Science.gov

Sample records for al si ca

  1. Anomalous phonon properties in the silicide superconductors CaAlSi and SrAlSi

    NASA Astrophysics Data System (ADS)

    Kuroiwa, S.; Hasegawa, T.; Kondo, T.; Ogita, N.; Udagawa, M.; Akimitsu, J.

    2008-11-01

    Lattice-dynamical properties of CaAlSi and SrAlSi with a similar layer structure to MgB2 have been first investigated by both Raman-scattering and ab initio calculations. All Raman-active phonons with E' symmetry have been clearly observed for both compounds. Their line shapes are asymmetric but their linewidths are ˜10cm-1 , which is very narrower than that of MgB2 . In addition to the Raman-active modes, several extra peaks have been observed below 160cm-1 . These low-energy extra modes can be assigned to the out-of-plane vibrations of Al perpendicular to Al-Si basal plane. Since these peak intensities are strongly affected by the incident energy (resonance Raman process), the electronic state is important for them. Moreover, in both crystals of CaAlSi and SrAlSi, we point out the energy difference for the different propagation directions along the c axis and the c plane, in spite of the very close wave vector to the Brillouin-zone center. This energy difference cannot be explained by a usual Raman-scattering scenario at this stage.

  2. Thermochemistry of glasses and liquids in the systems CaMgSi 2O 6-CaAl 2Si 2O 8-NaAlSi 3O 8, SiO 2-CaAl 2Si 2O 8-NaAlSi 3O 8 and SiO 2-Al 2O 3-CaO-Na 2O

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Hon, R.; Weill, D. F.; Henry, D. J.

    1980-10-01

    Enthalpies of solution in 2PbO· B 2O 3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO 2-SiO 2, Ca 0.5AlO 2-SiO 2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO 2-SiO 2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si 4O 8-CaAl 2Si 2O 8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive. Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by TAYLOR and BROWN (1979a, b) and others for the structure of aluminosilicate glasses.

  3. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Li, Jiehua; Schaffer, Paul Louis; Schumacher, Peter; Arnberg, Lars

    2015-01-01

    The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

  4. Synthesis and performance of Ca-α/β-SiAlON composites from tailings

    NASA Astrophysics Data System (ADS)

    Hao, Hong-shun; Yang, Yang; Lian, Fang; Gao, Wen-yuan; Liu, Gui-shan; Hu, Zhi-qiang

    2014-05-01

    Ca-α/β-SiAlON composites were prepared using Ca-α/β-SiAlON powder synthesized from gold ore tailings, which contained abundant Si and Al elements as the major raw materials together with minor additives, through a pressure-less sintering method. The influences of sintering temperature on the phase composition and microstructure of the composites were analyzed. The scanning electron microscopy images of the composites show the interlacing of grains with elongated columnar, short columnar and plate-like morphologies. The composites sintered at 1520°C for 6 h have a flexural strength of 352 MPa, Vickers hardness of 11.2 GPa, and fracture toughness of 4.8 MPa·m1/2. The relative content of each phase in the products is I(Ca-α-SiAlON): I(β-SiAlON): I(Fe3Si) = 23:74:3, where I i stands for the diffraction peak intensity of phase i.

  5. Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene.

    USGS Publications Warehouse

    Haselton, H.T., Jr.; Hemingway, B.S.; Robie, R.A.

    1984-01-01

    Low-T heat capacities (5-380 K) have been measured by adiabatic calorimetry for synthetic CaAl2SiO6 glass and pyroxene. High-T unit cell parameters were measured for CaAl2SiO6 pyroxene by means of a Nonius Guinier-Lenne powder camera in order to determine the mean coefficient of thermal expansion in the T range 25-1200oC. -J.A.Z.

  6. Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39

    NASA Astrophysics Data System (ADS)

    Bashir, Shazia; Shahid Rafique, M.; Husinsky, Wolfgang

    2012-03-01

    The formation of self-organized subwavelength ripples on Al, Si, CaF2 and CR-39 induced by 25 fs laser pulses at central wavelength of 800 nm has been observed under certain experimental conditions. In case of Al subwavelength gratings with periodicities ranging from 20 to 220 nm are reported. For CaF2 the periodicity goes up to 625 nm. In case of Si, nano-gratings have the periodicity of 10-100 nm. The interspacing of these gratings is 60 nm in case of CR-39. These features which are significantly shorter than incident laser wavelength are observed at the irradiation fluence slightly higher than the ablation threshold regardless of the target material. In addition to these nanoripples, classical or microripples with an average spacing of 1-2 μm have also been registered on irradiated surfaces of Al and Si. These microripples have appeared at fluence higher than that is required for nanoripple-formation. It has been found that the formation of the laser-induced ripples is strongly dependent and quite sensitive to the incident laser fluence and the selection of material.

  7. Phase relations for CaAl 2Si 2O 8 (anorthite composition) in the system CaOAl 2O 3SiO 2 at 14 GPa

    NASA Astrophysics Data System (ADS)

    Gautron, L.; Kesson, S. E.; Hibberson, W. O.

    1996-10-01

    Multi-anvil experiments at 14 GPa and 1500°C reveal that CaAl 2Si 2O 8 (anorthite composition) undergoes subsolidus disproportionation into grossular Ca 3Al 2Si 3O 12, stishovite SiO 2 and a calcium aluminosilicate phase of composition CaAl 4Si 2O 11. This last phase (CAS) was first synthesised by Irifune et al. (1994, Earth Planet. Sci. Lett., 126: 351-368) in a continental crust composition, at P, T conditions appropriate for the Transition Zone. In the system CaOAl 2O 3SiO 2, a new three-phase assemblage (grossular + stishovite + CAS) encountered at 14GPa replaces the grossular + stishovite + kyanite assemblage known to be stable at around 10GPa because of an univariant reaction between grossular and kyanite that yields stishovite and CAS. By 1600°C another univariant reaction between grossular and stishovite produces CAS plus liquid. Schreinemakers' analysis suggests that, given Ca,Al-rich lithologies, the CAS phase should be stable at transition-zone pressures.

  8. Preparation of Ca-Si Films on (001) Al2O3 Substrates by an RF Magnetron Sputtering Method and Their Electrical Properties

    NASA Astrophysics Data System (ADS)

    Uehara, Mutsuo; Akiyama, Kensuke; Shimizu, Takao; Matsushima, Masaaki; Uchida, Hiroshi; Kimura, Yoshisato; Funakubo, Hiroshi

    2016-06-01

    The constituent phases, electrical conductivity, and Seebeck coefficient of Ca-Si films deposited on (001) Al2O3 substrates by a radio frequency magnetron sputtering method using a Mg disk target with Ca and Si chips are investigated. X-ray diffraction analysis indicates that the films consist of a single phase of CaSi2, CaSi or Ca5Si3 that are deposited together with the films consisting of a mixture of CaSi2 and CaSi. Films with a CaSi2 or CaSi single phase exhibit a metallic behavior. In contrast, films with a Ca5Si3 single phase show p-type conduction and their Seebeck coefficient reaches 90 μV/K at 400°C.

  9. Hydrogen reduction of wustite single crystals doped with Mg, Mn, Ca, Al, and Si

    NASA Astrophysics Data System (ADS)

    Moukassi, M.; Gougeon, M.; Steinmetz, P.; Dupre, B.; Gleitzer, C.

    1984-06-01

    In order to investigate the reduction mechanism of wustite in the presence of impurities usually met in the ironmaking industry, single crystals have been prepared with Mg, Mn, Ca, Al, and Si as dopants. The amounts of dopant in the lattice is around 4,4,2.5,0.5, and 0.01 mol pct, respectively, at 800 ‡C. For reduction with pure hydrogen, from 600 to 950 ‡C, Ca is the most efficient for accelerating the process at high degrees of reduction (75 pct) Mg and Mn are also active in this respect. Al has only a slowing down effect. Si also slows down the reaction at temperatures between 600 < T < 850 ‡C, but it becomes accelerating at T > 850 ‡C. In the presence of 20 torrs of water vapor in the gas, Mg and Mn are less efficient and unable to prevent the same slowing down of reaction observed with pure wustite at around 850 ‡C and classically called the ‡rate minimum‡. Our interpretation of these results is mainly based upon the observations of microstructures of partly reduced crystals which show a change in the texture of the iron produced which can be correlated with the reduction rate. These observations lead to a possible explanation in terms of the role of inclusions of impurity oxides on the sintering process of the metal, correlated with their ability to dissolve into the wustite lattice. However, this suggestion cannot apply in the case of Si at low temperatures, and this element is therefore supposed to play a role in the stages of reaction associated with the surface of the crystals.

  10. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  11. Enhanced photoluminescence of Ca2Al2SiO7:Eu3+ by charge compensation method

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wang, J.; Zhang, M.; Ding, W.; Su, Q.

    2007-09-01

    The effect of compensator on optical properties of Ca2Al2SiO7:Eu3+ is systematically investigated by the X-ray powder diffraction, photo-luminescence (PL) properties and lifetime. It is obviously observed that the PL intensity of Eu3+ under 394 nm excitation increases in the order of Ca1.86Eu0.14Al2SiO7 (CAS), Ca1.72Na0.14Eu0.14Al2SiO7 (CASNa) and Ca1.86Eu0.14Al2.14Si0.86O7 (CASAl), the intensity of Eu3+ are 100%, 134%, 184%, and the lifetime of Eu3+ are 0.75 ms, 1.28 ms and 1.39 ms, respectively. A charge compensation model is proposed to explain the changes in the emission intensity and lifetime of Eu3+ in Ca2Al2SiO7 with different compensation methods.

  12. Broadband photoluminescence in the (CaO-Al2O3-SiO2):Eu system

    NASA Astrophysics Data System (ADS)

    Gurin, N. T.; Paksyutov, K. V.; Terent'ev, M. A.; Shirokov, A. V.

    2009-08-01

    Phosphors of the (CaO-Al2O3-SiO2):Eu system obtained by direct solid-state synthesis in air at 1300°C produce broadband photoluminescence (PL) covering the entire visible range under excitation by a nitrogen laser. Upon vacuum annealing, the PL intensity in (CaO-Al2O3-SiO2):Eu and (CaO-Al2O3-2SiO2):Eu samples exhibits a several-fold increase and the latter phosphor yields blue emission according to the CIE color standard. The annealing of a (CaO-Al2O3):Eu composition leads to a change in the emission color from red (close to that according to the EBU scale) to blue (in the same scale). Vacuum-annealed (CaO-2Al2O3):Eu phosphor yields red emission (close to that according to the NTSC scale), while (2CaO-Al2O3):Eu composition exhibits intense purple luminescence.

  13. Constraints on Titanite Acitvity in the System CaTiSiO4O-CaAlSiO4F: Implications for Thermobarometry in Metamorphic Rocks

    NASA Astrophysics Data System (ADS)

    Tropper, P.; Manning, C. E.; Essene, E. J.

    2006-12-01

    Titanite is a common accessory mineral that could be used reliably in phase equilibrium calculations, if activity-composition relations in Al-F titanites were known. Troitzsch and Ellis (2001, CMP, 142, 543) and Tropper et al. (2002, JPet., 43, 1787) gave non-ideal mixing models along the join CaTiSiO4O- CaAlSiO4F. Tropper et al. (2002) derived a negative interaction parameter W, whereas Troitzsch and Ellis (2001) derived a regular model with both positive and negative W, but favored positive values. These differences strongly influence calculated CaTiSiO4O activity (attn). Although more experiments are needed, our result that γttn<1 at high T indicates a large degree of non-ideal behavior, even at >900°C, which in turn will affect thermobarometry. Comparing available activity models shows that at these T, attn is substantially underestimated by the fully ionic model used by Manning and Bohlen (1991, CMP, 109, 1), in which attn = XCaXTiXSi(XO)5. This model assumes independent mixing of Al for Ti and random mixing of F and O on all O sites. However, F substitutes only in one O site (O1; Oberti et al., 1991, EJM, 3, 777). A fully ionic model should therefore be recast as attn = XCaXTiXSiXO, where XO indicates the mole fraction of O on the (O1) site. The substitution of F on the O1 site is coupled with Al, so it is called the ideal coupled model. Unlike the regular model, the prefered ionic model departs strongly from ideality at ≤600°C, consistent with independent constraints. However, experimentally determined attn is approximated by an ideal molecular model (XTi) at ≥900°C, so this model is recommended for thermobarometry in high- T metamorphic rocks until more data are available. Recalculation of the P recorded by the three eclogites from Manning and Bohlen (1991) using the different activity models discussed here yields differences that may be as high as 2.0 GPa.

  14. Stabilization of moisture-reactive raw materials for improved synthesis of Ca-α-SiAlON:Eu2+ phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Myung; Kim, Mi-Ju; Lee, Jae-Wook; Park, Young-Jo

    2014-09-01

    The raw materials needed to make the Ca-α-SiAlON:Eu2+ phosphor contain highly moisture-reactive Ca3N2. Exposing them to a preheating process prior to high-temperature synthesis stabilized the raw materials against oxidation. Preheating above 1200 °C in a tube furnace directly connected to a glove box, resulted in the formation of intermediate phases such as CaAlSiN3, which provided higher moisture resistance to the raw materials. We found that even after exposure to a humid environment, the preheated samples maintained PL characteristics similar to the conventional unexposed samples, while the PL intensity and particle homogeneity of the un-preheated samples were severely deteriorated.

  15. Czochralski growth of single-crystal gehlenite (Ca 2Al 2SiO 7)

    NASA Astrophysics Data System (ADS)

    Finch, C. B.; Ball, F. L.; Bates, J. B.

    1981-09-01

    Single-crystal boules of gehlenite (Ca 2Al 2SiO 7) were grown from even- and off-stoichiometry melts under differing conditions of oxygen fugacity (ƒ O2). Growth was accomplished by the Czochralski method at 1600°C and 10 5 Pa (1 atm) total pressure, using inductively heated Ir or Pt-20%Rh crucibles. The supra melt gas ambients included air ( ƒ O2 = 0.2 × 10 4Pa), Ar (10 Pa), Ar-50%CO 2-2%H 2 (10 -2 Pa), and Ar-4%H 2-1.5%H 2O (10 -4 Pa). Colorless, transparent material up to 8 mm diam. by 15 mm long was obtained from the evenly stoichiometric melt composition under Ar at growth rates of 1.5 mm/h or less. Growth at rates exceeding 2 mm/h or growth at a high ƒ O2 (e.g., air), led to the formation of bubbles and elongated voids or inclusions, predominantly in the core regions of boules. Optical, X-ray diffraction, and electron-induced X-ray flourescence data are included.

  16. Structure, thermodynamic and transport properties of CaAl 2Si 2O 8 liquid. Part I: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Spera, Frank J.; Nevins, Dean; Ghiorso, Mark; Cutler, Ian

    2009-11-01

    Molecular dynamics simulations for liquid CaAl 2Si 2O 8 have been carried out at 72 state points spanning ranges in density ( ρ: 2398-4327 kg/m 3), temperature ( T: 3490-6100 K) and pressure ( P: 0.84-120 GPa) relevant to geosystems. The atomic scale structure of the melt is determined by analysis of nearest neighbor coordination statistics as a function of T and P. Dramatic structural change occurs as pressure increases especially for 0 < P <20 GPa at all temperatures. Changes in structure are encapsulated by examining the coordination of Si, Al, Ca and O around oxygen and vice versa. Si and Al change from predominantly fourfold at low- P to dominantly sixfold for P >˜ 20 GPa. Pentahedrally coordinated Si and Al in distorted trigonal bipyramids attain abundance maxima corresponding to ˜60% of total (Si, Al)O n at 3-5 GPa and weakly depend on T. The coordination of Ca by oxygen increases from 7 to 10 for 0 < P < 20 GPa and changes slowly for P > 20 GPa at 3500 K. Similar behavior is seen at 6000 K except that the interval of rapid changes occurs at higher pressure. Oxygen with only one nearest Si or Al neighbor (i.e., non-bridging oxygen, NBO) decreases whereas oxygen with two or three nearest neighbors of Si, Al or Ca increases as pressure increases. Changes in melt structure are reflected in the variation of thermodynamic and transport properties of the liquid. Values of the self-diffusivities of Ca, Al, Si and O are fit to a modified Arrhenian expression and compare well to limited laboratory data. Self-diffusivities are best fit using 'low P' and 'high- P' expressions, identical in form but with different parameters, with activation energies and activation volumes in the range 150-200 kJ/mol and +5 to -1 cm 3/mol, respectively. Green-Kubo calculations for liquid shear viscosity are presented and compare well with limited laboratory results. Application of the Eyring model to determine the characteristic size and number of atoms in the activated cluster based

  17. Optimum Composition of CaO-SiO2-Al2O3-MgO Slag for Spring Steel Deoxidized by Si and Mn in Production

    NASA Astrophysics Data System (ADS)

    Yang, Hulin; Ye, Jiansong; Wu, Xiaoliang; Peng, Yongsheng; Fang, Yi; Zhao, Xinbing

    2016-04-01

    The relations between plasticity of inclusions and contents of oxygen, aluminum, and sulfur in molten steel were overall discussed by thermodynamics and FactSage software. Then, the optimum compositions of slag were obtained and the activities of components of refining slag system were analyzed. Finally, experiments were carried out based on the results of calculation. According to the relations, it could achieve better effect to improve basicity R ( R = CaO/SiO2 by mass pct) and C/ A ( C/ A = CaO/Al2O3 by mass pct) in the low melting temperature [≤1673 K (≤1400 °C)] region of refining slag as far as possible. For the CaO-SiO2-Al2O3-MgO slag, the optimum compositions are MgO: 5-9 pct, CaO: 47.4-50.2 pct, SiO2: 41.9-45.6 pct and Al2O3: ≤2.79 pct, respectively, in which the basicity is at the range of 1.0 to 1.19 and C/ A is above 9.0. It is proved by experiments that the plasticity of inclusions and the contents of [O], [Al], and [S] can be controlled effectively by the optimum composition of refining slag, and the high cleanness is achieved in spring wire rods.

  18. The Influence of Na2O on the Solidification and Crystallization Behavior of CaO-SiO2-Al2O3-Based Mold Flux

    NASA Astrophysics Data System (ADS)

    Gao, Jinxing; Wen, Guanghua; Sun, Qihao; Tang, Ping; Liu, Qiang

    2015-08-01

    The reaction between [Al] and SiO2 sharply increased the Al2O3 and decreased SiO2 contents in mold flux during the continuous casting of high-Al steels. These changes converted original CaO-SiO2-based flux into CaO-SiO2-Al2O3-based flux, promoting the crystallization and deteriorating the mold lubrication. Therefore, study on the solidification and crystallization behavior of CaO-SiO2-Al2O3-based mold flux, with the applicable fluidizers, is of importance. The effect of Na2O, predominantly used as the fluidizer in mold flux, on the solidification and crystallization behavior of CaO-SiO2-Al2O3-based mold flux needs to be investigated. In this study, a CaO-SiO2-Al2O3-based mold flux containing 6.5 wt pct Li2O was designed; the effect of Na2O on the solidification and crystallization behavior of these mold fluxes was investigated using the single hot thermocouple technique (SHTT) and the double hot thermocouple technique (DHTT). Moreover, the slag film obtained by a heat flux simulator was analyzed using X-ray diffraction (XRD). The results indicate that the solid fraction of molten slag (Fs) and the crystalline fraction of solid slag (Fc) in the mold slag films decrease with increasing Na2O content from 0 to 2 wt pct. However, Fs and Fc increased when the Na2O content increased from 2 to 6 wt pct. The critical cooling rates initially decreases and then increases with increasing Na2O content. The XRD analysis results show that LiAlO2 and CaF2 were the basic crystals for all the mold fluxes. Increasing the Na2O content both inhibits the Ca2Al2SiO7 formation and promotes the production of Ca12Al14O33, indicating that the mold lubrication deteriorated because of the high melting-point phase formation of Ca2Al2SiO7 in the CaO-SiO2-Al2O3-based mold flux containing 6.5 wt pct Li2O, without Na2O. The strong crystallization tendency also deteriorated the mold lubrication for the mold flux with a higher Na2O content. Therefore, the addition of Na2O was less than 2 wt pct in

  19. High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.

    2009-03-01

    Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of

  20. Syntheses and luminescent properties of CaAl2Si2O8:Eu2+, Mn2+ phosphors for white LED

    NASA Astrophysics Data System (ADS)

    Kwon, Sook Hyun; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun; Kim, Jung Hwan

    2016-01-01

    Aluminosilicate-based luminescent materials, a series of CaAl2Si2O8:Eu2+ samples were prepared by using a solid-state reaction method. The X-ray diffraction patterns of the samples confirmed their triclinic structure after annealing at 1100 °C. The excitation spectra of CaAl2Si2O8:Eu2+ exhibited a broad band ranging between 220 to 420 nm with a point peak at a longer wavelength. Moreover, a shift in the broad band was also recorded with increasing Eu2+ concentration. The emission spectrum of CaAl2Si2O8:Eu2+ consists of a broad band from 390 to 550 nm with a maximum intensity at about 438 nm, which can be ascribed to the electric-dipole-allowed 4f65d1-8S7/2(4f7) transition of the Eu2+ ions. A series of Eu2+ and Mn2+ co-activated CaAl2Si2O8 samples were synthesized at 1400 °C. The CaAl2Si2O8:Eu2+, Mn2+ samples had a wide emission band ranging from blue to yellow and peaking at 438 and 550 nm under an excitation wavelength of 352 nm. The PL spectrum of the CaAl2Si2O8:Eu2+, Mn2+ samples reveal an effective energy transfer from Eu2+ to Mn2+ in CaAl2Si2O8. By utilizing the principle of energy transfer, we also demonstrated that with appropriate tuning of the activator content, CaAl2Si2O8:Eu2+, Mn2+ phosphors exhibit great potential as a phosphor for white-light-emitting diodes.

  1. Phase equilibria and elements partitioning in zirconolite-rich region of Ca-Zr-Ti-Al-Gd-Si-O system

    SciTech Connect

    Knyazev, O.A.; Stefanovsky, S.V.; Ioudintsev, S.V.; Nikonov, B.S.; Omelianenko, B.I.; Mokhov, A.V.; Yakushev, A.I.

    1997-12-31

    Zirconolite-rich ceramics were produced by the cold crucible melting technique in an air atmosphere, at 1550 {+-} 50 C and 1 atm. Four samples with overall composition (in wt.%): 4.9-14.3 CaO; 19.0-41.3 ZrO{sub 2}; 24.1-42.6 TiO{sub 2}; 1.3-11.3 Al{sub 2}O{sub 3}; 6.8-30.0 Gd{sub 2}O{sub 3}; and 1.1-8.5 SiO{sub 2} have been studied. Total phases in the ceramics consist of major zirconolite and minor rutile, perovskite, zirconia, aluminium titanate, and glass. The Gd{sub 2}O{sub 3} content in zirconolite reaches up to 31.4 wt.% corresponding to the formula: (Ca{sub 0.4},Gd{sub 0.7})Zr{sub 1.0}(Ti{sub 1.4},Al{sub 0.5})O{sub 7.0}. The data on the phase composition agree well with coupled Gd incorporation into the mineral structure: Ca(II) + Ti(IV) = Gd(III) + Al(III), and 2Gd(III) = Ca(II) + Zr(IV). The highest Gd contents observed in the other phases are 25.4% for zirconia, 12.6% in glass, 8.8% in perovskite, and 1.4% for rutile. The rest of the elements` distribution in the samples are analyzed.

  2. Phase transformations of Ca 3Al 2Si 3O 12 grossular garnet to the depths of the Earth's mantle transition zone

    NASA Astrophysics Data System (ADS)

    Gréaux, Steeve; Nishiyama, Norimasa; Kono, Yoshio; Gautron, Laurent; Ohfuji, Hiroaki; Kunimoto, Takehiro; Menguy, Nicolas; Irifune, Tetsuo

    2011-04-01

    High-pressure and high-temperature phase transformations of Ca 3Al 2Si 3O 12 grossular garnet were examined at 19-26 GPa and 700-2000 K using Kawai-type multi-anvil apparatus coupled with in situ X-ray diffraction (XRD). Recovered samples were analyzed by a combination of micro-focused X-ray diffraction (μ-XRD) and transmission electron microscopy (TEM). The results show that grossular garnet gradually transforms to an Al-rich CaSiO 3 perovskite at 22-26 GPa and 1000-1400 K. The transition boundary can be expressed as P (GPa) = -0.0082 × T (K) + 33.05. When the garnet completely disappears, we observed orthorhombic CaSiO 3 perovskite with a grossular composition. At 20-24 GPa and temperatures above 1500 K the CAS phase with the composition CaAl 4Si 2O 11 appears to accommodate excess Al from the perovskite along with two distinct populations of Al-bearing CaSiO 3 perovskites, with Al content of 3.7 and 10.0 wt% Al 2O 3, respectively. The pressure and temperature of these transitions correspond to the lowermost part of the transition zone and therefore it suggests that Ca-rich aluminosilicates could provide alternative candidates to explain multiple seismic reflections near the 660 km depth discontinuity.

  3. Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high temperature

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroaki; Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takahashi, Tomoko; Kodama, Nobuhiro; Tsurumi, Takaaki

    2013-06-01

    Ca2Al2SiO7 (CAS) bulk single crystals were grown by the Czochralski method. Material constants of the crystal were determined over the driving temperature range of a typical combustion pressure sensor. The electrical resistivity at 800 °C was found to be of the order of 108 Ωcm. We constructed a measurement system for the direct piezoelectric effect at high temperature, and characterized the crystals in a simulated engine cylinder combustion environment. Output charge signal against applied stress was detected at 700 °C. These observations suggest that CAS crystals are superior candidate materials for high temperature for stress sensing.

  4. Activities of FetO in CaO-Al2O3-SiO2-FetO (<5 pct) slags saturated with liquid iron

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Ro; Suito, Hideaki

    1994-12-01

    The activity coefficients of FetO in CaO-Al2O3 and CaO-Al2O3-SiO2 slags with 0.01 to 5 mass pct FetO were determined at 1873 K from the data obtained in the present and previous slag-metal experiments, using an alumina or lime crucible. It was found that the activity coefficients of FetO obeyed a dilute solution law and increased with increasing the content of SiO2. Based on the findings pertaining to the activity coefficient, the values for the activities of SiO2 and Al2O3 in CaO-Al2O3-SiO2 slags were assessed.

  5. Effect of SiO2 on the Crystallization Behaviors and In-Mold Performance of CaF2-CaO-Al2O3 Slags for Drawing-Ingot-Type Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Li, Jing; Cho, Jung-Wook; Jiang, Fang; Jung, In-Ho

    2015-10-01

    The crystallization characteristics of CaF2-CaO-Al2O3 slags with varying amounts of SiO2 were experimentally studied. The effects of slag crystallization behaviors on the horizontal heat transfer and lubrication performance in drawing-ingot-type electroslag remelting (ESR) were also evaluated in terms of as-cast ingots surface quality and drawing-ingot operation. The results show that increasing SiO2 addition from 0 to 6.8 mass pct strongly suppresses the crystallization of ESR type CaF2-CaO-Al2O3 slags. The crystallization temperature of the studied slags decreases with the increase in SiO2 addition. The liquidus temperatures of the slags also show a decreasing trend with increasing SiO2 content. In CaF2-CaO-Al2O3-(SiO2) slags, faceted 11CaO·7Al2O3·CaF2 crystals precipitate first during continuous cooling of the slag melts, followed by the formation of CaF2 at lower temperatures. 11CaO·7Al2O3·CaF2 was confirmed to be the dominant crystalline phase in the studied slags. CaF2-CaO-Al2O3 slags with a small amount of SiO2 addition are favorable for providing sound lubrication and horizontal heat transfer in mold for drawing-ingot-type ESR, which consequently bring the improvement in the surface quality of ESR ingot and drawing-ingot operating practice as demonstrated by plant trials.

  6. Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO-Al 2O 3-SiO 2

    NASA Astrophysics Data System (ADS)

    Gasparik, Tibor

    1984-12-01

    Subsolidus phase relations in the system CaO-Al 2O 3-SiO 2 (CAS) were experimentally determined with tight reversals of several univariant curves and with 14 equilibration experiments containing the assemblage pyroxene + anorthite, where pyroxene is a binary solid solution of Ca-Tschermak (CaTs-CaAl 2SiO 6) and Ca-Eskola (CaEs-Ca 0.5AlSi 2O 6) endmembers. Reversals were obtained on the following reactions (bar, °C): 3 An = Gr + 2 Ky + Q ( P = 22 T - 700), 3 An + Cor = Gr + 3 Ky ( P = 21.8 T - 950), 3 CaTs= Gr + 2 Cor( P = 55 T - 53900), and 6 CaTs(1 - x) CaEsx = 2(1 - 2 x) Gr + 4(1 - 2 x) Cor + 9 xAn. Observed slopes indicate 9.8 J/mol · K of Al-Si disorder in Ca-Tschermak pyroxene and 5.3 J/mol·K of Al-Si disorder in anorthite, at 1300°C. It is suggested that Al-Si disorder in anorthite increases by 1.9 J/mol · K from 700°C to 1300°C. Compositions of CaTs-CaEs pyroxene in equilibrium with anorthite and PbO-rich liquid were experimentally determined at 1400-1430°C and 22.7-30.8 kbar. Microprobe measurements gave compositions which are consistent with an ideal pyroxene solution and the following parameters for the reaction 3 An = 2 CaTs + 2 CaEs ( J, bar, K): 2 RTln( XCaTs · XCaEs) + 60200 + 86.4 T - (5.06 + 13 × 10 -7P) P = 0, resulting in ΔH0j = -39.8 kJ/ mol and S0 = 461.8 J/ mol · K for the Ca-Eskola endmember at 1300°C. The obtained properties of the Ca-Eskola component are necessary for thermobarometry based on pyroxene bearing assemblages containing plagioclase, quartz, or kyanite.

  7. Crystallization paths in SiO2-Al2O3-CaO system as a genotype of silicate materials

    NASA Astrophysics Data System (ADS)

    Lutsyk, V. I.; Zelenaya, A. E.

    2013-12-01

    The phases trajectories in the fields of primary crystallization of cristobalite (SiO2cr), tridymite (SiO2tr), mullite (3Al2O3-2SiO2) and in a field of liquid immiscibility are analyzed on a basis of computer model for T-x-y diagram of SiO2-Al2O3-CaO system. The concentration fields with unique set of microconstituents and the fields without individual crystallization schemes and microconstituents are revealed.

  8. Formation Mechanism of CaO-SiO2-Al2O3-(MgO) Inclusions in Si-Mn-Killed Steel with Limited Aluminum Content During the Low Basicity Slag Refining

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Jiang, Min; Wang, Xinhua; Wang, Ying; Zhao, Haoqian; Cao, Zhanmin

    2016-02-01

    Pilot trails were carried out to study the formation mechanism of CaO-SiO2-Al2O3-(MgO) inclusions in tire cord steel. 48 samples were taken from 8 heats of liquid steel during secondary refining, which were subsequently examined by an automatic scanning electron microscope with energy dispersive spectrometer (SEM-EDS). Characteristics of thousands of oxide inclusions at different refining stages were obtained, including their compositions, sizes, morphologies, etc. Based on the obtained information of inclusions, details during formation of CaO-SiO2-Al2O3-(MgO) inclusions were revealed and a new mechanism was proposed, including their origin, formation, and evolution during the refining process. It was found that CaO-SiO2-Al2O3-(MgO) inclusions were initially originated from the CaO-SiO2-MnO-(MgO) inclusions, which were formed during BOF tapping by the coalescence between MnO-SiO2 deoxidation products and the emulsified slag particles because of violent flow of steel. This can be well confirmed by the evaluation of the formation thermodynamics of CaO-SiO2-MnO-(MgO) inclusions, which was proved very difficult to be produced by intrinsic reactions inside liquid steel. Because of chemical reactions between CaO-SiO2-MnO-(MgO) inclusions and molten steel, they were mainly changed into CaO-SiO2-MnO-Al2O3-(MgO) and partially into CaO-SiO2-Al2O3-(MgO), which may be detrimental to the cold drawing ability of coils. Based on this finding, improvements were made in industrial production during BOF tapping and secondary refining. The results indicated that such (CaO-SiO2)-based inclusions existed in conventional process were effectively decreased after the improvements.

  9. Antiferromagnetism in CaAl2Si2-type CaMn2As2 and SrMn2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Sangeetha, N. S.; Pandey, Abhishek; Benson, Zackery A.; Johnston, D. C.

    Magnetic susceptibility versus temperature χ (T) measurements of CaMn2As2 and SrMn2As2 crystals show clear antiferromagnetic (AFM) transitions at TN ~ 65 K and 120 K,1 respectively. The anisotropic behaviors in χ (T <=TN) suggest that both compounds are noncollinear antiferromagnets which may result either from an intrinsic noncollinear structure or from multiple collinear AFM domains that are not aligned collinearly.2 The χ (T) data at T >TN reveal that both compounds exhibit strong short-range AFM ordering, evidently associated with quasi-two-dimensional spin lattices. The electrical resistivities show insulating ground states with activation energies of ~ 63 meV in CaMn2As2 and 44 meV in SrMn2As2 . The experimental results thus reveal that both (Ca , Sr) Mn2As2 materials are AFM insulators at low temperatures and in analogy with the high Tc cuprates, may be potential parent compounds for CaAl2Si2-type superconductors. Work was supported by the USDOE under Contract No. DE-AC02-07CH11358.

  10. Complete Al-SI Order in Scapolite Me[subscript 37.5], Ideally Ca[subscript 3]Na[subscript 5][Al[subscript 8]Si[subscript 16]O[subscript 48

    SciTech Connect

    Antao, Sytle M.; Hassan, Ishmael

    2011-09-06

    The structure of an intermediate scapolite (Me{sub 36.6}) from Lake Clear, Ontario, was obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinement in space group P4{sub 2}/n. The chemical formula obtained by electron microprobe is Na{sub 2.19}Ca{sub 1.35}K{sub 0.16}[Al{sub 3.95}Si{sub 8.05}O{sub 24}]Cl{sub 0.55}(CO{sub 3}){sub 0.41}(SO{sub 4}){sub 0.04}, equivalent to Me{sub 36.6}. The unit-cell parameters are a 12.07899(1), c 7.583467(9) {angstrom}, and V 1106.443(2) {angstrom}{sup 3}. The average distances are = 1.617(1) {angstrom}, = 1.744(1) {angstrom}, and = 1.601(1) {angstrom}. Therefore, the T1 and T3 sites contain only Si atoms, and the T2 site contains only Al atoms, so the Al and Si atoms are completely ordered. Complete Al-Si order was predicted for Me{sub 37.5}, ideally Ca{sub 3}Na{sub 5}[Al{sub 8}Si{sub 16}O{sub 48}]Cl(CO{sub 3}), and is confirmed in this study. Antiphase domain boundaries (APBs) in scapolite cannot arise from Al-Si order because the average distances indicate complete Al-Si order in Me{sub 36.6}. If APBs were to arise from Al-Si order, switching of the T sites across the APBs will occur, and complete Al-Si order cannot be observed. Therefore, Al-Si order, which is present to various extents across the scapolite series, can be ruled out as the cause for the APBs. Order involving Cl and CO{sub 3} is the cause for the APBs in scapolite.

  11. Enhanced Emission from Li2CaSiO4:Dy3+ Phosphors by Doping with Al3+ and B3+

    NASA Astrophysics Data System (ADS)

    Erdoğmuş, E.

    2016-05-01

    Pure Li2CaSiO4, Li2CaSiO4:Dy3+ and Al3+, B3+ co-doped materials were prepared by a solid-state reaction in air at 900°C for 6 h and characterized by using powder XRD. The luminescence properties of the synthesized phosphors were measured at room temperature with a spectrofluorometer. Li2CaSiO4:Dy3+ emits at 484, 575, and 660 nm upon 352 nm excitation. The emission spectrum intensity of Dy3+ increased from 0.01 to 0.06 mol.%, and beyond 0.06 mol.%, concentration quenching was observed. Also, in this study, the effects of boric acid and aluminum oxide concentration on the photoluminescence properties of Dy3+ doped phosphors were investigated. The results showed that boric acid and aluminum oxide were effective in improving the photoluminescence intensity of Li2CaSiO4:Dy3+ compounds.

  12. Effect of Al2O3 on the Viscosity and Structure of CaO-SiO2-MgO-Al2O3-FetO Slags

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sun, Yongqi; Sridhar, Seetharaman; Zhang, Mei; Guo, Min; Zhang, Zuotai

    2015-04-01

    The present paper provided a fundamental investigation on the effect of Al2O3 on the viscosity and structure of CaO-SiO2-MgO-Al2O3-FetO slags for the purpose of efficiently recycling the valuable elements from the steelmaking slags. The results show that the viscosity of CaO-SiO2-Al2O3-MgO-FetO slags slightly increases with increasing Al2O3 content. The degree of the polymerization (DOP) of quenched slags, determined from Raman spectra and magic angle spinning-nuclear magnetic resonance, is also found to increase with increasing Al2O3 content. It can be deduced that the increasing DOP can promote the formation of gehlenite phase (Ca2Al2SiO7), thus facilitating the formation of higher phosphorous (or vanadium) contained solid solution ( n'Ca2SiO4·Ca3((P or V)O4)2). As Al2O3 content increases up to a specific value, the charge compensating ions which present near [AlO4]-tetrahedra and [FeO4]-tetrahedra are not fully supplied due to the scarcity of Ca2+. In this case, the existing Fe3+ in the melt cannot completely form [FeO4]-tetrahedra and part of Fe3+ would form [FeO6]-octahedra to substitute Ca2+ to modify the slags.

  13. Phase equilibrium and structural properties in the Ca-Al-Si-O system up to the P,T conditions of the Earth's lowermost transition zone.

    NASA Astrophysics Data System (ADS)

    Gréaux, S.; Nishiyama, N.; Kono, Y.; Shinmei, T.; Irifune, T.

    2008-12-01

    Ca- and Al-bearing silicates have been extensively investigated for their importance into the mantle processes. In the transition zone, majorite garnet and Ca-perovskite are reported to be the major hosts of Ca as well as deposits of Al [1]. At higher P, Ca gets completely exsolved from the majorite to the Ca-pv. It is observed that Al plays a significant role in the Ca-Si-O system by inducing new phase equilibriums [2,3,4], and influencing the physical properties of the Ca-pv [5]. It is then suggested that phase transitions and chemical reactions involving Ca- and Al-bearing silicates could conciliate mineralogical results and seismological observations in the region of the transition zone [3,6]. We studied the phase equilibrium at HP-HT in the grossular and anorthite systems using a Kawai-type multi- anvil apparatus up to 25 GPa and 2000 K. Grossular garnet is reported to decompose into a mix of corundum and Ca-pv [3] or to transform into a perovskite of grossular composition [7]. Our study shows that grossular mainly decomposes into a mix of Al-Ca-pv and CAS phase in the same P range and higher T. Anorthite is also found to mainly decompose into a mix of Al-Ca-pv and CAS phase. Despite some Al-content in the Ca-pv, the CAS phase is the major host of Al, which suggests according to previous studies [3,5], a lower solubility of Al into the perovskite structure at high T. The Al-content of the Ca-pv as well as the presence of another Al-rich Ca-bearing silicate in zone of variable temperatures and composition as subducting slabs are discussed for their possible implication into the transition zone processes. [1] T. Irifune, 1994. Nature 370, 131-133 [2] L. Gautron et al., 1996. Phys. Earth Planet. Int. 94, 71-81 [3] N. Takafuji et al., 2002. Phys. Chem. Mineral 29, 532-537 [4] S. Zhai and E. Ito, 2008. Phys. Earth Planet. Int. In press [5] T. Kurashina et al., 2004. Phys. Earth Planet. Int. 145, 67-7 [6] L. Stixrude et al., 1996. Am. Mineral. 81, 1293-1296 [7] H

  14. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space

  15. Super Smooth Modification of Al2O3 Ceramic Substrate by High Temperature Glaze of CaO-Al2O3-SiO2 System

    NASA Astrophysics Data System (ADS)

    Zhang, Jihua; Zhen, Shanxue; Yang, Lijun; Lou, Feizhi; Chen, Hongwei; Yang, Chuanren

    2011-01-01

    The rough surface of ceramic substrate is an obstacle for the scale down of line-width for thin film passive integrated devices (PID). In this paper, a modification method for Al2O3 ceramic substrate with super smooth in surface was proposed. Coating a layer of CaO-Al2O3-SiO2 (CAS) glass was performed to flat the rough surface of alumina substrate by sol-gel method. It was found that addition of 0.06% V2O5 can inhibit the recrystallization of the glaze. The root-mean-square (RMS) roughness of the glazed substrates reached a surprising flatness as small as 0.5 nm, and its melting temperature is higher than 1300 °C. This substrate with super flatness and high temperature endurance may be promising for high performance thin film devices.

  16. Photoluminescence of CaAlSiN3:Eu2+-based fine red-emitting phosphors synthesized by carbothermal reduction and nitridation method

    NASA Astrophysics Data System (ADS)

    Li, Shuxing; Peng, Xia; Liu, Xuejian; Huang, Zhengren

    2014-12-01

    In this research, we have presented the synthesis and characterization of the various Ca1-xEuxAl0.76Si1.18N3 (x = 0.01 ∼ 0.1) red-emitting phosphors, which were successfully prepared by carbothermal reduction and nitridation (CTRN) method without the strict needs of high pressure. Here, raw materials were CaCO3, AlN, Si3N4, Eu2O3, and C. In particular, C was considered as efficient and robust reducing agent. The influences of reaction temperature, holding time, C content, and Eu2+ concentration were investigated in the crystal phase compositions and photoluminescence properties of the as-prepared phosphors. Importantly, CaAlSiN3:Eu2+-based red phosphors with interesting properties were obtained with reaction temperature at 1600 °C for 4 h by atmospheric N2-10%H2 pressure, and the C/O ratio of 1.5:1, respectively. The emission peak positions of as-prepared phosphors were red-shifted from 607 nm to 654 nm with Eu2+ concentration from 1 mol% to 10 mol%. Meanwhile the highest luminescence intensity was achieved with 2 mol% of Eu2+ concentration, which showed high external quantum efficiency up to 71%. Combining the phosphor blend of green-emitting β-sialon:Eu2+, yellow-emitting Ca-α-sialon:Eu2+, and red-emitting Ca0.98Eu0.02Al0.76Si1.18N3 with a blue LED (light emitting diodes), warm white LED can be generated, yielding the color rendering index (Ra) of 93 at correlated color temperature (CCT) of 3295 K. These results indicate that CaAlSiN3:Eu2+-based red-emitting phosphors prepared by facile CTRN are highly promising candidates for warm white LEDs.

  17. Hexagonal Ba-ferrite: a good model for the crystal structure of a new high-pressure phase CaAl 4Si 2O 11?

    NASA Astrophysics Data System (ADS)

    Gautron, Laurent; Gerald, John D. Fitz; Kesson, Sue E.; Eggleton, R. Anthony; Irifune, Tetsuo

    1997-07-01

    A new calcium aluminosilicate phase of composition CaAl 4Si 2O 11 has been encountered amongst the transformation products of CaAl 2Si 2O 8 (anorthite composition) at 14 GPa (Gautron et al., 1996). X-ray diffraction (XRD) confirms that its crystal structure is essentially the same as that of a new complex CaAl-silicate (abbreviated CAS phase) first reported by Irifune et al. (1994). The crystal structure of the CAS phase has been investigated by transmission electron microscopy (TEM). It has a hexagonal unit cell with lattice parameters a = 5.4Å and c = 12.7Å, and its space group is either P6 3mc , P overline62c or P6 3/mmc. It is proposed that this CAS phase has a six-layer, close-packed structure so that Z = 2 and density is 3.94 g cm -3, reasonable for a phase stable at transition-zone pressures. The most plausible model for the structure of this phase arises from published refinements of hexagonal Ba-ferrites. This postulated P6 3/mmc structure consists of octahedral layers, 3/4 occupied, separated by 12-coordinate Ca atoms, and by Al and Si in face-shared octahedra and in complex trigonal bipyramidal polyhedra, i.e. some Si would be five-fold coordinated. Observed TEM and XRD data are compared with calculated reflection intensities for this CAS model.

  18. Single-crystal structure and Raman spectroscopy of synthetic titanite analog CaAlSiO4F

    NASA Astrophysics Data System (ADS)

    Krüger, Hannes; Többens, Daniel M.; Tropper, Peter; Haefeker, Udo; Kahlenberg, Volker; Fuchs, Martin R.; Olieric, Vincent; Troitzsch, Ulrike

    2015-10-01

    Synthetic CaAlSiO4F, the Al-F analog of titanite, has been investigated using single-crystal synchrotron diffraction experiments at Beamline X06DA (Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland) and Raman spectroscopy. The presented structural model with 40 parameters was refined against 506 unique reflections to a final R o b s of 0.026 (space group A2/ a, a = 6.9120(11), b = 8.5010(10), c = 6.435(2) Å, β = 114.670(11)°, and Z = 4) and exhibits less distorted coordination polyhedra than earlier models from powder data. Vibrational spectra were calculated in harmonic approximation at the Γ point from fully relaxed energy optimisations of the crystal structure, using 3D-periodic density functional theory with Gaussian basis sets and the software CRYSTAL06. The lattice parameters of the fully relaxed structure were in good agreement with the experimental values, with the calculated values 0.8 ± 0.4 % too large; the monoclinic angle was calculated 0.4° too large. The agreement of the calculated Raman frequencies with the observed ones was very good, with standard deviation ±3 cm-1 and maximum deviations of ±7 cm-1. Furthermore, a detailed discussion of the atomic displacements associated with each Raman mode is given.

  19. An SEM, EDS and vibrational spectroscopic study of the silicate mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Romano, Antônio Wilson; Scholz, Ricardo

    2015-02-01

    The mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)] is a crystalline sodium calcium beryllium silicate which has the potential to be used as piezoelectric material and for other ferroelectric applications. The mineral has been characterized by a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and vibrational spectroscopy. EDS analysis shows a material with high concentrations of Si and Ca and low amounts of Na, Al and F. Beryllium was not detected. Raman bands at 1016 and 1050 cm-1 are assigned to the SiO and AlOH stretching vibrations of three dimensional siloxane units. The infrared spectrum of meliphanite is very broad in comparison with the Raman spectrum. Raman bands at 472 and 510 cm-1 are assigned to OSiO bending modes. Raman spectroscopy identifies bands in the OH stretching region. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral meliphanite.

  20. Dependence of acoustic property on Al substitution for Ca3Ta(Ga1‑ x Al x )3Si2O14 single crystals

    NASA Astrophysics Data System (ADS)

    Ohashi, Yuji; Arakawa, Mototaka; Kudo, Tetsuo; Yokota, Yuui; Shoji, Yasuhiro; Kurosawa, Shunsuke; Kamada, Kei; Kushibiki, Jun-ichi; Yoshikawa, Akira

    2016-07-01

    The acoustic properties of Ca3Ta(Ga1‑ x Al x )3Si2O14 (CTGASx) were experimentally studied as a function of the Al substitution content x in the ranges from x = 0 to 0.50. Five specimens, X-, Y-, Z-, 35°Y-, and 140°Y-cut, were prepared from each crystal of CTGASx (x = 0, 0.25, and 0.50) grown by the Czochralski technique. Longitudinal wave and shear wave velocities for CTGASx linearly increase with Al content for all propagation directions. Dielectric constants and density were measured and then elastic and piezoelectric constants were determined from the measured velocities for each crystal. The results revealed that all of the constants change linearly with Al content. From the relationship, the constants for CTAS (x = 1) were estimated. Calculations of the velocities using the determined constants also suggested that the maximum electromechanical coupling factor k 2 for the slow shear wave mode propagating along the rotated Y-axis direction of CTAS was improved to 4.42% compared with 3.83% for CTGS, owing to the Al substitution effect.

  1. Si-Al-Cl-Mg-Ca Aqueous Fluids in Dora-Maira Pyrope: new Contributions for an old Question

    NASA Astrophysics Data System (ADS)

    Ferrando, S.; Frezzotti, M.; Compagnoni, R.

    2007-12-01

    Recent discovery of multiphase solid inclusions (MSI) in peak minerals from ultra-high pressure (UHP) terranes opened up new prospects for understanding the fluid-rock interaction during deep subduction in both crust and mantle. The first report on MSI in UHP rocks was from Dora-Maira (DM; Case Parigi; western Alps) whiteschists, more than ten years ago (Philippot et al, 1995, CMP, 121, 29-44). Nevertheless, the nature of such a fluid, and its role on the origin of the unusual composition of these rocks is still matter of debate. We report data on inclusions in DM UHP pyropes and HP prograde kyanite, part of them from a new sampling site (SSW Case Parigi). Primary MSI (30 micron) are present only in small UHP pyropes (1 - 6 cm) and often show post-entrapment decrepitation. Each MSI contains Mg-chlorite, Na-phlogopite, minor Cl-rich apatite, talc, pyrite, magnesite, Ca-rich chlorides +/- liquid water. Maps of total water concentrations collected in MSI-rich pyropes by infrared synchrotron radiation show gradients that suggest considerable H diffusion from inclusions into the host garnet (Frezzotti et al, 2007, abstract ECROFI XIX). In prograde kyanite, rare fluid inclusions are high salinity brines, containing different salts. Present data indicate that at HP conditions brines were present in the rocks and that at UHP peak aqueous fluids were enriched in Si, Al, Mg, Na, Ca, but still containing significant amounts of Cl, P, S, C. DM whiteschists are commonly considered metasomatic rocks from a granitic protolith. Our data on MSI in UHP pyrope and on rare brines in prograde HP kyanite strongly support metasomatism by external high-Ca-Mg fluids, probably evolved during serpentinite dehydration as proposed by Sharp and Barnes (2004, EPSL, 226, 243-254). Present data support the model of Compagnoni and Hirajima (2001, Lithos, 57, 219-236), who proposed that metasomatic fluids were introduced into the system during prograde metamorphism, channelled along shear zones

  2. Energetics of multicomponent diffusion in molten CaO-Al 2O 3-SiO 2

    NASA Astrophysics Data System (ADS)

    Liang, Yan; Davis, Andrew M.

    2002-02-01

    The energetics of multicomponent diffusion in molten CaO-Al 2O 3-SiO 2 (CAS) were examined experimentally at 1440 to 1650°C and 0.5 to 2 GPa. Two melt compositions were investigated: a haplodacitic melt (25 wt.% CaO, 15% Al 2O 3, and 60% SiO 2) and a haplobasaltic melt (35% CaO, 20% Al 2O 3, and 45% SiO 2). Diffusion matrices were measured in a mass-fixed frame of reference with simple oxides as end-member components and Al 2O 3 as a dependent variable. Chemical diffusion in molten CAS shows clear evidence of diffusive coupling among the components. The diffusive flux of SiO 2 is significantly enhanced whenever there is a large CaO gradient that is oriented in a direction opposite to the SiO 2 gradient. This coupling effect is more pronounced in the haplodacitic melt and is likely to be significant in natural magmas of rhyolitic to andesitic compositions. The relative magnitude of coupled chemical diffusion is not very sensitive to changes in temperature and pressure. To a good approximation, the measured diffusion matrices follow well-defined Arrhenius relationships with pressure and reciprocal temperature. Typically, a change in temperature of 100°C results in a relative change in the elements of diffusion matrix of 50 to 100%, whereas a change in pressure of 1 GPa introduces a relative change in elements of diffusion matrix of 4 to 6% for the haplobasalt, and less than 5% for the haplodacite. At a pressure of 1 GPa, the ratios between the major and minor eigenvalues of the diffusion matrix λ 1/λ 2 are not very sensitive to temperature variations, with an average of 5.5 ± 0.2 for the haplobasalt and 3.7 ± 0.6 for the haplodacite. The activation energies for the major and minor eigenvalues of the diffusion matrix are 215 ± 12 and 240 ± 21 kJ mol -1, respectively, for the haplodacite and 192 ± 8 and 217 ± 14 kJ mol -1 for the haplobasalt. These values are comparable to the activation energies for self-diffusion of calcium and silicon at the same melt

  3. [Research on the Relationship between Surface Structure and Fluorescence Intensity of Ca(1-x)Al2Si2O8 : Eu(x)].

    PubMed

    He, Xiao; Zhang, Li-sheng; Zu, En-dong; Yang, Xiao-yun; Dong, Kun

    2016-01-01

    Ca(1-x)Al2Si2O8 : Eu(x)(x = 0, 0.01, 0.05, 0.15) were synthesized by solid-state reaction respectively at 1 150, 1 250 1350 and 1 450 degrees C. With X-ray diffraction(XRD), Raman spectroscopy(Raman), photoluminescence spectroscopy(PL) and X-ray fluorescence spectrometer(XRF), the relationship between surface structure and fluorescence intensity of Ca(1-x) Al2Si2O8: Eu(x) were studied. XRD and Raman results show that, CaAl2Si2O8 anorthite single-phase has formed gradually along with the temperature rising in the process of synthesis. Raman spectroscopy is clear that when the Eu doping amount is the same, Si-O amorphous phase disappear gradually and the CaAl2Si2O8 phase form gradually with the temperature increases. As the temperature increases, vibration peaks position silicon oxygen tetrahedron shift to lower wave number. When 1 450 degrees C, the temperature is too high to destroy the structure of silicon oxygen tetrahedron. At the same time, there is a broadening amorphous peak appears in Raman spectroscopy. The procedure of Al to replace Si is hindered with Eu doped in. It is the result that the peak at 1 620 cm(-1) decreases after the first increases. The change of surface structure associated with the scattering amount of Eu. PL and XRF results show that: as the temperature increases, the amount of Eu atom scattering on the material surface increases gradually, this change lead to the fluorescence intensity raise. Therefore, there is proportional relationship between the fluorescence intensity of the samples and the number of samples per unit surface area of Eu atoms. PMID:27228758

  4. The pressure-volume equation of state of a synthetic grossular Ca3Al2Si3O12

    NASA Astrophysics Data System (ADS)

    Milani, Sula; Boffa Ballaran, Tiziana; Nestola, Fabrizio

    2014-05-01

    In the framework of a wide research project focused on mineral inclusions in diamonds we have investigated the compressibility of a synthetic grossular garnet (Ca3Al2Si3O12) with the purpose of providing new constraints on the diamond geobarometry. In fact, not only garnets are among the important phases of the Earth upper mantle but at the same time are one of the main phases found as inclusion in diamonds. Garnets are a crucial marker in determining the origin source of diamonds, which can be eclogitic and/or peridotitic. In particular, peridotitic diamonds include garnets characterized by about 90-92% of pyrope-almandine with the grossular component reaching about 6-8%, whereas eclogitic diamonds have garnets with the grossular component increased up to about 20-22%. In order to obtain information about the depth of formation of the diamond-garnet pair, beyond the classical chemical method, we propose the so called "elastic method", which is based on the knowledge of precise and accurate thermoelastic parameters for both diamond and inclusion (e.g. Nestola et al. 2011 and references therein). We have determined the pressure - volume equation of state of a pure synthetic grossular garnet by single-crystal X-ray diffraction up to about 8 GPa. The resulting equation of state coefficients, together with those previously determined for pyrope and almandine end-members and their intermediate compositions (see Milani et al. 2013) will cover the compositional range of garnets found as inclusions in diamonds, allowing to construct a robust model to predict the elastic parameters for any garnet composition typical of eclogitic and/or peridotitic diamond. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Milani S., Mazzucchelli M., Nestola F., Alvaro M., Angel R.J., Geiger C.A., Domeneghetti M.C. (2013) The P-T conditions of garnet inclusion formation in diamond: thermal expansion of synthetic end-member pyrope. EGU General

  5. Excellent stability of plasma-sprayed bioactive Ca 3ZrSi 2O 9 ceramic coating on Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-05-01

    In this work, novel zirconium incorporated Ca-Si based ceramic powder Ca 3ZrSi 2O 9 was synthesized. The aim of this study was to fabricate Ca 3ZrSi 2O 9 coating onto Ti-6Al-4V substrate using atmospheric plasma-spraying technology and to evaluate its potential applications in the fields of orthopedics and dentistry. The phase composition, surface morphologies of the coating were examined by XRD and SEM, which revealed that the Ca 3ZrSi 2O 9 coating was composed of grains around 100 nm and amorphous phases. The bonding strength between the coating and the substrate was 28 ± 4 MPa, which is higher than that of traditional HA coating. The dissolution rate of the coating was assessed by monitoring the ions release and mass loss after immersion in the Tris-HCl buffer solution. The in vitro bioactivity of the coating was determined by observing the formation of apatite on its surface in simulated body fluids. It was found that the Ca 3ZrSi 2O 9 coating possessed both excellent chemical stability and good apatite-formation ability, suggesting its potential use as bone implants.

  6. Thermodynamics of Gold Dissolution Behavior in CaO-SiO2-Al2O3-MgOsat Slag System

    NASA Astrophysics Data System (ADS)

    Han, Yun Soon; Swinbourne, Douglas R.; Park, Joo Hyun

    2015-12-01

    Gold solubility in the CaO-SiO2-Al2O3-MgOsat slag system was measured at 1773 K (1500 °C) under a CO2-CO atmosphere over a wide range of compositions, i.e., 8 to 40 mass pct CaO, 26 to 50 mass pct SiO2, and 0 to 36 mass pct Al2O3, to determine the dissolution mechanism of gold in the CaO-based metallurgical slags. Gold solubility in the present slag system increased with increasing oxygen partial pressure and increasing activity of CaO. From the thermodynamic analysis, the dissolution mechanism of gold into the (alumino-)silicate melts is proposed as follows according to the activity of basic oxide, which indicates that the predominant species of gold is dependent on slag basicity. {Au}(s) + 1/4{O}2 (g) + 1/2( {{O}^{2 - } } ) = ( {{AuO}^{ - } } ),quad ( {a_{BO} < 0.1} ) {Au}(s) + 1/4{O}2 (g) + 3/2( {{O}^{2 - } } ) = ( {{AuO}2^{3 - } } ),quad ( {a_{BO} > 0.1} ) The enthalpy change for the dissolution of gold into the CaO-SiO2-Al2O3-MgOsat slag system was measured to be about -80 kJ/mol, indicating that the gold dissolution is exothermic. From the iso-Au solubility contours, the dominant factor affecting the gold dissolution behavior is the (CaO + MgO)/SiO2 ratio, whereas the influence of Al2O3 was negligible. Consequently, less basic slags and higher processing temperatures, in conjunction with a strongly reducing atmosphere, are recommended to increase gold recovery during pyro-processing of Au-containing e-wastes.

  7. Ladle and Continuous Casting Process Models for Reduction of SiO2 in SiO2-Al2O3-CaO Slags by Al in Fe-Al(-Si) Melts

    NASA Astrophysics Data System (ADS)

    Park, Jiwon; Sridhar, S.; Fruehan, Richard J.

    2015-02-01

    Based on a mixed control or two-phase mass transfer model considering mass transport in the metal and the slag phases, process models for ladle and continuous castor mold were developed to predict the changes in the metal and the slag chemistry and viscosity. In the ladle process model, the rate of reaction is primarily determined by stirring gas flow rate, which greatly alters the mass transports of the metal and the slag phases. In the continuous casting process model, the effects of the Al, Si, and SiO2 contents in the incoming flow of the fluid phases, casting speed, mold flux consumption rate, and depth of the liquid mold flux pool on the steady-state compositions of the metal and the mold flux were assessed.

  8. [Effect of temperature on the structure of CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramics studied by Raman spectroscopy].

    PubMed

    Li, Bao-Wei; Ouyang, Shun-Li; Zhang, Xue-Feng; Jia, Xiao-Lin; Deng, Lei-Bo; Liu, Fang

    2014-07-01

    In the present paper, nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system was produced by melting method. The CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramic was measured by Raman spectroscopy in the temperature range from -190 to 310 degrees C in order to study the effect of temperature on the structure of this system nanocrystalline glass-ceramics. The results showed that different non-bridge oxygen bond silicon-oxygen tetrahedron structural unit changes are not consistent with rising temperature. Further analyses indicated that: the SiO4 tetrahedron with 2 non-bridged oxygen (Q2), the SiO4 tetrahedron with 3 non-bridged oxygen (Q(1)), which are situated at the edge of the 3-D SiO4 tetrahedrons network, and the SiO4 tetrahedron with 4 non-bridged oxygen (Q(0)), which is situated outside the 3-D network all suffered a significant influence by the temperature change, which has been expressed as: shifts towards the high wave-number, increased bond force constants, and shortened bond lengths. This paper studied the influence of temperature on CMAS system nanocrystalline glass-ceramics using variable temperature Raman technology. It provides experiment basis to the research on external environment influence on CMAS system nanocrystalline glass-ceramics materials in terms of structure and performance. In addition, the research provides experimental basis for controlling the expansion coefficient of nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system. PMID:25269298

  9. Modeling of viscosities of the partly crystallized slags in the Al2O3-CaO-``FeO''-SiO2 system

    NASA Astrophysics Data System (ADS)

    Kondratiev, Alex; Jak, Evgueni

    2001-12-01

    A viscosity model of the partly crystallized slag in the Al2O3-CaO-‘FeO’-SiO2 system has been developed in conjunction with the thermodynamic computer package F*A*C*T. Proportions of solids crystallized out of the liquid phase and compositions of the remaining liquid phase predicted by F*A*C*T are used in the viscosity model. Various heterogeneous viscosity models have been tested using large experimental dataset in the Al2O3-CaO-‘FeO’-SiO2 system in reducing conditions close to the equilibrium with metallic iron. The Roscoe equation with new empirical parameters was found to provide reasonable agreement with experimental data. Examples of model application to industrial nonferrous smelting slag systems are presented. This model can also be applied to coal ash slags.

  10. Dynamic Wetting of CaO-Al2O3-SiO2-MgO Liquid Oxide on MgAl2O4 Spinel

    NASA Astrophysics Data System (ADS)

    Abdeyazdan, Hamed; Dogan, Neslihan; Rhamdhani, M. Akbar; Chapman, Michael W.; Monaghan, Brian J.

    2015-02-01

    Inclusion type and content in steel is critical in steelmaking, affecting both productivity through clogging, and downstream physical properties of the steel. They are normally removed from steel by reacting with a slag (liquid oxide) phase. For efficient inclusion removal, the inclusions must attach/bond with this liquid phase. The strength of the attachment can be in part characterized by the wettability of the liquid oxide on the inclusions. In this study, the dynamic wetting of liquid oxides of the CaO-Al2O3-SiO2-MgO system on a solid spinel (MgAl2O4) substrate with low porosity of 1.9 pct was measured at 1773 K (1500 °C) using a modified sessile drop technique. The dynamic contact angle between the liquid and solid spinel was determined for different CaO/Al2O3 mass percent ratios ranging from 0.98 to 1.55. Characteristic curves of wettability ( θ) vs time showed a rapid decrease in wetting in the first 10 seconds tending to a plateau value at extended times. A mathematical model for spreading behavior of liquid oxides by Choi and Lee was adopted and shown to provide a reasonable representation of the spreading behavior with time. The chemical interaction at the interface between spinel (MgAl2O4) and slag was analyzed by carrying out detailed thermodynamic evaluation and characterization using scanning electron microscopy/energy dispersive spectroscopy. There is evidence of liquid penetrating the substrate via pores and along grain boundaries, forming a penetration layer in the substrate. The depth of the penetration layer was found to be a function of substrate porosity and sample cooling rate. It decreased from ~350 µm for 6.7 pct-porous substrate to ~190 µm for substrate with porosity of 1.9 pct and from ~190 µm to ~50 µm for a slow-cooled liquid oxide-spinel substrate sample in the furnace to a rapidly cooled liquid cooled-spinel substrate sample, respectively.

  11. SiO 2-CaO-B 2O 3-Al 2O 3 ceramic glaze as sealant for planar ITSOFC

    NASA Astrophysics Data System (ADS)

    Zheng, R.; Wang, S. R.; Nie, H. W.; Wen, T.-L.

    A series of ceramic glazes based on the SiO 2-CaO-B 2O 3-Al 2O 3 system as sealant for intermediate temperature solid oxide fuel cell (ITSOFC) were investigated. Different ratios of B 2O 3/SiO 2 and Al 2O 3/CaO were investigated to control softening process, phase separation, and crystallization. When B 2O 3/SiO 2 ratio was in the range of 0.14-0.27, the glazes showed good wetting and bonding behavior with both 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte and stainless steel interconnect which could satisfy the sealing demand at 850 °C. And the dimension stability can be kept for over 100 h by introducing ceramic felt and controlling the glazes viscosity in the range of 10 4 to 10 6 Pa s. By means of controlling Al 2O 3/CaO ratio in the range of 0.4-0.68, phase separation and crystallization were restrained effectively. After holding at 850 °C for 100 h, non-crystalline network in the glazes could be found, and a suitable viscous flow could well relax thermal stress. The sealing was effective even after 10 thermal cycles. Element analysis showed a good chemical stability at the ceramic glazes/stainless steel interconnect and ceramic glazes/8YSZ electrolyte interfaces.

  12. White LED based on CaAl2Si2O8:Eu2+ Mn2+ phosphor and CdS/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Zhong, Chuan; Hou, Qianglong; Li, Ke

    2011-02-01

    Core/shell CdS/ZnS quantum dots (QDs) with the emission wavelength of 610nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. CaAl2Si2O8:Eu2+ Mn2+ phosphor was synthesized by high-temperature solid state reaction at 1290 °C for 2 hours under the H2 reducing atmosphere, and X-ray powder diffraction analysis confirmed the formation of it. It has two emission bands peaking at 420 nm and 580nm originated from the transition 5d to 4f of Eu2+ and 4T1-6A1 of Mn2+, respectively. Blends of CaAl2Si2O8:Eu2+,Mn2+ phosphor and CdS/ZnS QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of CaAl2Si2O8:Eu2+ Mn2+ phosphor and QDs with a weight ratio of 2:1, with the CIE coordinate of (0.3183, 0.3036) and CRI of 85 was obtained.

  13. Effects of CaF2 vis-a-vis TiO2 as nucleating agent in SiO2-Al2O3-CaO glass-ceramics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debasis Pradip; Datta, Tanmoy; Das, Sudip Kumar

    2013-06-01

    The independent effects of CaF2 and TiO2 on the glass-ceramics based on SiO2-Al2O3-CaO system have been investigated. The crystallization behavior, microstructure, mechanical properties and chemical resistance of the glass-ceramics were studied by Differential Thermal Analysis (DTA), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), FTIR, mechanical and chemical resistance measurements. The CaF2 containing glass ceramics are found to be much superior to that of TiO2 containing glass ceramics on the basis of sintering strength, mechanical and chemical properties.

  14. Structural and optical characterizations of Ca2Al2SiO7:Ce3+, Mn2+ nanoparticles produced via a hybrid route

    NASA Astrophysics Data System (ADS)

    Teixeira, V. C.; Montes, P. J. R.; Valerio, M. E. G.

    2014-07-01

    Pure, Ce3+ doped and Ce3+ and Mn2+ co-doped Ca2Al2SiO7 ceramic powders were prepared by two different methodologies which are the proteic sol-gel process and a new hybrid route combining the proteic sol-gel with solid state reaction processes. The second one is an eco-friendly method because it uses natural raw materials in replacement of the metal alkoxides used in the traditional sol-gel routes. X-ray diffraction showed that Ca2Al2SiO7 crystalline phase was obtained for both preparations. Differential thermal analysis indicated that the exothermic event around 850 °C, for sample produced by proteic sol-gel method, and around 927 °C, for ceramics prepared by hybrid synthesis, can be associated to crystallization of Ca2Al2SiO7. Transmission electron microscope indicates that regular and spherical nanoparticles were obtained with average sizes of about 12 nm. The Scherrer’s method was used to determine the average crystallite sizes and it was shown that nanometric crystallites were obtained of about 74 nm for samples produced via hybrid route. For all the single phase samples, the crystallite sizes are about the same and that agrees with TEM results. Diffuse optical reflectance measurements were used to estimate the Ca2Al2SiO7 optical band gap and the obtained value is about 6 eV, photoluminescence (PL) spectra presented typical emissions of Ce3+ and Mn2+ ions. Upon excitation at 352 nm the emission spectra showed a broad band centered at 415 nm due to the Ce3+ 4f1 → 5d1 typical transition. This emission is resonant with Mn2+ excitation and it transfers energy to Mn ions generating a second broad emission band centered at 620 nm due to the Mn2+. The PL results were used to obtain, as a fist approach, the Ce3+ energy levels diagram and, using the Tanabe-Sugano diagrams, the transitions due to the Mn2+ were calculated. X-ray excited optical luminescence measurements showed the same emission spectra as the PL emission spectra. Luminescence lifetime decay

  15. High pressure synthesis and crystal structure of a ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} containing layer structured calcium sub-network isomorphous with black phosphorus

    SciTech Connect

    Tanaka, Masashi; Zhang, Shuai; Tanaka, Yuki; Inumaru, Kei; Yamanaka, Shoji

    2013-02-15

    The Zintl compound CaAl{sub 2}Si{sub 2} is peritectically decomposed to a mixture of Ca{sub 2}Al{sub 3}Si{sub 4} and aluminum metal at temperatures above 600 Degree-Sign C under a pressure of 5 GPa. The new ternary compound Ca{sub 2}Al{sub 3}Sl{sub 4} crystalizes with the space group Cmc2{sub 1} and the lattice parameters a=5.8846(8), b=14.973(1), and c=7.7966(5) A. The structure is composed of aluminum silicide framework [Al{sub 3}Si{sub 4}] and layer structured [Ca{sub 2}] network interpenetrating with each other. The electron probe microanalysis (EPMA) shows the formation of solid solutions Ca{sub 2}Al{sub 3-x}Si{sub 4+x} (x<0.6). The layer structured [Ca{sub 2}] sub-network is isomorphous with black phosphorus. The new ternary compound shows superconductivity with a transition temperature (T{sub c}) of 6.4 K. The band structure calculation suggests that the superconductivity should occur through the conduction bands mainly composed of 3p orbitals of the aluminum silicide framework. - Graphical abstract: A new ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} has been prepared under high pressure and high temperature conditions, which includes layer structured calcium sub-network isomorphous with black phosphorus. Highlights: Black-Right-Pointing-Pointer A typical Zintl compound CaAl{sub 2}Si{sub 2} melts congruently at ambient pressure. Black-Right-Pointing-Pointer Under high pressure CaAl{sub 2}Si{sub 2} decomposes to Ca{sub 2}Al{sub 3}Si{sub 4} and Al at {approx}600 Degree-Sign C. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} contains Ca sub-network isomorphous with black phosphorus. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} shows superconductivity with a transition temperature of 6.4 K.

  16. Effects of MgO/Al2O3 Ratio and Basicity on the Viscosities of CaO-MgO-SiO2-Al2O3 Slags: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Pengcheng, Li; Xiaojun, Ning

    2016-02-01

    The effects of the MgO/Al2O3 ratio and basicity on the viscosities of CaO-MgO-SiO2-Al2O3 slags were investigated at 1733 K, 1773 K, and 1823 K (1460 °C, 1500 °C, and 1550 °C) in this study. At a fixed Al2O3 of 15 and 18 mass pct, increasing the basicity from 1 to 1.2 resulted in lowering the viscosity of slags. At a fixed basicity of 1.0 and 1.2, increasing the MgO from 0 to 15 mass pct decreased the viscosity of slags. The Fourier transform-infrared spectra analysis of the slag structure was made to discuss the depolymerization roles of MgO and basicity. Considering the different depolymerization effects of basic oxides upon the silicate/aluminate network structure as suggested by FT-IT analysis, a fresh model for predicting the viscosity of CaO-MgO-SiO2-Al2O3 slags was constructed. A total of 209 viscosity measurements with large compositional variations showed satisfactory agreement with the results calculated by the present model. With the aid of the current model, the co-effects of the MgO/Al2O3 ratio and basicity on the viscosities of CaO-MgO-SiO2-Al2O3 slags (15 to 20 mass pct Al2O3) were investigated.

  17. Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity

    PubMed Central

    Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala

    2008-01-01

    Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants. PMID:18664431

  18. Facile synthesis of Ca0.68Si9Al3(ON)16:Eu2+ microbelts mat with the enhanced fluorescence and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zhao, Hailei; Cui, Bo; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-01-01

    Yellow-emitting phosphor mat consisting of Ca0.68Si9Al3(ON)16:Eu2+ microbelts was prepared by electrospinning and subsequent nitridation. The as-prepared fiber precursor is smooth and uniform with diameter of 800 to 900 nm. After removing organic templates and nitridation, the morphology of the fiber is well retained and thus a smooth microbelts phosphor mat was obtained. X-ray diffraction and the photoluminescence (PL) spectra reveals that a relatively pure Ca0.68Si9Al3(ON)16 phase and the highest spectral intensity could be obtained at a relatively low temperature of 1500 °C and Eu2+ doping molar concentration of 0.1. The excitation spectra exhibits a broad band, ranging from 300 to 550 nm, which could be excited by blue LED chip at room temperature. The emission spectra of all exhibits a single broad band in the 400 to 700 nm region, with the maximum intensity always being at 580 nm. The Ca0.68Si9Al3(ON)16:Eu2+ microbelts phosphor mat has the bending strength about 4.5 MPa with a photoluminescence quantum yield as high as 65%. By employing it as yellow phosphor, a high-performance warm white LED could be fabricated with low correlated color temperature (2985 K), high-color-rendering index (Ra=86) and luminous efficacy of 129.5 lm W-1. Different color temperatures also could be tuned by employing microbelts phosphor mats with different thicknesses.

  19. The effect of H2O gas on volatilities of planet-forming major elements. I - Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula

    NASA Technical Reports Server (NTRS)

    Hashimoto, Akihiko

    1992-01-01

    The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.

  20. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are

  1. Estimating Electrical Conductivities of CaO-MgO-Al2O3-SiO2 Using Ion-Oxygen Parameter

    NASA Astrophysics Data System (ADS)

    Wang, Yaxian; Wang, Lijun; Chou, Kuo-chih

    2016-03-01

    Electrical conductivity of molten slags is one of the most important physicochemical properties and it also has a close relationship to the structure of slag. This article focused on the basic slag system CaO-MgO-Al2O3-SiO2 and made estimations for electrical conductivity. Ion-oxygen parameter was selected to describe the relationship between electrical conductivity with compositions. Moreover, the interaction between composition and temperature was embodied in the final model formula. It was shown that increasing CaO and MgO contents enhanced the ability for electric conduction. Moreover, with a higher temperature, the change of electrical conductivity with ion-oxygen parameter was more remarkable. This model gives reasonable prediction of the electrical conductivity for the slags studied with the mean deviation of 14.3%. Thus, this model would provide a feasible tool for industry to predict and optimize the electrical conductivity of slag system.

  2. Some thermodynamic properties of the Berman and Brown model for CaO-Al2O3-SiO2

    NASA Astrophysics Data System (ADS)

    Barron, Lawrence M.

    1986-12-01

    The BERMAN and BROWN (1984) excess free energy model (B&B) is extremely convenient to use in modelling multicomponent solutions. However, spinodal calculations reveal that their calibration of this model for CaO-Al2O3-SiO2 produces liquation tielines that do not appear to be in agreement with experimental work. In addition, their calibration contains some strongly negative excess entropy parameters and these permit a most unusual inverted liquation field to start at approximately >2115°C, wt% (SiO2, Al2O3, CaO) = (70, 16, 14). This inverted field expands rapidly to cover most of the ternary for T > 2300°C and continues to expand at all higher temperatures. The Berman and Brown calibration for this system carries these negative excess entropies of mixing because the solution model is very strongly asymmetric as a result of the use of normal oxide mole weights in modelling the configurational entropy of mixing. A suggestion is made for a fairly natural restriction on the relative sizes of empirical models for excess versus configurational entropy. Expressions are presented for the general consolute condition (all solution models) and for the second and third partials of the B&B Gx model.

  3. Diffusion in silicate melts: I. Self diffusion in CaO-Al{sub 2}O{sub 3}-SiO{sub 2} at 1500{degrees}C and 1 GPa

    SciTech Connect

    Liang, Yan |; Richter, F.M.; Davis, A.M.

    1996-11-01

    Self diffusion coefficients of calcium (D{sub Ca}), aluminum (D{sub A1}), silicon (D{sub Si}), and oxygen (D{sub o}) were measured in molten CaO-Al{sub 2}O{sub 3}-SiO{sub 2} at 1500{degrees}C and 1 GPa over a range of melt compositions, using the isotope tracer method. For all but one composition, the measured self diffusion coefficients decrease in the order D{sub Ca} > D{sub Al} > D{sub o} > D{sub Si}, with D{sub Ca} {approximately} 4-19D{sub Si}, D{sub Al}, {approximately} 2D{sub Si}, and D{sub o} {approximately} 1-2D{sub Si}. The relative uncertainties, based on replicated experiments, are 8% for D{sub Ca}, 27% for D{sub Al}, 28% for D{sub Si}, and 18% for D{sub o}. Although the self diffusion coefficients of calcium, aluminum, silicon, and oxygen increase with the decrease of melt viscosity, they do not obey the Stokes-Einstein equation or the Eyring equation. 69 refs., 6 figs., 6 tabs.

  4. Effect of Slag Composition on the Distribution Behavior of Pb between FetO-SiO2 (-CaO, Al2O3) Slag and Molten Copper

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Park, Soo-Sang; Park, Joo Hyun

    2012-10-01

    The distribution behavior of Pb between molten copper and FetO-SiO2 (-CaO, Al2O3) slags was investigated at 1473 K (1200 °C) and p_{{{{O}}2 }} = 10^{ - 10} {{atm}} in view of the reaction mechanism of Pb dissolution into the slag. Furthermore, the lead capacity of the slag was estimated from the experimental results. The distribution ratio of Pb ( L Pb) decreases with increasing CaO content ( 6 mass pct) irrespective of Fe/SiO2 ratio (1.4 to 1.7). However, the addition of alumina into a slag with Fe/SiO2 = 1.5 linearly decreases the L Pb, whereas a minimum value is observed at about 4 mass pct Al2O3 at Fe/SiO2 = 1.3. The log L Pb continuously decreases with increasing Fe/SiO2 ratio, and the addition of Al2O3 (5 to 15 mass pct) into the silica-saturated iron silicate slag (Fe/SiO2 < 1.0) yields the highest Pb distribution ratio. This is mainly due to a decrease in the FeO activity even at silica saturation. The log L Pb linearly decreases by increasing the log (Fe3+/Fe2+) value. The Pb distribution ratio increases and the excess free energy of PbO decreases with increasing Cu2O content in the slag. However, from the viewpoint of copper loss into the slag, the silica-saturated system containing small amounts of alumina is strongly recommended to stabilize PbO in the slag phase at a low Cu2O content. The lead capacity was defined in the current study and shows a linear correlation with the activity of FeO in a logarithmic scale, indicating that the concept of lead capacity is a good measure of absorption ability of Pb in iron silicate slags, and the activity of FeO can be a good basicity index in iron silicate slag.

  5. Photoluminescence Properties of Efficient Blue-Emitting Phosphor α-Ca1.65Sr0.35SiO4:Ce(3+): Color Tuning via the Substitutions of Si by Al/Ga/B.

    PubMed

    Li, Kai; Shang, Mengmeng; Lian, Hongzhou; Lin, Jun

    2015-08-17

    A series of Ce(3+)-doped α-Ca1.65Sr0.35SiO4 (CSSO) phosphors without and with the substitutions of Si by Al/Ga/B were synthesized via the high-temperature solid-state reaction process. X-ray diffraction patterns and Rietveld refinements were used to demonstrate the successful incorporations of Al/Ga/B into CSSO:Ce(3+). Without Al/Ga/B, the Ce(3+) singly doped CSSO phosphors present intense blue emission, which correspond to the broad emission bands in visible region with the wavelength range from 360 to 580 nm upon 350 nm excitation. The optimal emission intensity occurs in CSSO:0.05Ce(3+) sample with the emission peak wavelength at 436 nm. With the introduction of Al/Ga/B into the CSSO:0.05Ce(3+), the emission peak shifts from 436 to 457/465/446 nm under 365 nm excitation, respectively. The red shift of Ce(3+) emission is attributed to the polyhedral distortion of the cations, resulting in the enhancement of crystal field spitting due to the variations of the adjacent (Al/Ga/B,Si)O4 polyhedron. Moreover, the temperature-dependent photoluminescence was determined to be of light impact to CSSO:Ce(3+) with the introduction of Al/Ga/B. This research is useful for enriching the emission colors of Ce(3+)-activated phosphors. PMID:26247562

  6. From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaO-Al2O3-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J.; Hennet, Louis; Fischer, Henry E.; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus

    2016-04-01

    Calcium aluminosilicate \\text{CaO}-\\text{A}{{\\text{l}}2}{{\\text{O}}3}-\\text{Si}{{\\text{O}}2} (CAS) melts with compositions {{≤ft(\\text{CaO}-\\text{Si}{{\\text{O}}2}\\right)}x}{{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}1-x} for x  <  0.5 and {{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}x}{{≤ft(\\text{Si}{{\\text{O}}2}\\right)}1-x} for x≥slant 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.

  7. Synthesis and Luminescent Properties of CaSr(1-x)Al2SiO7:xEu3+ Phosphors for White Light-Emitting Diodes Applications.

    PubMed

    Hakeem, D A; Park, K

    2016-02-01

    CaSr(1-x)Al2SiO7:xEu3+ (0.01 < or = x < or = 0.12) red phosphors are prepared by the solid-state reaction method. The photoluminescence properties of the CaSr(1-x)Al2SiO7:xEu+ phosphors are studied as a function of Eu3+ content. The CaSr(1-x)Al2SiO7:xEu3+ phosphors form an orthorhombic structure with a space group of P2(1)2(1)2(1). The phosphors are effectively excited by 393 nm light. The emission spectra consist of several peaks at 575, 585, 616, 654, and 700 nm, which are attributed to the transitions from the excited 5Do to 7Fj (j = 0, 1, 2, 3, and 4) levels of Eu3+, respectively. The phosphors show intense red emission due to the 5Do --> (7)F2 transition of Eu3+. The strongest red emission is observed for the CaSr0.94Al2SiO7:0.06Eu3+ phosphor. This study proposes that the CaSr(1-x)Al2SiO7:xEu3+ red phosphors have a high potential for near ultraviolet-based white light-emitting diodes. PMID:27433657

  8. Biogeochemistry of Mariana Islands coastal sediments: terrestrial influence on /gd13, Ash, CaCO3, Al, Fe, Si and P

    NASA Astrophysics Data System (ADS)

    Matson, Ernest A.

    1989-01-01

    Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.

  9. A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part II. Reaction Mechanism, Interface Morphology, and Al2O3 Accumulation in Molten Mold Flux

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon

    2013-04-01

    Following a series of laboratory-scale experiments, the mechanism of a chemical reaction 4[{Al}] + 3({SiO}_2) = 3[{Si}] + 2({Al}_2{O}_3) between high-alloyed TWIP (TWin-Induced Plasticity) steel containing Mn and Al and molten mold flux composed mainly of CaO-SiO2 during the continuous casting process is discussed in the present article in the context of kinetic analysis, morphological evolution at the reaction interface. By the kinetic analysis using a two-film theory, a rate-controlling step of the chemical reaction at the interface between the molten steel and the molten flux is found to be mass transport of Al in a boundary layer of the molten steel, as long as the molten steel and the molten flux phases are concerned. Mass transfer coefficient of the Al in the boundary layer (k_{{Al}}) is estimated to be 0.9 to 1.2 × 10-4 m/s at 1773 K (1500 ^{circ}C). By utilizing experimental data at various temperatures, the following equation is obtained for the k_{{Al}}; ln k_{{Al}} = -14,290/T - 1.1107. Activation energy for the mass transfer of Al in the boundary layer is 119 kJ/mol, which is close to a value of activation energy for mass transfer in metal phase. The composition evolution of Al in the molten steel was well explained by the mechanism of Al mass transfer. On the other hand, when the concentration of Al in the steel was high, a significant deviation of the composition evolution of Al in the molten steel was observed. By observing reaction interface between the molten steel and the molten flux, it is thought that the chemical reaction controlled by the mass transfer of Al seemed to be disturbed by formation of a solid product layer of MgAl2O4. A model based on a dynamic mass balance and the reaction mechanism of mass transfer of Al in the boundary layer for the low Al steel was developed to predict (pct Al2O3) accumulation rate in the molten mold flux.

  10. Activities of MnO in CaO-SiO2-Al2O3-MnO (<10 Pct)-FetO(<3 pct) slags saturated with liquid iron

    NASA Astrophysics Data System (ADS)

    Ohta, Hiroki; Suito, Hideaki

    1995-04-01

    Activity coefficients of MnO and Fe,0 in CaO-SiO2-Al2O3-MnO(<10 mass pct)-Fe,O(<3 mass pct) slags were determined at 1873 K in an Al2O3 or CaO crucible by using the reported values for the activities of Al2O3 and SiO2 or the analyzed contents of oxygen. The activity coefficients of MnO and FetO were found to be constant in the studied concentration range of MnO and FetO. The former increased with an increase in the CaO content, while the latter increased with an increase in the SiO2 content.

  11. Highly improved reliability of amber light emitting diode with Ca -α-SiAlON phosphor in glass formed by gas pressure sintering for automotive applications.

    PubMed

    Yoon, Chang-Bun; Kim, Sanghyun; Choi, Sung-Woo; Yoon, Chulsoo; Ahn, Sang Hyeon; Chung, Woon Jin

    2016-04-01

    Phosphor in glass (PiG) with 40 wt% of Ca-α-SiAlON phosphor and 60 wt% of Pb-free silicate glass was synthesized and mounted on a high-power blue LED to make an amber LED for automotive applications. Gas pressure sintering was applied after the conventional sintering process was used to achieve fully dense PiG plates. Changes in photoluminescence spectra and color coordination were inspected by varying the thickness of the plates that were mounted after optical polishing and machining. A trade-off between luminous flux and color purity was observed. The commercial feasibility of amber PiG packaged LED, which can satisfy international regulations for automotive components, was successfully demonstrated by examining the practical reliability under 85% humidity at an 85°C condition. PMID:27192294

  12. Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Herbert, F.

    1985-01-01

    A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.

  13. Sulfide Capacities of CaO-MgO-Al2O3-SiO2-CrO x Slags

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Wang, Yaxian; Chou, Kuo-chih; Seetharaman, Seshadri

    2016-08-01

    The sulfide capacities of CaO-MgO-Al2O3-SiO2-CrO x slags were measured by gas-slag equilibration method in the temperature range of 1823 K to 1898 K (1550 °C to 1625 °C) to reveal the effect of CrO x on the sulfide capacities of slags. Both higher basicity and temperature enhanced sulfide capacities. The CrO x additions in the range of 0 to 5 mass pct increased the sulfide capacity, but, further increase of CrO x contents to 7 pct was found to lower the sulfide capacity. Utilizing the relationship for estimating the ratio of Cr(II)/Cr(III) put forward by the present authors, the influence of Cr(II) on the sulfide capacities of the slags studied is discussed.

  14. Growth and Characterization of Ca2Al2SiO7 Piezoelectric Single Crystals for High-Temperature Sensor Applications

    NASA Astrophysics Data System (ADS)

    Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takeda, Hiroaki; Fujihara, Shinobu; Kodama, Nobuhiro; Tsurumi, Takaaki

    2013-09-01

    The electrical properties of a piezoelectric single crystal of calcium aluminate silicate Ca2Al2SiO7 (CAS) were studied at elevated temperatures and its applicability to high-temperature pressure sensors was investigated. The CAS bulk single crystal was grown by the Czochralski method. The piezoelectric d14 and d36 constants were respectively evaluated as 6.04 and 4.04 pC/N by the resonance and antiresonance method. The temperature dependence of the piezoelectric constant was investigated at temperatures up to 500 °C. The electrical resistivity at 800 °C was on the order of 108 Ω.cm along both the crystallographic a- and c-axes. The measurement of direct piezoelectric response at 700 °C demonstrated that the CAS crystal could detect a pseudo-combustion pressure change of an automobile engine. Our observations suggest that CAS crystals are superior candidates for sensing pressure at high temperatures.

  15. Evaluation of Existing Viscosity Data and Models and Developments of New Viscosity Model for Fully Liquid Slag in the SiO2-Al2O3-CaO-MgO System

    NASA Astrophysics Data System (ADS)

    Han, Chen; Chen, Mao; Zhang, Weidong; Zhao, Zhixing; Evans, Tim; Zhao, Baojun

    2016-07-01

    Metallurgical properties of slag are determined to a great extent by its viscosity. High-temperature viscosity measurements are time-consuming and expensive. It is necessary to develop an accurate viscosity model for blast furnace slag in the SiO2-Al2O3-CaO-MgO system using reliable viscosity data. This paper describes a systemic evaluation procedure to determine the viscosity data to be used for model development. 1780 viscosity data from 10 to 65 wt pct SiO2, 3.5 to 40 wt pct Al2O3, 2 to 60 wt pct CaO, and 2 to 38 wt pct MgO in the SiO2-Al2O3-CaO-MgO system have been accepted for model evaluation after critical reviews. The existing 14 viscosity models in SiO2-Al2O3-CaO-MgO system is also reviewed and evaluated. Based on the structure of alumina-silicate slag and evaluated viscosity data, a new viscosity model has been proposed for the system SiO2-Al2O3-CaO-MgO. A new term "probability," based on the basic oxide and electronegativity, is introduced to calculate the integral activation energy of slag. The model has been evaluated and compared with existing viscosity models in three different composition ranges in SiO2-Al2O3-CaO-MgO system for different applications. The new model reports an outstanding agreement between predictions and experimental data. The industrial implications of the new model have also been discussed in ironmaking and steelmaking processes.

  16. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part II

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and the liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 have been determined experimentally in equilibrium with metallic iron. Specifically, the effects of Al2O3 concentrations in Imperial Smelting Furnace slags are identified, and the results are presented in the form of pseudo-ternary sections ZnO-“FeO”-(Al2O3 + CaO + SiO2) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 5.0 and 3.5, respectively. It was found that, in the presence of Al2O3, the spinel phase is formed, the spinel primary phase field expands, and the wustite and melilite primary phase fields are reduced in size with an increasing Al2O3 concentration. The implications of the findings to industrial practice are discussed.

  17. SiO2-CaO-K2O coatings on alumina and Ti6Al4V substrates for biomedical applications.

    PubMed

    Vitale-Brovarone, C; Verné, E

    2005-09-01

    Alumina and Ti6Al4V alloys are widely used for orthopedics and dental applications due to their good mechanical properties and biocompatibility. Unfortunately they can not provide a satisfactory osteointegration when implanted. In fact, both alumina and Ti6Al4V are not bioactive and thus they can only guarantee a morphological fixation with the surrounding tissues without a suitable chemical anchorage. Aiming to impart bioactive properties to these materials a coating can be proposed. At this purpose, a bioactive glass belonging to the SiO2-CaO-K2O system was selected and prepared. This glass, named SCK, possess a thermal expansion coefficient matching with the alumina (8.5x 10(- 6)/ degrees C) and Ti6Al4V (9 x 10(- 6)/ degrees C) ones and thus is a good candidate to produce coatings on both of them. Simple and low-cost enameling and glazing techniques were used to realize the coatings. Structural, morphological and compositional characterizations of the coatings were carried out by means of X-ray diffraction, optical and scanning microscopy and compositional analyses. The in vitro properties of the coatings were investigated by soaking them in a simulated body fluid (SBF) in order to study the precipitation, on their surfaces, of a biologically active layer of hydroxylapatite (HAp). PMID:16167116

  18. Effects of MgO and Al2O3 Addition on Redox State of Chromium in CaO-SiO2-CrO x Slag System by XPS Method

    NASA Astrophysics Data System (ADS)

    Wang, Li-jun; Yu, Ji-peng; Chou, Kuo-chih; Seetharaman, Seshadri

    2015-08-01

    The effects of MgO and Al2O3 on the redox state of chromium in CaO-SiO2-CrO x system have been investigated at 1873 K (1600 °C) under Ar-CO-CO2 atmosphere and analyzed by means of X-ray photoelectron spectroscopy. From the analysis of the Cr 2p core level spectra, it was found that both Cr(II) and Cr(III) exist simultaneously in CaO-MgO/Al2O3-SiO2-CrO x , and the quantitative ratio Cr(II)/Cr(III) has been obtained by deducing from the area under the computer-resolved peaks. Substitutions of CaO by MgO, SiO2 by Al2O3 favored the Cr(II) state existing in the system in the composition ranges of 3 to 10 wt pct MgO and 5 to 20 pct Al2O3. Meanwhile, from the analysis of the O1s spectra in CaO-MgO-SiO2-CrO x , it was found that the ratio of the non-bridging oxygen content increased first due to the CrO contribution to the electron distribution uniformly as O- at MgO low content. Afterward, it went to decreasing with continuing addition of MgO because ionic contribution of MgO is less than that of CaO and the influence of the CrO clustering on the non-Bridging oxygen is limited due to only 5 wt pct CrO x . In CaO-Al2O3-SiO2-CrO x system, Cr(II) acts as a network modifier to compensate Al3+ charge balance to make the structure stable, so the non-bridge oxygen in this system continues decreasing.

  19. Influences of CaO on Crystallization, Microstructures, and Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Bo; Tang, Bo; Xu, Mingjiang

    2015-10-01

    We have developed BaO-CaO-Al2O3-B2O3-SiO2 glass-ceramics with high thermal coefficient of expansion (TCE) to overcome thermal mismatch at board level. The crystalline phases include quartz (major), cristobalite (minor), and bazirite BaZrSi3O9 (minor). Calculations from whole-pattern fitting show that the crystallinity varies slightly within the range of 33.48% to 34.89%, while the mass fraction of the phases changes remarkably with the CaO content. This indicates that CaO cannot promote crystallization of Ba-Al-B-Si glass, but effectively suppresses the phase transformation from quartz to cristobalite, making the thermal expansion curves linear. An empirical equation for the TCE versus the temperature and the amount of CaO is established. Furthermore, the densification mechanism of Ca modifiers is revealed. Due to its higher field strength than Ba, substitution of Ca increases the glass viscosity and inhibits ion diffusion. Excessive CaO is thus harmful to the density, bending strength, and electrical properties. The sample with 10 wt.% CaO sintered at 950°C exhibited high bending strength (154.1 MPa) and high TCE (12.38 ppm/°C) as well as good electrical properties ( ɛ = 6.2, tan δ = 5 × 10-4, ρ = 3.8 × 1012 Ω cm).

  20. Luminescent and aging characteristics of blue emitting (Ca 1- x,Mg x)Al 2Si 2O 8:Eu 2+ phosphor for PDPs application

    NASA Astrophysics Data System (ADS)

    Im, Won Bin; Kim, Yong-Il; Kang, Jong Hyuk; Jeon, Duk Young

    2005-06-01

    We have evaluated thermal stability and aging property of a blue color-emitting phosphor, CaAl 2Si 2O 8:Eu 2+ (CAS:Eu 2+), synthesized by conventional solid-state reaction method. When both CAS:Eu 2+ and BaMgAl 10O 19:Eu 2+ (BAM) were baked in air at 500 °C for 20 min, the decrease of photoluminescence (PL) intensity of CAS:Eu 2+ was lower than that of BAM. The aging property of CAS:Eu 2+ was also better than that of BAM. Due to its rigid structure and unlimited framework of silicon-oxygen and aluminum-oxygen around Eu 2+ ions, Eu 2+ ions were protected from outer oxidizing atmosphere and plasma discharge. After analysis of aging property and thermal stability, the differences of these thermal stability and aging property of CAS:Eu 2+ from those of BAM were ascribed to its crystal structure which plays a role of a shield for Eu 2+ ions against oxidation atmosphere and Xe ion bombardment.

  1. Chemical Unit Cosubstitution and Tuning of Photoluminescence in the Ca2(Al(1-x)Mg(x))(Al(1-x)Si(1+x))O7:Eu(2+) Phosphor.

    PubMed

    Xia, Zhiguo; Ma, Chonggeng; Molokeev, Maxim S; Liu, Quanlin; Rickert, Karl; Poeppelmeier, Kenneth R

    2015-10-01

    The union of structural and spectroscopic modeling can accelerate the discovery and improvement of phosphor materials if guided by an appropriate principle. Herein, we describe the concept of "chemical unit cosubstitution" as one such potential design scheme. We corroborate this strategy experimentally and computationally by applying it to the Ca2(Al(1-x)Mg(x))(Al(1-x)Si(1+x))O7:Eu(2+) solid solution phosphor. The cosubstitution is shown to be restricted to tetrahedral sites, which enables the tuning of luminescent properties. The emission peaks shift from 513 to 538 nm with a decreasing Stokes shift, which has been simulated by a crystal-field model. The correlation between the 5d crystal-field splitting of Eu(2+) ions and the local geometry structure of the substituted sites is also revealed. Moreover, an energy decrease of the electron-phonon coupling effect is explained on the basis of the configurational coordinate model. PMID:26389578

  2. Thermodynamic simulation on mineralogical composition of CaO-SiO2-Al2O3-MgO quaternary slag system.

    PubMed

    Liu, Chao; Zhang, Yu-Zhu; Li, Jie; Li, Jun-Guo; Kang, Yue

    2016-01-01

    It is necessary to elucidate the crystallization thermodynamic of mineralogical phases during the cooling process of the molten BFS with different chemical composition, because the high-melting point mineral phase maybe crystallized during the fiber forming and thereafter cooling process. Thermodynamic calculation software FactSage6.4 and the hot remelting experiments were performed to explore the influence of basicity, Al2O3 content and MgO content on the crystallization of mineralogical components and their transformation. The results showed that the main mineralography of the CaO-SiO2-Al2O3-MgO quaternary slag system was melilite, and a certain amount of anorthite and calcium metasilicate. The crystallographic temperature of melilite is increased with the increasing of basicity, MgO and Al2O3 content, which has a significant impact on the utilization performance of the mineral wool prepared with the hot blast furnace slag directly. With the increasing of basicity, there was a tendency that crystallographic amount of melilite increased to the summit and then declined, while the amount of anorthite and calcium metasilicate decreased consistently. Finally, these two mineralogical components could be replaced by magnesium rhodonite and spinel with the increasing of basicity. When the basicity and MgO content were 1.0 and 9 %, the crystallographic mass ratio of melilite and anorthite increased, while that of calcium silicate declined, and replaced by spinel finally with the increasing of Al2O3 content. When the basicity and Al2O3 content were 1.0 and 13 %, the crystallographic mass ratio of melilite increased, while that of anorthite and calcium silicate declined, and replaced by pyroxene and spinel with the increasing of MgO content. To decline fiberization temperature of the melt BFS, the basicity, MgO and Al2O3 content should be decreased during the modification process of chemical composition, because the crystallization temperature of the primary crystalline

  3. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part I

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 in equilibrium with metallic iron have been determined experimentally in the temperature range of 1423 K to 1553 K. The experimental conditions were focused on the composition range relevant to Imperial Smelting Furnace slags. The results are presented in the form of a pseudo-ternary section ZnO-“FeO”-(CaO + SiO2 + Al2O3) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 7.0. It was found that wustite and spinel are the major primary phases and that zincite and melilite are also present in the composition range investigated. Wustite (Fe2+,Zn)O and spinel (Fe2+,Zn)O (A1,Fe3+)2O3 solid solutions are formed in this system, and the ZnO concentration in the spinel phase is found to be much greater than in the liquid phase.

  4. Phase Equilibrium Studies of CaO-SiO2-MgO-Al2O3 System with Binary Basicity of 1.5 Related to Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Kou, Mingyin; Wu, Shengli; Ma, Xiaodong; Wang, Laixin; Chen, Mao; Cai, Qingwu; Zhao, Baojun

    2016-04-01

    Slags play an important role in blast furnace operation, and their compositions are based on the CaO-SiO2-MgO-Al2O3 quaternary system in many steel companies. The binary basicity (CaO/SiO2 weight ratio) of blast furnace slags, especially primary slag and bosh slag, can be as high as 1.5 or higher. Phase equilibria and liquidus temperatures in the CaO-SiO2-MgO-Al2O3 system with binary basicity of 1.50 are experimentally determined for temperatures in the range 1723 K to 1823 K (1450 °C to 1550 °C). High temperature equilibration, quenching, and electron probe X-ray microanalysis techniques have been used in the present study. The isotherms are obtained in the primary phase fields of Ca2SiO4, melilite, spinel, periclase, and merwinite related to blast furnace slags. Effects of Al2O3, MgO, and binary basicity on liquidus temperatures have been discussed. In addition, extensive solid solutions have been measured for different primary phases and will be used for development and optimization of the thermodynamic database.

  5. Effect of hydration temperature on the solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes

    SciTech Connect

    Thomas, Jeffrey J.; Rothstein, David; Jennings, Hamlin M.; Christensen, Bruce J

    2003-12-01

    The concentrations of Ca, S, Al, Si, Na, and K in the pore solutions of ordinary Portland cement and white Portland cement pastes were measured during the first 28 d of curing at temperatures ranging from 5-50 deg. C. Saturation indices with respect to solid phases known to form in cement paste were calculated from a thermodynamic analysis of the elemental concentrations. Calculated saturation levels in the two types of paste were similar. The solubility behavior of Portlandite and gypsum at all curing temperatures was in agreement with previously reported behavior near room temperature. Saturation levels of both ettringite and monosulfate decreased with increasing curing temperature. The saturation level of ettringite was greater than that of monosulfate at lower curing temperatures, but at higher temperatures there was effectively no difference. The solubility behavior of C-S-H gel was investigated by applying an appropriate ion activity product (IAP) to the data. The IAP{sub CSH} decreased gradually with hydration time, and at a given hydration time the IAP{sub CSH} was lower at higher curing temperatures.

  6. The layered antimonides RELi3Sb2 (RE=Ce-Nd, Sm, Gd-Ho). Filled derivatives of the CaAl2Si2 structure type

    NASA Astrophysics Data System (ADS)

    Schäfer, Marion C.; Suen, Nian-Tzu; Raglione, Michaella; Bobev, Svilen

    2014-02-01

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal-lithium-antimonides with the formula RELi3Sb2 (RE=Ce-Nd, Sm, Gd-Ho). They crystallize in the trigonal space group P3barm1 (No. 164, Pearson symbol hP6) with a structure, best viewed as a filled derivative of the common CaAl2Si2 structure type (ternary variant of α-La2O3). Across the series, the lattice parameters monotonically decrease, following the lanthanide contraction. Temperature-dependent magnetic susceptibility measurements for CeLi3Sb2, PrLi3Sb2 and TbLi3Sb2 reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with the expected ones for the free-ion RE3+ ground state. Possible ferromagnetic ordering for PrLi3Sb2 and antiferromagnetic ordering for TbLi3Sb2 are observed in the low temperature range (below 20 K). Tight-binding muffin-tin orbital electronic band structure calculations for LaLi3Sb2 are presented and discussed as well.

  7. Elasticity and sound velocities of polycrystalline grossular garnet (Ca3Al2Si3O12) at simultaneous high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Gwanmesia, Gabriel D.; Wang, Liping; Heady, Adaire; Liebermann, Robert C.

    2014-03-01

    The elastic wave velocities of a dense polycrystalline specimen (99.7% of theoretical density) of synthetic grossular garnet (Ca3Al2Si3O12) were measured to pressures of ∼10 GPa and temperatures of 1000 K by transfer-function ultrasonic interferometry in conjunction with energy-dispersive synchrotron X-radiation in a deformation DIA-type cubic-anvil apparatus. The calculated elastic bulk (Ks) and shear (G) moduli data were fitted to functions of Eulerian strain to 3rd order, yielding the zero-pressure values [Ks = 171.2 (8) GPa; G = 107.4 (2) GPa] and their pressure derivatives [(∂Ks/∂P)T = 4.47 (2); (∂G/∂P)T = 1.29 (5)]. The temperature dependences of the elastic moduli obtained from linear regression of entire P-T-Ks and P-T-G data are: (∂Ks/∂T)P = -1.38 (3) × 10-2 GPa/K and (∂G/∂T)P = -1.28 (2) × 10-2 GPa/K. These results together with those from previous studies for garnets with varying compositions suggest that most of the thermo-elastic properties of garnet are insensitive to grossular content, with the exception of the shear modulus, which significantly depends on the calcium content.

  8. Structural and electronic properties of AB- and AA-stacking bilayer-graphene intercalated by Li, Na, Ca, B, Al, Si, Ge, Ag, and Au atoms

    NASA Astrophysics Data System (ADS)

    Tayran, Ceren; Aydin, Sezgin; Çakmak, Mehmet; Ellialtıoğlu, Şinasi

    2016-04-01

    The structural and electronic properties of X (=Li, Na, Ca, B, Al, Si, Ge, Ag, and Au)-intercalated AB- and AA-stacking bilayer-graphene have been investigated by using ab initio density functional theory. It is shown that Boron (Lithium)-intercalated system is energetically more stable than the others for the AB (AA) stacking bilayer-graphene systems. The structural parameters, electronic band structures, and orbital nature of actual interactions are studied for the relaxed stable geometries. It is seen that the higher the binding energy, the smaller is the distance between the layers, in these systems. The electronic band structures for these systems show that different intercalated atoms can change the properties of bilayer-graphene differently. For qualitative description of the electronic properties, the metallicities of the systems are also calculated and compared with each other. The Mulliken analysis and electron density maps clearly indicate that the interactions inside a single layer (intralayer interactions) are strong and highly covalent, while the interactions between the two layers (interlayer interactions) are much weaker.

  9. Analysis of reaction between c+a and -c+a dislocations in GaN layer grown on 4-inch Si(111) substrate with AlGaN/AlN strained layer superlattice by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoshihiro; Ishikawa, Yukari; Watanabe, Arata; Miyoshi, Makoto; Egawa, Takashi

    2016-04-01

    The behavior of dislocations in a GaN layer grown on a 4-inch Si(111) substrate with an AlGaN/AlN strained layer superlattice using horizontal metal-organic chemical vapor deposition was observed by transmission electron microscopy. Cross-sectional observation indicated that a drastic decrease in the dislocation density occurred in the GaN layer. The reaction of a dislocation (b=1/3[-211-3]) and anothor dislocation (b =1/3[-2113]) to form one dislocation (b =2/3[-2110]) in the GaN layer was clarified by plan-view observation using weak-beam dark-field and large-angle convergent-beam diffraction methods.

  10. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment.

    PubMed

    Wang, Si-Jia; He, Pin-Jing; Shao, Li-Ming; Zhang, Hua

    2016-10-01

    Minerals including Al2O3, SiO2 and CaO are predominant matrixes in waste, and are thought to facilitate lead (Pb) emission control. This study distinguished the inhibition of each mineral on common stable Pb-containing compounds, including highly volatile PbCl2 and less volatile PbO. Al2O3 can lower the volatilization temperature of Pb by 29 °C due to the generation of a eutectic compound and play a minor but non-negligible role in reducing Pb volatilization. The most conspicuous inhibition effect was exerted by SiO2 and a mixture of Al2O3 and SiO2, which completely integrated PbO into the glass phase at 690 °C and prohibited its migration. In contrast, SiO2 had no significant inhibition on volatile PbCl2. CaO inhibited PbO volatilization in the absence of oxygen by controlling its diffusion, while it converted PbO to Ca2PbO4 in the presence of oxygen, thus controlling Pb diffusion and decreasing the Pb volatilization ratio and rate. The influence of CaO on PbCl2 was complex because CaO can convert PbCl2 to PbO with formation of CaCl2, and CaCl2 can also be a Cl-donor for PbO. The roles of mineral matrixes in Pb conversion were shown to be important for Pb emission control. PMID:27434254

  11. K -shell ionization cross sections of Al, Si, S, Ca, and Zn for oxygen ions in the energy range 1. 1--8 MeV

    SciTech Connect

    Geretschlaeger, M. ); Smit, Z. ); Steinbauer, E. )

    1992-03-01

    {ital K}-shell ionization cross sections induced by 1.1--8-MeV oxygen ions in Al, Si, S, Ca, and Zn were measured using different target thicknesses. The cross sections for vanishingly thin and for charge-equilibrium targets were obtained by extrapolation. The experimental results are compared to the perturbed stationary-state approximation with energy-loss, Coulomb, and relativistic corrections (ECPSSR) cross sections (Brandt and Lapicki, Phys. Rev. A 23, 1717 (1981)), to the modification of the ECPSSR theory (MECPSSR) (Benka, Geretschlaeger, and Paul, J. Phys. (Paris) Colloq. Suppl. 12, C9-251 (1987)), to the theory for direct Coulomb ionization of the 1{ital s}{sigma} molecular orbital (Montenegro and Sigaud, J. Phys. B 18, 299 (1985)), and to several semiclassical approximation codes using either the united atom binding procedure or the variational approach of Andersen {ital et} {ital al}. (Nucl. Instrum. Methods 192, 79 (1982)). The cross sections were also compared to the statistical molecular-orbital theory of inner-shell ionization for (nearly) symmetric atomic collisions (Mittelman and Wilets, Phys. Rev. 154, 12 (1967)). For fast collisions ({xi}{similar to}1), the ionization cross sections are well reproduced by theories for direct Coulomb ionization. For slower collisions ({xi}{lt}1), the experimental cross sections are systematically higher than the direct-ionization values, but they agree satisfactorily with the summed cross sections for direct Coulomb ionization and for molecular-orbital ionization. Best agreement (within a factor of 2) was found for the sums of MECPSSR and statistical cross sections.

  12. Melting enthalpies of mantle peridotite: calorimetric determinations in the system CaO-MgO-Al 2O 3-SiO 2 and application to magma generation

    NASA Astrophysics Data System (ADS)

    Kojitani, Hiroshi; Akaogi, Masaki

    1997-12-01

    High-temperature drop calorimetry in the temperature range of 1398-1785 K was performed for the samples of mixtures of synthetic anorthite (An), diopside (Di), enstatite (En) and forsterite (Fo) with the same compositions as those of primary melts generated at 1.1, 3 and 4 GPa at most 10° above the solidus of anhydrous mantle peridotite in the CaO-MgO-Al 2O 3-SiO 2 system. From the differences between the heat contents ( H T-H 298) of liquid and that of crystal mixture at the liquidus temperature, melting enthalpies of the samples of 1.1, 3 and 4 GPa-primary melt compositions were determined at 1 atm to be 531 ± 39 J · g -1 at 1583 K, 604 ± 21 J · g -1 at 1703 K, 646 ± 21 J · g -1 at 1753 K, respectively. These heat of fusion values suggest that mixing enthalpy of the melt in the An-Di-En-Fo system is approximately zero within the experimental errors when we use the heat of fusion of Fo by Richet et al. (P. Richet, F. Leclerc, L. Benoist, Melting of forsterite and spinel, with implications for the glass transition of Mg 2SiO 4 liquid, Geophys. Res. Lett. 20 (1993) 1675-1678). The measured enthalpies of melting at 1 atm were converted into those for melting reactions which occur under high pressures by correcting enthalpy changes associated with solid-state mineral reactions. Correcting the effects of pressure, temperature and FeO and Na 2O components on the melting enthalpies at 1 atm, heat of fusion values of a representative mantle peridotite just above the solidus under high pressure were estimated to be 590 J at 1.1 GPa and 1523 K, 692 J at 3 GPa and 1773 K, and 807 J at 4 GPa and 1923 K for melting reactions producing liquid of 1 g, with uncertainties of 50 J. By applying these melting enthalpies to a mantle diapir model which generates present MORBs, a potential mantle temperature of 1533 K has been estimated, assuming an eruption temperature of magma of 1473 K.

  13. Tissintite, (Ca, Na, □)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Tschauner, Oliver; Beckett, John R.; Liu, Yang; Rossman, George R.; Zhuravlev, Kirill; Prakapenka, Vitali; Dera, Przemyslaw; Taylor, Lawrence A.

    2015-07-01

    Tissintite is a new vacancy-rich, high-pressure clinopyroxene, with a composition essentially equivalent to plagioclase. It was discovered in maskelynite (shocked plagioclase) and is commonly observed included within, or in contact with, shock-melt pockets in the Tissint meteorite, a depleted olivine-phyric shergottite fall from Mars. The simple composition of tissintite (An58-69) and its precursor plagioclase (An59-69) together with the limited occurrence, both spatially (only in maskelynite less than ˜25 μm of a shock melt pocket) and in terms of bulk composition, make tissintite a "goldilocks" phase. It formed during a shock event severe enough to allow nucleation and growth of vacancy-rich clinopyroxene from a melt of not too calcic and not too sodic plagioclase composition that was neither too hot nor too cold. With experimental calibration, these limitations on occurrence can be used to place strong constraints on the thermal history of a shock event. The kinetics for nucleation and growth of tissintite are probably slower for more-sodic plagioclase precursors, so tissintite is most likely to occur in depleted olivine-phyric shergottites like Tissint and other highly shocked meteorites and lunar and terrestrial rocks that consistently contained calcic plagioclase precursors in the appropriate compositional range for a shock of given intensity. Tissintite, (Ca0.45Na0.31□0.24) (Al0.97Fe0.03Mg0.01) (Si1.80Al0.20)O6, is a C 2 / c clinopyroxene, containing 42-60 mol% of the Ca-Eskola component, by far the highest known. The cell parameters are a = 9.21 (17) Å, b = 9.09 (4) Å, c = 5.20 (2) Å, β = 109.6 (9)°, V = 410 (8) Å3, Z = 4. The density is 3.32 g/cm3 and we estimate a cell volume for the Ca-Eskola end-member pyroxene of 411 ± 13 Å3, which is consistent with a previous estimate and, therefore, supports the importance of this component in clinopyroxenes from ultra-high pressure metamorphic rocks from the Earth's upper mantle. At least in C 2 / c

  14. Experimental Determination of the Phase Diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 System

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Sun, Lifeng; Zhang, Bo; Liu, Xuqiang; Qiu, Jiyu; Wang, Zhaoyun; Jiang, Maofa

    2016-02-01

    Ti-bearing CaO-SiO2-MgO-Al2O3-TiO2 slags are important for the smelting of vanadium-titanium bearing magnetite. In the current study, the pseudo-melting temperatures were determined by the single-hot thermocouple technique for the specified content of 5 to 25 pct TiO2 in the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 phase diagram system. The 1573 K to 1773 K (1300 °C to 1500 °C) liquidus lines were first calculated based on the pseudo-melting temperatures according to thermodynamic equations in the specific primary crystal field. The phase equilibria at 1573 K (1300 °C) were determined experimentally using the high-temperature equilibrium and quench method followed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscope analysis; the liquid phase, melilite solid solution phase (C2MS2,C2AS)ss, and perovskite phase of CaO·TiO2 were found. Therefore, the phase diagram was constructed for the specified region of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system.

  15. Luminescence and energy-transfer properties of color-tunable Ca2 Mg0.25 Al1.5 Si1.25 O7 :Ce(3+) /Eu(2+) /Tb(3+) phosphors for ultraviolet light-emitting diodes.

    PubMed

    Yuan, Bo; Song, Yanhua; Sheng, Ye; Zheng, Keyan; Huo, Qisheng; Xu, Xuechun; Zou, Haifeng

    2016-03-01

    A series of Ca2 Mg0.25 Al1.5 Si1.25 O7 :Ce(3+) /Eu(2+) /Tb(3+) phosphors was been prepared via a conventional high temperature solid-state reaction and their luminescence properties were studied. The emission spectra of Ca2 Mg0.25 Al1.5 Si1.25 O7 :Ce(3+) ,Eu(2+) and Ca2 Mg0.25 Al1.5 Si1.25 O7 :Ce(3+) ,Tb(3+) phosphors show not only a band due to Ce(3+) ions (409 nm) but also as a band due to Eu(2+) (520 nm) and Tb(3+) (542 nm) ions. More importantly, the effective energy transfer from Ce(3+) to Eu(2+) and Tb(3+) ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole-dipole (Ce(3+) to Eu(2+) ) and dipole-quadrupole (Ce(3+) to Tb(3+) ) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce(3+) and Eu(2+) ions as well as Ce(3+) and Tb(3+) ions. The above results indicate that Ca2 Mg0.25 Al1.5 Si1.25 O7 :Ce(3+) ,Eu(2+) /Tb(3+) are promising single-phase blue-to-green phosphors for application in phosphor conversion white-light-emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26249728

  16. White long-lasting phosphorescence generation in a CaAl2Si2O8 : Eu2+, Mn2+, Dy3+ system through persistent energy transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Jinsu; Chen, Baojiu; Sun, Jiashi; Li, Xiangping; Cheng, Lihong; Zhong, Haiyang

    2012-08-01

    Based on the persistent energy transfer principle, Mn2+ was introduced into a CaAl2Si2O8 : Eu2+/Dy3+ phosphor to achieve white long-lasting emissions. Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors with various Mn2+ concentrations were prepared via a solid-state reaction, and the crystal structure of the phosphors was identified by the x-ray diffraction technique. The luminescent properties of the Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors were studied. The energy transfer behaviour from Eu2+ to Mn2+ was analysed within the framework of Dexter theory. The physical mechanism of energy transfer was assigned to the electric dipole-quadrupole interaction. It was also demonstrated that the colour coordinates of the phosphors can be tuned from the blue region to the white region in the colour space. Furthermore, the afterglow decay and thermoluminescence curves were measured, indicating excellent phosphorescence properties of the current phosphors.

  17. EFFECT OF MgO ON STRUCTURE AND DIELECTRIC PROPERTIES OF CaO-Al2O3-B2O3-SiO2 GLASSES

    NASA Astrophysics Data System (ADS)

    Du, Zhao; Zhang, Xuehong; Yue, Yunlong; Wu, Haitao

    2012-12-01

    The effect of MgO on structure and dielectric properties of aluminoborosilicate glasses was investigated. FTIR data indicated that glass network was mainly built by tetrahedral [SiO4], [BO4], [AlO4] and trigonal [BO3]. A small amount of AlO5 or AlO6 units also existed. The glass system was characterized with lower dielectric constant (4.17 4.6) and dielectric loss (12.3 × 10-4 14.77 × 10-4) at 1 MHz. With the increase of MgO content, the quantity of AlO5 or AlO6 units decreased. The variation of density showed a decreasing tendency. The dielectric constant and loss were all found to decrease.

  18. Hillesheimite, (K,Ca,□)2(Mg,Fe,Ca,□)2[(Si,Al)13O23(OH)6](OH) · 8H2O, a new phyllosilicate mineral of the Günterblassite group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Zubkova, N. V.; Pekov, I. V.; Belakovskiy, D. I.; Schüller, W.; Ternes, B.; Blass, G.; Pushcharovsky, D. Yu.

    2013-12-01

    A new mineral, hillesheimite, has been found in the Graulai basaltic quarry, near the town of Hillesheim, the Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. It occurs in the late assemblage comprising nepheline, augite, fluorapatite, magnetite, perovskite, priderite, götzenite, lamprophyllite-group minerals, and åkermanite. Colorless flattened crystals of hillesheimite reaching 0.2 × 1 × 1.5 mm in size and aggregates of the crystals occur in miarolitic cavities in alkali basalt. The mineral is brittle, with Mohs' hard-ness 4. Cleavage is perfect parallel to (010) and distinct on (100) and (001). D calc = 2.174 g/cm3, D meas = 2.16(1) g/cm3. IR spectrum is given. Hillesheimite is biaxial (-), α = 1.496(2), β = 1.498(2), γ = 1.499(2), 2 V meas = 80°. The chemical composition (electron microprobe, mean of 4 point analyses, H2O determined from structural data, wt %) is as follows: 0.24 Na2O, 4.15 K2O, 2.14 MgO, 2.90 CaO, 2.20 BaO, 2.41 FeO, 15.54 Al2O3, 52.94 SiO2, 19.14 H2O, total is 101.65. The empirical formula is: K0.96Na0.08Ba0.16Ca0.56Mg0.58Fe{0.37/2+}[Si9.62Al3.32O23(OH)6][(OH)0.82(H2O)0.18] · 8H2O. The crystal structure has been determined from X-ray single-crystal diffraction data, R = 0.1735. Hillesheimite is orthorhombic, space group Pmmn, the unit-cell dimensions are: a = 6.979(11), b = 37.1815(18), c = 6.5296(15) Å; V=1694(3) Å3, Z = 2. The crystal structure is based on the block [(Si,Al)13O25(OH)4] consisting of three single tetrahedral layers linked via common vertices and is topologically identical to the triple layers in günterblassite and umbrianite. The strong reflections [ d Å ( I %)] in the X-ray powder diffraction pattern are: 6.857(58), 6.545(100), 6.284(53), 4.787(96), 4.499(59), 3.065(86), 2.958(62), 2.767(62). The mineral was named after its type locality. Type specimens are deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.

  19. High-P behavior of anorthite composition and some phase relations of the CaO-Al2O3-SiO2 system to the lower mantle of the Earth, and their geophysical implications

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Ohfuji, Hiroaki; Nishiyama, Norimasa; He, Qiang; Sanehira, Takeshi; Irifune, Tetsuo

    2012-09-01

    Multianvil experiments with long experimental durations have been made with the anorthite composition CaAl2Si2O8at pressure-temperature (P-T) conditions of 14-25 GPa and 1400-2400°C. At subsolidus conditions, these experiments demonstrated three phase assemblages, grossular (Gr) + kyanite (Ky) + stishovite (St) at ˜14 GPa, Gr + calcium-alumino-silicate phase (CAS) + St at ˜18 GPa, and CAS + CaSiO3-perovskite (CaPv) + St at above ˜20 GPa, which are related by the reactions Gr + Ky = CAS + St and Gr + St = CAS + CaPv. Following the method of Schreinemakers, we combined our data with the literature data to deduce aP-Tphase diagram for a portion of the CaO-Al2O3-SiO2system at subsolidus conditions, which subsequently helped to solve some long-lasting discrepancies in the high-Pbehavior of the compositions of anorthite and grossular. The crystal chemistry of the CAS and CaPv solid solutions was examined, and new substitution mechanisms were firmly established. Along the solidus, the melting reaction at ˜14 GPa is peritectic while that at ˜22 GPa is eutectic. For both pressures, St is the first phase to melt out and the melt is generally andesitic. For the An composition, its density starts to be significantly higher than the density of pyrolite at ˜2.5 GPa, a much lower pressure than that for the Or, Ab or Qtz composition (˜7.5-10 GPa), so that the An-enriched continental crust material should readily plunge into the upper mantle.

  20. Role of basicity and tetrahedral speciation in controlling the thermodynamic properties of silicate liquids, part 1: the system CaO-MgO-Al 2O 3-SiO 2

    NASA Astrophysics Data System (ADS)

    Beckett, John R.

    2002-01-01

    Activity coefficients of oxide components in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) were calculated with the model of Berman (Berman R. G., "A thermodynamic model for multicomponent melts with application to the system CaO-MgO-Al 2O 3-SiO 2," Ph.D. dissertation, University of British Columbia, 1983) and used to explore large-scale relationships among these variables and between them and the liquid composition. On the basis of Berman's model, the natural logarithm of the activity coefficient of MgO, ln(γ MgOLiq), and ln(γ MgOLiq/γ SiO 2Liq) are nearly linear functions of ln(γ CaOLiq). All three of these variables are simple functions of the optical basicity Λ with which they display minima near Λ ˜ 0.54 that are generated by liquids with low ratios of nonbridging to tetrahedral oxygens (NBO/T) (<0.3) and a mole fraction ratio, X SiO 2Liq/X Al 2O 3Liq, in the range 4 to 20. Variations in ln(γ CaOLiq) at constant Λ near the minimum are due mostly to liquids with (X CaOLiq + X MgOLiq)/X Al 2O 3Liq < 1. The correlations with optical basicity imply that the electron donor power is an important factor in determining the thermodynamic properties of aluminosilicate liquids. For a constant NBO/T, ln(γ CaOLiq/γ Al 2O 3Liq) and ln(γ MgOLiqγ Al 2O 3Liq) form curves in terms of X SiO 2Liq/X Al 2O 3Liq. The same liquids that generate minima in the Λ plots are also associated with minima in ln(γ CaOLiqγ Al 2O 3Liq) and ln(γ MgOLiqγ Al 2O 3Liq) as a function of X SiO 2Liq/X Al 2O 3Liq. In addition, there are maxima or sharp changes in slope for NBO/T > 0.3, which occur for X SiO 2Liq/X Al 2O 3Liq ranging from ˜0 to ˜6 and increase with increasing NBO/T. The systematic variations in activity coefficients as a function of composition and optical basicity reflect underlying shifts in speciation as the composition of the liquid is changed. On the basis of correlations among the activity coefficients, it is likely that the use of CaO, an exchange component such as

  1. The effect of SiO2/Al2O3 ratio on the structure and microstructure of the glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system

    NASA Astrophysics Data System (ADS)

    Partyka, Janusz; Sitarz, Maciej; Leśniak, Magdalena; Gasek, Katarzyna; Jeleń, Piotr

    2015-01-01

    Ceramic glazes are commonly used to covering of the facing surface of ceramics ware. A well-chosen oxide composition and firing conditions of glazes causes significant improvement of technical parameters of ceramic products. Modern glazes are classified as glass-ceramic composites with different crystalline phases arising during firing. The presence of crystals in the glass matrix is influenced by many factors, especially by oxides molar composition. A crucial role is played by the molar ratio of SiO2/Al2O3. In this work the six composition of glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system were examined. The only variable is the ratio of the silicon oxideto alumina at a constant content of other components: MgO, CaO, K2O, Na2O, ZnO. In order to determine the real phase composition of the obtained glazes research on fluorescence spectrometer (XRF) were done. For structural studies X-ray diffraction (XRD) and spectroscopic in the middle infrared (MIR) were performed. In order to determine the state of the surface (microstructure) research on the scanning electron microscope (SEM) with EDX. The research allowed to determine the influence of SiO2/Al2O3 ratio on the structure and phase composition of glazes and the nature, and type of formed crystalline phases.

  2. Discovery of Ahrensite γ-Fe2SiO4 and Tissintite (Ca,Na,[])AlSi2O6, Two New Shock-induced Minerals from the Tissint Martian Meteorite: a Nanomineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.

    2013-12-01

    The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (γ-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.

  3. Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3

    NASA Astrophysics Data System (ADS)

    Partyka, Janusz; Leśniak, Magdalena

    2016-01-01

    This paper is focused on the effect of the molar ratio of SiO2/Al2O3 on the microstructure and structure of the internal aluminium-silicon-oxide lattice of the glass-ceramic materials from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. Following the heat-treatment procedure, pseudowollastonite, anorthite and the vitreous phase were identified. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR and FIR spectroscopy were performed.

  4. Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3.

    PubMed

    Partyka, Janusz; Leśniak, Magdalena

    2016-01-01

    This paper is focused on the effect of the molar ratio of SiO2/Al2O3 on the microstructure and structure of the internal aluminium-silicon-oxide lattice of the glass-ceramic materials from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. Following the heat-treatment procedure, pseudowollastonite, anorthite and the vitreous phase were identified. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR and FIR spectroscopy were performed. PMID:26196934

  5. Hydrothermal synthesis and the crystal structure of borate cancrinite (Na,Ca){sub 2}[Na{sub 6}(AlSiO{sub 4}){sub 6}](BO{sub 3}) . 2H{sub 2}O

    SciTech Connect

    Shirinova, A. F. Khrustalev, V. N.; Samedov, H. R.; Chiragov, M. I.

    2006-01-15

    Transparent prismatic single crystals of borate cancrinite (Na,Ca){sub 2}[Na{sub 6}(AlSiO{sub 4}){sub 6}](BO{sub 3}) . 2H{sub 2}O are prepared through hydrothermal crystallization. The parameters of the hexagonal unit cell and intensities of 10806 reflections are measured on an Enraf-Nonius CAD4 automated diffractometer. The compound crystallizes in the hexagonal crystal system with the unit cell parameters a = 12.745(4) A, c = 5.180(2) A, V = 728.6(4) A{sup 3}, and space group P6{sub 3}. The structure is determined by direct methods and refined using the full-matrix least-squares procedure in the anisotropic approximation for the non-hydrogen atoms. The refinement of the structure is performed to the final discrepancy factor R{sub 1} = 0.027 for 2889 unique reflections with I > 2 {sigma} (I). In the structure of the borate cancrinite, the AlO{sub 4} and SiO{sub 4} tetrahedra form a zeolite-like framework in which twelve-membered hexagonal channels are occupied by sodium atoms and BO{sub 3} groups, whereas six-membered channels are filled with sodium and calcium atoms and water molecules. The mean interatomic distances are found to be as follows: (Si-O){sub mean} = 1.614 A and (Al-O){sub mean} = 1.741 A in the AlO{sub 4} and SiO{sub 4} tetrahedra, (Na-O){sub mean} = 2.542 A in the seven-vertex sodium polyhedra, and [(Na,Ca)-O]{sub mean} = 2.589 A in the ditrigonal bipyramids.

  6. On the Production of He, Ne, and AR Isotopes from Mg, Al, Si, Ca, Fe, and NI in an Artificially Irradiated Meteoroid

    NASA Astrophysics Data System (ADS)

    Wieler, R.; Signet, P.; Rosel, R.; Herpers, U.; Lupke, M.; Lange, H.-J.; Michel, R.

    1992-07-01

    The production of He, Ne, and Ar isotopes from their main target elements was investigated in an experiment (1) by irradiating a 50-cm-diameter gabbro sphere isotropically with 1.6 GeV protons. The model meteoroid contained, among a large number of other targets, pure element foils of Mg, Al, Si, Fe, and Ni at 10 different depths and wollastonite targets at 3 different depths in central bores. After the irradiation, radionuclide production in these targets was measured by gamma spectrometry. Stable He, Ne, and Ar isotopes were measured in statically operated mass spectrometers. Here, we report the results for stable He, Ne, and Ar isotopes and for ^22Na. The production depth profiles vary widely, ranging from profiles with near-surface production 15% higher than in the center (^22Na from Fe) to such profiles with production in the center 45% higher than near the surface (^20Ne from Mg). The isotope ratios ^3He/^4He and ^3He/^21Ne in Mg, Al, Si and ^22Ne/^21Ne in Mg all decrease significantly with increasing shielding. The production rates of He, Ne, and ^22Na from Mg, Al, and Si in the 1600-MeV simulation experiment are 1.5 to 3 times higher than in the model meteoroid of similar size but irradiated earlier with 600 MeV protons (2). This increase is attributed to the increase of the production of secondary neutrons with primary energies rising from 600 to 1600 MeV. This effect also causes the depth dependences of isotope ratios observed in the 1600-MeV simulation that was not seen in the 600-MeV experiment. Model calculations of the production of He, Ne, and Ar isotopes and of ^22Na were performed for the artificial meteorites of the 600- and 1600 MeV-exposures as well as for real meteoroids. Production rates were calculated from depth-dependent p- and n- spectra, which were derived by Monte Carlo techniques using the HERMES code system (3), and from cross sections for the relevant nuclear reactions as described earlier (4). The cross section database for p

  7. Effects of Al2O3 and MgO on Softening, Melting, and Permeation Properties of CaO-FeO-SiO2 on a Coke Bed

    NASA Astrophysics Data System (ADS)

    Ueda, Shigeru; Kon, Tatsuya; Miki, Takahiro; Kim, Sun-Joong; Nogami, Hiroshi

    2016-04-01

    In ironmaking, maintaining gas permeability in blast furnace with low coke rate operation is essential to reduce carbon emissions. The high pressure loss in the cohesive zone decreases the gas permeability and affects the productivity of blast furnace. In order to increase the gas permeability in the cohesive zone, the thickness of the cohesive layer should be decreased. For this purpose, increasing softening temperature and decreasing dripping temperature of the iron ore are desired. In this study, softening, melting, and permeation of SiO2-FeO-CaO-Al2O3-MgO on a coke bed were investigated. The oxide sample in a tablet form was heated under CO/CO2 atmosphere, and the shape of the tablet was observed. The softening and melting temperatures of the SiO2-FeO-CaO system changed with the addition of Al2O3 and MgO. Oxide tablets with and without Al2O3 softened below and above the solidus temperature, respectively. The melting temperatures varied with the ratio of CO/CO2 in the gas. The permeation temperature was independent of the melting temperature, but dependent on the wettability.

  8. Effects of Al2O3 and MgO on Softening, Melting, and Permeation Properties of CaO-FeO-SiO2 on a Coke Bed

    NASA Astrophysics Data System (ADS)

    Ueda, Shigeru; Kon, Tatsuya; Miki, Takahiro; Kim, Sun-Joong; Nogami, Hiroshi

    2016-08-01

    In ironmaking, maintaining gas permeability in blast furnace with low coke rate operation is essential to reduce carbon emissions. The high pressure loss in the cohesive zone decreases the gas permeability and affects the productivity of blast furnace. In order to increase the gas permeability in the cohesive zone, the thickness of the cohesive layer should be decreased. For this purpose, increasing softening temperature and decreasing dripping temperature of the iron ore are desired. In this study, softening, melting, and permeation of SiO2-FeO-CaO-Al2O3-MgO on a coke bed were investigated. The oxide sample in a tablet form was heated under CO/CO2 atmosphere, and the shape of the tablet was observed. The softening and melting temperatures of the SiO2-FeO-CaO system changed with the addition of Al2O3 and MgO. Oxide tablets with and without Al2O3 softened below and above the solidus temperature, respectively. The melting temperatures varied with the ratio of CO/CO2 in the gas. The permeation temperature was independent of the melting temperature, but dependent on the wettability.

  9. Ehimeite, NaCa2Mg4CrSi6Al2O22(OH)2: The first Cr-dominant amphibole from the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nishio-Hamane, Daisuke; Ohnishi, Masayuki; Minakawa, Tetsuo; Yamaura, Jun-Ichi; Saito, Shohei; Kadota, Ryo

    The first Cr-dominant amphibole, ehimeite, ideally NaCa2Mg4CrSi6Al2O22(OH)2, has been found in a chromitite deposit in the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan. Ehimeite occurs as prismatic crystals of up to 1.5 cm in length and 0.5 cm in width and is found in association with chromite, kämmererite (Cr-rich clinochlore), Cr-poor clinochlore, phlogopite, and uvarovite. It is transparent, emerald green to pale green in color with pale green streaks, and has a vitreous luster. Optically, it is biaxial positive with α = 1.644(2), β = 1.647(2), γ = 1.659(2), and 2Vcalc. = 53°. It has a Mohs’ hardness of 6 and densities of 3.08(3) g/cm3 (measured using heavy liquids) and 3.121 g/cm3 (calculated from powder diffraction data and the empirical formula). The empirical formula is (Na0.88K0.07)Σ0.95(Ca1.89Na0.02Mg0.09)Σ2.00(Mg4.03Cr0.62Al0.19Fe3+0.07Fe2+0.07Ti0.03)Σ5.00(Si6.14Al1.86)Σ8.00O22(OH)2 on the basis of O = 22 and OH = 2, and ehimeite mainly forms a solid solution, NaCa2Mg4(Cr, Al)Si6Al2O22(OH)2, with pargasite. It has a monoclinic unit cell with a = 9.9176(14) Å, b = 18.0009(12) Å, c = 5.2850(7) Å, β = 105.400(7)°, V = 909.6 (17) Å3, and Z = 2, and it belongs to the space group C2/m, as refined from powder XRD data. The eight strongest lines in the powder XRD pattern [d (Å), I/I0, hkl] are (3.370, 58, 150), (2.932, 43, 221), (2.697, 81, 151), (2.585, 50, 061), (2.546, 100, 202), (2.346, 42, 351), (2.156, 35, 261), and (1.514, 55, 263). The crystal structure has been refined to R1 = 0.0488 using single-crystal XRD data. It has been concluded that ehimeite in the Akaishi Mine was formed by the reaction of chromitite and the metamorphic fluid in the retrograde stage of serpentinization during the Sanbagawa metamorphism.

  10. Computer simulation of the self-assembly of crystal structures of zeolites Ca64(Sr,K,Ba)48(Cu12(O,Cl))4[Si192Al192O786](H2O) n (tschoertnerite, TSC, V = 31 614 Å3) and Ca2K2[Al6Si6O24](H2O)10 (willhendersonite, cha, V = 804 Å3) from template nanocluster precursors K48 and K12

    NASA Astrophysics Data System (ADS)

    Ilyushin, G. D.; Blatov, V. A.

    2013-07-01

    The self-assembly of zeolites Ca64(Sr,K,Ba)48(Cu12(O,Cl))4[Si192Al192 O786](H2O) n (tschoertnerite, TSC-type framework, V = 31614 Å3) and Ca2K2[Al6Si6O24] (H2O)10 (willhendersonite, CHA-type framework, V = 804 Å3), which form paragenetic associations, has been simulated using computational methods (TOPOS program package). A new method for analyzing zeolites of any complexity has been used, which is based on the complete expansion of the three-dimensional structural graph (3 D factor graph) in tiles and the selection of nonintersecting tiles forming a packing. The code of self-assembly of 3 D structures from complementary linked nanocluster precursors is reconstructed: primary chain → microlayer → microframework. A supracluster precursor K48 with the symmetry bar 43 m, formed of four K12 clusters corresponding to the t-hpr tile, is established for TSC. The K48 cluster contains Ca template cations, which stabilize its local region in the stages of K12 → K24 → K48 self-assembly. Bifurcations of evolution paths (structural branching points) during the self-assembly of TSC and CHA microframeworks are established in the stage of formation of the K24 supracluster from invariant templated K12 clusters. The models under consideration explain the 100% localization of B = Ca cations, which play the role of templates, and the 50% occupation of the positions of K, Sr, and Ba spacer cations (in TSC) and K spacer cations (in CHA).

  11. Novel Si networks in Ca/Si phase diagram under pressure

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Ashcroft, Neil; Hoffmann, Roald

    2014-03-01

    In the Ca/Si phase diagram, many compositions are known. In these calcium silicides, silicon atoms form many different organizations, for example, at low pressure silicons are isolated silicon atoms in Ca2Si, Si chains in CaSi and corrugated hexagonal Si layers and a three-dimensional network of sp2 bonds in CaSi2. The crystal structures for these silicides under pressure have not been studied completely, and we are very interested in the new chemical and physical behavior of Si in these silicides under pressure. Therefore, we take a theoretical study of Ca2Si, CaSi and CaSi2 under pressure. We predicted many interesting Si networks in the calcium silicides under pressure. Si atoms form Si chains in Ca2Si, flat quadrangular and hexagonal Si layers in CaSi, and 6-coordinated Si tetrahedrons and 4, 8-coordinated Si octahedrons in CaSi2 at high pressure. All of these predicted structures are dynamically stable. Moreover, these calcium silicides are all metals. Some of them are good candidates to be superconductors. G. G., R. H., and N. W. A. acknowledge support by the NSF through research grant CHE-0910623 and DMR-0907425, and also EFree by the U.S. Department of Energy (Award No. DESC0001057 at Cornell).

  12. Vibrational spectroscopic study of poldervaartite CaCa[SiO3(OH)(OH)].

    PubMed

    Frost, Ray L; López, Andrés; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2015-02-25

    We have studied the mineral poldervaartite CaCa[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485°C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm(-1) is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm(-1) are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm(-1) are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite. PMID:25280331

  13. Electrophoretic deposition of porous CaO-MgO-SiO2 glass-ceramic coatings with B2O3 as additive on Ti-6Al-4V alloy.

    PubMed

    Zhang, Wei; Chen, Xianchun; Liao, Xiaoming; Huang, Zhongbing; Dan, Xiuli; Yin, Guangfu

    2011-10-01

    The sub-micron glass-ceramic powders in CaO-MgO-SiO(2) system with 10 wt% B(2)O(3) additive were synthesized by sol-gel process. Then bioactive porous CaO-MgO-SiO(2) glass-ceramic coatings on Ti-6Al-4V alloy substrates were fabricated using electrophoretic deposition (EPD) technique. After being calcined at 850°C, the above coatings with thickness of 10-150 μm were uniform and crack-free, possessing porous structure with sub-micron and micron size connected pores. Ethanol was employed as the most suitable solvent to prepare the suspension for EPD. The coating porous appearance and porosity distribution could be controlled by adjusting the suspension concentration, applied voltage and deposition time. The heat-treated coatings possessed high crystalline and was mainly composed of diopside, akermanite, merwinite, calcium silicate and calcium borate silicate. Bonelike apatite was formed on the coatings after 7 days of soaking in simulated body fluid (SBF). The bonding strength of the coatings was needed to be further improved. PMID:21858723

  14. The layered antimonides RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho). Filled derivatives of the CaAl{sub 2}Si{sub 2} structure type

    SciTech Connect

    Schäfer, Marion C.; Suen, Nian-Tzu; Raglione, Michaella; Bobev, Svilen

    2014-02-15

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–lithium–antimonides with the formula RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho). They crystallize in the trigonal space group P3{sup ¯}m1 (No. 164, Pearson symbol hP6) with a structure, best viewed as a filled derivative of the common CaAl{sub 2}Si{sub 2} structure type (ternary variant of α-La{sub 2}O{sub 3}). Across the series, the lattice parameters monotonically decrease, following the lanthanide contraction. Temperature-dependent magnetic susceptibility measurements for CeLi{sub 3}Sb{sub 2}, PrLi{sub 3}Sb{sub 2} and TbLi{sub 3}Sb{sub 2} reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with the expected ones for the free-ion RE{sup 3+} ground state. Possible ferromagnetic ordering for PrLi{sub 3}Sb{sub 2} and antiferromagnetic ordering for TbLi{sub 3}Sb{sub 2} are observed in the low temperature range (below 20 K). Tight-binding muffin-tin orbital electronic band structure calculations for LaLi{sub 3}Sb{sub 2} are presented and discussed as well. - Graphical abstract: The large family of rare-earth metal–lithium–antimonides with the formula RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho) crystallize in the trigonal space group P3{sup ¯}m1 (No. 164, Pearson symbol hP6) with a structure that is a filled derivative of the CaAl{sub 2}Si{sub 2} structure type (ternary variant of α-La{sub 2}O{sub 3}). Display Omitted - Highlights: • RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho) constitute an extended family of rare-earth metal–lithium–antimonides. • The layered structure is a filled derivative of the common CaAl{sub 2}Si{sub 2} structure type. • The valence electron count follows the Zintl–Klemm rules. • Electronic band structure calculations for LaLi{sub 3}Sb{sub 2} indicate small band-gap semiconducting behavior.

  15. Menzerite-(Y) a New Species {(Y REE)(Ca Fe2plus)2}[(Mg Fe2plus)(Fe3plus Al)](Si3)O12 from a Felsic Granulite Parry Sound Ontario and a New Garnet End-member (Y2Ca)Mg2(SiO4)3

    SciTech Connect

    E Grew; J Marsh; M Yates; B Lazic; T Armbruster; A Locock; S Bell; M Dyar; H Bernhardt; O Medenbach

    2011-12-31

    Menzerite-(Y), a new mineral species, forms reddish brown cores, n = 1.844 (20), up to 70 {micro}m across, rimmed successively by euhedral almandine containing up to 2.7 wt% Y{sub 2}O{sub 3} and by K-feldspar in a felsic granulite on Bonnet Island in the interior Parry Sound domain, Grenville Orogenic Province, Canada. It is named after Georg Menzer (1897-1989), the German crystallographer who solved the crystal structure of garnet. Single-crystal X-ray-diffraction results yielded space group Ia3d, a = 11.9947(6) {angstrom}. An electron-microprobe analysis of the grain richest in Y (16.93 wt% Y{sub 2}O{sub 3}) gave the following formula, normalized to eight cations and 12 oxygen atoms: {l_brace}Y{sub 0.83}Gd{sub 0.01}Dy{sub 0.05}Ho{sub 0.02}Er{sub 0.07}Tm{sub 0.01}Yb{sub 0.06}Lu{sub 0.02}Ca{sub 1.37}Fe{sub 0.49}{sup 2+}Mn{sub 0.07}{r_brace} [Mg{sub 0.55}Fe{sub 0.42}{sup 2+}Fe{sub 0.58}{sup 3+}Al{sub 0.35} V{sub 0.01}Sc{sub 0.01}Ti{sub 0.08}](Si{sub 2.82}Al{sub 0.18})O{sub 12}, or {l_brace}(Y,REE)(Ca,Fe{sup 2+}){sub 2}{r_brace}[(Mg,Fe{sup 2+})(Fe{sup 3+},Al)](Si{sub 3})O{sub 12}. Synchrotron micro-XANES data gave Fe{sup 3+}/{Sigma}Fe = 0.56(10) versus 0.39(2) calculated from stoichiometry. The scattering power refined at the octahedral Y site, 17.68 epfu, indicates that a relatively light element contributes to its occupancy. Magnesium, as determined by electron-microprobe analyses, would be a proper candidate. In addition, considering the complex occupancy of this site, the average Y-O bond length of 2.0244(16) {angstrom} is in accord with a partial occupancy by Mg. The dominance of divalent cations with Mg > Fe{sup 2+} and the absence of Si at the octahedral Y site (in square brackets) are the primary criteria for distinguishing menzerite-(Y) from other silicate garnet species; the menzerite-(Y) end-member is {l_brace}Y{sub 2}Ca{r_brace}[Mg{sub 2}](Si{sub 3})O{sub 12}. The contacts of menzerite-(Y) with almandine are generally sharp and, in places, cuspate. It is

  16. The 3R polymorph of CaSi{sub 2}

    SciTech Connect

    Nedumkandathil, Reji; Benson, Daryn E.; Grins, Jekabs; Spektor, Kristina; Häussermann, Ulrich

    2015-02-15

    The Zintl phase CaSi{sub 2} commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA′BB′CC′ fashion. In this study we show that sintering of CaSi{sub 2} in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 °C transforms 6R-CaSi{sub 2} quantitatively into 3R-CaSi{sub 2}. In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi{sub 2}. First principles density functional calculations reveal that 6R and 3R-CaSi{sub 2} are energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi{sub 2} stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi{sub 2} should revert to 6R at elevated temperatures, which however is not observed up to 800 °C. 3R-CaSi{sub 2} may be stabilized by small amounts of incorporated hydrogen and/or defects. - Graphical abstract: The common 6R form of CaSi{sub 2} can be transformed quantitatively into 3R-CaSi{sub 2} upon sintering in a hydrogen atmosphere. - Highlights: • Quantitative and reproducible bulk synthesis of the rare 3R polymorph of CaSi{sub 2}. • Clarification of the energetic relation between 3R and conventional 6R form. • 3R-CaSi{sub 2} is presumably stabilized by small amounts of incorporated hydrogen and/or defects.

  17. CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of Gd2Zr2O7 and Sm2Zr2O7

    DOE PAGESBeta

    Wang, Honglong; Bakal, Ahmet; Zhang, Xingxing; Tarwater, Emily; Sheng, Zhizhi; Fergus, Jeffrey W.

    2016-08-08

    Ceramic thermal barrier coatings are applied to superalloys used in gas turbine engineering to increase the operating temperature and the energy conversion efficiency. However, dust consisting of CaO-MgO-Al2O3-SiO2 (CMAS) from the air can be injected into the engines and corrode the thermal barrier coatings. Lanthanide zirconates are promising materials in thermal barrier coatings due to their low thermal conductivities, good phase stability and good corrosion resistance. However, the corrosion resistance mechanism of CMAS on lanthanide zirconates is still not clearly understood. In this work, the corrosion mechanism of Gd2Zr2O7 and Sm2Zr2O7 in CMAS is studied. Here, the results show thatmore » the CMAS can easily react with lanthanide zirconate thermal barrier coatings to form a dense layer, which can resist further corrosion« less

  18. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  19. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  20. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  1. Crystallization, densification and dielectric properties of CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} glass with ZrO{sub 2} as nucleating agent

    SciTech Connect

    Hsiang, Hsing-I; Yung, Shi-Wen; Wang, Chung-Ching

    2014-12-15

    SEM micrographs for the pure CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} glass sintered at 850–1000 °C (a) 850 °C, (b) 900 °C, (c) 950 °C, (d) 1000 °C. - Highlights: • ZrO{sub 2} effects on the crystallization of LTCC glass system were investigated. • ZrO{sub 2} effects on the dielectric properties of LTCC glass system were investigated. • LTCC with a dielectric constant of 6.65 and a low dielectric loss can be obtained. - Abstract: The zirconium oxide effects on the crystallization and dielectric properties of CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} (CMAS) glass were investigated. The results showed that phyllosiloxide and anorthite crystallites were observed in sequence during sintering. For glass added with 8 wt% ZrO{sub 2}, homogeneously dispersed tetragonal ZrO{sub 2} crystallites were observed at 850 °C. The as-prepared CMAS glass–ceramics exhibited a dielectric constant of about 6–7 and a dielectric loss below 0.005 at 100 MHz. The dielectric properties of CMAS glass with 8 wt% ZrO{sub 2} sintered at 850 °C show a low dielectric constant of 6.65 and a dielectric loss tangent of about 2.5 × 10{sup −3}, which provides a promising candidate for LTCC applications.

  2. Crystal and electronic structures of CaAl 2Si 2-type rare-earth copper zinc phosphides RECuZnP 2 ( RE=Pr, Nd, Gd-Tm, Lu)

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Stoyko, Stanislav S.; Cavell, Ronald G.; Mar, Arthur

    2011-01-01

    The quaternary rare-earth phosphides RECuZnP 2 ( RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 °C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl 2Si 2-type structure (Pearson symbol hP5, space group P3¯ m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP 2 and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP 2 model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP 2 ( RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e - per formula unit, as demonstrated by the formation of a solid solution in GdCu xZn 2- xP 2 (1.0≤ x≤1.3), while still retaining the CaAl 2Si 2-type structure. Because the Cu 2 p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP 2 ( RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms.

  3. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1979-01-01

    Cold pressing and sintering techniques were used to produce ceramic test specimens in which the major phase was either Si3N4 or a solid solution having the beta Si3N4 structure. Additional components were incorporated to promote liquid phase sintering. Glass and/or crystalline phase were consequently retained in boundaries between Si3N4 grains which largely determined the physical properties of the bodies. Systems investigated most extensively included R-Si-Al-O-N (R = rare earth element) Zr-Si-Al-O-N, Y-Si-Be-O-N, and R1-R2-Si-O-N. Room temperature and 1370 C modulus of ruptured, 1370 C creep, and oxidation behavior are discussed in terms of phase relationships in a parent quinery, and relavent oxide systems.

  4. Phase relations of CaAl 4Si 2O 11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Ito, Eiji

    2008-04-01

    Phase relations of the CAS phase, CaAl 4Si 2O 11, have been investigated at pressures of 10-23 GPa and at temperatures of 1000-1600 °C by means of the quench method using the Kawai-type high-pressure apparatus. An assemblage of grossular (Gr) + corundum (Cor) + kyanite (Ky) is stable up to about 10 GPa and at the temperatures examined. The assemblage converts into the CAS phase at 1600 °C and higher pressures. Below 1450 °C, however, the assemblage first changes to that of Gr + Cor + stishovite (St), corresponding to the dissociation of Ky into Cor + St, and then converts to the CAS phase with increasing pressure. The Gr + Cor + St-CAS boundary has a negative d P/d T slope, and the Gr + Ky + Cor-CAS boundary has a near horizontal slope. The triple point at which Gr, Cor, Ky, St and the CAS phase coexist is located at around 11.5 GPa and 1450 °C. Stability of the CAS phase up to 23 GPa and 1600 °C indicates that the CAS phase is an important host of Al and Ca in the continental crust subducted into deep mantle. Comparison of the densities between the pyrolitic mantle and the subducted continental crust indicates that the continental crust provides a plunging force to the slab subducted into the upper mantle and transition zone, whereas the continental crust in turn gives a buoyancy in the lower mantle as the consequence of the substantial changes in mineral assemblage in both the continental crust and pyrolitic mantle through the 660 km discontinuity. The formation of the CAS phase plays an important role in changing the density of the subducting continental crust.

  5. Crystallization control for remediation of an FetO-rich CaO-SiO2-Al2O3-MgO EAF waste slag.

    PubMed

    Jung, Sung Suk; Sohn, Il

    2014-01-01

    In this work, the crystallization behavior of synthesized FetO-rich electric arc furnace (EAF) waste slags with a basicity range of 0.7 to 1.08 was investigated. Crystal growth in the melts was observed in situ using a confocal laser scanning microscope, and a delayed crystallization for higher-basicity samples was observed in the continuous cooling transformation and time temperature transformation diagrams. This result is likely due to the polymerization of the melt structure as a result of the increased number of network-forming FeO4 and AlO4 units, as suggested by Raman analysis. The complex incorporation of Al and Fe ions in the form of AlO4 and FeO4 tetrahedral units dominant in the melt structure at a higher basicity constrained the precipitation of a magnetic, nonstoichiometric, and Fe-rich MgAlFeO4 primary phase. The growth of this spinel phase caused a clear compositional separation from amorphous phase during isothermal cooling at 1473 K leading to a clear separation between the primary and amorphous phases, allowing an efficient magnetic separation of Fe compounds from the slag for effective remediation and recycling of synthesized EAF waste slags for use in higher value-added ordinary Portland cement. PMID:24410350

  6. Perrierite-(La), (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-12-01

    Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is

  7. Crystal and electronic structures of CaAl{sub 2}Si{sub 2}-type rare-earth copper zinc phosphides RECuZnP{sub 2} (RE=Pr, Nd, Gd-Tm, Lu)

    SciTech Connect

    Blanchard, Peter E.R.; Stoyko, Stanislav S.; Cavell, Ronald G.; Mar, Arthur

    2011-01-15

    The quaternary rare-earth phosphides RECuZnP{sub 2} (RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 {sup o}C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl{sub 2}Si{sub 2}-type structure (Pearson symbol hP5, space group P3-bar m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP{sub 2} and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP{sub 2} model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP{sub 2} (RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e{sup -} per formula unit, as demonstrated by the formation of a solid solution in GdCu{sub x}Zn{sub 2-x}P{sub 2} (1.0{<=}x{<=}1.3), while still retaining the CaAl{sub 2}Si{sub 2}-type structure. Because the Cu 2p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP{sub 2} (RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms. -- Graphical abstract: The absence of a band gap in the semimetallic quaternary rare-earth phosphides RECuZnP{sub 2} permits the formation of a solid solution such as GdCu{sub x}Zn{sub 2-x}P{sub 2} through hole-doping of the valence band. Display Omitted

  8. Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate silica fume mixtures

    NASA Astrophysics Data System (ADS)

    Pena, P.; Rivas Mercury, J. M.; de Aza, A. H.; Turrillas, X.; Sobrados, I.; Sanz, J.

    2008-08-01

    Partially deuterated Ca 3Al 2(SiO 4) y(OH) 12-4y-Al(OH) 3 mixtures, prepared by hydration of Ca 3Al 2O 6 (C 3A), Ca 12Al 14O 33 (C 12A 7) and CaAl 2O 4 (CA) phases in the presence of silica fume, have been characterized by 29Si and 27Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca 3Al 2(OH) 12 and Al(OH) 3 phases were detected. From the quantitative analysis of 27Al NMR signals, the Al(OH) 3/Ca 3Al 2(OH) 12 ratio was deduced. The incorporation of Si into the katoite structure, Ca 3Al 2(SiO 4) 3-x(OH) 4x, was followed by 27Al and 29Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of 27Al MAS-NMR components associated with Al(OH) 6 and Al(OSi)(OH) 5 environments. The 29Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From 29Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures.

  9. A thermodynamic model for subsolidus equilibria in the system CaO-MgO-Al2O3-SiO2

    NASA Astrophysics Data System (ADS)

    Wood, B. J.; Holloway, J. R.

    1984-01-01

    It is shown that the high temperature enthalpy of solution data for pure phases and solid solutions in the CMAS system are, for 'gabbroic' and 'peridotitic' compositions, consistent with available phase equilibrium data for the MAS, CAS and CMAS systems. A refined set of values of thermodynamic properties for these phases and solid solutions is tabulated. The small differences between the new data set and that of Helgeson et al. (1978) arise from new data on heat capacity and enthalpy being incorporated. The important constraints applied and the major difficulties in fitting which arose are summarized.

  10. Glass-Ceramic Material from the SiO2-Al2O3-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    NASA Astrophysics Data System (ADS)

    Teixeira, S. R.; Romero, M.; Ma Rincón, J.; Magalhães, R. S.; Souza, A. E.; Santos, G. T. A.; Silva, R. A.

    2011-10-01

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  11. Günterblassite, (K,Ca)3 - x Fe[(Si,Al)13O25(OH,O)4] · 7H2O, a new mineral: the first phyllosilicate with triple tetrahedral layer

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Aksenov, S. M.; Pekov, I. V.; Zubkova, N. V.; Britvin, S. N.; Belakovskiy, D. I.; Schüller, W.; Ternes, B.

    2012-12-01

    A new mineral, günterblassite, has been found in the basaltic quarry at Mount Rother Kopf near Gerolstein, Rheinland-Pfalz, Germany as a constituent of the late assemblage of nepheline, leucite, augite, phlogopite, åkermanite, magnetite, perovskite, a lamprophyllite-group mineral, götzenite, chabazite-K, chabazite-Ca, phillipsite-K, and calcite. Günterblassite occurs as colorless lamellar crystals up to 0.2 × 1 × 1.5 mm in size and their clusters. The mineral is brittle, with perfect cleavage parallel to (001) and less perfect cleavage parallel to (100) and (010). The Mohs hardness is 4. The calculated and measured density is 2.17 and 2.18(1) g/cm3, respectively. The IR spectrum is given. The new mineral is optically biaxial and positive as follows: α = 1.488(2), β = 1.490(2), γ = 1.493(2), 2 V meas = 80(5)°. The chemical composition (electron microprobe, average of seven point analyses, H2O is determined by gas chromatography, wt %) is as follows: 0.40 Na2O, 5.18 K2O, 0.58 MgO, 3.58 CaO, 4.08 BaO, 3.06 FeO, 13.98 Al2O3, 52.94 SiO2, 15.2 H2O, and the total is 98.99. The empirical formula is Na0.15K1.24Ba0.30Ca0.72Mg0.16F{0.48/2+}[Si9.91Al3.09O25.25(OH)3.75] · 7.29H2O. The crystal structure has been determined from a single crystal, R = 0.049. Günterblassite is orthorhombic, space group Pnm21; the unit-cell dimensions are a = 6.528(1), b = 6.970(1), c = 37.216(5) Å, V = 1693.3(4) Å3, Z = 2. Günterblassite is a member of a new structural type; its structure is based on three-layer block [Si13O25(OH,O)4]. The strong reflections in the X-ray powder diffraction pattern [ d Å ( I, %) are as follows: 6.532 (100), 6.263 (67), 3.244 (49), 3.062 (91), 2.996 (66), 2.955 (63), and 2.763 (60). The mineral was named in honor of Günter Blass (born in 1943), a well-known amateur mineralogist and specialist in electron microprobe and X-ray diffraction. The type specimen of günterblassite is deposited in the collections of the Fersman Mineralogical Museum of the

  12. Synthesis of cement based CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O (CASH) hydroceramics at 200 and 250 deg. C: Ex-situ and in-situ diffraction

    SciTech Connect

    Meller, Nicola . E-mail: Nicola.Meller@ed.ac.uk; Hall, Christopher; Kyritsis, Konstantinos; Giriat, Gaetan

    2007-06-15

    Hydroceramic compositions in the CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O (CASH) system have potential as geothermal well sealants as well as autoclaved construction materials. We report new data on phase compositions and reaction rates in hydrothermal syntheses at 200 deg. C and 250 deg. C using a commercial API Class G oilwell cement alone, and at 200 deg. C with additions of silica flour and of corundum (alumina). Curing times were in the range 1-240 h. We use both ex-situ laboratory X-ray diffraction and in-situ synchrotron energy-dispersive X-ray diffraction to track rates of reaction. When cement only is hydrated, jaffeite, {alpha}-C{sub 2}SH and portlandite are formed. When silica flour is added a precursory gel forms prior to the crystalline calcium silicate hydrate phases xonotlite and gyrolite. Both XRD and EDD data suggest that the addition of silica flour retards the hydration of the cement at early times (< 24 h). In alumina-containing systems the rate of consumption of clinker phases is the same as in cement only systems. Jaffeite and {alpha}-C{sub 2}SH occur as intermediates but the major end product is a siliceous katoite-type hydrogarnet. Quantitative phase analysis using Rietveld refinement of ex-situ diffraction data gives results which are mostly consistent with stoichiometric constraints in all three systems examined here.

  13. Anisotropic magnetic properties of EuAl2Si2

    NASA Astrophysics Data System (ADS)

    Maurya, Arvind; Kulkarni, Ruta; Thamizhavel, A.; Bonville, P.; Dhar, S. K.

    2015-03-01

    EuAl2Si2 is known to crystallize in the CaAl2Si2-type trigonal structure. We have grown single crystals of EuAl2Si2 by flux method, using Al-Si eutectic (87.8% Al) as self-flux, and investigated their anisotropic magnetic properties by means of magnetization, electrical resistivity and heat capacity in zero and applied magnetic fields, and 151Eu Mössbauer spectroscopy. Magnetic susceptibility data show an antiferromagnetic transition at TN = 33.3 K in agreement with the previously reported value on polycrystalline sample. The isothermal magnetization at 2 K measured along and perpendicular to the c-axis shows anisotropic behaviour, which is rather unexpected as Eu2+ is an S-state ion. The spin flip fields along the two directions are 2.8 and 4.8 T, respectively, while two closely spaced spin-flop transitions in the ab-plane are observed near 1.4 and 1.6 T. The electrical resistivity shows an upturn between TN and 60 K as the temperature is lowered below ~ 60 K, suggesting the presence of antiferromagnetic correlations in the paramagnetic state. Magnetoresistivity at 2 K in 14 T is nearly 1070 % for H // [0001]. The results of heat capacity and 151Eu Mössbauer spectroscopy are in conformity with a bulk transition at 33.3 K.

  14. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  15. Investigation of Liquidus Temperatures and Phase Equilibria of Copper Smelting Slags in the FeO-Fe2O3-SiO2-CaO-MgO-Al2O3 System at PO2 10-8 atm

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Nexhip, Colin; George-Kennedy, David P.; Hayes, P. C.; Jak, E.

    2010-08-01

    Copper concentrates and fluxes can contain variable levels of SiO2, CaO, and MgO in addition to main components Cu, Fe, and S. Metal recovery, slag tapping, and furnace wall integrity all are dependent on phase equilibria and other properties of the phases and are functions of slag composition and operational temperature. Optimal control of the slag chemistry in the copper smelting, therefore, is essential for high recovery and productivity; this, in turn, requires detailed knowledge of the slag phase equilibria. The present work provides new phase equilibrium experimental data in the FeO-Fe2O3-SiO2-CaO-MgO-Al2O3 system at oxygen partial pressure of 10-8 atm within the range of temperatures and compositions directly relevant to copper smelting. For the range of conditions relevant to the Kennecott Utah Copper (South Magna, UT) smelting furnace, it was confirmed experimentally that increasing concentrations of MgO or CaO resulted in significant decreases of the tridymite liquidus temperature and in changes in the position of the tridymite liquidus in the direction of higher silica concentration; in contrast, the spinel liquidus temperatures increase significantly with the increase of MgO or CaO. Olivine and clinopyroxene precipitates appeared at high MgO concentrations in the liquid slag. The liquidus temperature in the spinel primary phase field was expressed as a linear function of 1/(wt pctFe/wt pctSiO2), wt pctCaO, wt pctMgO, and wt pctAl2O3. The positions of each of the liquidus points (wt pctFe)/(wt pctSiO2) at a fixed temperatures in the tridymite primary phase field were expressed as linear functions of wt pctCaO, wt pctMgO, and wt pctAl2O3.

  16. Ge/Si, Ca/Sr and 87Sr/86Sr tracers of biogeochemical sources and cycling of Si and Ca at the Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Derry, L. A.; Meek, K.; Sparks, J. P.

    2014-12-01

    Plant uptake and cycling of nutrients is commonly the largest flux of nutrients in terrestrial ecosystems. Hydrologic and other losses are offset by inputs from atmospheric deposition and weathering. We measured elemental and isotopic compositions from soil solution, soil exchange complex, leaves and sapwater from two canopy species, soil and rock samples, and stream and ground waters at the Shale Hills CZO. Xylem fluid and leaf samples have similar Ge/Si < 1 μmo/mol, consistent with fractionation at the root-soil water interface. Ge/Si in soil waters is higher Ge/Si near the surface and increases over the growing season, indicating preferential uptake of Si. Ca/Sr in leaves of Quercus are significantly higher (450±150) than for Acer (200±100), and Ca/Sr is generally higher in leaves than in xylem, consistent with Ca uptake during transpiration. 87Sr/86Sr in both are similar for a given site, implying that the trees access similar pools of Sr and Ca, although there are site-to-site differences. Data on litterfall rates and transpiration rates yield similar estimates of plant cycling of Ca and Si. 87Sr/86Sr in soil solutions from ridgtop and swale sites are well explained by mixing Sr derived from shale and atmospheric deposition. Valley bottom soil solutions and stream and groundwater samples include Sr and Ca derived from dissolution of diagenetic carbonates, found in drill cuttings. A preliminary estimate of the Sr and Ca stream fluxes and isotopic mass balances imply propagation of a carbonate weathering front of ca. 200 m/Ma, faster than previously reported regolith weathering advance rates based on on cosmogenic nuclides and U series (Jin et al., 2010; Ma et al., 2010). These rates are not strictly comparable and differences are at least in part consistent with the greater depth of the carbonate weathering front (Brantley et al, 2013). The data for Ca, Sr, Si and Ge in soil, soil solutions and stream waters reflects the interaction of slower weathering

  17. Atomic data from the iron project. 3: Rate coefficients for electron impact excitation of boron-like ions: Ne VI, Mg VIII, Al IX, Si X, S XII, Ar XIV, Ca XVI and Fe XXII

    NASA Technical Reports Server (NTRS)

    Zhang, Hong Lin; Graziani, Mark; Pradhan, Anil K.

    1994-01-01

    Collison strengths and maxwellian averaged rate coefficients have been calculated for the 105 transitions among all 15 fine structure levels of the 8 LS terms 2s(sup 2) 2 P(P-2(sup 0 sub 1/, 3/2)), 2s2p(sup 2)(P-4(sub 1/2,3/2,5/2), D-2(sub 3/2, 5/2), S-2(sub 1/2), P-2(sub 1/2, 3/2)), 2p(sup 3)(S-4(sup 0)(sub 3/2), D-2(sup 0 sub 3/2, 5/2), P-2(sup 0 sub 1/2, 3/2)) in highly- charged B-like Ne, Mg, Al, Si, S, Ar, Ca and Fe. Rate coefficients have been tabulated at a wide range of temperatures, depending on the ion charge and abundance in plasma sources. Earlier work for O IV has also been extended to include the high temperature range. A brief discussion of the calculations, sample results, and comparison with earlier works is also given. While much of the new data should be applicable to UV spectral diagnostics, the new rates for the important ground state fine structure transition P-2(sup 0 sub 1/2)-P-2(sup 0 sub 3/2) should result in significant revision of the IR cooling rates in plasmas where B-like ions are prominent constituents, since the new rate coefficients are generally higher by several factors compared with the older data.

  18. Three series of quaternary rare-earth transition-metal pnictides with CaAl2Si2-type structures: RECuZnAs2, REAgZnP2, and REAgZnAs2

    NASA Astrophysics Data System (ADS)

    Stoyko, Stanislav S.; Ramachandran, Krishna K.; Blanchard, Peter E. R.; Rosmus, Kimberly A.; Aitken, Jennifer A.; Mar, Arthur

    2014-05-01

    Three series of quaternary rare-earth transition-metal pnictides REMM‧Pn2 (M=Cu, Ag; M‧=Zn; Pn=P, As) have been prepared by reaction of the elements at 800 °C, with crystal growth promoted through the addition of iodine. The extent of RE substitution is broad in these series: RECuZnAs2 (RE=Y, Lasbnd Nd, Sm, Gd-Lu), REAgZnP2 (RE=La-Nd, Sm, Gd-Dy), and REAgZnAs2 (RE=Lasbnd Nd, Sm, Gdsbnd Dy). Powder and single-crystal X-ray diffraction analysis revealed that they adopt the trigonal CaAl2Si2-type structure (space group P3barm1, Z=1), in which Cu or Ag atoms are disordered with Zn atoms over the unique tetrahedrally coordinated transition-metal site. Magnetic measurements indicated Curie-Weiss behavior for several members of the RECuZnAs2 and REAgZnP2 series. Core-line X-ray photoelectron spectra (XPS) collected on some RECuZnAs2 members corroborate the charge assignment deduced by the Zintl concept for these compounds, (RE3+)(M1+)(Zn2+)(Pn3-)2. Optical diffuse reflectance spectra and valence band XPS spectra established that these compounds are small band-gap semiconductors (up to ~0.8 eV in REAgZnP2) or semimetals (RECuZnAs2). Band structure calculations also support this electronic structure and indicate that the band gap can be narrowed through appropriate chemical substitution (RE=smaller atoms, M=Cu, and Pn=As).

  19. Effective charge on silicon atom in the metal silicides Mg{sub 2}Si and CaSi

    SciTech Connect

    Ishii, Hideshi; Karimov, Pavel; Kawai, Jun; Matsuo, Shuji; Tanaka, Koki

    2005-05-15

    The effective charges of Si in both magnesium (Mg{sub 2}Si) and calcium silicides (CaSi and Ca{sub 2}Si) have been investigated by measuring high-resolution Si K{alpha} x-ray fluorescence spectra. CaSi showed small but positive chemical shifts (+0.03 eV), while the chemical shift of Mg{sub 2}Si was negative (-0.14 eV), as expected from their electronegativity (Ca: 1.00; Mg: 1.31; Si: 1.90). The similarity of the chemical shift for the Fe silicides and the calculations for the free single Si atom suggested that the effective charge of Si for CaSi was positive. From the observations the effective charges on Si in CaSi and Mg{sub 2}Si were estimated to be +0.1 and -0.3 electrons. The discrete variation Hatree-Fock-Slater calculations for Mg{sub 2}Si and CaSi also showed opposite chemical shifts and effective charges: -0.09 eV and -0.35 electrons for Mg{sub 2}Si and +0.09 eV and +0.26 electrons for CaSi, respectively. The composition of the nearest-neighbor atoms of Si, which are Si in CaSi and Mg in Mg{sub 2}Si, cause the opposite effective charges between the two silicides.

  20. Electron radiation damages to dicalcium (Ca2SiO4) and tricalcium (Ca3SiO5) orthosilicates

    NASA Astrophysics Data System (ADS)

    de Noirfontaine, Marie-Noëlle; Dunstetter, Frédéric; Courtial, Mireille; Signes-Frehel, Marcel; Wang, Guillaume; Gorse-Pomonti, Dominique

    2016-05-01

    Electron radiation damages to dicalcium silicate (Ca2SiO4) and tricalcium silicate (Ca3SiO5) are reported for the first time in this paper. With increasing flux, between 2.7 × 1017 and 2.2 × 1022 e- cm-2 s-1, decomposition into nanodomains of crystalline CaO plus an amorphous silica rich phase is first observed for both silicates, then amorphization at higher flux always for both silicates, and finally hole drilling but only for Ca3SiO5. These structural modifications are accompanied by a net reduction of Ca content under the electron beam depending on the silicate species. These radiation effects occur for values of flux and dose larger than in previously studied orthosilicates (like olivines), and much larger than in all tectosilicates.

  1. Glass-ceramic nuclear waste forms obtained by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Caurant, D.

    2010-07-01

    Glass-ceramic materials containing zirconolite (nominally CaZrTi 2O 7) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO 5 and CaAl 2Si 2O 8, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO 2 precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 °C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.

  2. CaSiO3-walstromite inclusions in super-deep diamonds

    NASA Astrophysics Data System (ADS)

    Anzolini, Chiara; Nestola, Fabrizio; Milani, Sula; Brenker, Frank E.

    2015-04-01

    Diamonds are considered the unique way to trap and convey real fragments of deep material to the surface of our planet. Over the last thirty years, great strides have been made in understanding of Earth's lower mantle, mainly thanks to technological and instrumental advances; nevertheless, it is only in the last two decades that a whole range of inclusion parageneses derived from the lower mantle was discovered in diamonds from São Luiz (Brazil) (Kaminsky, 2008 and references therein), thereby establishing a 'window' into the lower mantle. These so-called super-deep diamonds form at depths greater than lithospheric diamonds, more precisely between 300 and 800 km depth, and contain mostly ferropericlase, enstatite (believed to be derived from MgSi-perovskite) and CaSiO3-walstromite (believed to be derived from CaSiO3-perovskite). Even though CaSiO3 not only adopts the perovskite structure with increased pressure and temperature, but also it is considered the dominant Ca-bearing phase in the Earth's lower mantle (Tamai and Yagi, 1989), at the present day there are no reliable literature data on the pressure at which CaSiO3 crystallizes within diamonds. In order to obtain for the first time a pressure of formation value for CaSiO3-walstromite, several inclusions still trapped in a diamond coming from Juina (Mato Grosso, Brazil) were investigated both by in-situ microRaman spectroscopy and in-situ single-crystal X-ray diffraction. First, we applied 'single-inclusion elastic barometry' as improved by Angel et al. (2014) to determine the pressure of formation of the diamond-inclusion pairs. Starting from the maximum remnant pressure value ever reported (Joswig et al., 2003) and adopting the thermoelastic parameters already present in literature (Swamy and Dubrovinsky, 1997; Liu et al., 2012), we obtained an apparent entrapment pressure of ~7.1 GPa, corresponding to ~250 km, at 1500 K. The presence of fractures around the inclusions indicates this is a minimum estimate

  3. X-Ray Videomicroscopy Studies of Eutectic Al-Si Solidification in Al-Si-Cu

    NASA Astrophysics Data System (ADS)

    Mathiesen, R. H.; Arnberg, L.; Li, Y.; Meier, V.; Schaffer, P. L.; Snigireva, I.; Snigirev, A.; Dahle, A. K.

    2011-01-01

    Al-Si eutectic growth has been studied in-situ for the first time using X-ray video microscopy during directional solidification (DS) in unmodified and Sr-modified Al-Si-Cu alloys. In the unmodified alloys, Si is found to grow predominantly with needle-like tip morphologies, leading a highly irregular progressing eutectic interface with subsequent nucleation and growth of Al from the Si surfaces. In the Sr-modified alloys, the eutectic reaction is strongly suppressed, occurring with low nucleation frequency at undercoolings in the range 10 K to 18 K. In order to transport Cu rejected at the eutectic front back into the melt, the modified eutectic colonies attain meso-scale interface perturbations that eventually evolve into equiaxed composite-structure cells. The eutectic front also attains short-range microscale interface perturbations consistent with the characteristics of a fibrous Si growth. Evidence was found in support of Si nucleation occurring on potent particles suspended in the melt. Yet, both with Sr-modified and unmodified alloys, Si precipitation alone was not sufficient to facilitate the eutectic reaction, which apparently required additional undercooling for Al to form at the Si-particle interfaces.

  4. Roll Casting of Al-25%Si

    SciTech Connect

    Haga, Toshio; Harada, Hideto; Watari, Hisaki

    2011-05-04

    Strip casting of Al-25%Si strip was tried using an unequal diameter twin roll caster. The diameter of the lower roll (large roll) was 1000 mm and the diameter of the upper roll (small roll) was 250 mm. Roll material was mild steel. The sound strip could be cast at the speeds ranging from 8 m/min to 12 m/min. The strip did not stick to the roll without the parting material. The primary Si, which existed at centre area of the thickness direction, was larger than that which existed at other area. The size of the primary Si was smaller than 0.2 mm. Eutectic Si was smaller 5 {mu}m. The as-cast strip was ranging from 2 mm to 3 mm thick and its width was 100 mm. The as-cast strip could be hot rolled down to 1 mm. The hot rolled strip was cold rolled. The primary Si became smaller and the pore occurred around the primary Si after the rolling.

  5. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.

  6. Ca-Al-rich chondrules and inclusions in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bischoff, A.; Keil, K.

    1983-01-01

    Ca-Al-rich objects, hitherto mostly found in carbonaceous chondrites, are shown to be widespread, albeit rare, constituents of type 3 ordinary chondrites. Widespread occurrence and textural similarities of Ca-Al-rich chondrules to common, Mg-Fe-rich chondrules suggest that they formed by related processes. It is suggested in this article that Ca-Al-rich chondrules were formed by total melting and crystallization of heterogeneous, submillimeter- to submillimeter-sized dustballs made up of mixtures of high-temperature, Ca-Al-rich and lower-temperature, Na-K-rich components.

  7. Selective Crystallization Behavior of CaO-SiO2-Al2O3-MgO-FetO-P2O5 Steelmaking Slags Modified through P2O5 and Al2O3

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sun, Yongqi; Sridhar, Seetharaman; Zhang, Mei; Guo, Min; Zhang, Zuotai

    2015-10-01

    In this study, the selective crystallization behavior of synthetic FetO-rich steelmaking slags modified by P2O5 and Al2O3 additions was explored using non-isothermal differential scanning calorimetry, X-ray diffraction, and field emission scanning electron microscopy techniques. Continuous cooling transformation diagrams of Fe-enriched and P-enriched phases were constructed. It was found that P2O5 addition can suppress the crystallization due to the increasing viscosity caused by increasing degree of polymerization; however, an increase of Al2O3 content accelerated the precipitation of dystectic MgFeAlO4, copolymerized by [AlO4]-tetrahedra and [FeO4]-tetrahedra units. It was also noted that the content of phosphorus in P-enriched phase can reach a high value as 28.71 wt pct for the slags modified by 15.17 wt pct Al2O3. The non-isothermal crystallization kinetics derived from activation energy and the structure of the slags explained by Raman spectra were further analyzed, which was well in accordance with the above analysis.

  8. Understanding Structural Properties of Carbonate-Silicate Melts: An EXAFS Study on Y and Sr in the System Na2O-CaO-Al2O3-SiO2-CO2

    NASA Astrophysics Data System (ADS)

    Pohlenz, J.; Pascarelli, S.; Mathon, O.; Belin, S.; Shiryaev, A.; Safonov, O.; Murzin, V.; Shablinskaya, K.; Irifune, T.; Wilke, M.

    2014-12-01

    Carbonatite volcanism generally occurs in intra-plate settings associated with continental rifting. The only active carbonatitic volcano is the Oldoinyo Lengai, Tanzania, which generates sodium-rich carbonatites in close association with phonolites and nephelinites1. The processes of carbonatite genesis are still unresolved, however carbonate-bearing melts evidently play a crucial role during mantle melting, in diamond formation and as metasomatic agents. Carbonate melts show extraordinary properties, especially in regard to their low melt viscosities and densities, high surface tensions and electrical conductivities as well as distinct geochemical affinities to a wide range of trace elements2. Understanding the structural properties of carbonate-bearing melts is fundamental to explaining their chemical and physical behaviour as well as modeling processes operating in the deep Earth. Extended X-ray absorption fine structure (EXAFS) spectroscopy is a versatile tool for element specific investigation of the short to medium range structure of melts and glasses. This study focuses on unraveling the influence of carbonate concentration on the structural incorporation of the geochemically important trace elements Y and Sr in silicate and carbonate melts in the system Na2O-CaO-Al2O3-SiO2-CO2. First, we present structural data of silicate glasses with up to 10 wt% CO2, quenched from melts under high temperature and pressure, which indicate that the local structure of Y and Sr is not or only slightly affected by CO2. Melts with higher CO2 contents could not be quenched to glass, so far. Second, we show results of high pressure, high temperature experiments conducted in the Paris Edinburgh-Press, which provides in-situ insight into carbonate-silicate melts. All EXAFS measurements were performed at the synchrotron facility beamlines SAMBA (SOLEIL) and BM23 (ESRF). Information derived from the trace elements' local structure is used to develop a structural model for carbonate

  9. The effect of Si in Al-alloy on electromigration performance in Al filled vias

    NASA Astrophysics Data System (ADS)

    Kageyama, Makiko; Hashimoto, Keiichi; Onoda, Hiroshi

    1998-01-01

    Electromigration performance of vias filled with Al-Si-Cu alloys on Ti glue layers was investigated in comparison with W-stud vias. In Al-Si-Cu filled vias, voids were formed at only a few locations in the test structure, while voids were formed at every via in W-stud via chains. It is supposed that Al moves through the Al-Si-Cu via during electromigration in spite of the existence of a glue layer at the via bottom. This phenomenon was observed only in the vias filled with Al-Si-Cu alloy. Al movement was prohibited in Al-Cu filled vias. In Al-Si-Cu filled vias, an Al-Ti-Si alloy was formed at the via bottom while Al3Ti was formed at Al-Cu filled vias. Al is speculated to move through this Al-Ti-Si alloy during electromigration.

  10. Phase transition of CaSi2 at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Imai, Motoharu

    2001-03-01

    We have studied a pressure effect on alkaline-earth-metal disilicides because their structures have characteristic Si configurations. In situ x-ray diffraction measurements of BaSi2 showed that the structure changes from orthorhombic to cubic, then to trigonal with increasing pressure. The cubic and the trigonal structures are the same as those of SrSi2 and CaSi2 at ambient conditions, respectively. Thus, the structures that appear at high pressure are the same as those at ambient conditions of the other alkaline-earth-metal disilicides with a smaller atomic number metal. This structural sequence is different from those known in elements and the other AB_2-type compounds such as dioxides of 14 group elements. For better understanding of the structural sequence, pressure experiments are necessary for the other alkaline-earth-metal disilicides. In this study, a pressure-temperature phase diagram of CaSi2 is investigated by in situ x-ray diffraction measurements at pressures up to 10.6 GPa and temperatures from 290 to 1300 K. The in situ observation revealed that CaSi2 has a low-temperature, high-pressure phase with a trigonal structure, and a high-temperature, high-pressure phase with a tetragonal structure. The results will be discussed in comparison with the results of BaSi_2. [1] M. Imai et al., Phys. Rev. B58, 11922 (1998).

  11. Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Jie, J. C.; Zou, Q. C.; Wang, H. W.; Sun, J. L.; Lu, Y. P.; Wang, T. M.; Li, T. J.

    2014-08-01

    A low-cost and high-efficiency method to purify Si directly from cheap MG-Si at low temperature was proposed and demonstrated in this paper, which used power frequency rotating magnetic field (RMF) to separate the primary Si from a hypereutectic Al-Si alloy and was followed by the acid peeling. The separation mechanism was based on the flow characteristic of melt under RMF and the cooling condition of the liquid metal. A Si-rich layer with Si content of 65-59 wt% was formed in the periphery of alloy, while the inner microstructure of the alloy was mainly the Al-Si eutectic structure. The refined silicon was collected after aqua regia leaching, and had much fewer typical impurities (Fe, Ti, Ca, B, P) than those in MG-Si, and the metallic impurities besides Al had removal fraction higher than 98%, which is mainly ascribed to the segregation effect of Al-30Si alloy during solidification under RMF.

  12. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1977-01-01

    Cold pressing and sintering techniques were used to produce ceramic bodies in which the major phase was beta prime Si3-Al-O-N4 solid solution. A variety of foreign oxides were used to promote liquid phase sintering, and this resulted in the incorporation of additional solid phases in the ceramic bodies which controlled elevated temperature properties. None of the bodies studied to date exhibited both adequate high temperature mechanical properties and oxidation resistance. Criteria are suggested to guide the formulation of bodies with improved high temperature properties.

  13. Ion implantation and diffusion of Al in a {SiO 2}/{Si} system

    NASA Astrophysics Data System (ADS)

    La Ferla, A.; Galvagno, G.; Rinaudo, S.; Raineri, V.; Franco, G.; Camalleri, M.; Gasparotto, A.; Carnera, A.; Rimini, E.

    1996-08-01

    The diffusion and segregation of ion implanted Al in SiO 2 and Si layers were studied for several experimental conditions. Al ions were implanted into SiO 2, Si and through a SiO 2 layer into Si substrates at several energies (80, 300, 650 and 6000 keV) and doses (3.4 × 10 14-1 × 10 15 cm -2). The Al diffusion coefficient in SiO 2 was measured at 1200°C for times up to 5 days, and it results five orders of magnitude lower than in Si. The experiments show that the Al atoms implanted into Si do not out-diffuse during thermal treatments from the SiO 2 capping layer, but segregate at the {SiO 2}/{Si} interface. The high segregation coefficient gives rise to a trapping of Al into the oxide layer comparable to the out-diffusion of Al from uncapped Si substrates. The determined parameters for Al diffusion and segregation in the {SiO 2}/{Si} system were introduced in a simulation code to calculate the Al diffusion profiles which result in agreement with the experimental data.

  14. Synthetic gedrite: a stable phase in the system MgO-Al2O3-SiO2-H2O (MASH) at 800°C and 10kbar water pressure, and the influence of FeNaCa impurities

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Schreyer, W.; Maresch, W. V.

    Seeded, solid-media piston-cylinder runs of unusually long duration up to 31 days indicate growth or persistence of synthetic gedrite of the composition □Mg6Al[AlSi7O22](OH)2(=6:1:7), prepared from the purest chemicals available, at 10kbar water pressure and 800°C. Conversely, breakdown was observed at 11kbar and 850°C to aluminous enstatite, Al2SiO5, and a melt of the composition MgO.Al2O3.8SiO2. Thus, pure gedrite free of iron, sodium, and calcium is likely to have only a small PT stability field in the MASH system, estimated as 10+/-1kbar, 800+/-20°C, even though metastable growth of gedrite can be observed over a larger PT range. A second starting material with the anhydrous composition 5MgO . 2Al2O3 . 6SiO2 also yielded gedrite of the composition 6:1:7, together with more aluminous phases such as kyanite, corundum or sapphirine, thus suggesting that the end-member gedrite defined as □Mg5Al2[Al2Si6O22](OH)2(=5:2:6) by the IMA Commission on New Minerals and Mineral Names probably does not exist. With the use of this second starting material, which contains FeNaCa impurities, growth of 6:1:7-gedrite was observed over a still wider PT-range. Seeded runs indicate that the true stability field of such slightly impure 6:1:7-gedrites may also be larger than that of the pure MASH phase and extend at least to 15kbar, 800°C. There is, thus, a remarkable stabilization effect on the orthoamphibole structure by impurities amounting only to a total of less than one weight percent of oxides in the starting material. The gedrites synthesized are structurally well ordered amphiboles nearly free of chain multiplicity faults, as revealed by HRTEM. The X-ray diffraction work on the gedrites synthesized yielded the smallest cell volume yet reported for this phase. The small stability field of the pure MASH gedrite is intersected by the upper pressure stability limit of hydrous cordierite for excess-H2O conditions, thus leading to complicated phase relations for both gedrite

  15. Catalystlike behavior of Si adatoms in the growth of monolayer Al film on Si(111).

    PubMed

    Teng, Jing; Zhang, Lixin; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Wang, Enge; Ebert, Philipp; Sakurai, T; Wu, Kehui

    2010-07-01

    The formation mechanism of monolayer Al(111)1x1 film on the Si(111) radical3x radical3-Al substrate was studied by scanning tunneling microscopy and first-principles calculations. We found that the Si adatoms on the radical3x radical3-Al substrate play important roles in the growth process. The growth of Al-1x1 islands is mediated by the formation and decomposition of SiAl(2) clusters. Based on experiments and theoretical simulations we propose a model where free Si atoms exhibit a catalystlike behavior by capturing and releasing Al atoms during the Al film growth. PMID:20614981

  16. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  17. Moessbauer effect and X-ray distribution function analysis in complex Na{sub 2}O-CaO-ZnO-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glasses and glass-ceramics

    SciTech Connect

    Romero, M.; Rincon, J.M.; Musik, S.; Kozhukharov, V.

    1999-05-01

    Moessbauer spectroscopy at room temperature was carried out to determine the state of iron ions in complex glasses and glass-ceramics in the SiO{sub 2}-CaO-ZnO-Na{sub 2}O-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3} system. Isomer shift values of the glasses suggest that Fe{sup 3+} and Fe{sup 2+} are in tetrahedral and octahedral coordination, respectively. The spectrum of the glass-ceramic shows that about 60 wt% total iron is in the magnetite phase. The Fe{sup +3}/Fe{sup +2} ratio varies with the total iron oxide content of the glasses, indicating that the vitreous network is more distorted when the iron content is greater. X-ray diffraction measurements were carried out to obtain the radial distribution function (RDF). The interatomic distances for Si-Si and Si-O have been determined. The complex composition of these glasses does not allow the estimation of Al-O and Fe-O distances.

  18. Reoxidation of Aluminum in Fe- Al- M (M = C, Mn, and Ti) melts with CaO-Al2 O3-Fe t O (3 mass pct) slags

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Ro; Suito, Hideaki

    1996-06-01

    An Fe-0.01 to 0.5 mass pct Al alloy and an Fe-0.003 to 0.71 mass pct Al-1 mass pct M (M = C, Mn, and Ti) alloy were reoxidized with the CaO-Al2O3-FetO (3 mass pct) slags at 1873 K in an Al2O3 or CaO crucible for 5 and 60 minutes. The contents of acid-insoluble Al, total O, and alloying element M in metal as well as those of M and FetO in slag were measured as a function of total Al content. On the basis of the present and previous results for Fe- Al- Te alloys, the effect of alloying elements on the degree of supersaturation with respect to the Al2O3 precipitation was studied. As a result, the supersaturation phenomenon was observed in all experiments at 5 minutes, but in the experiments at 60 minutes, it was observed only in Fe- Al and Fe- Al- Ti alloys. No supersaturation was observed in the reoxidation of Si in Fe-0.13 to 0.98 mass pct Si alloys with the CaO-SiO2-FetO (3 mass pct) slags in a CaO crucible at 5 and 60 minutes.

  19. Effect of boron on the microstructure of near-eutectic Al-Si alloys

    SciTech Connect

    Wu Yuying . E-mail: wyy532001@163.com; Liu Xiangfa; Bian Xiufang

    2007-02-15

    The effect of boron on the microstructure of a near-eutectic Al-Si alloy (ZL109) was investigated by scanning electron microscopy (SEM) and electron beam microprobe analysis (EPMA). It was found that {alpha}-Al dendrites and eutectic clusters were significantly refined by the addition of boron. Another interesting discovery is that the near-eutectic alloy exhibited hypereutectic structure characteristics when the level of boron added exceeds 0.3%, i.e., primary Si is precipitated in the eutectic microstructure. A new type of nucleation substrate for the primary Si is found, Al {sub x}Ca {sub m}B {sub n}Si. This appears to be the main reason for the precipitation of primary Si.

  20. Mechanism of Corrosion in Al-Si-Cu

    NASA Astrophysics Data System (ADS)

    Hayasaka, Nobuo; Koga, Yuri; Shimomura, Koji; Yoshida, Yukimasa; Okano, Haruo

    1991-07-01

    An Al-Cu local cell was formed between the Cu precipitation and adjacent Al in an Al-Si-Cu alloy when Cu was added in excess to the alloy. Once an Al-Cu local cell was formed, corrosion took place simply by dipping the alloy in deionized water without any contamination. Furthermore, it was found that corrosion was enhanced at the Al-Si-Cu lines in contact with the p+-n junction of Si. The reason for this is that holes are injected into Al-Si-Cu from p+-Si due to electromotive force produced by light irradiation and an external circuit connecting the alloy and n-Si formed by the adsorption of moisture on the surface. Furthermore, it was found that the irradiation of light with a wavelength between 320 to 380 nm was most effective in enhancing the corrosion reaction.

  1. Vacuum ultraviolet thin films. I - Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. II - Vacuum ultraviolet all-dielectric narrowband filters

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Spann, James F.; Torr, Marsha R.

    1990-01-01

    An iteration process matching calculated and measured reflectance and transmittance values in the 120-230 nm VUV region is presently used to ascertain the optical constants of bulk MgF2, as well as films of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 deposited on MgF2 substrates. In the second part of this work, a design concept is demonstrated for two filters, employing rapidly changing extinction coefficients, centered at 135 nm for BaF2 and 141 nm for SiO2. These filters are shown to yield excellent narrowband spectral performance in combination with narrowband reflection filters.

  2. Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2 at 101.325 kPa (1 atm) between 273.15 and 1800 K

    USGS Publications Warehouse

    Haas, John L., Jr.; Robinson, Glipin R., Jr.; Hemingway, Bruch S.

    1981-01-01

    The standard thermodynamic properties of phases in the lime‐alumina‐silica‐ water system between 273.15 and 1800 K at 101.325 kPa (1 atm) were evalated from published experimental data. Phases included in the compilation are boehmite, diaspore, gibbsite, kaolinite, dickite, halloysite, andalusite, kyanite, sillimanite, Ca‐Al cliniopyroxene, anorthite, gehlenite, grossular, prehnite, zoisite, margarite, wollastonite, cyclowollastonite ( = pseudowollastonite), larnite, Ca olivine, hatrurite, and rankinite. The properties include heat capacity, entropy, relative enthalpy, and the Gibbs energy function of the phases and the enthalpies, Gibbs energies, and equilibrium constants for formation both from the elements and the oxides. Tabulated values are given at 50 K intervals with the 2‐sigma confidence limit at 250 K intervals. Summaries for each phase give the temperature‐ dependent functions for heat capacity, entropy, and relative enthalpy and the experimental data used in the final evaluation.

  3. Itinerant magnetism in CaMn2Al10

    NASA Astrophysics Data System (ADS)

    Simonson, Jack; Steinke, Lucia; Zellman, Shelby; Kistner-Morris, Jedediah; Puri, Akshat; Andrews, Evon; Aronson, Meigan

    2015-03-01

    We report the synthesis and basic properties of CaMn2Al10, a new itinerant magnet that is nearly isostructural with the known quantum critical compound YFe2Al10. Magnetic susceptibility measurements performed on single crystals reveal a cusp at 2 K. Electrical resistivity measurements similarly have a maximum at this temperature, and heat capacity measurements show a broad peak with total entropy of ~ 10 % R ln2. These results together with those of neutron diffraction measurements suggest that CaMn2Al10 is weakly magnetic and potentially close to a quantum critical point. Research supported by a DOD National Security Science and Engineering Fellowship via the AFOSR.

  4. CVD of SiC and AlN using cyclic organometallic precursors

    NASA Technical Reports Server (NTRS)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  5. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  6. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.

    2016-05-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  7. Identification of tetrahedrally ordered Si-O-Al environments in molecular sieves by { 27Al}- 29Si REAPDOR NMR

    NASA Astrophysics Data System (ADS)

    Ganapathy, S.; Kumar, Rajiv; Montouillout, V.; Fernandez, C.; Amoureux, J. P.

    2004-05-01

    The silicon sites tetrahedrally connected to aluminum in framework positions of a molecular sieve may be identified by a selective reintroduction of the hetero-nuclear 27Al- 29Si dipolar interaction through Rotational Echo Adiabatic Passage DOuble Resonance (REAPDOR) NMR. In this rotor synchronized 29Si MAS experiment, an effective dipolar dephasing of the Si-O-Al, over Si-O-Si, environments is shown to aid in the identification of silicon sites in the immediate vicinity of aluminum. Application of the method in the structurally interesting and novel molecular sieve ETAS-10 provides valuable insights on the details of aluminum substitution in the zeolite lattice and further leads to the first direct NMR estimate of Al-Si distance ( rAl-Si=323±5 pm) in ETAS-10.

  8. Validated thermodynamic prediction of AlP and eutectic (Si) solidification sequence in Al-Si cast alloys

    NASA Astrophysics Data System (ADS)

    Liang, S. M.; Schmid-Fetzer, R.

    2016-03-01

    The eutectic microstructure in hypoeutectic Al-Si cast alloys is strongly influenced by AlP particles which are potent nuclei for the eutectic (Si) phase. The solidification sequence of AlP and (Si) phases is, thus, crucial for the nucleation of eutectic silicon with marked impact on its morphology. This study presents this interdependence between Si- and P-compositions, relevant for Al-Si cast alloys, on the solidification sequence of AlP and (Si). These data are predicted from a series of thermodynamic calculations. The predictions are based on a self-consistent thermodynamic description of the Al-Si-P ternary alloy system developed recently. They are validated by independent experimental studies on microstructure and undercooling in hypoeutectic Al-Si alloys. A constrained Scheil solidification simulation technique is applied to predict the undercooling under clean heterogeneous nucleation conditions, validated by dedicated experimental observations on entrained droplets. These specific undercooling values may be very large and their quantitative dependence on Si and P content of the Al alloy is presented.

  9. Eutectic nucleation in hypoeutectic Al-Si alloys

    SciTech Connect

    Nafisi, S. Ghomashchi, R.; Vali, H.

    2008-10-15

    The nucleation mechanism of eutectic grains in hypoeutectic Al-Si foundry alloys has been investigated by examining deep etched specimens in high-resolution field emission gun scanning electron microscope (FEG-SEM) and by using in-situ Focused Ion Beam (FIB) milling and microscopy. Both unmodified and Sr-modified alloys were studied to characterize the nucleation mechanism of eutectic silicon flakes and fibers. It is proposed that following nucleation of eutectic Al on the primary {alpha}-Al dendrites, fine Si particles form at the solidification front upon which the eutectic Si flakes and fibers could develop. The formation of small Si particles is attributed to Si enrichment of the remaining melt due to the formation of eutectic Al (aluminum spikes) at the eutectic temperature. A hypothesis is then proposed to explain the mechanism of eutectic grains formation with main emphasis on the eutectic Si phase.

  10. Valence-electron spectral change and charge transfer mechanism of CaSi 2 during CaSi 2H 2O reaction

    NASA Astrophysics Data System (ADS)

    Abe, S.; Nakayama, H.; Nishino, T.; Iida, S.

    1997-04-01

    The changes in the valence electron states of CaSi 2 during the chemical reaction with H 2O have been investigated by Auger valence electron spectroscopy (AVES). The drastic changes in the valence electron spectra of 3s and 3p states, which are caused by the oxidization of the Si atoms in CaSi 2, were observed in Si[2s, 2p, V] spectra for CaSi 2 after the reaction. In particular, the Si[2s, 2p, V] spectra of CaSi 2 samples reacted with H 2O at 60 or 80°C for 3 h were almost similar to that of SiO 2. The peak shift of Ca[2p, 3p, 3p] Auger transition toward the lower energy side has been observed, suggesting the formation of bonds between Ca 3p and O orbitals. New peaks due to CaO or CaOH bonds also appeared in the valence electron region of Ca[2p, 3p, V] Auger transition. The charge transfer and the chemical-bond formation can be well demonstrated by AVES during the CaSi 2H 2O reaction.

  11. Si adatoms as catalyst for the growth of monolayer Al film on Si(111)

    NASA Astrophysics Data System (ADS)

    Teng, Jing; Zhang, Lixin; Wu, Kehui; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Ebert, Philipp; Sakurai, Toshio; Wang, Enge

    2010-03-01

    Recently, we reported the growth of atomically smooth Al(111) films on Si(111) with continuously controllable thickness down to the extreme level of 1 ML. Here, we study the underlying unexpected Si adatom-mediated clustering-melting mechanism by scanning tunneling microscopy and by the first-principles calculations. The Si adatoms in the initial Si(111)3x3-Al surface act as seeds to form SiAl2 clusters. The clusters are then transformed into Al(111)1x1 by incorporating further incoming Al atoms and spontaneously releasing the Si atoms, which then participate in the next cycle of the process. As a result, a two-dimensional growth of monolayer Al(111) is achieved.

  12. Solid-state {sup 27}Al and {sup 29}Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures

    SciTech Connect

    Pena, P.; Rivas Mercury, J.M.

    2008-08-15

    Partially deuterated Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub y}(OH){sub 12-4y}-Al(OH){sub 3} mixtures, prepared by hydration of Ca{sub 3}Al{sub 2}O{sub 6} (C{sub 3}A), Ca{sub 12}Al{sub 14}O{sub 33} (C{sub 12}A{sub 7}) and CaAl{sub 2}O{sub 4} (CA) phases in the presence of silica fume, have been characterized by {sup 29}Si and {sup 27}Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca{sub 3}Al{sub 2}(OH){sub 12} and Al(OH){sub 3} phases were detected. From the quantitative analysis of {sup 27}Al NMR signals, the Al(OH){sub 3}/Ca{sub 3}Al{sub 2}(OH){sub 12} ratio was deduced. The incorporation of Si into the katoite structure, Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x}, was followed by {sup 27}Al and {sup 29}Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of {sup 27}Al MAS-NMR components associated with Al(OH){sub 6} and Al(OSi)(OH){sub 5} environments. The {sup 29}Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From {sup 29}Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl{sub 2}O{sub 4}-microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca{sub 3}Al{sub 2.0{+-}}{sub 0.2}(SiO{sub 4}){sub 0.9{+-}}{sub 0.2}(OH){sub 1.8} crystal surrounded by unreacted amorphous silica spheres.

  13. Momentum shift of Dirac cones in the silicene-intercalated compound CaSi2

    NASA Astrophysics Data System (ADS)

    Dutta, Sudipta; Wakabayashi, Katsunori

    2015-05-01

    Recent experimental realization of CaSi2 paves the way of restoring the Dirac dispersion in layered materials by means of intercalation [E. Noguchi et al., Adv. Mater. 27, 856 (2015), 10.1002/adma.201403077]. Here we investigate this new material with several possible stacking sequences within ab initio calculations. The robust Dirac dispersion, a characteristic of monolayer honeycomb lattice, moves below the Fermi energy due to electron doping of silicene layers by intercalated Ca atoms. Moreover, the Dirac cone shifts away from the high symmetric point of the hexagonal Brillouin zone with the opening of a small gap. This happens due to the sublattice symmetry breaking and consequent enhanced asymmetric interlayer hopping, enforced by the enhanced buckling of the honeycomb layers. Our further studies on Ca intercalated multilayer germanene compound provide the microscopic understanding of the Dirac electrons in intercalated buckled layered materials.

  14. Numerical Simulation Microstructure Morphology Evolution and Solute Microsegregation of Al-Si-Cu Ternary Alloys during Solidification Process

    NASA Astrophysics Data System (ADS)

    Xie, Shuisheng; Huang, Guojie; Cheng, Lei; Fu, Yao; Li, Qiang

    2011-06-01

    A 2D microstructure and solute microsegregation model of Al-Si-Cu ternary alloys is presented by using cellular automaton(CA) method. In CA model, an improved algorithm was presented that abandoned the assumption of solid/liquid interface position and velocity so as to calculate the solid fraction in the solid/liquid interface unit. Then, using CA model, a dendrite of Al-Si-Cu ternary alloys is simulated. Finally, solidification microstructure and solute microsegregation are simulated, and the simulated results can reflect the microstructure and different solute microsegregation during solidification process.

  15. Temperature dependence diode parameters studies of Al/CuPc/n-Si/Al structure

    NASA Astrophysics Data System (ADS)

    Kumar, Ratnesh; Kaur, Ramneek; Sharma, Mamta; Kaur, Maninder; Tripathi, S. K.

    2015-08-01

    This paper presents the fabrication of Al/CuPc/n-Si/Al metal-organic-semiconductor diode. The copper phthalocyanine as organic layer is deposited on Si substrate by thermal evaporation technique. The temperature dependent current-voltage measurements are performed on Al/CuPc/n-Si structure. The important diode parameters i.e. the barrier height and ideality factor have been calculated. The temperature dependence of barrier height and ideality factor has been studied.

  16. Texture development in SiC-seeded AlN

    SciTech Connect

    Sandlin, M.S.; Bowman, K.J.; Root, J.

    1997-01-01

    Polycrystalline AlN specimens containing 15 volume percent SiC seed particles were slip-cast then hot-pressed at 1,800 C. These processing steps resulted in oriented SiC platelets in a nearly random AlN matrix. Samples were then annealed for up to 18 hours at 2,150 C under nitrogen. Quantitative texture measurements of the AlN and SiC basal poles, and powder diffraction measurements were performed using neutron and X-ray diffraction. The results indicate that SiC platelets effectively seed AlN-SiC alloy textures by a coalescence and growth mechanism during annealing. Texture intensification does not occur in AlN specimens without SiC platelet additions, or in specimens containing non-oriented SiC powder. The most effective seeing was observed in specimens containing 15 volume percent SiC platelets. Optical microscopy and electron microscopy were used in conjunction with texture analysis to elucidate texture development mechanisms.

  17. Morphology Control for Al2O3 Inclusion Without Ca Treatment in High-Aluminum Steel

    NASA Astrophysics Data System (ADS)

    He, Shengping; Chen, Gujun; Guo, Yintao; Shen, Boyi; Wang, Qian

    2015-04-01

    Nozzle blockage is a major problem during continuous casting of Al-containing steel. Herein, we analyzed the thermodynamic equilibrium behavior between aluminum and oxygen in steel at 1873 K (1600 °C) and demonstrated that, the dissolved [O] initially decreases with increasing the dissolved [Al] until approximately 0.1 wt pct [Al], and after that, the dissolved [O] increases with dissolved [Al]. Thus, for high-aluminum steel with 1.0 wt pct dissolved [Al], the precipitation of Al2O3 inclusion can be avoided during cooling from deoxidation temperature to the liquidus temperature, if the actual dissolved [O] can be kept from increasing when the dissolved [Al] further increases from 0.1 to 1.0 wt pct. Hence, a method of inclusion control for high-aluminum steel without traditional Ca treatment technology was proposed based on the thermodynamic analysis. Industrial tests confirmed that low-melting point Ca-aluminate inclusions were observed typically through a slag washing with SiO2-minimized high-basicity slag during tapping, accompanied by two-step Al-adding process for production of high-aluminum steel. Moreover, there was no nozzle clogging occurred for five heats of continuous casting.

  18. Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ming; Chen, Yung-Yu; Felmetsger, Valery V.; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G.; Pisano, Albert P.

    2013-02-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C-SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C-SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C-SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C-SiC/Si multilayer structure exhibits a phase velocity of 5528 m s-1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C-SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C-SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C-SiC layers are applicable to timing and sensing applications in harsh environments.

  19. Measurement of the Phase Diagram of the SiO2-CaCl2 System and Liquid Area Study of the SiO2-CaO-CaCl2 System

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Morita, Kazuki

    2016-06-01

    To optimize the process of boron removal from molten silicon, the slag refining treatment using the CaO-SiO2-CaCl2 slag system has been proven to be effective. However, the phase relations of the SiO2-CaCl2 and CaO-SiO2-CaCl2 systems have not been reported yet. Thus, in this study, the phase diagram of the SiO2-CaCl2 system was determined by using thermogravimetric differential thermal analysis (TG-DTA). Moreover, the liquid area of the CaO-SiO2-CaCl2 ternary system at 1723 K (1450 °C) was also measured by using TG-DTA and morphological observations.

  20. A Structural Molar Volume Model for Oxide Melts Part II: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Ternary and Multicomponent Systems

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model based on the silicate tetrahedral Q-species has been developed to accurately predict the molar volume of molten oxides. In this study, the molar volumes of ternary and multicomponent melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system are reviewed and compared with the predicted molar volumes from the newly developed structural model. The model can accurately predict the molar volumes using binary model parameters without any ternary or multicomponent parameters. The nonlinear behavior in the molar volume of silicate melts is well predicted by the present model.

  1. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    PubMed Central

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  2. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    NASA Astrophysics Data System (ADS)

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  3. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal.

    PubMed

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  4. Aluminian Low-Ca Pyroxene in a Ca-Al-rich Chondrule from the Semarkona Meteorite

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    A Ca-AI-rich chondrule (labeled G7) from the Semarkona LL3.0 ordinary chondrite (OC) consists of 73 vol% glassy mesostasis, 22 vol% skeletal forsterite. 3 vol% fassaite (i.e., Al-Ti diopside), and 2 vol% Al-rich, low-Ca pyroxene. The latter phase, which contains up to 16.3 wt% A1203, is among the most AI-rich, low-Ca pyroxene grains ever reported. It is inferred that 20% of the tetrahedral sites and 13% of the octahedral sites in this grain are occupied by Al. Approximately parallel optical extinction implies that the Al-rich, low-Ca pyroxene grains are probably orthorhombic, consistent with literature data that show that A1203 stabilizes the orthoenstatite structure relative to protoenstatite at low pressure. The order of crystallization in the chondrule was forsterite, AI-rich low-Ca pyroxene, and fassaite; the residual liquid vitrified during chondrule quenching. Phase relationships indicate that, for a G7-composition liquid at equilibrium, spinel and anorthite should crystallize early and orthopyroxene should not crystallize at all. The presence of AI-rich orthopyroxene in G7 is due mainly to the kinetic failure of anorthite to crystallize; this failure was caused by quenching of the G7 precursor droplet. Aluminum preferentially enters the relatively large B tetrahedra of orthopyroxene; because only one tetrahedral size occurs in fassaite, this phase contains higher mean concentrations of Al2O3 than the Al-rich orthopyroxene (17.8 and 14.7 wt%, respectively). Chondrule G7 may have formed by remelting an amoeboid olivine inclusion that entered the OC region of the solar nebula during an episode of chondrule formation.

  5. Optical Properties of Blue-Light-Emitting (Ca,Sr)Mg2Si3O9:Eu2+ Phosphor

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ju; Choi, Sung Hwan; Kim, Kyung Pil; Shin, Hyun Ho; Yoo, Jae Soo

    2010-10-01

    For light-emitting diode (LED) excitation at 400 nm, the optical properties of a Eu2+-activated CaO-SrO-MgO-SiO2 material system were investigated. All the materials were synthesized by solid state reaction. In particular, (Ca,Sr)Mg2Si3O9:Eu2+, which has the same crystal structure as CaMgSi2O6, was found to be promising as a blue-light-emitting phosphor for near UV LED application. The luminance intensity was optimized by controlling the Eu2+ concentration and the composition of the host lattice. The ratio of calcium ions to strontium ions was a convenient parameter for adjusting the maximum excitation peak to 400 nm, which is favorable for near UV LED excitation. The highest luminance intensity of Ca1-x-ySryMg2Si3O9:Eux2+ under 405 nm excitation was achieved at the Eu2+ concentration of x=0.01 and a Sr2+ concentration of y=0.3. The luminance intensity of (Ca,Sr)Mg2Si3O9:Eu2+ was found to be superior to that of a commercial blue-light-emitting BaMgAl10O17:Eu2+ phosphor, which is used for near-UV LED excitation.

  6. SiAlON ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, M.H.; Park, B.H.

    1994-05-31

    A method of fabricating a SiAlON ceramic body includes: (a) combining quantities of Si[sub 3]N[sub 4], Al[sub 2]O[sub 3] and CeO[sub 2] to produce a mixture; (b) forming the mixture into a desired body shape; (c) heating the body to a densification temperature of from about 1,550 C to about 1,850 C; (d) maintaining the body at the densification temperature for a period of time effective to densify the body; (e) cooling the densified body to a devitrification temperature of from about 1,200 C to about 1,400 C; and (f) maintaining the densified body at the devitrification temperature for a period of time effective to produce a [beta][prime]-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the [beta][prime]-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: (a) an amorphous phase; and (b) a crystalline phase, the crystalline phase comprising [beta][prime]-SiAlON having lattice substituted elemental or compound form Ce.

  7. Thermodynamics of Reducing Refining of Phosphorus from Si-Mn Alloy Using CaO-CaF2 Slag

    NASA Astrophysics Data System (ADS)

    Shin, Jae Hong; Park, Joo Hyun

    2012-12-01

    The thermodynamic behavior of phosphide ions in the CaO-CaF2 flux in equilibrium with a SiMn(-Fe) alloy melt was investigated under a strongly reducing atmosphere at 1823 K (1550 °C). The phosphide capacity increased with increasing CaO concentration in the flux before reaching a constant value. The composition for the saturating capacity is in good agreement with the saturation content of CaO in the CaO-CaF2 flux at 1823 K (1550 °C). The relationship between the phosphide capacity and the activity of CaO in the flux exhibited a linear relationship on the logarithmic scale, indicating that phosphorus was removed from the SiMn(-Fe) melt by the reducing refining mechanism.

  8. Novel CaO-SiO2 sorbent and bifunctional Ni/Co-CaO/SiO2 complex for selective H2 synthesis from cellulose.

    PubMed

    Zhao, Ming; Yang, Xiaoshuang; Church, Tamara L; Harris, Andrew T

    2012-03-01

    Catalysis- and sorption-enhanced biomass gasification is a promising route to high-purity hydrogen (H(2)); however, most CaO-based sorbents for CO(2) capture have poor surface area and mechanical properties, lose carrying capacity over multiple uses, and have insufficient porosity to accommodate extra catalyst sites. We aimed to develop a high-surface-area CaO-SiO(2) framework onto which catalysts could be grafted. The best CaO-SiO(2) sorbent (n(Ca)/n(Si) = 2:1) maintained a CaO conversion of 65% even after 50 carbonation-decarbonation cycles, better than commercial micrometer-sized CaO or tailored CaO, because of stabilization via Ca-O-Si interactions and an ordered porous structure. Bimetallic catalyst grains (Ni/Co alloy, <20 nm) could be evenly loaded onto this structure by impregnation. The resulting bifunctional complex produced H(2) at nearly the same rate as a mixture of catalyst and commercial CaO while using less total sorbent/catalyst. Furthermore, this complex was much more durable due to its higher coking resistance and stable structure. After 25 carbonation-decarbonation cycles, the new catalyst-sorbent complex enhanced the H(2) yield from cellulose far more than a mixture of catalyst and commercial CaO did following the same treatment. PMID:22250813

  9. Rate of reactions between D 2O and Ca xAl yO z

    NASA Astrophysics Data System (ADS)

    Christensen, A. Nørlund; Lehmann, M. S.

    1984-02-01

    The rate of the reaction between D 2O and the calcium aluminum oxides Ca 3Al 2O 6, Ca 5Al 6O 14, CaAl 2O 4, and CaAl 4O 7 was investigated by on-line neutron diffraction powder methods at temperatures from room temperature to 100°C. The rate of the reaction increases with increasing calcium content of the compounds and with increasing temperature for each of the compounds. The crystallographic stable hydrate Ca 3Al 2(OD) 12 is obtained from CaAl 4O 7 and CaAl 2O 4 at temperatures above 63°C, from Ca 5Al 6O 14 at temperatures above 49°C, and from Ca 3Al 2O 6 at temperatures as low as 7°C.

  10. Refinement of primary Si grains in Al-20%Si alloy slurry through serpentine channel pouring process

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-kai; Mao, Wei-min; Liu, Zhi-yong; Wang, Dong; Yue, Rui

    2016-05-01

    In this study, a serpentine channel pouring process was used to prepare the semi-solid Al-20%Si alloy slurry and refine primary Si grains in the alloy. The effects of the pouring temperature, number of curves in the serpentine channel, and material of the serpentine channel on the size of primary Si grains in the semi-solid Al-20%Si alloy slurry were investigated. The results showed that the pouring temperature, number of the curves, and material of the channel strongly affected the size and distribution of the primary Si grains. The pouring temperature exerted the strongest effect, followed by the number of the curves and then the material of the channel. Under experimental conditions of a four-curve copper channel and a pouring temperature of 701°C, primary Si grains in the semi-solid Al-20%Si alloy slurry were refined to the greatest extent, and the lath-like grains were changed into granular grains. Moreover, the equivalent grain diameter and the average shape coefficient of primary Si grains in the satisfactory semi-solid Al-20%Si alloy slurry were 24.4 μm and 0.89, respectively. Finally, the refinement mechanism and distribution rule of primary Si grains in the slurry prepared through the serpentine channel pouring process were analyzed and discussed.

  11. Structure and optical properties of aSiAl and aSiAlHx magnetron sputtered thin films

    NASA Astrophysics Data System (ADS)

    Thøgersen, Annett; Stange, Marit; Jensen, Ingvild J. T.; Røyset, Arne; Ulyashin, Alexander; Diplas, Spyros

    2016-03-01

    Thin films of homogeneous mixture of amorphous silicon and aluminum were produced with magnetron sputtering using 2-phase Al-Si targets. The films exhibited variable compositions, with and without the presence of hydrogen, aSi1-xAlx and aSi1-xAlxHy. The structure and optical properties of the films were investigated using transmission electron microscopy, X-ray photoelectron spectroscopy, UV-VisNIR spectrometry, ellipsometry, and atomistic modeling. We studied the effect of alloying aSi with Al (within the range 0-25 at. %) on the optical band gap, refractive index, transmission, and absorption. Alloying aSi with Al resulted in a non-transparent film with a low band gap (<1 eV). Hydrogenation of the films increased the band gap to values >1 eV. Variations of the Al and hydrogen content allowed for tuning of the optoelectronic properties. The films are stable up to a temperature of 300 °C. At this temperature, we observed Al induced crystallization of the amorphous silicon and the presence of large Al particles in a crystalline Si matrix.

  12. Ca-induced structural transformation of the single-domain Si(001) surface: CaF2/Si(001)-4° off

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Dugerjav, Otgonbayar; Arvisbaatar, Amarmunkh; Motlak, Moaaed; Seo, Jae M.

    2014-05-01

    By scanning tunneling microscopy and synchrotron photoemission spectroscopy, it has been found that through CaF2 exposure to the single-domain Si(001)-4° off surface held at 750 °C, Si dimers on Si(001) terraces are replaced preferentially by dissociated Ca atoms while F atoms are desorbed. The resulting 2 × 3 reconstruction saturates the (001) terraces at a coverage between 0.1 and 0.3 monolayers. Additional CaF2 exposure triggers a structural transformation to a stable hill-and-valley structure composed of wider (001)-2 × 3 terraces and compensating facets comprised of (11 17) and (11 13) units, both with a 6 × 1 surface reconstruction. This study demonstrates that the periodic width of the single domain Si(001) surface can be modulated through adsorbing Ca atoms while maintaining one-dimensional symmetry along the DB steps and the semiconducting nature of the surface.

  13. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  14. Recycling of Al-Si die casting scraps for solar Si feedstock

    NASA Astrophysics Data System (ADS)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  15. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  16. Glass-ceramic nuclear waste forms obtained from SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): study of internal crystallization

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Caurant, D.; Baffier, N.; Mazerolles, L.; Fillet, C.

    2004-10-01

    Glass-ceramic waste forms such as zirconolite (nominally CaZrTi 2O 7) based ones can be envisaged as good candidates for minor actinides or Pu immobilization. Such materials, in which the actinides (or lanthanides used as actinide surrogates) would be preferentially incorporated into zirconolite crystals homogeneously dispersed in a durable glassy matrix, can be prepared by controlled crystallization (nucleation + crystal growth) of parent glasses belonging to the SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 system. In this work we present the effects of the nature of the minor actinide surrogate (Ce, Nd, Eu, Gd, Yb, Th) on the structure, the microstructure and the composition of the zirconolite crystals formed in the bulk of the glass-ceramics. The amount of lanthanides and thorium incorporated into zirconolite crystals is discussed in relation with the capacity of the glass to accommodate these elements and of the crystals to incorporate them in the calcium and zirconium sites of their structure.

  17. High performance AlGaN/GaN HEMTs with AlN/SiNx passivation

    NASA Astrophysics Data System (ADS)

    Xin, Tan; Yuanjie, Lü; Guodong, Gu; Li, Wang; Shaobo, Dun; Xubo, Song; Hongyu, Guo; Jiayun, Yin; Shujun, Cai; Zhihong, Feng

    2015-07-01

    AlGaN/GaN high electron-mobility transistors (HEMTs) with 5 nm AlN passivation by plasma enhanced atomic layer deposition (PEALD) were fabricated, covered by 50 nm SiNx which was grown by plasma enhanced chemical vapor deposition (PECVD). With PEALD AlN passivation, current collapse was suppressed more effectively and the devices show better subthreshold characteristics. Moreover, the insertion of AlN increased the RF transconductance, which lead to a higher cut-off frequency. Temperature dependence of DC characteristics demonstrated that the degradations of drain current and maximum transconductance at elevated temperatures for the AlN/SiNx passivated devices were much smaller compared with the devices with SiNx passivation, indicating that PEALD AlN passivation can improve the high temperature operation of the AlGaN/GaN HEMTs. Project supported by the National Natural Science Foundation of China (No. 60890192).

  18. Crystal structure of the NaCa(Fe{sup 2+}, Al, Mn){sub 5}[Si{sub 8}O{sub 19}(OH)](OH){sub 7} {center_dot} 5H{sub 2}O mineral: A new representative of the palygorskite group

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2012-01-15

    A specimen of a new representative of the palygorskite-sepiolite family from Aris phonolite (Namibia) is studied by single-crystal X-ray diffraction. The parameters of the triclinic (pseudomonoclinic) unit cell are as follows: a = 5.2527(2) Angstrom-Sign , b = 17.901(1) Angstrom-Sign , c = 13.727(1) Angstrom-Sign , {alpha} = 90.018(3) Degree-Sign , {beta} = 97.278(4) Degree-Sign , and {gamma} = 89.952(3) Degree-Sign . The structure is solved by the direct methods in space group P1-bar and refined to R = 5.5% for 4168 |F| > 7{sigma}(F) with consideration for twinning by the plane perpendicular to y (the ratio of the twin components is 0.52: 0.48). The crystal chemical formula (Z = 1) is (Na{sub 1.6}K{sub 0.2}Ca{sub 0.2})[Ca{sub 2}(Fe{sub 3.6}{sup 2+}Al{sub 1.6}Mn{sub 0.8})(OH){sub 9}(H{sub 2}O){sub 2}][(Fe{sub 3.9}{sup 2+}Ti{sub 0.1})(OH){sub 5} (H{sub 2}O){sub 2}][Si{sub 16}O{sub 38}(OH){sub 2}] {center_dot} 6H{sub 2}O, where the compositions of two ribbons of octahedra and a layer of Si tetrahedra are enclosed in brackets. A number of specific chemical, symmetrical, and structural features distinguish this mineral from other minerals of this family, in particular, from tuperssuatsiaite and kalifersite, which are iron-containing representatives with close unit cell parameters.

  19. Complete fusion of 19F with Al and Si isotopes

    NASA Astrophysics Data System (ADS)

    Chiou, M. S.; Wu, M. W.; Easwar, N.; Maher, J. V.

    1981-12-01

    Complete fusion cross sections have been determined by directly detecting evaporation residuals for the systems 19F + 27Al and 19F + 28,30Si over a 19F laboratory energy range 34-75 MeV. In all cases σfus increases smoothly with energy and eventually saturates at 1200-1250 mb. In the barrier penetration region the cross section for 19F + 28Si is always sufficiently smaller than that for 19F + 30Si to make the reduced barrier radius in a Glas-Mosel parametrization significantly smaller for the former system than for the latter. Three entrance channels are now available for the fused-system 46Ti: Critical angular momentum data from the 16O + 30Si entrance channel approach the statistical yrast line at much lower fused-system excitation energy than do the data from the entrance channels 18O + 28Si and 19F + 27Al. NUCLEAR REACTIONS Measured complete fusion cross sections for the systems 19F + 27Al, 19F + 28Si, 19F + 30Si; E=34-75 MeV. Deduced Glas-Mosel model and statistical yrast model parameters.

  20. B Removal by Zr Addition in Electromagnetic Solidification Refinement of Si with Si-Al Melt

    NASA Astrophysics Data System (ADS)

    Lei, Yun; Ma, Wenhui; Sun, Luen; Dai, Yongnian; Morita, Kazuki

    2016-02-01

    This study investigated a new process of enhancing B removal by adding small amounts of Zr in the electromagnetic solidification refinement of Si with Si-Al melt. B in Si was removed by as much as 97.2 pct by adding less than 1057 ppma Zr, and the added Zr was removed by as much as 99.7 pct. In addition, Zr is more effective in enhancing B removal than Ti in the same electromagnetic solidification refining process.

  1. Phase Equilibria Studies in the SiO2-K2O-CaO System

    NASA Astrophysics Data System (ADS)

    Chen, Mao; Hou, Xinmei; Chen, Junhong; Zhao, Baojun

    2016-06-01

    Phase equilibria in the SiO2-K2O-CaO system have been experimentally investigated in the SiO2-rich area. High-temperature equilibration, rapid quenching, and electron probe X-ray microanalysis (EPMA) techniques have been used in this study. K2O may vaporize during EPMA measurements causing significant uncertainties. In the present study, optimum EPMA operating conditions have been determined in order to accurately measure K2O concentrations in the quenched samples. The compositions of all phases present in the quenched sample were measured using EPMA with optimum operating parameters. The following primary phase fields were identified in the composition range investigated: SiO2, CaO·SiO2, 2CaO·SiO2, K2O·2CaO·2SiO2, and K2O·6CaO·4SiO2. The isotherms between 1273 K and 1473 K (1000 °C and 1200 °C) in these primary phase fields have been determined. The presence of the compounds K2O·2CaO·2SiO2 and K2O·6CaO·4SiO2 has been confirmed.

  2. The improved mechanical properties of β-CaSiO3 bioceramics with Si3N4 addition.

    PubMed

    Pan, Ying; Zuo, Kaihui; Yao, Dongxu; Yin, Jinwei; Xin, Yunchuan; Xia, Yongfeng; Liang, Hanqin; Zeng, Yuping

    2015-03-01

    The motivation of this study is to investigate the effect of Si3N4 addition on the sinterability of β-CaSiO3 ceramics. β-CaSiO3 ceramics with different content of Si3N4 were prepared at the sintering temperature ranging from 1000°C to 1150°C. The results showed that Si3N4 can be successfully used as sintering additive by being oxidized to form SiO2. The β-CaSiO3 ceramics with 3wt% Si3N4 sintered at 1100°C revealed flexural strength, hardness and fracture toughness of 157.2MPa, 4.4GPa and 2.3MPam(1/2) respectively, which was much higher than that of pure β-CaSiO3 ceramics (41.1MPa, 1.0GPa, 1.1MPam(1/2)). XRD analysis and SEM observation indicated that the main phase maintained to be β-phase after sintering. PMID:26580024

  3. (Si){sub 5-2y}(AlP){sub y} alloys assembled on Si(100) from Al-P-Si{sub 3} building units

    SciTech Connect

    Watkins, T.; Chizmeshya, A. V. G.; Kouvetakis, J.; Jiang, L.; Xu, C.; Smith, D. J.; Menendez, J.

    2012-01-09

    An original class of IV/III-V hybrid (Si){sub 5-2y}(AlP){sub y}/Si(100) semiconductors have been produced via tailored interactions of molecular P(SiH{sub 3}){sub 3} and atomic Al yielding tetrahedral ''Al-P-Si{sub 3}'' building blocks. Extensive structural, optical, and vibrational characterization corroborates that these units condense to assemble single-phase, monocrystalline alloys containing 60%-90% Si (y = 0.3-1.0) as nearly defect-free layers lattice-matched to Si. Spectroscopic ellipsometry and density functional theory band structure calculations indicate mild compositional bowing of the band gaps, suggesting that the tuning needed for optoelectronic applications should be feasible.

  4. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  5. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  6. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  7. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  8. Synthesis and photoluminescence of Ca-(Sn,Ti)-Si-O compounds

    SciTech Connect

    Abe, Shunsuke; Yamane, Hisanori; Yoshida, Hisashi

    2010-04-15

    The phase relation of the compounds prepared in the CaO-SnO{sub 2}-SiO{sub 2} system at 1673 K and in the CaO-TiO{sub 2}-SiO{sub 2} system at 1573 K was investigated in order to explore new Ti{sup 4+}-activated stannate phosphors. Solid solutions of Ca(Sn{sub 1-x}Ti{sub x})SiO{sub 5} and Ca{sub 3}(Sn{sub 1-y}Ti{sub y})Si{sub 2}O{sub 9} were synthesized at x = 0-1.0 and y = 0-0.10, respectively, and their crystal structures were analyzed by powder X-ray diffraction. Photoluminescence of these solid solutions was observed in a broad range of a visible light wavelength region under ultraviolet (UV) light excitation. The peaks of the emission band of Ca(Sn{sub 0.97}Ti{sub 0.03})SiO{sub 5} and Ca{sub 3}(Sn{sub 0.925}Ti{sub 0.075})Si{sub 2}O{sub 9} were at 510 nm under excitation of 252 nm and at 534 nm under excitation of 258 nm, respectively. The absorption edges estimated by the diffuse reflectance spectra were at 300 nm (4.1 eV) for CaSnSiO{sub 5} and at 270 nm (4.6 eV) for Ca{sub 3}SnSi{sub 2}O{sub 9}, suggesting that the excitation levels in Ca(Sn{sub 1-x}Ti{sub x})SiO{sub 5} were above the band gap of the host, although the levels in Ca{sub 3}(Sn{sub 1-y}Ti{sub y})Si{sub 2}O{sub 9} were within the band gap and near the conduction band edge.

  9. Hibonite, Ca2/Al, Ti/24O38, from the Leoville and Allende chondritic meteorites.

    NASA Technical Reports Server (NTRS)

    Keil, K.; Fuchs, L. H.

    1971-01-01

    Hibonite was discovered in light-colored, Ca-Al-Ti-rich and Si-Fe-poor, achondritic inclusions of the Leoville and Allende HL-group chondrites. Two varieties of hibonite occur: one emits a bright red-orange luminescence under electron bombardment and has high amounts of Al2O3 (87.7; 87.9) and low amounts of MgO (0.65; 0.8) and TiO2 (0.68; 0.8). The other emits a bright blue luminescence and is low in Al2O3 (78.7; 79.2) and high in MgO (3.3; 3.7) and TiO2 (6.5; 7.9) (in wt. %). The oxide CaO is about the same in both varieties. It is suggested that the change in the color of the visible luminescence results from changes in composition. The origin of hibonite which occurs in complex mineral assemblages together with anorthite, gelhenite, wollastonite, aluminous diopside, andradite, Ca-pyroxene, perovskite, spinel, taenite, chromite, and pentlandite, and in close proximity to nodules containing calcite, whewellite, forsterite and many of the aforementioned phases, is discussed. The proposition that hibonite and associated phases originated by contact metamorphism and metasomatism of calcite-dolomite bearing assemblages cannot, at this time, be completely ruled out.

  10. Resistance switching memory characteristics of CaF2/Si/CaF2 resonant-tunneling quantum-well heterostructures sandwiched by nanocrystalline Si secondary barrier layers

    NASA Astrophysics Data System (ADS)

    Kuwata, Yuya; Suda, Keita; Watanabe, Masahiro

    2016-07-01

    A novel resistance switching memory using CaF2/Si/CaF2 resonant-tunneling quantum well heterostructures sandwiched by nanocrystalline Si (nc-Si) as secondary barrier layers has been proposed and the room temperature current–voltage characteristics of the basic resistance switching memory operation have been demonstrated. A resistance switching voltage of 1.0 V, a peak current density of approximately 42 kA/cm2, and an ON/OFF ratio of 2.8 were observed. In particular, more than 28000 write-read-erase cyclic memory operations have been demonstrated by applying pulsed input voltage sequences, which suggests better endurance than the device using a CaF2/CdF2/CaF2 heterostructure.

  11. Exploration of metaphosphate glasses dispersed with Eu-doped SiAlON for white LED applications

    NASA Astrophysics Data System (ADS)

    Segawa, Hiroyo; Hirosaki, Naoto; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2015-04-01

    Ca-α-SiAlON:Eu2+ oxynitride phosphors are typical luminescent materials with a high thermal tolerance. A series of metaphosphate glass samples (50MO-50P2O5; mol%, M = Zn, Ca, and Ba) were prepared in order to investigate their ability to disperse Ca-α-SiAlON:Eu2+ phosphor powders. The glass structures of all of the samples were formed using Q2 species and composed in long chain networks by investigation of the NMR and Raman spectra. In the glass samples, SiAlON was dispersed until reaching 5 or 6 mass%. The color due to irradiation by a blue LED (wavelength of 450 nm) depended on the glass composition, concentration of SiAlON, and thickness of the composite. Regarding the glass formation and quantum efficiency, the BaP glass with between 3 and 4 mass% SiAlON composite was determined to be the most suitable for use as a host material for white LEDs.

  12. The Bauschinger effect in a SiC/Al composite

    SciTech Connect

    Shi, N.; Pillai, U.T.S.; Arsenault, R.J.

    1995-09-01

    SiC/Al composites have interesting mechanical properties, the tensile yield stress, whereas, the apparent modulus in tension is greater than that in compression. The Bauschinger effect of SiC/Al composites is also asymmetric with regard to loading directions. Quantitative measurements of the asymmetry of composite Bauschinger Effect was made in this research . An investigation was undertaken to determine the origin of the asymmetrical Bauschinger effect. We have successfully reconstructed the observed asymmetry using an internal stress model based on the development of internal stresses, conveniently referred to as the ``black stress``, and work hardening.

  13. Microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Guan, Ren-guo; Zhang, Yang; Su, Ning; Ji, Lian-ze; Li, Yuan-dong; Chen, Ti-jun

    2016-06-01

    In this paper, heat treatment was carried out on Al/Al-Mg-Si alloy clad wire, and microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment were investigated. During solution, contents of Mg and Si in inner matrix increased due to dissolution of primary Mg2Si, and they also increased in outer matrix because Mg and Si diffused across the interface. Tensile strength of the clad wire increased firstly and then decreased, and elongation continuously increased, while conductivity continuously decreased with the increase in solution time. In aging process, Mg2Si precipitated in both inner core and outer layer, and the content and average diameter of the precipitate increased with the increase in aging time. The content of precipitate was higher, and the average diameter was bigger in inner core. Tensile strength of the clad wire increased firstly and then decreased with the increase in aging time, and the elongation continuously decreased, while the conductivity continuously increased. The peak tensile strength of 202 MPa occurred at 8 h, when the corresponding elongation was 20 % and the conductivity reached 56.07 %IACS. Even tensile strength of the prepared clad wire approximately equaled to that of Al-0.5Mg-0.35Si alloy 203 MPa, the conductivity was obviously improved from 54.2 to 56.07 %IACS.

  14. Melting of CaO and CaSiO3 at Deep Mantle Condition Using First Principles Simulations

    NASA Astrophysics Data System (ADS)

    Bajgain, S. K.; Ghosh, D. B.; Karki, B. B.

    2015-12-01

    Accurate prediction of melting temperatures of major mantle minerals at high pressures is important to understand the Hadean Earth as well as to explain the observed seismic anomalies at ultra-low velocity zone (ULVZ). To further investigate the geophysical implications of our recent first principles study of molten CaO and CaSiO­3, we calculated the melting temperatures of the corresponding solid phases by integrating the Clausius-Clapeyron equation. The melting behavior of their high-pressure phases can constrain the lower mantle solidus. Our calculations show melting temperature of 5700 ± 500 kelvins for CaSiO3 and 7800 ± 600 kelvins for CaO at the base of the lower mantle (136 GPa). The bulk sound velocities of CaO and CaSiO3 liquids at the core-mantle boundary are found to be 40 % lower than P-wave seismic velocity and 22 % lower than that of MgSiO3 liquid. With substantial decrease of melting temperature by freezing point depression and iron partitioning, the partial melting of multi-component silicate and its gravitational buoyancy at ULVZ cannot be ruled out.

  15. Three series of quaternary rare-earth transition-metal pnictides with CaAl{sub 2}Si{sub 2}-type structures: RECuZnAs{sub 2}, REAgZnP{sub 2}, and REAgZnAs{sub 2}

    SciTech Connect

    Stoyko, Stanislav S.; Ramachandran, Krishna K.; Blanchard, Peter E.R.; Rosmus, Kimberly A.; Aitken, Jennifer A.; Mar, Arthur

    2014-05-01

    Three series of quaternary rare-earth transition-metal pnictides REMM′Pn{sub 2} (M=Cu, Ag; M′=Zn; Pn=P, As) have been prepared by reaction of the elements at 800 °C, with crystal growth promoted through the addition of iodine. The extent of RE substitution is broad in these series: RECuZnAs{sub 2} (RE=Y, La-Nd, Sm, Gd–Lu), REAgZnP{sub 2} (RE=La–Nd, Sm, Gd–Dy), and REAgZnAs{sub 2} (RE=La-Nd, Sm, Gd-Dy). Powder and single-crystal X-ray diffraction analysis revealed that they adopt the trigonal CaAl{sub 2}Si{sub 2}-type structure (space group P3{sup ¯}m1, Z=1), in which Cu or Ag atoms are disordered with Zn atoms over the unique tetrahedrally coordinated transition-metal site. Magnetic measurements indicated Curie–Weiss behavior for several members of the RECuZnAs{sub 2} and REAgZnP{sub 2} series. Core-line X-ray photoelectron spectra (XPS) collected on some RECuZnAs{sub 2} members corroborate the charge assignment deduced by the Zintl concept for these compounds, (RE{sup 3+})(M{sup 1+})(Zn{sup 2+})(Pn{sup 3−}){sub 2}. Optical diffuse reflectance spectra and valence band XPS spectra established that these compounds are small band-gap semiconductors (up to ∼0.8 eV in REAgZnP{sub 2}) or semimetals (RECuZnAs{sub 2}). Band structure calculations also support this electronic structure and indicate that the band gap can be narrowed through appropriate chemical substitution (RE=smaller atoms, M=Cu, and Pn=As). - Graphical abstract: Cu or Ag atoms are disordered with Zn atoms over the tetrahedral site within relatively rigid [M{sub 2}Pn{sub 2}] slabs in three series of quaternary pnictides adopting the CaAl{sub 2}Si{sub 2}-type structure. - Highlights: • Three series (comprising 25 compounds) of pnictides REMM'Pn{sub 2} were prepared. • Cu or Ag atoms are disordered with Zn atoms within relatively rigid [M{sub 2}Pn{sub 2}] slabs. • They are semimetals or small band-gap semiconductors. • RECuZnAs{sub 2} and REAgZnP{sub 2} are generally paramagnetic.

  16. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y.

    2016-02-01

    Ca-Mg-Al Layered Double Hydroxides (Ca-Mg-Al-LDH) compounds were successfully synthesized from brine water and AlCl3.6H2O as the starting materials by coprecipitation method. The product result was characterized by X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The effects of the reaction time and the molar ratios of the raw material on the crystallinity of Ca-Mg-Al-LDH were examining. Results show that increasing reaction time (30; 60 and 90 min.) could improve the crystallinity and monodispersity of layered double hydroxide compounds particles. The well-defined Ca-Mg- Al-LDH could be prepared with (Ca+Mg)/Al molar ratios 0.5.

  17. Infrared observation of thermally activated oxide reduction within Al/SiOx/Si tunnel diodes

    NASA Astrophysics Data System (ADS)

    Brendel, R.; Hezel, R.

    1992-05-01

    Electron-beam-evaporated aluminum/silicon oxide/silicon tunnel diodes with an initial oxide thickness of 1.3 nm have been annealed for up to 1 h at temperatures from 213 to 369 °C. They have been investigated by infrared grazing internal reflection (GIR) spectroscopy and current-voltage measurements. The measured IR spectra were analyzed by computer modeling. All spectral features could be explained self-consistently within a Al/AlOy/SiOx/Si layer model. In the as-deposited state less than 0.6 monolayers of Al—O bonds are formed at the Al/SiOx interface. A thermally activated reduction of the ultrathin oxide film by Al was observed. The changes in the current-voltage curves induced by slight annealing (1 min at 213 °C) are accompanied by changes in the insulator-bonding structure, which GIR is sensitive enough to detect.

  18. Mechanical properties of {beta}-SiAlON ceramics joined using composite {beta}-SiAlON-glass adhesives

    SciTech Connect

    Walls, P.A.; Ueki, Masanori

    1995-04-01

    The mechanical properties of {beta}-SiAlON ceramics joined using {beta}-SiAlON-glass-forming adhesives consisting of mixed Si{sub 3}N{sub 4}, Y{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, and SiO{sub 2} powders are described. Use of adhesives with a {beta}-SiAlON:glass ratio of 60:40 gave an optimum joint strength of 650 MPa in four-point bending mode, i.e., 85% of that of unbonded material, when joining was carried out at 1,600-C for 10 min, under an applied uniaxial pressure of 2 MPa. Bonding pressures in excess of 2 MPa caused excessive compressive creep distortion during the joining operation. The strengths of postjoined HIPed material and HIPed, unbonded material, differed by only 4%, i.e., 975 and 1,010 MPa, respectively, which indicates that HIPing reduces the size of critical defects in the joint. Fracture toughness of the joint also improved upon HIPing.

  19. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra.

    PubMed

    Marashdeh, Ali; Frankcombe, Terry J

    2008-06-21

    The dehydrogenation enthalpies of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH(4))(2) is exothermic, indicating a metastable hydride. Calculations for CaAlH(5) including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH(4) with CaH(2) is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH(4))(2) and CaAlH(5) calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH(5) is presented in the more useful standard setting of P2(1)c symmetry and the phonon density of states of CaAlH(5), significantly different to other common complex metal hydrides, is rationalized. PMID:18570508

  20. Synthesis and crystal structure of cubic Ca16Si17N34.

    PubMed

    Hick, Sandra M; Miller, Mattheu I; Kaner, Richard B; Blair, Richard G

    2012-12-01

    Since the late 1960s, the exact structure of cubic calcium silicon nitride has been a source of debate. This paper offers evidence that the cubic phase CaSiN(2) described in the literature is actually Ca(16)Si(17)N(34). Presented here is a method for synthesizing single crystals of cubic-calcium silicon nitride from calcium nitride and elemental silicon under flowing nitrogen at 1500 °C. The colorless millimeter-sized crystals of Ca(16)Si(17)N(34) with a refractive index (n(25)) = 1.590 were found to be cubic (a = 14.8882 Å) and belong to the space group F43m (216). The synthesis of bulk, powdered cubic-Ca(16)Si(17)N(34) from calcium cyanamide and silicon is also discussed. Ca(16)Si(17)N(34) is a relatively air-stable refractory ceramic. In contrast to the orthorhombic phase of CaSiN(2), in which Ca(2+) sits in octahedral sites, this cubic phase has Ca(2+) in cubic sites that makes it an interesting host for new phosphors and gives rise to unique crystal field splitting. PMID:23157279

  1. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited. PMID:27451619

  2. Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Li, H.-T.; Stone, I. C.; Fan, Z.

    2012-01-01

    Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.

  3. Effectively CO2 photoreduction to CH4 by the synergistic effects of Ca and Ti on Ca-loaded TiSiMCM-41 mesoporous photocatalytic systems

    NASA Astrophysics Data System (ADS)

    Jo, Seung Won; Kwak, Byeong Sub; Kim, Kang Min; Do, Jeong Yeon; Park, No-Kuk; Ryu, Si Ok; Ryu, Ho-Jung; Baek, Jeom-In; Kang, Misook

    2015-11-01

    TixSiMCM-41 is a mesoporous photocatalyst with a tetragonal framework and high structural regularity. In this study, Ca was introduced to the TixSiMCM-41 surfaces to improve CO2 absorption. The catalytic performance of mesoporous Ca/TixSiMCM-41 was superior to that of the reported Ca/TixSiO2 nano-sized composite catalyst. The photoreduction of CO2 to CH4 improved remarkably over the Ca(10.0 wt.%)/Ti35Si65MCM-41 catalyst, producing 82.0 μmol g-1cat L-1 after an 8 h reaction. A model for the enhanced photoactivity over Ca/TixSiMCM-41 was suggested, and the results were attributed to the effective charge separation and inhibited recombination of the photogenerated electron-hole pairs over Ca/TixSiMCM-41.

  4. Transport and magnetic properties of the Co2MnSi/Al/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Zhang, H. B.; Jiang, X. F.; Zheng, Y.; Yang, G. W.

    2012-05-01

    Using density functional theory and non-equilibrium Green's function analysis, we studied the interface structure, interface stability, and magnetic and transport properties of the Co2MnSi/Al/Co2MnSi trilayer. It was found that only the CoCo/Al architecture is thermodynamically stable among four interfacial architectures, CoCo/Al, MnSi/Al, MnMn/Al, and SiSi/Al, and the other interface architectures are not accessible within the limits set under thermodynamic equilibrium with other phases. Calculations of the transmission spectrum, conductance, and resistance-area product showed that the Co2MnSi/Al/Co2MnSi trilayer is a promising candidate for the next-generation of recording sensors in ultrahigh-density hard disks.

  5. Estimation Model for Electrical Conductivity of CaF2-CaO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Shi, Guan-yong; Zhang, Ting-an; Dou, Zhi-he; Niu, Li-ping

    2016-04-01

    Electrical conductivity is one of the most important properties of molten slags. It has an important influence on process parameter selection of the electroslag remelting process. In the present work, a new model for estimating electrical conductivity of high-temperature slags has been proposed via calculating the conductivity by electrical conductivity of pure substances and interaction parameters between the different components in the slag has been proposed. In this model, the Arrhenius law is used to describe the relationship between electrical conductivity and temperature of slags. This model has been successfully applied to the CaF2-Al2O3, CaF2-CaO, and CaO-Al2O3, as well as CaF2-CaO-Al2O3 systems, and the calculated results are in good agreement with the measured values.

  6. Effect of Cr{sub 2}O{sub 3} on solubility and thermo-physical properties of BaO-CaO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} g

    SciTech Connect

    Goswami, M.; Kumar, Rakesh; Patil, A. S.; Sahu, A. K.; Kothiyal, G. P.

    2012-06-05

    BaO-CaO-Al{sub 2}O{sub 3}-(10-x)B{sub 2}O{sub 3}-xCr{sub 2}O{sub 3} SiO{sub 2} (BCABS), where 1.0 {<=}x {<=} 3.5, (mol%) glasses were prepared by melt-quench technique. Glass samples were characterized for density, microhardness, thermal expansion coefficient and glass transition temperature. Scanning electron microscopy was used to see the homogeneity/solubility of Cr2O3 in this glass system. UV-VIS absorption measurements were carried out to see the Cr speciation in the glass samples. Density values were found to vary from 3.97 to 3.92 g/cc and microhardness values varied from 283 to 503 kg/mm{sup 2}. Glass transition temperature increased from 635 to 671 deg. C while TEC value found to varies from 8.3 to 11.1x10{sup -6}/ deg. C(30-300) with Cr{sub 2}O{sub 3} content. SEM study revealed phase separation in these glasses. From absorption studies we infer the presence of small amount of Cr (VI) along with Cr(III) oxidation state.

  7. Changes of inclusion, texture and magnetic property of non-oriented Si steel treated by Ca alloy

    NASA Astrophysics Data System (ADS)

    Lv, X.; Zhang, F.; Chen, X.

    2015-04-01

    Based on the industrial production of non-oriented Si steel, Ca treatment by Ca alloy adding during the RH refining process was studied. The changes of inclusion, crystal texture and microstructure, and its effect on magnetic properties of final steel sheets were analyzed. The results showed that, in present work, Ca treatment can improve the texture proportion of {110} and {111} significantly, and the formation of MnS and AlN inclusions were restrained. Meanwhile, the recrystallization effects of hot rolled strip get bad and the fiber structure enhanced obviously. The grain size of finished steel sheets increased as the increase of Ca alloy adding amount quickly, and then decreased. Compared with the non-Ca treatment charge, the numbers of inclusions whose size below 1.0μm will decrease by 68.06%, 87.50% and 94.94%, the texture proportion of {110} and {111} was 30.3%, 39.1%, 17.6% and 2.8%, 5.5%, 20.6%, while the correspondent Ca alloy adding amount is 0.67 kg/t steel, 1.00 kg/t steel and 1.67 kg/t steel, respectively. In addition, the core loss gradually decreases to a stable level as the increasing of Ca added, and the magnetic induction decreases quickly after slow increasing, respectively. The optimal Ca treatment mode depends on the chemical compositions of steel grades.

  8. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  9. Refinement performance and mechanism of an Al-50Si alloy

    SciTech Connect

    Dai, H.S.; Liu, X.F.

    2008-11-15

    The microstructure and melt structure of primary silicon particles in an Al-50%Si (wt.%) alloy have been investigated by optical microscopy, scanning electron microscopy, electron probe micro-analysis and a high temperature X-ray diffractometer. The results show that the Al-50Si alloy can be effectively refined by a newly developed Si-20P master alloy, and the melting temperature is crucial to the refinement process. The minimal overheating degree {delta}T{sub min} ({delta}T{sub min} is the difference between the minimal overheating temperature T{sub min} and the liquidus temperature T{sub L}) for good refinement is about 260 deg. C. Primary silicon particles can be refined after adding 0.2 wt.% phosphorus amount at sufficient temperature, and their average size transforms from 2-4 mm to about 30 {mu}m. The X-ray diffraction data of the Al-50Si melt demonstrate that structural change occurs when the melting temperature varies from 1100 deg. C to 1300 deg. C. Additionally, the relationship between the refinement mechanism and the melt structure is discussed.

  10. Electromigration performance improvement of Al-Si-Cu/TiN/Ti/n+Si contact

    NASA Astrophysics Data System (ADS)

    Shi, Gang; Sun, Zhen; Xu, Geng-Fu; Min, Yun-Hao; Luo, Jun-Yi; Lu, Yong; Li, Bing-Zong; Qu, Xin-Ping; Qian, Gang; Doan, My T.; Lee, Edmund

    1998-02-01

    In this study, two different processes, with and without rapid thermal annealing (RTA), have been compared for the Al-Si- Cu/TiN/Ti multilayer contact on n+ diffusions. A series of wafer level reliability (WLR) measurement performed on a test structure with two 1.08 X 1.08 micrometer2 contacts on n+ diffusion. The results show that RTA can increase contact electromigration (EM) lifetime dramatically. The XRD, AES and TEM analysis indicate that this improvement is attributed to oxygen stuffing in TiN, phase change of TiN and TiSi2 formation at the interface of Ti and Si.

  11. First-principle studies of Ca-X (X=Si,Ge,Sn,Pb) intermetallic compounds

    SciTech Connect

    Yang Zhiwen; Shi Dongmin; Wen Bin; Melnik, Roderick; Yao Shan; Li Tingju

    2010-01-15

    The structural properties, elastic properties, heats of formation, electronic structures, and densities of states of 20 intermetallic compounds in the Ca-X (X=Si, Ge, Sn, Pb) systems have been systematically investigated by using first-principle calculations. Our computational results indicated that with increasing atomic weight of X, the bulk modulus of Ca-X intermetallic compounds decreases gradually. It was also found that Ca{sub 36}Sn{sub 23} and CaPb are mechanically unstable phases. Results on the electronic energy band and densities of states also indicated that Ca{sub 3}Si{sub 4} is an indirect band gap semiconductor with a band gap of 0.598 eV, and Ca{sub 2}Si, Ca{sub 2}Ge, Ca{sub 2}Sn, and Ca{sub 2}Pb are direct band gap semiconductors with band gaps of 0.324, 0.265, 0.06, and 0.07 eV, respectively. In addition, it is found that the absolute values of heats of formation for all Ca-X intermetallics are larger than 30 kJ/mol atom. - Graphical abstract: Calculated (a) bulk moduli and (b) shear moduli of Ca-X system intermetallic compounds.

  12. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Astrophysics Data System (ADS)

    Murrell, M. T.; Burnett, D. S.

    1987-04-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  13. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Burnett, D. S.

    1987-01-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  14. Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures

    PubMed Central

    Tsuchiya, Taku; Tsuchiya, Jun

    2011-01-01

    Ultrahigh-pressure phase relationship of SiO2 silica in multimegabar pressure condition is still quite unclear. Here, we report a theoretical prediction on a previously uncharacterized stable structure of silica with an unexpected hexagonal Fe2P-type form. This phase, more stable than the cotunnite-type structure, a previously postulated postpyrite phase, was discovered to stabilize at 640 GPa through a careful structure search by means of ab initio density functional computations over various structure models. This is the first evidential result of the pressure-induced phase transition to the Fe2P-type structure among all dioxide compounds. The crystal structure consists of closely packed, fairly regular SiO9 tricapped trigonal prisms with a significantly compact lattice. Additional investigation further elucidates large effects of this phase change in SiO2 on the stability of MgSiO3 and CaSiO3 at multimegabar pressures. A postperovskite phase of MgSiO3 breaks down at 1.04 TPa along an assumed adiabat of super-Earths and yields Fe2P-type SiO2 and CsCl (B2)-type MgO. CaSiO3 perovskite, on the other hand, directly dissociates into SiO2 and metallic CaO, skipping a postperovskite polymorph. Predicted ultrahigh-pressure and temperature phase diagrams of SiO2, MgSiO3, and CaSiO3 indicate that the Fe2P-type SiO2 could be one of the dominant components in the deep mantles of terrestrial exoplanets and the cores of gas giants. PMID:21209327

  15. A Comparative Study of Si-BaSO4 and Si-CaSO4 Pyrotechnic Time-Delay Compositions

    NASA Astrophysics Data System (ADS)

    Tichapondwa, Shepherd M.; Focke, Walter W.; del Fabbro, Olinto; Gisby, John; Kelly, Cheryl

    2016-07-01

    Slow-burning Si-BaSO4 pyrotechnic delay compositions are employed commercially for intermediate to long-time delays. However, there is very little information on this composition available in open literature. The reactivity of this composition was therefore characterized and compared to that of Si-CaSO4. The Si-BaSO4 composition supported combustion in the range of 20-60 wt% Si in the bomb calorimeter. However, burning was only sustained between 20 and 40 wt% Si in rigid aluminum tubes, with burning rates of between 8.4 and 16 mm s-1. These values are comparable to those for the Si-CaSO4 system (6.9-12.5 mm s-1). However, the CaSO4-based formulations tended to have higher energy output and produced more transient pressure compared to the barium sulfate compositions. Both formulations were insensitive to impact, friction, and electrostatic discharge stimuli. The reaction products were a complex mixture that contained crystalline phases in addition to an amorphous phase. Although barium sulfate is insoluble in water and decidedly nontoxic, the reaction products produced by the Si-BaSO4 compositions were found to release soluble barium ions when contacted with water. This ranged from 50 to 140 mg per gram of barium sulfate reacted.

  16. Eutectic Morphology of Al-7Si-0.3Mg Alloys with Scandium Additions

    NASA Astrophysics Data System (ADS)

    Pandee, Phromphong; Gourlay, C. M.; Belyakov, S. A.; Ozaki, Ryota; Yasuda, Hideyuki; Limmaneevichitr, Chaowalit

    2014-09-01

    The mechanisms of Al-Si eutectic refinement due to scandium (Sc) additions have been studied in an Al-7Si-0.3Mg foundry alloy. The evolution of eutectic microstructure is studied by thermal analysis and interrupted solidification, and the distribution of Sc is studied by synchrotron micro-XRF mapping. Sc is shown to cause significant refinement of the eutectic silicon. The results show that Sc additions strongly suppress the nucleation of eutectic silicon due to the formation of ScP instead of AlP. Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction similar to past work with Na, Ca, and Y additions. It is found that Sc segregates to the eutectic aluminum and AlSi2Sc2 phases and not to eutectic silicon, suggesting that impurity-induced twinning does not operate. The results suggest that Sc refinement is mostly caused by the significantly reduced silicon nucleation frequency and the resulting increase in mean interface growth rate.

  17. Nuclear structure of 37, 38Si investigated by decay spectroscopy of 37, 38Al

    NASA Astrophysics Data System (ADS)

    Steiger, K.; Nishimura, S.; Li, Z.; Gernhäuser, R.; Utsuno, Y.; Chen, R.; Faestermann, T.; Hinke, C.; Krücken, R.; Kurata-Nishimura, M.; Lorusso, G.; Miyashita, Y.; Shimizu, N.; Sugimoto, K.; Sumikama, T.; Watanabe, H.; Yoshinaga, K.

    2015-09-01

    We present a study on the β decays of the neutron-rich isotopes 37Al and 38Al, produced by projectile fragmentation of a 48Ca beam with an energy E = 345 A MeV at the RIKEN Nishina Center. The half-lives of 37Al and 38Al have been measured to 11.5(4)ms and 9.0(7)ms, respectively, using the CAITEN implantation and decay detector setup. The level schemes for 37Si and 38Si were deduced by employing γ- γ coincidence spectroscopy following the event-by-event identification of the implanted nuclei. Comparison to large scale nuclear shell model calculations allowed for a tentative assignment of spin and parity of the populated states. The data indicate that the classical shell gap at magic neutron number N = 28 between the νf 7/2 and νp 3/2 orbits gets reduced by 0.3 MeV in this region leading to low-energy states with intruder configuration in 37Si.

  18. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Fly Ash in Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Li, Liangxing; Xu, Junli; Shi, Zhongning; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen; Yu, Jiangyu; Chen, Gong

    2014-05-01

    An electrochemical method on preparation of Al-Si master alloy was investigated in fluoride-based molten salts of 47.7wt.%NaF-43.3wt.%AlF3-4wt.%CaF2 containing 5 wt.% fly ash at 1233 K. The cathodic products obtained by galvanostatic electrolysis were analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy, and energy-dispersive spectrometry. The result showed that the compositions of the products are Al, Si, and Al3.21Si0.47. Meanwhile, the cathodic electrochemical process was studied by cyclic voltammetry, and the results showed the reduction peak of aluminum deposition is at -1.3 V versus the platinum quasi-reference electrode in 50.3wt.%NaF-45.7wt.%AlF3-4wt.%CaF2 molten salts, while the reduction peak at -1.3 V was the co-deposition of aluminum and silicon when the fly ash was added. The silicon and iron were formed via both co-deposition and aluminothermic reduction. In the electrolysis experiments, current efficiency first increased to a maximum value of 40.7% at a current density of 0.29 A/cm2, and then it decreased with the increase of current density. With the electrolysis time lasting, the content of aluminum in the alloys decreased from 76.05 wt.% to 48.29 wt.% during 5 h, while the content of silicon increased from 15.94 wt.% to 37.89 wt.%.

  19. Theoretical investigation of metastable Al2SiO5 polymorphs.

    PubMed

    Oganov, A R; Price, G D; Brodholt, J P

    2001-09-01

    Using theoretical simulations based on density functional theory within the generalized gradient approximation, a series of metastable phase transitions occurring in low-pressure Al2SiO5 polymorphs (andalusite and sillimanite) are predicted; similar results were obtained using semiclassical interatomic potentials within the ionic shell model. Soft lattice modes as well as related structural changes are analysed. For sillimanite, an isosymmetric phase transition at ca 35 GPa is predicted; an incommensurately modulated form of sillimanite can also be obtained at low temperatures and high pressures. The high-pressure isosymmetric phase contains five-coordinate Si and Al atoms. The origin of the fivefold coordination is discussed in detail. Andalusite was found to transform directly into an amorphous phase at ca 50 GPa. This study provides an insight into the nature of metastable modifications of crystal structures and the ways in which they are formed. Present results indicate the existence of a critical bonding distance, above which interatomic interactions cannot be considered as bonding. The critical distance for the Si-O bond is 2.25 A. PMID:11526304

  20. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  1. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

    PubMed

    Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J

    2015-08-01

    One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. PMID:25303146

  2. Dendrite coherency of Al-Si-Cu alloys

    NASA Astrophysics Data System (ADS)

    Veldman, Natalia L. M.; Dahle, Arne K.; Stjohn, David H.; Arnberg, Lars

    2001-01-01

    The dendrite coherency point of Al-Si-Cu alloys was determined by thermal analysis and rheological measurement methods by performing parallel measurements at two cooling rates for aluminum alloys across a wide range of silicon and copper contents. Contrary to previous findings, the two methods yield significantly different values for the fraction solid at the dendrite coherency point. This disparity is greatest for alloys of low solute concentration. The results from this study also contradict previously reported trends in the effect of cooling rate on the dendritic coherency point. Consideration of the results shows that thermal analysis is not a valid technique for the measurement of coherency. Analysis of the results from rheological testing indicates that silicon concentration has a dominant effect on grain size and dendritic morphology, independent of cooling rate and copper content, and thus is the factor that determines the fraction solid at dendrite coherency for Al-Si-Cu alloys.

  3. Study on Reaction Mechanism of Reducing Dephosphorization of Fe-Ni-Si Melt by CaO-CaF2 Slag

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Xian; Zhang, Guo-Hua; Chu, Shao-Jun

    2016-02-01

    In the present study, the dephosphorization of Fe-Ni-Si melt by CaO-saturated CaO-CaF2 slag was investigated, from which it was found that the dephosphorization efficiency increases as increasing the silicon content, meanwhile the increase rate becomes rapid when the silicon content is more than 10 mass pct. By analyzing the phase compositions of the dephosphorization slag of a high silicon Fe-Ni-Si melt, it was first found the dephosphorization products change with the silicon content. When Si contents are 10.5, 31.48, 34.71, and 43.15 mass pct, the de-P products are Ca2P2, Ca10+ x Si12-2 x P16, Ca4SiP4, and Ca10+ x Si12-2 x P16, as well as Ca4SiP4, respectively. The corresponding dephosphorization mechanism can be described as (2x)(CaO) + (x + 2y)[Si] + 2z[P] = x(SiO2 ) + 2(Cax Siy Pz ).

  4. Ac Impedance Spectroscopy Of Al/A-Sic/C-Si(P)/Al Heterostructure under Illumination

    NASA Astrophysics Data System (ADS)

    Perný, Milan; Šály, Vladimír; Váry, Michal; Mikolášek, Miroslav; Huran, Jozef; Packa, Juraj

    2014-05-01

    The amorphous silicon carbide/crystalline silicon heterojunction was prepared and analyzed. The current-voltage (I - V ) measurements showed the barrier properties of prepared sample. Biased impedance spectra of Al/a-SiC/c-Si(p)/Al heterojunction under the standard illumination are reported and analyzed. AC measurements in the illuminated conditions were processed in order to identify electronic behavior using equivalent AC circuit which was suggested and obtained by fitting the measured impedance data. A phenomenon of negative capacitance/resistance in certain frequency range has been observed.

  5. Atomic arrangement at the AlN/SiC interface

    SciTech Connect

    Ponce, F.A.; Van de Walle, C.G.; Northrup, J.E.

    1996-03-01

    The lattice structure of the AlN/SiC interface has been studied in cross section by high-resolution transmission-electron microscopy. Lattice images show planar and crystallographically abrupt interfaces. The atomic arrangement at the plane of the interface is analyzed based on the image characteristics. Possible bonding configurations are discussed. Variations in local image contrast and interplanar separations are used to identify atomic bonding configurations consistent with the lattice images. {copyright} {ital 1996 The American Physical Society.}

  6. 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate.

    PubMed

    Pardal, Xiaolin; Brunet, Francine; Charpentier, Thibault; Pochard, Isabelle; Nonat, André

    2012-02-01

    pairing site is observed only for Ca/(Si+Al) ratios greater than 0.95 (equivalent to 4 mmol.L(-1) of calcium hydroxide). Finally, the results suggest that penta and hexa-coordinated aluminum are adsorbed on the sides of the C-A-S-H particles. PMID:22277014

  7. Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode

    NASA Astrophysics Data System (ADS)

    Şenarslan, Elvan; Güzeldir, Betül; Sağlam, Mustafa

    2016-04-01

    In this study, p-type Si semiconductor wafer with (100) orientation, 400 μm thickness and 1-10 Ω cm resistivity was used. The Si wafer before making contacts were chemically cleaned with the Si cleaning procedure which for remove organic contaminations were ultrasonically cleaned at acetone and methanol for 10 min respectively and then rinsed in deionized water of 18 MΩ and dried with high purity N2. Then respectively RCA1(i.e., boiling in NH3+H2O2+6H2O for 10 min at 60°C ), RCA2 (i.e., boiling in HCl+H2O2+6H2O for 10 min at 60°C ) cleaning procedures were applied and rinsed in deionized water followed by drying with a stream of N2. After the cleaning process, the wafer is immediately inserted in to the coating unit. Ohmic contact was made by evaporating of Al on the non-polished side of the p-Si wafer pieces under ~ 4,2 10-6 Torr pressure. After process evaporation, p-Si with omic contac thermally annealed 580°C for 3 min in a quartz tube furnace in N2. Then, the rectifier contact is made by evaporation Al metal diameter of about 1.0 mm on the polished surface of p-Si in turbo molecular pump at about ~ 1 10-6 Torr. Consequently, Al/p-Si/Al Schottky diode was obtained. The I–V measurements of this diode performed by the use of a KEITLEY 487 Picoammeter/Voltage Source and the C–V measurements were performed with HP 4192A (50–13 MHz) LF Impedance Analyzer at room temperature and in dark.

  8. A comparative wear study on Al-Li and Al-Li/SiC composite

    SciTech Connect

    Okumus, S. Cem Karslioglu, Ramazan Akbulut, Hatem

    2013-12-16

    Aluminum-lithium based unreinforced (Al-8090) alloy and Al-8090/SiCp/17 vol.% metal matrix composite produced by extrusion after spray co-deposition. A dry ball-on disk wear test was carried out for both alloy and composite. The tests were performed against an Al{sub 2}O{sub 3} ball, 10 mm in diameter, at room temperature and in laboratory air conditions with a relative humidity of 40-60%. Sliding speed was chosen as 1.0 ms{sup −1} and normal loads of 1.0, 3.0 and 5.0 N were employed at a constant sliding distance of 1000 m. The wear damage on the specimens was evaluated via measurement of wear depth and diameter. Microstructural and wear characterization was carried out via scanning electron microscopy (SEM). The results showed that wear loss of the Al-8090/SiC composite was less than that of the Al-8090 matrix alloy. Plastic deformation observed on the wear surface of the composite and the matrix alloy, and the higher the applied load the greater the plastic deformation. Scanning electron microscopy examinations of wear tracks also reveal that delamination fracture was the dominant wear mechanism during the wear progression. Friction coefficient was maximum at the low applied load in the case of the Al-8090/SiC composite while a gradual increase was observed with applied load for the matrix alloy.

  9. A comparative wear study on Al-Li and Al-Li/SiC composite

    NASA Astrophysics Data System (ADS)

    Okumus, S. Cem; Karslioglu, Ramazan; Akbulut, Hatem

    2013-12-01

    Aluminum-lithium based unreinforced (Al-8090) alloy and Al-8090/SiCp/17 vol.% metal matrix composite produced by extrusion after spray co-deposition. A dry ball-on disk wear test was carried out for both alloy and composite. The tests were performed against an Al2O3 ball, 10 mm in diameter, at room temperature and in laboratory air conditions with a relative humidity of 40-60%. Sliding speed was chosen as 1.0 ms-1 and normal loads of 1.0, 3.0 and 5.0 N were employed at a constant sliding distance of 1000 m. The wear damage on the specimens was evaluated via measurement of wear depth and diameter. Microstructural and wear characterization was carried out via scanning electron microscopy (SEM). The results showed that wear loss of the Al-8090/SiC composite was less than that of the Al-8090 matrix alloy. Plastic deformation observed on the wear surface of the composite and the matrix alloy, and the higher the applied load the greater the plastic deformation. Scanning electron microscopy examinations of wear tracks also reveal that delamination fracture was the dominant wear mechanism during the wear progression. Friction coefficient was maximum at the low applied load in the case of the Al-8090/SiC composite while a gradual increase was observed with applied load for the matrix alloy.

  10. Development of dispersion U(Mo)/Al-Si miniplates fabricated at 500 °C with Al 6061 as cladding

    NASA Astrophysics Data System (ADS)

    Mirandou, M. I.; Aricó, S. F.; Balart, S. N.; Fabro, J. O.

    2015-02-01

    In the frame of U(Mo) dispersion fuel elements qualification, Si additions to Al matrix arose as a promising solution to the unacceptable failures found when pure Al is used. Analysis of as-fabricated fuel plates made with Al-Si matrices demonstrated that good irradiation behavior is correlated with the formation during fabrication of a Si-containing interaction layer around the U(Mo) particles. Thus, the analysis of the influence of fabrication parameters becomes important. Studies on Al-Si dispersion miniplates fabricated in CNEA, Argentina, have been initiated to determine how to obtain the better interaction layer characteristics with the lesser modifications to the fabrication process and the smaller amount of Si in the matrix. In this work results for miniplates made of atomized U-7 wt%Mo particles dispersed in Al-2 wt%Si and Al-4 wt%Si matrices, obtained by mixing pure Al and Si powders, and Al 6061 as cladding are presented. Interaction layer grown during fabrication process (500 °C) consists of Si-containing phases being U(Al, Si)3 its principal component. Its uniformity is not satisfactory due to the formation of an oxide layer.

  11. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  12. An experimental study of the Fe oxidation states in garnet and clinopyroxene as a function of temperature in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2: implications for garnet-clinopyroxene geothermometry

    NASA Astrophysics Data System (ADS)

    Purwin, Horst; Lauterbach, Stefan; Brey, Gerhard P.; Woodland, Alan B.; Kleebe, Hans-Joachim

    2013-04-01

    Samples with eclogitic composition in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2 were produced from various kinds of starting materials held in graphite-lined Pt capsules at a pressure of 2.5-3.0 GPa and temperatures of 800-1,300 °C using a piston-cylinder or Belt apparatus. Garnets and clinopyroxenes were characterized by analytical transmission electron microscopy and electron probe micro-analysis (EPMA). Fe3+/ΣFe ratios determined by electron energy-loss spectroscopy (EELS) decrease in clinopyroxene from 22.2 ± 3.4 % at 800 °C to 13.3 ± 5.4 % at 1,300 °C, while in garnet, they vary between 10.8 ± 1.5 and 15.4 ± 4.7 %, respectively. Temperature estimates according to Krogh (Contrib Mineral Petrol 99:44-48, 1988) reproduce the experimental temperature to ±60 °C without systematic deviations if total iron is used in the calculation. If only the Fe2+ content is used, which was obtained by combining EPMA and EELS results, the experimental temperature is underestimated by 33 °C on average at 800-1,200 °C and overestimated by 77 °C on average at 1,300 °C. These systematic deviations can be explained by the temperature-dependent ratio of Fe2+/ΣFe in garnet divided by that in clinopyroxene. Since the difference between the calculated and experimental temperature is relatively small, a Fe2+-based recalibration of the thermometer appears not to be necessary for the investigated system in the range of pressure, temperature and composition covered by the experiments of this study.

  13. Al-Si/SiC nanoparticles composites synthesized by double stir casting.

    PubMed

    Aigbodion, V S

    2011-11-01

    The present invention provides Al-Si/SiC nanoparticles composites with the composition of 7%Si, 15%SiC with average particle size (APS) of SiC, 20, 30, 40 nm and 65μm using a novel double stir casting method. The inventive nano-composites by double stir casting show a nearly uniform distribution and good dispersion of the nano-particles within the Al matrix, although small agglomeration was found in the matrix of the micro-composite. The enhancement in values of impact strength and tensile strength observed in this study is due to small particle size and good distribution of the nano particles, which were confirmed by SEM spectrum. Patents WO 2010135848 and WO2011/011601 have some relevant information about the topic developed in this study, because the principle in both cases relies on the interactions between metal matrix and the nano-particles. Hence, novel double stir casting method can be used to improve the properties of nano-composites. PMID:21428904

  14. Calcio-olivine {gamma}-Ca{sub 2}SiO{sub 4}: I. Rietveld refinement of the crystal structure

    SciTech Connect

    Gobechiya, E. R. Yamnova, N. A.; Zadov, A. E.; Gazeev, V. M.

    2008-05-15

    The structure of the natural mineral calcio-olivine ({gamma}-Ca{sub 2}SiO{sub 4}) found in skarn xenoliths in the region of the Lakargi Mountain (North Caucasus, Kabardino-Balkaria, Russia) is refined by the Rietveld method [a = 5.07389(7) A, b = 11.21128(14) A, c = 6.75340(9) A, V = 384.170(5) A{sup 3}, Z = 4, {rho}{sub calcd} = 2.98 g/cm{sup 3}, space group Pbnm]. The X-ray diffraction pattern of a powdered sample is recorded on a STOE STADI MP diffractometer [{lambda}CuK{sub {alpha}1}; Ge(111) primary monochromator; 6.00{sup o} < 2{theta} < 100.88{sup o}; step width, 2.5{sup o} in 2{theta}; number of reflections, 224]. All calculations are performed with the WYRIET (version 3.3) software package. The structural model is refined in the anisotropic approximation to R{sub p} = 6.44, R{sub wp} = 8.52, R{sub exp} = 5.85, R{sub B} = 4.98, R{sub F} = 6.90, and s = 1.46. It is shown that the sample under investigation is a mixture of several mineral phases, among which calcio-olivine (the natural analogue of the {gamma}-Ca{sub 2}SiO{sub 4} compound) (83%), hillebrandite (13%), and wadalite (4%) are dominant. Only the scale factors and the unit cell parameters are refined for hillebrandite Ca{sub 2}SiO{sub 3}(OH){sub 2} [a = 3.63472(16) A, b = 16.4140(10) A, c = 11.7914(8) A, space group Cmc2{sub 1}, Z = 6] and wadalite Ca{sub 6}Al{sub 5}Si{sub 2}O{sub 16}Cl{sub 3} (a = 12.0088 A, space group, I 4 bar 3d, Z = 4). The results of the structure refinement of the main component of the sample confirm that the mineral calcio-olivine is isostructural to the synthetic compound {gamma}-Ca{sub 2}SiO{sub 4}. The structure of this compound is formed by the heteropolyhedral framework composed of Ca octahedra joined together into olivine-like ribbons and isolated Si tetrahedra.

  15. XPS study of the Al/SiO2 interface viewed from the SiO2 side

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Grunthaner, F. J.; Maserjian, J.

    1984-01-01

    The first nondestructive measurement of the chemical and physical characteristics of the interface between bulk SiO2 and thick aluminum films is presented. Both X-ray photoelectron spectroscopy (XPS) and electrical measurements of unannealed resistively evaporated Al films on thermal SiO2 indicate an atomically abrupt interface. Postmetallization annealing (PMA) at 450 C induces reduction of the SiO2 by the aluminum, resulting in the layer ordering SiO2/Al2O3/Si/Al. The XPS measurement is performed from the SiO2 side after removal of the Si substrate after etching with XeF2 gas and thinning of the SiO2 layer with HF:ETOH. This represents a powerful new approach to the study of metal-insulator and other interfaces.

  16. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties.

    PubMed

    Wu, Chengtie; Ramaswamy, Yogambha; Kwik, Danielle; Zreiqat, Hala

    2007-07-01

    CaSiO3 ceramics have been regarded as a potential bioactive material for bone regeneration. Strontium (Sr) as a trace element in human body has been found to have beneficial effects on bone formation. The aim of this study was to incorporate Sr into CaSiO3 bioactive ceramics and to investigate their effect(s) on phase transition, sintering property, apatite-formation ability, ionic dissolution, and human bone-derived cells (HBDC) proliferation. Sr containing CaSiO3 (Sr-CaSiO3) ceramics at various concentrations (0-10% Sr) were prepared. The incorporation of Sr into CaSiO3 promoted the phase transition from beta to alpha-CaSiO3 and enhanced ceramic densification but did not alter the mechanism and ability of apatite formation in SBF. The ionic dissolution rate of the Sr-CaSiO3 decreased compared to the CaSiO3. The addition of Sr decreased pH value in SBF. The effect of Sr-CaSiO3 extracts, carried out according to the International Standard Organization, on HBDC proliferation was evaluated. At high extract concentration (100 and 200 mg/mL), CaSiO3 was found to stimulate HBDC proliferation, however, the incorporation of Sr into CaSiO3 stimulated HBDC proliferation even at low extract concentration (ranging from 12.5, 25 to 50 mg/mL). Our results indicate that Sr-CaSiO3 ceramics improved the physical and biological properties of the pure CaSiO3 ceramics. PMID:17445881

  17. Thermodynamic Assessment of the Aluminum Corner of the Al-Fe-Mn-Si System

    NASA Astrophysics Data System (ADS)

    Lacaze, Jacques; Eleno, Luiz; Sundman, Bo

    2010-09-01

    A new assessment of the aluminum corner of the quaternary Al-Fe-Mn-Si system has been made that extends beyond the COST-507 database. This assessment makes use of a recent, improved description of the ternary Al-Fe-Si system. In the present work, modeling of the Al-rich corner of the quaternary Al-Fe-Mn-Si system has been carried out by introducing Fe solubility into the so-called alpha-AlMnSi and beta-AlMnSi phases of the Al-Mn-Si system. A critical review of the data available on the quaternary system is presented and used for the extension of the description of these ternary phases into the quaternary Al-Fe-Mn-Si.

  18. Structure of AlSi-SiC composite foams surface formed by mechanical and thermal cutting

    NASA Astrophysics Data System (ADS)

    Krajewski, Sławomir; Nowacki, Jerzy

    2015-02-01

    The article presents the geometric structure of AlSi-SiC composite foam surface after thermal, mechanical and erosive cutting with regards to its subsequent practical applications. In stereometric measurements of foam surfaces, confocal microscopy was suggested as a method fit for measuring surfaces of high discontinuity ratio that results from porosity. Basic quality parameters of cutting plane were characterised, and technical as well as methodological problems deriving from atypical porous structure of metallic foams were identified. On the basis of the results obtained, the influence of cutting methods on the geometric parameters of foam plane was established, and most favourable cutting conditions were determined.

  19. Structure, phase composition, and strengthening of cast Al-Ca-Mg-Sc alloys

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Alekseeva, E. V.

    2016-02-01

    The structure and phase composition of Al-Ca-Mg-Sc alloys containing 0.3 wt % Sc, up to 10 wt % Ca, and up to 10 wt % Mg have been investigated in the cast state and state after heat treatment. It has been shown that only binary phases Al4Ca, Al3Sc, and Al3Mg2 can be in equilibrium with the aluminum solid solution. It has been found that the maximum strengthening effect caused by the precipitation of Al3Sc nanoparticles for all investigated alloys is attained after annealing at 300-350°C.

  20. Fracture toughness of SiC/Al metal matrix composite

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Parker, B. H.; Chu, H. P.

    1989-01-01

    An experimental study was conducted to evaluate fracture toughness of SiC/Al metal matrix composite (MMC). The material was a 12.7 mm thick extrusion of 6061-T6 aluminum alloy with 40 v/o SiC particulates. Specimen configuration and test procedure conformed to ASTM E399 Standard for compact specimens. It was found that special procedures were necessary to obtain fatigue cracks of controlled lengths in the preparation of precracked specimens for the MMC material. Fatigue loading with both minimum and maximum loads in compression was used to start the precrack. The initial precracking would stop by self-arrest. Afterwards, the precrack could be safely extended to the desired length by additional cyclic tensile loading. Test results met practically all the E399 criteria for the calculation of plane strain fracture toughness of the material. A valid K sub IC value of the SiC/Al composite was established as K sub IC = 8.9 MPa square root of m. The threshold stress intensity under which crack would cease to grow in the material was estimated as delta K sub th = 2MPa square root of m for R = 0.09 using the fatigue precracking data. Fractographic examinations show that failure occurred by the micromechanism involved with plastic deformation although the specimens broke by brittle fracture. The effect of precracking by cyclic loading in compression on fracture toughness is included in the discussion.

  1. A thermokinetic model for Mg-Si couple formation in Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Svoboda, J.; Shan, Y. V.; Kozeschnik, E.; Fischer, F. D.

    2016-03-01

    Mg-Si couples formed from atomic Mg and Si represent the first step in Mg-Si cluster formation in a dilute Al-Mg-Si system. Based on the thermodynamic extremal principle, a kinetic model for Mg-Si couple formation is developed. The model utilizes the trapping concept for the calculation of Gibbs energy of the non-equilibrium system and provides a generalized (multiplicative) form of the Oriani equation for description of the equilibrium state. The dissipation in the system accounts for diffusion of both Mg and Si atoms in the lattice. The model is compared with the classical Lidiard and Howard equilibrium theory. Some demonstrative examples are presented. Finally the model is applied to an experimentally studied system. Good quantitative agreement with quenching experiments is obtained, if, simultaneously, the impact of excess quenched-in vacancies and their gradual annihilation in the system, which has been already treated in a previous paper, are accounted for. The model is generally applicable for any couple (and pair) formation.

  2. Anisotropic Responses of Mechanical and Thermal Processed Cast Al-Si-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Balogun, S. A.; Onoyemi, O. K.

    2015-05-01

    The effects of ambient directional rolling and heat treatments on ultimate tensile strength (UTS), hardness (HD), percent elongation (PE), and impact energy (IE) on Al-Si-Mg-Cu alloy casting with reference to inclination to rolling direction are discussed in this article. The results show that rolled and quenched (CQ) sample possess superior UTS and HD to as-cast and those of rolled and aged samples (CA). Improved IE resistance with ductility is shown by both CQ and CA samples. However, these mechanical properties are enhanced as changes in the test sample direction moved away from rolling direction for all heat-treated samples. The CQ samples displayed highest tensile strength (108 MPa) and PE (19.8%) in the 90° direction.

  3. Wear resistance of TiAlSiN thin coatings.

    PubMed

    Silva, F J G; Martinho, R P; Alexandre, R J D; Baptista, A P M

    2012-12-01

    In the last decades TiAIN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAISiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAISiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAIN reported performances, denoting that Si addition does not improve the wear performance of the TiAIN coatings in these wear test conditions. PMID:23447962

  4. Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.).

    PubMed

    Zhang, Xian-Chen; Gao, Hong-Jian; Wu, Hong-Hong; Yang, Tian-Yuan; Zhang, Zheng-Zhu; Mao, Jing-Dong; Wan, Xiao-Chun

    2015-11-01

    Tea plant (Camellia sinensis (L.) O. kuntze) is known to be a fluoride (F) and aluminum (Al(3+)) hyper-accumulator. Previous study showed that pre-treatment of Al(3+) caused a significant increase of F accumulation in tea plants. However, less is known about the intricate network of Al(3+) promoted F accumulation in tea plants. In this study, the involvement of endogenous Ca(2+) and CaM in Al(3+) pretreatment-promoted F accumulation in tea plants was investigated. Our results showed that Al(3+) induced the inverse change of intracellular Ca(2+) fluorescence intensity and stimulated Ca(2+) trans-membrane transport in the mature zone of tea root. Also, a link between internal Ca(2+) and CaM was found in tea roots under the presence of Al(3+). In order to investigate whether Ca(2+) and CaM were related to F accumulation promoted by Al(3+) pretreatment, Ca(2+) chelator EGTA and CaM antagonists CPZ and TFP were used. EGTA, CPZ, and TFP pretreatment inhibited Al(3+)-induced increase of Ca(2+) fluorescence intensity and CaM content in tea roots, and also significantly reduced Al(3+)-promoted F accumulation in tea plants. Taken together, our results suggested that the endogenous Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted F accumulation in tea roots. PMID:26318146

  5. [VUV spectral properties of CaMgSi2O6 : Eu].

    PubMed

    Zhou, Dan; He, Da-wei; Hou, Tao

    2007-05-01

    CaMgSiOs6 : Eu samples were synthesized by a normal solid state reaction using CaCO3, MgO, SiO2 and Eu2O3 as starting materials. The properties of structure, VUV excitation and luminescence under VUV excitation were studied. CaMgSi2O6 : Eu belongs to the monoclinic space group, and the crystal structure does not change as the crystal lattice is doped with Eu ions. The emission spectra of CaMgSi2O6 : Eu3+ have revealed an intense and sharp (611 nm) red color emission from Eu3+ ((5)D0-->(7)F2) transition under 147 nm VUV excitation. The correlative data shows that the concentration quenching occurs when the Eu3+ mole concentration ranges from 0.02 to 0.10 mol. The emission spectra of CaMgSi2O6 : Eu2+ have revealed an intense and sharp (452 nm) blue color emission from Eu2+ (5d-->4f) transition under 172 nm VUV excitation. It can be seen that the intensity of the emission peak increases with increasing H3BO3 concentration. PMID:17655118

  6. Structural and electronic properties of a single Si chain doped zigzag AlN nanoribbon

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Zhang, Jing; Xu, Ke-Wei

    2015-04-01

    The first-principles projector-augmented wave (PAW) potentials within the density function theory (DFT) framework have been used to determine the geometry structures and electronic properties of the zigzag edge AlN nanoribbons (ZAlNNRs) doped with a single Si chain under generalized gradient approximation (GGA). The average Al-Si, Si-Si, Al-N, Si-N, Al-H and N-H bond lengths are 2.39, 2.16, 1.83, 1.74, 1.59 and 1.03 Å, respectively. Pure 7-ZAlNNR is an indirect semiconductor with a large band gap of 2.235 eV, while a semiconductor to metal transformation is taken place after a single Si chain substituting for a single Al-N chain at various positions. In pure 7-ZAlNNR, the HVB and LCB are mainly attributed to the edge N and Al atoms, respectively, while in a single Si chain substituting doped 7-ZAlNNR, the HVB and LCB are mainly attributed to the Si atoms. The Al-N, Al-H and Al-Si bonds are ionic bond, the Si-Si and Si-H bonds are covalent bond, the N-H and N-Si bonds are covalent bond modified ionic bond.

  7. ALS-like skin changes in mice on a chronic low-Ca/Mg high-Al diet.

    PubMed

    Kihira, Tameko; Yoshida, Sohei; Kondo, Tomoyoshi; Yase, Yoshiro; Ono, Seiitsu

    2004-04-15

    Epidemiologic studies of endemic foci of amyotrophic lateral sclerosis (ALS) have shown low concentrations of Ca/Mg and high concentrations of Al/Mn in the drinking water and garden soil, which may play a causative role in the pathogenesis of endemic ALS. We studied the effects of chronic exposure to a low-Ca/Mg high-Al maltol diet on the skin of experimental animals. In ALS patients, atrophy of the epidermis, edematous changes with separated collagen fibrils and an accumulation of amorphous materials between collagen bundles were regarded as pathognomonic skin changes of ALS. Mice chronically fed a low-Ca/Mg high-Al maltol diet showed neuronal degeneration and loss in the spinal cords and cerebral cortices, as well as skin changes including atrophy, separation of collagen fibrils and accumulation of amorphous materials, similar to the skin changes characteristic of ALS. This is the first report of skin changes in animal models similar to those of ALS. We speculate that environmental factors such as chronic low-Ca/Mg high-Al condition play some causative role in the pathogenesis of Kii-ALS. PMID:15050431

  8. Angle-dependent photovoltaic effect in Al-Si multilayers

    SciTech Connect

    Kyarad, A.; Lengfellner, H.

    2005-10-31

    Al-Si multilayer stacks have been prepared by an alloying process from aluminum and silicon platelets. Irradiation of a stack with infrared to visible laser radiation generates photovoltaic signals depending on the angle of incidence of the laser beam with respect to the layer planes, with zero signal and a polarity reversal for beam and layers in parallel. Results are explained in terms of photoactive layers connected in series and symmetrically aligned along the stack axis. For light beams inclined with respect to the layer planes, asymmetry is introduced by fractional shadowing of photoactive regions due to the intransparent metallic layers.

  9. A study on the sealing ability and antibacterial activity of Ca3SiO5/CaCl2 composite cement for dental applications.

    PubMed

    Wang, Xiaohong; Chang, Jiang; Hu, Sheng

    2012-01-01

    The objective of this study was to evaluate the sealing ability and antibacterial activity of Ca3SiO5/CaCl2 composite cement. Fifty maxillary anterior teeth were instrumented according to step-back technique and filled with experimental and control materials. To evaluate the sealing ability, a fluid transport model using glucose was employed for quantitative analysis of endodontic microleakage. To evaluate antibacterial activity, E. colias (ATCC 25922) was cultivated on agar plates. Results showed that the sealing ability of Ca3SiO5/CaCl2 composite cement and cortisomol paste were higher than that of zinc oxide-eugenol (ZOE) cement, and that no significant difference was observed between Ca3SiO5/CaCl2 composite cement and cortisomol paste. On antibacterial activity, Ca3SiO5/CaCl2 composite cements composed of varying amounts of CaCl2 (0-15%) exhibited similar levels of activity against E. coliasas calcium hydroxide cement, whereas cortisomol paste had little effect on E. colias. All these results suggested that Ca3SiO5/CaCl2 composite cement demonstrated good potential for root canal treatment applications. PMID:22864215

  10. A declaration of independence for Mg/Si. [Al/Si intensity ratio predictive usefulness for Mg/Si intensity ratio in lunar X-ray fluorescence

    NASA Technical Reports Server (NTRS)

    Hubbard, N.; Keith, J. E.

    1978-01-01

    The weak covariation that exists between Al/Si and Mg/Si for large areas of the lunar surface is little, if any, stronger than that forced on a random set of numbers that are subject to closure. The Mg and Al variations implied by the Mg/Si and Al/Si intensity ratio data are qualitatively like those seen in lunar soil sample data. Two petrogenetic provinces are suggested for terra materials; one appears to have 50% higher Mg values than the other. Using the improved data, Mg/Si variations can be studied at a signal-to-noise ratio greater than 5/1.

  11. Kinetics of Isothermal Melt Crystallization in CaO-SiO2-CaF2-Based Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Seo, Myung-Duk; Shi, Cheng-Bin; Baek, Ji-Yeon; Cho, Jung-Wook; Kim, Seon-Hyo

    2015-10-01

    A kinetic study for isothermal melt crystallization of CaO-SiO2-CaF2-based mold fluxes with different basicity of 0.94 and 1.34 has been carried out systematically by DSC measurements. The kinetic parameters were determined by Johnson-Mehl-Avrami equation. The average Avrami exponent of cuspidine (3CaO·2SiO2·CaF2) crystallization for mold flux of lower basicity (0.94) is calculated to be 3.1, implying that the crystallization mode is instantaneous nucleation followed by 3-dimensional growth. For the mold flux of higher basicity (1.34), the average Avrami exponent of cuspidine equals to 3.4, strongly suggesting that the growth is still 3 dimensional but the nucleation should be continuous. It was found that the effective crystallization rate constant for both mold fluxes increases as the crystallization temperature decreases, showing that the crystallization rate could be governed by nucleation rate. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the mold fluxes studied. Therefore, it is concluded that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The morphology of cuspidine crystals observed by SEM agreeds well with the isothermal crystallization kinetics results.

  12. Properties of AlN film grown on Si (111)

    NASA Astrophysics Data System (ADS)

    Dai, Yiquan; Li, Shuiming; Sun, Qian; Peng, Qing; Gui, Chengqun; Zhou, Yu; Liu, Sheng

    2016-02-01

    Stress and strain in an AlN film grown on Si (111) substrate have been evaluated by measuring Raman frequency shifts. Mechanical properties and phonon deformation potentials of AlN are evaluated by first principles calculations. The calculation model is verified by comparing the calculated Raman frequencies and frequencies detected from a bulk single crystal. Results show that the two sets of frequencies agree very well with each other. Thus, with the same verified model and parameters, elastic constants and phonon deformation potentials are calculated. Additionally, we successfully develop a numerical model to verify the calculation above and the model itself is also useful to predict properties of crystal films. Finally, the stress, strain, and piezoelectric properties are analyzed and compared for films on different substrates.

  13. Microstructure Evolution of Cold-Sprayed Al-Si Alloy Coatings on γ-TiAl During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2015-08-01

    This paper investigated the influence of heat treatment on the microstructure of Al-Si alloy coatings on γ-TiAl alloy. The coatings were prepared by cold spraying with Al-12Si and Al-20Si alloy powders as the feedstock, and then the as-sprayed coatings were subjected to heat treatment. The microstructure, chemical composition, and phase transformation of the coatings were studied by SEM, XRD, and EPMA. The diffusing behavior of Al and Si during heat treatment was investigated. The results showed that a silicon-aluminizing coating was formed through the inward diffusion of Al/Si elements into the substrate. The obtained kinetics curve of the formation of silicon-aluminizing coating at 580 °C similarly followed parabolic law.

  14. Dissolution Kinetics of SiO2 into CaO-Fe2O3-SiO2 Slag

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Lv, Xuewei; Xiang, Shenglin; Xu, Jian

    2016-06-01

    High-basicity sinter is the predominant Fe-bearing material used in blast furnace process in East Asia. The dissolution of SiO2 into molten calcium ferrite influences the assimilation process. In this study, a rotating cylinder method was used to explore the dissolution kinetics of SiO2 into CaO-Fe2O3-SiO2 slag. The influencing factors, including temperature, rotating time and speed, and initial composition of the slag, were considered. Results showed that the dissolution rate increased with increasing rotation speed and temperature, whereas the increase in ω(SiO2) or ω(Fe2O3)/ ω(CaO) ratio in the initial slag composition decreased the dissolution rate. The diffusion coefficient and activation energy of SiO2 during the dissolution process ranged from 2.09 × 10-6 to 6.40 × 10-6 cm2 s-1 and 106.62 to 248.20 kJ mol-1, respectively. Concentration difference between the boundary layer and bulk phase was the primary driving force of the dissolution process; however, this process was also influenced by the slag viscosity and ion diffusivity.

  15. Density functional study of CaN monolayer on Si(001)

    NASA Astrophysics Data System (ADS)

    Saati asr, Maryam; Zahedifar, Maedeh; Hashemifar, S. Javad; Akbarzadeh, Hadi

    2016-01-01

    In this work, the first-principles computations are performed to study the structural and magnetic properties of CaN/Si(001) interface. Bulk CaN in the zinc-blende (ZB) structure is argued to be an ionic magnetic compound with a total spin moment of 1 μB per formula unit, originated from the p electrons of N ions. Various interface configurations of a ZB CaN monolayer on Si (001) surface are investigated and the lowest energy and the highest spin polarized interfaces are extracted. Then the minimum energy path between the lowest energy and the highest spin polarized interfaces are calculated by using the nudged elastic band method and it is argued that both these systems are unstable toward a nonmagnetic interface with a rock-salt arrangement of Ca and N atoms.

  16. Reaction synthesis of MoSi{sub 2}-Al{sub 2}O{sub 3} composite using MoO{sub 3}, Al and Si powders

    SciTech Connect

    Deevi, S.C.; Deevi, S.

    1995-10-01

    In-situ synthesis of a composite of MoSi{sub 2}-Al{sub 2}O{sub 3} was carried out by reacting a thermite mixture consisting of MoO{sub 3}, Al, and Si powders. The reaction was found to be extremely fast and violent, and a diluent was required to moderate the reaction. Thermal behavior of the thermite mixture was studied using DTA at different heating rates, and DTA was interrupted at different temperatures to determine the reaction mechanism. X-ray characterization of the products obtained at different temperatures reveals that the mechanism consists of a reduction of MoO{sub 3} by Al to MoO{sub 2} followed by a simultaneous oxidation of Al to Al{sub 2}O{sub 3} and synthesis reaction between reduced Mo and Si to form MoSi{sub 2}. The rate determining step is found to be reduction of MoO{sub 2} by Al and oxidation of Al to Al{sub 2}O{sub 3}. The thermite reaction was moderated by adding Mo and Si to the mixture of MoO{sub 3}, Al, and Si such that the ratio of MoSi{sub 2} to the thermite was in the range of 60:40 to 90:10.

  17. Al-Si-Cu/TiN multilayer interconnection and Al-Ge reflow sputtering technologies for quarter-micron devices

    NASA Astrophysics Data System (ADS)

    Kikkawa, Takamaro; Kikuta, Kuniko

    1993-05-01

    Issues of interconnection technologies for quarter-micron devices are the reliability of metal lines with quarter-micron feature sizes and the formation of contact-hole-plugs with high aspect ratios. This paper describes a TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure as a quarter-micron interconnection technology and aluminum-germanium (Al-Ge) reflow sputtering as a contact-hole filling technology. The TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure could suppress stress-induced voiding and improve the electromigration mean-time to failure. These improvements are attributed to the fact that the grain boundaries for the Al-Si-Cu film and the interfaces between the Al-Si-Cu and the TiN films are strengthened by the rigid intermetallic compound, TiAl3. The Al-Ge alloy reflow sputtering is a candidate for contact- and via-hole filling technologies in terms of reducing fabrication costs. The Al-Ge reflow sputtering achieved low temperature contact hole filling at 300 degree(s)C. Contact holes with a diameter of 0.25 micrometers and aspect ratio of 4 could be filled. This is attributed to the low eutectic temperature for Al-Ge (424 degree(s)C) and the effect of thin polysilicon underlayer on the enhancement of Al-Ge reflow.

  18. Evaluation of the genotoxicity and mutagenicity of Ca3SiO5-based cement.

    PubMed

    Nai, Gisele Alborghetti; Logar, Gustavo de Almeida; Mori, Graziela Garrido; Teixeira, Ligia Moraes; Silva, Bruna Camila Ferreira da; Moraes, Ana Elisa Maranho de; Cabral, Felipe André

    2016-01-01

    Ca3SiO5 is new cement based on the composition of Portland that has been developed to have superior physicochemical and biological properties. In a clinical evaluation, the cement did not appear to have cytotoxic properties and allowed for the proliferation of pulp cells and gingival fibroblasts. However, no previous studies have evaluated the genotoxicity or the mutagenicity of Ca3SiO5in vivo. Therefore, the goal of this study is to evaluate the genotoxic and mutagenic potential of Ca3SiO5-based cement in vivo. Twenty-four male Wistar rats were divided into 3 groups (n = 8). Group A rats received subcutaneous implantation of Ca3SiO5 in the dorsum. Group B rats received a single dose of cyclophosphamide (positive control). Group C rats received subcutaneous implantation of empty tubes in the dorsum (negative control). After 24 hours, all animals were euthanized and the bone marrow of the femurs was collected for use in the comet assay and the micronucleus test. The comet assay revealed that the Ca3SiO5 group had a tail intensity of 23.57 ± 7.70%, the cyclophosphamide group had a tail intensity of 27.43 ± 7.40%, and the negative control group had a tail intensity of 24.75 ± 5.55%. The average number of micronuclei was 6.25 (standard deviation, SD = 3.53) in the Ca3SiO5 group, 9.75 (SD = 2.49) in the cyclophosphamide group, and 0.75 (SD = 1.03) in the negative control group. There was an increase in the micronuclei frequency in the Ca3SiO5 group compared to that of the negative control group (p < 0.05). Our data showed that exposure to the Ca3SiO5-based cement resulted in an increase in the frequency of micronuclei, but no genotoxicity was detected according to the comet assay. PMID:27556557

  19. Effect of SiC interlayer between Ti6Al4V alloy and hydroxyapatite films.

    PubMed

    Azem, Funda Ak; Birlik, Isil; Braic, Viorel; Toparli, Mustafa; Celik, Erdal; Parau, Anca; Kiss, Adrian; Titorencu, Irina; Vladescu, Alina

    2015-04-01

    Bioactive coatings are frequently used to improve the osseointegration of the metallic implants used in dentistry or orthopaedics. Among different types of bioactive coatings, hydroxyapatite (Ca10(PO4)6(OH)2) is one of the most extensively used due to its chemical similarities to the components of bones and teeth. In this article, production and characterization of hydroxyapatite films deposited on Ti6Al4V alloy prepared by magnetron sputtering were reported. Besides, SiC was deposited on substrate surface to study the interlayer effect. Obtained coatings were annealed at 600 °C for 30 and 120 min in a mixed atmosphere of N2 + H2O vapours with the heating rate of 12 °C min(-1). The effects of SiC interlayer and heat treatment parameters on the structural, mechanical and corrosion properties were investigated. After heat treatment process, the crystalline hydroxyapatite was obtained. Additionally, cell viability tests were performed. The results show that the presence of the SiC interlayer contributes a decrease in surface roughness and improves the mechanical properties and corrosion performance of the hydroxyapatite coatings. Biological properties were not affected by the presence of the SiC interlayer. PMID:25934259

  20. Original electrochemical mechanisms of CaSnO{sub 3} and CaSnSiO{sub 5} as anode materials for Li-ion batteries

    SciTech Connect

    Mouyane, M.; Womes, M.; Jumas, J.C.; Olivier-Fourcade, J.; Lippens, P.E.

    2011-11-15

    Calcium stannate (CaSnO{sub 3}) and malayaite (CaSnSiO{sub 5}) were synthesized by means of a high temperature solid-state reaction. Their crystal structures and morphologies were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy; their electrochemical properties were analyzed by galvanostatic tests. The amorphization of the initial electrode materials was followed by XRD. The first discharge of the oxides CaSnO{sub 3} and CaSnSiO{sub 5} shows a plateau at low potential, which is due to the progressive formation of Li-Ca-Sn and/or Li-Sn alloys as shown by {sup 119}Sn Moessbauer spectroscopy. The results reveal similar electrochemical mechanisms for CaSnO{sub 3} and CaSnSiO{sub 5} but they completely differ from those related to SnO{sub 2}. - Graphical abstract: {sup 119}Sn Moessbauer spectra at the end of the first discharge of CaSnO{sub 3} (dashed line) and CaSnSiO{sub 5} (solid line) anodes for Li-ion batteries. Inset shows that relative amounts of Sn(0) based alloys formed during the first discharge are similar for CaSnO{sub 3} and CaSnSiO{sub 5} pristine materials. Highlights: > CaSnSiO{sub 5} and CaSnO{sub 3} as anode materials for Li-ion batteries. > X-ray diffraction and Moessbauer spectroscopy, to explain the electrochemical mechanisms. > Similar mechanisms for the two compounds but different from those of SnO{sub 2} due to Ca.

  1. Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications

    NASA Astrophysics Data System (ADS)

    Kearney, Brian; Alves, Fabio; Grbovic, Dragoslav; Karunasiri, Gamani

    2013-01-01

    To increase the sensitivity of uncooled thermal sensors in the terahertz (THz) spectral range (1 to 10 THz), we investigated thin metamaterial layers exhibiting resonant absorption in this region. These metamaterial films are comprised of periodic arrays of aluminum (Al) squares and an Al ground plane separated by a thin silicon-rich silicon oxide (SiOx) dielectric film. These standard MEMS materials are also suitable for fabrication of bi-material and microbolometer thermal sensors. Using SiOx instead of SiO2 reduced the residual stress of the metamaterial film. Finite element simulations were performed to establish the design criteria for very thin films with high absorption and spectral tunability. Single-band structures with varying SiOx thicknesses, square size, and periodicity were fabricated and found to absorb nearly 100% at the designed frequencies between three and eight THz. Multiband absorbing structures were fabricated with two or three distinct peaks or a single-broad absorption band. Experimental results indicate that is possible to design very efficient thin THz absorbing films to match specific applications.

  2. Positron annihilation study on the effect of Si-content on the recovery of deformed cast Al-Si alloys

    NASA Astrophysics Data System (ADS)

    El-Gamal, S.

    2013-09-01

    Isochronal annealing of Al-1100 and cast Al-Si alloys (Si-content 2, 4, 6 and 8 wt%) after deformation of 66% thickness reduction was investigated between room temperature (RT) and 500 °C. The annealing of defects was studied using Doppler Broadening Spectroscopy (DBS), Total Strain (εT) and Scanning Electron Microscope (SEM). It was found that; (i) three annealing stages of microstructure have been identified for Al-1100 and Al-Si alloys which are related to recovery, partial recrystallization and complete recrystallization (ii) the interaction between Si-precipitates and dislocations in Al-Si alloys leads to higher values of normalized line shape parameter (Snor) and lower values of εT than those for Al-1100 alloy also, it retarded the recovery and recrystallization with temperature (iii) the S-W plot revealed the presence of one type of defects in Al-1100 alloy but in Al-Si alloys the slope of the trajectory changes, which may indicate the occurrence of another defect type (Si-dislocation interaction) (iv) a negative correlation is observed between εT and Snor while a positive correlation between εT and normalized wing parameter (Wnor) is obvious.

  3. Synthesis, microstructure and magnetic properties of Fe3Si0.7Al0.3@SiO2 core-shell particles and Fe3Si/Al2O3 soft magnetic composite core

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Fan, Xi'an; Wu, Zhaoyang; Li, Guangqiang

    2015-11-01

    Fe3Si0.7Al0.3@SiO2 core-shell particles and Fe3Si/Al2O3 soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe3Si0.7Al0.3 particles could be uniformly coated by insulating SiO2 using the modified stöber method. The Fe3Si0.7Al0.3@SiO2 core-shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO2=2α-Al2O3+3Si took place during the sintering process. As a result the new Fe3Si/Al2O3 composite was formed. The Fe3Si/Al2O3 composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe3Si0.7Al0.3 core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties.

  4. Simulation Study of Al-1Mn/Al-10Si Circular Clad Ingots Prepared by Direct Chill Casting

    NASA Astrophysics Data System (ADS)

    Wu, Li; Kang, Huijun; Chen, Zongning; Fu, Ying; Wang, Tongmin

    2016-02-01

    A modified direct chill casting process based on Novelis FusionTM Technology co-casting process was used recently to prepare Al-1Mn/Al-10Si circular clad ingots. In the current study, a comprehensive simulation model was developed to investigate the direct chill casting process for preparing the Al-1Mn/Al-10Si circular clad ingots, and a parametric study and experimental research of the direct chill casting process was conducted to explore potential success and failure casting conditions. The simulation results revealed the bonding mechanism of the Al-1Mn/Al-10Si interface in the direct chill casting process and identified the effect of certain parameters on casting performance. The results indicated that the effect of casting speed and Al-1Mn casting temperature on the variations of the minimum solid fraction of Al-1Mn at the interface is stronger than that of cooling water flow rate in inner mold, while Al-10Si casting temperature is the weakest of the four casting parameters. The corresponding experimental results verified that Al-1Mn/Al-10Si circular clad ingot with acceptable metallurgical bonding can be successfully prepared by direct chill casting process under the proper casting parameters. The thickness of diffusion zone is about 40 μm, and the fractured position in tensile test was located in the Al-1Mn alloy side which indicated the strength of the interfacial region is higher than that of Al-1Mn alloy.

  5. Structure and wear behavior of AlCrSiN-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Du, Hao; Chen, Ming; Yang, Jun; Xiong, Ji; Zhao, Haibo

    2016-05-01

    AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC-Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N2 mixtures. Al0.6Cr0.4, Al0.6Cr0.3Si0.1, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiNx peak were formed in the AlCrSiN/MexN coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H3/E2 ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  6. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. PMID:25740001

  7. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-04-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  8. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-06-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  9. Infiltration of Saffil alumina fiber with AlCu and AlSi alloys

    SciTech Connect

    Garbellini, O.; Morando, C.; Biloni, H.; Palacio, H. . Inst. de Fisica de Materiales)

    1999-06-18

    Currently there is a considerable scientific and technological interest in the composite materials, which a strong ceramic reinforcement is incorporated into a metal matrix (MMC) to tailor its properties for specific applications. Among the various techniques for fabricating MMC, the liquid metal infiltration process by means of a pressurized gas is an attractive fabrication route for near net shaped metal matrix composite and has been successfully used to fabricate Al, Mg and more recently, Ni and Ni aluminide matrix composites, which can be reinforced by SiC or Al[sub 2]O[sub 3] particles, whiskers, or short fibers. This paper describes the experimental technique used and presents an experimental investigation of the effects of the process parameters employed, such as the preform and melt temperatures, the volume fraction of fibers in the preform and the applied pressure upon the infiltration length of a chopped preform during a unidirectional infiltration aided by gas pressure casting. The experiments of the present work were conducted to provide kinetic data with a view to optimizing the selection of the process initial conditions for infiltration which have an effect on the infiltration length of the molten matrix alloy into a preform and it is a first step in investigating the correlation between the infiltration length (fluidity) of AlCuSi matrix alloys and the microstructure of the composites fabricated by pressure casting. For this purpose, this paper focuses on AlCu and AlSi matrix alloys reinforced by short-fibers [delta]-alumina SAFFIL. The experiments reported here were performed with the fibers initially at a temperature significantly below the metal melting point. This is the case of practical interest for the fabrication of many fiber-reinforced metal components.

  10. Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-12-01

    In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.

  11. Thermoelectric Properties of Mn-Doped Ca5Al2Sb6

    NASA Astrophysics Data System (ADS)

    Zevalkink, Alex; Swallow, Jessica; Snyder, G. Jeffrey

    2012-05-01

    Ca5Al2Sb6 is a relatively inexpensive Zintl compound exhibiting promising thermoelectric efficiency at temperatures suitable for waste heat recovery. Motivated by our previous studies of Ca5Al2Sb6 doped with Na and Zn, this study focuses on doping with Mn2+ at the Al3+ site. While Mn is a successful p-type dopant in Ca5Al2Sb6, we find that incomplete dopant activation yields lower hole concentrations than obtained with either previously investigated dopant. High-temperature Hall effect and Seebeck coefficient measurements show a transition from nondegenerate to degenerate semiconducting behavior in Ca5Al2- x Mn x Sb6 samples ( x = 0.05, 0.1, 0.2, 0.3, 0.4) with increasing Mn content. Ultimately, no improvement in zT is achieved via Mn doping, due in part to the limited carrier concentration range achieved.

  12. Influence of design on bioactivity of novel CaSiO3-CaMg(SiO3)2 bioceramics: in vitro simulated body fluid test and thermodynamic simulation.

    PubMed

    Sainz, M A; Pena, P; Serena, S; Caballero, A

    2010-07-01

    A new type of bioactive ceramic has been designed and obtained from high-temperature phase information from the wollastonite (CaSiO(3))-diopside (CaMg(SiO(3))(2)) phase equilibrium diagram. The selected composition was that corresponding to the eutectic point of the pseudobinary CaSiO(3)-CaMg(SiO(3))(2) system. The sintering behaviour, phase evolution, microstructural changes and in vitro bioactivity of CaSiO(3)-CaMg(SiO(3))(2) eutectic bioceramics were analysed by differential thermal analysis, X-ray diffraction, field emission scanning electron microscopy (FE-SEM) and image analysis. A simulation of the dissolution properties of the different materials studied, in water as well as in simulated body fluid (SBF), was also carried out by thermodynamic calculations, with the purpose of understanding the in vitro results obtained. The results demonstrate that the CaMg(SiO(3))(2) is significantly less soluble than CaSiO(3), developing an in situ porous structure (biomimetic porous bone material) with adequate biodegradation rate and stability strength when immersed in SBF. The influence of the microstructure (porosity, grain size and phase composition) on the in vitro bioactivity of the obtained bioceramics was also examined. PMID:20060937

  13. Effect of traveling magnetic field on separation and purification of Si from Al-Si melt during solidification

    NASA Astrophysics Data System (ADS)

    Zou, Q. C.; Jie, J. C.; Liu, S. C.; Wang, T. M.; Yin, G. M.; Li, T. J.

    2015-11-01

    Separation and purification of the Si crystal during solidification process of hypereutectic Al-30Si melt under traveling magnetic field (TMF) were investigated in the present study. The results showed that under a proper condition the Si-rich layer can be formed in the periphery of the ingot while the inner microstructure is mainly the Al-Si eutectic structure. The intense melt flow carries the bulk liquid with higher Si content to promote the growth of the primary Si phase which is first precipitated close to the inner wall of the crucible with a relatively lower temperature, which resulting in the remarkable segregation of the primary Si phase. The impurity contents of the refined Si can be reduced to a very low level. The typical metallic impurities have removal fraction higher than 99.5%. In addition, there is a significant difference in the P contents between the primary and eutectic Si phases, which might be ascribed to the formation of AlP phase that acts as the heterogeneous nucleation sites. Furthermore, a considerable amount of Fe-containing particles with a size about 100-300 nm is found inside the eutectic Si phase, indicating an unintended entrapment of Fe in Si.

  14. Site selectivity of dopant cations in Ca3(SiO4)Cl2

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.

    2014-08-01

    A series of static lattice calculations were performed to determine the site selectivity of cations of differing size and valence when substituted onto the Ca sites of the calcium chlorosilicate (Ca3(SiO4)Cl2) lattice, a potential host phase for the immobilisation of halide-rich wastes arising from the pyrochemical reprocessing of plutonium. Atomic-scale simulations indicate that divalent cations are preferentially substituted onto the Ca1 site, whilst tri- and tetravalent cations are preferentially hosted on the Ca2 site, with the Ca1 site favoured for forming the vacancies necessary to charge-balance the lattice as a whole. Multi-defect calculations reveal that the site selectivity of the dopant cations is dependent on their ionic radii; as the ionic radii of the divalent cations increase, substitution onto the preferred site becomes more and more strongly favoured, whereas the inverse is true of the trivalent cations.

  15. n-type conductivity in Si-doped amorphous AlN: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-04-01

    We report the electronic structure and topology of a heavily Si-doped amorphous aluminium nitride (Al37.5Si12.5N50) using ab initio simulations. The amorphous Al37.5Si12.5N50 system is found to be structurally similar to pure amorphous aluminium nitride. It has an average coordination number of about 3.9 and exhibits a small amount of Si-Si homopolar bonds. The formation of Si-Al bonds is not very favourable. Electronic structure calculations reveal that the Si doping has a negligible effect on the band gap width but causes delocalization of the valence band tail states and a shift of the Fermi level towards the conduction band. Thus, amorphous Al37.5Si12.5N50 alloys show n-type conductivity.

  16. Performance improvement of vertical ultraviolet-LEDs with AlSi alloy substrates.

    PubMed

    Chen, Kung-Cheng; Huang, Shih-Yung; Wang, Wei-Kai; Horng, Ray-Hua

    2015-06-15

    A composite AlSi alloy substrate was fabricated to eliminate thermal expansion coefficient mismatch in high-power vertical light-emitting diodes (VLEDs). At 2000-mA injection current, the light output power performance of LED/sapphire, VLED/Si, and VLED/AlSi are 1458, 2465, and 2499 mW and the wall-plug efficiencies are 13.66%, 26.39%, and 28.02%, respectively. The enhanced performance is attributable to the lower tensile stress and series resistance in VLED/AlSi than in LED/sapphire. The surface temperature of LED/AlSi is almost identical to and lower than that of LED/Si and LED/sapphire, respectively. Raman spectroscopy confirms that the residual strain in GaN film bonding on the composite AlSi is lower than that on bulk sapphire. PMID:26193525

  17. Characterization and luminescence properties of CaMgSi2O6:Eu2+ blue phosphor.

    PubMed

    Chandrakar, P; Baghel, R N; Bisen, D P; Chandra, B P

    2015-11-01

    A blue CaMgSi2O6:Eu(2+) phosphor was prepared by the solid-state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X-ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu(2+) -doped CaMgSi2 O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu(2+) phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity-induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu(2+) phosphors are discussed. PMID:25665136

  18. Synthesis and characterization of nanostructured CaSiO3 biomaterial

    NASA Astrophysics Data System (ADS)

    Jagadale, Pramod N.; Kulal, Shivaji R.; Joshi, Meghanath G.; Jagtap, Pramod P.; Khetre, Sanjay M.; Bamane, Sambhaji R.

    2013-04-01

    Here we report a successful preparation of nanostructured calcium silicate by wet chemical approach. The synthesized sample was characterized by various physico-chemical methods. Thermal stability was investigated using thermo-gravimetric and differential thermal analysis (TG-DTA). Structural characterization of the sample was carried out by the X-ray diffraction technique (XRD) which confirmed its single phase hexagonal structure. Transmission electron microscopy (TEM) was used to study the nanostructure of the ceramics while homogeneous grain distribution was revealed by scanning electron microscopy studies (SEM). The elemental analysis data obtained from energy dispersive X-ray spectroscopy (EDAX) were in close agreement with the starting composition used for the synthesis. Superhydrophilic nature of CaSiO3 was investigated at room temperature by sessile drop technique. Effect of porous nanosized CaSiO3 on early adhesion and proliferation of human bone marrow mesenchymal stem cells (BMMSCs) and cord blood mesenchymal stem (CBMSCs) cells was measured in vitro. MTT cytotoxicity test and cell adhesion test showed that the material had good biocompatibility and promoted cell viability and cell proliferation. It has been stated that the cell viability and proliferation are significantly affected by time and concentration of CaSiO3. These findings indicate that the CaSiO3 ceramics has good biocompatibility and that it is promising as a biomaterial.

  19. Effects of water absorption of dielectric underlayers on Al-Si-Cu film properties and electromigration performance in Al-Si-Cu/Ti/TiN/Ti interconnects

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomoyuki; Hashimoto, Shoji; Ohwaki, Takeshi; Mitsushima, Yasuichi; Taga, Yasunori

    1998-01-01

    The effects of underlying dielectric (phosphosilicate glass and borophosphosilicate glass) films to a humid air ambient on Al-Si-Cu film properties and electromigration (EM) performance in Al-Si-Cu/Ti/TiN/Ti layered films have been investigated as a function of the boron content and exposure time of the dielectric films. The Al(111) orientation in the layered films was found to improve drastically with increasing boron content and exposure time. The full width at half maximum value of an Al(111) x-ray rocking curve reached less than 1°. It was also found that the Al-Si-Cu surface becomes smoother and grain sizes increase as the Al(111) orientation improves. The improved Al(111) orientation was attributed to the improved Ti(002) orientation of the bottom Ti films. Further, it was demonstrate that interconnects fabricated from the improved layered film have excellent EM performance.

  20. Compositions and morphologies of TiAlSi intermetallics in different diffusion couples

    SciTech Connect

    Gao, Tong; Liu, Guiliang; Liu, Xiangfa

    2014-09-15

    Two kinds of diffusion couples were designed to investigate the formation of ternary TiAlSi phases in Al–Si–Ti alloys. It was found that different diffusion processes result in various compositions and morphologies of TiAlSi intermetallics. The melted Al, Si and Ti atoms in the diffusion couple leads to the formation of flake-like TiAlSi phase through liquid–liquid reaction. Besides, unidirectional diffusion of Al and Si atoms into blocky TiAl{sub 3} particles or Ti powders via a liquid–solid diffusion process also results in the formation of TiAlSi, while keeping the block-like morphology. This kind of diffusion is a gradual process, driven by the concentration gradient. The reactions in the diffusion couples are helpful to understand the compositional and morphological evolutions of TiAlSi as reported in previous work. - Highlights: • Two diffusion couples were designed to investigate the formation of TiAlSi phases. • Compositions and morphologies of TiAlSi are influenced by the diffusion process. • Liquid–liquid and liquid–solid diffusions were detected. • The corresponding mechanisms were discussed.

  1. Nondestructive depth profile of the chemical state of ultrathin Al2O3/Si interface

    NASA Astrophysics Data System (ADS)

    Lee, Jong Cheol; Oh, S.-J.

    2004-05-01

    We investigated a depth profile of the chemical states of an Al2O3/Si interface using nondestructive photon energy-dependent high-resolution x-ray photoelectron spectroscopy (HRXPS). The Si 2p binding energy, attributed to the oxide interfacial layer (OIL), was found to shift from 102.1 eV to 102.9 eV as the OIL region closer to Al2O3 layer was sampled, while the Al 2p binding energy remains the same. This fact strongly suggests that the chemical state of the interfacial layer is not Al silicate as previously believed. We instead propose from the HRXPS of Al 2p and Si 2p depth-profile studies that the chemical states of the Al2O3/Si interface mainly consist of SiO2 and Si2O3.

  2. Laser shock processing of Al-SiC composite coatings

    NASA Astrophysics Data System (ADS)

    Schnick, T.; Steinhäuser, S.; Wielage, B.; Hofmann, U.; Tondu, S.; Peyre, P.; Bartnicki, E.; Pawlowski, L.

    1999-06-01

    Laser shock processing (LSP) is a technique of surface treatment (similar to shot peening) in which laser-induced mechanical shocks develop compressive stresses in the material. The stresses are of sufficient intensity to modify microstructure and properties of the coatings. In the present study, laser shocks of power density of 5 to 8 GW/cm2 power density, generated by means of a neodymium-glass laser, were used to treat Al + SiC composite coatings deposited by means of a HVOF spraying technique. The laser processed samples were metallographically prepared, and their microstructure was investigated by optical microscope and SEM. The latter was also used to investigate the surface morphology of the laser treated specimens. Finally, the microhardness and oscillating wear resistance of the coatings were tested and compared to data obtained for as-sprayed samples.

  3. From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaO-Al₂O₃-SiO₂ melts.

    PubMed

    Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J; Hennet, Louis; Fischer, Henry E; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus

    2016-04-01

    Calcium aluminosilicate CaO-Al2O3-SiO2 (CAS) melts with compositions (CaO-SiO2)(x)(Al2O3)(1-x) for x  <  0.5 and (Al2O3)(x)(SiO2)(1-x) for x ≥ 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q(N) environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed. PMID:26940854

  4. Preparation and characterization of bioactive sol-gel-derived Na2Ca2Si3(O)9.

    PubMed

    Du, Ruilin; Chang, Jiang

    2004-12-01

    In this study, pure Na2Ca2Si3(O)9 was synthesized by a sol-gel method, and Na2Ca2Si3(O)9 cuboids and disks were prepared by uniaxial pressing and calcining at 700 degrees C. The porosity and mechanical strength of the Na2Ca2Si3(O)9 cuboids were measured, and the results showed that the Na2Ca2Si3(O)9 cuboids were porous with an average porosity of 44%, and the 3-point bending strength of the cuboids was 6.08 MPa. The in vitro bioactivity of Na2Ca2Si3(O)9 was carried out by soaking Na2Ca2Si3(O)9 disks in simulated body fluid (SBF). The results showed that hydroxyapatite (HA) formed on the surface of Na2Ca2Si3(O)9 samples after soaking for 1 day, which indicated good bioactivity of Na2Ca2Si3(O)9. PMID:15747180

  5. Microstructural Development in Al-Si Powder During Rapid Solidification

    SciTech Connect

    Amber Lynn Genau

    2004-12-19

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  6. Microstructural development of rapid solidification in Al-Si powder

    SciTech Connect

    Jin, F.

    1995-11-01

    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 {mu}m to 150 {mu}m diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  7. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the β-Al5FeSi, α-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the β platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved α-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of α-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  8. Wettability of binary and ternary alloys of the system Al-Si-Mg with SiC particulates

    SciTech Connect

    Narciso, J.; Alonso, A.; Pamies, A.; Garcia-Cordovilla, C. . Centro de Investigacion y Desarrollo); Louis, E. . Centro de Investigacion y Desarrollo Univ. de Alicante . Dept. de Fisica Aplicada)

    1994-12-01

    The authors have presented results of an investigation of wettability of SiC particulates by liquid alloys of the Al-Si-Mg system. The evaluation of wetting has been carried out through the determination of the threshold pressure for infiltration of packed SiC particulates by the liquid alloy. The results indicate that whereas Si and Mg additions do not affect wetting, in the case of the ternary alloys the contact angle decreases in an amount proportional to the content of Mg[sub 2]Si.

  9. Oxidation and microstructure evolution of Al-Si coated Ni3Al based single crystal superalloy with high Mo content

    NASA Astrophysics Data System (ADS)

    Tu, Xiaolu; Peng, Hui; Zheng, Lei; Qi, Wenyan; He, Jian; Guo, Hongbo; Gong, Shengkai

    2015-01-01

    A Si modified aluminide (Al-Si) coating was prepared on a Ni3Al based single crystal superalloy with high Mo content by high-activity pack cementation. Cyclic oxidation test at 1150 °C was carried out and the microstructure evolution of the coating was investigated. The results show that the oxidation resistance of the substrate was greatly increased by applying an Al-Si coating. During oxidation, outward diffusion of Mo was effectively blocked due to its high affinity with Si. Besides, a layered structure was formed as a result of the elements inter-diffusion. An obvious degradation of the Al-Si coating was observed after 100 h oxidation. Possible mechanisms related to the oxidation and elements inter-diffusion behaviours were also discussed.

  10. FeMn Metal Droplet Behavior in the MnO-SiO2-CaO Slag System

    NASA Astrophysics Data System (ADS)

    Jang, Hyoung-Soon; Ryu, Jae Wook; Sohn, Il

    2015-04-01

    Optimization of the MnO-SiO2-CaO-based slag composition in the FeMn decarburization refining process to minimize metal droplet entrainment has been studied. FeMn spherical droplets with average diameter of 2.5 mm were dispersed within the refining slag of the medium carbon grade ferro-manganese alloy process. Approximately 4.2 pct of the slag existed as FeMn droplets contributing to the overall metal yield loss in the current process. Sedimentation tests of slags with various SiO2 content ranging from 26 to 47 pct using Al2O3 crucibles held at 1773 K (1500 °C) for 30 minutes showed an improvement of the metal/slag separation. Estimated and measured viscosity of the slags showed SiO2 at 32 pct to be optimal for metal/slag separation. Changes in the SiO2 content to 32 pct in actual plant trials allowed significant decrease in the amount of metal droplet entrainment resulting in a decrease of metal in slag to 1.3 pct. Refining times for this optimized slag composition required at least 20 minutes holding for increased separation according to Stokes' law.

  11. Positron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures

    NASA Astrophysics Data System (ADS)

    Edwardson, C. J.; Coleman, P. G.; Li, T.-T. A.; Cuevas, A.; Ruffell, S.

    2012-03-01

    Film and film/substrate interface characteristics of 30 and 60 nm-thick AlOx films grown on Si substrates by thermal atomic layer deposition (ALD), and 30 nm-thick AlOx films by sputtering, have been probed using variable-energy positron annihilation spectroscopy (VEPAS) and Doppler-broadened spectra ratio curves. All samples were found to have an interface which traps positrons, with annealing increasing this trapping response, regardless of growth method. Thermal ALD creates an AlOx/SiOx/Si interface with positron trapping and annihilation occurring in the Si side of the SiOx/Si boundary. An induced positive charge in the Si next to the interface reduces diffusion into the oxides and increases annihilation in the Si. In this region there is a divacancy-type response (20 ± 2%) before annealing which is increased to 47 ± 2% after annealing. Sputtering seems to not produce samples with this same electrostatic shielding; instead, positron trapping occurs directly in the SiOx interface in the as-deposited sample, and the positron response to it increases after annealing as an SiO2 layer is formed. Annealing the film has the effect of lowering the film oxygen response in all film types. Compared to other structural characterization techniques, VEPAS shows larger sensitivity to differences in film preparation method and between as-deposited and annealed samples.

  12. Characteristics of Si Solar Cells with the Addition of Frits and Additives to Al Pastes

    NASA Astrophysics Data System (ADS)

    Kim, Dongsun; Kim, Jongwoo; Lee, Jungki; Kim, Hyungsun

    2011-11-01

    Thick Al films are used widely as the backside electrode material of Si solar cells. The formation of Al and a back surface field reduce the back-surface recombination and improve the cell performance. This study examined the characteristics of Si solar cells with the addition of frits and additives to Al pastes after firing. The reactions among Al powders, frits and additives were studied. The wetting behavior between each powder (Al powder, frit, additive) and Si, Al substrates was also measured as a function of the temperature. These preliminary studies show that the frits affect the adhesion between Al and Si. In addition, the proper additives prevent the bowing of Si wafer.

  13. The microstructure-strength relationship in a deformation processed Al-Ca composite

    SciTech Connect

    Tian, Liang; Kim, Hyongjune; Anderson, Iver; Russell, Alan

    2013-02-07

    An Al-9 vol% Ca composite was produced by powder metallurgy and deformation processing. The Al–Ca composite was extruded, swaged and wire drawn to a deformation true strain of 13.8. Both Al and Ca are face-centered cubic, so the Ca second phase deformed into continuous, nearly cylindrical filaments in the Al matrix. The formation of intermetallic compounds, filament coarsening, and spheriodization at elevated temperature was observed by scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. Both the thickness and spacing of the Ca filaments decreased exponentially with increasing deformation. The ultimate tensile strength of the composite increased rapidly with increased deformation, especially at high deformation processing strains. The relation between deformation true strain and ultimate tensile strength is underestimated by the rule of mixtures; a modified Hall–Petch barrier strengthening model was found to fit the data better.

  14. Effects of silica sol on the microstructure and mechanical properties of CaSiO3 bioceramics.

    PubMed

    Pan, Ying; Yin, Jinwei; Yao, Dongxu; Zuo, Kaihui; Xia, Yongfeng; Liang, Hanqin; Zeng, YuPing

    2016-07-01

    CaSiO3 ceramics were fabricated with silica sol addition by pressureless sintering. The effects of silica sol on phase composition, microstructure and mechanical properties of CaSiO3 ceramics were investigated. The silica sol additive was found to be effective in speeding up pore elimination, improving the grain growth, decreasing the sintering temperature and shortening the sintering time. When the amount of SiO2 was 5wt%, a flexural strength of 186.2MPa was achieved with an open porosity of 3.9%. The main crystal phase was β-CaSiO3 below sintering temperature of 1150°C. PMID:27127061

  15. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    PubMed

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  16. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity.

    PubMed

    Chang, Po-Hsueh; Chang, Yen-Po; Chen, San-Yuan; Yu, Ching-Tsung; Chyou, Yau-Pin

    2011-12-16

    We present the design and synthesis of Ca-rich Ca-Al-O oxides, with Ca(2+)/Al(3+) ratios of 1:1, 3:1, 5:1, and 7:1, which were prepared by hydrothermal decomposition of coprecipitated hydrotalcite-like Ca-Al-CO(3) precursors, for high-temperature CO(2) adsorption at 500-700 °C. In situ X-ray diffraction measurements indicate that the coprecipitated, Ca-rich, hydrotalcite-like powders with Ca(2+)/Al(3+) ratios of 5:1 and 7:1 contained Ca(OH)(2) and layered double hydroxide (LDH) phases. Upon annealing, LDH was first destroyed at approximately 200 °C to form an amorphous matrix, and then at 450-550 °C, the Ca(OH)(2) phase was converted into a CaO matrix with incorporated Al(3+) to form a homogeneous solid solution without a disrupted lattice structure. CaO nanocrystals were grown by thermal treatment of the weakly crystalline Ca-Al-O oxide matrix. Thermogravimetric analysis indicates that a CO(2) adsorption capacity of approximately 51 wt. % can be obtained from Ca-rich Ca-Al-O oxides prepared by calcination of 7:1 Ca-Al-CO(3) LDH phases at 600-700 °C. Furthermore, a relatively high CO(2) capture capability can be achieved, even with gas flows containing very low CO(2) concentrations (CO(2)/N(2) = 10 %). Approximately 95.6 % of the initial CO(2) adsorption capacity of the adsorbent is retained after 30 cycles of carbonation-calcination. TEM analysis indicates that carbonation-promoted CaCO(3) formation in the Ca-Al-O oxide matrix at 600 °C, but a subsequent desorption in N(2) at 700 °C, caused the formation CaO nanocrystals of approximately 10 nm. The CaO nanocrystals are widely distributed in the weakly crystalline Ca-Al-O oxide matrix and are present during the carbonation-calcination cycles. This demonstrates that Ca-Al-O sorbents that developed through the synthesis and calcination of Ca-rich Ca-Al LDH phases are suitable for long-term cyclic operation in severe temperature environments. PMID:22072595

  17. The effect of Si content on the fracture toughness of CrAlN/Si3N4 coatings

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wheeler, J. M.; Davis, C. E.; Clegg, W. J.; Zeng, X. T.

    2016-01-01

    CrAlN/Si3N4 nanocomposite coatings with different Si contents were deposited to understand how Si influences the microstructure and mechanical behaviour of the coatings, in particular, the fracture toughness. The coating composition, chemical bonding, microstructure, and mechanical properties were studied by energy dispersive spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and nanoindentation, respectively. Using a micro double cantilever beam sample, it was found that the fracture toughness of CrAlN/Si3N4 coatings was higher than that of both the CrN and CrAlN coatings and increased with increasing Si content. Cross-sectional transmission electron microscopy suggested that this was caused by the suppression of cracking at columnar boundaries.

  18. Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system.

    PubMed

    Magallanes-Perdomo, M; De Aza, A H; Sobrados, I; Sanz, J; Pena, P

    2012-02-01

    Taking into account the phase equilibrium relationships within the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 ternary system, three bioactive glasses with a eutectic composition and analogous amounts of Ca3(PO4)2 (∼40 wt.%) have been prepared. The structure of the glasses was investigated by 31P and 29Si magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. The glasses exhibited thermal expansion coefficients (50-600 °C) of 11.8-13.3×10(-6) °C(-1), a glass transition temperature of 790-720 °C and a softening temperature of 811-750 °C. The mechanical properties of the glasses were as follows: bending strength ∼100 MPa, Young's modulus 94-83 GPa, Vickers microhardness 7.1-4.1 GPa and toughness 0.8 MPa m1/2. The bioactive properties were discussed in terms of their structure deduced by MAS-NMR spectroscopy and the field strength of the network modifiers (Mg2+ and Ca2+). A knowledge of the glass structure was important in predicting its bioactivity. PMID:22040687

  19. Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys

    SciTech Connect

    Choonho Jung

    2006-12-12

    Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10{sup -3} m/sec and with a temperature gradient of 7.5 x 10{sup 3} K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristic spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.

  20. Dissolution of Precipitates During Solution Treatment of Al-Mg-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xukai; Guo, Mingxing; Zhang, Jishan; Zhuang, Linzhong

    2016-02-01

    A model combining classical diffusion-controlled dissolution equation for a single spherical particle and Johnson-Mehl-Avrami-like equation is used to deal with dissolution process for different kinds of precipitations (Si, Mg2Si, Q(Al1.9Mg4.1Si3.3Cu)) in Al-Mg-Si-Cu alloys. The results reveal that the dissolution time of precipitates increases with increasing their sizes and solute concentrations in the alloy matrix; for the same size and concentration, their dissolution times follow Si > Q(Al1.9Mg4.1Si3.3Cu) > Mg2Si. Two precipitates (Mg2Si and Al1.9Mg4.1Si3.3Cu) with a size of about 700 nm were obtained in a cold rolled Al-Mg-Si-Cu-Zn alloy, and the complete dissolution time is about 15 seconds, which is basically the same as the calculated time by the developed model. The theoretical prediction of dissolution time can be greatly used to design solution treatment and thermomechanical processing parameters of Al-Mg-Si-Cu alloys.

  1. Initial Wetting and Spreading Rates Between SiC and CaO-SiO2-MnO Slag

    NASA Astrophysics Data System (ADS)

    Park, Jungseon; Jeon, Junmo; Lee, Kyuyoung; Park, Joo Hyun; Chung, Yongsug

    2016-06-01

    The wetting of CaO-SiO2-MnO slag on silicon carbide was studied with a variety of slag compositions at 1823 K (1550 °C). Wetting experiments were performed by the dispensed drop technique. We observed complete wetting of the slag on SiC (within 1 second) without a bubble reaction regardless of the basicity (=CaO/SiO2 = C/S ratio). However, after 8 seconds, the bubble reaction was observed under conditions of C/S = 0.8 and 1.1, whereas it was not observed at temperatures lower than 1823 K (1550 °C). The contact angle was independent of MnO content, while the spreading rate increased with the increasing MnO content at the early stage of wetting. Inertial force acts on the early stage of spreading, and viscous force acts with lower MnO content due to higher viscosity. The low-viscosity slag did not fit with the nonreactive viscous model. However, the high-viscosity slag fitted the model well.

  2. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    NASA Astrophysics Data System (ADS)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  3. Effective n-type doping strategy through codoping SiAl-FN in aluminum nitride

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Li, Jingbo; Qing Fu, Yong

    2014-11-01

    Using a first-principles pseudopotential method, we studied an effective n-type doping strategy through codoping SiAl-XN (X = F, Cl, Br, and I) in aluminum nitride. Results revealed that the donor ionization energy of the SiAl-XN complex is much lower than that of the corresponding isolated SiAl impurity. Theoretically obtained ɛ(+/0) ionization energies are all near the conduction band minimum (CBM), which is only 1.4 meV below the CBM of the SiAl-FN pair. The low ɛ(+/0) ionization energy of the SiAl-XN complex can be explained by the combined repulsion between the X element (X = F, Cl, Br, and I)- and Si donor-induced levels.

  4. Control of silicon solidification and the impurities from an Al-Si melt

    NASA Astrophysics Data System (ADS)

    Wang, Panpan; Lu, Huimin; Lai, Yuanshi

    2014-03-01

    The investigation on purification of metallurgical grade silicon by solidification of hypereutectic Al-Si melt under the temperature gradient as an intensified separation way was carried out. Based on the available thermodynamic parameters and experimental data, the thermodynamic behavior and chemical composition of metallic impurities was studied in the solidification process. The principle for the silicon growth in the Al-Si melts was investigated. The results indicated that the refined silicon grains were successfully enriched at the top of the Al-Si alloy. Then the top part refined silicon was collected by aqua regia leaching. Electrorefining of the bottom part (Al-22%Si) was investigated effectively in view of recovering pure Si and Al. Additionally, according to previous investigation, the optimized technical process for SOG-Si production was proposed.

  5. An assessment of the CaO-SiO2 system

    NASA Astrophysics Data System (ADS)

    Hillert, Mats; Sundman, Bo; Wang, Xizhen

    1990-04-01

    An evaluation of the CaO-SiO2 system has been made using a newly developed model, a two-sublattice model for ionic solutions. Two alternatives were tested. In the first one, three anions were assumed, O-2, SiO4 -4, and SiO3 -2. In the second one, SiO3 -2 was omitted. A set of parameter values describing the Gibbs energy of the liquid phase and solid phases was fixed for each alternative by a computer-operated optimization procedure called PARROT. Satisfactory assessments were achieved over the whole phase diagram range with both alternatives. The main difference between them occurs at the monotectic point. A comparison between calculated properties and experimental data is given.

  6. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic.

    PubMed

    Lu, Wenhao; Duan, Wei; Guo, Yaping; Ning, Congqin

    2012-02-01

    Pure Ca(5)(PO(4))(2)SiO(4) bioceramic was first prepared by a sol-gel method using triethyl phosphate, tetraethoxysilane, and calcium nitrate tetrahydrate as original materials. Simulated body fluid (SBF) immersion tests revealed that Ca(5)(PO(4))(2)SiO(4) samples had a greater in vitro apatite-forming ability than hydroxyapatite (HA). After soaking Ca(5)(PO(4))(2)SiO(4) samples in the SBF for 1 day, bone-like apatite precipitated on the surfaces and the apatite layer became thicker with increasing the soaking time. However, few bone-like apatites precipitated on the HA samples even after soaking in the SBF for 7 days. The good in vitro bioactivity of Ca(5)(PO(4))(2)SiO(4) samples was attributed to the silanol (Si-OH) groups and greater solubility of Ca(5)(PO(4))(2)SiO(4). In addition, hot-pressed Ca(5)(PO(4))(2)SiO(4) ceramic exhibited lower bending strength and elastic modulus than hot-pressed HA, since the former had a lower relative density than the latter. The results have shown that Ca(5)(PO(4))(2)SiO(4) is a potential candidate material for bone repair. PMID:20876633

  7. Si3AlP: a new promising material for solar cell absorber.

    PubMed

    Yang, Ji-Hui; Zhai, Yingteng; Liu, Hengrui; Xiang, Hongjun; Gong, Xingao; Wei, Su-Huai

    2012-08-01

    First-principles calculations were performed to study the structural and optoelectronic properties of the newly synthesized nonisovalent and lattice-matched (Si(2))(0.6)(AlP)(0.4) alloy (Watkins, T.; et al. J. Am. Chem. Soc.2011, 133, 16212). We found that the most stable structure of Si(3)AlP is a superlattice along the [111] direction with separated AlP and Si layers, which has a similar optical absorption spectrum to silicon. The ordered C1c1-Si(3)AlP is found to be the most stable one among all structures with a basic unit of one P atom surrounded by three Si atoms and one Al atom, in agreement with experimental suggestions. We predict that C1c1-Si(3)AlP has good optical properties, i.e., it has a larger fundamental band gap and a smaller direct band gap than Si; thus, it has much higher absorption in the visible light region. The calculated properties of Si(3)AlP suggest that it is a promising candidate for improving the performance of the existing Si-based solar cells. The understanding on the stability and band structure engineering obtained in this study is general and can be applied for future study of other nonisovalent and lattice-matched semiconductor alloys. PMID:22769022

  8. Development of a Novel Cast 6351 Al-Al4SiC4 In Situ Composite

    NASA Astrophysics Data System (ADS)

    Mondal, Manas Kumar; Biswas, Koushik; Maity, Joydeep

    2013-11-01

    In this research work 6351 Al-Al4SiC4 composite has been developed through stir casting route with incorporation of fine TiC powder in 6351 Al melt. During stir casting, round shaped Al4SiC4 particles were generated as TiC reacted with molten aluminum. These Al4SiC4 particles were found to be acting as nucleation sites for primary α (causing grain refinement) along with engulfment effects promoting particle distribution without clustering. Furthermore, as the volume fraction of Al4SiC4 particles increased, the proportion of dendritic region decreased (more equiaxed grains appeared) and the overall grain size of the matrix decreased. This resulted in an improved strength and ductility of the composite. Equations were developed with a reasonable accuracy correlating the strength with microstructural parameters. An excellent combination of strength (UTS = 215 MPa) and ductility (%Elongation = 10) was obtained for 6351 Al-7 vol.% Al4SiC4 composite as compared to base cast 6351 Al alloy (UTS = 121 MPa, %Elongation = 3).

  9. Structural Investigation of AlN/SiOx Nanocomposite Hard Coatings Fabricated by Differential Pumping Cosputtering.

    PubMed

    Kawasaki, Masahiro; Nose, Masateru; Onishi, Ichiro; Shiojiri, Makoto

    2016-06-01

    AlN/SiO x nanocomposite coatings fabricated by differential pumping cosputtering (DPCS) were investigated by analytical electron microscopy. The DPCS system consists of two halves of a Chamber, A and B, for radio frequency (RF) magnetron sputtering deposition of different materials, and a substrate holder that rotates through the chambers. Al and SiO2 were sputtered in gas environments with a flow mixture of N2 and Ar gases at RF power of 200 W in the Al Chamber A and a flow of Ar gas at RF powers of 49 W in the SiO2 Chamber B. The substrates of (001) Si wafers heated at 250°C were rotated for 1,080 min at 3 rpm and alternately deposited by AlN and SiO2. AlN columnar crystals grew at a rate of ~0.3 nm/revolution preferentially along the hexagonal [0001] axis. Amorphous silicon oxide (a-SiO x ), deposited at a rate of ~0.2 nm/revolution, was coagulated preferentially along the boundaries between the AlN columns and also the interfaces between the subgrains within the AlN columns. The a-SiO x played an important role in the increase in mechanical hardness of the AlN/SiO x composite coating by disturbing deformation of AlN crystal lattices. PMID:27070831

  10. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  11. Dry Sliding Wear Behavior of a Novel 6351 Al-Al4SiC4 Composite

    NASA Astrophysics Data System (ADS)

    Mondal, Manas Kumar; Biswas, Koushik; Saha, Atanu; Maity, Joydeep

    2015-02-01

    In this research work the dry sliding wear behavior of 6351 Al alloy and 6351 Al based composites possessing varying amount of (2-7 vol.%) in situ Al4SiC4 reinforcement was investigated at low sliding speed (1 m/s) against a hardened EN 31 disk at different loads. In general, the wear mechanism involved adhesion and microcutting abrasion. Under selected loads (9.8 and 24.5 N), the overall wear resistance increased with increasing content of Al4SiC4 particles since particles stood tall against the process of wear. Besides, strain hardening of the matrix played an additional role to provide wear resistance. Therefore, the newly developed 6351Al-Al4SiC4 composite can be used as light weight wear resistance component in industry.

  12. Dry Sliding Wear Behavior of a Novel 6351 Al-(Al4SiC4 + SiC) Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Show, Bijay Kumar; Mondal, Dipak Kumar; Maity, Joydeep

    2014-03-01

    In this research study, the dry sliding wear behaviors of 6351 Al alloy and its composites with single and hybrid reinforcements (ex situ SiC and in situ Al4SiC4) were investigated at low sliding speed (1 ms-1) against a hardened EN 31 disk at different loads. In general, the wear mechanism involved adhesion (coupled with subsurface cracking) and microcutting-abrasion at lower loads. With higher loads, abrasive wear involving microcutting and microplowing along with adherent oxide formation was observed. At higher loads, the abrasive wear mechanism caused rapid wear loss initially up to a certain sliding distance beyond which, by virtue of frictional heat generation and associated temperature rise, an adherent oxide layer was developed at the pin surface, which drastically reduced the wear loss. Moreover, the overall wear rates of all the composites (either single or hybrid reinforcement) were found to be lower than that of the 6351 Al alloy at all applied loads. The ex situ SiC particles were found to resist abrasive wear; while, in situ Al4SiC4 particles offered resistance to adhesive wear. Accordingly, the 6351 Al-(SiC + Al4SiC4) hybrid composite exhibited the best wear resistance among all composites.

  13. Optically stimulated luminescence in K2SO4:AEu (A=Ca,Na,Al)

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Patil, R. R.; Wankhede, S. P.; Kulkarni, M. S.; Kumar, Munish; Bhatt, B. C.; Moharil, S. V.

    2015-08-01

    Optically stimulated luminescence in doped K2SO4 is reported. K2SO4 was prepared by simple melt quenched process using readymade potassium sulphate. Samples were doped with Eu and AEu (A=Ca, Na and Al). Out of these samples K2SO4:Eu and K2SO4:Ca,Eu shows good OSL response to 470 nm optical stimulation. K2SO4:Eu and K2SO4:Ca,Eu have the sensitivities comparable with that of commercial phosphor Al2O3:C (Landauer).

  14. Thermodynamic modeling of Al-U-X (X = Si,Zr)

    NASA Astrophysics Data System (ADS)

    Rabin, Daniel; Shneck, Roni Z.; Rafailov, Gennady; Dahan, Isaac; Meshi, Louisa; Brosh, Eli

    2015-09-01

    Thermodynamic models are constructed for the U-Al-Si and U-A-Zr ternary alloy systems using the CALPHAD (CALculation of PHAse Diagrams) method. For the U-Al-Zr system the modeling covers only the aluminum-rich corner (from 100 at% to 67 at% Al) and is based only on literature data. For the U-Al-Si system, the whole range of compositions is covered and new key experiments were done in the uranium-poor region of the U-Al-Si system. These experiments have shown that under conditions of equilibrium with Al and Si, the Si-content of the U(Al,Si)3 is significantly higher than reported by earlier works. Different extrapolation methods were tried for the Gibbs energy of the liquid phase. However, it was found that for the U-Al-Si and U-Al-Zr systems, symmetric Muggianu method and the asymmetric method by Hillert give similar predictions. The constructed thermodynamic database was investigated by calculating isothermal sections, vertical sections and the liquidus projection. The calculated diagrams are in reasonable agreement with experimental data. Finally, solidification simulation (Scheil simulation) was done in order to assess the phases obtained in solidification as a function of the silicon addition to U-Al alloys.

  15. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  16. Electrical characterization of Si doped AlN films synthesized by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Simeonov, Simeon; Bakalova, Silvia; Szekeres, Anna; Minkov, Ivaylo; Socol, Gabriel; Ristoscu, Carmen; Mihailescu, Ion

    2015-04-01

    The electrical properties of thin AlN films doped with Si (AlN:Si) have been investigated. The films were synthesized on Si substrates at 800 °C by pulsed laser deposition in low-pressure nitrogen ambient. The AlN:Si films exhibit non-ohmic I-V characteristics and the current through these films is controlled by space charge limited current. The C-V dependence of metal-insulator-silicon (MIS) structures with AlN:Si films exhibits an excess capacitance around zero bias voltage. This excess capacitance indicates the presence of deep acceptor levels situated at the boundaries of adjacent grains in the AlN:Si films. The Si donor density in the AlN:Si films, estimated from the 1 MHz C-V characteristics, is of the order of 1018 cm-3. The impedance measurements of these AlN:Si structures at different test voltage frequencies reveal that the charge transport mechanism is dominated by either thermally-activated hopping or electron tunneling from occupied to nearest unoccupied deep levels.

  17. Thermal- and electromigration-induced stresses in passivated Al- and AlSiCu-interconnects

    SciTech Connect

    Beckers, D.; Schroeder, H.; Schilling, W.; Eppler, I.

    1997-05-01

    Mechanical stresses in microelectronic devices are of special interest because of degradation effects in microelectronic circuits such as stress induced voiding or electromigration. Al and al-alloys are commonly used as interconnect materials in integrated electronic devices. Stress induced voiding and degradation of metal lines by electromigration are closely related to the stresses in the lines. The authors have studied the strain and stress evolution during thermal cycling, isothermal relaxation and due to electromigration in passivated Al and AlSi(1%)Cu(0.5%) lines by X-Ray diffraction with variation of experimental parameters such as the aspect ratio and the electrical current density. Furthermore the extent of voiding and plastic shear deformation has been determined from the experimental metal strains with the help of finite element calculations. Main results are: (1) During thermal cycling the voiding is less than 2 {center_dot} 10{sup {minus}3}. The extent of plastic shear deformation increases with increasing line width and with decreasing flowstress. (2) During isothermal relaxation void growth occurs but no significant change in the plastic shear deformation. (3) An electric current in the lines causes no measurable additional change of the volume averaged stresses up to line failure.

  18. Microscopic potential fluctuations in Si-doped AlGaN epitaxial layers with various AlN molar fractions and Si concentrations

    NASA Astrophysics Data System (ADS)

    Kurai, Satoshi; Miyake, Hideto; Hiramatsu, Kazumasa; Yamada, Yoichi

    2016-01-01

    Nanoscopic potential fluctuations of Si-doped AlGaN epitaxial layers with the AlN molar fraction varying from 0.42 to 0.95 and Si-doped Al0.61Ga0.39N epitaxial layers with Si concentrations of 3.0-37 × 1017 cm-3 were investigated by cathodoluminescence (CL) imaging combined with scanning electron microscopy. The spot CL linewidths of AlGaN epitaxial layers broadened as the AlN molar fraction was increased to 0.7, and then narrowed at higher AlN molar fractions. The experimental linewidths were compared with the theoretical prediction from the alloy broadening model. The trends displayed by our spot CL linewidths were consistent with calculated results at AlN molar fractions of less than about 0.60, but the spot CL linewidths were markedly broader than the calculated linewidths at higher AlN molar fractions. The dependence of the difference between the spot CL linewidth and calculated line broadening on AlN molar fraction was found to be similar to the dependence of reported S values, indicating that the vacancy clusters acted as the origin of additional line broadening at high AlN molar fractions. The spot CL linewidths of Al0.61Ga0.39N epitaxial layers with the same Al concentration and different Si concentrations were nearly constant in the entire Si concentration range tested. From the comparison of reported S values, the increase of VAl did not contribute to the linewidth broadening, unlike the case of the VAl clusters.

  19. Phosphate-sulfide assemblages and Al/Ca ratios in type-3 chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Grossman, J. N.

    1985-01-01

    Electron microscopic examinations were carried out on various chondrites to re-examine previously reported anomalously high Al/Ca ratios. Polished thin sections of the three CV3, two CO3 and the Krymka LL3 chondrites were scanned to characterize the phosphate-sulfide inclusions. The formation of the assemblages was interpreted as proceeding in five steps, starting with the formation of metal grains with early nebular material and finishing with a reaction between schreibersite with Ca, O and Cl to form merrillite and chloropatite. The abundances of the observed assemblages were not high enough to imply Al/Ca ratios similar to whole-rocks. It is concluded that the specimens were originally examined with a broader electron beam than used to examine standard samples, and resulted in the anomalously high Al/Ca ratios.

  20. Structure of molten Al and eutectic Al-Si alloy studied by neutron diffraction

    SciTech Connect

    Dahlborg, U.; Kramer, Matthew J.; Besser, M.; Morris, J. R.; Calvo-Dahlborg, M.

    2012-11-24

    The structure of molten eutectic Al87.8Si12.2 alloy has been studied by neutron diffraction during a temperature cycle. For comparison measurements were performed on pure molten Al. The measurements show that the alloy after heating above the liquidus contains particles of two kinds, aluminum-rich and silicon-rich. The silicon-rich particles are partly dissolved after a further heating. Earlier published data obtained by the γ-ray absorption technique of the density of the molten eutectic Al–Si alloy had demonstrated the existence of two temperatures above the liquidus temperature: A dissolution temperature Td, at which the microstructure of the melt inherited from the ingot starts to dissolve and a branching temperature, Tb, at which the melt reaches a fully mixed state. The highest temperature that was possible to reach during the neutron experiments lies between Td and Tb. The obtained results support these conclusions that molten alloys after melting are inhomogeneous up to a temperature well above the liquidus. Moreover, the difference in shape between the static structure factors measured by neutron and X-ray diffraction on molten aluminum is observed and is found to be more accentuated and to extend to larger wavevectors than in earlier works.

  1. Formation Mechanism of CaS-Bearing Inclusions and the Rolling Deformation in Al-Killed, Low-Alloy Steel with Ca Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Jiang, Zhouhua; Li, Yang

    2016-08-01

    The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.

  2. Formation Mechanism of CaS-Bearing Inclusions and the Rolling Deformation in Al-Killed, Low-Alloy Steel with Ca Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Jiang, Zhouhua; Li, Yang

    2016-05-01

    The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.

  3. State-of-the-art of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1979-01-01

    The state of the art of 'SiAlONs' is reviewed, noting that the term has become a generic one applied to Si3N4 based materials. Attention is given to work on phase relations, crystal structure, synthesis, fabrication, and properties of various SiAlONs. Also discussed are the essential features of compositions, fabrication methods, and microstructures. In addition, consideration is given to high temperature flexure strength, creep, fracture toughness, oxidation, and thermal shock resistance. Finally, these data are compared to those for some currently produced silicon nitride ceramics to assess the potential of SiAlON materials for use in advanced gas turbine engines.

  4. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  5. The structure of molten CaSiO3: A neutron diffraction isotope substitution and aerodynamic levitation study.

    SciTech Connect

    Skinner, Lawrie; Benmore, Chris J; Weber, Richard; Santodonato, Louis J; Tumber, Sonia; Neuefeind, Joerg C; Lazareva, Lena; Du, Jincheng; Parise, John B

    2012-01-01

    We have performed neutron diffraction isotopic substitution experiments on aerodynamically levitated droplets of CaSiO3, to directly extract intermediate and local structural information on the Ca environment. The results show a substantial broadening of the Ca-O peak in the pair distribution function of the melt compared to the glass, which comprises primarily of 6- and 7-fold coordinated Ca-polyhedra. The broadening can be explained by a re-distribution of Ca-O bond lengths, especially towards longer distances in the liquid. The first order neutron difference function provides a rigorous test of recent molecular dynamics simulations and supports the model of the presence of short chains or channels of edge shared Ca-octahedra in the liquid state. It is suggested that the polymerization of Ca-polyhedra is responsible for the fragile viscosity behavior of the melt and the glass forming ability in CaSiO3.

  6. Ligand-based virtual screening interface between PyMOL and LiSiCA.

    PubMed

    Dilip, Athira; Lešnik, Samo; Štular, Tanja; Janežič, Dušanka; Konc, Janez

    2016-01-01

    Ligand-based virtual screening of large small-molecule databases is an important step in the early stages of drug development. It is based on the similarity principle and is used to reduce the chemical space of large databases to a manageable size where chosen ligands can be experimentally tested. Ligand-based virtual screening can also be used to identify bioactive molecules with different basic scaffolds compared to already known bioactive molecules, thus having the potential to increase the structural variability of compounds. Here, we present an interface between the popular molecular graphics system PyMOL and the ligand-based virtual screening software LiSiCA available at http://insilab.org/lisica-plugin and demonstrate how this interface can be used in the early stages of drug discovery process.Graphical AbstractLigand-based virtual screening interface between PyMOL and LiSiCA. PMID:27606012

  7. Improvement of magnetic and structural stabilities in high-quality Co{sub 2}FeSi{sub 1−x}Al{sub x}/Si heterointerfaces

    SciTech Connect

    Yamada, S.; Tanikawa, K.; Oki, S.; Kawano, M.; Miyao, M.; Hamaya, K.

    2014-08-18

    We study high-quality Co{sub 2}FeSi{sub 1−x}Al{sub x} Heusler compound/Si (0 ≤ x ≤ 1) heterointerfaces for silicon (Si)-based spintronic applications. In thermal treatment conditions, the magnetic and structural stabilities of the Co{sub 2}FeSi{sub 1−x}Al{sub x}/Si heterointerfaces are improved with increasing x in Co{sub 2}FeSi{sub 1−x}Al{sub x}. Compared with L2{sub 1}-ordered Co{sub 2}FeSi/Si, B2-ordered Co{sub 2}FeAl/Si can suppress the diffusion of Si atoms into the Heusler-compound structure. This experimental study will provide an important knowledge for applications in Si-based spin transistors with metallic source/drain contacts.

  8. Inhomogeneous distribution of defect-related emission in Si-doped AlGaN epitaxial layers with different Al content and Si concentration

    SciTech Connect

    Kurai, Satoshi Ushijima, Fumitaka; Yamada, Yoichi; Miyake, Hideto; Hiramatsu, Kazumasa

    2014-02-07

    The spatial distribution of luminescence in Si-doped AlGaN epitaxial layers that differ in Al content and Si concentration has been studied by cathodoluminescence (CL) mapping in combination with scanning electron microscopy. The density of surface hillocks increased with decreasing Al content and with increasing Si concentration. The mechanisms giving rise to those hillocks are likely different. The hillocks induced surface roughening, and the compositional fluctuation and local donor-acceptor-pair (DAP) emission at hillock edges in AlGaN epitaxial layers were enhanced irrespective of the origin of the hillocks. The intensity of local DAP emission was related to Si concentration, as well as to hillock density. CL observation revealed that DAP emission areas were present inside the samples and were likely related to dislocations concentrated at hillock edges. Possible candidates for acceptors in the observed DAP emission that are closely related in terms of both Si concentration and hillock edges with large deformations are a V{sub III}-Si{sub III} complex and Si{sub N}, which are unfavorable in ordinary III-nitrides.

  9. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the

  10. (Fe,Si,Al)-based nanocrystalline soft magnetic alloys for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Daniil, Maria; Osofsky, Michael S.; Gubser, Donald U.; Willard, Matthew A.

    2010-04-01

    In this work Al and Si are substituted for Fe in a (Fe,Si,Al)-Nb-B-Cu alloy with the goal of improving its magnetic properties at 77 K. The x-ray diffraction patterns for a series of five alloys annealed at 823 K shows a Fe3(Si,Al) ordered phase with some residual amorphous phase. The lowest coercivity at room temperature was observed for the alloy with composition Fe68Si15.5Al3.5Nb3B9Cu1. At cryogenic temperatures, the saturation magnetization of 99.3 A m2/kg, coercivity of 0.45 A/m, and resistivity of 122 μΩ cm for the Fe63Si17.5Al6Nb3B9Cu1 alloy, compare favorably to commercial alloys at 77 K.

  11. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    SciTech Connect

    Johnson, Matthew ); Weyant, J.; Garner, S. ); Occhionero, M. )

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  12. Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite

    NASA Astrophysics Data System (ADS)

    Mosleh-Shirazi, Sareh; Hua, Guomin; Akhlaghi, Farshad; Yan, Xianguo; Li, Dongyang

    2015-12-01

    Microstructural inhomogeneity generally deteriorates the corrosion resistance of materials due to the galvanic effect and interfacial issues. However, the situation may change for nanostructured materials. This article reports our studies on the corrosion behavior of SiC nanoparticle-reinforced Al6061 matrix composite. It was observed that the corrosion resistance of Al6061 increased when SiC nanoparticles were added. Overall electron work function (EWF) of the Al-SiC nanocomposite increased, along with an increase in the corrosion potential. The electron localization function of the Al-SiC nanocomposite was calculated and the results revealed that valence electrons were localized in the region of SiC-Al interface, resulting in an increase in the overall work function and thus building a higher barrier to hinder electrons in the nano-composite to participate in corrosion reactions.

  13. Sc-coated Si@Al12 as high-capacity hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Lu, Q. L.; Wan, J. G.

    2010-06-01

    Hydrogen molecules adsorption and storage in Sc coated Si@Al12 cluster were investigated using density functional theory methods. Scandium atoms can bind strongly to the surfaces of Si@Al12 due to the charge transfer between Sc and Si@Al12, and do not suffer from clustering on the substrate. Si@Al12 cluster coated with three and four Sc atoms can adsorb 16 and 18 H2 molecules with a binding energy of 0.28-0.63 eV/H2, corresponding to hydrogen storage capacity of 6.0 and 6.3 wt %, respectively. The stable Si@Al12 can be applied as one of candidates for hydrogen storage materials at ambient conditions.

  14. Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite

    PubMed Central

    Mosleh-Shirazi, Sareh; Hua, Guomin; Akhlaghi, Farshad; Yan, Xianguo; Li, Dongyang

    2015-01-01

    Microstructural inhomogeneity generally deteriorates the corrosion resistance of materials due to the galvanic effect and interfacial issues. However, the situation may change for nanostructured materials. This article reports our studies on the corrosion behavior of SiC nanoparticle-reinforced Al6061 matrix composite. It was observed that the corrosion resistance of Al6061 increased when SiC nanoparticles were added. Overall electron work function (EWF) of the Al-SiC nanocomposite increased, along with an increase in the corrosion potential. The electron localization function of the Al-SiC nanocomposite was calculated and the results revealed that valence electrons were localized in the region of SiC-Al interface, resulting in an increase in the overall work function and thus building a higher barrier to hinder electrons in the nano-composite to participate in corrosion reactions. PMID:26667968

  15. Effect of Percolation on Structural and Electrical Properties of MIC Processed SiGe/Al Multilayers

    NASA Astrophysics Data System (ADS)

    Lindorf, M.; Rohrmann, H.; Span, G.; Albrecht, M.

    2016-03-01

    The effect of metal induced crystallization (MIC) is widely used in the production of electronic devices by forming large grained polycrystalline Si from amorphous Si in contact with Al. This effect can also be utilized in conjunction with silicon-germanium (SiGe) alloys and thus provides means of a possible low cost production of future high temperature thermoelectric devices. In this work, sputter deposited multilayer systems of Si80Ge20/Al thin films have been investigated. The effect of MIC is used to crystallize the initially amorphous SiGe while simultaneously doping it with Al. As metallic phases would be detrimental to the thermoelectric performance, special interest is directed to the Al layers and their dissociation during the annealing treatment. A percolation limit regarding the thickness and continuity of the Al layers was found, but no detrimental side effects with respect to the MIC process could be detected.

  16. Li2Ca2Si2O7: Structural, spectroscopic and computational studies on a sorosilicate

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Brunello, Emanuele; Hejny, Clivia; Krüger, Hannes; Schmidmair, Daniela; Tribus, Martina; Többens, Daniel M.

    2015-05-01

    Synthesis experiments in the system Li2O-CaO-SiO2 resulted in the formation of single-crystals of Li2Ca2Si2O7. Structural investigations were based on single-crystal diffraction. At ambient conditions the compound has the following basic crystallographic data: hexagonal symmetry, space group P6122, a=5.0961(2) Å, c=41.264(2) Å, V=928.07(6) Å3, Z=6. Structure solution was performed using direct methods. The final least-squares refinement calculations converged at a residual of R(|F|)=0.0260. From a structural point the lithium calcium silicate belongs to the group of pyrosilicates containing [Si2O7]-groups. Additional lithium and calcium cations are incorporated between the silicate dimers and are coordinated by four and six nearest oxygen neighbours, respectively. Each [LiO4]-tetrahedron shares two common corners with directly neighboring tetrahedra forming zweier single-chains which are running parallel to <1 0 0> in z-levels defined by the presence of the 61[0 0 1]-screw axes. From the corner-sharing [LiO4]- and [SiO4]-moieties a three dimensional framework can be constructed. An interesting feature of this framework is the presence of an O[3]-type bridging oxygen linking three tetrahedra (one [LiO4]- and two [SiO4]-units). Structural similarities with other silicates are discussed in detail. The high-temperature behavior of the Si-O, Ca-O and Li-O bond distances in Li2Ca2Si2O7 was investigated by in-situ single-crystal X-ray diffraction in the range between 65 and 700 °C. From the evolution of the lattice parameters, the thermal expansion tensor αij has been determined. The structural characterization has been supplemented by micro-Raman spectroscopy. Interpretation of the spectroscopic data including the allocation of the bands to certain vibrational species has been aided by DFT-calculations.

  17. Nucleation Effects in Thermally Managed Graphite Fiber-Reinforced Al-Cu and Al-Si Composites

    NASA Astrophysics Data System (ADS)

    Seong, H. G.; Lopez, H. F.; Gajdardziska-Josifovska, M.; Rohatgi, P. K.

    2007-11-01

    The influence of heat extraction through fiber reinforcements on the resultant solidification morphologies was investigated in cast Al-Cu and Al-Si alloy composites reinforced with graphite fibers (GRFs). For this purpose, the GRFs were externally cooled by exposing their ends to ambient air during pressure infiltration. It was found that in the Al-Cu system, heat extraction through the fiber ends promoted the development of single α-Al envelopes around the GRFs. In particular, radial growth of the α envelopes occurred with a planar solid/liquid solidification front as a result of heat extraction. Apparently, the high thermal conductivity of GRFs causes significant heat extraction to enable the development of a positive temperature gradient at the GRF/melt interface. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAD) unveiled the occurrence of (002) α-Al//(0002)GR orientation relationship at α-Al/GRF interfaces. Preferential nucleation of primary Si along the graphite surfaces of the GRF-reinforced Al-Si alloy composite was also promoted by external fiber heat extraction. However, in this case, numerous nucleation events along the fiber interfaces were common, as well as nucleation at active substrates within the constrained melt. Finally, differential thermal analysis (DTA) indicated that the onset temperatures for nucleation shift toward higher values (by 7 °C for the Al-Cu composite and 2 °C for the Al-Si composite) when compared with their corresponding matrix alloys.

  18. Extrusion textures in Al, 6061 alloy and 6061/SiC{sub p} nanocomposites

    SciTech Connect

    Jiang, X.; Galano, M.; Audebert, F.

    2014-02-15

    The 6061 alloy matrix composites reinforced with 10 wt.% and 15 wt.% of SiC nanoparticles with an average diameter of ∼ 500 nm were hot extruded in strip shape from ball milled powders. The microstructures and textures of the hot extruded nanocomposites have been investigated by means of three dimensional orientation distribution functions and electron backscatter diffraction (EBSD) techniques. Pure Al and 6061 alloy extruded strips from atomised powders have been produced for comparison purposes. The results show that the non-deformable SiC particulates have a strong influence on the formation of extrusion textures in the matrix. Pure Al and 6061 alloy develop a typical β fibre texture after extrusion in strip shape. For 6061/SiC{sub p} nanocomposites, the intensities of major texture components decrease with increasing amount of SiC particles. The total intensities of Brass, Dillamore and S components have decreased by 19% for 6061/10 wt.% SiC{sub p} and 40% for 6061/15 wt.% SiC{sub p} composites when compared with the 6061 alloy. EBSD analysis on local grain orientations shows limited Al grain rotations in SiC rich zones and decreased texture intensities. - Highlights: • The effect of nano-SiCp to the extrusion texture of Al alloy matrix was analysed. • The Intensity of major texture components decreases with increasing amount of SiCp. • Deformation zones with limited Al grain rotations formed in SiCp rich zones.

  19. Characterization of Hypereutectic Al-Si Powders Solidified under Far-From Equilibrium Conditions

    SciTech Connect

    Y.E. Kalay; L.S. Chumbley; I.E. Anderson; R.E. Napolitano

    2007-07-01

    The rapid solidification microstructure of gas-atomized Al-Si powders of 15, 18, 25, and 50 wt pct Si were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In order of increasing particle size, the powders exhibited microcellular Al, cellular/dendritic Al, eutectic Al, and primary Si growth morphologies. Interface velocity and undercooling were estimated from measured eutectic spacing based on the Trivedi-Magnin-Kurz (TMK) model, permitting a direct comparison with theoretical predictions of solidification morphology. Based on our observations, additional conditions for high-undercooling morphological transitions are proposed as an extension of coupled-zone predictions.

  20. Identification of phases in the interaction layer between U-Mo-Zr/Al and U-Mo-Zr/Al-Si

    SciTech Connect

    Varela, C.L. Komar; Arico, S.F.; Mirandou, M.; Balart, S.N.; Gribaudo, L.M.

    2008-07-15

    Out-of-pile diffusion experiments were performed between U-7wt.% Mo-1wt.% Zr and Al or Al A356 (7,1wt.% Si) at 550 deg. C. In this work morphological characterization and phase identification on both interaction layer are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-Ray diffraction and WDS microanalysis. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al A356, the phases U(Al, Si) with 25at.% Si and Si{sub 5}U{sub 3} were identified. This last phase, with a higher Si concentration, was identified with XRD Synchrotron radiation performed at the National Synchrotron Light Laboratory (LNLS), Campinas, Brasil. (author)

  1. Band alignment at AlN/Si (111) and (001) interfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Nemanich, Robert J.

    2015-07-28

    To advance the development of III-V nitride on silicon heterostructure semiconductor devices, we have utilized in-situ x-ray photoelectron spectroscopy (XPS) to investigate the chemistry and valence band offset (VBO) at interfaces formed by gas source molecular beam epitaxy of AlN on Si (001) and (111) substrates. For the range of growth temperatures (600–1050 °C) and Al pre-exposures (1–15 min) explored, XPS showed the formation of Si-N bonding at the AlN/Si interface in all cases. The AlN/Si VBO was determined to be −3.5 ± 0.3 eV and independent of the Si orientation and degree of interfacial Si-N bond formation. The corresponding AlN/Si conduction band offset (CBO) was calculated to be 1.6 ± 0.3 eV based on the measured VBO and band gap for wurtzite AlN. Utilizing these results, prior reports for the GaN/AlN band alignment, and transitive and commutative rules for VBOs, the VBO and CBO at the GaN/Si interface were determined to be −2.7 ± 0.3 and −0.4 ± 0.3 eV, respectively.

  2. Localized TiSi and TiN phases in Si/Ti/Al/Cu Ohmic contacts to AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Yoon, Seonno; Song, Yunwon; Lee, Seung Min; Lee, Hi-Deok; Oh, Jungwoo

    2016-05-01

    Microstructural changes in Si/Ti/Al/Cu (10/40/60/50 nm) Ohmic contacts to AlGaN/GaN heterostructure were investigated for complementary metal-oxide semiconductor compatible processes. Si/Ti/Al/Cu metallization exhibited a low specific contact resistance of 3.6 × 10-6 Ω-cm2 and contact resistance of 0.46 Ω-mm when a Si interfacial layer was used. Without a designated barrier metal, TiSix alloys that formed in the metallic region effectively suppressed Cu diffusion. The shallow TiN junction in AlGaN/GaN was attributed to TiSix in the metallic regions. Microstructural changes were detected by systematic physical characterization.

  3. Performance, structure, and stability of SiC/Al multilayer films for extreme ultraviolet applications.

    PubMed

    Windt, David L; Bellotti, Jeffrey A

    2009-09-10

    We report on the performance, structure and stability of periodic multilayer films containing silicon carbide (SiC) and aluminum (Al) layers designed for use as reflective coatings in the extreme ultraviolet (EUV). We find that SiC/Al multilayers prepared by magnetron sputtering have low stress, good temporal and thermal stability, and provide good performance in the EUV, particularly for applications requiring a narrow spectral bandpass, such as monochromatic solar imaging. Transmission electron microscopy reveals amorphous SiC layers and polycrystalline Al layers having a strong <111> texture, and relatively large roughness associated with the Al crystallites. Fits to EUV reflectance measurements also indicate large interface widths, consistent with the electron microscopy results. SiC/Al multilayers deposited by reactive sputtering with nitrogen comprise Al layers that are nearly amorphous and considerably smoother than films deposited nonreactively, but no improvements in EUV reflectance were obtained. PMID:19745857

  4. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    SciTech Connect

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter

    2012-11-15

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  5. STRESS ANNEALING INDUCED DIFFUSE SCATTERING FROM Ni3(Al,Si) PRECIPITATES

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Karapetrova, Evgenia; Zschack, P.

    2012-01-01

    Diffuse scattering caused by L12 type Ni3 (Al,Si) precipitates after stress annealing of Ni-Al-Si alloys is studied. Experimental reciprocal space maps are compared to the theoretical ones. Oscillations of diffuse scattering due to Ni3 (Al,Sc) precipitates are observed. Peculiarities of diffuse scattering in asymptotic region as compared to Huang scattering region are discussed. Coupling between the stress annealing direction and the precipitate shape is demonstrated.

  6. Self-aligned Si-Zn diffusion into GaAs and AlGaAs

    SciTech Connect

    Zou, W.X.; Corzine, S.; Vawter, G.A.; Merz, J.L.; Coldren, L.A.; Hu, E.L.

    1988-08-15

    A practical technology for self-aligned Si-Zn diffusion into GaAs and AlGaAs has been developed. It is found that the use of a Si film alone for self-aligned Si-Zn diffusion is subject to serious problems of morphology degradation and doping contamination during the process of the Si diffusion. A procedure combining the use of a SiO/sub 2/ film as an encapsulant with a sputtered Si film as source for Si diffusion and mask for Zn diffusion is investigated in detail. Optimum thicknesses of the Si and SiO/sub 2/ films are determined to be 180 and 550 A, respectively.

  7. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; Terzi, S.; Prasad, A.; Felberbaum, M.; StJohn, D. H.

    2016-01-01

    The influence of the ternary alloying elements Cu, Mg and Fe on the Al-Si eutectic microstructure is investigated using a commercial purity Al-10 wt%Si alloy in unmodified and Sr-modified conditions. A change in the Al-Si eutectic microstructure was associated with a change in the nucleation density of the eutectic grains caused by the addition of ternary alloying elements. When the ternary alloying element addition resulted in an increase in the eutectic nucleation frequency, a fibrous to flake-like transition was observed within the eutectic grain. When the ternary alloying element addition decreased the eutectic nucleation frequency significantly, a change in the eutectic morphology from flake-like to a mixture of flake-like and fibrous morphologies was observed. The mechanism of Al-Si eutectic modification is discussed. The growth velocity of the eutectic grain - liquid interface and the constitutional driving force available for growth are proposed as important parameters that influence the degree of eutectic modification in Al-Si alloys.

  8. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  9. The interaction of Si with Al(111) surfaces above room temperature

    NASA Astrophysics Data System (ADS)

    Muñoz, M. C.; Soria, F.; Sacedón, J. L.

    1987-10-01

    The interaction of Si with Al(111) surfaces heated up to 523 K is investigated by means of AES, LEED, and ELS. Although at room temperature Si chemisorbs following a layer-by-layer growth up to two monolayers (ML), upon heating at temperatures as low as 310 K the second Si ML undergoes structural changes resulting in a Stranski-Krastanov-type of growth. At higher temperatures Si diffuses into the Al lattice with an activation energy of 1.21 eV. The Auger transition density of states and ELS spectra support a model in which the in-diffused Si forms clusters in the Al matrix, in agreement with the low solubility of Si at temperatures lower than 523 K.

  10. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Peng, Jian; Nyberg, Eric A.; Pan, Fu-sheng

    2016-04-01

    The microstructures and corrosion resistance of magnesium-5 wt% aluminum-0.3 wt% manganese alloys (Mg-Al-Mn) with different Ca additions (0.2-4 wt%) were investigated. Results showed that with increasing Ca addition, the grain of the alloys became more refined, whereas the corrosion resistant ability of the alloys initially increased and then decreased. The alloy with 2 wt% Ca addition exhibited the best corrosion resistance, attributed to the effect of the oxide film and (Mg,Al)2Ca phases which were discontinuously distributed on the grain boundaries. These phases acted as micro-victims, they preferentially corroded to protect the α-Mg matrix. The oxide film formed on the alloy surface can hinder the solution further to protect the α-Mg matrix.

  11. Improved Wear Resistance of Al-Mg Alloy with SiC and Al2O3 Particle Reinforcement

    NASA Astrophysics Data System (ADS)

    Mehedi, Md. A.; Bhadhon, K. M. H.; Haque, M. N.

    2016-01-01

    Al-3.73Mg alloy was reinforced with a different ratio of SiC and Al2O3 particulate mixtures, and their corresponding wear properties were investigated by pin-on-disk method. The investigation revealed that the mass loss of the hybrid composite at different loads and sliding velocities reduced with the increase of the SiC volume. Only 6% particulate reinforcement in the Al-Mg matrix was enough to reduce the wear of the surface by one-fourth. The wear mechanism was also investigated by examining the worn surface with a scanning electron microscope.

  12. Improved wear resistance of Al-15Si alloy with a high current pulsed electron beam treatment

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Gao, B.; Tu, G. F.; Li, S. W.; Dong, C.; Zhang, Z. G.

    2011-07-01

    A hypereutectic Al-15Si alloy (Si 15 wt.%, Al balance) was irradiated by high current pulsed electron beam (HCPEB). The HCPEB treatment causes ultra-rapid heating, melting and cooling at the top surface layer. As a result, the special "halo" microstructure centering on the primary Si phase is formed on the surface due to interdiffusion of Al and Si elements. The composition of the "halo" microstructure is distributed continuously from the center to the edge of the "halo". Compared to an untreated matrix, the remelted layer underneath the surface presents single contrast because of the compositional homogeneity after HCPEB treatment. The thickness of the remelted layer increases slightly from 4.4 μm (5 pulses) to 5.6 μm (25 pulses). HCPEB treatment broadens and shifts the diffraction peaks of Al and Si. The lattice parameters of Al decreases due to the formation of a supersaturated solid solution of Al in the melted layer. Through analysis of Raman spectra and transmission electron microscopy (TEM), the amorphous Si (a-Si) and nanocrystalline Si are formed in the near-surface region under multiple bombardments of HCPEB. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 9, which can be attributed to the formation of metastable structures.

  13. Si diffusion and intermixing in AlGaAs/GaAs structures using buried impurity sources

    SciTech Connect

    Beernink, K.J.; Thornton, R.L.; Anderson, G.B.; Emanuel, M.A.

    1995-05-08

    Si diffusion and impurity-induced layer intermixing from a buried impurity source have been studied by transmission electron microscopy and secondary ion mass spectroscopy of isolated, Si-doped GaAs layers in an undoped Al{sub 0.4}Ga{sub 0.6}As/GaAs superlattice and by photoluminescence measurements on Si-doped GaAs quantum wells with undoped Al{sub 0.4}Ga{sub 0.6}As barriers. In annealed samples, the Si profile suggests a Si diffusion process involving multiply ionized column III vacancies. The width of the resulting Si profile and the spatial extent and completeness of intermixing strongly depend on the initial Si concentration in the doped layer.

  14. A Chemical and Structural Study of the AlN-Si Interface

    NASA Technical Reports Server (NTRS)

    Beye, R.; George, T.; Yang, J. W.; Khan, M. A.

    1997-01-01

    The growth of low defect density heteroepitaxial AlN has great implications for optoelectronic and high power devices since the AlN can be used either as device material or as a buffer layer for the overgrowth of other group-III nitrides. In this work, the results of transmission electron microscopy (TEM) involving both high resolution imaging and electron energy loss spectroscopy (EELS) of AlN/Si layers is reported and the relationship between Si-Al-N interactions and the misorientation of AlN nuclei is elucidated.

  15. Nanosynthesis routes to new tetrahedral crystalline solids: silicon-like Si3AlP.

    PubMed

    Watkins, Tylan; Chizmeshya, Andrew V G; Jiang, Liying; Smith, David J; Beeler, Richard T; Grzybowski, Gordon; Poweleit, Christian D; Menéndez, José; Kouvetakis, John

    2011-10-12

    We introduce a synthetic strategy to access functional semiconductors with general formula A(3)XY (A = IV, X-Y = III-V) representing a new class within the long-sought family of group IV/III-V hybrid compounds. The method is based on molecular precursors that combine purposely designed polar/nonpolar bonding at the nanoscale, potentially allowing precise engineering of structural and optical properties, including lattice dimensions and band structure. In this Article, we demonstrate the feasibility of the proposed strategy by growing a new monocrystalline AlPSi(3) phase on Si substrates via tailored interactions of P(SiH(3))(3) and Al atoms using gas source (GS) MBE. In this case, the high affinity of Al for the P ligands leads to Si(3)AlP bonding arrangements, which then confer their structure and composition to form the corresponding Si(3)AlP target solid via complete elimination of H(2) at ∼500 °C. First principle simulations at the molecular and solid-state level confirm that the Si(3)AlP building blocks can readily interlink with minimal distortion to produce diamond-like structures in which the P atoms are arranged on a common sublattice as third-nearest neighbors in a manner that excludes the formation of unfavorable Al-Al bonds. High-resolution XRD, XTEM, and RBS indicate that all films grown on Si(100) are tetragonally strained and fully coherent with the substrate and possess near-cubic symmetry. The Raman spectra are consistent with a growth mechanism that proceeds via full incorporation of preformed Si(3)AlP tetrahedra with residual orientational disorder. Collectively, the characterization data show that the structuro-chemical compatibility between the epilayer and substrate leads to flawless integration, as expected for pseudohomoepitaxy of an Si-like material grown on a bulk Si platform. PMID:21877711

  16. Surface modification of Al-20Si alloy by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Gao, B.; Tu, G. F.; Li, S. W.; Hao, S. Z.; Dong, C.

    2011-02-01

    Hypereutectic Al-20Si (Si 20 wt.%, Al balance)alloy surface was treated with high current pulsed electron beam (HCPEB) under different pulse numbers. The results indicate that HCPEB irradiation induces the formation of metastable structures on the treated surface. The coarse primary Si particle melts, producing a "halo" microstructure with primary Si as the center on the melted surface. A supersaturated solid solution of Al is formed in the melted layer caused by Si atoms dissolving into the Al matrix. Cross-section structure analysis shows that a 4 μm remelted layer is formed underneath the top surface of the HCEPB-treated sample. Compared with the matrix, the Al and Si elements in the remelted layer are distributed uniformly. In addition, the grains of the Al-20Si alloy surface are refined after HCPEB treatment, as shown by TEM observation. Nano-silicon particles are dispersed on the surface of remelted layer. Polygonal subgrains, approximately 50-100 nm in size, are formed in the Al matrix. The hardness test results show that the microhardness of the α(Al) and eutectic structure is increased with increasing pulse number. The hardness of the "halo" microstructure presents a gradient change after 15 pulse treatment due to the diffusion of Si atoms. Furthermore, hardness tests of the cross-section at different depths show that the microhardness of the remelted layer is higher than that of the matrix. Therefore, HCPEB technology is a good surface modification method for enhancing the surface hardness of hypereutectic Al-20Si alloy.

  17. Nanoscale analysis on interfacial reactions in Al-Si-Cu alloys and Ti underlayer films

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Mo; Lee, Sukjae; Park, Ju-Chul; Lee, Deok-Won; Lee, Tae-Kwon; Choi, Jin-Tae; Lee, Soun-Young; Kawasaki, Masahiro; Oikawa, Tetsuo

    2003-01-01

    Solid-phase reactions at the interface between sputtered Al-Si-Cu alloys and Ti films were investigated at the atomic scale by high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS) coupled with a field-emission (scanning) transmission electron microscope. The analysis results showed that the interface is composed of an amorphous-like Ti-Si layer, an intermediate-crystalline layer, and a Si-dissolved TiAl3 layer containing dissolved Si TiAl3 with a crystallographic relationship with the Al film. The nanometer-scaled interlayers effectively play a role as a barrier suppressing the interdiffusion reaction of Al and Ti during annealing treatment. Further, the quantitative composition of the interlayers was revealed by the analysis of the intensity profiles obtained from EDS elemental maps.

  18. The 28Si(p,t)26Si*(p) reaction and implications for the astrophysical 25Al(p,gamma)26Si reaction rate

    SciTech Connect

    Chipps, K.; Bardayan, Daniel W; Chae, K. Y.; Cizewski, J. A.; Kozub, R. L.; Liang, J Felix; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Schmitt, Kyle; Smith, Michael Scott

    2010-10-01

    Several resonances in 25Al(p, )26Si have been studied via the 28Si(p,t)26Si reaction. Triton energies and angular distributions were measured using a segmented annular detector array. An additional silicon detector array was used to simultaneously detect the coincident protons emitted from the decay of states in 26Si above the proton threshold, in order to determine branching ratios. A resonance at 5927 4 keV has been experimentally confirmed as the first = 0 state above the proton threshold, with a proton branching ratio consistent with one.

  19. Energy transfer processes in Ca3Tb2-xEuxSi3O12 (x = 0-2)

    NASA Astrophysics Data System (ADS)

    Carrasco, I.; Bartosiewicz, K.; Nikl, M.; Piccinelli, F.; Bettinelli, M.

    2015-10-01

    The luminescent properties of Tb3+ and Eu3+ have been studied in several silicates having a silico-carnotite-type structure. Fast energy migration among Tb3+ ions has been found in Ca3Tb2Si3O12 and Ca3Tb2-xEuxSi3O12 (x = 0-0.1). In the case of Ca3Tb2-xEuxSi3O12, Tb3+-Eu3+ energy transfer is observed upon excitation in the UV bands of Tb3+. The transfer gives rise to strong emission from Eu3+ in the red spectral region at 612 nm. The efficiency of the transfer at room temperature in Ca3Tb1.9Eu0.1Si3O12 has been evaluated. The temperature evolution of the luminescent properties of Ca3Tb2Si3O12 and Ca3Tb1.9Eu0.1Si3O12 has been studied at temperatures ranging from 8 to 330 K.

  20. Understanding the Origins of Intergranular Corrosion in Copper-Containing Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Kairy, Shravan K.; Alam, Talukder; Rometsch, Paul A.; Davies, Chris H. J.; Banerjee, Raj; Birbilis, Nick

    2016-03-01

    A definitive understanding of the mechanism of intergranular corrosion (IGC) in under-aged (UA) Cu-containing Al-Mg-Si alloys has not been clear to date. The grain boundary microstructure and chemistry in an UA Cu-containing Al-Mg-Si alloy were characterized by coupling atom probe tomography and scanning transmission electron microscopy. The rapid formation of an ultra-thin wetting Cu layer and discrete Q-phase (Al4Cu2Mg8Si7) precipitates along the grain boundaries, and a precipitate-free zone adjacent to the grain boundaries in the UA condition contribute to IGC.

  1. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  2. Radiation-induced charge trapping in thin Al2O3/SiOxNy/Si(100) gate dielectric stacks.

    SciTech Connect

    D'Emic, Chris; Gusev, Evgeni P.; Schrimpf, Ronald D.; Fleetwood, Daniel M.; Schwank, James Ralph; Felix, James Andrew; Shaneyfelt, Marty Ray; Dodd, Paul Emerson; Meisenheimer, Timothy Lee

    2003-07-01

    We examine the total-dose radiation response of capacitors and transistors with stacked Al{sub 2}O{sub 3} on oxynitride gate dielectrics with Al and poly-Si gates after irradiation with 10 keV X-rays. The midgap voltage shift increases monotonically with dose and depends strongly on both Al{sub 2}O{sub 3} and SiO{sub x}N{sub y} thickness. The thinnest dielectrics, of most interest to industry, are extremely hard to ionizing irradiation, exhibiting only {approx}50 mV of shift at a total dose of 10 Mrad(SiO{sub 2}) for the worst case bias condition. Oxygen anneals are found to improve the total dose radiation response by {approx}50% and induce a small amount of capacitance-voltage hysteresis. Al{sub 2}O{sub 3}/SiO{sub x}N{sub y} dielectrics which receive a {approx}1000 C dopant activation anneal trap {approx}12% more of the initial charge than films annealed at 550 C. Charge pumping measurements show that the interface trap density decreases with dose up to 500 krad(SiO{sub 2}). This surprising result is discussed with respect to hydrogen effects in alternative dielectric materials, and may be the result of radiation-induced hydrogen passivation of some of the near-interfacial defects in these gate dielectrics.

  3. Bondability of Al-Si thin film in thermosonic gold wire bonding. [integrated circuits

    NASA Technical Reports Server (NTRS)

    Nakagawa, K.; Miyata, K.; Banjo, T.; Shimada, W.

    1985-01-01

    The bondability of two kinds of Al-Si thin films in thermosonic Au wire bonding was examined by means of microshear tests. One type of film was formed by sputtering an Al-2% Si alloy, and the other was formed by depositing an 0.05 micrometer-thick polysilicon layer on SiO2 by chemical vapor deposition (CVD) and then depositing a 1.2 micrometer-thick Al layer on them by evaporation. After heat-treatment at 450 deg for 30 min., Si in the Al-Si film crystallized. The grain size of the crystallized Si affects the thermosonic wire bondability, i.e., for Al-2% Si sputtered films, good bondability was obtained under relatively small (1.0 micrometer) grain size conditions. In the successive layer process, on the other hand, the grain size of crystallized Si varies with the polysilicon CVD temperature. The optimum CVD temp. was determined from the standpoint of bondability with respect to grain size.

  4. Hypereutectic AlSi Alloy: Gathering of 3D Microstructure Data

    NASA Astrophysics Data System (ADS)

    Schaberger-Zimmermann, E.; Mathes, M.; Zimmermann, G.

    2016-06-01

    Hypereutectic and eutectic AlSi-base alloys find frequent application in casting automotive components. The properties of this type of alloy depend significantly on their solidification microstructure, especially the size, shape, and distribution of primary and eutectic silicon. The serial sectioning technique was applied for determining the three-dimensional (3D) microstructure of an Al-18wt.%Si alloy. For clear identification of both the larger primary Si particles grown in the melt and the fine lamellar eutectic Si, a series of two-dimensional equidistant cross sections were metallographically prepared. The microstructure in these cross sections was detected and observed at high resolution using a light microscope. The images were stored in a digital library. The 3D reconstruction of primary Si particles and AlSi eutectic was achieved through the application of various software tools. This provided data about the faceted growth behavior of octahedral Si particles and feathery eutectic Si. The image stack was also imported to hierarchical data format (version 5) (HDF5) open source format, thus, enabling availability of the 3D image data to the wider community. In this way, 3D reconstructions of this kind can contribute to a greater understanding of processing/microstructure property relationships in hypereutectic AlSi alloys.

  5. Effects of Si Addition and Heating Ar on the Electromigration Performance of Al-Alloy Interconnects

    NASA Astrophysics Data System (ADS)

    Lee, Dok Won; Lee, Byung-Zu; Jeong, Jong Yeul; Park, Hyun; Shim, Kyu Cheol; Kim, Jong Seok; Park, Young Bae; Woo, Sun-Woong; Lee, Jeong-gun

    2002-02-01

    The electromigration (EM) performance of Ti/Al-alloy multilayered metallization with one-step sputtered Al-alloy has been studied. The Al-alloys investigated included Al-1.0%Si-0.5%Cu and Al-0.5%Cu, and the Al-alloy films were prepared with and without heating Ar. The package-level EM test results indicate that the EM resistance of the Al-Si-Cu stack is nearly identical to that of the Al-Cu stack. Si addition was found to degrade the microstructure of the Al-alloy film, while it had the retarding effect on the Ti/Al reaction, which suggests that there exists a trade-off between the film microstructure and the formation of TiAl3 intermetallic compound. The EM performance of the one-step sputtered Al-alloy stack was enhanced by the use of heating Ar during the deposition of Al-alloy film, which has been attributed to the improved microstructure of the Al-alloy film by the use of heating Ar.

  6. Initial CaF2 reactions on Si(1 1 4)-2 × 1: Isolated silicides, faceting and partial CaF adsorption

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Duvjir, Ganbat; Dugerjav, Otgonbayar; Li, Huiting; Seo, Jae M.

    2015-12-01

    When CaF2 molecules are deposited on Si(1 1 4)-2 × 1 held at 500 °C, two kinds of isolated and symmetric Ca-silicide units are initially formed. With increasing CaF2 deposition to 0.4 ML, instead of the terrace being filled with them, a trench composed of (1 1 3) and (1 1 7) facets appears on the surface as a result of substrate etching induced by dissociated F atoms. Selectively on this (1 1 3) facet, a 2 × 2 CaF overlayer is formed uniformly. In the present studies, using scanning tunneling microscopy and synchrotron photoemission spectroscopy, the origins of such isolation of Ca-silicide units on the (1 1 4) terrace as well as selective adsorption of CaF on the (1 1 3) facet have been disclosed.

  7. O triclusters revisited: classical MD and quantum cluster results for glasses of composition (Al(2)O(3))2(SiO(2)).

    PubMed

    Tossell, J A; Horbach, J

    2005-02-10

    The (17)O NMR spectrum of CaAl(2)Si(2)O(8) glass shows two types of O sites that are not present in the crystalline material. One of these, with (17)O NMR parameters C(Q) = 2.3 MHz and delta = +20 ppm, has been assigned to a "tricluster" O, a local geometry in which the O is coordinated to three tetrahedrally coordinated atoms, either Al or Si. For crystalline CaAl(4)O(7), a tricluster site (with three Al linkages to O, i.e., OAl(3)) has been characterized experimentally, with a C(Q) of 2.5 MHz and a delta of about +40 ppm. Thus, a C(Q) value of 2.5 MHz or less seems to be a characteristic of such sites, although they may show a range of delta values. However, several different quantum chemical cluster calculations employing energy-optimized geometries for various tricluster species have given C(Q) values considerably larger than that seen experimentally in the CaAl(2)Si(2)O(8) glass (with minimum C(Q) values of 3.0 MHz even for all Al species). We have recently shown that for edge-sharing geometries, in which the tricluster O atoms participate in "two-membered rings" of composition Al(2)O(2), the calculated C(Q) values are considerably lower, in the range identified in the glass. However, such two-membered ring geometries had been observed only in crystalline inorganic alumoxanes. Ab initio MD calculations on related compositions, such as the calcium aluminosilicate, CAS, (CaO)(0.21)(Al(2)O(3))(0.12)(SiO(2))(0.67), show a small percentage of O triclusters, but none in two-membered rings of the Al(2)O(2) type, and the calculated C(Q) values for the triclusters that do exist are higher than seen in the original experiments on CaAl(2)Si(2)O(8) glass and not significantly different from those for two-coordinate O in Si-O-Al sites. However, a classical MD simulation of the structure of glassy aluminum silicate AS2, (Al(2)O(3))2(SiO(2)), gave a predominance of O triclusters within two-membered rings, with structures much like those seen in the alumoxanes. We have now

  8. Pyroelectric and piezoelectric responses of thin AlN films epitaxy-grown on a SiC/Si substrate

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Sergeeva, O. N.; Kiselev, D. A.; Bogomolov, A. A.; Solnyshkin, A. V.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.

    2016-05-01

    This paper presents the results of pyroelectric and piezoelectric studies of AlN films formed by chloride-hydride epitaxy (CHE) and molecular beam epitaxy (MBE) on epitaxial SiC nanolayers grown on Si by the atom substitution method. The surface topography and piezoelectric and pyroelecrtric responses of AlN films have been analyzed. The results of the study have shown that the vertical component of the piezoresponse in CHE-grown AlN films is more homogeneous over the film area than that in MBE-grown AlN films. However, the signal from the MBE-synthesized AlN films proved to be stronger. The inversion of the polar axis (polarization vector) on passage from MBE-grown AlN films to CHE-grown AlN films has been found experimentally. It has been shown that the polar axis in MBE-grown films is directed from the free surface of the film toward the Si substrate while, in CHE-grown films, the polarization vector is directed toward the free surface.

  9. Al Incorporation at All Growth Stages of Al x Ga1- x N Epilayers Using SiN Treatment

    NASA Astrophysics Data System (ADS)

    Benzarti, Z.; Halidou, I.; Touré, A.; El Jani, B.

    2016-02-01

    Al compositional distribution of Al x Ga1- x N epilayers grown on SiN-treated sapphire substrate by atmospheric pressure metalorganic vapor phase epitaxy is investigated. The growth process was interrupted at various stages allowing a systematic study of Al x Ga1- x N epilayers during the smoothing process. A transition from three-dimensional (3D) to two-dimensional (2D) growth mode is revealed by in situ laser reflectometry (λ = 632.8 nm) as well as by atomic force microscopic images. Then, ion mass spectrometry analysis was performed to obtain the solid Al composition ( x) profile as well as by photoluminescence measurements. Moreover, the in situ reflectivity signal is simulated; thereby Al x Ga1- x N growth rate is derived and compared with that of GaN layer in order to study the effect of the aluminum incorporation on the growth mechanism. It is worth emphasising that the growth mode of Al x Ga1- x N layers is dictated by SiN treatment, which influences the Al compositional distribution. Electron mobility and refractive index against the thickness of Al x Ga1- x N layers have similar trends, which confirm a competitive mechanism between growth mode and Al incorporation. Therefore, the correlation between the Al composition and morphological, optical, and electrical properties of Al x Ga1- x N layers is established.

  10. Different behavior of lithium interaction with SiO2 and Al2 O3

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Ban, Chunmei; Kappes, Branden B.; Xu, Qiang; Engtrakul, Chaiwat; Ciobanu, Cristian V.; Dillon, Anne C.

    2014-03-01

    Lithiation of SiO2 and lithium intercalation in Al2O3 is studied both theoretically and experimentally. Lithium interacts with these two types of oxides in distinctly different behaviors. Reversible insertion/extraction of lithium in SiO2 up to a Li density of 2/3 Li per Si are demonstrated experimentally. Density-functional-theory (DFT) calculation shows that neither free interstitial Li atoms (no reduction) nor formation of a local Li2O cluster plus a Si-Si bond (full reduction) is energetically favorable. However, two Li atoms can effectively break a Si-O bond and be stabilized between the Si and O atoms. Such a defect, representing a state of partial reduction of SiO2, is energetically favorable. DFT simulation shows that intercalation of SiO2 at high Li density through partial reduction results in crystalline compounds LixSiO2 (x <2/3) with tunable band-gaps in the range of 2-3.4 eV. In sharp contrast, Al2O3 is very stable against lithiation through any form of reduction. However, good conductivity of Li ions is shown in porous Al2O3. Work funded by the U.S. DOE under Subcontract No. DE-AC36-08GO28308 through the Office of EERE, the Office of the Vehicle Technologies Program, and by NSF through Award Nos. OCI-1048586 and CMMI-0846858.

  11. Structural investigation of Cr(Al)N/SiOx films prepared on Si substrates by differential pumping cosputtering.

    PubMed

    Kawasaki, Masahiro; Takabatake, Hiroshi; Onishi, Ichiro; Nose, Masateru; Shiojiri, Makoto

    2013-05-01

    Analytical electron microscopy revealed the structure and growth of hard coating Cr(Al)N/SiOx nanocomposite films prepared in a differential pumping cosputtering (DPCS) system, which has two chambers to sputter different materials and a rotating substrate holder. The substrate holder was heated at 250 °C and rotated at a speed as low as 1 rpm. In order to promote the adhesion between the substrate and composite film, transition layers were deposited on a (001) Si substrate by sputtering from the CrAl target with an Ar flow and a mixture flow of Ar and N2 (Ar/N2) gases, subsequently, prior to the composite film deposition. Then, the Cr(Al)N/SiOx nanocomposite film was fabricated on the transition layers by cosputtering from the CrAl target with the Ar/N2 gas flow and from the SiO2 target with the Ar gas flow. The film had a multilayer structure of ∼1.6 nm thick crystallite layers of Cr(Al)N similar to NaCl-type CrN and ∼1 nm thick amorphous silicon oxide layers. The structure of the transition layers was also elucidated. These results can help with the fabrication of new hard nanocomposite films by DPCS. PMID:23582015

  12. Fluorescence and phosphorescence properties of the low temperature forms of the MAl{sub 2}Si{sub 2}O{sub 8}:Eu{sup 2+} (M=Ca, Sr, Ba) compounds

    SciTech Connect

    Clabau, Frederic; Garcia, Alain; Bonville, Pierre; Gonbeau, Danielle; Le Mercier, Thierry; Deniard, Philippe; Jobic, Stephane

    2008-06-15

    The fluorescence and phosphorescence properties of Europium-doped MAl{sub 2}Si{sub 2}O{sub 8} (M=Ca, Sr, Ba) are reinvestigated and discussed on the basis of the propensity of an activator to agglomerate with an oxygen vacancy. Due to a stronger attraction of the anion vacancy towards Eu{sup 2+} cations going from BaAl{sub 2}Si{sub 2}O{sub 8} to SrAl{sub 2}Si{sub 2}O{sub 8} and CaAl{sub 2}Si{sub 2}O{sub 8} host lattices, the interpretation of the fluorescence spectra turns out to be less trivial in the Ca and Sr host lattices than in the Ba one and requests the account for Eu{sup 2+} cations lying at alkaline-earth sites with or without vacancy in their neighborhood. Phosphorescence in these compounds is highlighted. - Graphical abstract: The Eu{sup 2+}-doped MAl{sub 2}Si{sub 2}O{sub 8} (M=Ca, Sr, and Ba) aluminosilicates exhibit a bluish white luminescence, which can last several minutes after the removal of the excitation. The account for Eu{sup 2+} cations coupled with defects is required to explain fluorescence spectra.

  13. Microstructural dependence of annealing temperature in magnetron-sputtered Al-Si-Cu films

    NASA Astrophysics Data System (ADS)

    Liang, Ming-Kaan; Ling, Yong-Chien

    1993-09-01

    The effect of sputtering temperature, sputtering bias, and annealing temperature upon the sheet resistance, WO3 formation at the Al-Si-Cu/Ti-W interface, and diffraction intensity of the Al2Cu precipitates of magnetron-sputtered Al-Si-Cu films were investigated. Statistical methods and microcharacterization techniques were applied to study these effects. Statistical analysis verifies the effect of annealing temperature on the measured sheet resistance. Annealing temperature alone is the dominant factor upon the WO3 formation at the Al-Si-Cu/Ti-W interface and the Al2Cu (211) plane diffraction intensity. Annealed samples are of higher sheet resistance. Increase in sheet resistance is ascribed to the formation of interfacial WO3. Reduced electromigration is related to the formation of Al2Cu precipitates. Secondary ion mass spectrometry (SIMS) analysis of the as-deposited sample depicts the presence of an excess amount of oxygen atoms at the surface and the Al-Si-Cu/Ti-W and Ti-W/Ti interfaces. Rutherford backscattering spectrometry and SIMS analyses reveal the outdiffusion of W from the Ti-W layer toward the Al-Si-Cu layer, the presence of Si nodules at the Al-Si-Cu/Ti-W interface, and the formation of Ti silicides at the Ti/Si interface. These phenomena are confirmed by transmission electron microscopy, energy dispersive x-ray analysis, and scanning electron microscopy analyses. It is concluded that interfacial oxygen, which reacts with W to form WO3 upon annealing, warrants further reduction to yield films of better sheet resistance.

  14. Structural and thermal characterization of CaO-MgO-SiO2-P2O5-CaF2 glasses

    SciTech Connect

    Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Rajagopal, Raghu R.; Ferreira, Jose M.

    2012-08-01

    The paper presents the influence of varying CaO/MgO ratio on the structure and thermal properties of CaO-MgO-SiO2-P2O5-CaF2 glasses. A series of eight glass compositions in the glass forming region of diopside (CaMgSi2O6) - fluorapatite [Ca5(PO4)3F] - wollastonite (CaSiO3) ternary system have been designed and synthesized by varying diopside/wollastonite ratio in glasses. The as prepared melt-quenched glasses have been characterized for their structure by infrared spectroscopy (FTIR) and magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy. Silicon is predominantly present as Q2 (Si) species, while phosphorus tends to coordinate in orthophosphate environment in all the investigated glasses. The change in CaO/MgO ratio had an insignificant affect on the structure of glasses. The thermal sintering and crystallization parameters for the studied glasses have been obtained from differential thermal analysis (DTA) while crystalline phase fractions in the sintered glass-ceramics have been analyzed by X-ray diffraction adjoined with Rietveld refinement. Diopside, fluorapatite, wollastonite and pseudowollastonite have crystallized as the main crystalline phases in all the glass-ceramics with their content varying with respect to variation in CaO/MgO ratio in glasses. Scanning electron microscopy (SEM) has been used to shed light on the microstructure of glass-ceramics. The possible implications of structure and sintering behaviour of glasses on their bioactivity have been discussed.

  15. Effect of Silicon on the Thixoformability of Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Benati, Davi Munhoz; Zoqui, Eugênio José

    2014-09-01

    The thixoformability of new Al-Si-Cu alloys was evaluated and characterized by their microstructural and rheological behavior. Alloys Al1Si2.6Cu, Al2Si2.6Cu, Al4Si2.6Cu, and Al7Si2.6Cu were produced with the addition of Al5Ti1B grain refiner alloy. The materials were heat treated under two controlled conditions: holding times of 0, 30, 90, and 210 s and solid fraction of 45 and 60%. The evaluation of the microstructure and semisolid behavior was characterized by globule size, shape factor (SF), minimum stress to flow, maximum stress, and apparent viscosity. The heat treatment times promoted the globularization of solid phase particles to achieve better apparent viscosity results for the alloys treated for 210 s. Both 45 and 60% solid fraction showed no significant differences in terms of SF, but the alloys containing lower solid fraction showed better performance for apparent viscosity. Better working ranges for these new Al-Si-Cu alloys were determined reaching average strain of 0.5 MPa and apparent viscosity of 105 Pa s.

  16. The atomic details of the interfacial interaction between the bottom electrode of Al/AlO{sub x}/Al Josephson junctions and HF-treated Si substrates

    SciTech Connect

    Zeng, L. J.; Nik, S.; Olsson, E.; Krantz, P.; Delsing, P.

    2015-04-28

    The interface between the Al bottom contact layer and Si substrates in Al based Josephson junctions is believed to have a significant effect on the noise observed in Al based superconducting devices. We have studied the atomic structure of it by transmission electron microscopy. An amorphous layer with a thickness of ∼5 nm was found between the bottom Al electrode and HF-treated Si substrate. It results from intermixing between Al, Si, and O. We also studied the chemical bonding states among the different species using energy loss near edge structure. The observations are of importance for the understanding of the origin of decoherence mechanisms in qubits based on these junctions.

  17. Assessment of SiCaP-30 in a Rabbit Posterolateral Fusion Model with Concurrent Chemotherapy.

    PubMed

    Smucker, Joseph D; Petersen, Emily B; Al-Hili, Ali; Nepola, James V; Fredericks, Douglas C

    2015-01-01

    Chemotherapy derivatives of the rabbit posterolateral fusion model are considered a challenging environment in which to test bone graft materials. The purpose of this study was to determine the performance characteristics of SiCaP-30 as a bone graft substitute relative to autograft (iliac crest bone graft [ICBG]), Actifuse ABX and β-Tricalcium Phosphate-Bioactive Glass-Type I Collagen (βTCP-BG) in a rabbit posterolateral spine fusion model with concurrent chemotherapy treatment This was a randomized, controlled study in a laboratory setting with blinded assessment of fusion by manual palpation and flexibility testing. Sixty rabbits were entered into the study with 45 used for analysis. Chemotherapeutic agents, doxorubicin and cis-platin (2.5 mg/kg), were administered one week prior to surgery, and one, two and three weeks post surgery. Bilateral posterolateral lumbar intertransverse process fusions were performed at L5-L6. The lateral two thirds of the transverse processes were decorticated and covered with 3cc/side of one of the following graft materials: autologous ICBG, Actifuse ABX (ApaTech Ltd, UK), Vitoss BA (Orthovita, USA) or SiCaP-30 (ApaTech Ltd., UK). Animals were euthanized 12 weeks post surgery. The ICBG group had a 45% (5/11) manual palpation fusion rate and correlated with motion analysis fusion results of 36% (4/11). The Actifuse ABX group had a 33% (4/12) manual palpation fusion rate and a motion analysis fusion rate of 25% (3/12). No motion segments in the Vitoss BA group (0/11) showed any signs of fusion. The SiCaP-30 group demonstrated a statistically higher manual palpation and motion analysis fusion rate of 82% (9/11; p<0.05) and produced superior bone formation compared with Actifuse ABX and βTCP-BG. PMID:26361457

  18. Photoluminescence Properties of CaAlBO4:M (M: Pb2+, Dy3+, and Sm3+)

    NASA Astrophysics Data System (ADS)

    Erdoğmuş, E.; Pekgözlü, İ.

    2014-07-01

    Pb2+, Dy3+, and Sm3+ doped CaAlBO4 materials were synthesized by the conventional solid state reaction. The synthesized phosphors were characterized by X-Ray powder diffraction. The emission and excitation spectra of these phosphors were measured at room temperature. The emission band of CaAlBO4:Pb2+ appeared as a broad band at 339 nm upon excitation with 272 nm. The second phosphor, CaAlBO4: Dy3+, emits at 477, 570, and 670 nm upon 347 nm excitation. The third phosphor, CaAlBO4:Sm3+, emits at 563, 594, 643, and 705 nm upon 236 nm excitation.

  19. Fluidity and microstructure formation during flow of Al-SiC particle composites

    SciTech Connect

    Yarandi, F.M.; Rohatgi, P.K.; Ray, S. . Dept. of Materials)

    1993-06-01

    This article presents the results of casting and spiral fluidity in a Al--7 wt% Si alloy reinforced with 10, 15, and 20 vol% SiC particles in permanent molds. The fluidity of the Al-SiC slurry increases linearly with temperature up to about 760 C. Above this temperature, the casting fluidity of the Al-SiC particle slurry does not change significantly with an increase in temperature. In several cases, the fluidity decreased at temperatures above 760 C. The fluidity of Al-SiC melts containing 9-[mu]m SiC particles decreased with an increase in volume percentage of SiC up to 15 vol% (the range studied), presumably due to an increase in the viscosity of the melt with increasing volume percentage of dispersoid and changes in the thermophysical properties of the composite. However, the fluidity of Al-20 vol% SiC of 14-[mu]m particle size is higher than the fluidity of Al-15 vol% SiC 9-[mu]m particles, indicating the role of particle size and surface area in decreasing fluidity. Composite slurries travel farther in a channel of larger cross sections compared to channels of smaller cross sections under similar conditions. Casting fluidity increases linearly with an increase in cross section of the channel. A model has been proposed to calculate the values of fluidity of the composite as a function of particle volume percent, superheat, flow velocity of the melt, and the cross section of the flow channel. Experimental observations have been compared with the predictions of the model, and some deviations have been attributed to settling and segregation of SiC particles observed through microstructural examination.

  20. Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite

    NASA Astrophysics Data System (ADS)

    Carvalho, O.; Buciumeanu, M.; Soares, D.; Silva, F. S.; Miranda, G.

    2015-06-01

    The aim of this paper was to evaluate the effect of different dispersion methodologies on mechanical properties of the aluminum-silicon (AlSi) composites reinforced by multi-walled carbon nanotubes (MWCNTs) coated with Ni. Different mixing procedures of MWCNTs with AlSi powder were tested, and AlSi-CNT composites were produced by hot pressing—powder metallurgy technique. The shear tests were performed to get the mechanical properties. Scanning electron microscopy with x-ray energy dispersive spectroscopy analysis and thermal analysis was used to investigate the microstructure of AlSi-CNT composites, interface reactions, and fracture morphology after shear tests. The experimental results proved that an improvement of dispersion of CNTs was achieved by using a combination of different mixing processes.

  1. Optically stimulated luminescence in LiCaAlF6:Eu2+ phosphor.

    PubMed

    More, Y K; Wankhede, S P; Moharil, S V; Kumar, Munish; Chougaonkar, M P

    2015-09-01

    Results on optically stimulated luminescence (OSL) in LiCaAlF6:Eu(2+) are reported. Continuous wave OSL signal as recorded using blue (470 nm) stimulation was found to be ~31% that of standard phosphor lithium magnesium phosphate. The rate of OSL depletion for standard phosphor lithium magnesium phosphate is only three times less as compared with that of LiCaAlF6:Eu(2+). Strong photoluminescence (PL) in the near ultraviolet region is observed for LiCaAlF6:Eu(2+) with the characteristic Eu(2+) emission at 369 nm for 254 nm excitation. The thermoluminescence (TL) glow peak for LiCaAlF6:Eu(2+) was observed at around 180°C. The glow peak was about six times more intense compared with the dosimetric peak of the well known thermoluminescence dosimetric (TLD) phosphor LiF-TLD 100. Thus this phosphor deserves much more attention than it has received until now and may be useful as a dosimetric material in radiation dosimetry. PMID:25620581

  2. Pre-Accretionary Distribution of Ca and Al Between Matrix and Chondrules in CV Chondrites

    NASA Astrophysics Data System (ADS)

    Hezel, D. C.; Palme, H.

    2007-03-01

    Ca/Al-ratios in Y-86751 (CV) chondrules are super- and in matrix sub-chondritic. The opposite is true for Allende and Efremovka. Incorporation of spinel in Allende and Efremovka chondrule precursors in a nebular setting can explain this observation.

  3. The first observation of SRS in a trigonal LiCaAlF{sub 6} crystal

    SciTech Connect

    Kaminskii, Alexandr A; Eichler, H J; Gad, G M; Ueda, Ken-ichi; Reiche, P

    2000-12-31

    The Raman parametric generation is excited for the first time in a trigonal LiCaAlF{sub 6} fluoride crystal pumped by picosecond pulses. The energy of the {chi}{sup (3)}-active vibrational mode is determined and all Stokes and anti-Stokes components of SRS are detected for this crystal in the visible region. (letters)

  4. Formation Mechanism of CaS-Al2O3 Inclusions in Low Sulfur Al-Killed Steel After Calcium Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Jianfei; Huang, Fuxiang; Wang, Xinhua

    2016-04-01

    The laboratory experiments of alumina inclusions modified by calcium treatment in Al-killed steel were carried out at 1873 K (1600 °C), and the inclusions in steel samples were characterized at 1, 5, and 10 minutes after calcium addition. The results show that the type of inclusions after calcium treatment was determined by the sulfur and T.O contents of steel. CaS-Al2O3 inclusions were obtained in steels with high sulfur and low T.O contents. The mass ratio between CaS and Al2O3 was determined by T.Ca and T.O contents of steel. The influence of holding time after calcium addition on the composition of inclusions was negligible. The thermodynamics for the formation of CaS-Al2O3 inclusions after calcium treatment was discussed, and a simple formation mechanism was proposed. Moreover, the CaO, Al2O3, and CaS contents in the inclusions were predicted through the sulfur, total calcium (T.Ca), and T.O contents, and it was found that the CaO content decreases with increasing S/T.O, while (pctCaS)/(pctAl2O3)1/3 increases with increasing T.Ca/T.O.

  5. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Technical Reports Server (NTRS)

    Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst

    1993-01-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  6. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Kimura, M.; El Goresy, A.; Palme, H.; Zinner, E.

    1993-05-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  7. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    SciTech Connect

    Cao, J. |

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  8. Strain and defects in Si-doped (Al)GaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Forghani, Kamran; Schade, Lukas; Schwarz, Ulrich T.; Lipski, Frank; Klein, Oliver; Kaiser, Ute; Scholz, Ferdinand

    2012-11-01

    Si is the most common dopant in (Al)GaN based devices acting as a donor. It has been observed that Si induces tensile strain in (Al)GaN films, which leads to an increasing tendency for cracking of such films with the increase of Si content and/or the increase of Al content. Based on x-ray investigations, the Si-doped films have a larger in-plane lattice constant than their undoped buffer layers, indicating involvement of a mechanism other than the change of lattice constants expected from an alloying effect. In this work, we present a model about Si dislocation interaction while debating other proposed models in the literature. According to our model, Si atoms are attracted to the strain dipole of edge-type dislocations in (Al)GaN films. It is expected that Si is more incorporated on that side of the dislocation, which is under compression leading to the formation of off-balanced dipoles with reduced compressive component. In response to such off-balanced dipoles—appearing as tensile dominant strain dipoles—the dislocation lines climb in order to accommodate the excess tensile strain. However, this dislocation climb mechanism is hindered by forces exerted by vacancies created due to the climb process. Accordingly, we have observed a lower strain level in our Si doped layers when they contain fewer dislocations. These findings were further supported by x-ray diffraction, transmission electron microscopy, and micro-photoluminescence investigations.

  9. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    NASA Technical Reports Server (NTRS)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  10. SiAlON COATINGS OF SILICON NITRIDE AND SILICON CARBIDE

    SciTech Connect

    Jan W. Nowok; John P. Hurley; John P. Kay

    2000-06-01

    The need for new engineering materials in aerospace applications and in stationary power turbine blades for high-efficiency energy-generating equipment has led to a rapid development of ceramic coatings. They can be tailored to have superior physical (high specific strength and stiffness, enhanced high-temperature performance) and chemical (high-temperature corrosion resistance in more aggressive fuel environments) properties than those of monolithic ceramic materials. Among the major chemical properties of SiAlON-Y ceramics are their good corrosion resistance against aggressive media combined with good thermal shock behavior. The good corrosion resistance results from the yttria-alumina-garnet (YAG), Al{sub 5}Y{sub 3}O{sub 12}, formed during the corrosion process of SiAlON-Y ceramics in combustion gases at 1300 C. The interfacial chemical precipitation of the YAG phase is beneficial. This phase may crystallize in cubic and/or tetragonal modifications and if formed in SiAlON-Y ceramic may simultaneously generate residual stress. Also, this phase can contain a large number of point defects, which is a consequence of the large unit cell and complexity of the YAG structure because it has no close-packed oxygen planes. Therefore, the need exists to elucidate the corrosion mechanism of a multilayered barrier with respect to using SiAlON-YAG as a corrosion-protective coating. Stress corrosion cracking in the grain boundary of a silicon nitride (Si{sub 3}N{sub 4}) ceramic enriched in a glassy phase such as SiAlON can significantly affect its mechanical properties. It has been suggested that the increased resistance of the oxynitride glass to stress corrosion is related to the increased surface potential of the fracture surface created in the more durable and highly cross-linked oxynitride glass network structure. We expect that either increased or decreased surface potential of the intergranular glassy phase is brought about by changes in the residual stress of the SiAl

  11. Oxidization and microhardness of SiC-AlN composite at high temperature

    SciTech Connect

    Pan, Y.B.; Qiu, J.H.; Morita, M.

    1998-01-01

    Specimens of SiC-AlN composites were preoxidized in air for 30 h at 1,100, 1,250, and 1,370 C. The Vickers microhardness (Hv) was tested at temperatures ranging from 25 to 1,200 C in Ar atmosphere. This work is mainly concerned with variations in oxidization and microhardness of SiC-AlN composites in different surface structures and properties.

  12. State-of-the-art of SiAlON materials. [conferences

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1979-01-01

    Research presented includes work on phase relations, crystal structure, synthesis, fabrication, and properties of various SiAlONs. The essential features of compositions, fabrication methods, and microstructure are reviewed. High temperature flexure strength, creep, fracture toughness, oxidation, and thermal shock resistance are discussed. These data are compared to those for some currently produced silicon nitride ceramics to assess the potential SiAlON materials for use in advanced gas turbine engines.

  13. Fabrication and Photoelectric Properties of n-ZnO:Al/PdPc/p-Si Structures

    SciTech Connect

    Il'chuk, G.A.; Nikitin, S.E.; Nikolaev, Yu.A.; Rud', Yu.V.; Terukov, E.I.; Rud', V.Yu.

    2005-04-01

    Photosensitive n-ZnO:Al/PdPc/p-Si structures were fabricated by vacuum sublimation of palladium phthalocyanine with subsequent magnetron sputtering of ZnO:Al films on p-Si substrates. The current transport mechanisms and the photosensitivity of the structures obtained were investigated. It is shown that structures based on PdPc films are promising for photosensitive devices based on contacts between organic and inorganic semiconductors.

  14. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  15. Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kousuke; Kurosawa, Shunsuke; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-12-01

    Eu doped CaF2/Li3AlF6 eutectics were grown by μ-PD method. The directionally solidified eutectic with well-aligned 600 nm diameter Eu:CaF2 scintillator fibers surrounded with Li3AlF6 was prepared. The grown eutectics showed an emission peak at 422 nm ascribed to Eu2+ 4f-5d transition from Eu:CaF2 scintillation fiber. Li concentration in the Eu:CaF2-Li3AlF6 eutectic is around 0.038 mol/cm3,which is two times higher than that of LiCaAlF6 single crystal (0.016 mol/cm3). The light yield of Eu:CaF2-Li3AlF6 eutectic was around 7000 ph/neutron. The decay time was about 550 ns (89%) and 1450 ns (11%).

  16. Sulfur passivation for the formation of Si-terminated Al2O3/SiGe(0 0 1) interfaces

    NASA Astrophysics Data System (ADS)

    Sardashti, Kasra; Hu, Kai-Ting; Tang, Kechao; Park, Sangwook; Kim, Hyonwoong; Madisetti, Shailesh; McIntyre, Paul; Oktyabrsky, Serge; Siddiqui, Shariq; Sahu, Bhagawan; Yoshida, Noami; Kachian, Jessica; Kummel, Andrew

    2016-03-01

    Sulfur passivation is used to electrically and chemically passivate the silicon-germanium (SiGe) surfaces before and during the atomic layer deposition (ALD) of aluminum oxide (Al2O3). The electrical properties of the interfaces were examined by variable frequency capacitance-voltage (C-V) spectroscopy. Interface compositions were determined by angle-resolved X-ray photoelectron spectroscopy (AR-XPS). The sulfur adsorbs to a large fraction of surface sites on the SiGe(0 0 1) surface, protecting the surface from deleterious surface reactions during processing. Sulfur passivation (a) improved the air stability of the cleaned surfaces prior to ALD, (b) increased the stability of the surface during high-temperature deposition, and (c) increased the Al2O3 ALD nucleation density on SiGe, thereby lowering the leakage current. S passivation suppressed formation of Gesbnd O bonds at the interface, leaving the majority of the Al2O3-SiGe interface terminated with direct Sisbnd Osbnd Al bonding.

  17. Mixed Al and Si doping in ferroelectric HfO{sub 2} thin films

    SciTech Connect

    Lomenzo, Patrick D.; Nishida, Toshikazu; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Jones, Jacob L.; Moghaddam, Saeed

    2015-12-14

    Ferroelectric HfO{sub 2} thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO{sub 2} greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ∼20 μC/cm{sup 2} and a coercive field strength of ∼1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO{sub 2} thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO{sub 2} thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO{sub 2} thin films exhibit a remanent polarization greater than 15 μC/cm{sup 2} up to 10{sup 8} cycles.

  18. Preparation and Properties of a Novel Al-Si-Ge-Zn Filler Metal for Brazing Aluminum

    NASA Astrophysics Data System (ADS)

    Niu, Zhiwei; Huang, Jihua; Yang, Hao; Chen, Shuhai; Zhao, Xingke

    2015-06-01

    The study is concerned with developing a filler metal with low melting temperature and good processability for brazing aluminum and its alloys. For this purpose, a novel Al-Si-Ge-Zn alloy was prepared according to Al-Si-Ge and Al-Si-Zn ternary phase diagrams. The melting characteristics, microstructures, wettability, and processing property of the alloy were investigated. The results showed that the melting temperature range of the novel filler metal was 505.2-545.1 °C, and the temperature interval between the solidus and the liquidus was 39.9 °C. Compared with a common Al-Si-Ge alloy, it had smaller and better dispersed β-GeSi solid solution precipitates, and the Zn-rich phases distributed on the boundary of the β-GeSi precipitates. The novel filler metal has good processability and good wettability with Al. There was one obvious transition layer with a thin α-Al solid solution between the filler metal and base metal, which is favorable to improve the strength of brazing joint.

  19. Mixed Al and Si doping in ferroelectric HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Lomenzo, Patrick D.; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Moghaddam, Saeed; Jones, Jacob L.; Nishida, Toshikazu

    2015-12-01

    Ferroelectric HfO2 thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO2 greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ˜20 μC/cm2 and a coercive field strength of ˜1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO2 thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO2 thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO2 thin films exhibit a remanent polarization greater than 15 μC/cm2 up to 108 cycles.

  20. First-principles investigation of the thermo-physical properties of Ca{sub 3}Si{sub 4}

    SciTech Connect

    Tao, Xiaoma; Yang, Jiong; Xi, Lili; Ouyang, Yifang

    2012-10-15

    The first-principles calculations were applied to investigate the thermo-physical properties of Ca{sub 3}Si{sub 4} compound with increasing pressure. Those properties are based on density functional theory (DFT) method within the generalized gradient approximation (GGA) and local density approximation (LDA) for exchange and correlation. The optimized lattice constant and formation enthalpy are in good agreement with the experimental data and other theoretical data available. The calculated band structures confirm that Ca{sub 3}Si{sub 4} is a semiconductor with an indirect band gap of 0.363 eV (GGA) and 0.311 eV (LDA) at 0 GPa, and the calculated band gap decreased with the increasing pressure. The elastic constants, elastic anisotropy, elastic moduli and Poisson's ratio of Ca{sub 3}Si{sub 4} have also been obtained under high pressures. The Debye temperature, heat capacity, coefficient of thermal expansion and Grueneisen parameter have also been calculated in the quasiharmonic Debye model. - Graphical abstract: The Partial Density of States and Band Structure of Ca{sub 3}Si{sub 4}. Highlights: Black-Right-Pointing-Pointer The thermo-physical properties of Ca{sub 3}Si{sub 4} have been investigated. Black-Right-Pointing-Pointer Ca{sub 3}Si{sub 4} is a semiconductor with an indirect band gap. Black-Right-Pointing-Pointer The mechanical properties of Ca{sub 3}Si{sub 4} have been studied. Black-Right-Pointing-Pointer The heat capacity and thermal expansion have been obtained.

  1. Electrochemical and microstructural study of oxide films formed electrochemically at microcrystalline Al-Fe-V-Si alloys.

    PubMed

    Thomas, S C; Birss, V I; Steele, D; Tessier, D

    1995-07-01

    A recent advance in metallurgical technology has been the application of rapid solidification techniques to Al alloy production. FVS0812 is the designation given to a microcrystalline Al-based alloy consisting of 8 wt% Fe, 1 wt% V and 2 wt% Si. It is a two-phase alloy, consisting of ca. 27 vol percent of approximately spherical Fe-V-Si-rich dispersoids in an essentially pure Al matrix. The high strength, low density properties of this advanced material, and other related alloys, have not yet been realized, however, due, in part, to the inability of the alloy to form a thick, adherent, abrasion-resistant outer surface oxide film, a feature readily achieved at conventional Al alloys by normal anodizing methods. The present research has involved an electro-chemical study of oxide film growth at the 812 alloy, with the specific goals being to seek an understanding of the origin of the oxide film growth problem and ultimately to propose alternative approaches to the formation of a thick, stable oxide film at this material. The techniques used in this research have included electrochemical methodologies such as cyclic voltammetry and electrochemical impedance spectroscopy. Crucial information has been obtained through transmission electron microscopy (TEM) of ultramicrotomed specimens. Experiments were carried out initially in neutral borate solutions to characterize the compact barrier oxide film formed in this environment and expected to be present beneath the porous oxide film formed in the normal sulfuric acid anodizing medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7549001

  2. Research on an AlSiNx bi-material thermal-mechanical uncooled infrared FPA pixel

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Da-cheng

    2011-08-01

    AlSiNx bi-material thermal strain structure is used in uncooled optic readout infrared focal plane array (UOR IR FPA) pixel based on Micro-Electro-Mechanical Systems (MEMS) technology. In this paper, the problems that the AlSiNxstructure prevents FPA pixel scaling down and fill factor improving, and the Au reflection layer of the pixel leads to larger readout light energy loss are analyzed. The feasibility of AlSiNx instead of AlSiNx in the UOR IR FPA fabrication is researched in detail. The theoretical analyzing and simulation results demonstrate that, with optimized thicknesses and their matching designing of SiNx and Al, the thermal-mechanical response of AlSiNx bi-material structure is improved to 1.8 times and the intensity of optic readout signal is improved to about 2 times compared with AuSiNAlSiNx one.

  3. Hydrogen sorption behavior of CaAl1.5Li0.5

    NASA Astrophysics Data System (ADS)

    Bereznitsky, Matvey; Mogilyanski, Dmitry; Jacob, Isaac

    2016-04-01

    The hydrogen sorption properties of an alloy with nominal composition CaAl1.5Li0.5 have been investigated in a pursuit for hydrogen-absorbing Li-containing intermetallics. X-ray analysis of the original alloy indicated a coexistence of three closely related Laves phases. The maximum hydrogen capacity, recorded at about 6 MPa and 300 °C, was approximately 2.5 H atoms per formula unit (f.u.). Pressure-composition (p-c) isotherm measurements were taken in the temperature range between 350 and 450 °C up to pressures of 133 kPa. Thermodynamic parameters are derived for two plateau regions in the p-c isotherms. Analysis of these parameters and supporting evidence from X-ray patterns of hydrogenated and dehydrogenated samples suggest: (a) an initial irreversible disproportionation of the original alloy and (b) subsequent reversible hydrogenations, featuring reversible disproportionations of CaAl2 and LiAl intermetallic compounds. Attempts to form additional Li-containing intermetallics, namely CaAlLi, TiMn2- x Li x (x = 0.2, 0.3, 0.4, 0.6) and TiAl2- x Li x (x = 0.3, 0.5), and to hydrogenate them, are reported in brief.

  4. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl4Si2 and CeIrAl4Si2

    DOE PAGESBeta

    Ghimire, N. J.; Calder, S.; Janoschek, M.; Bauer, E. D.

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl4Si2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions TN1 and TN2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition TN2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl4Si2 and CeIrAl4Si2 were determined to be 1.14(2) and 1.41(3) μB/Ce, respectively, and are parallel to the crystallographic c-axis inmore » agreement with magnetic susceptibility measurements.« less

  5. A study of metal-ceramic wettability in SiC-Al using dynamic melt infiltration of SiC

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1993-01-01

    Pressure-assisted infiltration with a 2014 Al alloy of plain and Cu-coated single crystal platelets of alpha silicon carbide was used to study particulate wettability under dynamic conditions relevant to pressure casting of metal-matrix composites. The total penetration length of infiltrant metal in porous compacts was measured at the conclusion of solidification as a function of pressure, infiltration time, and SiC size for both plain and Cu-coated SiC. The experimental data were analyzed to obtain a threshold pressure for the effect of melt intrusion through SiC compacts. The threshold pressure was taken either directly as a measure of wettability or converted to an effective wetting angle using the Young-Laplace capillary equation. Cu coating resulted in partial but beneficial improvements in wettability as a result of its dissolution in the melt, compared to uncoated SiC.

  6. Influence of Si Addition on Quenching Sensitivity and Formation of Nano-Precipitate in Al-Mg-Si Alloys.

    PubMed

    Kim, JaeHwang; Hayashi, Minoru; Kobayashi, Equo; Sato, Tatsuo

    2016-02-01

    The age-hardening is enhanced with the high cooling rate since more vacancies are formed during quenching, whereas the stable beta phase is formed with the slow cooling rate just after solid solution treatment resulting in lower increase of hardness during aging. Meanwhile, the nanoclusters are formed during natural aging in Al-Mg-Si alloys. The formation of nanoclusters is enhanced with increasing the Si amount. High quench sensitivity based on mechanical property changes was confirmed with increasing the Si amount. Moreover, the nano-size beta" phase, main hardening phase, is more formed by the Si addition resulting in enhancement of the age-hardening. The quench sensitivity and the formation behavior of precipitates are discussed based on the age-hardening phenomena. PMID:27433677

  7. Influence of mechanical milling on the SiC particulate size in an Al-SiC composite

    NASA Astrophysics Data System (ADS)

    Mujahid, M.; Friska, I.

    2005-02-01

    Particle reinforced aluminum-matrix composites are particularly attractive for the automobile and air-craft industries, due to their light weight, high strength, and good wear resistance. In the present work, silicon carbide (SiC) particulates have been incorporated into a pure Al matrix with the help of mechanical milling in a planetary ball-mill. Composite powders were prepared using both raw as well as premilled SiC powders. The effect of milling time on the SiC particulate size was investigated. Systematic analysis of x-ray diffraction data revealed a reinforcement particle size of about 30 nm in a composite containing 50 vol.% SiC. It has been observed that the size reduction occurs at a faster rate when indirect milling is used.

  8. Elimination of interface states of Co2MnSi/MgO/Co2MnSi magnetic tunneling junction by inserting an Al atomic layer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Yang, G. W.

    2011-01-01

    Aiming at improvement performance of Co2MnSi/MgO/Co2MnSi magnetic tunneling junction (MTJ), we have studied interface behaviors of Co2MnSi/MgO by inserting an Al atomic layer between Heusler alloy and barrier, i.e., CoCo/Al/O, MnSi/Al/O, MnMn/Al/O and SiSi/Al/O four interfaces. It was found that CoCo/Al/O is stable and half-metallic, meaning interface states can be eliminated in this system. Hybridization and repulsion of transition-metal d and p states of sp atoms at interface and electrons transfer between interfacial atoms were suggested to be responsible for interface states elimination. These findings open a way to eliminate the interface states in MTJ.

  9. Magnetic properties of ultrasoft-nanocomposite FeAlSiBNbCu alloys

    NASA Astrophysics Data System (ADS)

    Todd, I.; Tate, B. J.; Davies, H. A.; Gibbs, M. R. J.; Kendall, D.; Major, R. V.

    2000-06-01

    The effects of up to 10 at% substitution of Fe by Al on the microstructure and DC and AC magnetic properties of nanocrystalline FeSiBCuNb alloy ribbon are summarised and analysed. The minimum DC H c developed during annealing decreases by 40% for 2 at% Al (to 0.3 A/m) and remains roughly constant for larger Al contents. The largest peak value of μ 0.4 at 50 Hz also corresponds to 2 at% Al. The best frequency response for μ 0.4 occurs for 6 at% Al while there was no improvement in AC power loss behaviour over the 0% Al alloy. The improvements in DC H c and AC μ 0.4 are ascribed to a reduction in K 1 of the Fe-Si-based nanocrystallites by the introduction of Al.

  10. Thermal Conductivity of the Molten CaO-SiO2-FeO x System

    NASA Astrophysics Data System (ADS)

    Kang, Youngjo; Nomura, Kiyoshi; Tokumitsu, Kazuto; Tobo, Hiroyuki; Morita, Kazuki

    2012-12-01

    Thermal conductivity measurements were carried out on synthetic steelmaking slag using the hot-wire method. Furthermore, local structure analysis in the melts was carried out in order to investigate the relationship with the composition dependence. The thermal conductivity of the CaO-SiO2-FeO x melts significantly decreased as the content of FeO x increases, particularly at lower basicity. Both chemical analysis and the observation show that the amount of Fe2+ increases when CaO/SiO2 is smaller, implying more basic behavior of FeO than FeO1.5. According to further analyses by Mössbauer spectroscopy, the degree of basicity of FeO1.5 remains virtually unchanged in the composition range of interest. From the experimental results, it could be concluded that the thermal conductivity of the silicate melt containing iron oxide is highly dependent on the valence of the Fe ion and comparatively independent of the amphoteric behavior of FeO1.5.

  11. Chemisorption of Si on Al(111) surfaces: A local-chemical-bond analysis from Auger transition density of states

    NASA Astrophysics Data System (ADS)

    Muñoz, M. C.; Sacedón, J. L.; Soria, F.; Martinez, V.

    1986-07-01

    Auger and electron loss spectroscopies have been used to study the local chemical bond between Si and Al, in the first stages of growth of Si deposited at room temperature on Al(111) surfaces. Si follows a layer-by-layer mechanism up to 2 monolayers with the formation of an Al(111)-3 × 3-Si structure at about 0.44 monolayers. A detailed analysis of the L 2,3VV Auger spectra for this structure allows to interpret the Si and Al Auger transition density of states (TDOS) in terms of the actual p-like partial DOS centered on the Si and Al sites. The experimental results indicate a strong SiAl interaction with the formation of a p-type local covalent bond between the Si and Al surface atoms.

  12. Epitaxial growth and orientation of AlN thin films on Si(001) substrates deposited by reactive magnetron sputtering

    SciTech Connect

    Valcheva, E.; Birch, J.; Persson, P. O. A ring .; Tungasmita, S.; Hultman, L.

    2006-12-15

    Epitaxial domain formation and textured growth in AlN thin films deposited on Si(001) substrates by reactive magnetron sputtering was studied by transmission electron microscopy and x-ray diffraction. The films have a wurtzite type structure with a crystallographic orientation relationship to the silicon substrate of AlN(0001)(parallel sign)Si(001). The AlN film is observed to nucleate randomly on the Si surface and grows three dimensionally, forming columnar domains. The in-plane orientation reveals four domains with their a axes rotated by 15 deg. with respect to each other: AlN<1120>(parallel sign)Si[110], AlN<0110>(parallel sign)Si[110], AlN<1120>(parallel sign)Si[100], and AlN<0110>(parallel sign)Si[100] An explanation of the growth mode based on the large lattice mismatch and the topology of the substrate surface is proposed.

  13. Oxidation resistance of quintuple Ti-Al-Si-C-N coatings and associated mechanism

    SciTech Connect

    Wu Guizhi; Ma Shengli; Xu Kewei; Ji, Vincent; Chu, Paul K.

    2012-07-15

    The oxidation behavior of Ti-Al-Si-C-N hard coatings with different Al contents deposited on high-speed steel and Si substrates by hybrid arc-enhanced magnetron sputtering is investigated in the temperature range of 500 Degree-Sign C-1000 Degree-Sign C. The coating hardness is maintained at around 35 GPa, and the parabolic oxidation rate constant K{sub p} at 1000 Degree-Sign C decreases to 3.36 Multiplication-Sign 10{sup -10} kg{sup 2} m{sup -4} s{sup -1} when the Al concentration is increased to 30 at. %, indicating that Ti-Al-Si-C-N coatings with larger Al concentrations have better oxidation resistance. X-ray diffraction, cross-sectional scanning electron microscopy, and x-ray photoelectron spectroscopy reveal a protective surface layer consisting of Al{sub 2}O{sub 3}, TiO{sub 2}, and SiO{sub 2} that retards inward oxygen diffusion. A mechanism is proposed to elucidate the oxide formation. As a consequence of the good oxidation resistance, the Ti-Al-Si-C-N coatings have a large potential in high-speed dry cutting as well as other high temperature applications.

  14. After-Corrosion Suppression Using Low-Temperature Al-Si-Cu Etching

    NASA Astrophysics Data System (ADS)

    Aoki, Hidemitsu; Ikawa, Eiji; Kikkawa, Takamaro; Teraoka, Yuden; Nishiyama, Iwao

    1991-07-01

    The authors investigated the low-temperature etching effect on Al-Si-Cu after-corrosion. The after-corrosion extent was evaluated from the corrosion point density generated on the rinsed Al-Si-Cu stripes after dry etching. As the etching temperature was reduced, after-corrosion was suppressed. In order to study the low-temperature etching effect, the authors analyzed the Cl compounds remaining on the Al-Si-Cu film by thermal desorption spectroscopy (TDS). TDS revealed that the Cl concentration remaining on the Al-Si-Cu film etched at -60°C after rinsing in water was smaller than that remaining on the film etched at 30°C. Consequently, suppression of after-corrosion by low temperature etching could be attributed to the smaller number of Al-Cu bonds remaining in the Al-Si-Cu etch surface after removal of the AlClx layer by rinsing with water. This fact is due to the reduction of chemical reaction and diffusion rate by lowering the substrate temperature.

  15. Transparent conducting Si-codoped Al-doped ZnO thin films prepared by magnetron sputtering using Al-doped ZnO powder targets containing SiC

    SciTech Connect

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2009-07-15

    Transparent conducting Al-doped ZnO (AZO) thin films codoped with Si, or Si-codoped AZO (AZO:Si), were prepared by radio-frequency magnetron sputtering using a powder mixture of ZnO, Al{sub 2}O{sub 3}, and SiC as the target; the Si content (Si/[Si+Zn] atomic ratio) was varied from 0 to 1 at. %, but the Al content (Al/[Al+Zn] atomic ratio) was held constant. To investigate the effect of carbon on the electrical properties of AZO:Si thin films prepared using the powder targets containing SiC, the authors also prepared thin films using a mixture of ZnO, Al{sub 2}O{sub 3}, and SiO{sub 2} or SiO powders as the target. They found that when AZO:Si thin films were deposited on glass substrates at about 200 degree sign C, both Al and Si doped into ZnO acted as effective donors and the atomic carbon originating from the sputtered target acted as a reducing agent. As a result, sufficient improvement was obtained in the spatial distribution of resistivity on the substrate surface in AZO:Si thin films prepared with a Si content (Si/[Si+Zn] atomic ratio) of 0.75 at. % using powder targets containing SiC. The improvement in resistivity distribution was mainly attributed to increases in both carrier concentration and Hall mobility at locations on the substrate corresponding to the target erosion region. In addition, the resistivity stability of AZO: Si thin films exposed to air for 30 min at a high temperature was found to improve with increasing Si content.

  16. The Perovskite to Post-Perovskite Transition: Atomistic Simulations of Compositions on the MgSiO3-FeSiO3 and MgSiO3-FeAlO3 Joins

    NASA Astrophysics Data System (ADS)

    Mohn, C.; Tronnes, R. G.

    2014-12-01

    + 3 MgOIn peridotite, the excess MgO and Al2O3 may dissolve in ferropericlase and ppv, respectively. If ppv becomes Al-saturated, Ca-ferrite- (CF) or Ca-titanite- (CT) structured phases with the MgAl2O4 component might form. In basaltic rocks MgAl2O4 may enter preexisting CF-CT-phases and excess MgO may combine with SiO2 from silica-dominated phases to the MS-component of ppv.

  17. Efficient Transfection by Using PDMAEMA-Modified SiNWAs as a Platform for Ca(2+)-Dependent Gene Delivery.

    PubMed

    Pan, Jingjing; Yuan, Yuqi; Wang, Hongwei; Liu, Feng; Xiong, Xinhong; Chen, Hong; Yuan, Lin

    2016-06-22

    The major bottleneck for gene delivery lies in the lack of safe and efficient gene vectors and delivery systems. In order to develop a much safer and efficient transfection system, a novel strategy of combining traditional Ca(2+)-dependent transfection with cationic polymer poly(N,N-dimethylamino)ethyl methacrylate (PDMAEMA) modified silicon nanowire arrays (SiNWAs) was proposed in this work. Detailed studies were carried out on the effects of the PDMAEMA polymerization time, the Ca(2+) concentration, and the incubation time of Ca(2+)@DNA complex with PDMAEMA-modified SiNWAs (SN-PDM) on the gene transfection in the cells. The results demonstrated that the transfection efficiency of SN-PDM assisted traditional Ca(2+)-dependent transfection was significantly enhanced compared to those without any surface assistance, and SN-PDM with polymerization time 24 h exhibited the highest efficiency. Moreover, the optimal transfection efficiency was found at the system of a complex containing Ca(2+) (100 mM) and plasmid DNA (pDNA) incubated on SN-PDM for 20 min. Compared with unmodified SiNWAs, SN-PDM has little cytotoxicity and can improve cell attachment. All of these results demonstrated that SN-PDM could significantly enhance Ca(2+)-dependent transfection; this process depends on the amino groups' density of PDMAEMA on the surface, the Ca(2+) concentration, and the available Ca(2+)@DNA complex. Our study provides a potential novel and excellent means of gene delivery for therapeutic applications. PMID:27249181

  18. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  19. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  20. Micromechanical stresses in SiC-reinforced Al2O3 composites

    NASA Technical Reports Server (NTRS)

    Li, Zhuang; Bradt, Richard C.

    1989-01-01

    Applying an Eshelby (1957) approach, the internal micromechanical stresses within an SiC-inclusion-reinforced (platelet to whisker geometries) polycrystalline alumina matrix composite were calculated. The results are compared to the experimental residual stress measurements of a SiC-whisker-reinforced Al2O3 by Predecki, et al. (in press) and found to be in excellent agreement. The calculations are then extended to SiC-reinforced composites with polycrystalline mullite, silicon nitride, and cordierite matrices. It is concluded that the internal stresses are significantly influenced by the inclusion geometry as well as the thermoelastic differences between the inclusion and the matrix and also the volume fraction.

  1. High Temperature Aerogels in the Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Aranda, Denisse V.; Gallagher, Meghan E.

    2008-01-01

    Al2O3-SiO2 aerogels are of interest as constituents of thermal insulation systems for use at high temperatures. Al2O3 and mullite aerogels are expected to crystallize at higher temperatures than their SiO2 counterparts, hence avoiding the shrinkages that accompany the formation of lower temperature SiO2 phases and preserving pore structures into higher temperature regimes. The objective of this work is to determine the influence of processing parameters on shrinkage, gel structure (including surface area, pore size and distribution) and pyrolysis behavior.

  2. Heat capacities of synthetic hedenbergite, ferrobustamite and CaFeSi2O6 glass

    USGS Publications Warehouse

    Haselton, H.T., Jr.; Robie, R.A.; Hemingway, B.S.

    1987-01-01

    Heat capacities have been measured for synthetic hedenbergite (9-647 K), ferrobustamite (5-746 K) and CaFeSi2O6 glass (6-380 K) by low-temperature adiabatic and differential scanning calorimetry. The heat capacity of each of these structural forms of CaFeSiO6 exhibits anomalous behavior at low temperatures. The X-peak in the hedenbergite heat-capacity curve at 34.5 K is due to antiferromagnetic ordering of the Fe2+ ions. Ferrobustamite has a bump in its heat-capacity curve at temperatures less than 20 K, which could be due to weak cooperative magnetic ordering or to a Schottky anomaly. Surprisingly, a broad peak with a maximum at 68 K is present in the heat-capacity curve of the glass. If this maximum, which occurs at a higher temperature than in hedenbergite is caused by magnetic ordering, it could indicate that the range of distortions of the iron sites in the glass is quite small and that coupling between iron atoms is stronger in the glass than in the edge-shared octahedral chains of hedenbergite. The standard entropy change, So298.15 - So0, is 174.2 ?? 0.3, 180.5 ?? 0.3 and 185.7 ?? 0.4 J/mol??K for hedenbergite, ferrobustamite and CaFeSi2O6 glass, respectively. Ferrobustamite is partially disordered in Ca-Fe distribution at high temperatures, but the dependence of the configuratonal entropy on temperature cannot be evaluated due to a lack of information. At high temperatures (298-1600 K), the heat capacity of hedenbergite may be represented by the equation Cop(J/mol??K) = 3l0.46 + 0.01257T-2039.93T -1 2 - 1.84604?? l06T-2 and the heat capacity of ferrobustamite may be represented by Cop(J/mol??K) = 403.83-0.04444T+ 1.597?? 10-5T2-3757.3T -1 2. ?? 1987.

  3. Phase transformation upon cooling path in Ca2SiO4: Possible geological implication

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Ting; Kung, Jennifer; Hsu, Han

    2016-04-01

    At the contact metamorphism zone two different Ca2SiO4 phases can be found; calcio-olivine (γ phase) and larnite (β phase). In-situ experiments illustrated the existence of five various polymorphs in Ca2SiO4, i.e., α, α'H, α'L, β and γ. The path of phase transformation and the transformation temperatures are shown as follows. γ → α'L(700° C) → α'H(1100° C) → α (1450° C) α'L → β (680° C) → γ (500° C) Experiments showed that the phase transitions at lower temperature is not reversible and seemed to be complicated; β phase is only stable from 500° C to 680° C upon cooling. To understand the possible mechanism of the β phase being metastable at room temperature, atmosphere condition, we were motivated to investigate the route of phase transition in Ca2SiO4 in different thermal process. Powder samples were synthesized by the solid-state reaction. Pure reagent oxides CaCO3 and SiO2 were mixed in 2:1 stoichiometric mole. Two control factors were designated in the experiments; the sintering temperature of starting materials and the cooling path. The sintering temperature was set within the range of stable phase field of α'L phase (˜900° C) and α'H phase (1300° C). The cooling process was designed in three different routes: 1) the quenched procedure from sintering temperature with rate of 900° C/min and 1300° C/min, 2) the furnace cooling procedure, 3) set a slow cooling rate (0.265 ° C/min). The products were examined for the crystal structure by X-ray powder diffraction. First-principle calculation was also applied to investigate the thermodynamic properties of α'H, β and γ phases. A major finding in this study showed that the γ phase presented in the final product when the sintering temperature was set at the stable field of α'H phase; on the other hand, the β phase would present when the sintering temperature was set within the field of α'L phase. It was noted that the existing phase in the product would be modified by the

  4. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    NASA Astrophysics Data System (ADS)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  5. Aluminum-Magnesium and Oxygen Isotope Study of Relict Ca-Al-rich Inclusions in Chondrules

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; McKeegan, Kevin D.; Huss, Gary R.; Liffman, Kurt; Sahijpal, Sandeep; Hutcheon, Ian D.; Srinivasan, Gopalan; Bischoff, Adolph; Keil, Klaus

    2006-03-01

    Relict Ca-Al-rich inclusions (CAIs) in chondrules crystallized before their host chondrules and were subsequently partly melted together with chondrule precursors during chondrule formation. Like most CAIs, relict CAIs are 16O enriched (Δ17O<-20‰) compared to their host chondrules (Δ17O>-9‰). Hibonite in a relict CAI from the ungrouped carbonaceous chondrite Adelaide has a large excess of radiogenic 26Mg (26Mg*) from the decay of 26Al, corresponding to an initial 26Al/27Al ratio [(26Al/27Al)I] of (3.7+/-0.5)×10-5 in contrast, melilite in this CAI and plagioclase in the host chondrule show no evidence for 26Mg* [(26Al/27Al)I of <5×10-6]. Grossite in a relict CAI from the CH carbonaceous chondrite PAT 91546 has little 26Mg*, corresponding to a (26Al/27Al)I of (1.7+/-1.3)×10-6. Three other relict CAIs and their host chondrules from the ungrouped carbonaceous chondrite Acfer 094, CH chondrite Acfer 182, and H3.4 ordinary chondrite Sharps do not have detectable 26Mg* [(26Al/27Al)I<1×10-5, <(4-6)×10-6, and <1.3×10-5, respectively]. Isotopic data combined with mineralogical observations suggest that relict CAIs formed in an 16O-rich gaseous reservoir before their host chondrules, which originated in an 16O-poor gas. The Adelaide CAI was incorporated into its host chondrule after 26Al had mostly decayed, at least 2 Myr after the CAI formed, and this event reset 26Al-26Mg systematics.

  6. The Al-Rich Part of the System CaO-Al 2O 3-MgO . Part I. Phase Relationships

    NASA Astrophysics Data System (ADS)

    Göbbels, M.; Woermann, E.; Jung, J.

    1995-12-01

    In the Al-rich part of the ternary system CaO-Al 2O 3MgO two new ternary phases Ca 2Mg 2Al 28O 46 (CAM-I) and CaMg 2Al 16O 27 (CAM-II) with limited solid solution ranges were found. Due to the fact that the compositions of the Mg-rich end members of these solid solutions lie on the join between hibonite (CaAl 12O 19) and spinel (MgAl 2O 4), the model of the crystal structures of these phases can be constructed by a suitable combination of hibonite and spinel units. Both phases, CAM-I and CAM-II, exhibit solid solution ranges described by a substitution mechanism also found in the binary spinel phase, MgAl 2O 4: 3 Mg 2+ = 2 Al 3+ + □. Thus the ternary phases can be expressed by the chemical formulas. Ca 2Mg 2-3 xAl 28+2 x□ xO 46 for CAM-I with 0 ≤ x ≤ 0.30 and CaMg 2-3 yAl 16+2 y□ yO 27 for CAM-II with 0 ≤ y ≤ 0.2.

  7. Thermoelectric properties of Fe and Al double substituted MnSiγ (γ~1.73)

    NASA Astrophysics Data System (ADS)

    Barczak, S. A.; Downie, R. A.; Popuri, S. R.; Decourt, R.; Pollet, M.; Bos, J. W. G.

    2015-07-01

    Two series of Fe and Al double substituted MnSiγ chimney ladders with a nominal valence electron count, VEC=14 per transition metal were prepared (γ=1.75). Simultaneous replacement of Mn with Fe and Si with Al yielded the Mn1-xFexSi1.75-xAlx series while the second Mn1-xFexSi1.75-1.75xAl2x series follows the pseudo-binary between MnSi1.75 and FeAl2. Scanning electron microscopy and elemental mapping revealed that ~60% of the nominal Al content ends up in the product with the remainder lost to sublimation, and that up to 7% Al can be substituted in the main group sublattice. Profile analysis of X-ray powder diffraction data revealed gradual changes in the cell metrics, consistent with the simultaneous substitution of Fe and Al in a fixed ratio. All samples are p-type with VEC≈13.95 from the structural data and ~1×1021 holes cm-3 from variable temperature Seebeck measurements. The substituted samples have lower electrical resistivities (ρ300 K=2-5 mΩ cm) due to an improved microstructure. This leads to increased thermoelectric power factors (largest S2/ρ=1.95 mW m-1 K-2) compared to MnSiγ. The thermal conductivity for the Mn0.95Fe0.05Si1.66Al0.1 sample is 2.7 W m-1 K-1 between 300 and 800 K, and is comparable to literature data for the parent material.

  8. Growth of CsLiB6O10 thin films on Si substrate by pulsed laser deposition using SiO2 and CaF2 as buffer layers

    NASA Astrophysics Data System (ADS)

    Yeo, J. S.; Akella, A.; Huang, T. F.; Hesselink, L.

    1998-03-01

    CsLiB6O10 (CLBO) thin films are grown on Si (100) and (111) substrates using lower index SiO2 and CaF2 as buffer layers by pulsed KrF (248 nm) excimer laser ablation of stoichiometric CLBO targets over a temperature range of 425 to 725°C. A CaF2 buffer layer is grown on Si by laser ablation while SiO2 is prepared by standard thermal oxidation. From extended x-ray analysis, it is determined that CaF2 is growth with preferred orientation on Si (100) at temperatures lower than 525°C while on Si (111) substrate, CaF2 is grown epitaxially over the temperature range; this agrees well with observed reflection high energy electron diffraction patterns. X-ray 2θ-scans indicate that crystalline CLBO are grown on SiO2/Si and CaF2/Si (100). Analysis of reflectance spectra from CLBO/SiO2/Si yields the absorption edge at 182 nm. Surface roughness of the CaF2 and CLBO/CaF2/Si film are 19 and 15 nm, respectively. This relatively rough surface caused by the ablation of wide bandgap CaF2 and CLBO limits the application of CLBO for waveguiding measurement.

  9. Dielectric properties of spark plasma sintered AlN/SiC composite ceramics

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Jia, Cheng-chang; Cao, Wen-bin; Wang, Cong-cong; Liang, Dong; Xu, Guo-liang

    2014-06-01

    In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were prepared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt% SiC at 1600°C for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ceramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.

  10. Low-Cost Process for Silicon Purification with Bubble Adsorption in Al-Si Melt

    NASA Astrophysics Data System (ADS)

    Yu, Wenzhou; Ma, Wenhui; Lv, Guoqiang; Ren, Yongsheng; Dai, Yongnian; Morita, Kazuki

    2014-08-01

    The primary silicon and Al-Si alloy have been separated in hypereutectic Al-Si melt by the electromagnetic stirring and directional solidification processes. During the electromagnetic separation process, the behavior of a hydrogen bubble in Al-Si melt has been discussed. Furthermore, the bubble adsorption effect for the Si purification has been revealed. The results show that the bubble cavity formed in the lower part of the sample by pulling it up. The scanning electron microscope along with energy dispersive spectrometer (SEM-EDS) analysis indicated that a lot of impurities were adsorbed onto the surface of the bubble cavity that may be beneficial for the Si purification. By decreasing the pulling-up rates, the size of the bubble cavity in Al-Si alloy increased, which results in the decreasing of the impurity contents in primary silicon. In this work, the impurity content in primary silicon is 10.8 ppmw, which is obviously improved compared with the 777.57 ppmw in metallurgical silicon. It is a low-cost technology that will be a potential route for the Si purification.

  11. EDM machinability of SiCw/Al composites

    NASA Technical Reports Server (NTRS)

    Ramulu, M.; Taya, M.

    1989-01-01

    Machinability of high temperature composites was investigated. Target materials, 15 and 25 vol pct SiC whisker-2124 aluminum composites, were machined by electrodischarge sinker machining and diamond saw. The machined surfaces of these metal matrix composites were examined by SEM and profilometry to determine the surface finish. Microhardness measurements were also performed on the as-machined composites.

  12. Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction

    NASA Astrophysics Data System (ADS)

    Atrian, A.; Majzoobi, G. H.; Enayati, M. H.; Bakhtiari, H.

    2014-03-01

    This paper describes the synthesis of Al7075 metal matrix composites reinforced with SiC, and the characterization of their microstructure and mechanical behavior. The mechanically milled Al7075 micron-sized powder and SiC nanoparticles are dynamically compacted using a drop hammer device. This compaction is performed at different temperatures and for various volume fractions of SiC nanoparticles. The relative density is directly related to the compaction temperature rise and indirectly related to the content of SiC nanoparticle reinforcement, respectively. Furthermore, increasing the amount of SiC nanoparticles improves the strength, stiffness, and hardness of the compacted specimens. The increase in hardness and strength may be attributed to the inherent hardness of the nanoparticles, and other phenomena such as thermal mismatch and crack shielding. Nevertheless, clustering of the nanoparticles at aluminum particle boundaries make these regions become a source of concentrated stress, which reduces the load carrying capacity of the compacted nanocomposite.

  13. Microstructural Characteristic and Mechanical Behavior of Nodular Silicon Hypereutectic Al-Si Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Ruyao; Lu, Weihua

    2012-02-01

    The microstructure and mechanical properties of Al-Si-Cu-Mg alloys containing 12 wt.% to 30 wt.% Si are discussed. The eutectic and primary silicon particles are nodulized by a designed modification practice followed by a solution heat treatment of 6 h to 8 h at 510°C to 520°C. Metallographic analysis was used to measure structural characteristics of the Si-rich structures. Spheroidization of silicon phase leads to an increase in tensile strength and ductility of alloys at room temperature and 300°C compared with commercial Al-Si alloy. Increasing Si concentration causes the ultimate tensile strength and elongation at room temperature to fall due to the appearance of coarse silicon particles, but the ultimate tensile strength at 300°C remains unchanged.

  14. Microstructural refinement of Al-Si alloy upon ultrasonic nanocrystalline surface modification treatment.

    PubMed

    He, Yinsheng; Li, Kejian; Cho, In Shik; Park, In Gyu; Shin, Keesam

    2014-11-01

    In this work, an Al-7 wt.% Si alloy, which is widely used as the structural materials in the automotive and aerospace industries for their high specific strength, was subjected to ultrasonic nanocrystalline surface modification (UNSM) treatment. After UNSM treatment, the effect of UNSM on the microstructural evolution of both Al grain and the dispersed Si particles was studied by using scanning electron microscope (SEM) and transmission electron microscope (TEM). Experimental results show that the ultra-fine grain (UFG, - 400 nm in size) structure is developed in the top surface layer (up to - 15 μm in depth). The coarse Si particles were refined and well dispersed in the UFG Al matrix. Cross-sectional TEM observation revealed that the grain refinement mechanism involved the formation of new grain boundaries dividing the coarse grain into UFG structure. Nanotwin and nanosize Si were formed within the original coarse Si particles. The presence of dispersed Si particles in the Al matrix accelerated the Al grain refinement process. PMID:25958593

  15. Separation Mechanism of Primary Silicon from Hypereutectic Al-Si Melts Under Alternating Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Xue, Haiyang; Lv, Guoqiang; Ma, Wenhui; Chen, Daotong; Yu, Jie

    2015-07-01

    Solar grade silicon (SOG-Si) and hypereutectic Al-Si alloys with low silicon (silicon composition below 25 pct) can be successfully obtained by separation of hypereutectic Al-Si alloy with high silicon (silicon composition above 30 pct) under an alternating electromagnetic field after post-processing. To explore the separation mechanism in detail, experiments were conducted in this study using a high-frequency induction furnace with different pulling conditions of the crucible which is loaded with Al-45 wt pct Si melt. Results demonstrate that the separation of hypereutectic Al-Si alloy is feasible through either a pull-up or drop-down process. The height of each separation interface between the compact and sparse parts of the primary silicon decrease as the pull-up distance rose. When the pulling rate is very low, resultant morphologies of compact primary silicon are rounded and polygonal, allowing for more effective separation of the primary silicon. A novel physical model is presented here based on the experimental results and simulation. The model can be used to effectively describe the separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields.

  16. Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Rahimian, Mehdi; Ketabchi, Mostafa; Parvin, Nader; Yaghinali, Parisa; Carreño, Fernando

    2016-07-01

    The strengthening mechanisms in nanostructured Al/SiCp composite deformed to high strain by a novel severe plastic deformation process, accumulative press bonding (APB), were investigated. The composite exhibited yield strength of 148 MPa which was 5 and 1.5 times higher than that of raw aluminum (29 MPa) and aluminum-APB (95 MPa) alloys, respectively. A remarkable increase was also observed in the ultimate tensile strength of Al/SiCp-APB composite, 222 MPa, which was 2.5 and 1.2 times greater than the obtained values for raw aluminum (88 MPa) and aluminum-APB (180 MPa) alloys, respectively. Analytical models well described the contribution of various strengthening mechanisms. The contributions of grain boundary, strain hardening, thermal mismatch, Orowan, elastic mismatch, and load-bearing strengthening mechanisms to the overall strength of the Al/SiCp microcomposite were 64.9, 49, 6.8, 2.4, 5.4, and 1.5 MPa, respectively. Whereas Orowan strengthening mechanism was considered as the most dominating strengthening mechanism in Al/SiCp nanocomposites, it was negligible for strengthening the microcomposite. Al/SiCp nanocomposite showed good agreement with quadratic summation model; however, experimental results exhibited good accordance with arithmetic and compounding summation models in the microcomposite. While average grain size of the composite reached 380 nm, it was less than 100 nm in the vicinity of SiC particles as a result of particle-stimulated nucleation mechanism.

  17. Correlation Between Interfacial Structure and Toughness in SiC-Al Bilayers

    NASA Astrophysics Data System (ADS)

    Kong, Yaru; Guo, Qiang; Guo, Xiaolei; Fan, Genlian; Li, Zhiqiang; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Zhang, Di

    2016-08-01

    Reinforcement surface modification is often used to improve the mechanical properties of particle-reinforced metal matrix composites, however, the extent to which such modifications affect the interfacial properties is yet to be revealed. In this study, we fabricated SiC-Al composite bilayers where the SiC underwent different surface treatments before Al deposition. Four-point bending tests showed that the samples made from acid-pickled and thermally oxidized SiC possessed substantially higher interfacial toughness than their untreated counterpart, a presumption inferred from mechanical tests on bulk SiCp-Al composites but never justified quantitatively. These findings were rationalized by the different interfacial constituents and structure in these samples.

  18. Additive Manufacturing of Al-12Si Alloy Via Pulsed Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Chou, R.; Milligan, J.; Paliwal, M.; Brochu, M.

    2015-03-01

    Additive manufacturing (AM) of metallic materials is experiencing a research and commercialization craze in almost all industrial sectors. However, to date, AM has been limited to a small numbers of alloys. With respect to aluminum, two alloys received some attention: Al-12Si and Al-10Si-1Mg. In both cases, fully dense components have been achieved using a continuous-wave selective laser melting system. In this article, a new approach of selective laser melting using a pulsed-laser source as opposed to a continuous-wave laser is proposed. Pulse selective laser melting (P-SLM) would allow for greater control over the heat input and thus further optimization possibilities of the microstructure. P-SLM was demonstrated using the Al-12Si system. Si refinement below 200 nm was achieved throughout the component. Density up to 95% and high hardness of above 135 HV were obtained. The solidification mechanism is also explained.

  19. Crystal structure study of (Ca, Gd){sub 2}(Al, Ti)O{sub 4}

    SciTech Connect

    Sawada, Haruo; Marumo, Fumiyuki; Kodama, Nobuhiro

    1998-08-01

    The crystal structures of two crystals of (Ca, Gd){sub 2} (Al, Ti)O{sub 4} [tetragonal I4/mmm; Z = 4], one strongly fluorescent and the other weakly fluorescent, having minor differences in their precise compositions have been studied with single-crystal X-ray diffraction methods. The unit cell is significantly smaller for the weakly fluorescent crystal, which also shows alteration of the coordination polyhedraon around the (Ca, Gd) site, suggesting the formation of vacancies at an oxygen site.

  20. Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing.

    PubMed

    Mabrouk, Mostafa; Choonara, Yahya E; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; van Vuuren, Sandy; Pillay, Viness

    2016-06-30

    The aim of this study was to develop an in situ hybridized poly(vinyl alcohol)/calcium silicate (PVA/Ca2OSi) nanofibrous antibacterial wound dressing with calcium phosphate [Ca3(PO4)2] surface precipitation for enhanced bioactivity. This was achieved by hybridizing the antibacterial ions Zn(2+) and/or Ag(+) in a Ca2O4Si composite. The hybridization effect on the thermal behavior, physicochemical, morphological, and physicomechanical properties of the nanofibers was studied using Differential Scanning calorimetric (DSC), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Textural Analysis, respectively. In vitro bioactivity, biodegradation and pH variations of the nanofiber composite were evaluated in Simulated Body Fluid (SBF). The antibacterial activity was assessed against Staphylococcus aureus and Pseudomonas aeruginosa. Hybridization of Zn(2+) and/or Ag(+) into the PVA/Ca2O4Si nanofiber composite was confirmed by DSC, XRD and FTIR. The thickness of the nanofibers was dependent on the presence of Zn(2+) and Ag(+) as confirmed by SEM. The nanofibers displayed enhanced tensile strength (19-115.73MPa) compared to native PVA. Zn(2+) and/or Ag(+) hybridized nanofibers showed relatively enhanced in vitro bioactivity, biodegradation (90%) and antibacterial activity compared with the native PVA/Ca2O4Si nanofiber composite. Results of this study has shown that the PVA/Ca2O4Si composite hybridized with both Zn(2+) and Ag(+) may be promising as an antibacterial wound dressing with a nanofibrous archetype with enhanced bioactivity. PMID:27154257

  1. Measurements of the Bauschinger effect in some particulate Al[sub 2]O[sub 3]/Al and SiC/Al metal matrix composites

    SciTech Connect

    Mouritz, A.P. ); Bandyopadhayay, S. )

    1993-06-01

    The Bauschinger effect in SiC/Al composites has been attributed to a number of possible mechanisms. Numerous studies have suggested that relatively high residual tensile stresses in the aluminum matrix are the principal cause of the Bauschinger effect. These stresses are produced by the large difference in the coefficients of thermal expansion between the SiC and Al phases. Arsenault and Taya measured stresses as high as 408 MPa in the aluminium phase of a SiC whisker (5% volume fraction)/6061 Al composite using x-ray diffraction techniques, while Withers et al. measured strains of about 7 [times] 10[sup [minus]4] in a similar composite using neutron diffraction. Due to the presence of tensile stresses in the matrix, Arsenault et al. and Taya et al. suggest that the Bauschinger effect arises because the flow stress of the composite is reduced when pre-straining is performed in tension and is raised when performed in compression. They also believe that other mechanisms such as differences in the dislocation configurations that may form as a result of pre-straining in tension or compression are not likely to contribute significantly to the Bauschinger effect. However, Withers et al. and Warner et al. suggest that relaxation processes such as diffusion and plastic flow in the aluminium matrix may contribute to the Bauschinger effect. This paper describes the results of a preliminary study of the Bauschinger effect in particulate Al[sub 2]O[sub 3]/Al composites, and compares their behavior to some SiC/Al composites.

  2. Chemical reactivity of nickel and nickel-based alloys with a SiAlON ceramic

    SciTech Connect

    Vleugels, J.; Van Der Biest, O.

    1995-11-01

    At the high cutting speeds typical for machining with ceramics and the concomitant high temperatures generated at the cutting edge and the rake face of the tool, chemical interaction between tool and workpiece material becomes the predominant mode of tool wear. To obtain more information concerning this chemical interaction mechanism, the chemical interaction of a {beta}{prime}-O{prime} SiAlON ceramic with pure nickel, Inconel 600, and Nimonic 105 is studied. The chemical reactivity was assessed by studying ceramic-alloy interaction couples after exposure at elevated temperatures (1,100--1,200 C) for times long enough to be able to characterize the interaction layer. At 1,200 C, the {beta}{prime}-O{prime} SiAlON ceramic dissociates in contact with pure nickel. Silicon from the dissociation of the ceramic dissolves and diffuses into the nickel, whereas Al and O form Al{sub 2}O{sub 3} particles. At the interface, a nitrogen pressure is built up. Inconel 600 is very reactive with the SiAlON ceramic, with the formation of molten silicides at 1,200 C. Cr{sub 3}Ni{sub 2}Si, Al{sub 2}O{sub 3}, and Ni{sub 31}Si{sub 12} are the major reaction products. The reactivity of Nimonic 105 is less than that of pure nickel because of the formation of a continuous protective TiN layer at the ceramic-metal interface.

  3. Electrical characteristics of p-Si/TiO2/Al and p-Si/TiO2-Zr/Al Schottky devices

    NASA Astrophysics Data System (ADS)

    Hüdai Taşdemir, İbrahim; Vural, Özkan; Dökme, İlbilge

    2016-06-01

    Electrical devices involve different types of diode in prospective electronics is of great importance. In this study, p-type Si surface was covered with thin film of TiO2 dispersion in H2O to construct p-Si/TiO2/Al Schottky barrier diode (D1) and the other one with TiO2 dispersion doped with zirconium to construct p-Si/TiO2-Zr/Al diode (D2) by drop-casting method in the same conditions. Electrical properties of as-prepared diodes and effect of zirconium as a dopant were investigated. Current-voltage (I-V) characteristics of these devices were measured at ambient conditions. Some parameters including ideality factor (n), barrier height (ΦB0), series resistance (Rs) and interface state density (Nss) were calculated from I-V behaviours of diodes. Structural comparisons were based on SEM and EDX measurements. Experimental results indicated that electrical parameters of p-Si/TiO2/Al Schottky device were influenced by the zirconium dopant in TiO2.

  4. Microstructure and wear resistance of Al-SiC composites coatings on ZE41 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Rodrigo, P.; Campo, M.; Torres, B.; Escalera, M. D.; Otero, E.; Rams, J.

    2009-08-01

    Al and Al-SiC composites coatings were prepared by oxyacetylene flame spraying on ZE41 magnesium alloy substrates. Coatings with controlled reinforcement rate of up to 23 vol.% were obtained by spraying mixtures containing aluminium powder with up to 50 vol.% SiC particles. The coatings were sprayed on the magnesium alloy with minor degradation of its microstructure or mechanical properties. The coatings were compacted to improve their microstructure and protective behaviour. The wear behaviour of these coatings has been tested using the pin-on-disk technique and the reinforced coatings provided 85% more wear resistance than uncoated ZE41 and 400% more than pure Al coatings.

  5. Microstructural Observations in a Cast Al-Si-Cu/TiC Composite

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Lekatou, A.; Georgatis, E.; Poulas, V.; Mavros, H.

    2010-06-01

    A 3-5 vol.% TiC particulate Al-Si-Cu composite was prepared by diluting Al/20 vol.% TiC composite in an Al-7Si-4Cu alloy matrix. TiC particle distribution consists of isolated and clustered particles which are both located at the primary-α grain boundaries and at the areas of the last solidified liquid. Particle pushing by the solidification front is responsible for the final particle location. The solidified microstructure consists of primary and intermetallic phases formed by a sequence of possible eutectic reactions. No evidence of TiC particle degradation was observed.

  6. Thermoelectric properties of Al doped Mg{sub 2}Si material

    SciTech Connect

    Kaur, Kulwinder Kumar, Ranjan; Rani, Anita

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  7. Origin of Ca-Al-rich inclusions. II - Sputtering and collisions in the three-ph8se interstellar medium

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1981-01-01

    The theory put forward by Clayton (1977) for the formation of the Ca-Al-rich inclusions within C3 meteorites is extended to an evolutionary history in a three-phase interstellar medium. Widespread supersonic turbulence in the hot interstellar medium is maintained by supernova shock waves, giving rise to heavy sputtering of the refractory dust. Subsequent reaccumulation with varying dust/gas ratios or varying particle sizes produces isotopically fractionated Ca-Al-rich accumulates. It is thought that the Ca-Al-rich inclusions themselves are formed by the following sequence in the solar system: (1) cold accumulation of larger-than-average Ca-Al-rich particles containing supernova condensate cores into macroscopic (approximately 1 cm) Ca-Al-rich agglomerates, probably by sedimentation; and (2) fusion of the supernova condensates into macroscopic minerals by exothermic chemical reactions that begin when the accumulate has been warmed, thereby releasing energy from the unequilibrated forms accumulated from the interstellar medium.

  8. Advanced treatment of stabilized landfill leachate after biochemical process with hydrocalumite chloride (Ca/Al-Cl LDH).

    PubMed

    Chen, Hua; Sun, Ying; Ruan, Xiuxiu; Yu, Ying; Zhu, Minying; Zhang, Jia; Zhou, Jizhi; Xu, Yunfeng; Liu, Jianyong; Qian, Guangren

    2016-06-01

    This study investigated the effectiveness of Ca/Al-Cl LDH for the treatment of stabilized landfill leachate. Experiments were performed including different dosage of Ca/Al-Cl LDH and comparison with different reagents, such as CaCl2 and AlCl3. As a result, Ca/Al-Cl LDH efficiently removed organic matters in stabilized landfill leachate with the maximum removal (59.41% COD, 62.06% DOC and 70.56% UV254) at the dose of 30g/L. According to UV254 and EEM, it is remarkable that the formation of Ca/Al-LDH has a greater beneficial to organic removal than other reagents, especially for fulvic acid-like and humic acid-like compounds. Moreover, the removal of fulvic acid-like compounds was much better than humic acid-like compounds. The previous compounds had more carboxylic groups, thus had a better removal selectivity. PMID:26920626

  9. Bose-Einstein correlations in Si + Al and Si + Au collisions at 14.6A GeV/c

    NASA Technical Reports Server (NTRS)

    Abbott, T.; Akiba, Y.; Beavis, D.; Bloomer, M. A.; Bond, P. D.; Chasman, C.; Chen, Z.; Chu, Y. Y.; Cole, B. A.; Costales, J. B.

    1992-01-01

    The E802 Spectrometer at the Brookhaven Alternating Gradient Synchrotron has been used to measure the correlation in relative momentum between like-sign pions emitted in central Si + Al and Si + Au collisions at 14.6A GeV/c. Data are presented in terms of the correlation function for both identified pi(-) and pi(+) pairs near the nucleon-nucleon center-of-mass rapidity. All parametrizations of the correlation function are consistent with a spherically symmetric source of rms radius 3.5 +/- 0.4 fm and lifetime fm/c.

  10. Mechanical properties of Al-Cu alloy-SiC composites

    SciTech Connect

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-25

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  11. Brazeability of a 3003 Aluminum alloy with Al-Si-Cu-based filler metals

    NASA Astrophysics Data System (ADS)

    Tsao, L. C.; Weng, W. P.; Cheng, M. D.; Tsao, C. W.; Chuang, T. H.

    2002-08-01

    Al-Si-Cu-based filler metals have been used successfully for brazing 6061 aluminum alloy as reported in the authors’ previous studies. For application in heat exchangers during manufacturing, the brazeability of 3003 aluminum alloy with these filler metals is herein further evaluated. Experimental results show that even at such a low temperature as 550 °C, the 3003 alloys can be brazed with the Al-Si-Cu fillers and display bonding strengths that are higher than 77 MPa as well. An optimized 3003 joint is attained in the brazements with the innovative Al-7Si-20Cu-2Sn-1Mg filler metal at 575 °C for 30 min, which reveals a bonding strength capping the 3003 Al matrix.

  12. A novel X-ray photoelectron spectroscopy study of the Al/SiO2 interface

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Vasquez, R. P.; Grunthaner, F. J.; Zamani, N.; Maserjian, J.

    1985-01-01

    The nondestructive measurement of the chemical and physical characteristics of the interface between bulk SiO2 and thick aluminum films is reported. Both X-ray phototelectron spectroscopy (XPS) and electrical measurements of unannealed, resistively evaporated Al films on thermal SiO2 indicate an atomically abrupt interface. Post metallization annealing at 450 C induces reduction of the SiO2 by the aluminum, at a rate consistent with the bulk reaction rate. The XPS measurement is performed from the SiO2 side after the removal of the Si substrate with XeF2 gas and thinning of the SiO2 layer with HF:ETOH. This represents a powerful new approach to the study of metal-insulator and related interfaces.

  13. CaCl 2 -Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with 29 Si MAS NMR

    DOE PAGESBeta

    Li, Qinfei; Ge, Yong; Geng, Guoqing; Bae, Sungchul; Monteiro, Paulo J. M.

    2015-01-01

    Tmore » he effect of calcium chloride (CaCl 2 ) on tricalcium silicate (C 3 S) hydration was investigated by scanning transmission X-ray microscopy (STXM) with Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra and 29 Si MAS NMR. STXM is demonstrated to be a powerful tool for studying the chemical composition of a cement-based hydration system.he Ca L 3,2 -edge NEXAFS spectra obtained by examining C 3 S hydration in the presence of CaCl 2 showed that this accelerator does not change the coordination of calcium in the calcium silicate hydrate (C-S-H), which is the primary hydration product. O K-edge NEXAFS is also very useful in distinguishing the chemical components in hydrated C 3 S. Based on the Ca L 3,2 -edge spectra and chemical component mapping, we concluded that CaCl 2 prefers to coexist with unhydrated C 3 S instead of C-S-H. In Si K-edge NEXAFS analysis, CaCl 2 increases the degree of silicate polymerization of C-S-H in agreement with the 29 Si CP/MAS NMR results, which show that the presence of CaCl 2 in hydrated C 3 S considerably accelerates the formation of middle groups ( Q 2 ) and branch sites ( Q 3 ) in the silicate chains of C-S-H gel at 1-day hydration.« less

  14. () preferential orientation of polycrystalline AlN grown on SiO2/Si wafers by reactive sputter magnetron technique

    NASA Astrophysics Data System (ADS)

    Bürgi, Juan; García Molleja, Javier; Bolmaro, Raúl; Piccoli, Mattia; Bemporad, Edoardo; Craievich, Aldo; Feugeas, Jorge

    2016-04-01

    Aluminum nitride (AlN) is a ceramic compound that could be used as a processing material for semiconductor industry. However, the AlN crystalline structure plays a crucial role in its performance. In this paper, polycrystalline AlN films have been grown onto Si(1 1 1) and Si(1 0 0) (with an oxide native coverage of SiO2) wafers by RSM (reactive sputter magnetron) technique using a small (5 L) reactor. The development of polycrystalline AlN films with a good texture along () planes, i.e., semi-polar structure, was shown. Analyses were done using X-ray diffraction in the Bragg-Brentano mode and in the GIXRD (grazing incidence X-ray diffraction) one, and the texture was determined through pole figures. The structure and composition of these films were also studied by TEM and EDS techniques. Nevertheless, the mapping of the magnetic field between the magnetron and the substrate has shown a lack of symmetry at the region near the substrate. This lack of symmetry can be attributable to the small dimensions of the chamber, and the present paper suggests that this phenomenon is the responsible for the unusual () texture developed.

  15. SiO2 and CaF2 Behavior During Shielded Metal Arc Welding and Their Effect on Slag Detachability of the CaO-CaF2-SiO2 Type ENiCrFe-7-Covered Electrode

    NASA Astrophysics Data System (ADS)

    Wang, Huang; Qin, Renyao; He, Guo

    2016-07-01

    The metallurgical behavior during shielded metal arc welding (SMAW) and the slag detachability of the CaO-CaF2-SiO2 type ENiCrFe-7-covered electrodes was investigated. The results indicated that the slag detachability could be improved as the SiO2 in the flux coatings decreased. When the SiO2 in the flux coating was 10.9 pct, about 28.3 pct CaF2 resulted in the best slag detachability. The CaF2 and SiO2 in the flux coating interacted during SMAW to form gaseous SiF4 to be evacuated. In the reactions, one SiO2 consumed two CaF2, leading to the reduction of the ratio of CaF2/SiO2. After comparing the slag compositions, the best slag detachability was obtained at CaO:CaF2:SiO2 = 1.7:1.8:1, but the worst slag detachability appeared at CaO:CaF2:SiO2 = 1.3:0.9:1. The XRD analysis revealed that the oxides and fluorides in the slags preferred to gather together to form cuspidine and other complex phases. If the CaF2 was dominant in the slags, they intended to form homogenous porous microstructures that were relatively strong and would most likely detach from the weld metal in blocks, exhibiting good slag detachability. If the cuspidine phase was dominant, the slags exhibited a `rock strata'-like microstructure in the intergranular area. Such microstructure was very fragile and could be broken into fine powders that were easily embedded in the weld ripples, leading to slag adhesions. This work provides the researcher with a wealth of information and data, which will also be beneficial to the welding material producers and users.

  16. SiO2 and CaF2 Behavior During Shielded Metal Arc Welding and Their Effect on Slag Detachability of the CaO-CaF2-SiO2 Type ENiCrFe-7-Covered Electrode

    NASA Astrophysics Data System (ADS)

    Wang, Huang; Qin, Renyao; He, Guo

    2016-09-01

    The metallurgical behavior during shielded metal arc welding (SMAW) and the slag detachability of the CaO-CaF2-SiO2 type ENiCrFe-7-covered electrodes was investigated. The results indicated that the slag detachability could be improved as the SiO2 in the flux coatings decreased. When the SiO2 in the flux coating was 10.9 pct, about 28.3 pct CaF2 resulted in the best slag detachability. The CaF2 and SiO2 in the flux coating interacted during SMAW to form gaseous SiF4 to be evacuated. In the reactions, one SiO2 consumed two CaF2, leading to the reduction of the ratio of CaF2/SiO2. After comparing the slag compositions, the best slag detachability was obtained at CaO:CaF2:SiO2 = 1.7:1.8:1, but the worst slag detachability appeared at CaO:CaF2:SiO2 = 1.3:0.9:1. The XRD analysis revealed that the oxides and fluorides in the slags preferred to gather together to form cuspidine and other complex phases. If the CaF2 was dominant in the slags, they intended to form homogenous porous microstructures that were relatively strong and would most likely detach from the weld metal in blocks, exhibiting good slag detachability. If the cuspidine phase was dominant, the slags exhibited a `rock strata'-like microstructure in the intergranular area. Such microstructure was very fragile and could be broken into fine powders that were easily embedded in the weld ripples, leading to slag adhesions. This work provides the researcher with a wealth of information and data, which will also be beneficial to the welding material producers and users.

  17. As-Al recoil implantation through Si 3N 4 barrier layer

    NASA Astrophysics Data System (ADS)

    Godignon, P.; Morvan, E.; Montserrat, J.; Jordà, X.; Flores, D.; Rebollo, J.

    1999-01-01

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si 3N 4 screen layer. Then, P-N and N +/P/N structures can be obtained with deep low doped P-well with reduced thermal budget.

  18. 3D characterization by tomography of beta Al9Fe2Si2 phase precipitation in a Al6.5Si1Fe alloy

    NASA Astrophysics Data System (ADS)

    Ferdian, D.; Salvo, L.; Lacaze, J.; Tenailleau, C.; Duployer, B.; Malard, B.

    2016-03-01

    The microstructure evolution of beta phase during solidification of a synthetic Al6.5Si1Fe (wt.%) alloy has been investigated by in-situ synchrotron micro-tomography and post-mortem tomography. In-situ solidification was observed at a constant cooling rate of 10°C min-1, from above the alloy's liquidus with the melt at 618°C down to 575°C which is just above the (Al)-Si-beta invariant eutectic reaction. Primary (Al) dendrites nucleated at 608°C, followed by the formation of beta-Al9Fe2Si2 phase starting at 593°C. After a rapid growth stage until 587°C as thin plates, beta phase continued to grow at a paced rate. Thickening of the plates was also evaluated and it was observed that the decrease in the lateral growth rate of the plates did not lead to an increase of their thickening rate. It was noted that the interconnectivity between beta precipitates increased as the solidification progressed. While nucleation of beta phase has previously been reported to occur on the alumina scale formed at the outer surface of the material, it is shown from post mortem tomography that bulk nucleation can occur as well.

  19. Structure of CaCO3-CaSiO3 melts at high P-T conditions using in situ X-ray diffuse scattering in a Paris-Edinburgh press

    NASA Astrophysics Data System (ADS)

    Hummer, D. R.; Kavner, A.; Manning, C. E.

    2012-12-01

    Carbonatites are an important class of mantle-derived magmas that may play a fundamental role in mantle metasomatism and carbon cycling. However, little is known about the impact of carbonate on the structure of carbonate-silicate liquids at high pressures and temperatures. To examine compositional dependence of the melt structure in the CaCO3-CaSiO3 system, we performed in situ X-ray scattering experiments in the Paris-Edinburgh press at HPCAT (Advanced Photon Source) using four different compositions along the CaCO3-CaSiO3 join. This system exhibits simple eutectic melting over a wide pressure range, with no subsolidus decarbonation reactions [1,2]. Charges were loaded using the experimental setup of Yamada et al [3], and held at ~1800 oC and ~40 kbar while energy dispersive X-ray scattering spectra were recorded. Spectra were collected at eleven different scattering angles to achieve coverage in reciprocal space up to q = 32 Å-1. Post-run inspection of charges indicated that both calcite and wollastonite were present, confirming the retention of CO2. Preliminary analysis of the scattering data suggests that CaCO3 forms an ionic liquid in which trigonal planar CO32- ions remain intact. However, the size of the ions (as measured by the O-O distance of 2.6 Å around the perimeter) was significantly larger than in crystalline carbonates (2.4 Å). This suggests weakening of the C-O bonds, similar to that observed in alkali carbonate melts [4]. Silicate-rich melts showed evidence of SiO44- monomers and a complex meso-scale structure, but no discernible evidence of dimers or higher polymers was observed. Structural differences in these melts as a function of composition, temperature, and pressure may play a significant role in the evolution of carbonatite magmas during metasomatic interaction with mantle minerals, and transit to the crust. [1] Huang, W.L. and Wyllie, P.J. (1974) Earth Plan. Sci. Lett. 24, 305-310. [2] Huang, W.L. et al. (1980) Am. Min. 65, 285-301. [3

  20. Surface modification of TiAlSiCN coatings to improve oxidation protection

    NASA Astrophysics Data System (ADS)

    Kuptsov, K. A.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Shtansky, D. V.

    2015-08-01

    Coatings with high thermal stability and oxidation resistance are highly anticipated for various high-temperature applications. In this work we compare three different approaches to increase the oxidation resistance of nanocomposite TiAlSiCN coatings with exceptionally high thermal stability: (i) deposition of a thin Al top-layer, (ii) Al ion implantation into their topmost surface, and (iii) deposition of a thin AlOx top-layer. The coatings were annealed in air at 1000, 1100, and 1200 °C for 1 h and their oxidation was studied using scanning electron microscopy and glow discharge optical emission spectroscopy. The obtained results demonstrate that the deposition of a thin top-layer of amorphous AlOx increases the oxidation resistance of the TiAlSiCN coatings from 1000 to 1100 °C. This decreases the gap between the high thermal stability (1300 °C) and oxidation resistance of the TiAlSiCN coatings, which is particularly important for high-speed and dry cutting applications. In contrast, the deposition of either a thin Al top-layer or Al ion implantation resulted in a negative effect. The factors affecting the rapid oxidation of such coatings at 1000 and 1100 °C are discussed.

  1. About molybdenum behaviour during U(Mo)/Al(Si) interaction processes

    NASA Astrophysics Data System (ADS)

    Iltis, X.; Allenou, J.; Verhaeghe, B.; Palancher, H.; Tougait, O.; Bonnin, A.; Tucoulou, R.

    2013-02-01

    U(Mo)/Al(Si) diffusion couples are studied to provide a better understanding of the interaction processes between the U(Mo) fuel and the Al(Si) matrix and, more specifically, to determine the molybdenum behaviour in the interaction product, close to the U(Mo) alloy. Micro-computed tomography and micro-X-ray diffraction measurements in transmission mode, coupled with scanning transmission electron microscopy and energy dispersive X-ray spectroscopy analysis show that molybdenum is present in the interaction layer, close to the U(Mo) interface, in an U4Mo(MoxSi1-x)Si2 ternary intermediate phase, mixed with the U3Si5 phase. The formation of this Mo-containing phase is accompanied by a Mo depletion process, in the underlying U(Mo) alloy, this depletion leading to a γ-U(Mo) phase local destabilisation. A strong correlation between the Si and the Mo behaviours, in the U(Mo)/Al(Si) system, is thus evidenced.

  2. The 25Al(p,g)26Si Reaction Rate in Novae

    NASA Astrophysics Data System (ADS)

    Bardayan, Dan; Blackmon, J. C.; Hix, W. R.; Liang, J. F.; Smith, M. S.; Howard, J. A.; Kozub, R. L.; Brune, C. R.; Chae, K. Y.; Lingerfelt, E. J.; Scott, J. P.; Johnson, M. S.; Jones, K. L.; Pain, S. D.; Thomas, J. S.; Livesay, R. J.; Wisser, D. W.

    The production of 26Al in novae is uncertain, in part, because of the uncertain rate of the 25 Al(p,γ)26Si reaction at novae temperatures. This reaction is thought to be dominated by a long- sought 3+ level in 26Si, and the calculated reaction rate varies by orders of magnitude depending on the energy of this resonance. We present evidence concerning the spin of a level at 5.914 MeV in 26Si from the 28Si(p,t)26Si reaction studied at the Holifield Radioactive Beam Facility at ORNL. We find that the angular distribution for this level implies either a 2+ or 3+ assignment, with only a 3+ being consistent with the mirror nucleus, 26Mg. Additionally, we have used the updated 25Al(p,γ)26Si reaction rate in a nova nucleosynthesis calculation and have addressed the effects of the remaining uncertainties in the rate on 26Al production.

  3. Kinetic Analyses of the Growth and Dissolution Phenomena of Primary Si and α-Al in Partially Molten Al-Si (-Cu-Mg) Alloy Particles Using In Situ Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Eswara Moorthy, Santhana K.; Howe, James M.

    2011-06-01

    The growth and dissolution behavior of primary Si and α-Al in partially molten hypereutectic Al-Si-based alloy particles was investigated using in situ TEM to reveal the dynamic and instantaneous processes occurring during these phenomena. Direct evidence for the preferential growth of Si {113} facets compared with {111} facets resulting in prominent {111} facets bounding the Si crystals was obtained. The nucleation of primary Si was found to occur heterogeneously on the encapsulating alumina shell, whereas the α-Al phase nucleated homogeneously from the liquid Al-Si phase. The morphology of primary Si during growth was found to be highly faceted during growth but smoothly curved during dissolution, revealing fundamental mechanistic differences during these processes. We provide a ledge-based interpretation to explain the difference in growth and dissolution behavior. The α-Al phase displayed smoothly curved growth and dissolution morphologies, which are characteristic of an isotropic interfacial energy and a continuous growth mechanism.

  4. Observations of the minor species Al, Fe and Ca+ in Mercury's exosphere

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Bida, T. A.

    2015-12-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of 4-5-σ resolved emission lines of these metals made with Keck-1/HIRES. AlI emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 2.4 and 3.0e+07 Al atoms cm-2 at altitudes of 1300 and 1850 km (1.1 and 1.5 RM), respectively. FeI emission has been observed once, yielding a tangent column of 6.2e+08 cm-2 at an altitude of 950 km (1.4 RM) in 2009. We also present observations of 3.5-σ CaII emission features near Mercury's equatorial anti-solar limb in 2011, from which a stringent column abundance upper limit of 4.0e+06 cm-2 is derived for the Ca ion. A simple model for zenith column abundances of the neutral species yields 2.0e+07 Al cm-2, and 8.2e+08 Fe cm-2. The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 4800-8200 K while that of Fe is 5000-13000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules. A large fraction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  5. Observations of the minor species Al, Fe and Ca+ in Mercury’s exosphere

    NASA Astrophysics Data System (ADS)

    Killen, Rosemary M.; Bida, Thomas A.

    2015-11-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of 4-5-σ resolved emission lines of these metals with Keck-1/HIRES. AlI emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 2.4 and 3 x 107 Al atoms cm-2 at altitudes of 1300 and 1850 km (1.1 and 1.5 RM), respectively. FeI emission has been observed once, yielding a tangent column of 6.2 x 108 cm-2 at an altitude of 950 km (1.4 RM) in 2009. We also present observations of 3.5-σ Ca+ emission features near Mercury’s equatorial anti-solar limb in 2011, from which a stringent tangent column abundance of 4.0 x 106 cm-2 is derived for the Ca ion.A simple model for zenith column abundances of the neutral species yields 2.0 x 107 Al cm-2, and 8.2 x 108 Fe cm-2. The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 4800-8200 K while that of Fe is 5000-13000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules. A large fraction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  6. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  7. Dielectric and electrical studies of Pr{sup 3+} doped nano CaSiO{sub 3} perovskite ceramics

    SciTech Connect

    Kulkarni, Sandhya; Nagabhushana, B.M.; Parvatikar, Narsimha; Koppalkar, Anilkumar; Shivakumara, C.; Damle, R.

    2014-02-01

    Highlights: • CaSiO{sub 3}:Pr{sup 3+} was prepared by facile low temperature solution combustion method. • The crystalline phase of the product is obtained by adopting sintering method. • Samples prepared at 500 °C and calcined at 900 °C for 3 h showed β-phase. • The Pr{sup 3+} doped CaSiO{sub 3} shows “unusual results”. • The electrical microstructure has been accepted to be of internal barrier layer capacitor. - Abstract: CaSiO{sub 3} nano-ceramic powder doped with Pr{sup 3+} has been prepared by solution combustion method. The powder Ca{sub 0.95}Pr{sub 0.05}SiO{sub 3} is investigated for its dielectric and electrical properties at room temperature to study the effect of doping. The sample is characterized by X-ray diffraction and infrared spectroscopy. The size of either of volume elements of CaSiO{sub 3}:Pr{sup 3+} estimated from transmission electron microscopy is about 180–200 nm. The sample shows colossal dielectric response at room temperature. This colossal dielectric behaviour follows Debye-type relaxation and can be explained by Maxwell–Wagner (MW) polarization. However, analysis of impedance and electric modulus data using Cole–Cole plot shows that it deviates from ideal Debye behaviour resulting from the distribution of relaxation times. The distribution in the relaxation times may be attributed to existence of electrically heterogeneous grains, insulating grain boundary, and electrode contact regions. Doping, thus, results in substantial modifications in the dielectric and electrical properties of the nano-ceramic CaSiO{sub 3}.

  8. Sr isotopic fractionation in Ca-Al inclusions from the Allende meteorite

    USGS Publications Warehouse

    Patchett, P.J.

    1980-01-01

    True relative Sr isotopic compositions, determined by double spiking on Ca-Al inclusions from the Allende meteorite show up to 1.5??? per mass unit mass fractionation relative to the Earth and bulk chondrites. All abnormal inclusions are light-isotope enriched. A lack of isotopically heavy Sr in inclusions would place constraints on the time, place and mechanism of origin of these objects. ?? 1980 Nature Publishing Group.

  9. Accurate structural study of langasite-family Ca3TaGa3Si2O14 crystal

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.

    2016-03-01

    An accurate X-ray diffraction study of Ca3TaGa3Si2O14 single crystal has been performed using two datasets obtained on a diffractometer equipped with a CCD area detector ( a = 8.1056(2) Å, c = 4.9800(1) Å, sp. gr. P321, Z = 1, R/ wR = 0.486/0.488%). A model structure is determined which is characterized by a high degree of reproducibility of structural parameters. Each site in Ca3TaGa3Si2O14 is occupied by atoms of only one type. Nevertheless, its structural feature is asymmetric disordering of sites of Ca, Ta, Ga, and two out of three oxygen atoms occupying special and general sites. A transition of some part of Ca atoms (~3%) from 3 e sites on the twofold symmetry axis to general 6 g sites is revealed.

  10. Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Song; He, Guo-Qiu; Liu, Bing; Zhu, Zheng-Yu; Zhang, Wei-Hua

    2011-08-01

    With the increasing use of Al-Si-Mg alloys in the automotive industry, the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability. The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research. As low cycle fatigue life and material strengthening behavior are closely related, the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed. Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties. The fatigue life exhibits a stable behavior under multiaxial proportional loadings. The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles. Simultaneously, the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings. The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material, which is caused by multiaxial proportional loadings.

  11. TOPICAL REVIEW: Corrosion resistance of Si-Al-bearing ultrafine-grained weathering steel

    NASA Astrophysics Data System (ADS)

    Nishimura, Toshiyasu

    2008-01-01

    In the Ultra-steel project at the National Institute for Materials Science (NIMS), which run from 1996 to 2005, high-Si-Al-content ultrafine-grained (UFG) weathering steel was developed by grain refinement and weathering guidance. It was found that this steel has excellent strength, toughness and corrosion resistance. Samples were prepared by multi pass warm rolling at temperatures between 773 and 873 K. The grain size of steel rolled at 873 K was about 1 μ m, and the tensile strength (TS) and elongation (EL) had excellent values of 800 MPa and 20%, respectively. In general, steels with high Si and Al contents exhibit inferior toughness to carbon steel (SM); however, the toughness of the developed sample was markedly improved by grain refinement. Cyclic corrosion tests in the presence of chloride ions confirmed that the developed steel exhibited excellent corrosion resistance, superior to that of SM. Electron probe microanalysis (EPMA) and transmission electron microscopy (TEM) analyses showed that Si and Al mainly exist in the inner rust layer. Si and Al were identified as existing in the Si2 + and Al3 + states in the nanoscale complex oxides constituting the inner rust layer. Electrochemical impedance spectroscopy(EIS) measurement showed that the corrosion reaction resistance (Rt) of the developed steel was much greater than that of SM. In the developed steel, the nanoscale complex oxides were formed in the inner rust layer, which increased Rt, and resulted in the excellent corrosion resistance.

  12. Al-SiC powder preparation for electronic packaging aluminum composites by plasma spray processing

    NASA Astrophysics Data System (ADS)

    Gui, Manchang; Kang, Suk Bong; Euh, Kwangjun

    2004-06-01

    Powders of pure aluminum (Al) with 55 and 75 vol.% SiC particles were ball milled in a conventional rotating ball mill with stainless steel and ZrO2 balls for 1-10 h. The morphology and microstructure of the milled powders have been observed and analyzed by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX). The milled powders were plasma sprayed onto a graphite substrate to obtain Al matrix composites with high SiC volume fraction. SiC particles in the milled powders existed in two forms; i.e., the combination of Al into composite powder and individual. Plastic Al particles were broken during ball milling, and fine Al particles can be coated onto the surface of SiC particles. Iron contamination in the milled powders occurred when stainless steel balls were used. The iron level can be effectively controlled by using ZrO2 ball media. The milling efficiency by ZrO2 balls is inferior to that by stainless steel balls. Longer milling time was required with ZrO2 balls to achieve the same effect as obtained with stainless steel balls. SiC particles in the sprayed composites from the milled powders exhibited a reasonably uniform distribution and high volume fraction.

  13. Electronic structure and magnetism on FeSiAl alloy: A DFT study

    NASA Astrophysics Data System (ADS)

    Cardoso Schwindt, V.; Sandoval, M.; Ardenghi, J. S.; Bechthold, P.; González, E. A.; Jasen, P. V.

    2015-09-01

    Density functional theory (DFT) calculation has been performed to study the electronic structure and chemical bonding in FeSiAl alloy. These calculations are useful to understand the magnetic properties of this alloy. Our results show that the mean magnetic moment of Fe atoms decreases due to the crystal structure and the effect of Si and Al. Depending on the environment, the magnetic moment of one Fe site (Fe1) increases to about 14.3% while of the other site (Fe2) decreases to about 25.9% (compared with pure bcc Fe). All metal-metal overlap interactions are bonding and slightly weaker than those found in the bcc Fe structure. The electronic structure (DOS) shows an important hybridization among Fe, Si and Al atoms, thus making asymmetric the PDOS with a very slight polarization of Al and Si atoms. Our study explains the importance of crystal structure in determining the magnetic properties of the alloys. FeSiAl is a good candidate for electromagnetic interference shielding combining low price and good mechanical and magnetic properties.

  14. (Ti,Al,Si,C)N nanocomposite coatings synthesized by plasma-enhanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Yanfeng; Zhengxian, Li; Jihong, Du; Yunfeng, Hua; Baoyun, Wang

    2011-10-01

    Materials' surface service property could be enhanced by transition metal nitride hard coatings due to their high hardness, wear and high temperature oxidation resistance, but the higher friction coefficient (0.4-0.9) of which aroused terrible abrasion. In this work, quinternary (Ti,Al,Si,C)N hard coating 3-4 μm was synthesized at 300 °C using plasma enhanced magnetron sputtering system. It was found that the coating's columnar crystals structure was restrained obviously with the increase of C content and a non-columnar crystals growth mode was indicated at the C content of 33.5 at.%. Both the XRD and TEM showed that the (Ti,Al,Si,C)N hard coatings had unique nanocomposite structures composed of nanocrystalline and amorphous nc-(Ti,Al)(C,N)/nc-AlN/a-Si 3N 4/a-Si/a-C. However, the coatings were still super hard with the highest hardness of 41 GPa in spite of the carbon incorporation. That a-C could facilitate the graphitization process during the friction process which could improve the coating's tribological performance. Therefore, that nanocomposite (Ti,Al,Si,C)N coatings with higher hardness (>36 GPa) and a lower friction coefficient (<0.2) could be synthesized and enhance the tribological performance and surface properties profoundly.

  15. Precipitation during infiltration of A201 aluminum alloy into Al-Fe-V-Si preform

    SciTech Connect

    Yang, C.C.; Chen, Y.C.; Chang, E.

    1996-04-01

    The newly developed Al-Fe-V-Si aluminum alloy, produced by melt spinning into ribbons, comminution of ribbon to particles, and then consolidation of particles by extrusion and forging, is being considered for high temperature applications due to the material`s characteristics of high elevated temperature strength, low density, good toughness and thermal stability. In order to extend the near-net shaping capability of the material, the authors have proposed a new process that Al-Fe-V-Si aluminum alloy particles can be consolidated by casting, in which the liquid aluminum alloy was infiltrated around the Al-Fe-V-Si particles to form a FVS1212/A201 composite material. Preliminary study of the Al-Fe-V-Si particle reinforced A201 aluminum alloy composite demonstrated that the compression strength at 300 C can be twice as high as A201 aluminum alloy. This work constitutes a continuation of the previous efforts to understand the microstructural evolution sequences, particularly the precipitation events during infiltration of the liquid aluminum into Al-Fe-V-Si preform.

  16. On the existence of a high-temperature polymorph of Na2Ca6Si4O15—implications for the phase equilibria in the system Na2O-CaO-SiO2

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Maier, Matthias

    2016-06-01

    Singe crystals of a new high-temperature polymorph of Na2Ca6Si4O15 have been obtained from solid state reactions performed at 1300 °C. The basic crystallographic data of this so-called β-phase at ambient conditions are as follows: space group P1c1, a = 9.0112(5) Å, b = 7.3171(5) Å, c = 10.9723(6) Å, β = 107.720(14)°, V = 689.14(7) Å3, Z = 2. The crystals showed twinning by reticular merohedry (mimicking an orthorhombic C-centred unit cell) which was accounted for during data processing and structure solution. Structure determination was accomplished by direct methods. Least-squares refinements resulted in a residual of R(|F|) = 0.043 for 5811 observed reflections with I > 2σ(I). From a structural point of view β-Na2Ca6Si4O15 can be attributed to the group of mixed-anion silicates containing [Si2O7]-dimers as well as isolated [SiO4]-tetrahedra in the ratio 1:2, i.e. more precisely the formula can be written as Na2Ca6[SiO4]2[Si2O7]. The tetrahedral groups are arranged in layers parallel to (100). Sodium and calcium cations are located between the silicate anions for charge compensation and are coordinated by six to eight nearest oxygen ligands. Alternatively, the structure can be described as a mixed tetrahedral-octahedral framework based on kröhnkite-type [Ca(SiO4)2O2]-chains in which the CaO6-octahedra are corner-linked to bridging SiO4-tetrahedra. The infinite chains are running parallel to [001] and are concentrated in layers parallel to (010). Adjacent layers are shifted relative to each other by an amount of +δ or -δ along a*. Consequently, a …ABABAB… stacking sequence is created. A detailed comparison with related structures such as α-Na2Ca6Si4O15 and other A2B6Si4O15 representatives including topological as well as group theoretical aspects is presented. There are strong indications that monoclinic Na2Ca3Si2O8 mentioned in earlier studies is actually misinterpreted β-Na2Ca6Si4O15. In addition to the detailed crystallographic analysis of the

  17. Microstructure and Wear Behavior of Solidification Sonoprocessed B390 Hypereutectic Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Khalifa, Waleed; El-Hadad, Shimaa; Tsunekawa, Yoshiki

    2013-12-01

    The hypereutectic Al-Si alloys constitute an important family of alloys because of their excellent wear resistance and low thermal expansion. However, the optimal microstructure and hence the optimal service performance of these alloys cannot be achieved by the conventional melt treatments used in industry today, because of the chemical incompatibility between the primary-Si refiners and the eutectic-Si modifiers used in microstructure control. The current study aimed at using ultrasonic vibrations to improve the microstructure and the properties of these alloys. The results of the current study showed that for the B390 Al-Si alloy (i) the ultrasonic treatment has potential refining effect on the primary Si and Fe intermetallic phases, (ii) the primary Si particles become finer as the pouring temperature decreases from 1033 K (760 °C) to 938 K (665 °C), (iii) pouring and ultrasonic treatment at temperatures below the start of primary Si precipitation result in the coexistence of large and fine Si particles in microstructure, (iv) phosphorous additions of 50 ppm did not show any substantial effect in the ultrasonically treated ingots, (v) ultrasonic-treated samples have uniform hardness over the surface while the untreated samples show large scattering (high standard deviation) in hardness levels and (vi) ultrasonic-treated samples showed better wear resistance in the absence of phosphorous.

  18. Spheroidization of Eutectic Silicon in Direct-Electrolytic Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Ruyao; Lu, Weihua

    2013-06-01

    The spheroidization process of direct-electrolytic Al-Si alloy (DEASA) containing Si content in the range of 7 to 12 pct heated at temperatures of 778 K to 803 K (505 °C to 530 °C) was studied. The width, length, and aspect ratio of Si particles were measured to quantitatively analyze the microstructural variety of Si phase during the heating process in terms of chemical composition and remelting. Compared to existing Al-Si alloy, the lower soaking temperature of 778 K to 783 K (505 °C to 510 °C) is required to obtain the full spheroidization of the Si phase of DEASA. When remelting DEASA, a satisfactory granulation rate can be achieved at a higher soak temperature of 788 K to 803 K (515 °C to 530 °C). The origin of the high spheroidizaton rate is attributed to the microstructural characteristic relative to the electrolysis process. It would be expected that high crystallographic defects of Si grain result in the complete spheroidization of Si phase at lower temperatures for a short period.

  19. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys

    NASA Astrophysics Data System (ADS)

    Bahrami, A.; Pech-Canul, M. I.; Gutiérrez, C. A.; Soltani, N.

    2015-12-01

    A study of the wetting behavior of three substrate types (SiC, SiO2-derived RHA and SiC/SiO2-derived RHA) by two Al-Si-Mg alloys using the sessile drop method has been conducted, using amorphous and crystalline SiO2 in the experiment. Mostly, there is a transition from non-wetting to wetting contact angles, being the lowest θ values achieved with the alloy of high Mg content in contact with amorphous SiO2. The observed wetting behavior is attributed to the deposited Mg on the substrates. A strong diffusion of Si from the SiC/Amorphous RHA substrate into the metal drop explains the free Si segregated at the drop/substrate interface and drop surface. Although incorporation of both SiO2-derived RHA structures into the SiC powder compact substrates increases the contact angles in comparison with the SiC substrate alone, the still observed acute contact angles in RHA/SiC substrates make them promising for fabrication of composites with high volume fraction of reinforcement by the pressureless infiltration technique. The observed wetting characteristics, with decrease in surface tension and contact angles is explained by surface related phenomena. Based on contact angle changes, drop dimensions and surface tension values, as well as on the interfacial elemental mapping, and XRD analysis of substrates, some wetting and reaction pathways are proposed and discussed.

  20. Crystallization of Ca-Al-Rich Inclusions: Experimental Studies on the Effects of Repeated Heating Events

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Lofgren, Gary E.; Le, Loan

    2000-01-01

    The observed textures and chemistry of Ca-Al-rich inclusions (CAIs) are presumed to be the culmination of a series of repeated heating and cooling events in the early history of the solar nebula. We have examined the effects of these heating/cooling cycles experimentally on a bulk composition representing an average Type B Ca-Al-rich inclusion composition. We have tested the effect of the nature of the starting material. Although the most recent and/or highest temperature event prior to incorporation into the parent body dominates the texture and chemistry of the CAI, prior events also affect the phase compositions and textures. We have determined that heating precursor grains to about 1275 C prior to the final melting event increases the likelihood of anorthite crystallization in subsequent higher temperature events and a prior high temperature even that produced dendritic melilite results in melilite that shows evidence of rapid crystallization in subsequent lower temperature events. Prior low temperature pre-crystallization events produce final ran products with pyroxene compositions similar to Type B Ca-Al-rich inclusions, and the glass (residual liquid) composition is more anorthitic than any other experiments to date. The addition of Pt powder to the starting material appears to enhance the ability of anorthite to nucleate from this composition.