to Si dimer. At 0.4-0.7 J/cm2, only neutrals of Si, Fe and Si2 with the kinetic energy of around 0.2eV were observed. At the fluences above 0.7J/cm2, doubly and singly charged Si and Fe ions appeared abruptly increased their number density and kinetic energies from 6 eV at 0.7 J/cm2 to over 100 eV at 2.5 J/cm2. Consistent with the TOF mass spectra, the optical emission lines stemmed from the monatomic Si and Fe as well as Si dimer in the wavelength range of 240-800 nm in vacuum. On the other hand, we confirmed some luminescent lines appeared only in helium atmosphere of 10 Torr, suggesting the cluster formation such as FeSi.

  11. Ignition studies of AlFe2O3 energetic nanocomposites L. Menon,a)

    E-print Network

    Holtz, Mark

    Ignition studies of AlÕFe2O3 energetic nanocomposites L. Menon,a) S. Patibandla, K. Bhargava Ram, S; published online 20 May 2004 We prepare energetic nanocomposites, which undergo an exothermic reaction when ignited at moderate temperature. The nanocomposites are a mixture of Al fuel and Fe2O3 oxidizer where Fe2O

  12. The atomic details of the interfacial interaction between the bottom electrode of Al/AlOx/Al Josephson junctions and HF-treated Si substrates

    NASA Astrophysics Data System (ADS)

    Zeng, L. J.; Krantz, P.; Nik, S.; Delsing, P.; Olsson, E.

    2015-04-01

    The interface between the Al bottom contact layer and Si substrates in Al based Josephson junctions is believed to have a significant effect on the noise observed in Al based superconducting devices. We have studied the atomic structure of it by transmission electron microscopy. An amorphous layer with a thickness of ˜5 nm was found between the bottom Al electrode and HF-treated Si substrate. It results from intermixing between Al, Si, and O. We also studied the chemical bonding states among the different species using energy loss near edge structure. The observations are of importance for the understanding of the origin of decoherence mechanisms in qubits based on these junctions.

  13. Study of Al impurity induced magnetic instability in CeFe{sub 2}

    SciTech Connect

    Das, Rakesh; Srivastava, S. K.

    2015-05-15

    We report experimental and computational studies on Al impurity induced magnetic instabilities in CeFe{sub 2}. The work is based on the reported first order magneto-structural phase transition in Ce(Fe{sub 1-x}Al{sub x}){sub 2}, with 0.02 ? x ? 0.08, below 90?K. We performed first-principles calculations of electronic and magnetic properties of Ce(Fe{sub 1-x}Al{sub x}){sub 2} for x = 0.031 and 0.25. A concentration dependence of Fe and Ce moments is observed, while the Al impurity does not carry any appreciable moment in either case. We investigated spin-polarised partial density of states of Ce(Fe{sub 1-x}Al{sub x}){sub 2} and their various hybridizations in order to find an answer for an antiferromagnetic kind of order at low temperatures.

  14. New accurate compression data for ?-Fe 2SiO 4

    NASA Astrophysics Data System (ADS)

    Nestola, Fabrizio; Boffa Ballaran, Tiziana; Koch-Müller, Monika; Balic-Zunic, Tonci; Taran, Michael; Olsen, Lars; Princivalle, Francesco; Secco, Luciano; Lundegaard, Lars

    2010-12-01

    The equation of state for ?-Fe 2SiO 4 was determined by single-crystal X-ray diffraction up to 10.2 GPa at room temperature. The pressure-volume data, measured at 10 different pressures, do not show any evidence of a phase transformation and were fit by a third-order Birch-Murnaghan equation of state. The following coefficients were refined simultaneously: V0 = 559.44(6) Å 3, KT0 = 187.3(1.7) GPa, and K' = 5.5(4). This result implies that the Mg/Fe substitution along the ?-Fo-Fa join does not significantly affect the bulk modulus. The sample shows higher K' than other compositions along the Fo-Fa join, which generally have K' ˜ 4. Based on our results we can calculate the sound bulk velocity of ?-Fe 2SiO 4 up to the pressures of the Transition Zone. Due to the larger K' of ?-Fe 2SiO 4, the difference in bulk sound velocity between the two end-members decreases with increasing pressure.

  15. The Mechanism of P Removal by Solvent Refining in Al-Si-P System

    NASA Astrophysics Data System (ADS)

    Ban, Boyuan; Bai, Xiaolong; Li, Jingwei; Li, Yanlei; Chen, Jian; Dai, Songyuan

    2015-12-01

    To study P removal from Si by solvent refining in Al-Si-P system, series of quench experiments are carried out, which confirms a high P removal rate. An apparent segregation coefficient is introduced to characterize the segregation between primary Si and Al-Si melt, which are determined to be 0.00670, 0.0117, and 0.0201 when Si contents are 20, 30, and 40 wt pct, respectively, at the cooling rate of 0.556 mK s-1. A calculation of Gibbs free energy of AlP in the alloys is also carried out and proves AlP precipitates before the primary Si formation. The formation of the AlP particles causes the decrease of P content in the Al-Si melt and contributes to the high P removal. Models to explain the P contents in the refined Si of each sample in this work are presented. These include three different cases to describe the interaction between the AlP particles and the primary Si.

  16. Note: Resonance magnetoelectric interactions in laminate of FeCuNbSiB and multilayer piezoelectric stack for magnetic sensor

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming

    2015-09-01

    This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.

  17. Highly selective etching of LaAlSiOx to Si using C4F8/Ar/H2 plasma

    NASA Astrophysics Data System (ADS)

    Sasaki, Toshiyuki; Matsuda, Kazuhisa; Omura, Mitsuhiro; Sakai, Itsuko; Hayashi, Hisataka

    2015-06-01

    Selective etching of LaAlSiOx to Si has been studied in inductively coupled BCl3 plasma using a hot cathode, and in capacitively coupled C4F8/Ar and C4F8/Ar/H2 plasmas. In BCl3 high-temperature etching, the etch selectivity of LaAlSiOx to Si was 0.05 at 210 °C. It was found that increasing the bias power using capacitively coupled C4F8/Ar plasma enhanced LaAlSiOx etching. Furthermore, the etch rate of LaAlSiOx increased and that of Si decreased upon the addition of H2. As a result, a high LaAlSiOx-to-Si selectivity of 6.7 was obtained when using C4F8/Ar/H2 plasma at an H2 flow rate ratio of 13%. We confirmed that H2 played different roles on the LaAlSiOx surface and on the Si surface. H2 suppressed Si etching by forming a high-C/F-ratio polymer on the Si surface, while it enhanced LaAlSiOx etching by breaking the stable metal-oxygen bonds of LaAlSiOx.

  18. Thermoelectric Properties of the Quasi-Binary MnSi1.73-FeSi2 System

    NASA Astrophysics Data System (ADS)

    Sadia, Yatir; Madar, Naor; Kaler, Ilan; Gelbstein, Yaniv

    2015-06-01

    The higher manganese silicides (HMS) are regarded as very attractive p-type thermoelectric materials for direct conversion of heat to electricity. To compete with other thermodynamic engines (e.g. the Stirling and Rankine cycles), however, the thermoelectric figure of merit of such silicides must be improved. HMS follow a complicated solidification reaction on cooling from the melt, which leads to formation of undesired secondary phases. Furthermore, the electronic carrier concentration of HMS is much higher than the optimum for thermoelectric applications and should be compensated by introduction of doping agents. In this research, the electronic donor action associated with substitution of HMS by FeSi2 was investigated. The effects of excess Si on phase distribution and thermoelectric properties are also discussed in detail.

  19. Thermodynamic analysis of compatibility of several reinforcement materials with FeAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with FeAl alloys within the concentration range 40 to 50 at pct Al have been analyzed from thermodynamic considerations at 1173 and 1273 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, and silicides. Although several chemically compatible reinforcement materials are identified, the coefficients of thermal expansion for none of these materials match closely with that of FeAl alloys and this might pose serious problems in the design of composite systems based on FeAl alloys.

  20. Thermodynamic modeling of Al-U-X (X = Si,Zr)

    NASA Astrophysics Data System (ADS)

    Rabin, Daniel; Shneck, Roni Z.; Rafailov, Gennady; Dahan, Isaac; Meshi, Louisa; Brosh, Eli

    2015-09-01

    Thermodynamic models are constructed for the U-Al-Si and U-A-Zr ternary alloy systems using the CALPHAD (CALculation of PHAse Diagrams) method. For the U-Al-Zr system the modeling covers only the aluminum-rich corner (from 100 at% to 67 at% Al) and is based only on literature data. For the U-Al-Si system, the whole range of compositions is covered and new key experiments were done in the uranium-poor region of the U-Al-Si system. These experiments have shown that under conditions of equilibrium with Al and Si, the Si-content of the U(Al,Si)3 is significantly higher than reported by earlier works. Different extrapolation methods were tried for the Gibbs energy of the liquid phase. However, it was found that for the U-Al-Si and U-Al-Zr systems, symmetric Muggianu method and the asymmetric method by Hillert give similar predictions. The constructed thermodynamic database was investigated by calculating isothermal sections, vertical sections and the liquidus projection. The calculated diagrams are in reasonable agreement with experimental data. Finally, solidification simulation (Scheil simulation) was done in order to assess the phases obtained in solidification as a function of the silicon addition to U-Al alloys.

  1. Inhomogeneous distribution of defect-related emission in Si-doped AlGaN epitaxial layers with different Al content and Si concentration

    SciTech Connect

    Kurai, Satoshi Ushijima, Fumitaka; Yamada, Yoichi; Miyake, Hideto; Hiramatsu, Kazumasa

    2014-02-07

    The spatial distribution of luminescence in Si-doped AlGaN epitaxial layers that differ in Al content and Si concentration has been studied by cathodoluminescence (CL) mapping in combination with scanning electron microscopy. The density of surface hillocks increased with decreasing Al content and with increasing Si concentration. The mechanisms giving rise to those hillocks are likely different. The hillocks induced surface roughening, and the compositional fluctuation and local donor-acceptor-pair (DAP) emission at hillock edges in AlGaN epitaxial layers were enhanced irrespective of the origin of the hillocks. The intensity of local DAP emission was related to Si concentration, as well as to hillock density. CL observation revealed that DAP emission areas were present inside the samples and were likely related to dislocations concentrated at hillock edges. Possible candidates for acceptors in the observed DAP emission that are closely related in terms of both Si concentration and hillock edges with large deformations are a V{sub III}-Si{sub III} complex and Si{sub N}, which are unfavorable in ordinary III-nitrides.

  2. Inhomogeneous distribution of defect-related emission in Si-doped AlGaN epitaxial layers with different Al content and Si concentration

    NASA Astrophysics Data System (ADS)

    Kurai, Satoshi; Ushijima, Fumitaka; Miyake, Hideto; Hiramatsu, Kazumasa; Yamada, Yoichi

    2014-02-01

    The spatial distribution of luminescence in Si-doped AlGaN epitaxial layers that differ in Al content and Si concentration has been studied by cathodoluminescence (CL) mapping in combination with scanning electron microscopy. The density of surface hillocks increased with decreasing Al content and with increasing Si concentration. The mechanisms giving rise to those hillocks are likely different. The hillocks induced surface roughening, and the compositional fluctuation and local donor-acceptor-pair (DAP) emission at hillock edges in AlGaN epitaxial layers were enhanced irrespective of the origin of the hillocks. The intensity of local DAP emission was related to Si concentration, as well as to hillock density. CL observation revealed that DAP emission areas were present inside the samples and were likely related to dislocations concentrated at hillock edges. Possible candidates for acceptors in the observed DAP emission that are closely related in terms of both Si concentration and hillock edges with large deformations are a VIII-SiIII complex and SiN, which are unfavorable in ordinary III-nitrides.

  3. Fe/Si(001) Ferromagnetic Layers: Reactivity, Local Atomic Structure and Magnetism

    SciTech Connect

    Lungu, G. A.; Costescu, R. M.; Husanu, M. A.; Gheorghe, N. G.

    2011-10-03

    Ultrathin ferromagnetic Fe layers on Si(001) have recently been synthesized using the molecular beam epitaxy (MBE) technique, and their structural and magnetic properties, as well as their interface reactivity have been investigated. The study was undertaken as function of the amount of Fe deposited and of substrate temperature. The interface reactivity was characterized by Auger electron spectroscopy (AES). The surface structure was characterized by low-energy electron diffraction (LEED). The magnetism was investigated by magneto-optical Kerr effect (MOKE). A higher deposition temperature stabilizes a better surface ordering, but it also enhances Fe and Si interdiffusion and it therefore decreases the magnetism. Despite the rapid disappearance of the long range order with Fe deposition at room temperature, the material exhibits a significant uniaxial in-plane magnetic anisotropy. For the Fe deposition performed at high temperature (500 deg. C), a weak ferromagnetism is still observed, with saturation magnetization of about 10% of the value obtained previously. MOKE studies allowed inferring the main properties of the distinct formed layers.

  4. Disproportionation of (Mg,Fe)SiO3 Perovskite and its Implications to the Deep Earth

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Meng, Y.; Yang, W.; Wang, L.; Mao, W. L.; Zeng, Q. C.; Jeong, J. S.; Wagner, A. J.; Mkhoyan, K. A.; Liu, W.; Xu, R.; Mao, H. K.

    2014-12-01

    Models of the Earth's deep interior have been built upon the basic assumption that the lower mantle down to the top of the D" layer mainly consists of orthorhombic perovskite (pv) with nominally 10 mol% Fe. However, seismic observations show enigmatic features in the deep lower mantle, such as, the sharp boundary on the top of the D? layer, the anticorrelations between VS and VP, the seismic anisotropy, and the existence of large low-shear-velocity provinces. The mineralogical constitution of the Earth's mantle is fundamental for understanding the geophysical and geochemical properties of this region. Our recent study using laser-heated diamond anvil cell technology coupled with synchrotron x-ray diffraction in-situ at high pressure-temperature and TEM studies of the quenched sample has demonstrated the disproportionation reaction of (Mg,Fe)SiO3 pv to a nearly Fe-free pv and an Fe-rich H-phase with a previously unknown hexagonal structure at 95 to 101 GPa and 2200 to 2400 K, thus fundamentally changing the geochemistry and geophysics of the bottom half of the lower mantle. We suggest that (Mg,Fe)SiO3 pv may not be the major silicate throughout the lower mantle down to the top of the D" layer. Instead, interpretations for key enigmatic features in the deep lower mantle require the knowledge of the three-phase P-T-x relationship of pv, ppv, and the H-phase.

  5. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  6. Structural analysis of metalorganic chemical vapor deposited AlN nucleation layers on Si (111)

    E-print Network

    Zang, Keyan

    AlN nucleation layers are being investigated for growth of GaN on Si. The microstructures of high-temperature AlN nucleation layers grown by MOCVD on Si (111) substrates with trimethylaluminium pre-treatments have been ...

  7. Phase relations and precipitation in AlMgSi alloys with Cu additions

    E-print Network

    Laughlin, David E.

    Phase relations and precipitation in Al­Mg­Si alloys with Cu additions§ D.J. Chakrabartia , David E of a phase, designated as Q, which is stable only as a quaternary compound with variously reported stoichiometry. In this paper we first review the equilibrium phase field of various Al­Mg­Si­Cu alloys, noting

  8. Transport and switching behaviors in magnetic tunnel junctions consisting of CoFeB/FeNiSiB hybrid free layers

    E-print Network

    Siegel, Paul H.

    Transport and switching behaviors in magnetic tunnel junctions consisting of CoFeB/FeNiSiB hybrid switching, the magnetization of the free layer is reversed by injected current itself rather than external of the resistance-area (RA) product has to be low enough to ensure switching margin before reaching the breakdown

  9. Activities of the components in a spinel solid solution of the Fe-Al-O system

    NASA Astrophysics Data System (ADS)

    Lykasov, A. A.; Kimyashev, A. A.

    2011-09-01

    The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.

  10. Interface characteristics in diffusion bonding of Fe3Al with Cr18-Ni8 stainless steel.

    PubMed

    Wang, Juan; Li, Yajiang; Yin, Yansheng

    2005-05-01

    Fe3Al and Cr18-Ni8 stainless steel were diffusion-bonded in vacuum and a Fe3Al/Cr18-Ni8 interface with reaction layer was formed. Microstructure in the reaction layer at Fe3Al/Cr18-Ni8 interface was analyzed by means of scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). The growth of reaction layer with heating temperature (T) and holding time (t) was researched. The results indicate that FeAl, Fe3Al, Ni3Al, and alpha-Fe (Al) solid solution are formed in the reaction layer. These phases are favorable to promote the element diffusion and to accelerate the formation of the reaction layer at Fe3Al/Cr18-Ni8 interface. The growth of reaction layer obeys the parabolic law and its thickness (X) is expressed by X2 = 7.5 x 10(-4)exp(-83.59/RT)(t - t0). PMID:15797414

  11. Optical and electrical characterization of sputter-deposited FeSi{sub 2} and its evolution with annealing temperature

    SciTech Connect

    Tan, K. H.; Chi, D. Z.; Pey, K. L.

    2008-09-15

    Optical and electrical properties of sputter-deposited FeSi{sub 2} thin films on p-Si(100) and SiO{sub 2}/p-Si(100) substrates as well as their evolution with rapid thermal annealing (RTA) temperature have been investigated. Optical absorption measurements were carried out to determine the absorption spectra of FeSi{sub 2} based on the proposed optical absorption model for the double-layer and triple-layer structures. A direct band gap behavior was concluded for both amorphous and polycrystalline semiconducting FeSi{sub 2}. An absorption coefficient in the order of 10{sup 5} cm{sup -1} at 1 eV and a band gap value of {approx}0.86 eV were obtained for the {beta}-FeSi{sub 2}. Hall effect measurements at room temperature indicate heavily doped and n-type conductivity for the FeSi{sub 2} films on p-Si, whose residual carrier concentration was found to be closely correlated with the observed subgap optical absorption via band tailing. The carrier mobility was shown to increase with decreasing residual carrier concentration when the RTA temperature was increased.

  12. Study on AlGaN/GaN growth on carbonized Si substrate

    NASA Astrophysics Data System (ADS)

    Sakamoto, Tatsuya; Wakabayashi, Shigeaki; Takahashi, Tokio; Ide, Toshihide; Shimizu, Mitsuaki; Ubukata, Akinori; Satou, Takayuki; Tabuchi, Toshiya; Takanashi, Yoshifumi

    2014-01-01

    AlGaN/GaN films were grown on carbonized Si(111) substrates, which were employed to prevent impurities such as residual Ga atoms from reacting and deteriorating the surface of Si substrates. The cleaning process for the flow channel in metal organic chemical vapor deposition (MOCVD) could effectively be eliminated by using this carbonized Si substrate, and high-quality AlGaN/GaN films were obtained.

  13. Impact of amorphous Ge thin layer at the amorphous Si/Al interface on Al-induced crystallization

    NASA Astrophysics Data System (ADS)

    Suzuki, Hidehiro; Usami, Noritaka; Nomura, Akiko; Shishido, Toetsu; Nakajima, Kazuo; Suemasu, Takashi

    2010-11-01

    We investigated the impact of an amorphous Ge ( a-Ge) thin layer inserted at the amorphous Si ( a-Si)/Al interface on Al-induced crystallization. In situ observation of the growth process clarified that the nucleation rate is drastically reduced by insertion of a-Ge, which led to increase in the average size of crystal grains. This was interpreted as resulting from decrease in the driving force of crystallization, mainly due to the larger solubility of Ge in Al than that of Si in Al. The obtained films were SiGe alloys with lateral distribution of Ge content, and its origin is discussed based on the two-step nucleation process.

  14. Sound velocities of Fe and Fe-Si alloy in the Earth's core

    E-print Network

    Lin, Jung-Fu "Afu"

    to evaluate the composition, seismic sig- natures, and geodynamics of the planet's remotest region. Specifi-pressure VP - behavior to hcp-Fe via a constant density offset. These VP - data at a given tempera- ture can be better described by an empirical power-law function with a concave behavior at higher densities than

  15. Extrusion textures in Al, 6061 alloy and 6061/SiC{sub p} nanocomposites

    SciTech Connect

    Jiang, X.; Galano, M.; Audebert, F.

    2014-02-15

    The 6061 alloy matrix composites reinforced with 10 wt.% and 15 wt.% of SiC nanoparticles with an average diameter of ? 500 nm were hot extruded in strip shape from ball milled powders. The microstructures and textures of the hot extruded nanocomposites have been investigated by means of three dimensional orientation distribution functions and electron backscatter diffraction (EBSD) techniques. Pure Al and 6061 alloy extruded strips from atomised powders have been produced for comparison purposes. The results show that the non-deformable SiC particulates have a strong influence on the formation of extrusion textures in the matrix. Pure Al and 6061 alloy develop a typical ? fibre texture after extrusion in strip shape. For 6061/SiC{sub p} nanocomposites, the intensities of major texture components decrease with increasing amount of SiC particles. The total intensities of Brass, Dillamore and S components have decreased by 19% for 6061/10 wt.% SiC{sub p} and 40% for 6061/15 wt.% SiC{sub p} composites when compared with the 6061 alloy. EBSD analysis on local grain orientations shows limited Al grain rotations in SiC rich zones and decreased texture intensities. - Highlights: • The effect of nano-SiCp to the extrusion texture of Al alloy matrix was analysed. • The Intensity of major texture components decreases with increasing amount of SiCp. • Deformation zones with limited Al grain rotations formed in SiCp rich zones.

  16. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    SciTech Connect

    Johnson, Matthew ); Weyant, J.; Garner, S. ); Occhionero, M. )

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  17. Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite.

    PubMed

    Mosleh-Shirazi, Sareh; Hua, Guomin; Akhlaghi, Farshad; Yan, Xianguo; Li, Dongyang

    2015-01-01

    Microstructural inhomogeneity generally deteriorates the corrosion resistance of materials due to the galvanic effect and interfacial issues. However, the situation may change for nanostructured materials. This article reports our studies on the corrosion behavior of SiC nanoparticle-reinforced Al6061 matrix composite. It was observed that the corrosion resistance of Al6061 increased when SiC nanoparticles were added. Overall electron work function (EWF) of the Al-SiC nanocomposite increased, along with an increase in the corrosion potential. The electron localization function of the Al-SiC nanocomposite was calculated and the results revealed that valence electrons were localized in the region of SiC-Al interface, resulting in an increase in the overall work function and thus building a higher barrier to hinder electrons in the nano-composite to participate in corrosion reactions. PMID:26667968

  18. Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite

    PubMed Central

    Mosleh-Shirazi, Sareh; Hua, Guomin; Akhlaghi, Farshad; Yan, Xianguo; Li, Dongyang

    2015-01-01

    Microstructural inhomogeneity generally deteriorates the corrosion resistance of materials due to the galvanic effect and interfacial issues. However, the situation may change for nanostructured materials. This article reports our studies on the corrosion behavior of SiC nanoparticle-reinforced Al6061 matrix composite. It was observed that the corrosion resistance of Al6061 increased when SiC nanoparticles were added. Overall electron work function (EWF) of the Al-SiC nanocomposite increased, along with an increase in the corrosion potential. The electron localization function of the Al-SiC nanocomposite was calculated and the results revealed that valence electrons were localized in the region of SiC-Al interface, resulting in an increase in the overall work function and thus building a higher barrier to hinder electrons in the nano-composite to participate in corrosion reactions. PMID:26667968

  19. Effect of Percolation on Structural and Electrical Properties of MIC Processed SiGe/Al Multilayers

    NASA Astrophysics Data System (ADS)

    Lindorf, M.; Rohrmann, H.; Span, G.; Albrecht, M.

    2015-11-01

    The effect of metal induced crystallization (MIC) is widely used in the production of electronic devices by forming large grained polycrystalline Si from amorphous Si in contact with Al. This effect can also be utilized in conjunction with silicon-germanium (SiGe) alloys and thus provides means of a possible low cost production of future high temperature thermoelectric devices. In this work, sputter deposited multilayer systems of Si80Ge20/Al thin films have been investigated. The effect of MIC is used to crystallize the initially amorphous SiGe while simultaneously doping it with Al. As metallic phases would be detrimental to the thermoelectric performance, special interest is directed to the Al layers and their dissociation during the annealing treatment. A percolation limit regarding the thickness and continuity of the Al layers was found, but no detrimental side effects with respect to the MIC process could be detected.

  20. Mechanism of ?-FeSi{sub 2} precipitates growth-and-dissolution and pyramidal defects' formation during oxidation of Fe-contaminated silicon wafers

    SciTech Connect

    De Luca, Anthony; Texier, Michaël Portavoce, Alain; Burle, Nelly; Grosjean, Catherine; Morata, Stéphane; Michel, Fabrice

    2015-03-21

    Fe-implanted Si-wafers have been oxidized at 900?°C and 1100?°C in order to investigate the behaviour of Fe atoms at the growing SiO{sub 2}/Si interface and the impact on the integrity of microelectronic devices of an involuntary Fe contamination before or during the oxidation process. As-implanted and oxidized wafers have been characterized using secondary ion mass spectroscopy, atom probe tomography, and high-resolution transmission electron microscopy. Experimental results were compared to calculated implantation profiles and simulated images. Successive steps of iron disilicide precipitation and oxidation were evidenced during the silicon oxidation process. The formation of characteristic pyramidal-shaped defects, at the SiO{sub 2}/Si interface, was notably found to correlate with the presence of ?-FeSi{sub 2} precipitates. Taking into account the competitive oxidation of these precipitates and of the surrounding silicon matrix, dynamic mechanisms are proposed to model the observed microstructural evolution of the SiO{sub 2}/Si interface, during the growth of the silicon oxide layer.

  1. Syntheses, crystal structures, and electronic properties of Ba8Si2US14 and Ba8SiFeUS14

    NASA Astrophysics Data System (ADS)

    Mesbah, Adel; Prakash, Jai; Lebègue, Sébastien; Stojko, Wojciech; Ibers, James A.

    2015-10-01

    Black single crystals of the new compounds Ba8Si2US14 and Ba8SiFeUS14 have been obtained by high-temperature solid-state methods at 1223 K. These isostructural compounds crystallize in a new structure type in space group C2h3 - C2/m of the monoclinic system. The salt-like structure comprises isolated US6 octahedra and MS4 tetrahedra separated by Ba cations. The US6 octahedra form pseudo-layers that are separated by two other pseudo-layers formed by isolated MS4 tetrahedra. These compounds do not show any short S-S interactions. Ba8Si2US14 charge balances with 8 Ba2+, 2 Si4+, 1 U4+, and 14 S2-; Ba8SiFeUS14 can be charge balanced with 8 Ba2+, 1 Si4+, 1 Fe3+, 1 U5+, and 14 S2-. DFT calculations using the HSE functional indicate that the compounds are semiconductors. The calculated band gaps are 1.2 eV and 1.8 eV for Ba8Si2US14 and Ba8SiFeUS14, respectively.

  2. Synthesis and transport properties of ternary type-I Si clathrate K8Al7Si39

    NASA Astrophysics Data System (ADS)

    Singh, Shiva Kumar; Mochiku, Takashi; Ibuka, Soshi; Isoda, Yukihiro; Hoshikawa, Akinori; Ishigaki, Toru; Imai, Motoharu

    2015-09-01

    A ternary type-I Si clathrate, K8AlxSi46-x, which is a candidate functional material composed of abundant non-toxic elements, was synthesized and its transport properties were investigated at temperatures ranging from 10 to 320 K. The synthesized compound is confirmed to be the ternary type-I Si clathrate K8Al7Si39 with a lattice parameter of a = 10.442 Å using neutron powder diffractometry and inductively coupled plasma optical emission spectrometry. Electrical resistivity and Hall coefficient measurements revealed that K8Al7Si39 is a metal with electrons as the dominant carriers at a density of approximately 1 × 1027/m3. The value of Seebeck coefficient for K8Al7Si39 is negative and its absolute value increases with the temperature. The temperature dependence of the thermal conductivity is similar to that for a crystalline solid. The dimensionless figure of merit is approximately 0.01 at 300 K, which is comparable to that for other ternary Si clathrates.

  3. Structural and Thermal Study of Nanocrystalline Fe-Al-B Alloy Prepared by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Gharsallah, Hana Ibn; Sekri, Abderrahmen; Azabou, Myriam; Escoda, Luiza; Suñol, Joan Josep; Khitouni, Mohamed

    2015-08-01

    Nanostructured iron-aluminum alloy of Fe-25 at. pct Al composition doped with 0.2 at. pct B was prepared by mechanical alloying. The phase transformations and structural changes occurring in the studied material during mechanical alloying and during subsequent heating were investigated by SEM, XRD, and DSC techniques. The patterns so obtained were analyzed using the Rietveld program. The alloyed powders were disordered Fe(Al) solid solutions and Fe2B boride phase. The Fe2B boride phase is formed after 4 hours of milling. The crystallite size reduction to the nanometer scale (5 to 8 nm) is accompanied by an increase in lattice strains. The powder milled for 40 hours was annealed at temperatures of 523 K, 823 K, 883 K, and 973 K (250 °C, 550 °C, 610 °C, and 700 °C) for 2 hours. Low temperatures annealing are responsible for the relaxation of the disordered structure, while high temperatures annealing enabled supersaturated Fe(Al) solid solutions to precipitate out fines Fe3Al, Fe2Al5, and Fe4Al13 intermetallics and, also the recrystallization and the grain growth phenomena.

  4. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  5. Effects of Sintering Atmosphere on the Mechanical Properties of Al-Fe Particle-Reinforced Al-Based Composites

    NASA Astrophysics Data System (ADS)

    Xue, Yang; Shen, Rujuan; Ni, Song; Xiao, Daihong; Song, Min

    2015-05-01

    Al-based composites reinforced by Al-Fe intermetallic compounds have been fabricated by powder metallurgy technique. The reinforcements were formed in the aluminum matrix by in situ solid-state reaction between pure Al and pure Fe powders. The effects of sintering atmosphere on the microstructures and mechanical properties of the composites were systematically studied by scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction analysis, and compressive tests. It has been shown that Al-Fe intermetallic particles (including a large number of the Fe-Al5Fe2 core-shell structured particles) were the dominant reinforcements in the composites sintered under Ar atmosphere, while pure Fe particles were the dominant reinforcements in the composites sintered under N2 atmosphere. N2 atmosphere is more effective than Ar atmosphere in increasing the sintered density of the composites due to the formation of aluminum nitride, which can effectively fill the pores. Thus, the compressive mechanical properties of the composites sintered under N2 atmosphere are higher than those of the composites sintered under Ar atmosphere.

  6. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy.

    PubMed

    Manzoni, A; Daoud, H; Völkl, R; Glatzel, U; Wanderka, N

    2013-09-01

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al-Ni rich matrix and Cr-Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr-Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr-Fe-rich precipitates. PMID:23352803

  7. Deposition characteristics of Al 12Si alloy coating fabricated by cold spraying with relatively large powder particles

    NASA Astrophysics Data System (ADS)

    Li, W.-Y.; Zhang, C.; Guo, X. P.; Zhang, G.; Liao, H. L.; Coddet, C.

    2007-06-01

    In this paper, the microstructure, microhardness and adhesive strength of Al-12Si coating produced by cold spraying were investigated. It is found that a thick, dense and well bonded Al-12Si coating could be produced by cold spraying with a relatively large powder through the control of spray conditions. The critical velocity for large Al-12Si particles was lower than that of small Al-12Si particles. The as-deposited Al-12Si coating had the same crystal structure as Al-12Si powder. The localized interface melting occurred resulting from both the adiabatic shearing upon impact and the thermal effect of hot gas. Some fine Si particles precipitated in ?-Al matrix because of the thermal effect of hot gas during coating deposition. The dispersed Si particles in Al-12Si coating improved the coating microhardness.

  8. Characterization of Hypereutectic Al-Si Powders Solidified under Far-From Equilibrium Conditions

    SciTech Connect

    Y.E. Kalay; L.S. Chumbley; I.E. Anderson; R.E. Napolitano

    2007-07-01

    The rapid solidification microstructure of gas-atomized Al-Si powders of 15, 18, 25, and 50 wt pct Si were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In order of increasing particle size, the powders exhibited microcellular Al, cellular/dendritic Al, eutectic Al, and primary Si growth morphologies. Interface velocity and undercooling were estimated from measured eutectic spacing based on the Trivedi-Magnin-Kurz (TMK) model, permitting a direct comparison with theoretical predictions of solidification morphology. Based on our observations, additional conditions for high-undercooling morphological transitions are proposed as an extension of coupled-zone predictions.

  9. Band alignment at AlN/Si (111) and (001) interfaces

    NASA Astrophysics Data System (ADS)

    King, Sean W.; Nemanich, Robert J.; Davis, Robert F.

    2015-07-01

    To advance the development of III-V nitride on silicon heterostructure semiconductor devices, we have utilized in-situ x-ray photoelectron spectroscopy (XPS) to investigate the chemistry and valence band offset (VBO) at interfaces formed by gas source molecular beam epitaxy of AlN on Si (001) and (111) substrates. For the range of growth temperatures (600-1050 °C) and Al pre-exposures (1-15 min) explored, XPS showed the formation of Si-N bonding at the AlN/Si interface in all cases. The AlN/Si VBO was determined to be -3.5 ± 0.3 eV and independent of the Si orientation and degree of interfacial Si-N bond formation. The corresponding AlN/Si conduction band offset (CBO) was calculated to be 1.6 ± 0.3 eV based on the measured VBO and band gap for wurtzite AlN. Utilizing these results, prior reports for the GaN/AlN band alignment, and transitive and commutative rules for VBOs, the VBO and CBO at the GaN/Si interface were determined to be -2.7 ± 0.3 and -0.4 ± 0.3 eV, respectively.

  10. Synthesis and structural investigations of La 13Si 18Al 12O 15N 39

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, Saeid; Schnick, Wolfgang

    2003-03-01

    A high temperature synthesis procedure using a radiofrequency (RF) furnace has been applied for preparation of the lanthanum containing sialon La 13Si 18Al 12O 15N 39. Single crystals of La 13Si 18Al 12O 15N 39 were obtained by reacting a mixture of Si 3N 4, SiO 2, AlN and La metal. Single-crystal X-ray diffraction analysis of La 13Si 18Al 12O 15N 39 revealed a cubic crystal structure with a unit cell parameter a=13.495(4) Å and the space group I 4¯3m . Thus La 13Si 18Al 12O 15N 39 is isostructural with Sr 3Ln 10Si 18Al 12O 18N 36 (Ln=Ce, Pr and Nd), with the significant difference of La occupying not only the crystallographic rare earth metal sites, but also the strontium sites found in Sr 3Ln 10Si 18Al 12O 18N 36 (Ln=Ce, Pr, Nd).

  11. Thickness dependence of the magnetic and electrical properties of Fe:SiO2 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Malhotra, S. S.; Liu, Y.; Shen, J. X.; Liou, S. H.; Sellmyer, D. J.

    1994-11-01

    Nanocomposite Fe80(SiO2)20 films with thickness from 150 to 5000 A have been prepared by rf magnetron sputtering from a composite target. The crystallites in the Fe80(SiO2)10 films have a bcc structure with the average size of 46-66 A which was determined by transmission electron microscopy. As indicated by the thickness dependence of resistivity, the stacking and connectivity of the crystallites depend on the thickness of the films. The magnetic properties also depend on the microstructure which changes with the thickness of the films. The magnetic coercivity of the films increases with the thickness of the film, reaches a maximum, and then decreases. The maximum coercivity of 400 Oe at 300 K and 1200 Oe at 5 K was observed for a film with a thickness of about 700 A.

  12. Ablation plasma ion implantation experiments: Measurement of Fe implantation into Si

    SciTech Connect

    Qi, B.; Gilgenbach, R. M.; Lau, Y. Y.; Johnston, M. D.; Lian, J.; Wang, L. M.; Doll, G. L.; Lazarides, A.

    2001-06-11

    Experiments have been performed demonstrating the feasibility of direct implantation of laser-ablated metal ions into a substrate. Initial experiments implanted iron ions into silicon substrates at pulsed, bias voltages up to negative 10 kV. Implantation of Fe ions into Si was confirmed by cross-sectional transmission electron microscopy and x-ray photoelectron spectroscopy. The 7.6 nm depth of damage layers below the Si surface is slightly less than predicted by code calculations for a maximum, effective ion energy of about 8 keV. The ion depth of penetration is limited by the overlying Fe film as well as the slow rise and fall of the voltage. {copyright} 2001 American Institute of Physics.

  13. Separation of semiconducting and ferromagnetic FeSi2-nanoparticles by magnetic filtering

    NASA Astrophysics Data System (ADS)

    Aigner, Willi; Niesar, Sabrina; Mehmedovic, Ervin; Opel, Matthias; Wagner, Friedrich E.; Wiggers, Hartmut; Stutzmann, Martin

    2013-10-01

    We have investigated the potential of solution-processed ?-phase iron disilicide (FeSi2) nanoparticles as a novel semiconducting material for photovoltaic applications. Combined ultraviolet-visible absorption and photothermal deflection spectroscopy measurements have revealed a direct band gap of 0.85 eV and, therefore, a particularly high absorption in the near infrared. With the help of Fourier-transform infrared and X-ray photoelectron spectroscopy, we have observed that exposure to air primarily leads to the formation of a silicon oxide rather than iron oxide. Mössbauer measurements have confirmed that the nanoparticles possess a phase purity of more than 99%. To diminish the small fraction of metallic iron impurities, which were detected by superconducting quantum interference device magnetometry and which would act as unwanted Auger recombination centers, we present a novel concept to magnetically separate the FeSi2 nanoparticles (NPs). This process leads to a reduction of more than 95% of the iron impurities.

  14. Annealing of quenched Fe-Al alloys with/without B and Ti

    SciTech Connect

    Yang, Y.; Baker, I.

    1999-07-01

    Fe-40Al, Fe-40Al-012B and Fe-40Al-5Ti were annealed at a variety of temperatures, water quenched to obtain different vacancy concentrations, and heated at 10 K/min to 973K in a differential scanning calorimeter. Either one or two exothermic peaks were observed, at 533--613K and 743--933K, for all the alloys, while an additional exothermic peak was observed at 653K--693K for Fe-40Al-5Ti. All the peaks shifted to lower temperature with increasing quenching temperature. It is shown that the highest temperature exothermic peak is associated with the annihilation of thermal vacancies. Analysis of this peak as a function of temperature yields vacancy formation enthalpies of 102{+-}15kJ/mol, 104{+-}15 kJ/mol and 81{+-}15 kJ/mol for Fe-40Al, Fe-40Al-0.12B and Fe-40Al-5Ti, respectively. The lower temperature exothermic peaks may arise from vacancy rearrangement.

  15. Microstructural stability of Fe-Cr-Al alloys at 450-550 °C

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Thuvander, Mattias; Olsson, Pär; Rave, Fernando; Szakalos, Peter

    2015-02-01

    Iron-Chromium-Aluminium (Fe-Cr-Al) alloys have been widely investigated as candidate materials for various nuclear applications. Albeit the excellent corrosion resistance, conventional Fe-Cr-Al alloys suffer from ?-?? phase separation and embrittlement when subjected to temperatures up to 500 °C, due to their high Cr-content. Low-Cr Fe-Cr-Al alloys are anticipated to be embrittlement resistant and provide adequate oxidation properties, yet long-term aging experiments and simulations are lacking in literature. In this study, Fe-10Cr-(4-8)Al alloys and a Fe-21Cr-5Al were thermally aged in the temperature interval of 450-550 °C for times up to 10,000 h, and the microstructures were evaluated mainly using atom probe tomography. In addition, a Kinetic Monte Carlo (KMC) model of the Fe-Cr-Al system was developed. No phase separation was observed in the Fe-10Cr-(4-8)Al alloys, and the developed KMC model yielded results in good agreement with the experimental data.

  16. Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection.

    PubMed

    Hardiansyah, Andri; Chen, An-Yu; Liao, Hung-Liang; Yang, Ming-Chien; Liu, Ting-Yu; Chan, Tzu-Yi; Tsou, Hui-Ming; Kuo, Chih-Yu; Wang, Juen-Kai; Wang, Yuh-Lin

    2015-12-01

    In this study, multifunctional hybrid nanoparticles composed of iron platinum (FePt), silica (SiO2), and gold nanoparticles (AuNPs) had been developed for surface-enhanced Raman scattering (SERS) application. Core-shell structure of SiO2 and FePt nanoparticles (FePt@SiO2) was fabricated through sol-gel process and then immobilized gold nanoparticles onto the surface of FePt@SiO2, which displays huge Raman enhancement effect and magnetic separation capability. The resulting core-shell nanoparticles were subject to evaluation by transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential measurement, and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that the particle size of resultant nanoparticles displayed spherical structure with the size ~30 nm and further proved the successful immobilization of Au onto the surface of FePt@SiO2. Zeta potential measurement exhibited the successful reaction between FePt@SiO2 and AuNPs. The rapid SERS detection and identification of small biomolecules (adenine) and microorganisms (gram-positive bacteria, Staphylococcus aureus) was conducted through Raman spectroscopy. In summary, the novel core-shell magnetic nanoparticles could be anticipated to apply in the rapid magnetic separation under the external magnetic field due to the core of the FePt superparamagnetic nanoparticles and label-free SERS bio-sensing of biomolecules and bacteria. PMID:26489855

  17. Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chen, An-Yu; Liao, Hung-Liang; Yang, Ming-Chien; Liu, Ting-Yu; Chan, Tzu-Yi; Tsou, Hui-Ming; Kuo, Chih-Yu; Wang, Juen-Kai; Wang, Yuh-Lin

    2015-10-01

    In this study, multifunctional hybrid nanoparticles composed of iron platinum (FePt), silica (SiO2), and gold nanoparticles (AuNPs) had been developed for surface-enhanced Raman scattering (SERS) application. Core-shell structure of SiO2 and FePt nanoparticles (FePt@SiO2) was fabricated through sol-gel process and then immobilized gold nanoparticles onto the surface of FePt@SiO2, which displays huge Raman enhancement effect and magnetic separation capability. The resulting core-shell nanoparticles were subject to evaluation by transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential measurement, and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that the particle size of resultant nanoparticles displayed spherical structure with the size ~30 nm and further proved the successful immobilization of Au onto the surface of FePt@SiO2. Zeta potential measurement exhibited the successful reaction between FePt@SiO2 and AuNPs. The rapid SERS detection and identification of small biomolecules (adenine) and microorganisms (gram-positive bacteria, Staphylococcus aureus) was conducted through Raman spectroscopy. In summary, the novel core-shell magnetic nanoparticles could be anticipated to apply in the rapid magnetic separation under the external magnetic field due to the core of the FePt superparamagnetic nanoparticles and label-free SERS bio-sensing of biomolecules and bacteria.

  18. Experimental determination of coexisting iron titanium oxides in the systems FeTiAlO, FeTiAlMgO, FeTiAlMnO, and FeTiAlMgMnO at 800 and 900°C, 1 4 kbar, and relatively high oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Evans, Bernard W.; Scaillet, Bruno; Kuehner, Scott M.

    2006-08-01

    A synthetic, low-melting rhyolite composition containing TiO2 and iron oxide, with further separate additions of MgO, MnO, and MgO + MnO, was used in hydrothermal experiments to crystallize Ilm-Hem and Usp-Mt solid solutions at 800 and 900°C under redox conditions slightly below nickel nickel oxide (NNO) to ? 3 log_{10} f_{{{text{O}}2}} units above the NNO oxygen buffer. These experiments provide calibration of the FeTi-oxide thermometer + oxygen barometer at conditions of temperature and oxygen fugacity poorly covered by previous equilibrium experiments. Isotherms for our data in Roozeboom diagrams of projected %usp vs. %ilm show a change in slope at ? 60% ilm, consistent with the second-order transition from FeTi-ordered Ilm to FeTi-disordered Ilm-Hem. This feature of the system accounts for some, but not all, of the differences from earlier thermodynamic calibrations of the thermobarometer. In rhyolite containing 1.0 wt.% MgO, 0.8 wt.% MnO, or MgO + MnO, Usp-Mt crystallized with up to 14% of aluminate components, and Ilm-Hem crystallized with up to 13% geikielite component and 17% pyrophanite component. Relative to the FeTiAlO system, these components displace the ferrite components in Usp-Mt, and the hematite component in Ilm-Hem. As a result, projected contents of ulvöspinel and ilmenite are increased. These changes are attributed to increased non-ideality along joins from end-member hematite and magnetite to their respective Mg- and Mn-bearing titanate and aluminate end-members. The compositional shifts are most pronounced in Ilm-Hem in the range Ilm50 80, a solvus region where the chemical potentials of the hematite and ilmenite components are nearly independent of composition. The solvus gap widens with addition of Mg and even further with Mn. The Bacon Hirschmann correlation of Mg/Mn in Usp-Mt and coexisting Ilm-Hem is displaced toward increasing Mg/Mn in ilmenite with passage from ordered ilmenite to disordered hematite. Orthopyroxene and biotite crystallized in experiments with added MgO and MgO + MnO; their X Fe varies with log_{10} f_{{{text{O}}2}} and T consistent with equilibria among ferrosilite, annite, and ferrite components, and the chemical potentials of SiO2 and orthoclase in the liquid. Experimental equilibration rates increased in the order: Opx < Bt < Ilm-Hem < Usp-Mag.

  19. The 28Si(p,t)26Si*(p) reaction and implications for the astrophysical 25Al(p,gamma)26Si reaction rate

    SciTech Connect

    Chipps, K.; Bardayan, Daniel W; Chae, K. Y.; Cizewski, J. A.; Kozub, R. L.; Liang, J Felix; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Schmitt, Kyle; Smith, Michael Scott

    2010-10-01

    Several resonances in 25Al(p, )26Si have been studied via the 28Si(p,t)26Si reaction. Triton energies and angular distributions were measured using a segmented annular detector array. An additional silicon detector array was used to simultaneously detect the coincident protons emitted from the decay of states in 26Si above the proton threshold, in order to determine branching ratios. A resonance at 5927 4 keV has been experimentally confirmed as the first = 0 state above the proton threshold, with a proton branching ratio consistent with one.

  20. Comparative ab initio study of lattice dynamics and thermodynamics of Fe2SiO4- and Mg2SiO4-spinels.

    PubMed

    Derzsi, Mariana; Piekarz, Przemys?aw; Tokár, Kamil; Jochym, Pawe? T; ?a?ewski, Jan; Sternik, Ma?gorzata; Parlinski, Krzysztof

    2011-03-16

    Lattice dynamics and thermodynamic properties of antiferromagnetic Fe(2)SiO(4)-spinel have been studied using density functional theory. Phonon dispersions are obtained for several hydrostatic pressures up to 20 GPa. They are used to calculate thermodynamic properties within the quasiharmonic approximation. Comparison with ab initio results obtained for Mg(2)SiO(4)-spinel is made in order to study the effect of the cation exchange on the dynamic and thermodynamic properties of (Mg, Fe)(2)SiO(4)-spinel. The obtained results have been compared with the available experimental data. PMID:21339581

  1. Table 1 Chemical composition of steels, wt-% Steel C Si Mn Cr Fe

    E-print Network

    Cambridge, University of

    that the reaction rate was accelerated by decreasing the grain size, because of an increase in the number density of maximum heating temperature on the overall kinetics of the bainite transform- ation. The reaction rateTable 1 Chemical composition of steels, wt-% Steel C Si Mn Cr Fe A 0·12 2·03 2·96 ... Bal. B 0·96 0

  2. Antiferromagnetism in pressure-amorphized Fe2SiO4

    USGS Publications Warehouse

    Kruger, M.B.; Jeanloz, R.; Pasternak, M.P.; Taylor, R.D.; Snyder, B.S.; Stacy, A.M.; Bohlen, S.R.

    1992-01-01

    Amorphous Fe2SiO4 synthesized at elevated pressures exhibits a Ne??el transition at a temperature identical to that observed in the crystalline form, TN = 65 (??2) kelvin at zero pressure. This behavior contrasts sharply with observations on other disordered systems, such as spin glasses, which characteristically exhibit strong "frustration" of the spins and consequent marked suppression of the Ne??el transition.

  3. Physical properties of Fe{sub 1-x}Dy{sub x}Si crystals

    SciTech Connect

    Patrin, G. S. Beletskii, V. V.; Volkov, N. V.; Velikanov, D. A.; Zakieva, O. V.

    2007-07-15

    The results of experimental investigation of magnetic and electric properties of Fe{sub 1-x}Dy{sub x}Si crystals are reported. It is shown that the magnitude and position of the anomaly observed in the temperature dependences of magnetization are controlled to a considerable extent by the external magnetic field. It is found that the introduction of Dy ions leads to a weak magnetoresistive effect.

  4. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    SciTech Connect

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter

    2012-11-15

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  5. Deposition of Workability-Enhancing Disposable Thick Fe Deposits on Fe-Si Alloy Sheets Using Thermal and Kinetic Spray Processes

    NASA Astrophysics Data System (ADS)

    Kim, Jaeick; Lee, Changhee; Kim, Sanghoon

    2015-02-01

    Fe-Si alloys are widely applied materials in industrial fields due to their magnetic properties. However, these alloys are difficult to manufacture due to the high oxidation affinity of Fe-Si alloys at high temperature; further, the permanence of the formed oxides (i.e., Fe2SiO4) degrade their workability. In order to solve this problem, disposable workability-improving `thick' coating layers were deposited on Fe-Si alloy substrates in this study using plain carbon steel wire and pure Fe powder via thermal and kinetic spraying processes. The resulting deposits were compared in terms of microstructure and mechanical properties. In thermal sprayed deposit, the oxides degraded mechanical properties, but were helpful for the deposition of a thick layer by restraining bending by thermally induced tensile residual stress. On the other hand, kinetic sprayed deposit showed better adhesive bond strength owing to the compressive residual stress. After a post heating, it was observed that the type of oxides was not affected by diffusion of Si elements from the substrate due to the limited diffusion length of Si elements. Imperfect chemical/metallurgical bonding between the deposit and substrate was also observed. Further, mechanical properties of post heat-treated specimens were enhanced relative to the as-sprayed state.

  6. Damage formation and recovery in Fe implanted 6H–SiC

    E-print Network

    Miranda, Pedro; Catarino, Norberto; Lorenz, Katharina; Correia, João Guilherme; Alves, Eduardo

    2012-01-01

    Silicon carbide doped with magnetic ions such as Fe, Mn, Ni or Co could make this wide band gap semiconductor part of the diluted magnetic semiconductor family. In this study, we report the implantation of 6H-SiC single crystals with magnetic $^{56}$Fe$^{+}$ ions with an energy of 150 keV. The samples were implanted with 5E14 Fe$^+$/cm$^{2}$ and 1E16 Fe$^+$/cm$^{2}$ at different temperatures to study the damage formation and lattice site location. The samples were subsequently annealed up to 1500°C in vacuum in order to remove the implantation damage. The effect of the annealing was followed by Rutherford Backscattering/Channeling (RBS/C) measurements. The results show that samples implanted above the critical amorphization temperature reveal a high fraction of Fe incorporated into regular sites along the [0001] axis. After the annealing at 1000°C, a maximum fraction of 75%, corresponding to a total of 3.8E14 Fe$^{+}$/cm$^{2}$, was measured in regular sites along the [0001] axis. A comparison is made betwee...

  7. Point defect behavior in B2-type intermetallic compound FeAl

    SciTech Connect

    Haraguchi, T.; Kogachi, M.

    1999-07-01

    Point defect behavior in B2-type FeAl alloys is investigated from a thermodynamic point of view, based on the Bragg-Williams method. The model is developed by taking new defect formation mechanisms, random vacancy distribution (RVD), and antisite atom recovering (ASAR), into consideration, which were proposed based on the current findings in in situ neutron and X-ray diffraction studies for the B2 FeAl. The condition for appearance of the RVD and ASAR states is given. Application of this model to B2 FeAl alloys shows that the RVD-like behavior is reproduced in the Fe-rich composition region and also a rapid increase in vacancy concentration observed in the Al-rich region can be interpreted by the ASAR process by antisite Al atoms.

  8. Role of negatively charged defects in the lattice contraction of Al-Si-N

    NASA Astrophysics Data System (ADS)

    Pignedoli, C. A.; Passerone, D.; Hug, H. J.; Pélisson-Schecker, A.; Patscheider, J.

    2010-02-01

    Experiments reveal that incorporation of substitutional Si in wurtzite AlN up to 6 at. % results in a lattice contraction in the [0001] direction. The contraction is linear and, for higher silicon contents, the lattice parameters remain constant. We investigate the geometric and electronic properties of Al-Si-N compounds with Si content varying from 0 to 9 at. % by means of ab initio simulations based on density functional theory. We demonstrate that charged defects are necessary to support the experimental evidence of a shrinking cell parameter: an ideal Al-Si-N wurtzite structure with delocalized charges would undergo lattice expansion due to Coulomb repulsion upon Si incorporation. Charged defects that act as acceptors and compensate the excess charge coming from Si overcompensate the lattice expansion and therefore promote a lattice contraction.

  9. Latent heat of magnetization for MnFeSi0 . 33P0 . 66

    NASA Astrophysics Data System (ADS)

    Roy, Prasenjit; de Groot, Robert A.; Theoretical Chemistry Team

    2015-03-01

    Magnetic refrigeration is a very promising environmental-friendly method to encounter the energy shortage of the world by implementing the magnetocaloric effect. MnFeSiP series of materials are distinguishable magnetocaloric meterial for the use of non-toxic, inexpensive elements as well as high efficiency. There are several ways to measure the efficiency of the MCE, viz.- measuring the adiabatic temperature change or measuring the entropy change at the transition. MnFeSiP materials show a first order magneto-elastic phase transition at the Curie temperature (TC). This simultaneous occourance of the magnetic and elastic transition in this material account for a higher ?Tad (or high entropy change), which is linearly proportional to the Latent heat (L) of magnetization. Experimentally L can be determined with techniques such as Differential Scanning Calorimetry. In our study we use VASP in addition to the Phonopy package, to determine the finite temperature properties of the system. Quasi Harmonic Approximation was applied successfully to determine the Gibbs free energy of MnFeSi0.33 P0.66. Hence we show a phase transition around 425 K. From the temperature derivative of G , the specific heat was obtained and finally the latent heat was obtained. Foundation for fundamental research on matter.

  10. Study on CO2 laser weldability of Fe-Mn-Si shape memory alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Chaoyu; Lin, Chengxin; Liu, Linlin

    2012-04-01

    In this study, a cross-flow laser with maximum out power of 5kW was applied to the welding of Fe-Mn-Si shape memory alloys (SMA). The optimal welding processing parameters of 1mm thick Fe-Mn-Si SMA were established by orthogonal experiment. With the optimal processing parameters, power 1600W, welding speed 2.2m/min, defocusing distance 0.6mm, the tensile strength of the welded joint can achieve 93.5% of the base material, and the weld undercut and reinforcement transfer smoothly on the surface of the welding seam and the cross-section of the welding seam morphology presents "X" shape. The fracture appears in the weld fusion zone, so this area is weak during the laser welding. By the metallographic observation, the weld center structure is small equated, and the region of fusion zone is thick cellular crystal that decreases the strength of the welded joint, and the X-ray diffraction (XRD) test proves that the laser welding promotes the grain refinement. The micro-hardness analysis shows that the hardness of the fusion zone is lower than the other area clearly which is also associated to the weld structure. By the fracture scanning electron microscope (SEM) analysis, it is found that the fracture of Fe-Mn-Si SMA shows many small dimples with the optimal parameters, and the result is accorded with the base material which belongs to plastic fracture.

  11. Study on CO2 laser weldability of Fe-Mn-Si shape memory alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Chaoyu; Lin, Chengxin; Liu, Linlin

    2011-11-01

    In this study, a cross-flow laser with maximum out power of 5kW was applied to the welding of Fe-Mn-Si shape memory alloys (SMA). The optimal welding processing parameters of 1mm thick Fe-Mn-Si SMA were established by orthogonal experiment. With the optimal processing parameters, power 1600W, welding speed 2.2m/min, defocusing distance 0.6mm, the tensile strength of the welded joint can achieve 93.5% of the base material, and the weld undercut and reinforcement transfer smoothly on the surface of the welding seam and the cross-section of the welding seam morphology presents "X" shape. The fracture appears in the weld fusion zone, so this area is weak during the laser welding. By the metallographic observation, the weld center structure is small equated, and the region of fusion zone is thick cellular crystal that decreases the strength of the welded joint, and the X-ray diffraction (XRD) test proves that the laser welding promotes the grain refinement. The micro-hardness analysis shows that the hardness of the fusion zone is lower than the other area clearly which is also associated to the weld structure. By the fracture scanning electron microscope (SEM) analysis, it is found that the fracture of Fe-Mn-Si SMA shows many small dimples with the optimal parameters, and the result is accorded with the base material which belongs to plastic fracture.

  12. Magnetic properties and thermal stability of (Fe,Co)-Mo-B-P-Si metallic glasses

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Lass, E. A.; Poon, S. J.; Shiflet, G. J.; Rawlings, M.; Daniil, M.; Willard, M. A.

    2012-03-01

    A series of ferromagnetic metallic glasses with compositions (Fe,Co)78Mo1(B,P,Si)21 are shown to possess good thermal stability and soft magnetic performance. The thermal stability inside the supercooled liquid temperature region was evaluated using Kissinger analysis of primary crystallization, time-temperature-transformation (TTT) diagrams, and the extent of the supercooled liquid region (?Tx). The phosphorus-free alloy, Fe78Mo1B15Si6, had an activation energy (Ea) of 414 kJ/mol, ?Tx ˜ 50 K, and began devitrifying after about 1 min at 730 K. By way of comparison, the phosphorus-containing alloy, Fe78Mo1B13P6Si2, had an Ea of 440 kJ/mol, ?Tx ˜ 45 K, and began devitrification after 10 min at 730 K. High saturation magnetization (?0Ms ˜ 1.45-1.55 T) and low coercivity (Hc ˜ 20 A/m) are demonstrated across the composition range. Core loss measurements of toroidal cores are shown to be less than 12 W/cm3 at 1 T, maximum induction amplitude (under both sinusoidal and square waveforms). Trends were established for magnetic and thermal stability as a function of metalloid and magnetic transition metal composition.

  13. Rate-dependent phase transitions in Li2FeSiO4 cathode nanocrystals

    NASA Astrophysics Data System (ADS)

    Lu, Xia; Wei, Huijing; Chiu, Hsien-Chieh; Gauvin, Raynald; Hovington, Pierre; Guerfi, Abdelbast; Zaghib, Karim; Demopoulos, George P.

    2015-02-01

    Nanostructured lithium metal orthosilicate materials hold a lot of promise as next generation cathodes but their full potential realization is hampered by complex crystal and electrochemical behavior. In this work Li2FeSiO4 crystals are synthesized using organic-assisted precipitation method. By varying the annealing temperature different structures are obtained, namely the monoclinic phase at 400°C, the orthorhombic phase at 900°C, and a mixed phase at 700°C. The three Li2FeSiO4 crystal phases exhibit totally different charge/discharge profiles upon delithiation/lithiation. Thus the 400°C monoclinic nanocrystals exhibit initially one Li extraction via typical solid solution reaction, while the 900°C orthorhombic crystals are characterized by unacceptably high cell polarization. In the meantime the mixed phase Li2FeSiO4 crystals reveal a mixed cycling profile. We have found that the monoclinic nanocrystals undergo phase transition to orthorhombic structure resulting in significant progressive deterioration of the material's Li storage capability. By contrast, we discovered when the monoclinic nanocrystals are cycled initially at higher rate (C/20) and subsequently subjected to low rate (C/50) cycling the material's intercalation performance is stabilized. The discovered rate-dependent electrochemically-induced phase transition and stabilization of lithium metal silicate structure provides a novel and potentially rewarding avenue towards the development of high capacity Li-ion cathodes.

  14. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yuan, Yong; Jiang, Jian-tang; Gong, Yuan-xun; Zhen, Liang

    2015-12-01

    Flaky FeSi alloy particles with different aspect ratio were produced via ball-milling and a subsequent annealing. The microstructure and the morphology of the particles were examined by XRD and SEM. The dc resistivity, the static magnetization properties and electromagnetic properties were measured. Particles with high aspect ratio were found possess high permittivity and permeability. On the other hand, the variation of grain size and defects density was found influence the permittivity and permeability. High specific area was believed contribute to the intense dielectric loss and the high shape magnetic anisotropy lead to high permeability in the target band. Increased electromagnetic parameters compel the absorption peak's shift to lower frequency. Coating using flaky FeSi particles milled for 12 h as fillers presented a reflection loss of -10 dB at 2 GHz and a matching thickness of 1.88 mm. The flaky FeSi alloy particles prepared through ball-milling and annealing can be promising candidates for EMA application at 1-4 GHz band.

  15. Rate-dependent phase transitions in Li2FeSiO4 cathode nanocrystals

    PubMed Central

    Lu, Xia; Wei, Huijing; Chiu, Hsien-Chieh; Gauvin, Raynald; Hovington, Pierre; Guerfi, Abdelbast; Zaghib, Karim; Demopoulos, George P.

    2015-01-01

    Nanostructured lithium metal orthosilicate materials hold a lot of promise as next generation cathodes but their full potential realization is hampered by complex crystal and electrochemical behavior. In this work Li2FeSiO4 crystals are synthesized using organic-assisted precipitation method. By varying the annealing temperature different structures are obtained, namely the monoclinic phase at 400°C, the orthorhombic phase at 900°C, and a mixed phase at 700°C. The three Li2FeSiO4 crystal phases exhibit totally different charge/discharge profiles upon delithiation/lithiation. Thus the 400°C monoclinic nanocrystals exhibit initially one Li extraction via typical solid solution reaction, while the 900°C orthorhombic crystals are characterized by unacceptably high cell polarization. In the meantime the mixed phase Li2FeSiO4 crystals reveal a mixed cycling profile. We have found that the monoclinic nanocrystals undergo phase transition to orthorhombic structure resulting in significant progressive deterioration of the material's Li storage capability. By contrast, we discovered when the monoclinic nanocrystals are cycled initially at higher rate (C/20) and subsequently subjected to low rate (C/50) cycling the material's intercalation performance is stabilized. The discovered rate-dependent electrochemically-induced phase transition and stabilization of lithium metal silicate structure provides a novel and potentially rewarding avenue towards the development of high capacity Li-ion cathodes. PMID:25715655

  16. Si diffusion and intermixing in AlGaAs/GaAs structures using buried impurity sources

    SciTech Connect

    Beernink, K.J.; Thornton, R.L.; Anderson, G.B.; Emanuel, M.A.

    1995-05-08

    Si diffusion and impurity-induced layer intermixing from a buried impurity source have been studied by transmission electron microscopy and secondary ion mass spectroscopy of isolated, Si-doped GaAs layers in an undoped Al{sub 0.4}Ga{sub 0.6}As/GaAs superlattice and by photoluminescence measurements on Si-doped GaAs quantum wells with undoped Al{sub 0.4}Ga{sub 0.6}As barriers. In annealed samples, the Si profile suggests a Si diffusion process involving multiply ionized column III vacancies. The width of the resulting Si profile and the spatial extent and completeness of intermixing strongly depend on the initial Si concentration in the doped layer.

  17. STRESS ANNEALING INDUCED DIFFUSE SCATTERING FROM Ni3(Al,Si) PRECIPITATES

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Karapetrova, Evgenia; Zschack, P.

    2012-01-01

    Diffuse scattering caused by L12 type Ni3 (Al,Si) precipitates after stress annealing of Ni-Al-Si alloys is studied. Experimental reciprocal space maps are compared to the theoretical ones. Oscillations of diffuse scattering due to Ni3 (Al,Sc) precipitates are observed. Peculiarities of diffuse scattering in asymptotic region as compared to Huang scattering region are discussed. Coupling between the stress annealing direction and the precipitate shape is demonstrated.

  18. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  19. Mechanically induced phase transformation and magnetic properties of nanocrystalline Fe-50%Al alloy

    NASA Astrophysics Data System (ADS)

    Rajan, Sandeep; Shukla, Rajni; Kumar, Anil; Vyas, Anupam; Mishra, Pankaj; Brajpuriya, Ranjeet

    2015-06-01

    Magnetic changes induced by ball milling in Fe-50%Al alloy have been investigated using vibrating sample magnetometer (VSM). The mechanical alloying (MA) process induces a progressive dissolution of Al into Fe, resulted in the formation of an extended nanostructured Fe(Al) solid solution only after 5 hr of milling. The magnetic measurements show continuous decrease in saturation magnetization and increase in coercivity, retentivity and squareness ratio with increase in milling time. The systematic variation of the magnetic properties has been correlated with the evolution of microstructure, reduction in grain size and enhanced inter-granular exchange coupling.

  20. Adsorptive performance and catalytic activity of superparamagnetic Fe3O4@nSiO2@mSiO2 core-shell microspheres towards DDT.

    PubMed

    Liu, Feng; Tian, Hua; He, Junhui

    2014-04-01

    Due to specific properties, core-shell Fe3O4@SiO2 and core-shell-shell Fe3O4@nSiO2@mSiO2 nanostructures have been extensively investigated for the contamination treatment of wastewater. However, these reported materials were usually used as advanced adsorbents or catalyst-supports. In this study, we demonstrate that magnetic mesoporous silica Fe3O4@nSiO2@mSiO2 microspheres can not only exhibit excellent adsorptive performance for removal of DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) from aqueous media, but also display high catalytic activity. Over 97% of DDT could be quickly removed from aqueous media in 60 min. At 60°C the DDE (1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene) content increases greatly as DDT disappears completely, and is decomposed completely after thermal treatment at a relatively low temperature of 450°C. The obtained magnetic mesoporous silica nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, nitrogen adsorption-desorption measurements and vibrating sample magnetometer. The results indicate that Fe3O4@nSiO2@mSiO2 microspheres show strong superparamagnetism and have high specific surface area (577 m(2) g(-1)). PMID:24491332

  1. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    NASA Astrophysics Data System (ADS)

    Yan, F.; McKay, B. J.; Fan, Z.; Chen, M. F.

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg2Si particles evenly distributed throughout an ?-Al matrix with a ?-Al3Mg2 fully divorced eutectic phase observed in interdendritic regions. The Mg2Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg2Si from 52 ± 4 ?m to 25 ± 0.1 ?m, 35 ± 1 ?m and 34 ± 1 ?m respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al3Mg2 eutectic phase with no evidence of any effect on the primary Mg2Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  2. Residual Stresses in Ta, Mo, Al and Pd Thin Films Deposited by E-Beam Evaporation Process on Si and Si/SiO2 Substrates

    SciTech Connect

    Guisbiers, G.; Overschelde, O. van; Wautelet, M.; Strehle, S.

    2006-02-07

    Residual stresses are commonly generated during the deposition process of thin films and can influence the reliability of the deposited systems e.g. due to fatigue, aging effects or debonding. Therefore, an evaluation of such stresses in thin films is of crucial importance for metallization of microelectronic devices and MEMS. Residual stresses can be determined experimentally by substrate curvature or X-ray diffraction measurements. The modeling of residual stresses generally deals with the calculation of the thermal ones alone. In the present work, a model is proposed, where intrinsic stresses are calculated explicitly based on the Tsui-Clyne model. The aim of this model, called self-consistent model, is to predict residual stresses in thin films independent on measurements. The simulated values are compared with experimental results for the following systems: Ta/Si, Mo/Si, Al/SiO2/Si and Pd/SiO2/Si.

  3. Thermal Equation of State of (Mg,Fe)SiO3 Perovskite in a Ne Pressure Medium

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Jackson, J. M.; Dera, P. K.; Prakapenka, V.

    2010-12-01

    Perovskite-structured iron bearing Mg-silicate is thought to be the dominant mineral in the Earth's lower mantle. As the primary phase (~80% by volume), it plays a major role in determining the properties of lower mantle material. Characterizing its temperature-dependent equation of state is therefore vital to interpreting seismic observations and providing accurate input to geodynamic calculations and thermodynamic analyses of this region. Previous static experimental studies to determine the high-pressure thermal equation of state of (Mg,Fe)SiO3 perovskite have either focused on the Mg end-member [e.g., Fiquet et al. 2000], performed the experiments at relatively low pressures [e.g., Wang et al. 1994], or were restricted to ambient temperature [e.g., Lundin et al. 2008]. All previous studies also used relatively stiff pressure media, including NaCl and Ar, which may alter a mineral's compression behavior [e.g. Takemura 2007; Iizuka et al. 2010]. In this study, we investigate the effect of Fe on the thermal equation of state of silicate perovskite over a wide range of lower mantle pressure-temperature conditions in a relatively compressible pressure medium. Our perovskite samples were made from synthetic (Mg1-xFex)SiO3 orthopyroxene with a range of compositions, where x = 0%, 7%, and 13%. Each sample composition was independently loaded into symmetric diamond anvil cells together with a number of pressure markers (Au, NaCl, ruby) and a Ne pressure medium. The samples were pressurized up to ~30 GPa where they were laser heated inside the stability region of perovskite. Powder diffraction measurements were then taken for each sample between ~35 and 110 GPa in 2 to 3 GPa steps at GSECARS Sector 13 ID-D of the Advanced Photon Source. The pressure was determined for each spectrum using the in-situ pressure markers (which include the Ne medium) combined with the offline ruby fluorescence method. In roughly 5 to 10 GPa steps, the sample was laser heated in stages up to a temperature of ~2400K, during which concurrent powder diffraction spectra were taken. Together, these data are analyzed to find the best-fit thermal equation of state of Mg perovskite for a range of Fe contents. We will compare our results with other recent studies, including theoretical determinations, and discuss the implications for Earth’s lower mantle.

  4. Fe-Si particles on the surface of blast furnace coke

    NASA Astrophysics Data System (ADS)

    Gornostayev, Stanislav S.; Heikkinen, Eetu-Pekka; Heino, Jyrki J.; Fabritius, Timo M. J.

    2015-07-01

    This study investigates the surface of unpolished samples of blast furnace (BF) coke drilled from the tuyere zone, which hosts Fe-Si particles (mostly Fe3Si) that vary in size, shape, depth of submersion (penetration) into the coke matrix, and contact features with the surface. Based on the shape of the particles and the extent of their contact with the coke matrix, they have been grouped into three major types: (I) sphere-like droplets with limited contact area, (II) semi-spheres with a larger contact area, and (III) irregular segregations with a spherical surface, which exhibit the largest contact area among the three types of particles. Considering the ratio between the height ( h) of the particles and half of their length at the surface level ( l) along the cross-section, these three types can be characterized as follows: (I) h > l, (II) h ? l, and (III) h < l. All the three types of particles can be found near each other. The shape and the extent of the contact depend on the degree of penetration of the material into the matrix, which is a function of the composition of the particles. Type (I) particles were initially saturated with Si at an earlier stage and, for that reason, they can react less with carbon in the coke matrix than type (II) and (III), thereby moving faster through the coke cone. Thermodynamic calculations have shown that the temperature interval of 1250-1300°C can be considered the starting point for Si entering into molten iron under quartz-dominated coke ash. Accordingly, the initial pick-up of Si by molten iron can be assumed to be mineral-related. In terms of BF practice, better conditions for sliding Fe-Si droplets through the coke cone are available when they come into contact with free SiO2 concentrated into small grains, and when the SiO2/?Me x O y mass ratio in the coke ash is high.

  5. The mechanism of oxide whisker growth and hot corrosion of hot-dipped Al-Si coated 430 stainless steels in air-NaCl (g) atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Hsiao-Hung; Cheng, Wei-Jen; Wang, Chaur-Jeng

    2011-10-01

    The mechanisms of oxide whisker growth and hot corrosion of 430 stainless steel (430SS) and aluminide 430 stainless steel hot-dipped in a Al-10 wt.%Si molten bath (430HDAS) were studied at 750 and 850 °C in air mixed with 500 and 990 vppm NaCl (g). The results showed that the loose Cr 2O 3 scale which formed on the 430SS could not prevent the corrosion of 430SS in a 500 vppm NaCl (g) atmosphere, resulting in the formation of Fe 2O 3 scale. Fe 2O 3 whiskers grew at the grain boundary of the Fe 2O 3 scale. However, no Fe 2O 3 whiskers formed on the Fe 2O 3 scale while 430SS was exposed in a 900 vppm NaCl (g) atmosphere. During the initial high-temperature corrosion of 430HDAS in a 500 vppm NaCl (g) atmosphere, a dense Al 2O 3 scale formed on the surface of the specimens. Also, Al 2O 3 whiskers grew on the Al 2O 3 scale. As exposure time increased, cyclic chlorination/oxidation degraded the protective aluminide layer and caused the formation of Fe 2O 3 scale and Fe 2O 3 whiskers. The morphology of Fe 2O 3 whiskers formed at 750 °C is more slender than those formed at 850 °C. The formation and growth of both Fe 2O 3 and Al 2O 3 whiskers may be attributed to the chloridation of both the steel substrate and aluminide layer, accelerating the diffusion rate of metallic ions in the oxide scales.

  6. Radiation-induced charge trapping in thin Al2O3/SiOxNy/Si(100) gate dielectric stacks.

    SciTech Connect

    D'Emic, Chris; Gusev, Evgeni P.; Schrimpf, Ronald D.; Fleetwood, Daniel M.; Schwank, James Ralph; Felix, James Andrew; Shaneyfelt, Marty Ray; Dodd, Paul Emerson; Meisenheimer, Timothy Lee

    2003-07-01

    We examine the total-dose radiation response of capacitors and transistors with stacked Al{sub 2}O{sub 3} on oxynitride gate dielectrics with Al and poly-Si gates after irradiation with 10 keV X-rays. The midgap voltage shift increases monotonically with dose and depends strongly on both Al{sub 2}O{sub 3} and SiO{sub x}N{sub y} thickness. The thinnest dielectrics, of most interest to industry, are extremely hard to ionizing irradiation, exhibiting only {approx}50 mV of shift at a total dose of 10 Mrad(SiO{sub 2}) for the worst case bias condition. Oxygen anneals are found to improve the total dose radiation response by {approx}50% and induce a small amount of capacitance-voltage hysteresis. Al{sub 2}O{sub 3}/SiO{sub x}N{sub y} dielectrics which receive a {approx}1000 C dopant activation anneal trap {approx}12% more of the initial charge than films annealed at 550 C. Charge pumping measurements show that the interface trap density decreases with dose up to 500 krad(SiO{sub 2}). This surprising result is discussed with respect to hydrogen effects in alternative dielectric materials, and may be the result of radiation-induced hydrogen passivation of some of the near-interfacial defects in these gate dielectrics.

  7. Interfacial reaction of CoFe films with SiO2 substrates L.A. Bendersky a,

    E-print Network

    Rubloff, Gary W.

    Interfacial reaction of Co­Fe films with SiO2 substrates L.A. Bendersky a, , N.V. Kazantseva a The interdiffusion reaction between Co1ÀxFex deposited films of various compositions (x = 0.27, 0.32 and 0 electron microscopy. The reaction results in the formation of Fe2SiO4 mixed silicate of olivine structure

  8. High-pressure Raman study of nano-channel materials: BaAl2Si2 and BaSi6

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Kume, T.; Sasaki, S.; Shimizu, H.; Maekawa, S.; Kikudome, T.; Yamanaka, S.

    2008-07-01

    Structural phase transitions were explored for new nano-channel materials ?-BaAl2Si2 and BaSi6 by means of high pressure Raman experiments, on the basis of the change in the Raman spectra which cover the frequencies from 40-600 cm-1. In spite of the structural similarity between BaSi6 and ?-BaAl2Si2, the different behaviours were found under high pressure; for ?-BaAl2Si2, there is an irreversible phase transition around 16-17 GPa, and for BaSi6 the reversible spectral change without distinct phase transition was observed up to 23 GPa.

  9. Comprehensive study of Al-induced layer-exchange growth for orientation-controlled Si crystals on SiO{sub 2} substrates

    SciTech Connect

    Kurosawa, Masashi; Sadoh, Taizoh; Miyao, Masanobu

    2014-11-07

    Orientation-controlled crystalline Si films on insulating substrates are strongly required to achieve high-performance thin-film devices for next-generation electronics. We have comprehensively investigated the layer-exchange kinetics of Al-induced crystallization (AIC) in stacked structures, i.e., amorphous-Si/Al-oxide/Al/SiO{sub 2}-substrates, as a function of the air-exposure time of Al surfaces (t{sub air}: 0–24?h) to form Al-oxide interface-layers, the thickness of Al and Si layers (d{sub Al,} d{sub Si}: 50–200?nm), the annealing temperature (450–500?°C), and the annealing time (0–50?h). It has been clarified that longer t{sub air} (>60?min) and/or thinner d{sub Al} and d{sub Si} (<50?nm) lead to the (111) oriented growth; in contrast, shorter t{sub air} (<60?min) and/or thicker d{sub Al} and d{sub Si} (>100?nm) lead to the (100) oriented growth. No correlation between the annealing temperature and the crystal orientation is observed. Detailed analysis reveals that the layer-exchange kinetics are dominated by “supply-limited” processing, i.e., diffusion of Si atoms into Al layers through Al-oxide layer. Based on the growth rate dependent Si concentration profiles in Al layers, and the free-energy of Si at Al-oxide/Al or Al/SiO{sub 2} interfaces, a comprehensive model for layer-exchange growth is proposed. This well explains the experimental results of not only Si-AIC but also another material system such as gold-induced crystallization of Ge. In this way, a growth technique achieving the orientation-controlled Si crystals on insulating substrates is established from both technological and scientific points of view.

  10. Comprehensive study of Al-induced layer-exchange growth for orientation-controlled Si crystals on SiO2 substrates

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Sadoh, Taizoh; Miyao, Masanobu

    2014-11-01

    Orientation-controlled crystalline Si films on insulating substrates are strongly required to achieve high-performance thin-film devices for next-generation electronics. We have comprehensively investigated the layer-exchange kinetics of Al-induced crystallization (AIC) in stacked structures, i.e., amorphous-Si/Al-oxide/Al/SiO2-substrates, as a function of the air-exposure time of Al surfaces (tair: 0-24 h) to form Al-oxide interface-layers, the thickness of Al and Si layers (dAl, dSi: 50-200 nm), the annealing temperature (450-500 °C), and the annealing time (0-50 h). It has been clarified that longer tair (>60 min) and/or thinner dAl and dSi (<50 nm) lead to the (111) oriented growth; in contrast, shorter tair (<60 min) and/or thicker dAl and dSi (>100 nm) lead to the (100) oriented growth. No correlation between the annealing temperature and the crystal orientation is observed. Detailed analysis reveals that the layer-exchange kinetics are dominated by “supply-limited” processing, i.e., diffusion of Si atoms into Al layers through Al-oxide layer. Based on the growth rate dependent Si concentration profiles in Al layers, and the free-energy of Si at Al-oxide/Al or Al/SiO2 interfaces, a comprehensive model for layer-exchange growth is proposed. This well explains the experimental results of not only Si-AIC but also another material system such as gold-induced crystallization of Ge. In this way, a growth technique achieving the orientation-controlled Si crystals on insulating substrates is established from both technological and scientific points of view.

  11. Investigation of the structural-phase state and the impact-protective properties of optically transparent Si-Al-N coatings

    NASA Astrophysics Data System (ADS)

    Bozhko, Irina A.; Rybalko, Evgeniya V.; Fedorischeva, Marina V.; Sergeev, Victor P.

    2015-10-01

    The results of the study of the structural-phase state, the optical and impact-protective properties of Si-Al-N coatings with a thickness from 0.9 to 6.2 ?m deposited by pulsed magnetron sputtering on a substrate made of the KV type quartz glass are presented. The formation of the nanoscale single-phase AlN (hcp) with a crystallite size up to 20 nm was discovered by the X-ray diffraction method. Coatings based on Si-Al-N are characterized by high values of microhardness (H? ? 25 GPa) and the coefficient of elastic recovery (ky = 0.71-0.85). The Si-Al-N coatings are characterized by a high degree of transparency (about 80%) in the visible range of wavelengths and are completely opaque in the ultra-violet regions. The refractive index of the glass samples with coatings on the basis of Si-Al-N was determined using the transmission spectra whose value decreases from 2.04 to 1.87 with increasing thickness of coatings. The results of the study of the surface density of the craters formed on the surface of the initial quartz glass and the quartz glass with Si-Al-N coatings due to the influence of high-speed Fe particles of the micron size are described.

  12. Composite perpendicular magnetic recording media using [Co/PdSi]n as a hard layer and FeSiO as a soft layer

    NASA Astrophysics Data System (ADS)

    Shen, W. K.; Bai, J. M.; Victora, R. H.; Judy, J. H.; Wang, Jian-Ping

    2005-05-01

    We fabricated the composite perpendicular magnetic recording (PMR) media successfully for the first time by combining a nanogranular FeSiO soft layer and a [Co/PdSi]n hard layer. PdSi spacing layer (0-4nm) was used to study the exchange coupling effects between the FeSiO (5nm) and the [Co (0.26nm)/Pd(1nm)]14 layers in the composite films. Proper coupling occurs when PdSi interlayer is ˜0.5nm. Significant lowering of the coercivity is observed for the composite PMR medium while still maintaining good thermal stability. The results prove the possibility to fabricate a writable PMR medium having an ultrahigh magnetic anisotropy constant Ku value.

  13. Nanosynthesis routes to new tetrahedral crystalline solids: silicon-like Si3AlP.

    PubMed

    Watkins, Tylan; Chizmeshya, Andrew V G; Jiang, Liying; Smith, David J; Beeler, Richard T; Grzybowski, Gordon; Poweleit, Christian D; Menéndez, José; Kouvetakis, John

    2011-10-12

    We introduce a synthetic strategy to access functional semiconductors with general formula A(3)XY (A = IV, X-Y = III-V) representing a new class within the long-sought family of group IV/III-V hybrid compounds. The method is based on molecular precursors that combine purposely designed polar/nonpolar bonding at the nanoscale, potentially allowing precise engineering of structural and optical properties, including lattice dimensions and band structure. In this Article, we demonstrate the feasibility of the proposed strategy by growing a new monocrystalline AlPSi(3) phase on Si substrates via tailored interactions of P(SiH(3))(3) and Al atoms using gas source (GS) MBE. In this case, the high affinity of Al for the P ligands leads to Si(3)AlP bonding arrangements, which then confer their structure and composition to form the corresponding Si(3)AlP target solid via complete elimination of H(2) at ?500 °C. First principle simulations at the molecular and solid-state level confirm that the Si(3)AlP building blocks can readily interlink with minimal distortion to produce diamond-like structures in which the P atoms are arranged on a common sublattice as third-nearest neighbors in a manner that excludes the formation of unfavorable Al-Al bonds. High-resolution XRD, XTEM, and RBS indicate that all films grown on Si(100) are tetragonally strained and fully coherent with the substrate and possess near-cubic symmetry. The Raman spectra are consistent with a growth mechanism that proceeds via full incorporation of preformed Si(3)AlP tetrahedra with residual orientational disorder. Collectively, the characterization data show that the structuro-chemical compatibility between the epilayer and substrate leads to flawless integration, as expected for pseudohomoepitaxy of an Si-like material grown on a bulk Si platform. PMID:21877711

  14. Microstructure and mechanical behavior of Fe30Ni 20Mn35Al15 and modified Fe30Ni 20Mn35Al15 alloys

    NASA Astrophysics Data System (ADS)

    Meng, Fanling

    A novel alloy with nominal composition Fe30Ni 20Mn35Al15 has been found to show good room-temperature strength and significant ductility. The current project is to study the wear properties of as-cast Fe30Ni20Mn35Al 15 and discuss the possibility of further improving the mechanical properties of this alloy. The dry sliding wear of as-cast Fe30Ni20Mn 35Al15 was studied in in four different environments, i.e. air, dry oxygen, dry argon and a 4% hydrogen/nitrogen mixture. Two-body and three-body abrasive wear mechanism was found for tests in oxygen-containing environments, while plastic flow mechanisms dominated the wear behavior for tests in argon. Hydrogen embrittlement led to 1000% increase of wear loss by causing more rapid crack nucleation of the asperities. The effects of different additions of chromium (? 8 at. %) on both microstructure and fracture behavior of Fe30Ni20Mn 35Al15 were investigated. All alloys consisted of (Ni, Al)-rich B2 and (Fe, Mn)-rich f.c.c. phases with most of the Cr residing in the f.c.c. phase. The addition of 6 at. % Cr not only increased the room temperature ductility, but also completely suppressed the environmental embrittlement observed in the Cr-free alloy at low strain rates. The effects of varying the Al concentration on the microstructures and tensile properties of six two-phase FeNiMnAl alloys with a composition close to Fe30Ni20Mn35Al15 were studied. The increase in f.c.c. volume fraction and f.c.c. lamellar width led to an increase in ductility and a decrease in yield strength. The correlation between the yield stress and f.c.c. lamellar spacing lambda obeyed a Hall-Petch-type relationship, i.e. sigmay=252+0.00027lambda-1, where the units for sigmay and lambda are MPa and meter, respectively. FeNiMnAl alloy with B2 and f.c.c. phases aligned along was reported to show high strength at room temperature. The mechanical properties of Fe 28Ni18Mn33Al21, consisting of (Ni, Al)-enriched B2 and (Fe, Mn)-enriched f.c.c. phases with an aligned microstructure, were studied both before and after various heat treatments. While the finely-microstructured as-cast Fe28Ni18Mn33Al21 was quite brittle, the alloy showed reasonable ductility of 7% if the phases were coarsened after anneal. It was shown that the aligned two-phase microstructure formed by a eutectoid transformation.

  15. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ([ge]10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 [plus minus] 2)Al - (0.3 [plus minus] 0.2)Mo - (0.2 [plus minus] 0.15)Zr - (0.3 [plus minus] 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  16. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ({ge}10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 {plus_minus} 2)Al - (0.3 {plus_minus} 0.2)Mo - (0.2 {plus_minus} 0.15)Zr - (0.3 {plus_minus} 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  17. Improved Wear Resistance of Al-Mg Alloy with SiC and Al2O3 Particle Reinforcement

    NASA Astrophysics Data System (ADS)

    Mehedi, Md. A.; Bhadhon, K. M. H.; Haque, M. N.

    2015-11-01

    Al-3.73Mg alloy was reinforced with a different ratio of SiC and Al2O3 particulate mixtures, and their corresponding wear properties were investigated by pin-on-disk method. The investigation revealed that the mass loss of the hybrid composite at different loads and sliding velocities reduced with the increase of the SiC volume. Only 6% particulate reinforcement in the Al-Mg matrix was enough to reduce the wear of the surface by one-fourth. The wear mechanism was also investigated by examining the worn surface with a scanning electron microscope.

  18. A Chemical and Structural Study of the AlN-Si Interface

    NASA Technical Reports Server (NTRS)

    Beye, R.; George, T.; Yang, J. W.; Khan, M. A.

    1997-01-01

    The growth of low defect density heteroepitaxial AlN has great implications for optoelectronic and high power devices since the AlN can be used either as device material or as a buffer layer for the overgrowth of other group-III nitrides. In this work, the results of transmission electron microscopy (TEM) involving both high resolution imaging and electron energy loss spectroscopy (EELS) of AlN/Si layers is reported and the relationship between Si-Al-N interactions and the misorientation of AlN nuclei is elucidated.

  19. TEM and HREM study of Al3Zr precipitates in an Al-Mg-Si-Zr alloy.

    PubMed

    Lityñska, L; Abou-Ras, D; Kostorz, G; Dutkiewicz, J

    2006-09-01

    The structure of Al(3)Zr precipitates in Al-1.0Mg-0.6Si-0.5Zr (in wt.%) alloy was investigated using conventional transmission electron microscopy (TEM) and high-resolution TEM (HREM). After annealing of the alloy in the temperature range 450-540 degrees C, spherical precipitates of metastable L1(2)-Al(3)Zr phase appeared nearly homogeneously within the matrix, and elongated particles were found at grain boundaries. L1(2)-structured Al(3)Zr were about 20-30 nm in diameter and coherent with the matrix. Inside some of them, planar faults parallel to {100} planes were revealed by use of HREM. Most probably, these faults are an indication of the transition stage of transformation to the stable D0(23)-type Al(3)Zr phase. The elongated precipitates (about 100 nm) were identified as D0(22)-type Al(3)Zr. Energy-dispersive X-ray analysis showed that they contain, apart from Al, mainly Zr with small amounts of Si. The substitution of Al by Si increased the stability of the D0(22)-Al(3)Zr as compared with D0(23)-Al(3)Zr. PMID:17059525

  20. Plastic Deformation of Al0.3CoCrFeNi and AlCoCrFeNi High-Entropy Alloys Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Jiao, Zhi-Ming; Ma, Sheng-Guo; Yuan, Guo-Zheng; Wang, Zhi-Hua; Yang, Hui-Jun; Qiao, Jun-Wei

    2015-08-01

    The mechanical properties of Al0.3CoCrFeNi and AlCoCrFeNi high-entropy alloys (HEAs) were investigated by instrumented nanoindentation over a broad range of loading rates. It was found that the loading portion of the two HEAs exhibited apparent discontinuities at low loading rates. However, the discontinuity became less pronounced with increasing the loading rate. The experimental results that the hardness, elastic modulus, and yield strength of AlCoCrFeNi HEAs are larger than those of Al0.3CoCrFeNi HEAs can be elucidated in terms of thermodynamic and topological parameters of the constituent elements and solid solution strengthening, respectively. In situ scanning images displayed a significant pile-up around the indents, demonstrating that a highly localized plastic deformation occurred under nanoindentation. Furthermore, the resistance for creep behavior increases as the Al concentration is increased due to the enlarged lattice distortion related to a solution strengthening effect.

  1. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    SciTech Connect

    Cao, J.

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  2. Different behavior of lithium interaction with SiO2 and Al2 O3

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Ban, Chunmei; Kappes, Branden B.; Xu, Qiang; Engtrakul, Chaiwat; Ciobanu, Cristian V.; Dillon, Anne C.

    2014-03-01

    Lithiation of SiO2 and lithium intercalation in Al2O3 is studied both theoretically and experimentally. Lithium interacts with these two types of oxides in distinctly different behaviors. Reversible insertion/extraction of lithium in SiO2 up to a Li density of 2/3 Li per Si are demonstrated experimentally. Density-functional-theory (DFT) calculation shows that neither free interstitial Li atoms (no reduction) nor formation of a local Li2O cluster plus a Si-Si bond (full reduction) is energetically favorable. However, two Li atoms can effectively break a Si-O bond and be stabilized between the Si and O atoms. Such a defect, representing a state of partial reduction of SiO2, is energetically favorable. DFT simulation shows that intercalation of SiO2 at high Li density through partial reduction results in crystalline compounds LixSiO2 (x <2/3) with tunable band-gaps in the range of 2-3.4 eV. In sharp contrast, Al2O3 is very stable against lithiation through any form of reduction. However, good conductivity of Li ions is shown in porous Al2O3. Work funded by the U.S. DOE under Subcontract No. DE-AC36-08GO28308 through the Office of EERE, the Office of the Vehicle Technologies Program, and by NSF through Award Nos. OCI-1048586 and CMMI-0846858.

  3. Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite.

    PubMed

    Zhang, Li; Meng, Yue; Dera, Przemyslaw; Yang, Wenge; Mao, Wendy L; Mao, Ho-Kwang

    2013-04-16

    Knowledge of the structural properties of mantle phases is critical for understanding the enigmatic seismic features observed in the Earth's lower mantle down to the core-mantle boundary. However, our knowledge of lower mantle phase equilibria at high pressure (P) and temperature (T) conditions has been based on limited information provided by powder X-ray diffraction technique and theoretical calculations. Here, we report the in situ single-crystal structure determination of (Mg,Fe)SiO3 postperovskite (ppv) at high P and after temperature quenching in a diamond anvil cell. Using a newly developed multigrain single-crystal X-ray diffraction analysis technique in a diamond anvil cell, crystallographic orientations of over 100 crystallites were simultaneously determined at high P in a coarse-grained polycrystalline sample containing submicron ppv grains. Conventional single-crystal structural analysis and refinement methods were applied for a few selected ppv crystallites, which demonstrate the feasibility of the in situ study of crystal structures of submicron crystallites in a multiphase polycrystalline sample contained within a high P device. The similarity of structural models for single-crystal Fe-bearing ppv (~10 mol% Fe) and Fe-free ppv from previous theoretical calculations suggests that the Fe content in the mantle has a negligible effect on the crystal structure of the ppv phase. PMID:23576761

  4. Acetic Acid (H3COOH): GaAs; Pb; Ti Hydrochloric Acid (HCl): Al; Cr; Cu; Fe2O3; Ga; GaAs; GaN; In; Fe; Pb; Ni; NiO, Ni2O3; Sn;

    E-print Network

    Garmestani, Hamid

    ; Fe; Pb; Ni; NiO, Ni2O3; Sn; SnO2; Ti; Zn Hydrofluoric Acid (HF): GaAs; Ni; SiO2; Ti Nitric Acid (HNO3 : hydrofluoric acid (49%, aq) HNO3 : nitric acid (70%, aq) H2SO4 : sulfuric acid (96%, aq) H3PO4 : phosphoricAcetic Acid (H3COOH): GaAs; Pb; Ti Hydrochloric Acid (HCl): Al; Cr; Cu; Fe2O3; Ga; GaAs; GaN; In

  5. Fabrication of Resonance Tunnel Diode by ?-Al2O3/Si Multiple Heterostructures

    NASA Astrophysics Data System (ADS)

    Shahjahan, Mohammad; Koji, Yoshiaki; Sawada, Kazuaki; Ishida, Makoto

    2002-04-01

    Fabrication of epitaxial ?-Al2O3(111)/Si(111) heterostructures with smooth surfaces for resonance tunnel diode structures is presented in this study. ?-Al2O3 layers were fabricated by molecular beam epitaxy (MBE) and Si layers were fabricated by a mini e-beam evaporator. Epitaxial growth and surface morphology of these layers were studied by reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM). The obtained root mean square (RMS) values of the surface roughness of these layers were 0.39 nm for ?-Al2O3 (3 nm) on Si(111)-substrate and 0.65 nm for Si (4 nm) on ?-Al2O3/Si(111)-substrate. Conduction band offset of the ?-Al2O3/Si heterostructure was studied by Fowler-Nodheim tunneling current measurement, and the conduction band offset (? Ec) value of 2.2 eV was obtained. Then, resonant tunneling diode (RTD) structures with double and triple barriers were fabricated using this ?-Al2O3(111)/Si(111) heterostructure. Electrical properties of these RTDs were studied to find negative differential resistance (NDR). The NDR at room temperature was observed in both structures for the first time with a peak to valley (P/V) current ratio of 3.0 for the double barrier RTD, and 4.5 for the triple barrier RTD.

  6. Self-organized growth of Fe nanowire array on H2O/Si(100)(2×n)

    NASA Astrophysics Data System (ADS)

    Kida, A.; Kajiyama, H.; Heike, S.; Hashizume, T.; Koike, K.

    1999-07-01

    By evaporating Fe on to a water-terminated Si(100)(2×n) surface, we formed an Fe wire array reflecting the 2×n surface reconstruction. The average wire width was 2 nm and the period was 3 nm. The formation was caused by the deposited Fe atoms diffusing over the water-terminated flat area and being trapped at dimer vacancy lines. This array is applicable to magnetic devices.

  7. Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles.

    PubMed

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; Pastor, J M

    2012-07-01

    In this work the effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles obtained by the sol-gel method is analyzed. Two sets of samples were prepared: Fe3O4 nanoparticles and Fe3O4@SiO2 core-shell composites. The samples display the characteristic spinel structure associated with the magnetite Fe3O4 phase, with the majority of grain sizes around 5-10 nm. At room temperature the nanoparticles show the characteristic superparamagnetic behavior with mean blocking temperatures around 160 and 120 K for Fe3O4 and Fe3O4@SiO2, respectively. The main effect of the SiO2 coating is reflected in the temperature dependence of the high field magnetization (?(0)H = 6 T), i.e. deviations from the Bloch law at low temperatures (T < 20 K). Such deviations, enhanced by the introduction of the SiO2 coating, are associated with the occurrence of surface spin disordered effects. The induction heating effects (magnetic hyperthermia) are analyzed under the application of an AC magnetic field. Maximum specific absorption rate (SAR) values around 1.5 W g(-1) were achieved for the Fe3O4 nanoparticles. A significant decrease (around 26%) is found in the SAR values of the SiO2 coated nanocomposite. The different heating response is analyzed in terms of the decrease of the effective nanoparticle magnetization in the Fe3O4@SiO2 core-shell composites at room temperature. PMID:22700683

  8. Microstructure and Mechanical Properties of the Ti-45Al-5Fe Intermetallic Alloy

    NASA Astrophysics Data System (ADS)

    Nazarova, T. I.; Imayev, V. M.; Imayev, R. M.

    2015-10-01

    Microstructure including changes in the phase composition and mechanical compression properties of the Ti-45Al-5Fe (at.%) intermetallic alloy manufactured by casting and subjected to homogenization annealing are investigated as functions of the temperature. The initial alloy has a homogeneous predominantly lamellar structure with relatively small size of colonies of three intermetallic phases: ?(TiAl), ?2(Al2FeTi), and ?2(Ti3Al) in the approximate volume ratio 75:20:5. Compression tests have revealed the enhanced strength at room temperature and the improved hot workability at 800°C compared to those of TNM alloys of last generation.

  9. Effect of boron on the microstructure of near-eutectic Al-Si alloys

    SciTech Connect

    Wu Yuying . E-mail: wyy532001@163.com; Liu Xiangfa; Bian Xiufang

    2007-02-15

    The effect of boron on the microstructure of a near-eutectic Al-Si alloy (ZL109) was investigated by scanning electron microscopy (SEM) and electron beam microprobe analysis (EPMA). It was found that {alpha}-Al dendrites and eutectic clusters were significantly refined by the addition of boron. Another interesting discovery is that the near-eutectic alloy exhibited hypereutectic structure characteristics when the level of boron added exceeds 0.3%, i.e., primary Si is precipitated in the eutectic microstructure. A new type of nucleation substrate for the primary Si is found, Al {sub x}Ca {sub m}B {sub n}Si. This appears to be the main reason for the precipitation of primary Si.

  10. High-frequency magnetic properties of [FeCo/FeCo-SiO2]n multilayered films deposited on flexible substrate

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhu, W. B.; Zheng, H. Y.; Bi, L.; Wang, X.; Han, M. G.; Lu, H. P.; Xie, J. L.; Deng, L. J.

    2015-05-01

    A series of 120 nm [FeCo/FeCo-SiO2]n multilayer thin films with different FeCo layer thicknesses (T = 10-40 nm) and fixed FeCo-SiO2 layer thickness (20 nm) were deposited on flexible substrate (Mylar) by controlling the sputtering time under applied magnetic field. The magnetic properties of the multilayer thin films were investigated. The experimental results showed that the multilayer thin films had obvious in-plane uniaxial magnetic anisotropy, which can be adjusted in a broad range by changing the thickness of FeCo layer. In addition, good soft magnetic performance was obtained. The coercivity in the easy axis Hc e of the multilayer films with the T = 10 nm, 20 nm, 30 nm, and 40 nm was 5 Oe, 25 Oe, 10 Oe, and 8 Oe, respectively. In frequency-dependent permeability spectra measurement, two resonance peaks of complex permeability spectrum were observed, especially for T = 20 nm, which can be attributed to the complicated magnetic structure of FeCo and FeCo-SiO2 layer. By introducing multilayers with different effect anisotropy field, one can broaden the absorption peak while maintaining the high permeability, which would open the way for their potential applications as wide-band microwave absorber.

  11. Fe effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies

    PubMed Central

    2014-01-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the ?-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases. PMID:25276103

  12. Fe effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies.

    PubMed

    Peña-Flores, Jesús I; Palomec-Garfias, Abraham F; Márquez-Beltrán, César; Sánchez-Mora, Enrique; Gómez-Barojas, Estela; Pérez-Rodríguez, Felipe

    2014-01-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the ?-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe(+3) ion concentration increases. PMID:25276103

  13. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  14. Magnetic anisotropy and magnetostriction in nanocrystalline Fe-Al alloys obtained by melt spinning technique

    NASA Astrophysics Data System (ADS)

    García, J. A.; Carrizo, J.; Elbaile, L.; Lago-Cachón, D.; Rivas, M.; Castrillo, D.; Pierna, A. R.

    2014-12-01

    A study about the magnetic anisotropy and magnetostriction in ribbons of composition Fe81Al19 and Fe70Al30 obtained by the melt spinning technique is presented. The hysteresis loops indicate that the easy magnetization direction lies in both cases on the plane of the ribbon. Torque magnetometry measurements show that the in-plane magnetic anisotropy constant results 10100 J m-3 and 490 J m-3 for the Fe81Al19 and Fe70Al30 respectively. After a thermal treatment of 2 h at 473 K to remove the residual stresses, the in-plane magnetic anisotropy constants falls down to 2500 J m-3 in the first composition and remains the same in the second one, while the easy direction remains the same. Measurements of the magnetostriction and the residual stresses of both ribbons allow us to explain the above mentioned results about the magnetic anisotropy and to conclude that the residual stresses via magnetostriction are the main source of magnetic anisotropy in the case of Fe81Al19 ribbon but they do not influence this property in the ribbon of composition Fe70Al30.

  15. Fenton degradation of sulfanilamide in the presence of Al,Fe-pillared clay: Catalytic behavior and identification of the intermediates.

    PubMed

    Khankhasaeva, Sesegma Ts; Dambueva, Darima V; Dashinamzhilova, Elvira Ts; Gil, Antonio; Vicente, Miguel A; Timofeeva, Maria N

    2015-08-15

    Liquid phase catalytic degradation of sulfanilamide with H2O2 was carried out in the presence of Fe,Al/M-pillared clay (Fe,Al/M-MM, M=Na(+), Ca(2+) and Ba(2+)) as heterogeneous Fenton type catalyst. Fe,Al/M-MMs were prepared by swelling of layered aluminosilicate (90-95 wt.% montmorillonite) from a bed located in Mukhortala (Buryatia, Russia) in Na(+), Ca(2+) and Ba(2+) forms by means of the exchange of these cations with bulky Fe,Al-polyoxocations prepared at Al/Fe=10/1 and OH/(Al+Fe)=2.0, and then calcinated at 500°C. XRD method and chemical analysis demonstrated that the rate of crystalline swelling was dependent on the interlayer cations and decreased in the order: Fe,Al-/Na-MM>Fe,Al/Ca-MM>Fe,Al/Ba-MM. It was found that the catalytic properties of Fe,Al/M-MMs depended on the type of exchangeable cations. The effect of the H2O2/sulfanilamide molar ratio, the catalyst content, the reaction temperature and the reaction pH on the removal rate of sulfanilamide has been studied in the presence of Fe,Al/Na-MM. The catalyst can be applied for degradation of sulfanilamide with H2O2 for at least three successive cycles without loss of activity. HPLC analyses pointed out that the main degradation intermediate products were sulfanilic acid, benzenesulfonic acid, p-benzoquinone and aliphatic carboxylic acids. PMID:25819990

  16. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    SciTech Connect

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-12-15

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl{sub 2}O{sub 4}, Cd{sub 1-x}Fe{sub 2+x}O{sub 4}, or Cd{sub x}Fe{sub 2.66}O{sub 4}) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0.

  17. Influence of mechanical milling on the SiC particulate size in an Al-SiC composite

    NASA Astrophysics Data System (ADS)

    Mujahid, M.; Friska, I.

    2005-02-01

    Particle reinforced aluminum-matrix composites are particularly attractive for the automobile and air-craft industries, due to their light weight, high strength, and good wear resistance. In the present work, silicon carbide (SiC) particulates have been incorporated into a pure Al matrix with the help of mechanical milling in a planetary ball-mill. Composite powders were prepared using both raw as well as premilled SiC powders. The effect of milling time on the SiC particulate size was investigated. Systematic analysis of x-ray diffraction data revealed a reinforcement particle size of about 30 nm in a composite containing 50 vol.% SiC. It has been observed that the size reduction occurs at a faster rate when indirect milling is used.

  18. First-order ferromagnetic transition in single-crystalline (Mn,Fe)2(P,Si)

    NASA Astrophysics Data System (ADS)

    Yibole, H.; Guillou, F.; Huang, Y. K.; Blake, G. R.; Lefering, A. J. E.; van Dijk, N. H.; Brück, E.

    2015-10-01

    (Mn,Fe)2(P,Si) single crystals have been grown by flux method. Single crystal X-ray diffraction demonstrates that Mn0.83Fe1.17P0.72Si0.28 crystallizes in a hexagonal Fe2P crystal structure (space group P 6 ¯ 2 m ) at both 100 and 280 K, in the ferromagnetic and paramagnetic states, respectively. Magnetization measurements show that the crystals display a first-order ferromagnetic phase transition at their Curie temperature (TC). The preferred magnetization direction is along the c axis. A weak magnetic anisotropy of K1 = 0.28 × 106 J/m3 and K2 = 0.22 × 106 J/m3 is found at 5 K. A series of discontinuous magnetization jumps is observed far below TC by increasing the field at constant temperature. These magnetization jumps are irreversible, occur spontaneously at a constant temperature and magnetic field, but can be restored by cycling across the first-order phase transition.

  19. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    SciTech Connect

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-13

    Novel amorphous Fe{sub 80}(Zr{sub x}Si{sub 20-x-y})Cu{sub y} boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Moessbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Moessbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Moessbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  20. A systematic ALCHEMI study of Fe-doped NiAl alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-06-01

    ALCHEMI site-occupation studies of alloying additions to ordered aluminide intermetallic alloys have been performed with varying degrees of success, depending on the ionization delocalization correction. This study examines the variation in the site-occupancy of Fe in B2-ordered NiAl vs solute concentration and alloy stoichiometry. The fraction of Fe on the `Ni` site is plotted vs Fe concentration. The good separation among the data from alloys of the three stoichiometries shows that the site occupancy of iron depends on the relative concentrations of the Ni and Al host elements; however a preference for the `Ni` site is clearly indicated.

  1. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    NASA Technical Reports Server (NTRS)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  2. Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite

    NASA Astrophysics Data System (ADS)

    Carvalho, O.; Buciumeanu, M.; Soares, D.; Silva, F. S.; Miranda, G.

    2015-06-01

    The aim of this paper was to evaluate the effect of different dispersion methodologies on mechanical properties of the aluminum-silicon (AlSi) composites reinforced by multi-walled carbon nanotubes (MWCNTs) coated with Ni. Different mixing procedures of MWCNTs with AlSi powder were tested, and AlSi-CNT composites were produced by hot pressing—powder metallurgy technique. The shear tests were performed to get the mechanical properties. Scanning electron microscopy with x-ray energy dispersive spectroscopy analysis and thermal analysis was used to investigate the microstructure of AlSi-CNT composites, interface reactions, and fracture morphology after shear tests. The experimental results proved that an improvement of dispersion of CNTs was achieved by using a combination of different mixing processes.

  3. The effect of directionally solidified microstructures on ductility of Fe-6.5wt%Si alloy

    NASA Astrophysics Data System (ADS)

    Liang, Y. F.; Zheng, Z. L.; Lin, J. P.; Ye, F.; Chen, G. L.

    2009-01-01

    Fe-6.5wt%Si high silicon steel has superior magenitic properties. However, such high Si content results inroom-temperature embrittlement and poor workability due to the formation of ordered intermetallic phases. Zone Melting Liquid Metal Cooling directional solidification technique was employed to produce the Fe-6.5wt%Si alloy with columnar-grained structures. The cooling rate of directional solidificationplays a critical role in maintaining the grain growth, and the rate around 3 K/s is an optimum conditionto form columnar-grained structure and to improve its ductility.

  4. Study of multi-carbide B4C-SiC/(Al, Si) reaction infiltrated composites by SEM with EBSD

    NASA Astrophysics Data System (ADS)

    Almeida, B. A.; Ferro, M. C.; Ravanan, A.; Grave, P. M. F.; Wu, H.-Y.; Gao, M.-X.; Pan, Y.; Oliveira, F. J.; Lopes, A. B.; Vieira, J. M.

    2014-03-01

    In the definition of conceptual developments and design of new materials with singular or unique properties, characterisation takes a key role in clarifying the relationships of composition, properties and processing that define the new material. B4C has a rare combination of properties that makes it suitable for a wide range of applications in engineering: high refractoriness, thermal stability, high hardness and abrasion resistance coupled to low density. However, the low self-diffusion coefficient of B4C limits full densification by sintering. A way to overturn this constraint is by using an alloy, for example Al-Si, forming composites with B4C. Multi-carbide B4C-SiC/(Al, Si) composites were produced by the reactive melt infiltration technique at 1200 - 1350 °C with up to 1 hour of isothermal temperature holds. Pressed preforms made from C-containing B4C were spontaneously infiltrated with Al-Si alloys of composition varying from 25 to 50 wt% Si. The present study involves the characterisation of the microstructure and crystalline phases in the alloys and in the composites by X-ray diffraction and SEM/EDS with EBSD. Electron backscatter diffraction is used in detail to look for segregation and spatial distribution of Si and Al containing phases during solidification of the metallic infiltrate inside the channels of the ceramic matrix when the composite cools down to the eutectic temperature (577 °C). It complements elemental maps of the SEM/EDS. The production of a flat surface by polishing is intrinsically difficult and the problems inherent to the preparation of EBSD qualified finishing in polished samples of such type of composites are further discussed.

  5. Selected AB?²-/- (A = C, Si, Ge; B = Al, Ga, In) Ions: a Battle Between Covalency and Aromaticity, and Prediction of Square Planar Si in SiIn?²-/-

    SciTech Connect

    Alexandrova, Anastassia N.; Nayhouse, Michael J.; Huynh, Mioy T.; Kuo, Jonathan L.; Melkonian, Arek V.; Chavez, Gerardo; Hernando, Nina M.; Kowal, Matthew D.; Liu, Chi-Ping

    2012-11-21

    CAl?²-/- (D?h, ¹A?g) is is a cluster ion that has been established to be planar, aromatic, and contain a tetracoordinate planar C atom. Valence isoelectronic substitution of C with Si and Ge in this cluster leads to a radical change of structure toward distorted pentagonal species. We find that this structural change goes together with the cluster acquiring partial covalency of bonding between Si/Ge and Al?, facilitated by hybridization of the atomic orbitals (AOs). Counter intuitively, for the AAl?²-/- (A = C, Si, Ge) clusters, hybridization in the dopant atom is strengthened from C, to Si, and to Ge, even though typically AOs are more likely to hybridize if they are closer in energy (i.e. in earlier elements in the Periodic Table). The trend is explained by the better overlap of the hybrids of the heavier dopants with the orbitals of Al?. From the thus understood trend, it is inferred that covalency in such clusters can be switched off, by varying the relative sizes of the AOs of the main element and the dopant. Using this mechanism, we then successfully killed covalency in Si, and predicted a new aromatic cluster ion containing a tetracoordinate square planar Si, SiIn?²-/-.

  6. SiAlON COATINGS OF SILICON NITRIDE AND SILICON CARBIDE

    SciTech Connect

    Jan W. Nowok; John P. Hurley; John P. Kay

    2000-06-01

    The need for new engineering materials in aerospace applications and in stationary power turbine blades for high-efficiency energy-generating equipment has led to a rapid development of ceramic coatings. They can be tailored to have superior physical (high specific strength and stiffness, enhanced high-temperature performance) and chemical (high-temperature corrosion resistance in more aggressive fuel environments) properties than those of monolithic ceramic materials. Among the major chemical properties of SiAlON-Y ceramics are their good corrosion resistance against aggressive media combined with good thermal shock behavior. The good corrosion resistance results from the yttria-alumina-garnet (YAG), Al{sub 5}Y{sub 3}O{sub 12}, formed during the corrosion process of SiAlON-Y ceramics in combustion gases at 1300 C. The interfacial chemical precipitation of the YAG phase is beneficial. This phase may crystallize in cubic and/or tetragonal modifications and if formed in SiAlON-Y ceramic may simultaneously generate residual stress. Also, this phase can contain a large number of point defects, which is a consequence of the large unit cell and complexity of the YAG structure because it has no close-packed oxygen planes. Therefore, the need exists to elucidate the corrosion mechanism of a multilayered barrier with respect to using SiAlON-YAG as a corrosion-protective coating. Stress corrosion cracking in the grain boundary of a silicon nitride (Si{sub 3}N{sub 4}) ceramic enriched in a glassy phase such as SiAlON can significantly affect its mechanical properties. It has been suggested that the increased resistance of the oxynitride glass to stress corrosion is related to the increased surface potential of the fracture surface created in the more durable and highly cross-linked oxynitride glass network structure. We expect that either increased or decreased surface potential of the intergranular glassy phase is brought about by changes in the residual stress of the SiAlON-Y ceramic and/or creation of a space-charge region at the SiAlON-YAG interface. Both features originate from a secondary phase of YAG formed during the SiAlON-Y glass corrosion process. Conventional oxidation-protection coatings for metallic materials in high-temperature corrosive environments are typically formed by applying a slurry mixture to the surface followed by a high-temperature furnace cure. During the cure, the coating reacts with the alloy to form a layer typically 25 to 50 {micro}m{sup 3} thick. Generally, coating thickness is one critical microstructural parameter that influences its performance; therefore, its optimization is an important aspect of coating technology. The aim of the present research program is (1) to produce a thin SiAlON-YAG ceramic coating with a high quality of interface, (2) to understand the major experimental characteristics for creating a good bonding between a substrate and a thin coating, and (3) to explain why the Al{sub 5}Y{sub 3}O{sub 12} phase increases SiAlON-Y ceramic alkali corrosion resistance. To produce the SiAlON-Y coating on silicon nitride ceramic with a YAG layer, a slurry mixture of SiAlON-Y components was designed. The research program was extended to Y{sub 2}SiO{sub 5} coating to get preliminary information on the Si{sub 3}N{sub 4}-Y{sub 2}SiO{sub 5} interface microstructure. It was expected that this phase would have a very low porosity. Generally, coatings that contain ductile phases such as Y{sub 2}SiO{sub 5} can produce low-porosity coatings.

  7. Strong Facet-Induced and Light-Controlled Room-Temperature Ferromagnetism in Semiconducting ?-FeSi2 Nanocubes.

    PubMed

    He, Zhiqiang; Xiong, Shijie; Wu, Shuyi; Zhu, Xiaobin; Meng, Ming; Wu, Xinglong

    2015-09-01

    Crystalline ?-FeSi2 nanocubes with two {100} facets and four {011} lateral facets synthesized by spontaneous one-step chemical vapor deposition exhibit strong room-temperature ferromagnetism with saturation magnetization of 15 emu/g. The room-temperature ferromagnetism is observed from the ?-FeSi2 nanocubes larger than 150 nm with both the {100} and {011} facets. The ferromagnetism is tentatively explained with a simplified model including both the itinerant electrons in surface states and the local moments on Fe atoms near the surfaces. The work demonstrates the transformation from a nonmagnetic semiconductor to a magnetic one by exposing specific facets and the room-temperature ferromagnetism can be manipulated under light irradiation. The semiconducting ?-FeSi2 nanocubes may have large potential in silicon-based spintronic applications. PMID:26302086

  8. Doping effects on thermoelectric properties of the off-stoichiometric Heusler compounds Fe{sub 2?x}V{sub 1+x}Al

    SciTech Connect

    Nishino, Y. Tamada, Y.

    2014-03-28

    The thermoelectric properties of Heusler-type Fe{sub 2?x}V{sub 1+x}Al{sub 1?y}Si{sub y} and Fe{sub 2?x}V{sub 1+x?y}Ti{sub y}Al alloys have been investigated to clarify which off-stoichiometric alloy, i.e., V-rich (x?>?0) or V-poor (x?Si and Ti, while retaining a low electrical resistivity. Large Seebeck coefficients of ?182??V/K and 110??V/K at 300?K are obtained for n-type Fe{sub 1.95}V{sub 1.05}Al{sub 0.97}Si{sub 0.03} and p-type Fe{sub 2.04}V{sub 0.93}Ti{sub 0.03}Al, respectively. When the Seebeck coefficient is plotted as a function of valence electron concentration (VEC), the VEC dependence for the doped off-stoichiometric alloys falls on characteristic curves depending on the off-stoichiometric composition x. It is concluded that a larger Seebeck coefficient with a negative sign can be obtained for the V-rich alloys rather than the V-poor alloys, whilst good p-type materials are always derived from the V-poor alloys. Substantial enhancements in the Seebeck coefficient for the off-stoichiometric alloys could be achieved by a favorable modification in the electronic structure around the Fermi level through the antisite V or Fe defect formation.

  9. State-of-the-art of SiAlON materials. [conferences

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1979-01-01

    Research presented includes work on phase relations, crystal structure, synthesis, fabrication, and properties of various SiAlONs. The essential features of compositions, fabrication methods, and microstructure are reviewed. High temperature flexure strength, creep, fracture toughness, oxidation, and thermal shock resistance are discussed. These data are compared to those for some currently produced silicon nitride ceramics to assess the potential SiAlON materials for use in advanced gas turbine engines.

  10. Thermal stability of Ir-Mn /Co-Fe-B/Al-O/Co-Fe-B tunnel junctions

    NASA Astrophysics Data System (ADS)

    Li, F. F.; Sharif, R.; Jiang, L. X.; Zhang, X. Q.; Han, X. F.; Wang, Y.; Zhang, Z.

    2005-12-01

    The thermal stability of magnetic tunnel junctions with structures of Ta(5)/Cu(30)/Ta(5)/Ni79Fe21(5)/Ir22Mn78(12)/Co62Fe20B18(4)/Al(0.8)-oxide/Co62Fe20B18(4)/Cu(30)/Ta(5) (thicknesses unit in nanometers) has been investigated. The tunnel magnetoresistance (TMR) shows a large increase up to 54.4% after annealing at 265 °C due to the improved characteristic properties of the barrier and the interface between the barrier and the ferromagnetic electrodes. The TMR was observed to decrease drastically above the annealing temperature of 310 °C accompanied by a notable increase of junction resistance and coercivity of the free layer. The amorphous Co62Fe20B18 layers seem to behave as a barrier of diffusion, preventing the migration of Mn or Cu atoms into the interface between the barrier and the ferromagnetic layers. This may cause the drastic decrease of TMR due to the deterioration of the barrier and its interface with Co62Fe20B18 layers. The observed crystallization in the amorphous Co62Fe20B18 layers is considered to contribute to the increase in coercivity of the free layer.

  11. Effectiveness of AlN encapsulant in annealing ion-implanted SiC

    NASA Astrophysics Data System (ADS)

    Handy, Evan M.; Rao, Mulpuri V.; Jones, K. A.; Derenge, M. A.; Chi, P. H.; Vispute, R. D.; Venkatesan, T.; Papanicolaou, N. A.; Mittereder, J.

    1999-07-01

    Aluminum nitride (AlN) has been used as an encapsulant for annealing nitrogen (N), arsenic (As), antimony (Sb), aluminum (Al), and boron (B) ion-implanted 6H-SiC. Atomic force microscopy has revealed that the AlN encapsulant prevents the formation of long grooves on the SiC surface that are observed if the AlN encapsulant is not used, for annealing cycles up to 1600 °C for 15 min. Secondary ion mass spectrometry measurements indicated that the AlN encapsulant is effective in preserving the As and Sb implants, but could not stop the loss of the B implants. Electrical characterization reveals activation of N, As, Sb, and Al implants when annealed with an AlN encapsulant comparable to the best activation achieved without AlN.

  12. Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts

    PubMed Central

    2015-01-01

    The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ?0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 ?m) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials. PMID:25664483

  13. Elimination of interface states of Co2MnSi/MgO/Co2MnSi magnetic tunneling junction by inserting an Al atomic layer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Yang, G. W.

    2011-01-01

    Aiming at improvement performance of Co2MnSi/MgO/Co2MnSi magnetic tunneling junction (MTJ), we have studied interface behaviors of Co2MnSi/MgO by inserting an Al atomic layer between Heusler alloy and barrier, i.e., CoCo/Al/O, MnSi/Al/O, MnMn/Al/O and SiSi/Al/O four interfaces. It was found that CoCo/Al/O is stable and half-metallic, meaning interface states can be eliminated in this system. Hybridization and repulsion of transition-metal d and p states of sp atoms at interface and electrons transfer between interfacial atoms were suggested to be responsible for interface states elimination. These findings open a way to eliminate the interface states in MTJ.

  14. Effect of Iron Content on Sintering Behavior of Ti-V-Fe-Al Near- ? Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Savvakin, Dmytro G.; Carman, Andrew; Ivasishin, Orest M.; Matviychuk, Mykhailo V.; Gazder, Azdiar A.; Pereloma, Elena V.

    2012-02-01

    Two near- ? Ti-10V-3Fe-3Al and Ti-10V-2Fe-3Al alloys were produced by blended elemental powder metallurgy using hydrogenated titanium and V-Fe-Al master alloy powders. The distributions of the alloying elements were investigated at different stages of transformation of the heterogeneous powder compacts into the final homogeneous alloy product. The influence of iron content on chemical homogenization, densification, microstructure, and mechanical properties of as-sintered alloys was discussed with respect to the fast diffusion mobility of iron in titanium. It was concluded that a 1 pct increase in Fe content, as the alloying element with the fastest diffusivity in titanium, has a positive effect on densification. However, this also results in some grain coarsening of the final material. The attained mechanical properties were comparable with those of cast/wrought near-beta titanium alloys.

  15. Dependence of crystal orientation in Al-induced crystallized poly-Si layers on SiO2 insertion layer thickness

    NASA Astrophysics Data System (ADS)

    Okada, Atsushi; Toko, Kaoru; Hara, Kosuke O.; Usami, Noritaka; Suemasu, Takashi

    2012-10-01

    We have fabricated poly-Si thin films on fused silica substrates by the Al-induced crystallization (AIC) method with SiO2 insertion layers of various thicknesses (0-20 nm). The growth morphologies of poly-Si layers were dramatically changed by the SiO2 thickness, i.e., thin layers (2 nm) provided high growth rates and (100) orientations, and thick layers (10 nm) provided low growth rates and (111) orientations. These results showed that the crystal orientation of AIC-Si significantly depends on the diffusion rate of Si atoms into the Al layer.

  16. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  17. Preparation and Properties of a Novel Al-Si-Ge-Zn Filler Metal for Brazing Aluminum

    NASA Astrophysics Data System (ADS)

    Niu, Zhiwei; Huang, Jihua; Yang, Hao; Chen, Shuhai; Zhao, Xingke

    2015-06-01

    The study is concerned with developing a filler metal with low melting temperature and good processability for brazing aluminum and its alloys. For this purpose, a novel Al-Si-Ge-Zn alloy was prepared according to Al-Si-Ge and Al-Si-Zn ternary phase diagrams. The melting characteristics, microstructures, wettability, and processing property of the alloy were investigated. The results showed that the melting temperature range of the novel filler metal was 505.2-545.1 °C, and the temperature interval between the solidus and the liquidus was 39.9 °C. Compared with a common Al-Si-Ge alloy, it had smaller and better dispersed ?-GeSi solid solution precipitates, and the Zn-rich phases distributed on the boundary of the ?-GeSi precipitates. The novel filler metal has good processability and good wettability with Al. There was one obvious transition layer with a thin ?-Al solid solution between the filler metal and base metal, which is favorable to improve the strength of brazing joint.

  18. Real time synchrotron X-ray observations of solidification in hypoeutectic Al–Si alloys

    SciTech Connect

    Nogita, Kazuhiro; Yasuda, Hideyuki; Prasad, Arvind; McDonald, Stuart D.; Nagira, Tomoya; Nakatsuka, Noriaki; Uesugi, Kentaro; StJohn, David H.

    2013-11-15

    This paper demonstrates how recent advances in synchrotron technology have allowed for the real-time X-ray imaging of solidification in Al–Si alloys, despite the small difference in atomic number of these elements. The experiments performed at the SPring-8 synchrotron, involved imaging the solidification of Al–1wt.%Si and Al–4wt.%Si alloys under a low-temperature gradient and a cooling rate of around 0.3 °C/s. The nucleation and growth of the primary aluminum grains as well as the onset of eutectic solidification were clearly observed. In the alloys containing Al–4wt.%Si, contrast was sufficient to characterize the nucleation rate and growth velocity of the aluminum grains. The importance of improving observation of solidification in the Al–Si system by increasing the time resolution during critical events is discussed. - Highlights: • A synchrotron technique was used to observe solidification of Al-Si alloys. • Nucleation, coarsening, and the onset of eutectic solidification were observed. • Images captured are suitable for quantitative analysis. • The resolution that was obtained should be possible for most aluminum alloys.

  19. Structural stability, half-metallicity and magnetism of the CoFeMnSi/GaAs(0 0 1) interface

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Chen, Xiaorui; Zhou, Ting; Yuan, Hongkuan; Chen, Hong

    2015-08-01

    The ferromagnet/semiconductor interface plays a crucial role in the performance of advanced magnetic tunnel junctions (MTJs) built of ferromagnetic electrodes and semiconductor as a spacer. We investigate the interface character between LiMgPbSb-type Heusler alloy CoFeMnSi and semiconductor GaAs by using the first-principles density functional simulations. In our calculations, we build two kinds of interface structures, namely the top-type and the bridge-type structure by connecting the termination of nine CoFeMnSi layers to the top of the As-terminated GaAs layer and the bridge site between interface As atoms, respectively. The calculated phase diagram indicated that the CoFe-terminated interface is more stable in the bridge-type structure than in the top-type structure, and a favored MnMn- or MnSi-terminated interface will appear in the top-type structure instead of the bridge-type structure under Fe-rich conditions. Besides, our calculation reveals that interface Mn and interface Fe atoms prefer to extend outward and their atom-resolved spin magnetic moments are enhanced due to the rehybridization caused by the symmetry breaking at the interface, while interface Co atoms shrink inward and their moments are decreased compared with the bulk value. Further analysis on DOS and PDOS indicates that owing to the interface effect, the half metallicity of CoFe-, MnSi-, and SiSi-terminated interfaces is completely destroyed. However, the MnMn-terminated interface in the top-type structure preserves 100% spin polarization, indicating that the CoFeMnSi/GaAs heterostructure with the top-type MnMn-terminated interface has more advantages than other atomic terminations in spintronics applications.

  20. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl4Si2 and CeIrAl4Si2

    DOE PAGESBeta

    Ghimire, N. J.; Calder, S.; Janoschek, M.; Bauer, E. D.

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl4Si2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions TN1 and TN2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition TN2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl4Si2 and CeIrAl4Si2 were determined to be 1.14(2) and 1.41(3) ?B/Ce, respectively, and are parallel to the crystallographic c-axis inmore »agreement with magnetic susceptibility measurements.« less