Sample records for al-si alloy reinforced

  1. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    NASA Astrophysics Data System (ADS)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  2. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    NASA Astrophysics Data System (ADS)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-11-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  3. Comparison of dry sliding wear and friction behavior of Al6061/SiC PMMC with Al6061 alloy

    NASA Astrophysics Data System (ADS)

    Murthy, A. G. Shankara; Mehta, N. K.; Kumar, Pradeep

    2018-04-01

    Dry sliding wear and friction behavior tests were conducted on Al6061 alloy and Al6061/SiC particle reinforced metal matrix composites (PMMCs) reinforced with fine particles of 5, 10 and 15 µm size having 5,7.5 and 10% weight content fabricated by stir-casting route. Cylindrical sample pins produced as per ASTM standard were tested for various parameters like SiC size, weight content, load and sliding distance affecting the wear rate or resistance and friction. Results indicated that Al6061/SiCp composites exhibited good wear resistance compared to Al6061 alloy for the tested parameters.

  4. Development and Characterization of Carbon Nanotubes (CNTs) and Silicon Carbide (SiC) Reinforced Al-based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gujba, Kachalla Abdullahi

    Composites are engineered materials developed from constituent materials; matrix and reinforcements, to attain synergistic behavior at the micro and macroscopic level which are different from the individual materials. The high specific strength, low weight, excellent chemical resistance and fatigue endurance makes these composites superior than other materials despite anisotropic behaviors. Metal matrix composites (MMCs) have excellent physical and mechanical properties and alumium (Al) alloy composites have gained considerable interest and are used in multiple industries including: aerospace, structural and automotive. The aim of this research work is to develop an advanced Al-based nanocomposites reinforced with Carbon nanotubes (CNTs) and silicon carbide particulates (SiCp) nanophases using mechanical alloying and advanced consolidation procedure (Non-conventional) i.e. Spark Plasma Sintering (SPS) using two types of aluminum alloys (Al-7Si-0.3mg and Al-12Si-0.3Mg). Different concentrations of SiCp and CNTs were added and ball milled for different milling periods under controlled atmosphere to study the effect of milling time and the distribution of the second phases. Characterization techniques were used to investigate the morphology of the as received monolithic and milled powder using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy (EDS), X-Ray Mapping, X-Ray Diffraction (XRD) and Particle Size Analyses (PSA). The results revealed that the addition of high concentrations of SiCp and CNTs in both alloys aided in refining the structure of the resulting powder further as the reinforcement particles acted like a grinding agent. Good distribution of reinforcing particles was observed from SEM and no compositional fluctuations were observed from the EDS. Some degree of agglomerations was observed despite the ethyl alcohol sonication effect of the CNTs before ball milling. From the XRD; continuous reduction in crystallite size and

  5. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  6. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    PubMed

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  7. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    PubMed Central

    Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295

  8. Effect of alumina on grain refinement of Al-Si hypereutectic alloys

    NASA Astrophysics Data System (ADS)

    Majhi, J.; Sahoo, S. K.; Patnaik, S. C.; Sarangi, B.; Sachan, N. K.

    2018-03-01

    The size, volume fraction and distribution of primary as well as eutectic silicon affect the mechanical properties of the Al-Si hypereutectic alloys. It is very difficult for the simultaneous refinement and modification of primary and secondary Si particles in hypereutectic Al-Si alloys through traditional processes. This paper explores the role of γ-Al2O3 nanoparticles on Si particles in the course of solidification in hypereutectic Al-Si alloys at particular pouring temperature. The present study involves incorporation of varying contents dispersed γ-Al2O3 nanoparticles into a molten base metal during stir casting and followed by solidification. It has been reported that the synthesized composites having good interfacial bonding (wetting) between the dispersed phase and the liquid matrix was achieved in order to provide improved mechanical properties of the composite. The cast product of hypereutectic Al-16Si alloy with the reinforcement of nanoparticles, illustrated a significant improvement in both wear behaviour and hardness. The dry sliding wear test has been performed on a group of specimens with varying parameters (different loads and sliding velocities) in a pin on disc wear testing machine. Moreover, the wear rate and specific wear rate also affected in different load and different sliding velocities. However in XRD analysis of the samples, the enhancement of wear resistance as well as hardness was due to the formation of brittle phases like SiO2, Al2O3 and Al-rich intermetallic compounds. The hardness value of the materials increases nearly 6% in addition to increase in the density of only 0.8%. As per literature, the large plate eutectic Si particles were modified in to the fine core particles and it acquires enough potential for various applications.

  9. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)

    NASA Astrophysics Data System (ADS)

    Lorusso, Massimo; Aversa, Alberta; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa Paola; Ugues, Daniele; Pavese, Matteo

    2016-08-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

  10. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-28

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  11. Effect of AlB2 on the P-threshold in Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Wu, Yuying; Liu, Xiangfa

    2018-06-01

    The nucleation of primary Si in Al-Si alloys has been investigated in this work. It was found that there was a threshold concentration of P, below which AlP can not heterogeneous nucleate primary Si in Al-12 wt%Si alloy. AlB2 can not nucleate primary Si directly, but the presence of AlB2 may assist the nucleation of AlP leading to the nucleation of primary Si particles. In addition, with addition of AlB2, the nucleation efficiency of AlP can be improved in Al-18 wt%Si alloy. The orientation relationship between AlB2 and AlP has been calculated, and the adsorption model for AlB2 and AlP was proposed in this work.

  12. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  13. Effects of particle reinforcement and ECAP on the precipitation kinetics of an Al-Cu alloy

    NASA Astrophysics Data System (ADS)

    Härtel, M.; Wagner, S.; Frint, P.; F-X Wagner, M.

    2014-08-01

    The precipitation kinetics of Al-Cu alloys have recently been revisited in various studies, considering either the effect of severe plastic deformation (e.g., by equal-channel angular pressing - ECAP), or the effect of particle reinforcements. However, it is not clear how these effects interact when ECAP is performed on particle-reinforced alloys. In this study, we analyze how a combination of particle reinforcement and ECAP affects precipitation kinetics. After solution annealing, an AA2017 alloy (initial state: base material without particle reinforcement); AA2017 + 10 vol.-% Al2O3; and AA2017 + 10 vol.-% SiC were deformed in one pass in a 120° ECAP tool at a temperature of 140°C. Systematic differential scanning calorimetry (DSC) measurements of each condition were carried out. TEM specimens were prepared out of samples from additional DSC measurements, where the samples were immediately quenched in liquid nitrogen after reaching carefully selected temperatures. TEM analysis was performed to characterize the morphology of the different types of precipitates, and to directly relate microstructural information to the endo- and exothermic peaks in our DSC data. Our results show that both ECAP and particle reinforcement are associated with a shift of exothermic precipitation peaks towards lower temperatures. This effect is even more pronounced when ECAP and particle reinforcement are combined. The DSC data agrees well with our TEM observations of nucleation and morphology of different precipitates, indicating that DSC measurements are an appropriate tool for the analysis of how severe plastic deformation and particle reinforcement affect precipitation kinetics in Al-Cu alloys.

  14. Effect of Ga Addition on Morphology and Recovery of Primary Si During Al-Si Alloy Solidification Refining

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Bai, Xiaolong; Li, Yanlei; Ban, Boyuan; Chen, Jian

    2015-12-01

    The effect of Ga addition on alloy macrostructure, morphology and recovery rate of primary Si during the Al-Si-Ga alloy solvent refining process of silicon was studied in this work. The addition of Ga to Al-Si alloy could change the morphology of the primary Si. The average plate thickness of the primary Si increases with increase of Ga content. With the increase of Ga content, the average plate length of the primary Si crystals becomes larger when the Ga content is less than 5% in the Al-30%Si-xGa alloy, but becomes smaller when the Ga content exceeds 5%. Al-Si-Ga alloys consist of three types, primary Si, GaxAl1-x, (α-Al+Si+β-Ga) eutectic. (111) is the preferred growth surface of the plate-like primary Si. The recovery rate of the primary Si increases with the increase of Ga content. When the Ga content increased to 20% in Al-30%Si-xGa alloy, the relative recovery rate of the primary Si increased to 50.41% than that in Al-30%Si alloy.

  15. Fabrication of SiC-Particles-Shielded Al Spheres upon Recycling Al/SiC Composites

    NASA Astrophysics Data System (ADS)

    Madarasz, D.; Budai, I.; Kaptay, G.

    2011-06-01

    Wettability of liquid A359 alloy on SiC particles under molten salt NaCl-KCl-NaF is found at 180 deg, meaning that SiC particles prefer the molten salt phase against the Al phase or the Al/molten salt interface. Thus, this molten salt can be used for recycling, i.e., to separate the phases in the SiC reinforced Al matrix composites. If the separation process is interrupted, Al droplets (submillimeter solidified powder) can be produced, stabilized/surrounded by a monolayer of shielding SiC particles.

  16. Study on Microstructure and Mechanical Properties of Hypereutectic Al-18Si Alloy Modified with Al-3B.

    PubMed

    Gong, Chunjie; Tu, Hao; Wu, Changjun; Wang, Jianhua; Su, Xuping

    2018-03-20

    An hypereutectic Al-18Si alloy was modified via an Al-3B master alloy. The effect of the added Al-3B and the modification temperature on the microstructure, tensile fracture morphologies, and mechanical properties of the alloy were investigated using an optical microscope, Image-Pro Plus 6.0, a scanning electron microscope, and a universal testing machine. The results show that the size of the primary Si and its fraction decreased at first, and then increased as an additional amount of Al-3B was added. When the added Al-3B reached 0.2 wt %, the fraction of the primary Si in the Al-18Si alloy decreased with an increase in temperature. Compared with the unmodified Al-18Si alloy, the tensile strength and elongation of the alloy modified at 850 °C with 0.2 wt % Al-3B increased by 25% and 81%, respectively. The tensile fracture of the modified Al-18Si alloy exhibited partial ductile fracture characteristics, but there were more areas with ductile characteristics compared with that of the unmodified Al-18Si alloy.

  17. Influence of Mg on Grain Refinement of Near Eutectic Al-Si Alloys

    NASA Astrophysics Data System (ADS)

    Ravi, K. R.; Manivannan, S.; Phanikumar, G.; Murty, B. S.; Sundarraj, Suresh

    2011-07-01

    Although the grain-refinement practice is well established for wrought Al alloys, in the case of foundry alloys such as near eutectic Al-Si alloys, the underlying mechanisms and the use of grain refiners need better understanding. Conventional grain refiners such as Al-5Ti-1B are not effective in grain refining the Al-Si alloys due to the poisoning effect of Si. In this work, we report the results of a newly developed grain refiner, which can effectively grain refine as well as modify eutectic and primary Si in near eutectic Al-Si alloys. Among the material choices, the grain refining response with Al-1Ti-3B master alloy is found to be superior compared to the conventional Al-5Ti-1B master alloy. It was also found that magnesium additions of 0.2 wt pct along with the Al-1Ti-3B master alloy further enhance the near eutectic Al-Si alloy's grain refining efficiency, thus leading to improved bulk mechanical properties. We have found that magnesium essentially scavenges the oxygen present on the surface of nucleant particles, improves wettability, and reduces the agglomeration tendency of boride particles, thereby enhancing grain refining efficiency. It allows the nucleant particles to act as potent and active nucleation sites even at levels as low as 0.2 pct in the Al-1Ti-3B master alloy.

  18. Mechanical properties of Al-Cu alloy-SiC composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anggara, B. S., E-mail: anggorobs1960@yahoo.com; Handoko, E.; Soegijono, B.

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to getmore » better quality of back to back hardness Vickers of Al-Cu alloys.« less

  19. Mechanical properties of Al-Cu alloy-SiC composites

    NASA Astrophysics Data System (ADS)

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-01

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  20. Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining

    NASA Astrophysics Data System (ADS)

    Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan

    2017-05-01

    An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.

  1. Neural network potential for Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ryo; Giofré, Daniele; Junge, Till; Ceriotti, Michele; Curtin, William A.

    2017-10-01

    The 6000 series Al alloys, which include a few percent of Mg and Si, are important in automotive and aviation industries because of their low weight, as compared to steels, and the fact their strength can be greatly improved through engineered precipitation. To enable atomistic-level simulations of both the processing and performance of this important alloy system, a neural network (NN) potential for the ternary Al-Mg-Si has been created. Training of the NN uses an extensive database of properties computed using first-principles density functional theory, including complex precipitate phases in this alloy. The NN potential accurately reproduces most of the pure Al properties relevant to the mechanical behavior as well as heat of solution, solute-solute, and solute-vacancy interaction energies, and formation energies of small solute clusters and precipitates that are required for modeling the early stage of precipitation and mechanical strengthening. This success not only enables future detailed studies of Al-Mg-Si but also highlights the ability of NN methods to generate useful potentials in complex alloy systems.

  2. Viscosity of Industrially Important Zn-Al Alloys Part II: Alloys with Higher Contents of Al and Si

    NASA Astrophysics Data System (ADS)

    Nunes, V. M. B.; Queirós, C. S. G. P.; Lourenço, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A.

    2018-05-01

    The viscosity of Zn-Al alloys melts, with industrial interest, was measured for temperatures between 693 K and 915 K, with an oscillating cup viscometer, and estimated expanded uncertainties between 3 and 5 %, depending on the alloy. The influence of minor components, such as Si, Mg and Ce + La, on the viscosity of the alloys is discussed. An increase in the amount of Mg triggers complex melt/solidification processes while the addition of Ce and La renders alloys viscosity almost temperature independent. Furthermore, increases in Al and Si contents decrease melts viscosity and lead to an Arrhenius type behavior. This paper complements a previous study describing the viscosity of Zn-Al alloys with quasi-eutectic compositions.

  3. A preliminary research on the mechanical properties of TiAl + Ti{sub 5}Si{sub 3} dual phase alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Qiu, G.; Wu, J.

    A sufficient Si addition to TiAl matrix has led to TiAl + Ti{sub 5}Si{sub 3} dual phase alloys, showing coupled-growth microstructure. Compression tests at R.T. as well as high temp indicated that the yield stress increased with increasing Ti{sub 5}Si{sub 3} volume fraction, and decreased at higher temperature. The reinforcement from Ti{sub 5}Si{sub 3} phase was obvious while high Si and Al contents resulted in low ductility. The fracture surfaces were quasi-cleavage. Further research should concern with the adjustment of the shape and amount of the second phase.

  4. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the

  5. Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy

    NASA Astrophysics Data System (ADS)

    Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar

    2018-03-01

    In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.

  6. Grain Refinement of Al-Si Hypoeutectic Alloys by Al3Ti1B Master Alloy and Ultrasonic Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Gui; Wang, Eric Qiang; Prasad, Arvind; Dargusch, Matthew; StJohn, David H.

    Al-Si alloys are widely used in automotive and aerospace industries due to their excellent castability, high strength to weight ratio and good corrosion resistance. However, Si poisoning severely limits the degree of grain refinement with the grain size becoming larger as the Si content increases. Generally the effect of Si poisoning is reduced by increasing the amount of master alloy added to the melt during casting. However, an alternative approach is physical grain refinement through the application of an external force (e.g. mechanical or electromagnetic stirring, intensive shearing and ultrasonic irradiation). This work compares the grain refining efficiency of three approaches to the grain refinement of a range of hypoeutectic Al-Si alloys by (i) the addition of A13Ti1B master alloy, (ii) the application of Ultrasonic Treatment (UT) and (iii) the combined addition of A13Ti1B master alloy and the application of UT.

  7. Time-Resolved Photoluminescence Studies of Si-doped AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Nam, K. B.; Li, J.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.

    2002-03-01

    Si-doped n-type Al x Ga_1-x N alloys with x between 0.3 and 0.5 were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. Time-resolved photoluminescence (PL) emission spectroscopy and variable temperature Hall-effect measurements were employed to study the optical and electrical properties of these epilayers. Our electrical data revealed that the conductivity of Si-doped Al x Ga_1-x N alloys (x > 0.4) increases with an increase of the Si doping concentration (N_Si) for a fixed x value and exhibits a sharp increase around N_Si= 1x10 ^18cm-3, suggesting the existence of a critical Si doping concentration needed to convert insulating Al x Ga_1-x N alloys (x > 0.4) to n-type conductivity. Time-resolved PL studies also showed that PL decay lifetime and activation energy decrease sharply when Si-doping concentration increases from N_Si= 0 to 1x10 ^18cm-3and then followed by gradual decreases as N_Si further increases. Our results thus suggest that Si-doping reduces the effect of carrier localization in Al x Ga_1-x N alloys and a sharp drop in carrier localization energy occurs at N_Si= 1x10 ^18cm-3, which is the critical Si-doping concentration needed to fill up the localized states in Al x Ga_1-x N alloys (x > 0.4). The implications of these results to UV optoelectronic devices are also discussed.

  8. Thermodynamic Analysis of Compatibility of Several Reinforcement Materials with Beta Phase NiAl Alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.

  9. Rapid ultrasound-induced transient-liquid-phase bonding of Al-50Si alloys with Zn interlayer in air for electrical packaging application.

    PubMed

    Wang, Qian; Chen, Xiaoguang; Zhu, Lin; Yan, Jiuchun; Lai, Zhiwei; Zhao, Pizhi; Bao, Juncheng; Lv, Guicai; You, Chen; Zhou, Xiaoyu; Zhang, Jian; Li, Yuntao

    2017-01-01

    Al-50Si alloys were joined by rapid ultrasound-induced transient-liquid-phase bonding method using Zn foil as interlayer at 390°C in air, below the melt point of interlayer. The fracture of oxide films along the edge of Si particles led to contact and inter-diffusion between aluminum substrate and Zn interlayer, and liquefied Zn-Al alloys were developed. The width of Zn-Al alloys gradually decreased with increasing the ultrasonic vibration time due to liquid squeezing out and accelerated diffusion. A stage of isothermal solidification existed, and the completion time was significantly shortened. In the liquid metal, the acoustic streaming and ultrasonic cavitations were induced. As the process developed, much more Si particles, which were particulate-reinforced phases of Al-50Si, gradually migrated to the center of soldering seam. The highest average shear strength of joints reached to 94.2MPa, and the fracture mainly occurred at the base metal. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The structure-property relationships of powder processed Fe-Al-Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Paul D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) processmore » to obtain a high fraction of metal injection molding (MIM) quality powder (D 84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO 3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.« less

  11. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    NASA Astrophysics Data System (ADS)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  12. Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji

    Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.

  13. Investigation on the solidification course of Al-Si alloys by using a numerical Newtonian thermal analysis method

    NASA Astrophysics Data System (ADS)

    Tang, Peng; Hu, Zhiliu; Zhao, Yanjun; Huang, Qingbao

    2017-12-01

    A numerical Newtonian thermal analysis (NTA) method was carried out for online monitoring the solidification course of commercial Al-Si alloys. The solidification paths of different molten Al-Si alloys were characterized by the fraction solid curves. The variation of heat capacity of Al and Si were concerned in the determination of baseline evaluation of latent heat. In this experiment, the pure Al, Al-1Si, Al-5Si, Al-9Si, Al-13Si and Al-18Si alloys were molten at 800 °C and cooled at room temperature, respectively. The cooling curves of these alloys were measured by using K-type thermocouples. The liquidus temperatures of these alloys decreased with the increase of Si %. An obvious stage occurred at about 580 °C, which was closely related to Al-Si eutectic reaction. Different phase fractions of these alloys were supported by the microstructure observation.

  14. XAFS studies on a modified Al-Si hypoeutectic alloy

    NASA Astrophysics Data System (ADS)

    Srirangam, V. S. Prakash; Chattopadhyay, S.; Shibata, T.; Kaduk, J. A.; Miller, J. T.; Segre, C. U.; Shankar, S.

    2009-11-01

    To understand the role of Sr in doped aluminium-silicon alloys, we have conducted for the first time, Sr- K edge XAFS measurements on Al-3%Si-0.04%Sr. Aluminium-Silicon alloys are widely used in automobile and aerospace applications. Modification of these alloys with addition of trace levels of Sr (200-400 ppm) results in changing the morphology of Si eutectic from "plate" like structure to "fibrous" structure. Several theories have been proposed to understand the mechanism of modification of eutectic phases with Sr addition in these alloys, but there is no conclusive evidence in support of these theories. From our XAFS analysis, we suggest Sr-Si bonds and Sr-Sr correlations may be responsible for the morphological transformation observed in the alloy.

  15. Effect of friction stir processing on tribological properties of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Aktarer, S. M.; Sekban, D. M.; Yanar, H.; Purçek, G.

    2017-02-01

    As-cast Al-12Si alloy was processed by single-pass friction stir processing (FSP), and its effect on mainly friction and wear properties of processed alloy was studied in detail. The needle-shaped eutectic silicon particles were fragmented by intense plastic deformation and dynamic recrystallization during FSP. The fragmented and homogenously distributed Si particles throughout the improve the mechanical properties and wear behavior of Al-12Si alloy. The wear mechanisms for this improvement were examined and the possible reasons were discussed.

  16. Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al-Ti Powder Compacts.

    PubMed

    Chen, Tijun; Gao, Min; Tong, Yunqi

    2018-01-15

    To prepare core-shell-structured Ti@compound particle (Ti@compound p ) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al-Ti-Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al₃Ti phase to form to different degrees. The first-formed Al-Ti-Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)₃Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)₃Ti phase was larger than that in τ1 phase, but smaller than that in Al₃Ti phase. So, the shells in the Al-Ti-Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al-Ti-Mg system and the reaction rate in the Al-Ti-Zn system. More importantly, the desirable core-shell structured Ti@compound p was only achieved in the semisolid Al-Ti-Si system.

  17. Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy

    NASA Astrophysics Data System (ADS)

    Jing, Lijun; Pan, Ye; Lu, Tao; Li, Chenlin; Pi, Jinhong; Sheng, Ningyue

    2018-05-01

    This paper reports the application and microstructure refining effect of an Al-2La-1B grain refiner in Al-10Si-0.3Mg casting alloy. Compared with the traditional Al-5Ti-1B refiner, Al-2La-1B refiner shows better performances on the grain refinement of Al-10Si-0.3Mg alloy. Transmission electron microscopy analysis suggests that the crystallite structure features of LaB6 are beneficial to the heterogeneous nucleation of α-Al grains. Regarding the mechanical performances, tensile properties of Al-10Si-0.3Mg casting alloy are prominently improved, due to the refined microstructures.

  18. Effect of high power ultrasound on mechanical properties of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Srivastava, N.; Gupta, R.; Chaudhari, G. P.

    2018-03-01

    Effect of high power ultrasonic treatment on the solidification microstructures of Al-Si alloys containing varying content of solute Si (1, 2, 3 and 5 wt %) is investigated. Large variation in microstructures is seen and refinement of primary α-Al grains is observed. It is observed that increasing the weight percentage of solute along with ultrasonic treatment resulted in finer primary phase. By increasing the solute content from 1% to 5 wt.% in Al-Si alloys, hardness increased by about 38% without and 48% with ultrasonic treatment. Tensile strength of the alloys with ultrasonic treatment is higher as compared to those without ultrasonic treated.

  19. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    PubMed

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of Carbon in Fabrication Al-SiC Nanocomposites for Tribological Application

    PubMed Central

    Hekner, Bartosz; Myalski, Jerzy; Pawlik, Tomasz; Sopicka-Lizer, Małgorzata

    2017-01-01

    Aluminium-based hybrid composites are a new class of advanced materials with the potential of satisfying the demands in engineering applications. This paper describes the effects of carbon addition on the formation and properties of AMC with SiC nanoparticles reinforcement. The composites were produced via mechanical alloying followed by hot pressing. Three forms of carbon, graphite (GR), multiwalled carbon nanotubes (CNTs), and, for the first time, glassy carbon (GC), were used for the hybrid composites manufacturing and compared with tribological properties of Al-SiC composite without carbon addition. GC and CNTs enhanced formation of Al-SiC composite particles and resulted in a homogeneous distribution of reinforcing particles. On the other hand, GR addition altered mechanochemical alloying and did not lead to a proper distribution of nanoparticulate SiC reinforcement. Hot pressing technique led to the reaction between Al and carbon as well as SiC particles and caused the formation of Al4C3 and γ-Al2O3. The subsistence of carbon particles in the composites altered the predominant wear mechanisms since the wear reduction and the stabilization of the friction coefficient were observed. GC with simultaneous γ-Al2O3 formation in the hybrid Al-SiC(n)-C composites turned out to be the most effective additive in terms of their tribological behaviour. PMID:28773039

  1. Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio

    Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.

  2. Main reinforcement effects of precipitation phase Mg2Cu3Si, Mg2Si and MgCu2 on Mg-Cu-Si alloys by ab initio investigation

    NASA Astrophysics Data System (ADS)

    Shi, Xue-Feng; Wang, Hai-Chen; Tang, Ping-Ying; Tang, Bi-Yu

    2017-09-01

    To predict and compare the main reinforcement effects of the key precipitation phases Mg2Cu3Si, Mg2Si and MgCu2 in Mg-Cu-Si alloy, the structural, mechanical and electronic properties of these phases have been studied by ab initio calculations. The lowest formation enthalpy and cohesive energy indicate that Mg2Cu3Si has the strongest alloying ability and structural stability. The mechanical modulus indicates that Mg2Cu3Si has the strongest resistance to reversible shear/volume distortion and has maximum hardness. The characterization of brittle (ductile) behavior manifests that MgCu2 has favorable ductility. Meanwhile the evaluation of elastic anisotropy indicates that Mg2Si possesses elastic isotropy. Debye temperature prediction shows that Mg2Si and Mg2Cu3Si have better thermal stability. To achieve an unbiased interpretation on the phase stability and mechanical behavior of these precipitation phases, the density of states and differential charge densities are also analyzed. The current study deepens the comprehensive understanding of main reinforcement effects of these precipitation phases on Mg-Cu-Si alloys, and also benefits to optimize the overall performances of Mg-Cu-Si alloy from the hardness, ductility and thermal stability by controlling these second precipitation phases during the heat treatment process.

  3. Combination of experimental and numerical methods for mechanical characterization of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Kruglova, A.; Roland, M.; Diebels, S.; Mücklich, F.

    2017-10-01

    In general, mechanical properties of Al-Si alloys strongly depend on the morphology and arrangement of microconstituents, such as primary aluminium dendrites, silicon particles, etc. Therefore, a detailed characterization of morphological and mechanical properties of the alloys is necessary to better understand the relations between the underlined properties and to tailor the material’s microstructure to the specific application needs. The mechanical characterization usually implies numerical simulations and mechanical tests, which allow to investigate the influence of different microstructural aspects on different scales. In this study, the uniaxial tension and compression tests have been carried out on Al-Si alloys having different microstructures. The mechanical behavior of the alloys has been interpreted with respect to the morphology of the microconstituents and has been correlated with the results of numerical simulations. The advantages and limitations of the experimental and numerical methods have been disclosed and the importance of combining both techniques for the interpretation of the mechanical behavior of Al-Si alloys has been shown. Thereby, it has been suggested that the density of Si particles and the size of Al dendrites are more important for the strengthening of the alloys than the size-shape features of the eutectic Si induced by the modification.

  4. Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite

    NASA Astrophysics Data System (ADS)

    Murugan, S. Senthil; Jegan, V.; Velmurugan, M.

    2018-04-01

    This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.

  5. Compared production behavior of borax and unborax premixed SiC reinforcement Al7Si-Mg-TiB alloys composites with semi-solid stir casting method

    NASA Astrophysics Data System (ADS)

    Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2016-04-01

    The present study was aimed to investigate the effect of borax additive on physical and mechanical properties of Al7Si-Mg-TiB with the reinforcement of silicon carbide. In this case, the different weight percentage from the reinforcement of SiC (10, 15, and 20% wt), and the borax additive (ratio 1:4) were homogenously added into the matrix by employing the semi-solid stir casting method at the temperature of 590°C. Al7Si-Mg-TiB melted in an electric resistance furnace at 800°C for 25 minutes and the holding time of 5 minutes; SiC was stirred with borax inside the chamber and heated at the temperature of 250°C for 25 minutes. Then, it melted by lowing the temperature into 590°C. The SiC-borax mixture was added into the electric resistance furnace, and automatically stirred by the stirrer at a constant speed (500 rpm for 3 minutes) in the composite A17Si-Mg-TiB. It melted when heated at 750°C for 17minutes,then, casting was performed on the prepared mould. The characterizations of Al7Si-Mg-TiB-SiC/borax were porosity, hardness, and microstructure on the Al7Si-Mg-TiB-SiC/ borax. The porosity of AMC tended to increase along with the increaseof the wt% SiC (1.4%-3.6%); however, borax additive underwent a decrease in porosity (0.14%-1.3%). Further, hardness tended to improve along with the increase of wt% SiC. The unboraxmixture had 79,6 HRB up to 94 HRB. Whereas, the borax additive mixture had 105,8 HRB up to 121 HRB.

  6. Production of al-si alloy feedstocks using the solvent hot mixing method

    NASA Astrophysics Data System (ADS)

    Ni, J. Q.; Han, K. Q.; Yu, M. H.

    2018-05-01

    Powder injection molding is a promising low-cost technique for net shape processing of metal and ceramic components. This study aimed to investigate a new method for preparing aluminium (Al) – silicon (Si) alloy feedstock using the solvent hot mixing process. For this purpose, micron-sized Al-Si (20 wt. %) alloy powder was mixed with a binder consisting of 55 wt. % carnauba wax, 45 wt. % high-density polyethylene, and 3 wt. % stearic acid in a hot xylene bath. The scanning electron microscopy technique, thermogravimetric analysis, density measurement and torque measurements were used to verify the homogeneity of the feedstock. Moreover, the feedstock was chosen to perform the molding, debinding cycle and sintering. An Al-Si (20 wt. %) alloy part was successfully produced using this new method.

  7. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  8. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  9. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  10. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    NASA Astrophysics Data System (ADS)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  11. Sr-Al-Si co-segregated regions in eutectic Si phase of Sr-modified Al-10Si alloy.

    PubMed

    Timpel, M; Wanderka, N; Schlesiger, R; Yamamoto, T; Isheim, D; Schmitz, G; Matsumura, S; Banhart, J

    2013-09-01

    The addition of 200 ppm strontium to an Al-10 wt% Si casting alloy changes the morphology of the eutectic silicon phase from coarse plate-like to fine fibrous networks. In order to clarify this modification mechanism the location of Sr within the eutectic Si phase has been investigated by a combination of high-resolution methods. Whereas three-dimensional atom probe tomography allows us to visualise the distribution of Sr on the atomic scale and to analyse its local enrichment, transmission electron microscopy yields information about the crystallographic nature of segregated regions. Segregations with two kinds of morphologies were found at the intersections of Si twin lamellae: Sr-Al-Si co-segregations of rod-like morphology and Al-rich regions of spherical morphology. Both are responsible for the formation of a high density of multiple twins and promote the anisotropic growth of the eutectic Si phase in specific crystallographic directions during solidification. The experimental findings are related to the previously postulated mechanism of "impurity induced twinning". Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Microhardness and morphologic characteristics of rapidly solidified Al-12Si-8Ni-5Nd alloy

    NASA Astrophysics Data System (ADS)

    Karaköse, Ercan; Keskin, Mustafa

    2010-06-01

    Al-Si-Ni-Nd alloys with a nominal composition of Al-12 wt.% Si-8 wt.% Ni-5 wt.% Nd alloy are prepared by a conventional casting (ingot) and melt spinning technique at different cooling rates ( ν). The effects of the rapid solidification rate on the microstructures and microhardness performances of the specimen alloys are investigated in detail. The results obtained by the XRD, SEM and DSC show that the ingot and melt spun alloys have a multiphase structure. When ν is 5 m/s, the alloy consists of four phases namely α-Al, intermetallic Al3Ni, Al11Nd3, and fcc Si. The melt-spun ribbons are completely composed of α-Al and eutectic Si phases, and primary silicon is not observed when ν increases to 20 m/s, 25 m/s, 30 m/s and 35 m/s. The XRD analysis indicated that the solubility of Si in the α-Al matrix increases greatly with the rapid solidification. The change in microhardness is discussed based on the microstructural observations. The microhardness values of the melt spun ribbons are about three times higher than those of ingot counterparts.

  13. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    PubMed

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  14. Property Criteria for Automotive Al-Mg-Si Sheet Alloys

    PubMed Central

    Prillhofer, Ramona; Rank, Gunther; Berneder, Josef; Antrekowitsch, Helmut; Uggowitzer, Peter J.; Pogatscher, Stefan

    2014-01-01

    In this study, property criteria for automotive Al-Mg-Si sheet alloys are outlined and investigated in the context of commercial alloys AA6016, AA6005A, AA6063 and AA6013. The parameters crucial to predicting forming behavior were determined by tensile tests, bending tests, cross-die tests, hole-expansion tests and forming limit curve analysis in the pre-aged temper after various storage periods following sheet production. Roping tests were performed to evaluate surface quality, for the deployment of these alloys as an outer panel material. Strength in service was also tested after a simulated paint bake cycle of 20 min at 185 °C, and the corrosion behavior was analyzed. The study showed that forming behavior is strongly dependent on the type of alloy and that it is influenced by the storage period after sheet production. Alloy AA6016 achieves the highest surface quality, and pre-ageing of alloy AA6013 facilitates superior strength in service. Corrosion behavior is good in AA6005A, AA6063 and AA6016, and only AA6013 shows a strong susceptibility to intergranular corrosion. The results are discussed below with respect to the chemical composition, microstructure and texture of the Al-Mg-Si alloys studied, and decision-making criteria for appropriate automotive sheet alloys for specific applications are presented. PMID:28788119

  15. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    PubMed

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  16. Role of Si on the Diffusional Interactions Between U-Mo and Al-Si Alloys at 823 K (550 °C)

    NASA Astrophysics Data System (ADS)

    Perez, Emmanuel; Sohn, Yong-Ho; Keiser, Dennis D.

    2013-01-01

    U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloy fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interaction products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and result in premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7 wt pct Mo, U-10 wt pct Mo and U-12 wt pct Mo in contact with pure Al, Al-2 wt pct Si, and Al-5 wt pct Si, annealed at 823 K (550 °C) for 1, 5 and 20 hours. Scanning electron microscopy and transmission electron microscopy were employed for the analysis. Diffusion couples consisting of U-Mo in contact with pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. Additions of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al- and Si-enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In these couples, the (U,Mo)(Al,Si)3 phase was observed throughout the interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.

  17. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    PubMed

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-08-09

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  18. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    PubMed Central

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  19. Characterization of novel microstructures in Al-Fe-V-Si and Al-Fe-V-Si-Y alloys processed at intermediate cooling rates

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan

    Samples of an Al-Fe-V-Si alloy with and without small Y additions were prepared by copper wedge-mold casting. Analysis of the microstructures developed at intermediate cooling rates revealed the formation of an atypical morphology of the cubic alpha-Al12(Fe/V)3Si phase (Im 3 space group with a = 1.26 nm) in the form of a microeutectic with alpha-Al that forms in relatively thick sections. This structure was determined to exhibit promising hardness and thermal stability when compared to the commercial rapidly solidified and processed Al-Fe-V-Si (RS8009) alloy. In addition, convergent beam electron diffraction (CBED) and selected area electron diffraction (SAD) were used to characterize a competing intermetallic phase, namely, a hexagonal phase identified as h-AlFeSi (P6/mmm space group with a = 2.45 nm c = 1.25 nm) with evidence of a structural relationship to the icosahedral quasicrystalline (QC) phase (it is a QC approximant) and a further relationship to the more desirable alpha-Al12(Fe/V) 3Si phase, which is also a QC approximant. The analysis confirmed the findings of earlier studies in this system, which suggested the same structural relationships using different methods. As will be shown, both phases form across a range of cooling rates and appear to have good thermal stabilities. Additions of Y to the alloy were also studied and found to cause the formation of primary YV2Al20 particles on the order of 1 microm in diameter distributed throughout the microstructure, which otherwise appeared essentially identical to that of the Y-free 8009 alloy. The implications of these results on the possible development of these structures will be discussed in some detail.

  20. Hardness - Yield Strength Relation of Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Praveen Sekhar, Aluru; Nandy, Supriya; Ray, Kalyan Kumar; Das, Debdulal

    2018-03-01

    Assessing the mechanical properties of materials through indentation hardness test is an attractive method, rather than obtaining the properties through destructive approach like tensile testing. The present work emphasizes on the relation between hardness and yield strength of Al-Mg-Si alloys considering Tabor type equations. Al-0.5Mg-0.4Si alloy has been artificially aged at various temperatures (100 to 250 °C) for different time durations (0.083 to 1000 h) and the ageing response has been assessed by measuring the Vickers hardness and yield strength. Correlations of the existing data from the open literature have also been reviewed. Lastly, it has been explained that the deviation in obtained relation from Tabor’s equation is owing to the dislocation accumulation during indentation.

  1. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    PubMed Central

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  2. Tem Observation of Precipitates in Ag-Added Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Nagai, Takeshi; Matsuda, Kenji; Nakamura, Junya; Kawabata, Tokimasa; Marioara, Calin; Andersen, Sigmund J.; Holmestad, Randi; Hirosawa, Shoichi; Horita, Zenji; Terada, Daisuke; Ikeno, Susumu

    The influence of addition of the small amount of transition metals to Al-Mg-Si alloy had reported by many researchers. In the previous our work, β' phase in alloys Al — 1.0 mass% Mg2Si -0.5 mass% Ag (Ag-addition) and Al -1.0 mass% Mg2Si (base) were investigated by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), in order to understand the effect of Ag. In addition, the distribution of Ag was investigated by energy filtered mapping and high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). One Ag-containing atomic column was observed per β' unit cell, and the unit cell symmetry is slightly changed as compared with the Ag-free β'. In this work, the microstructure of G.P. zone and β'' phase was investigated by TEM observation, which were formed before β' phase. The deformed sample by high pressure torsion (HPT) technique before aging was also investigated to understand its effect for aging in this alloy.

  3. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    PubMed Central

    Huang, Chih-Wei; Aoh, Jong-Ning

    2018-01-01

    In the present work, we proposed a novel friction stir processing (FSP) to produce a locally reinforced aluminum matrix composite (AMC) by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM) and Transmission Electron Microscopy (TEM) investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS), electron probe micro-analyzer (EPMA), and X-ray diffraction (XRD) were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites. PMID:29652846

  4. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  5. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-02

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  6. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  7. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    PubMed

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  8. Formation of Al15Mn3Si2 Phase During Solidification of a Novel Al-12%Si-4%Cu-1.2%Mn Heat-Resistant Alloy and Its Thermal Stability

    NASA Astrophysics Data System (ADS)

    Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel

    2018-02-01

    The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.

  9. Comparative Studies on Al-Based Composite Powder Reinforced with Nano Garnet and Multi-wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Basariya, M. Raviathul; Srivastava, V. C.; Mukhopadhyay, N. K.

    2015-11-01

    Effect of mechanical alloying/milling on microstructural evolution and hardness variations of garnet and multi-walled carbon nanotubes (MWCNTs)-reinforced Al-Mg-Si alloy (EN AW6082) composites are investigated. Structural and morphological studies revealed that the composite powders prepared by milling display a more homogenous distribution of the reinforcing particles. Improved nanoindentation hardness viz., 4.24 and 5.90 GPa are achieved for EN AW6082/Garnet and EN AW6082/MWCNTs composites, respectively, and it is attributed to severe deformation of the aluminum alloy powders and embedding of the harder reinforcement particles uniformly into the aluminum alloy matrix. However, enhancement in case of MWCNTs-reinforced composite makes apparent the effect of its nanosized uniform dispersion in the matrix, thereby resisting the plastic deformation at lower stress and increased dislocation density evolved during high-energy ball milling. The results of the present study indicate that carbon nanotubes and garnet can be effectively used as reinforcements for Al-based composites.

  10. High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Butler, T. M.; Alfano, J. P.; Martens, R. L.; Weaver, M. L.

    2015-01-01

    High-entropy alloys (HEAs) are a class of alloys that are being considered for a number of applications. In the present study, the microstructures and 1050°C oxidation behaviors of two HEAs, Al10Cr22.5Co22.5Ni22.5Fe22.5 (at.%) and Al20Cr25Co25Ni25Si5 have been investigated along with Al15Cr10Co35Ni35Si5, which is a high-temperature shape-memory alloy. Oxide formation occurred via selective oxidation in a manner that was consistent with the oxide formation model devised by Giggins and Pettit for model Ni-Cr-Al alloys. The lower Al content alloy formed an external Cr2O3 scale and an internal subscale consisting of Al2O3 and AlN precipitates. The higher Al content alloys exhibited smaller mass gains and formed external Al2O3 scales without any internal oxidation of the alloys.

  11. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    NASA Astrophysics Data System (ADS)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  12. Calorimetric investigation of precipitation kinetics in Al-Mg-Si-X(Cr,Be) alloys

    NASA Astrophysics Data System (ADS)

    Woo, K. D.; Lee, J. S.; Kim, S. W.

    1999-07-01

    This study has been carried out by differential scanning calorimetry (DSC) to study the kinetics of precipitation and the dissolution of metastable and stable phases in Al-Mg-Si-(Cr,Be) alloys which were heat treated by T6, two-step aging and RRA (retrogression and reaging) treatment. The heat flow variations by phase transformation in the as-quenched specimen were calculated from DSC thermograms obtained from heating rates of 5, 10, 15 and 20°C/min. Four exothermic peaks may be attributed to the precipitation of G.P.I zone, G.P.II zone(β″), β' and β (Mg2Si) phases, and three endothermic peaks may be attributed to the dissolution of G.P.I zone, β″ and the β' phases, respectively. The kinetic equation (dY/dt)=f(Y)koexp(-Q*/RT) can be used to study the precipitation kinetics of Ai-Mg-Si-(Cr, Be) alloys, where Q*, ko, and f(Y)are the activation energy, frequency factors and the function of Y, respectively. The kinetic parameters measured from DSC curves can be used to interpret the transformation kinetics.The formation rate of β″ phase in the Al-Mg-Si alloy increased by the small addition of Be. This is because Be increases the nucleating rate of the β″ phase due to the decrease of the matrix/β″ interface energy. By the addition of Be or Cr and Be in Al-Mg-Si alloy, G.P. zone was easily decomposed during retrogression treatment at 225°C for 3 min. Therefore, maximum hardness can be obtained by RRA (150°C/20 min→225°C/3 min→ 180°C/3O min) in Al-0.8%Mg-1.0%Si-0.05% Be and Al-0.8% Mg-l.0% Si-0.l% Cr-0.05% Be alloys owing to the high density of β″ and β' precipitates.

  13. Effect of Heat Treatment on Commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, E.; Bonollo, F.; Ferro, P.; Fabrizi, A.

    2018-03-01

    High-pressure die castings (HPDCs) cannot normally be heat-treated at a high temperature because of the presence of inner air/gas- or shrinkage-porosity that may lead to the formation of undesired surface blisters. In this paper, an unconventional heat treatment is proposed. Two secondary Al-Si alloys, AlSi12(b) and AlSi12Cu1(Fe), were stabilization heat-treated at 624 K (350 °C) with soaking times ranging from 1 to 8 hours. Enhancement of both static and dynamic mechanical properties was found to be related to the fragmentation of interconnected eutectic Si particles and the smoothing of coarser crystals. Increased ductility after heat treatment was correlated with a decrease in hardness and Si particle roundness. The formation of Si precipitates within the α-Al matrix was also observed.

  14. Additive Manufacturing of Al-12Si Alloy Via Pulsed Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Chou, R.; Milligan, J.; Paliwal, M.; Brochu, M.

    2015-03-01

    Additive manufacturing (AM) of metallic materials is experiencing a research and commercialization craze in almost all industrial sectors. However, to date, AM has been limited to a small numbers of alloys. With respect to aluminum, two alloys received some attention: Al-12Si and Al-10Si-1Mg. In both cases, fully dense components have been achieved using a continuous-wave selective laser melting system. In this article, a new approach of selective laser melting using a pulsed-laser source as opposed to a continuous-wave laser is proposed. Pulse selective laser melting (P-SLM) would allow for greater control over the heat input and thus further optimization possibilities of the microstructure. P-SLM was demonstrated using the Al-12Si system. Si refinement below 200 nm was achieved throughout the component. Density up to 95% and high hardness of above 135 HV were obtained. The solidification mechanism is also explained.

  15. Effect of load on the tribological properties of hypereutectic Al-Si alloy under boundary lubrication conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Wani, M. F.

    2017-11-01

    Researchers reported that the IC engine components (piston, cylinder liner etc) fail due to the friction losses (~45%) and wear losses (~25-40%). So the demand of light weight, low friction and wear resistance alloys increases day by day, which reduces the emission and increases the efficiency of the IC engine. In this connection, tribological tests on hypereutectic Al-25Si alloy were performed using a ball-on-disk configuration under dry and lubricated sliding conditions. Hypereutectic Al-25Si alloy was prepared by rapid solidification process with T6 condition. T6 condition improves the friction, wear and mechanical properties of the alloy. Friction coefficient and wear rate of the alloy was measured under high loads ranging from 100 to 300 N. It was found that the friction coefficient (COF) and wear rate of hypereutectic Al-25Si alloy/steel tribo pair increased with increase in load. Significant reduction in COF and wear rate was accomplished with SAE20W50 engine oil and Si particles act as solid lubricant. Optical microscope, 3D surface profilometer and scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) were used for characterization the worn surface morphologies. The morphology, size and distribution of high Si particles due to its fabrication process caused the improvements in COF and wear rate under lubricated conditions. Adhesive wear, abrasive wear and plastic deformation acted as the dominant wear mechanism for hypereutectic Al-25Si alloy.

  16. A novel restraint spraying-Conform process for manufacturing hypereutectic Al-Si alloy with enhanced properties

    NASA Astrophysics Data System (ADS)

    Chen, Y. G.; Yang, H.; Zhang, B. Q.; Liu, Y. L.; Yin, J. C.; Wei, W.; Zhong, Y.

    2017-02-01

    A novel restraint spraying-Conform (RS-C) process, which directly combines spraying with Conform to process metals in one step, has been proposed. Al-20Si alloy selected as experimental material was successfully fabricated by the RS-C process. The microstructures were dominated with fine and uniform primary silicon phases. The tensile strength and elongation to failure of the Al-20Si alloy were 204 MPa and 7.2% respectively after the RS-C process. The wear resistance of the processed Al-20Si alloy was increased significantly, about 1.7 times over the as-cast ingot. The experimental results indicate that RS-C is a promising near net shape forming technology.

  17. Microstructure Evolution of AlSi10Mg(Cu) Alloy Related to Isothermal Exposure.

    PubMed

    Cai, Cheng; Geng, Huifang; Wang, Shifu; Gong, Boxue; Zhang, Zheng

    2018-05-16

    The mechanical properties and corrosion resistance changes of AlSi10Mg(Cu) alloy under different isothermal exposure conditions have been investigated by tensile experiments and electrochemical testing. The results show that isothermal exposure has a significant influence on the mechanical properties and corrosion resistance. Tensile strength is more sensitive to the higher exposure temperature, while the corrosion resistance is greater affected by the lower exposure temperature and shorter time. Microstructure evolution of AlSi10Mg(Cu) alloy related to different isothermal exposure condition has also been studied by using transmission electron microscopy (TEM). The results indicate that the isothermal exposure changed the type and density of nanoscale precipitates in the alloy, which in turn induced the change of performance of the alloy.

  18. Microstructure Evolution of AlSi10Mg(Cu) Alloy Related to Isothermal Exposure

    PubMed Central

    Cai, Cheng; Geng, Huifang; Wang, Shifu; Gong, Boxue; Zhang, Zheng

    2018-01-01

    The mechanical properties and corrosion resistance changes of AlSi10Mg(Cu) alloy under different isothermal exposure conditions have been investigated by tensile experiments and electrochemical testing. The results show that isothermal exposure has a significant influence on the mechanical properties and corrosion resistance. Tensile strength is more sensitive to the higher exposure temperature, while the corrosion resistance is greater affected by the lower exposure temperature and shorter time. Microstructure evolution of AlSi10Mg(Cu) alloy related to different isothermal exposure condition has also been studied by using transmission electron microscopy (TEM). The results indicate that the isothermal exposure changed the type and density of nanoscale precipitates in the alloy, which in turn induced the change of performance of the alloy. PMID:29772678

  19. Mechanism of the Bauschinger effect in Al-Ge-Si alloys

    DOE PAGES

    Gan, Wei; Bong, Hyuk Jong; Lim, Hojun; ...

    2016-12-07

    Here, wrought Al-Ge-Si alloys were designed and produced to ensure dislocation bypass strengthening ("hard pin" precipitates) without significant precipitate cutting/shearing ("soft pin" precipitates). They were processed from the melt, solution heat treated and aged.

  20. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys

    PubMed Central

    Ibrahim, Mohamed F.; Elgallad, Emad M.; Valtierra, Salvador; Doty, Herbert W.; Samuel, Fawzy H.

    2016-01-01

    The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150–200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al4SrSi2, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode. PMID:28787877

  1. Analysis of Fracture Mechanism for Al-Mg/SiCp Composite Materials

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Adebisi, A. A.; Izzati, N.

    2017-03-01

    The present study aims to examine the fracture mechnism of silicon carbide particle (SiCp) reinforced aluminium matrix composite (AMC) material with 1 wt% addition of magnesium is fabricated using the stir casting process. The aluminium composite (Al-Mg/SiCp) is investigated for fatigue life and impact strength considering reinforcement weight fraction and influence of temperature on fracture toughness. The fabricated composite was tested using fatigue testing machine and charpy impact tester. Fractographic observations were evaluated with the scanning electron microscopy (SEM) on the fracture surface. It was found that increasing the SiCp weight fraction increased the fatigue life of the composite. Moreover, the 20 wt% SiCp Al-Mg composite attained the highest number of cycle and fatigue life compared to other variations. The mechanism responsible for the phenomena includes load transfer from the Al matrix alloy phase to the high strength and stiffness of the incorporated SiCp. The temperature variation influenced the impact strength of the composite and improved fracture toughness is achieved at 150 °C. It can be concluded from this study that reinforcement weight fraction and temperature affects the fracture behavior of the composites.

  2. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  3. Slow crack growth in SiC platelet reinforced Al{sub 2}O{sub 3} composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belmonte, M.; Moya, J.S.; Miranzo, P.

    1996-05-15

    Ceramic matrix composites with enhanced toughness are at present projected for many structural applications such as high temperature components in gas turbine, structures for hypersonic aircraft and bioprosthetic devices. The incorporation of a SiC dispersed second phase in form of whisker or platelets into an alumina matrix has allowed to improve material toughness, thermal shock resistance and R-curve behavior. Recently, considerable interest in the acquisition of slow crack growth (SCG) data for ceramic materials has arisen in order to predict the service lifetime of brittle components. Non-oxide ceramics such as SiC and Si{sub 3}N{sub 4} are extremely resistant to crackmore » growth at low temperatures, whereas oxide ceramics are susceptible to stress corrosion because of the chemical interaction between water and stressed cracks. Up to date, there are not many papers devoted to SCG of SiC whiskers reinforced Al{sub 2}O{sub 3} composites and none about SiC platelets used as reinforcement. The objective of the present work has been to evaluate the slow crack growth in a Al{sub 2}O{sub 3}/SiC-platelet composite by double torsion testing analysis. The results will be compared with those obtained for SiC whisker reinforced Al{sub 2}O{sub 3} composite tested using the same conditions.« less

  4. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy

    NASA Astrophysics Data System (ADS)

    Li, Yukun; Du, Xiaodong; Zhang, Ya; Zhang, Zhen; Fu, Junwei; Zhou, Shi'ang; Wu, Yucheng

    2018-02-01

    In the present study, the effects of Mg, Cu, Sc and Zr combined additions on the microstructure and mechanical properties of hypoeutectic Al-Si cast alloy were systematically investigated. Characterization techniques such as optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), electron back-scatter diffraction (EBSD), atomic force microscopy (AFM), transmission electron microscope (TEM), Brinell hardness tester and universal testing machine were employed to analyze the microstructure and mechanical properties. The results showed that Sc served as modifier on the microstructure of Al-3Si-0.45Mg-0.45Cu-0.2Zr alloys, including modification of eutectic Si and grains. Extraordinarily, grain refinement was found to be related to the primary particles, which exhibited a close orientation to matrix. After T6 heat treatment, the grain structures were composed of nano-scaled secondary Al3(Sc, Zr) precipitates and spherical eutectic Si. Combined with T6 heat treatment, the highest hardness, yield strength, ultimate tensile strength and elongation were achieved in 0.56 wt.% Sc-modified alloy. Interestingly, the strength and ductility had a similar tendency. This paper demonstrated that combined additions of Mg, Cu, Sc and Zr could significantly improve the microstructure and performance of the hypoeutectic Al-Si cast alloy.

  5. Microstructure and Mechanical Properties of Cr-SiC Particles-Reinforced Fe-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wang, Fu-cheng; Du, Xiao-dong; Zhan, Ma-ji; Lang, Jing-wei; Zhou, Dan; Liu, Guang-fu; Shen, Jian

    2015-12-01

    In this study, SiC particles were first coated with Cr to form a layer that can protect the SiC particles from dissolution in the molten pool. Then, the Cr-SiC powder was injected into the tail of molten pool during plasma-transferred arc welding process (PTAW), where the temperature was relatively low, to prepare Cr-SiC particles reinforced Fe-based alloy coating. The microstructure and phase composition of the powder and surface coatings were analyzed, and the element distribution and hardness at the interfacial region were also evaluated. The protective layer consists of Cr3Si, Cr7C3, and Cr23C6, which play an important role in the microstructure and mechanical properties. The protective layer is dissolved in the molten pool forming a flocculent region and a transition region between the SiC particles and the matrix. The tribological performance of the coating was also assessed using a ring-block sliding wear tester with GGr15 grinding ring under 490 and 980 N load. Cr-SiC particles-reinforced coating has a lower wear rate than the unreinforced coating.

  6. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  7. A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al-Si alloy and subsequent thermal oxidation.

    PubMed

    Hwang, Gaeun; Park, Hyungmin; Bok, Taesoo; Choi, Sinho; Lee, Sungjun; Hwang, Inchan; Choi, Nam-Soon; Seo, Kwanyong; Park, Soojin

    2015-03-14

    Nanostructured micrometer-sized Al-Si particles are synthesized via a facile selective etching process of Al-Si alloy powder. Subsequent thin Al2O3 layers are introduced on the Si foam surface via a selective thermal wet oxidation process of etched Al-Si particles. The resulting Si/Al2O3 foam anodes exhibit outstanding cycling stability (a capacity retention of 78% after 300 cycles at the C/5 rate) and excellent rate capability.

  8. Microstructure and Mechanical Properties of Dissimilar Joints of Al-Mg2Si and 5052 Aluminum Alloy by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Huang, B. W.; Qin, Q. D.; Zhang, D. H.; Wu, Y. J.; Su, X. D.

    2018-03-01

    Al-Mg2Si alloy and 5052 Al alloy were welded successfully by friction stir welding (FSW) in this study. The results show that the alloy consists of three distinct zones after FSW: the base material zone (BMZ), the transitional zone, and the weld nugget (WN). The morphologies of the primary Mg2Si phases are identified as coarse equiaxed crystals for Al-Mg2Si alloys in the BMZ. The WN is a mixture of rich Al-Mg2Si and rich 5052 alloy, and a banded structure is formed in the zone. Interestingly, in the WN, the equiaxed crystals changed to polygonal particles with substantially reduced sizes in the rich Al-Mg2Si zone. However, in addition to the white rich Mg phase appearing in the rich 5052 zone near the interface, the 5052 alloy does not show obvious changes. The hardness gradually increases from the BMZ of the 5052 to the welded joint to the Al-Mg2Si BMZ. In addition, the ultimate tensile strength (UTS) of the welded joint is higher than that of the base material of the Al-Mg2Si, whereas it is lower than that of the 5052 base alloy. The results of the elongation are similar to the UTS results. The fracture mechanism is also investigated.

  9. Investigation on AlP as the heterogeneous nucleus of Mg2Si in Al-Mg2Si alloys by experimental observation and first-principles calculation

    NASA Astrophysics Data System (ADS)

    Sun, Jiayue; Li, Chong; Liu, Xiangfa; Yu, Liming; Li, Huijun; Liu, Yongchang

    2018-03-01

    The microstructural evolution of primary Mg2Si in Al-20%Mg2Si with Al-3%P master alloy was observed by scanning electron microscope. And the interfacial properties of AlP/Mg2Si interface were investigated using first-principles calculations. The calculation results show that AlP(1 0 0)/Mg2Si(2 1 1) and AlP(3 3 1)/Mg2Si(1 1 0) interfaces can form steadily. P-terminated AlP(1 0 0)/Mg2Si(2 1 1) interface with the largest work of adhesion (4.13 J/m2) is theoretically the most stable. The interfacial electronic structure reveals that there are covalent Si-Al, Si-P and Mg-P bonds existing between AlP and Mg2Si slabs. Due to the AlP particles as effective heterogeneous nucleus of Mg2Si, primary Mg2Si particles change from dendrite to octahedron/truncated octahedron, and their sizes decrease to ∼20 μm.

  10. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    NASA Astrophysics Data System (ADS)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  11. Flow Stress and Processing Map of a PM 8009Al/SiC Particle Reinforced Composite During Hot Compression

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Teng, Jie; Chen, Shuang; Wang, Yu; Zhang, Hui

    2017-10-01

    Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s-1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s-1 by combining the processing map with microstructural observation.

  12. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    PubMed Central

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  13. Crystallography of the NiHfSi Phase in a NiAl (0.5 Hf) Single-Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Noebe, R. D.; Darolia, R.

    1996-01-01

    Small additions of Hf to conventionally processed NiAl single crystals result in the precipitation of a high density of cuboidal G-phase along with a newly identified silicide phase. Both of these phases form in the presence of Si which is not an intentional alloying addition but is a contaminant resulting from contact with the ceramic shell molds during directional solidification of the single-crystal ingots. The morphology, crystal structure and Orientation Relationship (OR) of the silicide phase in a NiAl (0.5 at.%Hf) single-crystal alloy have been determined using transmission electron microscopy, electron microdiffraction and energy dispersive X-ray spectroscopy. Qualitative elemental analysis and indexing of the electron microdiffraction patterns from the new phase indicate that it is an orthorhombic NiHfSi phase with unit cell parameters, a = 0.639 nm, b = 0.389 nm and c = 0.72 nm, and space group Pnma. The NiHfSi phase forms as thin rectangular plates on NiAl/111/ planes with an OR that is given by NiHfSi(100))(parallel) NiAl(111) and NiHfSi zone axes(010) (parallel) NiAl zone axes (101). Twelve variants of the NiHfSi phase were observed in the alloy and the number of variants and rectangular morphology of NiHfSi plates are consistent with symmetry requirements. Quenching experiments indicate that nucleation of the NiHfSi phase in NiAI(Hf) alloys is aided by the formation of NiAl group of zone axes (111) vacancy loops that form on the NiAl /111/ planes.

  14. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  15. High-temperature, low-cycle fatigue behavior of an Al-Mg-Si based heat-resistant aluminum alloy

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Sik; Sung, Si-Young; Han, Bum-Suck; Park, Joong-Cheol; Lee, Kee-Ahn

    2015-11-01

    High-temperature, low-cycle fatigue behavior of the new heat-resistant aluminum alloy was investigated in this study. The aluminum alloy consists of aluminum matrix and small amount of precipitated Mg2Si and (Co, Ni)3Al4 strengthening particles. At room temperature and 523 K, the yield and tensile strengths of Al-Mg-Si-(Co, Ni) the aluminum alloy were maintained with no significant decrease, and elongation increased slightly. Low-cycle fatigue tests controlled by total strain were performed with strain ratio (R) = -1, strain rate = 2×10-3 s-1 at 523 K. The fatigue limit of the low-cycle fatigue of this alloy showed plastic strain amplitude (Δ ɛ pa) of 0.22% at 103 cycles. This value was superior to that of conventional aluminum alloy such as A319. The results of the fractographical observation showed that second phases, especially (Co, Ni)3Al4 particles, affected fatigue behavior. This study also attempted to clarify the mechanism of high-temperature, low-cycle fatigue deformation of Al-Mg-Si-(Co, Ni) alloy in relation to its microstructure and energy dissipation analysis.

  16. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys.

    PubMed

    Basak, C B; Babu, N Hari

    2017-07-18

    High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.

  17. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.

    PubMed

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-04-27

    Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

  18. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    PubMed

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    NASA Astrophysics Data System (ADS)

    Yan, F.; McKay, B. J.; Fan, Z.; Chen, M. F.

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg2Si particles evenly distributed throughout an α-Al matrix with a β-Al3Mg2 fully divorced eutectic phase observed in interdendritic regions. The Mg2Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg2Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al3Mg2 eutectic phase with no evidence of any effect on the primary Mg2Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  20. Reinforcing aluminum alloys with high strength fibers

    NASA Technical Reports Server (NTRS)

    Kolpashnikov, A. I.; Manuylov, V. F.; Chukhin, B. D.; Shiryayev, Y. V.; Shurygin, A. S.

    1982-01-01

    A study is made of the possibility of reinforcing aluminum and aluminum based alloys with fibers made of high strength steel wire. The method of introducing the fibers is described in detail. Additional strengthening by reinforcement of the high alloy system Al - An - Mg was investigated.

  1. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakoese, Ercan, E-mail: ekarakose@karatekin.edu.tr; Keskin, Mustafa

    2012-03-15

    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that themore » microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.« less

  2. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  3. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys.

    PubMed

    Ibrahim, Mohamed F; Elgallad, Emad M; Valtierra, Salvador; Doty, Herbert W; Samuel, Fawzy H

    2016-01-27

    The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150-200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al₄SrSi₂, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  4. Alloying and Properties of C14-NbCr₂ and A15-Nb₃X (X = Al, Ge, Si, Sn) in Nb-Silicide-Based Alloys.

    PubMed

    Tsakiropoulos, Panos

    2018-03-07

    The oxidation of Nb-silicide-based alloys is improved with Al, Cr, Ge or Sn addition(s). Depending on addition(s) and its(their) concentration(s), alloyed C14-AB₂ Laves and A15-A₃X phases can be stable in the microstructures of the alloys. In both phases, A is the transition metal(s), and B and X respectively can be Cr, Al, Ge, Si or Sn, and Al, Ge, Si or Sn. The alloying, creep and hardness of these phases were studied using the composition weighted differences in electronegativity (∆χ), average valence electron concentrations (VEC) and atomic sizes. For the Laves phase (i) the VEC and ∆χ were in the ranges 4.976 < VEC < 5.358 and -0.503 < ∆χ < -0.107; (ii) the concentration of B (=Al + Cr + Ge + Si + Sn) varied from 50.9 to 64.5 at %; and (iii) the Cr concentration was in the range of 35.8 < Cr < 51.6 at %. Maps of ∆χ versus Cr, ∆χ versus VEC, and VEC versus atomic size separated the alloying behaviours of the elements. Compared with unalloyed NbCr₂, the VEC decreased and ∆χ increased in Nb(Cr,Si)₂, and the changes in both parameters increased when Nb was substituted by Ti, and Cr by Si and Al, or Si and Ge, or Si and Sn. For the A15 phase (i) the VEC and ∆χ were in the ranges 4.38 < VEC < 4.89 and 0.857 < ∆χ < 1.04, with no VEC values between 4.63 and 4.72 and (ii) the concentration of X (=Al + Ge + Si + Sn) varied from 16.3 to 22.7 at %. The VEC versus ∆χ map separated the alloying behaviours of elements. The hardness of A15-Nb₃X was correlated with the parameters ∆χ and VEC. The hardness increased with increases in ∆χ and VEC. Compared with Nb₃Sn, the ∆χ and hardness of Nb₃(Si,Sn) increased. The substitution of Nb by Cr had the same effect on ∆χ and hardness as Hf or Ti. The ∆χ and hardness increased with Ti concentration. The addition of Al in Nb₃(Si,Sn,Al) decreased the ∆χ and increased the hardness. When Ti and Hf, or Ti, Hf and Cr, were simultaneously present with Al, the ∆χ was decreased and

  5. Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

    NASA Astrophysics Data System (ADS)

    Huh, Joo-Youl; Hwang, Min-Je; Shim, Seung-Woo; Kim, Tae-Chul; Kim, Jong-Sang

    2018-05-01

    The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) SiO2-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at 460 °C and the variation in the contact angles (θc) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the a-SiO2-covered steel exhibited nonreactive, nonwetting (θc > 90°) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the a-SiO2 layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the a-SiO2 layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and SiO2, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

  6. Microstructural characterisation of Al-Si cast alloys containing rare earth additions

    NASA Astrophysics Data System (ADS)

    Elgallad, E. M.; Ibrahim, M. F.; Doty, H. W.; Samuel, F. H.

    2018-05-01

    This paper presents a thorough study on the effect of rare earth elements, specifically La and Ce, on the microstructure characteristics of non-modified and Sr-modified A356 and A413 alloys. Several alloys were prepared by adding 1% La and 1% Ce either individually or in combination. Microstructural characterisation was carried out using optical microscopy, scanning electron microscopy and electron probe microanalysis as well as differential scanning calorimetry (DSC) analysis. The results showed that the individual and combined additions of La and Ce did not bring about any modification or even refinement in the eutectic Si structure. Moreover, these additions were found to negate the modification effect of Sr, particularly in the presence of La. The A356 and A413 alloys containing La and/or Ce displayed high phase volume fractions owing to the formation of Al-Si-La/Ce/(La,Ce) and Al-Ti-La/Ce intermetallic phases. DSC analysis revealed that the formation temperatures of these phases varied from 560 to 568 °C and 568 to 574 °C, respectively. This analysis also showed that the addition of La and Ce whether individually or in combination resulted in a depression in the eutectic temperature and a considerable increase in the solidification range, particularly for the A413 alloy.

  7. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  8. Microstructure, Mechanical Properties, and Age-Hardening Behavior of an Al-Si-Fe-Mn-Cu-Mg Alloy Produced by Spray Deposition

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Jishan, Zhang; Baiqing, Xiong; Yongan, Zhang

    2011-02-01

    It has been recognized generally that the spray-deposited process is an innovative technique of rapid solidification. In this paper, Al-20Si-5Fe-3Mn-3Cu-1Mg alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the spray-deposited alloy were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and tensile tests. It is observed that the microstructure of spray-deposited Al-20Si-5Fe-3Mn-3Cu-1Mg alloy is composed of the α-Al,Si and the particle-like Al15(FeMn)3Si2 compounds. The aging process of the alloy was investigated by microhardness measurement, differential scanning calorimetry analysis, and TEM observations. The results indicate that the two types of precipitates, S-Al2CuMg and σ-Al5Cu6Mg2 precipitate from matrix and improve the tensile strength of the alloy efficiently at both the ambient and elevated temperatures (300 °C).

  9. Radiation Resistance of the U(Al, Si)3 Alloy: Ion-Induced Disordering

    PubMed Central

    Yaniv, Gili; Horak, Pavel; Vacik, Jiri; Mykytenko, Natalia; Rafailov, Gennady; Dahan, Itzchak; Fuks, David; Kiv, Arik

    2018-01-01

    During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si)3 composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si)3, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy). This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan) samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program “Stopping and Range of Ions in Matter” (SRIM), the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed. PMID:29393870

  10. Radiation Resistance of the U(Al, Si)₃ Alloy: Ion-Induced Disordering.

    PubMed

    Meshi, Louisa; Yaniv, Gili; Horak, Pavel; Vacik, Jiri; Mykytenko, Natalia; Rafailov, Gennady; Dahan, Itzchak; Fuks, David; Kiv, Arik

    2018-02-02

    During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si)₃ composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si)₃, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy). This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan) samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program "Stopping and Range of Ions in Matter" (SRIM), the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed.

  11. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  12. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-06-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy.

  13. Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites

    NASA Astrophysics Data System (ADS)

    Lin, C. B.; Wang, T. C.; Chang, Z. C.; Chu, H. Y.

    2013-01-01

    Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.

  14. Effect of Composition and Pre-Ageing on the Natural Ageing and Paint-Baking Behaviour of Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Rometsch, Paul A.; Gao, Sam X.; Couper, Malcolm J.

    Two 6xxx series aluminium alloys were designed to have the same total solute content but very different Mg/Si ratios. An excess Mg alloy (Al-1.2Mg-0.5Si) and an excess Si alloy (Al-0.5Mg-1.2Si) were cast and rolled to 1 mm thick sheet. Both were naturally aged for 30 days and then artificially aged for 0.5 h at 170°C to simulate an automotive body panel paint-baking cycle. In order to improve the paint-bake response, pre-ageing treatments of 20 s at 200°C and 2 h at 100°C were tested and evaluated using atom probe tomography, transmission electron microscopy and hardness testing. The results show that the excess Mg alloy tends to have coarser clusters/precipitates than the excess Si alloy, and that the Mg/Si ratio of the smaller clusters is closer to the alloy composition than that of the larger clusters and precipitates. Depending on the pre-ageing treatment, both alloys can give good paint-baking responses.

  15. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it; Spigarelli, Stefano

    2011-10-15

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K weremore » carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: {yields} TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. {yields} The evaluation has been extended to different compression temperature conditions. {yields} Linear and Quadratic sum has been proposed and validated. {yields} Hall-Petch was found to be the most prominent strengthening contributions.« less

  16. Influence of Reinforcement Parameters and Ageing Time on Mechanical Behavior of Novel Al2024/SiC/Red Mud Composites Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Singh, Jaswinder; Chauhan, Amit

    2017-12-01

    This study investigates the mechanical behavior of aluminum 2024 matrix composites reinforced with silicon carbide and red mud particles. The hybrid reinforcements were successfully incorporated into the alloy matrix using the stir casting process. An orthogonal array based on Taguchi's technique was used to acquire experimental data for mechanical properties (hardness and impact energy) of the composites. The analysis of variance (ANOVA) and response surface methodology (RSM) techniques were used to evaluate the influence of test parameters (reinforcement ratio, particle size and ageing time). The morphological analysis of the surfaces (fractured during impact tests) was conducted to identify the failure mechanism. Finally, a confirmation experiment was performed to check the adequacy of the developed model. The results indicate that the ageing time is the most effective parameter as far as the hardness of the hybrid composites is concerned. It has also been revealed that red mud wt.% has maximum influence on the impact energy characteristics of the hybrid composites. The study concludes that Al2024/SiC/red mud hybrid composites possess superior mechanical performance in comparison to pure alloy under optimized conditions.

  17. Effect of Cold Rolling on Age Hardening in Excess Mg-Type Al-Mg-Si Alloys Including Some Minor Elements

    NASA Astrophysics Data System (ADS)

    Ogawa, Yurie; Matsuda, Kenji; Kawabata, Tokimasa; Uetani, Yasuhiro; Ikeno, Susumu

    It has been known that transition metals improve the mechanical property of Al-Mg-Si alloy. The thermo-mechanical treatment is also effective to improve the strength of Al-Mg-Si alloy. In this work, the aging behavior of deformed excess Mg-type Al-Mg-Si alloy including Ag,Cu,Pt was investigated by hardness test and TEM observation. The value of the maximum hardness increased and the aging time to the maximum hardness became shorter by increasing the amount of the deformation. The age-hardening ability (ΔHV) was decreased with increasing amount of the deformation. The effect of additional element on AHV was also similar to the result of the deformation described above. Comparing the value of the maximum hardness for the alloys aged at 423-523 K, the ex. Mg-Cu alloy was the highest, the ex. Mg-Ag alloy was middle, and the ex. Mg and ex. Mg-Pt alloys were the lowest because of total amounts of added elements.

  18. Effect of Multi-Scale Thermoelectric Magnetic Convection on Solidification Microstructure in Directionally Solidified Al-Si Alloys Under a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Xi; Du, Dafan; Gagnoud, Annie; Ren, Zhongming; Fautrelle, Yves; Moreau, Rene

    2014-11-01

    The influence of a transverse magnetic field ( B < 1 T) on the solidification structure in directionally solidified Al-Si alloys was investigated. Experimental results indicate that the magnetic field caused macrosegregation, dendrite refinement, and a decrease in the length of the mushy zone in both Al-7 wt pct Si alloy and Al-7 wt pct Si-1 wt pct Fe alloys. Moreover, the application of the magnetic field is capable of separating the Fe-rich intermetallic phases from Al-7 wt pct Si-1 wt pct Fe alloy. Thermoelectric magnetic convection (TEMC) was numerically simulated during the directional solidification of Al-Si alloys. The results reveal that the TEMC increases to a maximum () when the magnetic field reaches a critical magnetic field strength (), and then decreases as the magnetic field strength increases further. The TEMC exhibits the multi-scales effects: the and values are different at various scales, with decreasing and increasing as the scale decreases. The modification of the solidification structure under the magnetic field should be attributed to the TEMC on the sample and dendrite scales.

  19. Microstructure and Dry Sliding Wear Resistance of Laser Cladding Ti-Al-Si Composite Coating

    NASA Astrophysics Data System (ADS)

    Zhang, H. X.; Yu, H. J.; Chen, C. Z.; Dai, J. J.

    In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si12 and the matrix of Ti3Al, TiAl, TiAl3 and α-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV0.2 to 1130 HV0.2, which was approximately 3-4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023cm3ṡmin-1, which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.

  20. Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.; Shahizan, N. R.; Gandouz, S.

    2017-01-01

    The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA‒CCTA). The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, Δ t s, and low solidification temperature, Δ T S, whereas 0.1wt% Ce resulted in a fast solidification time, Δ t a-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index ( Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.

  1. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    PubMed

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  2. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  3. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  4. Study of Al-Si Alloy Oxygen Saturation on Its Microstructure and Mechanical Properties.

    PubMed

    Finkelstein, Arkady; Schaefer, Arseny; Chikova, Оlga; Borodianskiy, Konstantin

    2017-07-11

    One of the main goals of modern materials research is obtaining different microstructures and studying their influence on the mechanical properties of metals; aluminum alloys are particularly of interest due to their advanced performance. Traditionally, their required properties are obtained by alloying process, modification, or physical influence during solidification. The present work describes a saturation of the overheated AlSi₇Fe₁ casting alloy by oxides using oxygen blowing approach in overheated alloy. Changes in metals' microstructural and mechanical properties are also described in the work. An Al 10 SiFe intermetallic complex compound was obtained as a preferable component to Al₂O₃ precipitation on it, and its morphology was investigated by scanning electron microscopy. The mechanical properties of the alloy after the oxygen blowing treatment are discussed in this work.

  5. Tribological Properties of AlSi12-Al2O3 Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy

    PubMed Central

    Dolata, Anna Janina

    2017-01-01

    Alumina–Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al2O3 interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells. PMID:28878162

  6. Calculation of the solvus temperature of metastable phases in the Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Vasilyev, A. A.; Gruzdev, A. S.; Kuz'min, N. L.

    2011-09-01

    A procedure has been proposed for the self-consistent calculation of the solvus temperatures of metastable phase precipitates in Al-Mg-Si alloys and the specific energy of their interface with the aluminum matrix. The procedure is based on the results of experimental studies on the kinetics of formation of these precipitates during decomposition of supersaturated solid solutions of quenched Al-Mg-Si alloys, which were carried out by measuring the Young's modulus and electrical resistivity. On the basis of the obtained set of solvus temperatures of the β″-phase, an empirical formula has been proposed for calculating this temperature as a function of the chemical composition of the initial solid solution.

  7. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  8. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  9. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-04-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  10. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  11. Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.

    1994-01-01

    In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.

  12. Study on the Anti-Poison Performance of Al-Y-P Master Alloy for Impurity Ca in Aluminum Alloys.

    PubMed

    Zuo, Min; Dong, Yu; Zhao, Degang; Wang, Yan; Teng, Xinying

    2017-11-26

    In this article, the anti-poison performance of novel Al-6Y-2P master alloy for impurity Ca in hypereutectic Al-Si alloys was investigated in detail. According to the microstructural analysis, it can be found that the primary Si and eutectic Si particles could be relatively modified and refined. In order to investigate the influence mechanism of Ca on the limited refinement performance of Al-6Y-2P master alloy, types of Al-xSi-2Ca-3Y-1P (x = 0, 6, 12, 18, and 30) alloys were prepared. It is observed that Ca takes the form of more stable Ca3P2 compounds by reacting with YP, and the surface of Ca3P2 particles are unsmooth, and even some have wrinkles in Al Al-2Ca-3Y-1P alloy. With the increase of Si content in Al-xSi-2Ca-3Y-1P (x = 6, 12, 18 and 30) systems, the multi-encapsulation structures, i.e., the phosphide (AlP and YP), hexagonal Al2Si2Ca, the Al3Si2Y2 or primary Si from inside to outside in order were examined.The excapsulation of YP and AlP caused by Al2Si2Ca might be the reason for the limited refinement effect of Al-6Y-2P master alloy for hypereutectic Al-18Si alloys.

  13. Nonisovalent Si-III-V and Si-II-VI alloys: Covalent, ionic, and mixed phases

    DOE PAGES

    Kang, Joongoo; Park, Ji -Sang; Stradins, Pauls; ...

    2017-07-13

    In this paper, nonequilibrium growth of Si-III-V or Si-II-VI alloys is a promising approach to obtaining optically more active Si-based materials. We propose a new class of nonisovalent Si 2AlP (or Si 2ZnS) alloys in which the Al-P (or Zn-S) atomic chains are as densely packed as possible in the host Si matrix. As a hybrid of the lattice-matched parent phases, Si2AlP (or Si2ZnS) provides an ideal material system with tunable local chemical orders around Si atoms within the same composition and structural motif. Here, using first-principles hybrid functional calculations, we discuss how the local chemical orders affect the electronicmore » and optical properties of the nonisovalent alloys.« less

  14. Microstructural investigation of Sr-modified Al-15 wt%Si alloys in the range from micrometer to atomic scale.

    PubMed

    Timpel, M; Wanderka, N; Vinod Kumar, G S; Banhart, J

    2011-05-01

    Strontium-modified Al-15 wt%Si casting alloys were investigated after 5 and 60 min of melt holding. The eutectic microstructures were studied using complementary methods at different length scales: focused ion beam-energy selective backscattered tomography, transmission electron microscopy and 3D atom probe. Whereas the samples after 5 min of melt holding show that the structure of eutectic Si changes into a fine fibrous morphology, the increase of prolonged melt holding (60 min) leads to the loss of Sr within the alloy with an evolution of an unmodified eutectic microstructure displaying coarse interconnected Si plates. Strontium was found at the Al/Si eutectic interfaces on the side of the eutectic Al region, measured by 3D atom probe. The new results obtained using 3D atom probe shed light on the location of Sr within the Al-Si eutectic microstructure. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Carbon fibers coated with graphene reinforced TiAl alloy composite with high strength and toughness.

    PubMed

    Cui, Sen; Cui, Chunxiang; Xie, Jiaqi; Liu, Shuangjin; Shi, Jiejie

    2018-02-05

    To meet the more rigorous requirement in aerospace industry, recent studies on strengthening and toughening TiAl alloys mostly focus on high Nb addition, which inevitably bring in an increasing of density. In this study, a carbon fibers coated with graphene reinforced TiAl alloy composite was fabricated by powder metallurgy, melt spun and vacuum melting. This composite got remarkable mechanical properties combined with a prominent density reduction. In contrast with pure TiAl ingots, this sample exhibits an average fracture strain from 16% up to 26.27%, and an average strength from 1801 MPa up to 2312 MPa. Thus, we can achieve a new method to fabricate this low-density, good mechanical performance TiAl composite which could bring in more opportunities for application in aerospace industry.

  16. Effect of Multiple Reflow Cycles and Al2O3 Nanoparticles Reinforcement on Performance of SAC305 Lead-Free Solder Alloy

    NASA Astrophysics Data System (ADS)

    Tikale, Sanjay; Prabhu, K. Narayan

    2018-05-01

    The effect of Al2O3 nanoparticles reinforcement on melting behavior, microstructure evolution at the interface and joint shear strength of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder alloy subjected to multiple reflow cycles was investigated. The reinforced SAC305 solder alloy compositions were prepared by adding Al2O3 nanoparticles in different weight fractions (0.05, 0.1, 0.3 and 0.5 wt.%) through mechanical dispersion. Cu/solder/Cu micro-lap-shear solder joint specimens were used to assess the shear strength of the solder joint. Differential scanning calorimetry was used to investigate the melting behavior of SAC305 solder nanocomposites. The solder joint interfacial microstructure was studied using scanning electron microscopy. The results showed that the increase in melting temperature (T L) and melting temperature range of the SAC305 solder alloy by addition of Al2O3 nanoparticles were not significant. In comparison with unreinforced SAC305 solder alloy, the reinforcement of 0.05-0.5 wt.% of Al2O3 nanoparticles improved the solder wettability. The addition of nanoparticles in minor quantity effectively suppressed the Cu6Sn5 IMC growth, improved the solder joint shear strength and ductility under multiple reflow cycles. However, the improvement in solder properties was less pronounced on increasing the nanoparticle content above 0.1 wt.% of the solder alloy.

  17. Interaction Between U-Mo Alloys and Alloys Al-Be

    NASA Astrophysics Data System (ADS)

    Nikitin, S. N.; Tarasov, B. A.; Shornikov, D. P.

    The main objective of the work is the experimental determination of the effect of doping on the kinetics of the interaction of beryllium, aluminum and uranium-molybdenum alloy dispersed in the nuclear fuel. It is shown that an increase in the content of Be in Al leads to a linear decrease in the rate of interaction of the alloy with uranium-molybdenum alloy. Besides AlBe-alloys have higher thermal and mechanical properties than other matrix alloys such as AlSi.

  18. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    NASA Astrophysics Data System (ADS)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-08-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  19. Fabrication and Wear Behavior of Nanostructured Plasma-Sprayed 6061Al-SiCp Composite Coating

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Mohanty, R. M.; Sharma, V. K.; Soni, P. R.

    2014-10-01

    6061Al powder with 15 wt.% SiC particulate (SiCp) reinforcement was mechanically alloyed (MA) in a high-energy attrition mill. The MA powder was then plasma sprayed onto weathering steel (Cor-Ten A242) substrate using an atmospheric plasma spray process. Results of particle size analysis and scanning electron microscopy show that the addition of SiC particles as the reinforcement influences on the matrix grain size and morphology. XRD studies revealed embedment of SiCp in the MA-processed composite powder, and nanocrystals in the MA powder and the coating. Microstructural studies showed a uniform distribution of reinforced SiC particles in the coating. The porosity level in the coating was as low as 2% while the coating hardness was increased to 232VHN. The adhesion strength of the coatings was high and this was attributed to higher degree of diffusion at the interface. The wear rate in the coatings was evaluated using a pin-on-disk type tribometer and found to decrease by 50% compared to the 6061Al matrix coating. The wear mechanism in the coating was delamination and oxidative type.

  20. Modelling Precipitation Kinetics During Aging of Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Du, Qiang; Friis, Jepser

    A classical Kaufmann-Wagner numerical model is employed to predict the evolution of precipitate size distribution during the aging treatment of Al-Mg-Si alloys. One feature of the model is its fully coupling with CALPHAD database, and with the input of interfacial energy from ab-initial calculation, it is able to capture the morphological change of the precipitates. The simulation results will be compared with the experimental measurements.

  1. Wear mechanisms in hybrid composites of Graphite-20 Pct SiC in A356 Aluminum Alloy (Al-7 Pct Si-0.3 Pct Mg)

    NASA Astrophysics Data System (ADS)

    Ames, W.; Alpas, A. T.

    1995-01-01

    The wear behavior of A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg) matrix composites reinforced with 20 vol Pct SiC particles and 3 or 10 vol Pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X-ray diffractometry (XRD). The wear resistance of 3 Pct graphite-20 Pct SiC-A356 hybrid composite was comparable to 20 Pct SiC-A356 without graphite at low and medium loads. At loads below 20 N, both hybrid and 20 Pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 Pct graphite 20 Pct SiC-A356 was 1 to 2 times higher than 10 Pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 Pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 Pct and 10 Pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites. Tribolayers, mainly consisting of a compacted mixture of graphite, iron oxides, and aluminum, were generated on the surfaces of the hybrid composites. In the hybrid composites, the elimination of the severe wear (and hence the improvement in seizure resistance) was attributed to the reduction in friction-induced surface heating due to the presence of graphite- and iron

  2. Mechanical properties enhancement and microstructure study of Al-Si-TiB2 in situ composites

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Majhi, J.; Pattnaik, A. B.; Sahoo, J. K.; Das, Swagat

    2018-03-01

    Al–Si alloy-based composite is one of the most promising MMC materials owing to its outstanding mechanical properties, wear and corrosion resistance, low cost and ability to be synthesized via conventional casting routes. Challenges in achieving clean interface between reinforced particles and matrix alloy have been overcome by means of in-situ techniques of fabrication. Present investigation is concerned with synthesizing Al-Si-TiB2 in-situ composites through stir casting route using K2TiF6 and KBF4 halide salts for exothermic salt metal reaction. X-Ray diffraction analysis revealed the existence of TiB2 in the prepared samples. Effect of TiB2in-situ particles in the Al-Si base alloy has been investigated from the results obtained from optical microscopy as well as SEM study and wear analysis with a pin on disc wear testing apparatus. Improved hardness and wear properties were observed with addition of TiB2.

  3. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  4. Wear study of Al-SiC metal matrix composites processed through microwave energy

    NASA Astrophysics Data System (ADS)

    Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit

    2018-04-01

    Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.

  5. Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy

    NASA Astrophysics Data System (ADS)

    Ferdian, Deni; Josse, Claudie; Nguyen, Patrick; Gey, Nathalie; Ratel-Ramond, Nicolas; de Parseval, Philippe; Thebault, Yannick; Malard, Benoit; Lacaze, Jacques; Salvo, Luc

    2015-07-01

    The microstructure of a high-purity Al-6.5Si-1Fe (wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Fe-bearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading.

  6. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan

    2017-07-01

    Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.

  7. Microstructural and thermal study of Al-Si-Mg/melon shell ash particulate composite

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Umaru, O. B.; Bawa, M. A.; Jibo, H. A.

    The microstructural study via scanning electron microscope (SEM) and thermal study via differential scanning calorimetric (DSC) study of Al-7%Si-0.3Mg/melon shell ash particulate composite has been carried out. The melon shell ash was used in the production of MMC ranging from 5% to 20% at interval of 5% addition using stir casting method. The melon shell ash was characterized using X-ray fluorescent (XRF) that reveal the presence of CaO, SiO2, Al2O3, MgO, and TiO2 as major compounds. The composite was machined and subjected to heat treatment. Microstructural analyses of the composite produced were done using scanning electron microscope (SEM). The microstructure obtained reveals a dark ceramic (reinforcer) and white metallic phase. Equally, the 5 wt% DSC result gives better thermal conductivity than other proportions (10 wt%, 15 wt%, and 20 wt%). These results showed that an improved property of Al-Si-Mg alloy was achieved using melon shell ash particles as reinforcement up to a maximum of 20 wt% for microstructural and 5% wt DSC respectively.

  8. Fatigue behavior of a 2XXX series aluminum alloy reinforced with 15 vol Pct SiCp

    NASA Astrophysics Data System (ADS)

    Bonnen, J. J.; Allison, J. E.; Jones, J. W.

    1991-05-01

    The fatigue behavior of a naturally aged powder metallurgy 2xxx series aluminum alloy (Alcoa MB85) and a composite made of this alloy with 15 vol pct SiCp, has been investigated. Fatigue lives were determined using load-controlled axial testing of unnotched cylindrical samples. The influence of mean stress was determined at stress ratios of -1, 0.1, and 0.7. Mean stress had a significant influence on fatigue life, and this influence was consistent with that normally observed in metals. At each stress ratio, the incorporation of SiC reinforcement led to an increase in fatigue life at low and intermediate stresses. When considered on a strain-life basis, however, the composite materials had a somewhat inferior resistance to fatigue. Fatigue cracks initiated from several different microstructural features or defect types, but fatigue life did not vary significantly with the specific initiation site. As the fatigue crack advanced away from the fatigue crack initiation site, increasing numbers of SiC particles were fractured, in agreement with crack-tip process zone models.

  9. Nonisovalent Si-III-V and Si-II-VI alloys: Covalent, ionic, and mixed phases

    NASA Astrophysics Data System (ADS)

    Kang, Joongoo; Park, Ji-Sang; Stradins, Pauls; Wei, Su-Huai

    2017-07-01

    Nonequilibrium growth of Si-III-V or Si-II-VI alloys is a promising approach to obtaining optically more active Si-based materials. We propose a new class of nonisovalent S i2AlP (or S i2ZnS ) alloys in which the Al-P (or Zn-S) atomic chains are as densely packed as possible in the host Si matrix. As a hybrid of the lattice-matched parent phases, S i2AlP (or S i2ZnS ) provides an ideal material system with tunable local chemical orders around Si atoms within the same composition and structural motif. Here, using first-principles hybrid functional calculations, we discuss how the local chemical orders affect the electronic and optical properties of the nonisovalent alloys.

  10. Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung Hwan; Jung, Jae Pil

    2016-08-01

    The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.

  11. Influence of Li₂Sb Additions on Microstructure and Mechanical Properties of Al-20Mg₂Si Alloy.

    PubMed

    Yu, Hong-Chen; Wang, Hui-Yuan; Chen, Lei; Zha, Min; Wang, Cheng; Li, Chao; Jiang, Qi-Chuan

    2016-03-29

    It is found that Li₂Sb compound can act as the nucleus of primary Mg₂Si during solidification, by which the particle size of primary Mg₂Si decreased from ~300 to ~15-25 μm. Owing to the synergistic effect of the Li₂Sb nucleus and adsorption-poisoning of Li atoms, the effect of complex modification of Li-Sb on primary Mg₂Si was better than that of single modification of Li or Sb. When Li-Sb content increased from 0 to 0.2 and further to 0.5 wt.%, coarse dendrite changed to defective truncated octahedron and finally to perfect truncated octahedral shape. With the addition of Li and Sb, ultimate compression strength (UCS) of Al-20Mg₂Si alloys increased from ~283 to ~341 MPa and the yield strength (YS) at 0.2% offset increased from ~112 to ~179 MPa while almost no change was seen in the uniform elongation. Our study offers a simple method to control the morphology and size of primary Mg₂Si, which will inspire developing new Al-Mg-Si alloys with improved mechanical properties.

  12. The microstructure-processing-property relationships in an aluminum matrix composite system reinforced by aluminum-copper-iron alloy particles

    NASA Astrophysics Data System (ADS)

    Tang, Fei

    these strengthening mechanisms can be combined to predict accurately the strength of the composites. By neutron diffraction measurements, it also was found that the composites consolidated from Al and Al63Cu25Fe12 quasicrystal alloy reinforcement powders have compressive residual stress in the Al matrix, contrary to the tensile residual stress in typical Al/SiC composites. The composites made by the quasi-isostatic forging process exhibited higher tensile strengths and much higher compressive residual stresses than the composites made by the VHP process.

  13. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  14. Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    The oxidation of Nb–silicide-based alloys is improved with Al, Cr, Ge or Sn addition(s). Depending on addition(s) and its(their) concentration(s), alloyed C14-AB2 Laves and A15-A3X phases can be stable in the microstructures of the alloys. In both phases, A is the transition metal(s), and B and X respectively can be Cr, Al, Ge, Si or Sn, and Al, Ge, Si or Sn. The alloying, creep and hardness of these phases were studied using the composition weighted differences in electronegativity (∆χ), average valence electron concentrations (VEC) and atomic sizes. For the Laves phase (i) the VEC and ∆χ were in the ranges 4.976 < VEC < 5.358 and −0.503 < ∆χ < −0.107; (ii) the concentration of B (=Al + Cr + Ge + Si + Sn) varied from 50.9 to 64.5 at %; and (iii) the Cr concentration was in the range of 35.8 < Cr < 51.6 at %. Maps of ∆χ versus Cr, ∆χ versus VEC, and VEC versus atomic size separated the alloying behaviours of the elements. Compared with unalloyed NbCr2, the VEC decreased and ∆χ increased in Nb(Cr,Si)2, and the changes in both parameters increased when Nb was substituted by Ti, and Cr by Si and Al, or Si and Ge, or Si and Sn. For the A15 phase (i) the VEC and ∆χ were in the ranges 4.38 < VEC < 4.89 and 0.857 < ∆χ < 1.04, with no VEC values between 4.63 and 4.72 and (ii) the concentration of X (=Al + Ge + Si + Sn) varied from 16.3 to 22.7 at %. The VEC versus ∆χ map separated the alloying behaviours of elements. The hardness of A15-Nb3X was correlated with the parameters ∆χ and VEC. The hardness increased with increases in ∆χ and VEC. Compared with Nb3Sn, the ∆χ and hardness of Nb3(Si,Sn) increased. The substitution of Nb by Cr had the same effect on ∆χ and hardness as Hf or Ti. The ∆χ and hardness increased with Ti concentration. The addition of Al in Nb3(Si,Sn,Al) decreased the ∆χ and increased the hardness. When Ti and Hf, or Ti, Hf and Cr, were simultaneously present with Al, the ∆χ was decreased and the

  15. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    PubMed

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  16. Thermodynamics, Solubility, and Diffusivity of Oxygen in Titanium and Ti-Al Alloys

    NASA Technical Reports Server (NTRS)

    Mehrotra, Gopal M.

    1992-01-01

    Titanium aluminides and titanium aluminide-based composites are attractive candidate materials for high-temperature structural applications. As these materials may be exposed to oxidizing environments durine their use at elevated temperatures, it is essential that they possess a good oxidation resistance. Previous studies have shown that the oxidation resistance of Al-rich alloys in the Ti-Al system is superior to that of the Ti-rich alloys. The scales formed on the surface of the Al-rich and Ti-rich alloys have been reported to be predominantly Al2O3 and TiO2, respectively. Since the relative stabilities of the oxides of Al and Ti at various temperatures and oxygen pressures can be assessed from their thermodynamic data, it is possible, With the help of thermodynamic calculations, to determine the compositions of the alloys which would form scales of Al2O3, TiO(x) or a ternary oxide such as TiAl2O5 during oxidation at a given temperature. The thermodynamic calculations require reliable activity data for the Ti-Al system. These data have not been determined for the entire composition and temperature range of interest. Using the data available in the literature, recently performed thermodynamic calculations and concluded that the stable oxide changed from TiO to Al2O3 in the existence region of the tial phase. In the case of titanium aluminide-based composites, another major concern is the mutual chemical compatibility of the matrix material with the reinforcement phase. Fibers of SiC, TiB2 and Al2O3 are currently being investigated for reinforcement of titanium aluminide matrices.

  17. Wear of tin coating and Al-Si alloy substrate against carburized steel under mixed lubrication

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Cheng, H. S.; Fine, M. E.

    1994-04-01

    Tin coatings on Al-Si alloys are widely used in the automotive industries. The soft tin coating and the harder substrate alloy form a tribological system with the advantages of low friction and reasonably high load-bearing capacity. Wear tests of tin coated Al-Si Z332 alloy in conformal contact against carburized 1016 steel have been carried out under mixed lubrications with SAE 10W30 oil to study the wear mechanisms. Two major wear mechanisms, uniform wear of the tin coating due to micro-plowing and spall pitting related to the substrate are found to contribute to the bearing material loss when the fluid lubrication film is relatively thick (Lambda about 1.6). Under conditions of thinner films (Lambda approximately = 0.8), some local coating debonding occurs. The pitting and local coating debounding are closely related to fracture in the substrate. The bonding between silicon and tin seems to be weaker than between aluminum and tin. During wear, oxidation occurs.

  18. Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M.

    2006-12-01

    The dry sliding wear behavior of Al 2219 alloy and Al 2219/SiCp/Gr hybrid composites are investigated under similar conditions. The composites are fabricated using the liquid metallurgy technique. The dry sliding wear test is carried out for sliding speeds up to 6 m/s and for normal loads up to 60 N using a pin on disc apparatus. It is found that the addition of SiCp and graphite reinforcements increases the wear resistance of the composites. The wear rate decreases with the increase in SiCp reinforcement content. As speed increases, the wear rate decreases initially and then increases. The wear rate increases with the increase in load. Scanning electron microscopy micrographs of the worn surface are used to predict the nature of the wear mechanism. Abrasion is the principle wear mechanism for the composites at low sliding speeds and loads. At higher loads, the wear mechanism changes to delamination.

  19. Resistivity Changes Due to Precipitation Effects in Fibre Reinforced Mg-Al-Zn-Mn Alloy

    NASA Astrophysics Data System (ADS)

    Kiehn, J.; Kainer, K. U.; Vostrý, P.; Stulíková, I.

    1997-05-01

    The change of electrical properties of alumina short fibre reinforced Mg-Al-Zn-Mn alloy AZ91D during isochronal annealing up to 300 °C is discussed. The Saffil® fibres were incorporated into the magnesium alloy by direct squeeze casting. The fibre distribution is random planar parallel to the flat faces of the dc four-point resistivity specimens machined from the solution treated castings. A sharp drop of resistivity between 140 and 260 °C is explained by the formation of incoherent -phase particles. Some practical recommendations concerning the use of alumina short fibre reinforced AZ91 alloy are made on the basis of the results obtained. Es werden die Änderungen der elektrischen Eigenschaften der aluminiumoxid-kurzfaserverstärkten Mg-Al-Zn-Mn Legierung AZ91D während isochroner Wärmebehandlungen bis 300 °C diskutiert. Das direkte Preßgießverfahren diente zur Herstellung der Saffil®-Faser Magnesium Verbundwerkstoffe. Die Proben zur Widerstandsmessung nach der Vier-Punkt Methode wurden durch spanende Bearbeitung aus den lösungsgeglühten Preßgußstücken herausgearbeitet, so daß sie regellose Faserverteilung in den Ebenen parallel zu den flachen Probenseiten aufwiesen. Ein starker Abfall des elektrischen Widerstands im Temperaturbereich zwischen 140 und 260 °C wird durch die Bildung inkohärenter β-Phase erklärt. Auf Grundlage der Ergebnisse werden einige Empfehlungen zur Anwendung der kurzfaserverstärkten Legierung AZ91 gegeben.

  20. Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Zongning; Wang, Tongmin; Zhao, Yufei; Zheng, Yuanping; Kang, Huijun

    2015-05-01

    NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.

  1. Electrochemical studies of aluminium 7075 reinforced with Al2O3/SiCp hybrid composites in acid chloride medium

    NASA Astrophysics Data System (ADS)

    Ravikumar, M.; Reddappa, H. N.; Suresh, R.

    2018-04-01

    The study of corrosion rate and the inhibition efficiency of inhibitor for Al 7075 and Al 7075/Al2O3/SiCp corrosion in 1 M hydrochloride acid solution under Laboratory temperature by electrochemical measurements process. The efficiency increases by increasing of wt. % of reinforcement. The premier efficiency 99.1% is observed in the presence of reinforcement. The Electrochemical Impedance spectroscopic (EIS) method exhibit the capacitive loop representing the corrosion effect was controlled by the charge transfer method.

  2. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  3. Effects of Ti and La Additions on the Microstructures and Mechanical Properties of B-Refined and Sr-Modified Al-11Si Alloys

    NASA Astrophysics Data System (ADS)

    Li, Chenlin; Pan, Ye; Lu, Tao; Jing, Lijun; Pi, Jinhong

    2018-03-01

    The effects of Ti and La additions on the microstructures and mechanical properties of B-refined and Sr-modified Al-11Si alloys were investigated in the present work. The interactions among Ti, La, B and Sr elements were discussed employing microstructure observation, thermal analysis and tensile test, respectively. It was found that the addition of 0.05 wt% B induces a transformation of eutectic Si from finely fibrous to coarsely plate-like morphology in the Al-11Si alloy with 0.02 wt%Sr modification, owing to the poisoning of IIT mechanism, and the eutectic Si grows only with TPRE mechanism. Both titanium and lanthanum can neutralize the co-poisoning effect between Sr and B in the Al-11Si alloy, but the neutralizing effect of La is dependent on the addition sequence. The combinative addition of La and B elements promotes the effective refinement of α-Al grains, but an inhomogeneous modification of eutectic Si phases is also observed, leading to a slightly decrease in the elongation.

  4. A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System

    NASA Astrophysics Data System (ADS)

    Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.

    2017-03-01

    The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.

  5. In Situ Study of Microstructure Evolution in Solidification of Hypereutectic Al-Si Alloys with Application of Thermal Analysis and Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Sediako, Dimitry G.; Kasprzak, Wojciech

    2015-09-01

    Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.

  6. Effects of Heat Treatment on the Microstructures and High Temperature Mechanical Properties of Hypereutectic Al-14Si-Cu-Mg Alloy Manufactured by Liquid Phase Sintering Process

    NASA Astrophysics Data System (ADS)

    Heo, Joon-Young; Gwon, Jin-Han; Park, Jong-Kwan; Lee, Kee-Ahn

    2018-05-01

    Hypereutectic Al-Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al-Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al-Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 ( θ) and AlCuMgSi ( Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT 300 °C: 351 93 MPa) than after sintering (RT 300 °C: 210 89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.

  7. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-09-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  8. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  9. Corrosion resistance of a new AL 6013-20 SiC(P) in salt spray chamber

    NASA Astrophysics Data System (ADS)

    Ahmad, Zaki; Aleem, B. J. Abdul

    2000-06-01

    Aluminum 6013 alloy (0.82Si, 0.95Mg, and 0.35Mn) is finding increasing usage in new aircraft designs, automotives, and structural applications due to its good stretch forming character in T4 temper (solution heat treated and naturally aged to a substantially stable conditions) compared to alloy 2024 (4.4Cu, 0.6Mn, 1.5Mg, and balance Al) and Al6061 (Si0.51 to 0.71, Fe0.35, Cu0.15, Mn0.85, Mg0.15, 0.25Cr, 0.15Zn, and balanced Al). The newly developed A1 6013 reinforced with 20 vol.% SiC(P) has a higher strength than its unreinforced counterpart. Whereas the corrosion behavior of A1 6013 has been reported in literature, there is no previous data on A1 6013 reinforced with SiC(P). A knowledge of the corrosion behavior of this alloy is crucial to its applications in aerospace, structural, and automotive industry. The first results of corrosion study of this alloy in 3.5 wt.% Na Cl in a salt spray chamber are presented. Three tempers F (as fabricated), O (annealed), and T4 (age hardened and stabilized at room temperature) of the alloy A1 6013-30 SiC(P) were exposed to environmental chamber in accordance with ASTM recommended practice. The corrosion rate of the alloy showed a decrease with increased exposure period and after 800 h of exposure no appreciable change in the rate of corrosion was observed. The lowest rate of corrosion (4.83 mdd) was shown by temper T4 followed by tempers F and O after 1200 h of exposure in the increasing order of corrosion rate. Fluctuations in the corrosion rate with time are related to the kinetics of growth and dissolution of Al(OH)3 film, which was detected by fourier transformation infrared (FTIR) spectroscopy (FTIS). The film was composed of an inner compact layer and outer bulk layer dependent on the refreshment rate from the bulk solution. Micrograph examination by scanning electron microscopy (SEM) showed the presence of pits covered by aluminum hydroxide gel, which isolates the pit from the bulk solution. The acidic conditions of

  10. Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data

    NASA Astrophysics Data System (ADS)

    Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.

    2017-09-01

    The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.

  11. On the Alloying and Properties of Tetragonal Nb5Si3 in Nb-Silicide Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    The alloying of Nb5Si3 modifies its properties. Actual compositions of (Nb,TM)5X3 silicides in developmental alloys, where X = Al + B + Ge + Si + Sn and TM is a transition and/or refractory metal, were used to calculate the composition weighted differences in electronegativity (Δχ) and an average valence electron concentration (VEC) and the solubility range of X to study the alloying and properties of the silicide. The calculations gave 4.11 < VEC < 4.45, 0.103 < Δχ < 0.415 and 33.6 < X < 41.6 at.%. In the silicide in Nb-24Ti-18Si-5Al-5Cr alloys with single addition of 5 at.% B, Ge, Hf, Mo, Sn and Ta, the solubility range of X decreased compared with the unalloyed Nb5Si3 or exceeded 40.5 at.% when B was with Hf or Mo or Sn and the Δχ decreased with increasing X. The Ge concentration increased with increasing Ti and the Hf concentration increased and decreased with increasing Ti or Nb respectively. The B and Sn concentrations respectively decreased and increased with increasing Ti and also depended on other additions in the silicide. The concentration of Sn was related to VEC and the concentrations of B and Ge were related to Δχ. The alloying of Nb5Si3 was demonstrated in Δχ versus VEC maps. Effects of alloying on the coefficient of thermal expansion (CTE) anisotropy, Young’s modulus, hardness and creep data were discussed. Compared with the hardness of binary Nb5Si3 (1360 HV), the hardness increased in silicides with Ge and dropped below 1360 HV when Al, B and Sn were present without Ge. The Al effect on hardness depended on other elements substituting Si. Sn reduced the hardness. Ti or Hf reduced the hardness more than Cr in Nb5Si3 without Ge. The (Nb,Hf)5(Si,Al)3 had the lowest hardness. VEC differentiated the effects of additions on the hardness of Nb5Si3 alloyed with Ge. Deterioration of the creep of alloyed Nb5Si3 was accompanied by decrease of VEC and increase or decrease of Δχ depending on alloying addition(s). PMID:29300327

  12. Solidification kinetics of a near eutectic Al-Si alloy, unmodified and modified with Sr

    NASA Astrophysics Data System (ADS)

    Aparicio, R.; Barrera, G.; Trapaga, G.; Ramirez-Argaez, M.; Gonzalez-Rivera, C.

    2013-07-01

    The purpose of this work was to explore the differences in solidification kinetics between unmodified and Sr modified eutectic Al-Si alloy as revealed by Fourier Thermal Analysis (FTA) and grain-growth kinetics characterization. Thermal analysis were performed in cylindrical stainless steel cups coated with a thin layer of boron nitride, using two type-K thermocouples connected to a data acquisition system. Grain growth kinetics characterization was carried out using solid fraction evolution and grain density data. FTA results for the non modified and modified alloys suggest that there are changes in the solidification rate during eutectic nucleation followed, during growth, by similar solidification rate evolutions, suggesting that this parameter is governed principally by the heat extraction conditions. On the other hand the change of the grain growth parameters estimated for the experimental probes suggest that the presence of Sr may modify the relationship between grain growth rate and undercooling in eutectic Al-Si.

  13. Fractional Brownian motion of an Al nanosphere in liquid Al-Si alloy under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Yokota, Takeshi; Howe, J. M.; Jesser, W. A.; Murayama, M.

    2004-05-01

    Fractional forces and Brownian motion are expected to govern the behavior of nanoscale metallic solids in liquids, but such systems have not been studied. We investigated the motion of a crystalline Al nanosphere inside a partially molten Al-Si alloy particle, using an electron beam to both stimulate and observe the motion of the nanosphere. The irregular motion observed was quantified as antipersistant fractional Brownian motion. Analysis of possible phenomena contributing to the motion demonstrates that the incident electrons provide the fractional force that moves the Al nanosphere and that gravity and the oxide shell on the partially molten particle cause the antipersistant behavior.

  14. Thermal Treatment, Sliding Wear and Saline Corrosion of Al In Situ Reinforced with Mg2Si and Ex Situ Reinforced with TiC Particles

    NASA Astrophysics Data System (ADS)

    Lekatou, A. G.; Poulia, A.; Mavros, H.; Karantzalis, A. E.

    2018-02-01

    The main objective of this work is to produce a composite consisting of (a) a cast heat-treatable Al-Mg-Si alloy with high contents of Mg for corrosion resistance and Si to offset the Mg-due poor castability (in situ hypoeutectic Mg2Si/Al composite) and (b) TiC particles at high enough volume fractions (≤ 15%), in order to achieve a satisfactory combination of wear and corrosion performance. TiCp/Al-7Mg-5Si (wt.%) composites were produced by flux-assisted casting followed by solution and aging heat treatment. Solution treatment led to a relatively uniform dispersion and shape rounding of Mg2Si precipitates and Si particles. TiC particle addition resulted in refinement of primary Al, modification of the Mg2Si Chinese script morphology and refinement/spheroidization of primary Mg2Si. Heat treatment combined with TiC addition notably improved the sliding wear resistance of Al-7Mg-5Si. A wear mechanism has been proposed. The TiC/Al interfaces remained intact of corrosion during potentiodynamic polarization of the heat-treated materials in 3.5 wt.% NaCl. Different main forms of localized corrosion in 3.5 wt.% NaCl were identified for each TiC content (0, 5, 15 vol.%), depending on specific degradation favoring microstructural features (topology/size/interface wetting) at each composition.

  15. Studies of Al-Ti Alloys by SEM

    NASA Astrophysics Data System (ADS)

    Yildiz, K.; Atici, Y.; Keşlİ Oǧlu, K.; Yaşar, E.

    2007-04-01

    Al-Ti (1, 2 wt. %) alloys were investigated by Scanning Electron Microscopy (SEM). SEM observations and energy-dispersive x-ray analyses (EDX) showed that the phase structure of Al-Ti (1 %) alloy at 165 μm/s is composed of Al matrix and C, Ni, Fe and Si particles and the Al-Ti (1 %) alloys at 16 and 8 μm/s have only the Al matrix and C particles. It was also found that the Al-Ti (2 %) form the Al matrix and intermetallic TiAl.

  16. Comparison of orthorhombic and alpha-two titanium aluminides as matrices for continuous SiC-reinforced composites

    NASA Astrophysics Data System (ADS)

    Smith, P. R.; Graves, J. A.; Rhodes, Cg.

    1994-06-01

    The attributes of an orthorhombic Ti aluminide alloy, Ti-21Al-22Nb (at. pct), and an alpha-two Ti aluminide alloy, Ti-24Al-11Nb (at. pct), for use as a matrix with continuous SiC (SCS-6) fiber reinforcement have been compared. Foil-fiber-foil processing was used to produce both unreinforced (“neat”) and unidirectional “SCS-6” reinforced panels. Microstructure of the Ti-24A1-11Nb matrix consisted of ordered Ti3Al ( α 2) + disordered beta (β), while the Ti-21 Al-22Nb matrix contained three phases: α2, ordered beta ( β 0), and ordered orthorhombic (O). Fiber/ matrix interface reaction zone growth kinetics at 982 °C were examined for each composite system. Although both systems exhibited similar interface reaction products (i.e., mixed Ti carbides, silicides, and Ti-Al carbides), growth kinetics in the α 2 + β matrix composite were much more rapid than in the O + β 0 + α 2 matrix composite. Additionally, interfacial reaction in the α 2 + β} composite resulted in a relatively large brittle matrix zone, depleted of beta phase, which was not present in the O + β 0+ α 2 matrix composite. Mechanical property measurements included room and elevated temperature tensile, thermal stability, thermal fatigue, thermo-mechanical fatigue (TMF), and creep. The three-phase orthorhombic-based alloy outperformed the α2+ β alloy in all of these mechanical behavioral areas, on both an absolute and a specific (i.e., density corrected) basis.

  17. Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing: Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lipinska, Marta; Chrominski, Witold; Olejnik, Lech; Golinski, Jacek; Rosochowski, Andrzej; Lewandowska, Malgorzata

    2017-10-01

    In this study, an Al-Mg-Si alloy was processed using via incremental equal channel angular pressing (I-ECAP) in order to obtain homogenous, ultrafine-grained plates with low anisotropy of the mechanical properties. This was the first attempt to process an Al-Mg-Si alloy using this technique. Samples in the form of 3 mm-thick square plates were subjected to I-ECAP with the 90 deg rotation around the axis normal to the surface of the plate between passes. Samples were investigated first in their initial state, then after a single pass of I-ECAP, and finally after four such passes. Analyses of the microstructure and mechanical properties demonstrated that the I-ECAP method can be successfully applied in Al-Mg-Si alloys. The average grain size decreased from 15 to 19 µm in the initial state to below 1 µm after four I-ECAP passes. The fraction of high-angle grain boundaries in the sample subjected to four I-ECAP passes lay within 53 to 57 pct depending on the examined plane. The mechanism of grain refinement in Al-Mg-Si alloy was found to be distinctly different from that in pure aluminum with the grain rotation being more prominent than the grain subdivision, which was attributed to lower stacking fault energy and the reduced mobility of dislocations in the alloy. The ultimate tensile strength increased more than twice, whereas the yield strength was more than threefold. Additionally, the plates processed by I-ECAP exhibited low anisotropy of mechanical properties (in plane and across the thickness) in comparison to other SPD processing methods, which makes them attractive for further processing and applications.

  18. Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xuexuan

    2016-09-15

    High quality AA6101 aluminum cables are critical to electrical industry to meet the energy consumption requests. In the present work, the influence of Mg/Si ratios on the electrical conductivity and mechanical properties of AA6101 aluminum alloy was investigated. Wheatstone Bridge method and tensile test were employed to characterize the mechanical properties. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were used to understand the morphology of the precipitation and the mechanism of age hardening. It is found that excessive Si benefits high strength and high conductivity while excessive Mg plays a negative role in the strengthmore » and the conductivity of AA6101 cables. Excessive Si elements promote both the precipitating rate and quantity of β″ phase therefore increase the tensile strength. Excessive Si elements also help with decreasing the lattice distortion, which contributes to the enhancement of the conductivity. Excessive Mg elements lead to more dissolved Mg after aging treatment, therefore increase lattice distortion of the matrix and promote the deposit of coarse Mg-enriched secondary phase. - Highlights: •A new available method to improve the mechanical and electrical properties of Al-Mg-Si alloy •Investigation on the role of various Mg/Si ratios in the changes of comprehensive performances •Discussions on the morphology of the precipitation phases and the mechanism of hardening.« less

  19. Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cai, Hongyan; Han, Kai; Jiang, Heng; Wang, Jingwen; Liu, Hui

    2017-10-01

    Silicon/carbon (Si/C) composite shows great potential to replace graphite as lithium-ion battery (LIB) anode owing to its high theoretical capacity. Exploring low-cost scalable approach for synthesizing Si/C composites with excellent electrochemical performance is critical for practical application of Si/C anodes. In this study, we rationally applied a scalable in situ approach to produce Si-carbon nanotube (Si-CNT) composite via acid etching of commercial inexpensive micro-sized Al-Si alloy powder and CNT mixture. In the Si-CNT composite, ∼10 nm Si particles were uniformly deposited on the CNT surface. After combining with graphene sheets, a flexible self-standing Si-CNT/graphene paper was fabricated with three-dimensional (3D) sandwich-like structure. The in situ presence of CNT during acid-etching process shows remarkable two advantages: providing deposition sites for Si atoms to restrain agglomeration of Si nanoparticles after Al removal from Al-Si alloy powder, increasing the cross-layer conductivity of the paper anode to provide excellent conductive contact sites for each Si nanoparticles. When used as binder-free anode for LIBs without any further treatment, in situ addition of CNT especially plays important role to improve the initial electrochemical activity of Si nanoparticles synthesized from low-cost Al-Si alloy powder, thus resulting in about twice higher capacity than Si/G paper anode. The self-standing Si-CNT/graphene paper anode exhibited a high specific capacity of 1100 mAh g-1 even after 100 cycles at 200 mA g-1 current density with a Coulombic efficiency of >99%. It also showed remarkable rate capability improvement compared to Si/G paper without CNT. The present work demonstrates a low-cost scalable in situ approach from commercial micro-sized Al-Si alloy powder for Si-based composites with specific nanostructure. The Si-CNT/graphene paper is a promising anode candidate with high capacity and cycling stability for LIBs, especially for the

  20. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3+TiBw)/Ti6Al4V composites.

    PubMed

    Jiao, Y; Huang, L J; Duan, T B; Wei, S L; Kaveendran, B; Geng, L

    2016-09-13

    Novel Ti6Al4V alloy matrix composites with a controllable two-scale network architecture were successfully fabricated by reaction hot pressing (RHP). TiB whiskers (TiBw) were in-situ synthesized around the Ti6Al4V matrix particles, and formed the first-scale network structure (FSNS). Ti5Si3 needles (Ti5Si3) precipitated in the β phase around the equiaxed α phase, and formed the secondary-scale network structure (SSNS). This resulted in increased deformation compatibility accompanied with enhanced mechanical properties. Apart from the reinforcement distribution and the volume fraction, the ratio between Ti5Si3 and TiBw fraction were controlled. The prepared (Ti5Si3 + TiBw)/Ti6Al4V composites showed higher tensile strength and ductility than the composites with a one-scale microstructure, and superior wear resistance over the Ti6Al4V alloy under dry sliding wear conditions at room temperature.

  1. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3+TiBw)/Ti6Al4V composites

    PubMed Central

    Jiao, Y.; Huang, L. J.; Duan, T. B.; Wei, S. L.; Kaveendran, B.; Geng, L.

    2016-01-01

    Novel Ti6Al4V alloy matrix composites with a controllable two-scale network architecture were successfully fabricated by reaction hot pressing (RHP). TiB whiskers (TiBw) were in-situ synthesized around the Ti6Al4V matrix particles, and formed the first-scale network structure (FSNS). Ti5Si3 needles (Ti5Si3) precipitated in the β phase around the equiaxed α phase, and formed the secondary-scale network structure (SSNS). This resulted in increased deformation compatibility accompanied with enhanced mechanical properties. Apart from the reinforcement distribution and the volume fraction, the ratio between Ti5Si3 and TiBw fraction were controlled. The prepared (Ti5Si3 + TiBw)/Ti6Al4V composites showed higher tensile strength and ductility than the composites with a one-scale microstructure, and superior wear resistance over the Ti6Al4V alloy under dry sliding wear conditions at room temperature. PMID:27622992

  2. Interdiffusion in U 3Si-Al, U 3Si 2-Al, and USi-Al dispersion fuels during irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, Gerard L.

    2011-03-01

    Uranium-silicide compound fuel dispersion in an Al matrix is used in research and test reactors worldwide. Interaction layer (IL) growth between fuel particles and the matrix is one of performance issues. The interaction layer growth data for U 3Si, U 3Si 2 and USi dispersions in Al were obtained from both out-of-pile and in-pile tests. The IL is dominantly U(AlSi) 3 from out-of-pile tests, but its (Al + Si)/U ratio from in-pile tests is higher than the out-of-pile data, because of amorphous behavior of the ILs. IL growth correlations were developed for U 3Si-Al and U 3Si 2-Al. The IL growth rates were dependent on the U/Si ratio of the fuel compounds. During irradiation, however, the IL growth rates did not decrease with the decreasing U/Si ratio by fission. It is reasoned that transition metal fission products in the IL compensate the loss of U atoms by providing chemical potential for Al diffusion and volume expansion by solid swelling and gas bubble swelling. The addition of Mo in U 3Si 2 reduces the IL growth rate, which is similar to that of UMo alloy dispersion in a silicon-added Al matrix.

  3. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Fly Ash in Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Li, Liangxing; Xu, Junli; Shi, Zhongning; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen; Yu, Jiangyu; Chen, Gong

    2014-05-01

    An electrochemical method on preparation of Al-Si master alloy was investigated in fluoride-based molten salts of 47.7wt.%NaF-43.3wt.%AlF3-4wt.%CaF2 containing 5 wt.% fly ash at 1233 K. The cathodic products obtained by galvanostatic electrolysis were analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy, and energy-dispersive spectrometry. The result showed that the compositions of the products are Al, Si, and Al3.21Si0.47. Meanwhile, the cathodic electrochemical process was studied by cyclic voltammetry, and the results showed the reduction peak of aluminum deposition is at -1.3 V versus the platinum quasi-reference electrode in 50.3wt.%NaF-45.7wt.%AlF3-4wt.%CaF2 molten salts, while the reduction peak at -1.3 V was the co-deposition of aluminum and silicon when the fly ash was added. The silicon and iron were formed via both co-deposition and aluminothermic reduction. In the electrolysis experiments, current efficiency first increased to a maximum value of 40.7% at a current density of 0.29 A/cm2, and then it decreased with the increase of current density. With the electrolysis time lasting, the content of aluminum in the alloys decreased from 76.05 wt.% to 48.29 wt.% during 5 h, while the content of silicon increased from 15.94 wt.% to 37.89 wt.%.

  4. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    PubMed

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiC p ) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiC p , which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  5. Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy

    NASA Astrophysics Data System (ADS)

    Girelli, L.; Tocci, M.; Montesano, L.; Gelfi, M.; Pola, A.

    2017-11-01

    Additive manufacturing of metals is a production process developed in the last few years to realize net shape components with complex geometry and high performance. AlSi10Mg is one of the most widely used aluminium alloys, both in this field and in conventional foundry processes, for its significant mechanical properties combined with good corrosion resistance. In this paper the effect of heat treatment on AlSi10Mg alloy was investigated. Solution and ageing treatments were carried out with different temperatures and times on samples obtained by direct metal laser sintering and gravity casting in order to compare their performance. Microstructural analyses and hardness tests were performed to investigate the effectiveness of the heat treatment. The results were correlated to the sample microstructure and porosity, analysed by means of optical microscopy and density measurements. It was found that, in the additive manufactured samples, the heat treatment can reduce significantly the performance of the alloy also because of the increase of porosity due to entrapped gas during the deposition technique and that the higher the solution temperature the higher the increase of such defects. A so remarkable effect was not found in the conventional cast alloy.

  6. Formation of the Fe-Containing Intermetallic Compounds during Solidification of Al-5Mg-2Si-0.7Mn-1.1Fe Alloy

    NASA Astrophysics Data System (ADS)

    Que, Zhongping; Wang, Yun; Fan, Zhongyun

    2018-06-01

    Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.

  7. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    NASA Technical Reports Server (NTRS)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  8. Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al–Ti Powder Compacts

    PubMed Central

    Chen, Tijun; Gao, Min; Tong, Yunqi

    2018-01-01

    To prepare core-shell-structured Ti@compound particle (Ti@compoundp) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al–Ti–Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al3Ti phase to form to different degrees. The first-formed Al–Ti–Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)3Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)3Ti phase was larger than that in τ1 phase, but smaller than that in Al3Ti phase. So, the shells in the Al–Ti–Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al–Ti–Mg system and the reaction rate in the Al–Ti–Zn system. More importantly, the desirable core-shell structured Ti@compoundp was only achieved in the semisolid Al–Ti–Si system. PMID:29342946

  9. Microstructure of Friction Stir Welded AlSi9Mg Cast with 5083 and 2017A Wrought Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Hamilton, C.; Kopyściański, M.; Dymek, S.; Węglowska, A.; Pietras, A.

    2018-03-01

    Wrought aluminum alloys 5083 and 2017A were each joined with cast aluminum alloy AlSi9Mg through friction stir welding in butt weld configurations. For each material system, the wrought and cast alloy positions, i.e., the advancing side or the retreating side, were exchanged between welding trials. The produced weldments were free from cracks and discontinuities. For each alloy configuration, a well-defined nugget comprised of alternating bands of the welded alloys characterized the microstructure. The degree of mixing, however, strongly depended on which wrought alloy was present and on its position during processing. In all cases, the cast AlSi9Mg alloy dominated the weld center regardless of its position during welding. Electron backscattered diffraction analysis showed that the grain size in both alloys (bands) constituting the nugget was similar and that the majority of grain boundaries exhibited a high angle character (20°-60°). Regardless of the alloy, however, all grains were elongated along the direction of the material plastic flow during welding. A numerical simulation of the joining process visualized the material flow patterns and temperature distribution and helped to rationalize the microstructural observations. The hardness profiles across the weld reflected the microstructure formed during welding and correlated well with the temperature changes predicted by the numerical model. Tensile specimens consistently fractured in the cast alloy near the weld nugget.

  10. Macrosegregation in Al-7Si alloy caused by abrupt cross-section change during directional solidification

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-09-01

    Hypoeutectic Al-7 wt .% Si alloys were directionally solidified vertically downward in cylindrical molds that incorporated an abrupt cross-section decrease (9.5 mm to 3.2 mm diameter) which, after 5 cm, reverted back to 9.5 mm diameter in a Bridgman furnace; two constant growth speeds and thermal gradients were investigated. Thermosolutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-sections, before contraction and after expansion, this more evident at the lower growth speed. This alloy shows positive longitudinal macrosegregation near cross-section decrease followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. Primary dendrite steepling intensified as solidification proceeded into the narrower section and negative longitudinal macrosegregation was seen on the re-entrant shelves at expansion. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification and the resulting mushy-zone steepling and macrosegregation. The experimentally observed longitudinal and radial macrosegregation associated with the cross-section changes during directional solidification of an Al-7Si alloy is well captured by the numerical simulations.

  11. Influence of Low-Frequency Vibration and Modification on Solidification and Mechanical Properties of Al-Si Casting Alloy.

    PubMed

    Selivorstov, Vadim; Dotsenko, Yuri; Borodianskiy, Konstantin

    2017-05-20

    One of the major aims of the modern materials foundry industry is the achievement of advanced mechanical properties of metals, especially of light non-ferrous alloys such as aluminum. Usually an alloying process is applied to obtain the required properties of aluminum alloys. However, the presented work describes an alternative approach through the application of vibration treatment, modification by ultrafine powder and a combination of these two methods. Microstructural studies followed by image analysis revealed the refinement of α-Al grains with an increase in the Si network area around them. As evidence, the improvement of the mechanical properties of Al casting alloy was detected. It was found that the alloys subjected to the vibration treatment displayed an increase in tensile and yield strengths by 20% and 10%, respectively.

  12. Influence of Low-Frequency Vibration and Modification on Solidification and Mechanical Properties of Al-Si Casting Alloy

    PubMed Central

    Selivorstov, Vadim; Dotsenko, Yuri; Borodianskiy, Konstantin

    2017-01-01

    One of the major aims of the modern materials foundry industry is the achievement of advanced mechanical properties of metals, especially of light non-ferrous alloys such as aluminum. Usually an alloying process is applied to obtain the required properties of aluminum alloys. However, the presented work describes an alternative approach through the application of vibration treatment, modification by ultrafine powder and a combination of these two methods. Microstructural studies followed by image analysis revealed the refinement of α-Al grains with an increase in the Si network area around them. As evidence, the improvement of the mechanical properties of Al casting alloy was detected. It was found that the alloys subjected to the vibration treatment displayed an increase in tensile and yield strengths by 20% and 10%, respectively. PMID:28772922

  13. The Mechanical Strength of Si Foams in the Mushy Zone during Solidification of Al–Si Alloys

    PubMed Central

    Lim, Jeon Taik; Youn, Ji Won; Seo, Seok Yong; Kim, Ki Young; Kim, Suk Jun

    2017-01-01

    The mechanical strength of an Al-30% Si alloy in the mushy zone was estimated by using a novel centrifugation apparatus. In the apparatus, the alloy melt was partially solidified, forming a porous structure made of primary Si platelets (Si foam) while cooling. Subsequently, pressure generated by centrifugal force pushed the liquid phase out of the foam. The estimated mechanical strength of the Si foam in the temperature range 850–993 K was very low (62 kPa to 81 kPa). This is about two orders of magnitude lower than the mechanical strength at room temperature as measured by compressive tests. When the centrifugal stress was higher than the mechanical strength of the foam, the foam fractured, and the primary Si crystallites were extracted along with the Al-rich melt. Therefore, to maximize the centrifugal separation efficiency of the Al-30% Si alloy, the centrifugal stress should be in the range of 62–81 kPa. PMID:28772695

  14. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    NASA Astrophysics Data System (ADS)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  15. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  16. Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy

    PubMed Central

    Pola, Annalisa; Montesano, Lorenzo; Tocci, Marialaura; La Vecchia, Giovina Marina

    2017-01-01

    Ultrasound treatment of liquid aluminum alloys is known to improve mechanical properties of castings. Aluminum foundry alloys are frequently used for production of parts that undergo severe cavitation erosion phenomena during service. In this paper, the effect of the ultrasound treatment on cavitation erosion resistance of AlSi7 alloy was assessed and compared to that of conventionally cast samples. Cavitation erosion tests were performed according to ASTM G32 standard on as-cast and heat treated castings. The response of the alloy in each condition was investigated by measuring the mass loss as a function of cavitation time and by analyzing the damaged surfaces by means of optical and scanning electron microscope. It was pointed out that the ultrasound treatment increases the cavitation erosion resistance of the alloy, as a consequence of the higher chemical and microstructural homogeneity, the finer grains and primary particles and the refined structure of the eutectic induced by the treatment itself. PMID:28772617

  17. Influence of Ultrasound Treatment on Cavitation Erosion Resistance of AlSi7 Alloy.

    PubMed

    Pola, Annalisa; Montesano, Lorenzo; Tocci, Marialaura; La Vecchia, Giovina Marina

    2017-03-03

    Ultrasound treatment of liquid aluminum alloys is known to improve mechanical properties of castings. Aluminum foundry alloys are frequently used for production of parts that undergo severe cavitation erosion phenomena during service. In this paper, the effect of the ultrasound treatment on cavitation erosion resistance of AlSi7 alloy was assessed and compared to that of conventionally cast samples. Cavitation erosion tests were performed according to ASTM G32 standard on as-cast and heat treated castings. The response of the alloy in each condition was investigated by measuring the mass loss as a function of cavitation time and by analyzing the damaged surfaces by means of optical and scanning electron microscope. It was pointed out that the ultrasound treatment increases the cavitation erosion resistance of the alloy, as a consequence of the higher chemical and microstructural homogeneity, the finer grains and primary particles and the refined structure of the eutectic induced by the treatment itself.

  18. Thermomechanical Performance of C and SiC Multilayer, Fiber-Reinforced, CVI SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay

    2004-01-01

    Hybrid fiber approaches have been attempted in the past to alloy desirable properties of different fiber-types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the CrSiC and SiCrSiC composite systems. SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven Sic fiber (Hi-NicalonTM) layers were fabricated using the standard CVI process. Delamination occurred to some extent due to thermal mismatch for all of the composites. However, for the composites with a more uniform stacking sequence, minimal delamination occurred, enabling tensile properties to be determined at room temperature and elevated temperatures (stress-rupture in air). Composites were seal-coated with a CVI SiC layer as well as a proprietary C-B-Si (CBS) layer. Definite improvement in rupture behavior was observed in air for composites with increasing SiC fiber content and a CBS layer. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites.

  19. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2017-04-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  20. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    NASA Astrophysics Data System (ADS)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  1. Effect of Low Cu Amounts and Pre-Deformation on the Precipitation in Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Saito, Takeshi; Muraishi, Shinji; Marioara, Calin D.; Holmestad, Randi

    Transmission electron microscopy (TEM) studies were performed on two Al-Mg-Si alloys with low Cu additions (0.01 and 0.10 wt%) in order to investigate the effect of Cu and 10% pre-deformation on precipitate microstructure and its connection to mechanical properties. After 300 minutes aging at 190°C, fine microstructures associated with high hardness were observed in the alloy with 0.10% Cu. Pre-deformation led to heterogeneous distributions of precipitates along dislocations, causing microstructure coarsening. This effect was less pronounced in the alloy with the higher Cu amount.

  2. Microstructure, Mechanical and Surface Morphological Properties of Al5Ti5Cr Master Alloy as Friction Material Prepared by Stir Die Casting

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Faisal; Srivastava, Sanjay; Agarwal, Alka Bani

    2018-04-01

    Metal matrix composite offers outstanding properties for better performance of disc brakes. In the present study, the composite of AlTiCr master alloy was prepared by stir die casting method. The developed material was reinforced with (0-10 wt%) silicon carbide (SiC) and boron carbide (B4C). The effects of SiC reinforcement from 0 to 10 wt% on mechanical, microstructure and surface morphological properties of Al MMC was investigated and compared with B4C reinforcement. Physical properties like density and micro Vickers hardness number show an increasing trend with an increase in the percentage of SiC and B4C reinforcement. Mechanical properties viz. UTS, yield strength and percentage of elongation are improved with increasing the fraction of reinforcement. The surface morphology and phase were identified from scanning electron microscopy (SEM) and X-ray diffraction analysis and the oxidized product formed during the casting was investigated by Fourier transformation infrared spectroscopy. This confirms the presence of crystallization of corundum (α-Al2O3) in small traces as one of the alumina phases, within casting sample. Micro-structural characterization by SEM depicted that the particles tend to be more agglomerated more and more with the percentage of the reinforcement. The AFM results reveal that the surface roughness value shows a decreasing trend with SiC reinforcement while roughness increases with increase the percentage of B4C.

  3. High-Temperature Active Soldering of SiC Particle-Reinforced Al-MMC Using a Novel ZnAlGaMgTi Filler Metal

    NASA Astrophysics Data System (ADS)

    Chen, Biqiang; Zhang, Guifeng; Zhang, Linjie; Xu, Tingting

    2017-10-01

    In order to broaden the application of SiC particle-reinforced aluminum matrix composite in electronics packaging, newly developed ZnAlGaMgTi filler with a low melting point of 418-441 °C was utilized as filler metal for active soldering of aluminum matrix composites (70 vol.%, SiCp/Al-MMCs) for the first time. The effect of loading pressure on joint properties of ZnAlGaMgTi active filler was investigated. The experimental results indicated that novel filler could successfully solder Al-MMCs, and the presence of Mg in the filler enhanced the penetration of Zn, while the forming of Zn-rich barrier layer influenced the active element MPD (melting point depressant) diffusion into parent composite, and the bulk-like (Mg-Si)-rich phase and Ti-containing phase were readily observed at the interface and bond seam. With the increase in loading pressure, the runout phenomenon appeared more significant, and the filler foil thickness and the Zn penetration depth varied pronouncedly. Sound joints with maximum shear strength of 29.6 MPa were produced at 480 °C at 1 MPa, and the crack occurred adjacent to the boundary of SiC particle and then propagated along the interface. A novel model describing the significant mutual diffusion of Al and Zn atoms between the parent material and solder was proposed.

  4. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-07-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  5. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-03-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  6. The Behaviour of Bifilm Defects in Cast Al-7Si-Mg Alloy.

    PubMed

    El-Sayed, Mahmoud Ahmed

    2016-01-01

    Double oxide films (bifilms) are significant defects in the casting of light alloys, and have been shown to decrease tensile and fatigue properties, and also to increase their scatter, making casting properties unreproducible and unreliable. A bifilm consists of doubled-over oxide films containing a gas-filled crevice and is formed due to surface turbulence of the liquid metal during handling and/or pouring. Previous studies has shown that the nature of oxide film defects may change with time, as the atmosphere inside the bifilm could be consumed by reaction with the surrounding melt, which may enhance the mechanical properties of Al alloy castings. As a proxy for a bifilm, an air bubble was trapped within an Al-7wt.%Si-0.3wt.%Mg (2L99) alloy melt, subjected to stirring. The effect of different parameters such as the holding time, stirring velocity and melt temperature on the change in gas composition of the bubble was investigated, using a design of experiments (DoE) approach. Also, the solid species inside the bubbles solidified in the melt were examined using SEM. The results suggested that both oxygen and nitrogen inside the bifilm would be consumed by reaction with the surrounding melt producing MgAl2O4 and AlN, respectively. Also, hydrogen was suggested to consistently diffuse into the defect. The reaction rates and the rate of H diffusion were shown to increase upon increasing the holding time and temperature, and stirring velocity. Such significant effect of the process parameters studied on the gaseous content of the bubble suggesting that a careful control of such parameters might lead to the deactivation of bifilm defects, or at least elimination of their deteriorous effect in light alloy castings.

  7. The Behaviour of Bifilm Defects in Cast Al-7Si-Mg Alloy

    PubMed Central

    2016-01-01

    Double oxide films (bifilms) are significant defects in the casting of light alloys, and have been shown to decrease tensile and fatigue properties, and also to increase their scatter, making casting properties unreproducible and unreliable. A bifilm consists of doubled-over oxide films containing a gas-filled crevice and is formed due to surface turbulence of the liquid metal during handling and/or pouring. Previous studies has shown that the nature of oxide film defects may change with time, as the atmosphere inside the bifilm could be consumed by reaction with the surrounding melt, which may enhance the mechanical properties of Al alloy castings. As a proxy for a bifilm, an air bubble was trapped within an Al-7wt.%Si-0.3wt.%Mg (2L99) alloy melt, subjected to stirring. The effect of different parameters such as the holding time, stirring velocity and melt temperature on the change in gas composition of the bubble was investigated, using a design of experiments (DoE) approach. Also, the solid species inside the bubbles solidified in the melt were examined using SEM. The results suggested that both oxygen and nitrogen inside the bifilm would be consumed by reaction with the surrounding melt producing MgAl2O4 and AlN, respectively. Also, hydrogen was suggested to consistently diffuse into the defect. The reaction rates and the rate of H diffusion were shown to increase upon increasing the holding time and temperature, and stirring velocity. Such significant effect of the process parameters studied on the gaseous content of the bubble suggesting that a careful control of such parameters might lead to the deactivation of bifilm defects, or at least elimination of their deteriorous effect in light alloy castings. PMID:27529350

  8. Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al-12Si-1Mg-1Cu Piston Alloy

    NASA Astrophysics Data System (ADS)

    Kaiser, Md. Salim

    2018-04-01

    The effects of T6 solution treatment on tensile, impact and fracture properties of cast Al-12Si-1Mg-1Cu piston alloys with trace of zirconium were investigated. Cast alloys were given precipitation strengthening treatment having a sequence of homogenizing, solutionizing, quenching and ageing. Both cast and solutionized samples are isochronally aged for 90 min at different temperatures up to 300 °C. Tensile and impact properties of the differently processed alloys have been studied to understand the precipitation strengthening of the alloys. Fractograpy of the alloys were observed to understand the mode of fracture. It is observed that the improvement in tensile properties in the aged alloys through heat treatment is mainly attributed to the formation of the Al2Cu and Mg2Si precipitates within the Al matrix. Solution treatment improves the tensile strength for the reason that during solution treatment some alloying elements are re-dissolved to produce a solute-rich solid solution. Impact energy decreases with ageing temperature due to formation of GP zones, β' and β precipitates. The fractography shows large and small dimple structure and broken or cracked primary Si, particles. Microstructure study of alloys revealed that the solution treatment improved distribution of silicon grains. The addition of Zr produces an improvement in the tensile properties as a result of its grain refining action and grain coarsening resistance in the matrix at a higher temperature.

  9. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Volcanic Rock in Cryolite Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2016-06-01

    Volcanic rock found in the Longgang Volcano Group in Jilin Province of China has properties essentially similar to Apollo lunar soils and previously prepared lunar soil simulants, such as Johnson Space Center Lunar simulant and Minnesota Lunar simulant. In this study, an electrochemical method of preparation of Al-Si master alloy was investigated in 52.7 wt.%NaF-47.3 wt.%AlF3 melt adding 5 wt.% volcanic rock at 1233 K. The cathodic electrochemical process was studied by cyclic voltammetry, and the results showed that the cathodic reduction of Si(IV) is a two-step reversible diffusion-controlled reaction. Si(IV) is reduced to Si(II) by two electron transfers at -1.05 V versus platinum quasi-reference electrode in 52.7 wt.%NaF-47.3 wt.%AlF3 molten salt adding 5 wt.% volcanic rock, while the reduction peak at -1.18 V was the co-deposition of aluminum and silicon. In addition, the cathodic product obtained by galvanostatic electrolysis for 4 h was analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy and energy dispersive spectrometry. The results showed that the phase compositions of the products are Al, Si, Al5FeSi, and Al3.21Si0.47, while the components are 90.5 wt.% aluminum, 4.4 wt.% silicon, 1.9 wt.% iron, and 0.2 wt.% titanium.

  10. The structure and mechanical properties of AlMg5Si2Mn alloy after surface alloying by the use of fiber laser

    NASA Astrophysics Data System (ADS)

    Pakieła, Wojciech; Tanski, Tomasz; Pawlyta, Mirosława; Pakieła, Katarzyna; Brytan, Zbigniew; Sroka, Marek

    2018-03-01

    Laser surface treatment is successfully applied to increase hardness as well as corrosion and wear resistance in light alloys such as aluminum or magnesium. The laser surface remelting also can be used to repair superficial cracks, voids or porosity caused by the mechanical impact, metallurgical process as well as the corrosive environment on the surface of the aluminum alloy. The purpose of this paper was to investigate the influence of a fiber laser surface treatment on the structure and properties of the EN AC AlMg5Si2Mn alloy. The goal of this investigation was to increase the hardness and improve tribological properties of the aluminum alloy surface as a result of the conducted laser surface treatment. During laser processing, the top surface of the aluminum alloy was enriched with Cr and Ni particles. The grain size of the applied particles was approximately about 60-130 m. The Cr-Ni powder has been introduced in the molten pool using vacuum feeder at a constant rate of 4.5 g/min. For surface remelting we used square laser beam at a size 3 × 3 mm and with the power of 3.0 kW. The linear laser scan rate of the beam was set at 0.5 m/min. Argon was used to protect the liquid metal alloy during surface treatment. Application of the laser treatment on aluminum alloy has enabled to obtain much harder as well as better wear resistant material compared to the untreated EN AC AlMg5Si2Mn.

  11. PEO of pre-anodized Al-Si alloys: Corrosion properties and influence of sealings

    NASA Astrophysics Data System (ADS)

    Mohedano, M.; Matykina, E.; Arrabal, R.; Mingo, B.; Pardo, A.

    2015-08-01

    Voltage-controlled PEO coatings were developed on A356 aluminum alloys (gravity-cast and rheocast) with a pre-anodized layer. The influence of the alloy manufacturing process and the effect of Si-rich phase on the structure and composition of the oxide layers were evaluated using SEM, EDS and XRD. The pre-anodized oxide layer preserves the microstructure of the substrate due to the presence of secondary phases that have a different behavior relative to the matrix during anodizing. PEO coatings consisted of a mixture of α-Al2O3, γ-Al2O3 and mullite. The corrosion behavior and the effectiveness of different sealing techniques based on salts of nickel, cobalt, cerium and phosphonic acid were also studied. Post-treatments improved the hydrophobic properties of the coatings and showed a beneficial effect, significantly increasing the coating impedance and thereby reducing the susceptibility to corrosion.

  12. Effect of Zn Concentration on the Microstructure and Mechanical Properties of Al-Mg-Si-Zn Alloys Processed by Gravity Die Casting

    NASA Astrophysics Data System (ADS)

    Li, Longfei; Ji, Shouxun; Zhu, Qiang; Wang, Yun; Dong, Xixi; Yang, Wenchao; Midson, Stephen; Kang, Yonglin

    2018-06-01

    The microstructure and mechanical properties of Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys (in wt pct) have been investigated by the permanent mold casting process. X-ray diffraction analysis shows that the τ-Mg32(Al, Zn)49 phase forms when the Zn content is 1.01 wt pct. With higher Zn contents of 2.37 and 3.59 wt pct, the η-MgZn2 and τ-Mg32(Al, Zn)49 phases precipitate in the microstructure, and the η-MgZn2 phase forms when the Zn content is 4.62 wt pct. Metallurgical analysis shows that the η-MgZn2 and τ-Mg32(Al, Zn)49 phases strengthen the Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys. After solutionizing at 510 °C for 180 minutes and aging at 180 °C for 90 minutes, the η'-MgZn2 phase precipitates in the α-Al matrix, which significantly enhances the mechanical properties. Addition of 3.59 wt pct Zn to the Al-8.1Mg-2.6Si alloy with heat treatment increases the yield strength from 96 to 280 MPa, increases the ultimate tensile strength from 267 to 310 MPa, and decreases the elongation from 9.97 to 1.74 pct.

  13. Effect of Copper on Corrosion of Forged AlSi1MgMn Automotive Suspension Components

    NASA Astrophysics Data System (ADS)

    Koktas, Serhan; Gokcil, Emre; Akdi, Seracettin; Birol, Yucel

    2017-09-01

    Recently, modifications in the alloy composition and the manufacturing process cycle were proposed to achieve a more uniform structure with no evidence of coarse grains across the section of the AlSi1MgMn alloys. Cu was added to the AlSi1MgMn alloy to improve its age hardening capacity without a separate solution heat treatment. However, Cu addition degrades the corrosion resistance of this alloy due to the formation of Al-Cu precipitates along the grain boundaries that are cathodic with respect to the aluminum matrix and thus encourage intergranular corrosion. The present work was undertaken to identify the impact of Cu addition on the corrosion properties of AlSi1MgMn alloys with different Cu contents. A series of AlSi1MgMn alloys with 0.06-0.89 wt.% Cu were tested in order to identify an optimum level of Cu addition.

  14. Microstructure and tribological properties of in situ synthesized TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite coatings on pure Ti by laser cladding

    NASA Astrophysics Data System (ADS)

    Pu, Yuping; Guo, Baogang; Zhou, Jiansong; Zhang, Shitang; Zhou, Huidi; Chen, Jianmin

    2008-12-01

    TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite (IMC) coatings were in situ synthesized on a pure Ti substrate by laser cladding. It was found that the surface hardness and the wear resistance of the Ti 3Al coating were improved by the formation of these Ti 3Al IMC coatings. The surface hardness and the wear resistance of the TiC/Ti 3Al IMC coatings increased with the increasing volume fraction of TiC powder. Under the same dry sliding test conditions, the wear resistance of TiC, TiN, and SiC reinforced Ti 3Al IMC coatings with 40 vol.% reinforced powder was in the following order: TiN/Ti 3Al IMC coating > TiC/Ti 3Al IMC coating > SiC/Ti 3Al IMC coating. It should be noted that both the TiC/Ti 3Al IMC coating with 40 vol.% TiC powder and the TiN/Ti 3Al coating with 40 vol.% TiN powder showed excellent wear resistance under 5 N normal load.

  15. Effects of Combining Na and Sr additions on Eutectic Modification in Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Zhu, G. L.; Gu, N. J.; Zhou, B. J.

    2017-09-01

    Experiments were designed to investigate the effects of strontium and sodium modified on the eutectic silicon for Al-Si alloy. It was found that combining addition of Na and Sr did not appear to cause deleterious interactions of modification, at at the same time, Sr-Na was fairly constant with holding time and without obvious modification fading. Addition of Na-Sr modifier could take effect quickly and decrease incubation period.

  16. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  17. Wettability of MnxSiyOz by Liquid Zn-Al Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Shin, Minsoo; Tang, Chengying; Lee, Joonho

    2010-08-01

    The wettability of MnxSiyOz by liquid Zn-Al alloys was investigated to obtain basic information on the coating properties of high-strength steels with surface oxides in the hot-dip galvanizing process. In this study, the contact angles of liquid Zn-Al alloys (Al concentrations were 0.12 and 0.23 wt pct) on four different MnxSiyOz oxides, namely MnO, MnSiO3, Mn2SiO4, and SiO2, were measured with the dispensed drop method. The contact angle did not change across time. With an increasing Al concentration, the contact angle was slightly decreased for MnO and Mn2SiO4, but there was no change for MnSiO3 and SiO2. With an increasing SiO2 content, the contact angle gradually increased by 54 wt pct to form MnSiO3, and for pure SiO2 substrate, the contact angle decreased again. Consequently, the MnSiO3 substrate showed the worst wettability among the four tested oxide substrates.

  18. Experimental processing and the effects of cenosphere on some mechanical properties of Al6061-SiC composites

    NASA Astrophysics Data System (ADS)

    Ashoka, E.; Sharanaprabhu, C. M.; Krishnaraja, G. Kodancha; Kudari, S. K.

    2018-04-01

    In this paper, stir casting technique was utilized to fabricate the hybrid Aluminium alloy (Al 6061) metal matrix reinforced with silicon carbide (SiC) and cenosphere particulates. An Al6061-SiC-Cenosphere hybrid composite is selected with 3wt% of silicon carbide and 3wt%, 6wt% and 9wt% proportions of cenosphere particulates. The uniform distribution of these two reinforcement particulates in Al6061matrix was achieved by stirring and pouring the hybrid composite mixture into the steel mould to accomplish the rectangular shaped casting. These various hybrid composites were studied with respect to its microstructure and some mechanical properties. The rectangular shaped casting of various hybrid composites was machined according to ASTM tensile specimens standards to estimate some mechanical properties. For various cast hybrid composites a comparative study is done with respect to modulus of elasticity, yield stress, percentage elongation and microhardness. Finally, the distribution of particulates and the nature of the tensile specimen fractured surface of various hybrid composites were understood using scanning electron microscope.

  19. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy

    PubMed Central

    Wang, Jun; Xu, Hong; Su, Tiexiong; Zhang, Yi; Guo, Zhen; Mao, Huping; Zhang, Yangang

    2016-01-01

    An investigation was carried out in order to study the fretting fatigue behavior of an AlSi9Cu2Mg aluminum alloy. The fretting fatigue tests of AlSi9Cu2Mg were performed using a specially designed testing machine. The failure mechanism of fretting fatigue was explored by studying the fracture surfaces, fretting scars, fretting debris, and micro-hardness of fretting fatigue specimens using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and micro Vickers hardness test techniques. The experimental results show that the fretting fatigue limit (42 MPa) is significantly reduced to approximately 47% of the plain fatigue limit (89 MPa) under 62.5 MPa contact pressure. Furthermore, the fretting fatigue life decreases with increasing alternating stress and increasing contact pressure. The examination results suggest that the stress concentrates induced by oxidation-assisted wear on the contact interface led to the earlier initiation and propagation of crack under the fretting condition. PMID:28774103

  20. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy.

    PubMed

    Wang, Jun; Xu, Hong; Su, Tiexiong; Zhang, Yi; Guo, Zhen; Mao, Huping; Zhang, Yangang

    2016-12-05

    An investigation was carried out in order to study the fretting fatigue behavior of an AlSi9Cu2Mg aluminum alloy. The fretting fatigue tests of AlSi9Cu2Mg were performed using a specially designed testing machine. The failure mechanism of fretting fatigue was explored by studying the fracture surfaces, fretting scars, fretting debris, and micro-hardness of fretting fatigue specimens using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and micro Vickers hardness test techniques. The experimental results show that the fretting fatigue limit (42 MPa) is significantly reduced to approximately 47% of the plain fatigue limit (89 MPa) under 62.5 MPa contact pressure. Furthermore, the fretting fatigue life decreases with increasing alternating stress and increasing contact pressure. The examination results suggest that the stress concentrates induced by oxidation-assisted wear on the contact interface led to the earlier initiation and propagation of crack under the fretting condition.

  1. Influence wt.% of SiC and borax on the mechanical properties of AlSi-Mg-TiB-SiC composite by the method of semi solid stir casting

    NASA Astrophysics Data System (ADS)

    Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2017-04-01

    SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.

  2. Li15Al3Si6 (Li14.6Al3.4Si6), a compound displaying a heterographite-like anionic framework.

    PubMed

    Spina, Laurent; Tillard, Monique; Belin, Claude

    2003-02-01

    The title compound, lithium aluminium silicide (15/3/6), crystallizes in the hexagonal centrosymmetric space group P6(3)/m. The three-dimensional structure of this ternary compound may be depicted as two interpenetrating lattices, namely a graphite-like Li(3)Al(3)Si(6) layer and a distorted diamond-like lithium lattice. As is commonly found for LiAl alloys, the Li and Al atoms are found to share some crystallographic sites. The diamond-like lattice is built up of Li cations, and the graphite-like anionic layer is composed of Si, Al and Li atoms in which Si and Al are covalently bonded [Si-Al = 2.4672 (4) A].

  3. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  4. Compression of Fe-Si-H alloys

    NASA Astrophysics Data System (ADS)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  5. Fatigue behavior of SiC reinforced titanium composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Grimes, H. H.

    1979-01-01

    The low cycle axial fatigue properties of 25 and 44 fiber volume percent SiC/Ti(6Al-4V) composites were measured at room temperature and at 650 deg C. The S-N curves for the composites showed no anticipated improvement over bulk matrix behavior at room temperature. Although axial and transverse tensile strength results suggest a degradation in SiC fiber strength during composite fabrication, it appears that the poor fatigue life of the composites was caused by a reduced fatigue resistance of the reinforced Ti(6Al-4V) matrix. The reduced matrix behavior was due, to the presence of flawed and fractured fibers created near the specimen surfaces by preparation techniques and to the large residual tensile stresses that can exist in fiber reinforced matrices. The effects of fatigue testing at high temperature are discussed.

  6. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affectedmore » by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.« less

  7. Effect of Cu content on the microstructure evolution and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys

    NASA Astrophysics Data System (ADS)

    Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al

    2017-10-01

    Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.

  8. Properties investigation and microstructures characterization of SiCp/6061Al composites produced by PM route

    NASA Astrophysics Data System (ADS)

    Wang, A. Q.; Tian, H. W.; Xie, J. P.

    2018-01-01

    In this study, 35 vol.% SiC particles with different sizes reinforced 6061 aluminium alloy matrix composites were prepared by a powder metallurgy method. The Scanning Electron Microscope (SEM) images of composites were observed, the Coefficient of Thermal Expansion (CTE) and tensile strength of composites were examined, and the influences of SiC particle size on microstructures and properties of the composites were analyzed. Furthermore, the SiCp/6061Al composites with SiC particle size of 7.5 µm were selected to investigate the SiCp/Al interface microstructure and precipitated phases by the means of SEM, TEM and HRTEM. The study indicated that, with the increase of SiC particle size, the SiC particles distributed more uniformly in the matrix, the CTE of composites increased, but the tensile strength of composites decreased. The SiCp/Al interface in this experiment is clean and smooth, and the combination mechanism of SiC and Al is the formation of a half coherent interface by closely matching of atoms. Some micron-sized coarse intermetallic particles existed in the hot-pressed composites, such as random-shaped Mg2Si, long stick shaped Al15(Mn, Fe, Cu)3Si2. When the composites were solution treated at 510 °C for 2 h and then aging treated at 190 °C for 9 h, except long stick shaped Al15(Mn, Fe, Cu)3Si2, numerous nano-sized precipitated phases (Mg2Si) with diameters of 50-200 nm dispersively distributed in the matrix. After heat treatment, the tensile strength of composite with SiC particle size of 7.5 µm enhance from 298 MPa to 341 MPa.

  9. Processing, microstructure and mechanics of functionally graded Al A359/SiC(p) composite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Castro, Ramon

    2000-11-01

    Metal matrix composites (MMCs) have great promise for high temperature, high strength, wear resistant applications. However, their brittleness has limited their use in load bearing applications. Functionally graded MMCs with a reinforcement concentration higher on the surface than in the interior offer new opportunities, as these materials will have high surface hardness as well as high resistance to crack growth towards the interior. In this dissertation the processing and mechanical properties of a functionally graded MMC are investigated. Rectangular blocks (100 mmx60 mmx50 mm) of functionally graded SiC particulate reinforced aluminum A359 matrix composite were prepared by centrifugal casting techniques. The reinforcement volume fraction profiles varied as the centrifugal force was applied, owing to the different densities of Al and SiC. The casting at 1300 rpm (angular velocity) had a well-mixed, refined microstructure with the maximum SiC volume fraction of 44% near the outer surface of the blocks. This surface exhibited an elevated hardness. The effect of SiC particulate reinforcement on strengthening of A359 Al alloy was experimentally studied by tensile testing specimens prepared from the cast blocks. There was a continuous increase in tensile and yield strength with increasing SiC volume fractions in the range of 0.20 to 0.30. On the contrary, there was a reduction in tensile and yield strength for SiC concentrations in the range of 0.30 to 0.40. The elasticity modulus increased with increasing SiC volume fractions in the whole reinforcement range (0.20--0.40). Fractographic analysis by SEM revealed a ductile failure process of void growth in the matrix, but the amount of the void growth was less when the SiC concentration was higher. SEM also revealed SiC reinforcement fracture and decohesion, with the particle fracture increasing with the particle concentration. Appropriate flat specimens with a continuously graded microstructure for fracture mechanics

  10. Effect of Iron and Magnesium on Alloy AL9M Structure and Properties

    NASA Astrophysics Data System (ADS)

    Bazhenov, V. E.; Koltygin, A. V.; Belov, V. D.

    2017-09-01

    The effect of iron impurity on the structure and properties of aluminum alloy AL9M, especially its action on magnesium distribution within the structure, is studied. The microstructure of a cast component of this alloy broken during operation is analyzed. It is shown that iron impurity has an unfavorable effect on structure and mechanical properties of a casting due to appearance of Al9Fe2Si and Al18Fe2Mg7Si10 intermetallics. Formation of these intermetallics consumes a considerable amount of magnesium and lowers the content of the Q(Al5Cu2Mg8Si6) strengthening phase in the alloy structure.

  11. Influence of 10 % Cold Rolling Reduction on Ageing Behaviour of Hot Rolled Al-Cu-Si-Mn-Mg Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.

    2014-10-01

    In the current study, the effect of 10 % cold rolling on the different ageing phenomena of Al-Cu-Si-Mn-Mg alloy was investigated. Both hot rolled and cold rolled alloys were subjected to both natural and artificial ageing processes. Hardness was measured to understand the change in the mechanical property of the alloy before and after rolling and also during ageing processes. From microscopy, it was evident that the cold rolling and subsequent ageing provided the alloy with a structure in which CuAl2 precipitates were uniformly distributed. The alloy exhibited the peak hardness value of 92 VHN after 2 days of natural ageing, whereas the cold deformed (10 %) alloy exhibited the higher peak hardness value of 139 VHN after 3 days of natural ageing. Peak hardness of the alloy reached 94 VHN, when hot rolled alloy was subjected to ageing at 250 °C for 1 h, whereas 10 % cold rolling followed by ageing (100 °C, 15 min) demonstrated accelerated and elevated hardening. The ageing behaviours thus obtained permit the alloy to provide a range of desirable combinations of strength and ductility for high strength weight saving applications.

  12. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance

    PubMed Central

    Fu, Ming; Xiong, Wei

    2018-01-01

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility–brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10−4 mm3·N−1·m−1, which makes it a promising coating for use in abrasive environments. PMID:29473872

  13. Influence of alloying elements on the oxidation behavior of NbAl3

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.

    1988-01-01

    NbAL3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al2O3 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAlY coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.

  14. Influence of alloying elements on the oxidation behavior of NbAl3

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.

    1989-01-01

    NbAl3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al203 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAly coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.

  15. Preparation of high-strength Al-Mg-Si-Cu-Fe alloy via heat treatment and rolling

    NASA Astrophysics Data System (ADS)

    Liu, Chong-yu; Yu, Peng-fei; Wang, Xiao-ying; Ma, Ming-zhen; Liu, Ri-ping

    2014-07-01

    An Al-Mg-Si-Cu-Fe alloy was solid-solution treated at 560°C for 3 h and then cooled by water quenching or furnace cooling. The alloy samples which underwent cooling by these two methods were rolled at different temperatures. The microstructure and mechanical properties of the rolled alloys were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and tensile testing. For the water-quenched alloys, the peak tensile strength and elongation occurred at a rolling temperature of 180°C. For the furnace-cooled alloys, the tensile strength decreased initially, until the rolling temperature of 420°C, and then increased; the elongation increased consistently with increasing rolling temperature. The effects of grain boundary hardening and dislocation hardening on the mechanical properties of these rolled alloys decreased with increases in rolling temperature. The mechanical properties of the 180°C rolling water-quenched alloy were also improved by the presence of β″ phase. Above 420°C, the effect of solid-solution hardening on the mechanical properties of the rolled alloys increased with increases in rolling temperature.

  16. Effect of micro-structural modifier on the morphology of silicon rich secondary phase and strain hardening behavior of eutectic Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Mansoor, M.; Salam, I.; Tauqir, A.

    2016-08-01

    Eutectic Al-Si alloys find their applications in moderate to severe tribological conditions, for example: pistons, casings of high speed pumps and slide sleeves. The higher hardness, so the better tribological properties, are originated by the formation of a silicon rich secondary phase, however, the morphology of the secondary phase drastically influence the toughness of the alloy. Microstructural modifiers are used to control the toughness which modifies the Si rich secondary phase into dispersed spherical structure instead of needle-like network. In the present study, a mixture of chemical fluxes was used to modify the Si phase. The alloy was cast into a sand mold and characterized by scanning electron microscopy, energy dispersive spectroscopy, hardness testing and tensile testing. It was found that the morphology of the Si phase was altered to acicular structure due to the modification process. In comparison, the un-modified alloy contained Si phase in needle-like structure. The effect of modifier was also pronounced on the mechanical properties, where increase of 50% in yield strength, 56% in tensile strength and 200% in elongation occurred. A discernable raise in strain hardening component indicated the improved strain harden ability and formability of the modified alloy.

  17. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    PubMed

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  18. Studying Si/SiGe disordered alloys within effective mass theory

    NASA Astrophysics Data System (ADS)

    Gamble, John; Montaño, Inès; Carroll, Malcolm S.; Muller, Richard P.

    Si/SiGe is an attractive material system for electrostatically-defined quantum dot qubits due to its high-quality crystalline quantum well interface. Modeling the properties of single-electron quantum dots in this system is complicated by the presence of alloy disorder, which typically requires atomistic techniques in order to treat properly. Here, we use the NEMO-3D empirical tight binding code to calibrate a multi-valley effective mass theory (MVEMT) to properly handle alloy disorder. The resulting MVEMT simulations give good insight into the essential physics of alloy disorder, while being extremely computationally efficient and well-suited to determining statistical properties. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  19. Release of Si from Silicon, a Ferrosilicon (FeSi) Alloy and a Synthetic Silicate Mineral in Simulated Biological Media

    PubMed Central

    Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger

    2014-01-01

    Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879

  20. X-ray studies of aluminum alloy of the Al-Mg-Si system subjected to SPD processing

    NASA Astrophysics Data System (ADS)

    Sitdikov, V. D.; Murashkin, M. Yu; Khasanov, M. R.; Kasatkin, I. A.; Chizhov, P. S.; Bobruk, E. V.

    2014-08-01

    Recently it has been established that during high pressure torsion dynamic aging takes place in aluminum Al-Mg-Si alloys resulting in formation of nanosized particles of strengthening phases in the aluminum matrix, which greatly improves the electrical conductivity and strength properties. In the present paper structural characterization of ultrafine-grained (UFG) samples of aluminum 6201 alloy produced by severe plastic deformation (SPD) was performed using X-ray diffraction analysis. As a result, structure features (lattice parameter, size of coherent scattering domains) after dynamic aging of UFG samples were determined. The size and distribution of second- phase particles in the Al matrix were assessed with regard to HPT regimes. Impact of the size and distribution of the formed secondary phases on the strength, ductility and electrical conductivity is discussed.

  1. Distribution Behavior of B and P during Al-Si Melt Directional Solidification with Open-Ended Crucible

    NASA Astrophysics Data System (ADS)

    Bai, Xiaolong; Ban, Boyuan; Li, Jingwei; Peng, Zhijian; Chen, Jian

    2018-03-01

    Distribution behavior of B and P during directional solidification of Al-20Si, Al-30Si and Al-40Si alloys has been investigated. Macrostructure of the Al-Si alloy ingots and concentration profile of elements B and P reveal that the elements segregate to eutectic Al-Si melt during growth of primary Si flakes, and P gradually segregates to the top of the ingots during directional solidification. An apparent segregation coefficient, ka, is introduced to describe the segregation behavior of B and P between the primary Si and the Al-Si melt and compared with thermodynamic theoretical equilibrium coefficients. The apparent segregation coefficients of B and P decrease with increase of solidification temperature.

  2. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  3. Wear Resistance of Aluminum Matrix Composites Reinforced with Al2O3 Particles After Multiple Remelting

    NASA Astrophysics Data System (ADS)

    Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej

    2016-08-01

    Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.

  4. Reference Correlation for the Density and Viscosity of Eutectic Liquid Alloys Al+Si, Pb+Bi, and Pb+Sn

    NASA Astrophysics Data System (ADS)

    Assael, M. J.; Mihailidou, E. K.; Brillo, J.; Stankus, S. V.; Wu, J. T.; Wakeham, W. A.

    2012-09-01

    In this paper, the available experimental data for the density and viscosity of eutectic liquid alloys Al+Si, Pb+Bi, and Pb+Sn have been critically examined with the intention of establishing a reference standard representation of both density and viscosity. All experimental data have been categorized as primary or secondary according to the quality of measurement, the technique employed, and the presentation of the data, as specified by a series of carefully defined criteria. The proposed standard reference correlations for the density of liquid Al+Si, Pb+Bi, and Pb+Sn are, respectively, characterized by deviations of 2.0%, 2.9%, and 0.5% at the 95% confidence level. The standard reference correlations for the viscosity of liquid Al+Si, Pb+Bi, and Pb+Sn are, respectively, characterized by deviations of 7.7%, 14.2%, and 12.4% at the 95% confidence level.

  5. Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.

    2016-05-01

    In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.

  6. Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Fang, Li; Ren, Luyang; Geng, Xinyu; Hu, Henry; Nie, Xueyuan; Tjong, Jimi

    2018-01-01

    2 wt. % nickel (Ni) addition was introduced into a conventional cast aluminum alloy A380. The influence of transition alloying element nickel on the solidification behavior of cast aluminum alloy A380 was investigated via thermal analyses based on temperature measurements recorded on cooling curves. The corresponding first and second derivatives of the cooling curves were derived to reveal the details of phase changes during solidification. The nucleation of the primary α-Al phase and eutectic phases were analyzed. The microstructure analyses by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) indicate that different types and amount of eutectic phases are present in the tested two alloys. The introduction of Ni forms the complex Ni-containing intermetallic phases with Cu and Al.

  7. Experimental studies on mechanical properties of T6 treated Al25Mg2Si2Cu4Fe alloy

    NASA Astrophysics Data System (ADS)

    Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    Effect of T6 treatment on the mechanical properties of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting mechanical tests on test pieces using universal testing machine. Increase in the mechanical properties such as ultimate tensile strength, hardness and % elongation was observed. Microstructure characterization revealed the modification in the size and shapes of the precipitates formed during the homogenization process. This modification increases the anisotropy of the microstructure and the stresses in the as cast structure. The increase in the hardness of T6 treated alloy is due to the partial recrystallization, fragmentation and redistribution of primary Mg2Si phase, precipitation of fine θ, Q phases. The high volume fractions of uniformly dispersed hard β-particles greatly increase the flow stress and provide an appreciable impediment to plastic deformation. Thus increasing the hardness of the alloy.

  8. Nanoscale assembly of silicon-like [Al(As1-xNx)]ySi5-2y alloys: Fundamental theoretical and experimental studies of structural and optical properties

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Sims, P. E.; Grzybowski, G.; Beeler, R. T.; Chizmeshya, A. V. G.; Smith, D. J.; Kouvetakis, J.; Menéndez, J.

    2013-07-01

    Ab initio theoretical simulations of Al(As1-xNx)Si3 alloys, a new class of optoelectronic materials, confirm that these compounds are likely to be disordered via a mechanism that preserves the integrity of the constituent III-V-Si3 tetrahedra but randomizes their orientation in the average diamond lattice of the compound. This type of disorder is consistent with experimental structural data and with the proposed growth mechanism for such alloys, according to which “III:V(SiH3)3” intermediate complexes are formed in the gas phase from reactions between group-III atomic beams and V(SiH3)3 molecules, delivering the entire III-V-Si3 tetrahedra to the growing film. Experimental optical studies of these Al(As1-xNx)Si3 alloys as well as more general [Al(As1-xNx)]ySi5-2y compounds grown on Si substrates were carried out using spectroscopic ellipsometry. The resulting dielectric functions are found to be similar to broadened versions of their counterparts in pure Si. This broadening may have important practical applications, particularly in photovoltaics, because it dramatically enhances the optical absorption of Si in the visible range of the electromagnetic spectrum. A critical point analysis reveals the existence of direct optical transitions at energies as low as 2.5 eV, well below the lowest direct absorption edge of Si at 3.3 eV. Such transitions are predicted theoretically for perfectly ordered III-V-Si3 compounds, and the experimental results suggest that they are robust against tetrahedra orientational disorder.

  9. L2₁ and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb).

    PubMed

    Wang, Xiaotian; Cheng, Zhenxiang; Wang, Wenhong

    2017-10-20

    For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X₂YZ, i.e., Hf₂VAl, Hf₂CoZ (Z = Ga, In) and Hf₂CrZ (Z = Al, Ga, In). In this work, a series of Hf₂-based Heusler alloys, Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb), were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L2₁-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb) alloys have dropped dramatically when they form the L2₁-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L2₁-type or XA-type structures.

  10. Assessment of the Sensitivity of Welded Joints of Al -Mg - Si Alloys to Liquation Cracks Under Laser Welding

    NASA Astrophysics Data System (ADS)

    Ivanov, S. Yu.; Karkhin, V. A.; Mikhailov, V. G.; Martikainen, J.; Hiltunen, E.

    2018-03-01

    The microstructure and the distribution of chemical elements in laser-welded joints of Al - Mg - Si alloy 6005-T6 are studied. Segregations of chemical elements are detected over grain boundaries in the heat-affected zones of the welded joints. The joints fracture by the intergrain mechanism. A Gleeble 3800 device is used to determine the temperature dependences of the mechanical properties of the alloy with allowance for the special features of the welding cycle. Amethod for evaluating the sensitivity of welded joints of aluminum alloys to formation of liquation cracks with allowance for the local properties of the metal, the welding conditions, and the rigidity of the construction is suggested.

  11. Defect investigations of micron sized precipitates in Al alloys

    NASA Astrophysics Data System (ADS)

    Klobes, B.; Korff, B.; Balarisi, O.; Eich, P.; Haaks, M.; Kohlbach, I.; Maier, K.; Sottong, R.; Staab, T. E. M.

    2011-01-01

    A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) [1] in combination with the High Momentum Analysis (HMA) [2]. Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg2Si and Al2Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.

  12. Effect of Grain Refinement and Cooling Rate on the Microstructure and Mechanical Properties of Secondary Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Timelli, Giulio; Camicia, Giordano; Ferraro, Stefano

    2014-02-01

    The effect of AlTi5B1 grain refinement and different solidification rates on metallurgical and mechanical properties of a secondary AlSi7Cu3Mg alloy is reported. While the Ti content ranges from 0.04 up to 0.225 wt.%, the cooling rate varies between 0.1 and 5.5 °C/s. Metallographic and thermal analysis techniques have been used to quantitatively examine the macro- and microstructural changes occurring with grain refiner addition at various cooling rates. The results indicate that a small AlTi5B1 addition produces the greatest refinement, while no significant reduction of grain size is obtained with a great amount of grain refiner. On increasing the cooling rate, a lower amount of AlTi5B1 master alloy is necessary to produce a uniform grain size throughout the casting. The combined addition of AlTi5B1 and Sr does not produce any reciprocal interaction or effect on primary α-Al and eutectic solidification. The grain refinement improves the plastic behavior of the alloy and increases the reliability of castings, as evidenced by the Weibull statistics.

  13. The Relationship between Dendrite Arm Spacing and Cooling Rate of Al-Si Casting Alloys in High Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Ik; Kim, Cheol-Woo; Kim, Young-Chan; Choi, Se-Weon; Kang, Chang-Seog

    The effects of cooling rate on the solidification behavior of Al-8.5%Si-3%Cu and Al-11%Si-3%Cu alloys were studied during high pressure die casting (HPDC). The HPDC experiment was conducted by using the dies with 3 steps for 3 different cooling rates. Because of the high in both melt temperature and pressure, it was difficult to obtain the temperature profile directly from HPDC specimen. Therefore, in this study, cylindrical bar castings with different diameter were poured to acquire the cooling curves at the solidification range of 15°C/s up to 100°C/s and then the microstructures were compared to estimate the cooling rate in HPDC. The solidification characteristics including liquidus/solidus temperature and dendrite arm spacing of each alloy and each cooling rate was analyzed and the results showed strong proportional relationship between dendrite arm spacing and cooling rate in HPDC. The results were also compared with the actual die casting specimens and MAGMA simulation.

  14. Equal channel angular pressing of powder processed Al6061/SiC nano metal matrix composites and study of its wear properties

    NASA Astrophysics Data System (ADS)

    Bongale, Arunkumar M.; Kumar, Satish

    2018-03-01

    Nano Metal Matrix Composites were fabricated by a novel approach by combining powder metallurgy and equal channel angular pressing (ECAP) using aluminium alloy 6061 (Al6061) as matrix phase and 2, 4 and 6 wt% of silicon carbide nanoparticles (SiCnp) as reinforcements. Alloying elements of Al6061 in their elemental form are blended together using high energy planetary ball mill and calculated wt% of SiCnp were mixed with it. Thus formed composite powder mixture is compacted in a uniaxial compaction die and then subjected to ECAP up to three passes. Density and porosity of samples were estimated using Archimedes’ principle. Pin on disc setup is used to evaluate the wear properties of the composites under different speed and loading conditions. Tests revealed that increase in wt% of SiCnp reduces the wear rate of the composites whereas increasing the load and speed increases wear rate of the composite samples. SEM micrographs of worn surfaces indicated different types of wear mechanism responsible for wear of the specimens under different testing conditions. Also, wt% of SiCnp and the number of passes through ECAP were found to increase the hardness value of the composite material.

  15. Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting

    PubMed Central

    Zherebtsov, Dmitry; Radionova, Ludmila

    2018-01-01

    Selective laser melting (SLM) is one of the additive manufacturing technologies that allows for the production of parts with complex shapes from either powder feedstock or from wires. Aluminum alloys have a great potential for use in SLM especially in automotive and aerospace fields. This paper studies the influence of starting powder characteristics on the processability of SLM fabricated AlSi12 alloy. Three different batches of gas atomized powders from different manufacturers were processed by SLM. The powders differ in particle size and its distribution, morphology and chemical composition. Cubic specimens (10 mm × 10 mm × 10 mm) were fabricated by SLM from the three different powder batches using optimized process parameters. The fabrication conditions were kept similar for the three powder batches. The influence of powder characteristics on porosity and microstructure of the obtained specimens were studied in detail. The SLM samples produced from the three different powder batches do not show any significant variations in their structural aspects. However, the microstructural aspects differ and the amount of porosity in these three specimens vary significantly. It shows that both the flowability of the powder and the apparent density have an influential role on the processability of AlSi12 SLM samples. PMID:29735932

  16. Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting.

    PubMed

    Baitimerov, Rustam; Lykov, Pavel; Zherebtsov, Dmitry; Radionova, Ludmila; Shultc, Alexey; Prashanth, Konda Gokuldoss

    2018-05-07

    Selective laser melting (SLM) is one of the additive manufacturing technologies that allows for the production of parts with complex shapes from either powder feedstock or from wires. Aluminum alloys have a great potential for use in SLM especially in automotive and aerospace fields. This paper studies the influence of starting powder characteristics on the processability of SLM fabricated AlSi12 alloy. Three different batches of gas atomized powders from different manufacturers were processed by SLM. The powders differ in particle size and its distribution, morphology and chemical composition. Cubic specimens (10 mm × 10 mm × 10 mm) were fabricated by SLM from the three different powder batches using optimized process parameters. The fabrication conditions were kept similar for the three powder batches. The influence of powder characteristics on porosity and microstructure of the obtained specimens were studied in detail. The SLM samples produced from the three different powder batches do not show any significant variations in their structural aspects. However, the microstructural aspects differ and the amount of porosity in these three specimens vary significantly. It shows that both the flowability of the powder and the apparent density have an influential role on the processability of AlSi12 SLM samples.

  17. Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Choonho

    2006-01-01

    Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10 -3 m/sec and with a temperature gradient of 7.5 x 10 3 K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristicmore » spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.« less

  18. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    NASA Astrophysics Data System (ADS)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  19. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  20. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    NASA Astrophysics Data System (ADS)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  1. Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode

    NASA Astrophysics Data System (ADS)

    Su, Junming; Zhang, Congcong; Chen, Xiang; Liu, Siyang; Huang, Tao; Yu, Aishui

    2018-03-01

    Although silicon is the most promising anode material for Li-ion batteries, large volume expansion during lithiation and delithiation is the main obstacle limiting the commercial application of silicon anodes. There are two ways to alleviate volume expansion and prevent further pulverization of a Si anode: fabrication of a rational nanostructure possessing void spaces and uniform distribution of the conducting sites, without a good balance effect in mitigating the limiting factors and enhancing battery performance. In this paper, we propose a novel nanostructure - a carbon-shell-constrained Si cluster (Si/C shell) with both adequate void space and good distribution of electrical contact sites to guarantee homogeneous lithiation in the initial cycle. Benefiting from the ability to maintain electrical conductivity of the outer carbon shell, even after cluster fragmentation, the Si/C shell synthesized from low-cost commercial Al-Si alloy spheres can deliver 0.03% capacity loss from 100th to 1000th cycles at a current density of 1 A g-1. The Si/C shell sample with the dual functional structure mentioned above can also maintain its own nanostructure during cycling and deliver excellent rate performance. It is a concise and scalable strategy which can simplify the preparation of other alloy anode materials for Li-ion batteries.

  2. Alloying and Hardness of Eutectics with Nbss and Nb5Si3 in Nb-silicide Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    In Nb-silicide based alloys, eutectics can form that contain the Nbss and Nb5Si3 phases. The Nb5Si3 can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nbss and Nb5Si3 is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔHmix, ΔSmix, VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= Tm ΔSmix/|ΔHmix|). The values of these parameters were in the ranges −41.9 < ΔHmix <−25.5 kJ/mol, 4.7 < ΔSmix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔSmix, Ω, ΔSmix, and VEC were found for all of the eutectics. The correlation between ΔHmix and δ for the eutectics was the same as that of the Nbss, with more negative ΔHmix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nbss. Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus <Si>, δ versus <Si>, and VEC versus <Si> maps, where <Si> = Al + Ge + Si + Sn. Convergence of data in maps occurred at δ ≈ 9.25, VEC ≈ 4.35, Δχ in the range ≈ 0.155 to 0.162, and <Si> in the range ≈ 21.6 at.% to ≈ 24.3 at.%. The convergence of data also indicated that the minimum concentration of Ti and maximum concentrations of Al and Si in the eutectic were about 8.7 at.% Ti, 6.3 at.% Al, and 21.6 at.% Si, respectively, and that the minimum concentration of Si in the eutectic was in the range 8 < Si < 10 at.%. PMID:29641503

  3. Si-depleted outer core inferred from sound velocity measurements of liquid Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Imada, S.; Hirose, K.; Kuwayama, Y.; Sinmyo, R.; Tateno, S.; Ozawa, H.; Tsutsui, S.; Uchiyama, H.; Baron, A. Q. R.

    2016-12-01

    Recent core formation models [1,2] suggested that a large amount of Si could have been incorporated into the core forming metals in the early stage of the Earth. These studies gave estimates for the Si content in the core, from 2 to 9 wt.%. In order to constrain the Si content of the outer core, we have determined the sound wave velocity of liquid Fe-Si alloys under high pressures and high temperatures. Starting materials of Fe-Si alloys with 6.5 and 9 wt.% Si were melted in a laser-heated diamond-anvil cell. The longitudinal acoustic phonon excitation of a liquid metal was measured up to 52 GPa and 3200 K by using high resolution inelastic X-ray scattering spectroscopy at beamline BL35XU [3] of the SPring-8 synchrotron facility. Our results show that silicon significantly increases the P-wave velocity of liquid Fe. Seismological observation shows that the P-wave velocity in the outer core is 3-4% faster than in pure iron. Comparing the present results with seismological observations, the silicon content of the outer core should be limited to be <2 wt.%, significantly lower than previous estimates based on the element partitioning between core forming mental and silicate magma ocean during core formation processes. This indicates that the present-day core is depleted in Si relative to the ancient core just after core formation, which agrees with the recent proposal [4] that the Si content in the outer core has been diminished by SiO2 crystallization through the core cooling history. [1] Rubie et al. (2011) Earth Planet. Sci. Lett. 301, 31-42. [2] Siebert et al. (2013) Science 339, 1194-1197. [3] Baron et al. (2000) J. Phys. Chem. Solids 61, 461-465 [4] Hirose et al. (2015) Abstract presented at AGU Fall Meeting 2015.

  4. Quantitative analysis of Al-Si alloy using calibration free laser induced breakdown spectroscopy (CF-LIBS)

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali

    2017-06-01

    The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.

  5. High temperature tensile behavior and microstructure of Al-SiC nanocomposite fabricated by mechanical milling and hot extrusion technique

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammadreza; Atrian, Amir

    2018-02-01

    This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.

  6. Stability of the Al/TiB2 interface and doping effects of Mg/Si

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Xu, Ben; Wu, Ping; Li, Qiulin

    2017-12-01

    The Al/TiB2 interface is of significant importance in controlling the mechanical properties of Al-B4C composites and tuning the heterogeneous nucleation of Al/Si alloys in industry. Its stability and bonding conditions are critical for both purposes. In this paper, the interfacial energies were investigated by first-principles calculations, and the results support the reported grain refinement mechanisms in Al/Si alloys. Moreover, to improve the mechanical properties of the interface, Mg and Si were doped at the interface, and our simulations show that the two interfaces will both weaken after doping Mg/Si, thus the formation of TiB2 is inhibited. As a result, the processability of the Al-B4C composites may be improved. Our results provide a theoretical basis and guidance for practical applications.

  7. Effect of forging on mechanical properties of rice husk ash-silicon carbide reinforced Al1100 hybrid composites

    NASA Astrophysics Data System (ADS)

    Ghanaraja, S.; Gireesha, B. L.; Ravikumar, K. S.; Likith, P.

    2018-04-01

    During the past few years, material design has changed prominence to pursue light weight, environment friendliness, low cost, quality, higher service temperature, higher elastic modulus, improved wear resistance and performance. Straight monolithic materials have limitations in achieving the above decisive factors. To overcome these limitations and to convince the ever increasing demand of modern day technology, Attention has been shifted towards Metal Matrix Composites (MMC). Stir casting route is most hopeful for synthesizing discontinuous reinforcement aluminium matrix composites because of its relative simplicity and easy adaptability with all shape casting process used in metal casting industry. Hybridization of metal matrix composites is the introduction of more than one type/kind, size and shape of reinforcement during processing of composites. It is carried out to obtain synergistic properties of different reinforcements and matrix used, which may not be rea1ised in monolithic alloy or in conventional monocomposites. The present study involves synthesis of hybrid composites by addition of the desired amount of Silicon Carbide (SiC) and Rice Husk Ash (RHA) particles in to the molten Al 1100-Mg alloy through stir casting technique fallowed by hot forging of the cast composites. The influence of increasing in the wt% (3, 6, 9, 12 and 15 wt%) of SiC particles addition (3 wt% Rice husk ash kept constant) on evolution of microstructure is studied through XRD and SEM and their impact on the mechanical properties like hardness and tensile strength of the resulting forged hybrid composites has been investigated.

  8. Morphologies of Primary Silicon in Hypereutectic Al-Si Alloys: Phase-Field Simulation Supported by Key Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Wei, Ming; Zhang, Lijun; Du, Yong

    2016-04-01

    We realized a three-dimensional visualization of the morphology evolution and the growth behavior of the octahedral primary silicon in hypereutectic Al-20wtpctSi alloy during solidification in a real length scale by utilizing the phase-field simulation coupled with CALPHAD databases, and supported by key experiments. Moreover, through two-dimensional cut of the octahedral primary silicon at random angles, different morphologies observed in experiments, including triangle, square, trapezoid, rhombic, pentagon, and hexagon, were well reproduced.

  9. Effects of Complex Modification by Sr-Sb on the Microstructures and Mechanical Properties of Al-18 wt % Mg₂Si-4.5Cu Alloys.

    PubMed

    Sun, Youhong; Ma, Shaoming; Wang, Huiyuan; Chen, Lei; Gao, Ke; Ma, Yinlong; Liu, Baochang

    2016-03-04

    This research was carried out to investigate the influence of Sr-Sb on the microstructures and mechanical properties of Al-18 wt % Mg₂Si-4.5Cu alloys. After the addition of 0.2 wt % Sr-Sb, the morphologies of primary Mg₂Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg₂Si decreased from ~50 to ~20 μm. The shape of eutectic Mg₂Si changed from Chinese script to short rod. After extrusion and T6 heat treatment, the ultimate tensile strength of modified alloy at room temperature (RT) and 100 °C increased respectively from 229 to 288 MPa, and from 231 to 272 MPa. The elongation-to-failure only slightly improved from 2.9% to 3.8% and from 3.3% to 3.7% at RT and 100 °C, respectively. The tensile fracture surface revealed a transition from brittle fracture to ductile fracture after modifying by 0.2 wt % Sr-Sb.

  10. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    PubMed

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  11. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com; Simchi, A.; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran

    A fine-grained Al–Mg/Al{sub 3}Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 µm), un-reacted titanium particles (<40 µm) and reinforcement particles of Al{sub 3}Ti (<100 nm) and Mg{sub 2}Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum matrix and micro-sized titanium particles to form Al{sub 3}Ti intermetallic phase.more » The hard inclusions were then fractured and re-distributed in the metal matrix by the severe thermo-mechanical conditions imposed by FSP. Evaluation of mechanical properties by hardness measurement and uniaxial tensile test determined significant enhancement in the mechanical strength (by 2.5 order of magnetite) with a high ductility (~22%). Based on a dislocation-based model analysis, it was suggested that the strength enhancement was governed by grain refinement and the presence of hard inclusions (4 vol%) in the metal matrix. Fractographic studies also showed a ductile-brittle fracture mode for the nanocomposite compared with fully ductile rupture of the annealed alloy as well as the FSPed specimen without pre-placing titanium particles. - Highlights: • FSP was employed to fabricate in situ nanocomposite. • The AA5052 Al alloy with pre-placed micro-sized Ti particles were utilized. • The structural analysis was revealed that the in situ formation of Al{sub 3}Ti nanophase. • The SZ grain structure was refined by PSN and ZHP mechanisms during DRX. • Hardness and tensile strength were improved up to ~2.5 times with a good ductility.« less

  12. Phase Diagram of the Al-Ca-Fe-Si System and Its Application for the Design of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.

    2018-05-01

    The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.

  13. The 1200 C cyclic oxidation behavior of two nickel-aluminum alloys (Ni3AL and NiAl) with additions of chromium, silicon, and titanium

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Santoro, G. J.

    1972-01-01

    The alloys Ni3Al and NiAl with and without 1 and 3 atomic percent chromium, silicon, and titanium replacing the aluminum were cyclically oxidized at 1200 C for times to 200 hours, and the results were compared with those obtained with the alloy B-1900 subjected to the same oxidation process. The evaluation was based on metal recession, specific weight change, metallography, electron microprobe analysis, and X-ray diffraction. The oxidation resistance of Ni3Al was improved by Si, unaffected by Ti, and degraded by Cr. The oxidation resistance of NiAl was slightly improved by Ti, unaffected by Si, and degraded by Cr. The oxidation resistance of Ni3Al with 1 atomic percent Si was nearly equal to that of NiAl. Alloy B-1900 exhibited oxidation resistance comparable to that of Ni3Al + Cr compositions.

  14. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  15. Additive Manufacturing of AlSi10Mg Alloy Using Direct Energy Deposition: Microstructure and Hardness Characterization

    NASA Astrophysics Data System (ADS)

    Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M.

    2017-04-01

    This paper aims to study the manufacturing of the AlSi10Mg alloy with direct energy deposition (DED) process. Following fabrication, the macro- and microstructural evolution of the as-processed specimens was initially investigated using optical microscopy and scanning electron microscopy. Columnar dendritic structure was the dominant solidification feature of the deposit; nevertheless, detailed microstructural analysis revealed cellular morphology near the substrate and equiaxed dendrites at the top end of the deposit. Moreover, the microstructural morphology in the melt pool boundary of the deposit differed from the one in the core of the layers. The remaining porosity of the deposit was evaluated by Archimedes' principle and by image analysis of the polished surface. Crystallographic texture in the deposit was also assessed using electron backscatter diffraction and x-ray diffraction analysis. The dendrites were unidirectionally oriented at an angle of 80° to the substrate. EPMA line scans were performed to evaluate the compositional variation and elemental segregation in different locations. Eventually, microhardness (HV) tests were conducted in order to study the hardness gradient in the as-DED-processed specimen along the deposition direction. The presented results, which exhibited a deposit with an almost defect free structure, indicate that the DED process can suitable for the deposition of Al-Si-based alloys with a highly consolidated structure.

  16. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties

    PubMed Central

    Trevisan, Francesco; Calignano, Flaviana; Lorusso, Massimo; Pakkanen, Jukka; Aversa, Alberta; Ambrosio, Elisa Paola; Lombardi, Mariangela; Fino, Paolo; Manfredi, Diego

    2017-01-01

    The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented. PMID:28772436

  17. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  18. Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, G. F.; Dai, P. Q.

    2015-05-01

    An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.

  19. The Role of Microstructural Variability on the Very High-Cycle Fatigue Behavior of Discontinuously-Reinforced Aluminum Metal Matrix Composites using Ultrasonic Fatigue (Preprint)

    DTIC Science & Technology

    2008-05-01

    controlled processing. Bhanu-Prasad et al .37 conducted a systematic study of PM-processed 2124/SiC/30p aluminum composites 4 5 in which matrix alloy...Mater., 27, 173-178. [5] Wang A, Rack HJ (1991). Transition wear behavior of SiC-particulate- and SiC- whisker-reinforced 7091 Al metal matrix...modeling of particle distribution effects on fatigue in Al -SiCp composites. Mater. Sci. Eng. A, Struct. Mater. Prop. Microstruct. Process., 300, 113-124

  20. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  1. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    NASA Astrophysics Data System (ADS)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  2. Ab-initio study of electronic structure and magnetic properties of half-metallic Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Go, Anna, E-mail: annago@alpha.uwb.edu.pl

    2014-11-15

    Ab-initio electronic structure calculations are carried out for quinternary Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys. When x=0 the alloy is half-metallic ferromagnet, with magnetic moment following the Slater–Pauling rule. Replacement of Mn by V, changes its electronic and magnetic structure. V-doped alloys exhibit half-metallic behavior for x≤0.25. However, even for higher V concentrations, electronic spin polarization is still very high, what makes the alloys interesting for spintronic applications. - Graphical abstract: Densities of states of Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} and magnetic moments of Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5}. - Highlights: • Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} is a half-metallicmore » ferromagnet with a minority band gap of 0.49 eV. • Half-metallic band gap is very stable against the change of the lattice parameter. • Half-metallic band gap is obtained for Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} for x≤0.25. • Electronic spin polarization is very high and equal to at least 95% for x≤0.625. • The main carrier of magnetism of the compound is manganese.« less

  3. Tensile deformation damage in SiC reinforced Ti-15V-3Cr-3Al-3Sn

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Saltsman, James F.

    1991-01-01

    The damage mechanisms of a laminated, continuous SiC fiber reinforced Ti-15V-3Cr-3Al-3Sn (Ti-15-3) composite were investigated. Specimens consisting of unidirectional as well as cross-ply laminates were pulled in tension to failure at room temperature and 427 C and subsequently examined metallographically. Selected specimens were interrupted at various strain increments and examined to document the development of damage. When possible, a micromechanical stress analysis was performed to aid in the explanation of the observed damage. The analyses provide average constituent microstresses and laminate stresses and strains. It was found that the damage states were dependent upon the fiber architecture.

  4. NiAl-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan (Inventor); Whittenbeger, John D. (Inventor); Lowell, Carl F. (Inventor)

    1994-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 to 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAlY, and FeAl.

  5. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi

    2018-04-01

    The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.

  6. Corrosion Behavior of Nickel Alloy (ASTM A 494 M) Reinforced with Fused SiO2 Chilled Metal Matrix Composites (MMCs) for Marine Applications

    NASA Astrophysics Data System (ADS)

    Hemanth, Joel, Dr.

    2017-08-01

    This paper presents the results obtained and the discussions made from a series of corrosion experiments involving Nickel alloy (ASTM A 494 M) reinforced with fused SiO2, size of the particles dispersed varies from 80-120 µm and amount of addition varies from 3 to 12 wt.% in steps of 3 wt.%. The resulting chilled MMCs are solidified under the influence of copper chill of 25 mm thickness to study the effect of corrosion behavior. Corrosion resistance was found to increase significantly with increase in SiO2 content in chilled MMCs. Nevertheless, even with high SiO2 content corrosion attack ie., pitting was found to be most severe during the initial stages of each test but it invariably decreased to a very low value in the later stages, due to the formation of an adherent protective layer on the MMCs developed.

  7. Effect of in-situ formed Al3Ti particles on the microstructure and mechanical properties of 6061 Al alloy

    NASA Astrophysics Data System (ADS)

    Gupta, Rahul; Chaudhari, G. P.; Daniel, B. S. S.

    2018-03-01

    In this study, in situ Titanium-tri-aluminide (Al3Ti) particles reinforced Al 6061 alloy matrix composites were fabricated by the reaction of potassium hexafluorotitanate (K2TiF6) inorganic salt with molten Al 6061 alloy via liquid metallurgy route. The development of in-situ Al3Ti particles and their effects on the mechanical properties such as yield strength (YS), ductility, ultimate tensile strength (UTS) and hardness, and microstructure of Al 6061 alloy were studied. It was observed from the results that in-situ formed Al3Ti particles were blocky in morphology whose average size was around 2.6 ± 1.1 μm. Microstructure studies showed that grain size of Al matrix was reduced due to the nucleating effect of Al3Ti particles. It was observed from the mechanical properties analysis that when the volume fraction of Al3Ti particles was increased, the hardness, UTS and YS of the composites were also increased as compared to that of Al 6061 alloy. An improvement in ductility was observed with the dispersion of Al3Ti particles in base alloy which is contrary to many other composites.

  8. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    PubMed Central

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-01-01

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed. PMID:28809344

  9. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering.

    PubMed

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-03-06

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  10. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

    NASA Astrophysics Data System (ADS)

    Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.

    2017-02-01

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

  11. Anisotropic Responses of Mechanical and Thermal Processed Cast Al-Si-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Balogun, S. A.; Onoyemi, O. K.

    2015-05-01

    The effects of ambient directional rolling and heat treatments on ultimate tensile strength (UTS), hardness (HD), percent elongation (PE), and impact energy (IE) on Al-Si-Mg-Cu alloy casting with reference to inclination to rolling direction are discussed in this article. The results show that rolled and quenched (CQ) sample possess superior UTS and HD to as-cast and those of rolled and aged samples (CA). Improved IE resistance with ductility is shown by both CQ and CA samples. However, these mechanical properties are enhanced as changes in the test sample direction moved away from rolling direction for all heat-treated samples. The CQ samples displayed highest tensile strength (108 MPa) and PE (19.8%) in the 90° direction.

  12. Precipitation hardening behaviour of Al-Mg-Si alloy processed by cryorolling and room temperature rolling

    NASA Astrophysics Data System (ADS)

    Hussain, Maruff; Nageswara rao, P.; Singh, Dharmendra; Jayaganthan, R.

    2018-04-01

    The precipitation hardenable aluminium alloy (Al-Mg-Si) plates were solutionized and subjected to rolling at room temperature and liquid nitrogen temperature (RTR, CR) up to a true strain of ∼2.7. The rolled sheets were uniformly aged at room temperature and above room temperature (125 °C) to induce precipitation. The rolled and aged samples were analysed using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness and tensile tests. The strength and ductility were simultaneously improved after controlled ageing of the cryorolled (CR) and room temperature rolled (RTR) samples. However, the increment in strength is more in RTR material than CR material with same ductility. Transmission electron microscopy analysis revealed the formation of ultrafine grains (UFG) filled with dislocations and nanosized precipitates in the CR and RTR conditions after ageing treatment. The behaviour of CR and RTR alloy is same under natural ageing conditions.

  13. CVD silicon carbide monofilament reinforced SrO-Al2O3-2SiO2 (SAS) glass-ceramic composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1995-01-01

    Unidirectional CVD SiC fiber-reinforced SrO.Al2O3.2SiO2 (SAS) glass-ceramic matrix composites have been fabricated by hot pressing at various combinations of temperature, pressure and time. Both carbon-rich surface coated SCS-6 and uncoated SCS-0 fibers were used as reinforcements. Almost fully dense composites have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix from x-ray diffraction. During three point flexure testing of composites, a test span to thickness ratio of approximately 25 or greater was necessary to avoid sample delamination. Strong and tough SCS-6/SAS composites having a first matrix crack stress of approximately 300 MPa and an ultimate bend strength of approximately 825 MPa were fabricated. No chemical reaction between the SCS-6 fibers and the SAS matrix was observed after high temperature processing. The uncoated SCS-0 fiber-reinforced SAS composites showed only limited improvement in strength over SAS monolithic. The SCS-0/SAS composite having a fiber volume fraction of 0.24 and hot pressed at 1400 deg C exhibited a first matrix cracking stress of approximately 231 +/- 20 MPa and ultimate strength of 265 +/- 17 MPa. From fiber push-out tests, the fiber/matrix interfacial debonding strength (tau(sub debond)) and frictional sliding stress (tau(sub friction)) in the SCS-6/SAS system were evaluated to be approximately 6.7 +/- 2.3 MPa and 4.3 +/- 0.6 MPa, respectively, indicating a weak interface. However, for the SCS-0/SAS composite, much higher values of approximately 17.5 +/- 2.7 MPa for tau(sub debond) and 11.3 +/- 1.6 MPa for tau(sub friction) respectively, were observed; some of the fibers were so strongly bonded to the matrix that they could not be pushed out. Examination of fracture surfaces revealed limited short pull-out length of SCS-0 fibers. The applicability of various micromechanical models for predicting the values of first matrix cracking stress and ultimate strength of these

  14. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical

  15. Si3 AlP: A New Promising Material for Solar Cell Absorber

    NASA Astrophysics Data System (ADS)

    Yang, Jihui; Zhai, Yingteng; Liu, Hengrui; Xiang, Hongjun; Gong, Xingao; Wei, Suhuai

    2014-03-01

    First-principles calculations are performed to study the structural and optoelectronic properties of the newly synthesized nonisovalent and lattice-matched (Si2)0.6(AlP)0.4 alloy [T. Watkins et al., J. Am. Chem. Soc. 2011, 133, 16212.] The most stable structure of Si3AlP is a superlattice along the <111>direction with separated AlP and Si layers, which has a similar optical absorption spectrum to silicon. The ordered C1c1-Si3AlP is found to be the most stable one among all the structures with -AlPSi3- motifs, in agreement with the experimental suggestions. We predict that C1c1-Si3AlP has good optical properties, i.e., it has a larger fundamental band gap and a smaller direct band gap than Si, thus it has much higher absorption in the visible light region, making it a promising candidate for improving the performance of the existing Si-based solar cells.

  16. Effect of Thermal and Chemical Treatment on the Microstructural, Mechanical and Machining Performance of W319 Al-Si-Cu Cast Alloy Engine Blocks and Directionally Solidified Machinability Test Blocks

    NASA Astrophysics Data System (ADS)

    Szablewski, Daniel

    The research presented in this work is focused on making a link between casting microstructural, mechanical and machining properties for 319 Al-Si sand cast components. In order to achieve this, a unique Machinability Test Block (MTB) is designed to simulate the Nemak V6 Al-Si engine block solidification behavior. This MTB is then utilized to cast structures with in-situ nano-alumina particle master alloy additions that are Mg based, as well as independent in-situ Mg additions, and Sr additions to the MTB. The Universal Metallurgical Simulator and Analyzer (UMSA) Technology Platform is utilized for characterization of each cast structure at different Secondary Dendrite Arm Spacing (SDAS) levels. The rapid quench method and Jominy testing is used to assess the capability of the nano-alumina master alloy to modify the microstructure at different SDAS levels. Mechanical property assessment of the MTB is done at different SDAS levels on cast structures with master alloy additions described above. Weibull and Quality Index statistical analysis tools are then utilized to assess the mechanical properties. The MTB is also used to study single pass high speed face milling and bi-metallic cutting operations where the Al-Si hypoeutectic structure is combined with hypereutectoid Al-Si liners and cast iron cylinder liners. These studies are utilized to aid the implementation of Al-Si liners into the Nemak V6 engine block and bi-metallic cutting of the head decks. Machining behavior is also quantified for the investigated microstructures, and the Silicon Modification Level (SiML) is utilized for microstructural analysis as it relates to the machining behavior.

  17. The effect of nano-SiC on characteristics of ADC12/nano-SiC composite with Sr and TiB addition produced by stir casting process

    NASA Astrophysics Data System (ADS)

    Anne Zulfia, S.; Salshabia, Nadella; Dhaneswara, Donanta; Utomo, Budi Wahyu

    2018-05-01

    ADC12 reinforced nano SiC has been successfully produced by stir casting process. Nano SiC was added into ADC12 alloy varied from 0.05 to 0.3 vf-% while Al-5Ti-1B and Sr were kept constant at 0.04 and 0.02 wt-% respectively to all composites. Mg was added 10 wt% to improve reinforce's wettability. The addition of Al-5Ti-1B to the alloy was as grain refiner while Sr was added to modify Mg2Si. All composites were characterized both microstructures analysis and mechanical properties include tensile strength, hardness, wear rate, impact strength, and porosity. The highest properties of composites was obtained at 0.3 vf-% nano SiC addition with UTS of 155.4 MPa, hardness of 46.16 HRB, impact strength of 0.22 J/mm2, and wear rate of 1.71 × 10-5 mm3/m. Tensile strength and hardness increased as grain size and porosities decreased. The highest wear resistance was investigated on the composition with the highest hardness. Impact strength decreased due to increasing volume fraction of nano-SiC. The phases present in microsturucture was dominantly Mg2Si which also affected mechanical properties of these composites.

  18. Microscopic potential fluctuations in Si-doped AlGaN epitaxial layers with various AlN molar fractions and Si concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurai, Satoshi, E-mail: kurai@yamaguchi-u.ac.jp; Yamada, Yoichi; Miyake, Hideto

    2016-01-14

    Nanoscopic potential fluctuations of Si-doped AlGaN epitaxial layers with the AlN molar fraction varying from 0.42 to 0.95 and Si-doped Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with Si concentrations of 3.0–37 × 10{sup 17 }cm{sup −3} were investigated by cathodoluminescence (CL) imaging combined with scanning electron microscopy. The spot CL linewidths of AlGaN epitaxial layers broadened as the AlN molar fraction was increased to 0.7, and then narrowed at higher AlN molar fractions. The experimental linewidths were compared with the theoretical prediction from the alloy broadening model. The trends displayed by our spot CL linewidths were consistent with calculated results at AlN molar fractionsmore » of less than about 0.60, but the spot CL linewidths were markedly broader than the calculated linewidths at higher AlN molar fractions. The dependence of the difference between the spot CL linewidth and calculated line broadening on AlN molar fraction was found to be similar to the dependence of reported S values, indicating that the vacancy clusters acted as the origin of additional line broadening at high AlN molar fractions. The spot CL linewidths of Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with the same Al concentration and different Si concentrations were nearly constant in the entire Si concentration range tested. From the comparison of reported S values, the increase of V{sub Al} did not contribute to the linewidth broadening, unlike the case of the V{sub Al} clusters.« less

  19. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    NASA Astrophysics Data System (ADS)

    Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.

    2016-03-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.

  20. Liquid-Solid Interaction in Al-Si/Al-Mn-Cu-Mg Brazing Sheets and Its Effects on Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Jin, H.; Kozdras, M. S.; Amirkhiz, B. Shalchi; Winkler, S. L.

    2018-05-01

    The liquid-solid interaction during brazing at 592 °C to 605 °C and its effects on mechanical properties were investigated in a series of Al-Si/Al-Mn-Cu-Mg brazing sheets with different Mg contents. Depending on the Mg level in core alloy and the brazing temperature, critical changes of local chemistry and microstructure related to the liquid-solid interaction occur, including solid-state diffusion, uniform clad-core interface migration, and grain boundary penetration (GBP). When the Mg in core alloy is below 1 wt pct, the interaction is limited and the formation of a dense precipitation band due to solid-state diffusion of Si from the clad to the core is dominant. As the Mg exceeds 1 wt pct, very extensive interaction occurs resulting in clad-core interface migration and GBP of Si into the core, both involving local melting and re-solidification of the core alloy. Whenever Si from the clad encounters Mg in the core due to the interaction, Mg2Si precipitates are formed leading to significant improvement of strength. However, the interface migration and GBP drastically reduce the ductility, due to the segregation of coarse secondary phase particles along the newly formed grain boundaries.

  1. Liquid-Solid Interaction in Al-Si/Al-Mn-Cu-Mg Brazing Sheets and Its Effects on Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Jin, H.; Kozdras, M. S.; Amirkhiz, B. Shalchi; Winkler, S. L.

    2018-07-01

    The liquid-solid interaction during brazing at 592 °C to 605 °C and its effects on mechanical properties were investigated in a series of Al-Si/Al-Mn-Cu-Mg brazing sheets with different Mg contents. Depending on the Mg level in core alloy and the brazing temperature, critical changes of local chemistry and microstructure related to the liquid-solid interaction occur, including solid-state diffusion, uniform clad-core interface migration, and grain boundary penetration (GBP). When the Mg in core alloy is below 1 wt pct, the interaction is limited and the formation of a dense precipitation band due to solid-state diffusion of Si from the clad to the core is dominant. As the Mg exceeds 1 wt pct, very extensive interaction occurs resulting in clad-core interface migration and GBP of Si into the core, both involving local melting and re-solidification of the core alloy. Whenever Si from the clad encounters Mg in the core due to the interaction, Mg2Si precipitates are formed leading to significant improvement of strength. However, the interface migration and GBP drastically reduce the ductility, due to the segregation of coarse secondary phase particles along the newly formed grain boundaries.

  2. Compression behavior of Fe-Si-H alloys

    NASA Astrophysics Data System (ADS)

    Tagawa, S.; Ohta, K.; Hirose, K.; Ohishi, Y.

    2015-12-01

    Although the light elements in the Earth's core are still enigmatic, hydrogen has recently been receiving much attention. Planetary formation theory suggested that a large amount of water, much more than is in the oceans, could have been brought to the Earth during its accretion. Hydrogen is a strong siderophile element and could be incorporated into the core as a consequence of a reaction between water and molten iron in a magma ocean [Okuchi, 1997 Science]. Nevertheless, the effect of hydrogen on the property of iron is not well known so far. Here, we have experimentally examined the compression behavior of hcp Fe0.88Si0.12Hx (6.5 wt.% Si) at two different hydrogen concentrations (x = 0.7 and 0.9). Fe0.88Si0.12 foil was loaded into a diamond-anvil cell, and then liquid hydrogen was introduced to a sample chamber below 20 K. Hydrogenation occurred upon thermal annealing below 1500 K at 25-62 GPa, and hcp Fe0.88Si0.12Hx was obtained as a single phase. Unlike the Fe-H alloy, hydrogen did not fully occupy the octahedral sites even under hydrogen-saturated conditions. Two compression curves, one from 25 to 136 GPa, and the other from 62 to 128 GPa, were obtained at room temperature. While the effect of hydrogen on the compressibility of iron has been controversial in earlier experimental studies [Hirao et al., 2004 GRL; Pépin et al., 2014 PRL], our data indicate that the compressibility of Fe0.88Si0.12Hx alloy does not change with changing hydrogen content from x = 0 to 0.9. Such compression behavior observed is consistent with the recent ab initio calculations for hcp Fe-H alloys by Caracas[2015 GRL]. The extrapolation of present data to the outer core pressure and temperature range, assuming thermal expansivity is the same as that for iron and there is no density difference between solid and liquid, shows that the density of Fe0.88Si0.12H0.3 matches the PREM in the whole outer core within 1%.

  3. Effect of Be Modification on the Oxide Bifilms and Tensile Strength Reliability of Al-Si-Mg Alloys Containing Excess Fe

    NASA Astrophysics Data System (ADS)

    Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.

    2018-03-01

    The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.

  4. Effect of Be Modification on the Oxide Bifilms and Tensile Strength Reliability of Al-Si-Mg Alloys Containing Excess Fe

    NASA Astrophysics Data System (ADS)

    Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.

    2018-06-01

    The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.

  5. Development of Al2O3 fiber-reinforced Al2O3-based ceramics.

    PubMed

    Tanimoto, Yasuhiro; Nemoto, Kimiya

    2004-09-01

    The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.

  6. Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions

    PubMed

    Urena; Gomez De Salazar JM; Gil; Escalera; Baldonedo

    1999-11-01

    Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al-SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al-SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium-copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750-900 degrees C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850-2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4C3, which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4C3 during cooling.

  7. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.

    1991-01-01

    The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.

  8. Effect of SiC interlayer between Ti6Al4V alloy and hydroxyapatite films.

    PubMed

    Azem, Funda Ak; Birlik, Isil; Braic, Viorel; Toparli, Mustafa; Celik, Erdal; Parau, Anca; Kiss, Adrian; Titorencu, Irina; Vladescu, Alina

    2015-04-01

    Bioactive coatings are frequently used to improve the osseointegration of the metallic implants used in dentistry or orthopaedics. Among different types of bioactive coatings, hydroxyapatite (Ca10(PO4)6(OH)2) is one of the most extensively used due to its chemical similarities to the components of bones and teeth. In this article, production and characterization of hydroxyapatite films deposited on Ti6Al4V alloy prepared by magnetron sputtering were reported. Besides, SiC was deposited on substrate surface to study the interlayer effect. Obtained coatings were annealed at 600 °C for 30 and 120 min in a mixed atmosphere of N2 + H2O vapours with the heating rate of 12 °C min(-1). The effects of SiC interlayer and heat treatment parameters on the structural, mechanical and corrosion properties were investigated. After heat treatment process, the crystalline hydroxyapatite was obtained. Additionally, cell viability tests were performed. The results show that the presence of the SiC interlayer contributes a decrease in surface roughness and improves the mechanical properties and corrosion performance of the hydroxyapatite coatings. Biological properties were not affected by the presence of the SiC interlayer. © IMechE 2015.

  9. The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers

    NASA Astrophysics Data System (ADS)

    Pakieła, W.; Tański, T.; Brytan, Z.; Labisz, K.

    2016-04-01

    The goal of this paper was focused on investigation of microstructure and properties of surface layer produced during laser surface treatment of aluminium alloy by high-power fibre laser. The performed laser treatment involves remelting and feeding of Inconel 625 powder into the aluminium surface. As a base metal was used aluminium alloy AlMg5Si2Mn. The Inconel powder was injected into the melt pool and delivered by a vacuum feeder at a constant rate of 4.5 g/min. The size of Inconel alloying powder was in the range 60-130 µm. In order to remelt the aluminium alloy surface, the fibre laser of 3 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 m/min. Based on performed investigations, it was possible to obtain the layer consisting of heat-affected zone, transition zone and remelted zone, without cracks and defects having much higher hardness value compared to the non-alloyed material.

  10. Effect of Pre-Oxidation Treatment of Nano-SiC Particulates on Microstructure and Mechanical Properties of SiC/Mg-8Al-1Sn Composites Fabricated by Powder Metallurgy Combined with Hot Extrusion

    PubMed Central

    Li, Chuan-Peng; Wang, Zhi-Guo; Zha, Min; Wang, Cheng; Yu, Hong-Chen; Wang, Hui-Yuan; Jiang, Qi-Chuan

    2016-01-01

    Nano-SiC particulates (n-SiCp) reinforced Mg-8Al-1Sn (AT81) composites with different pre-oxidation parameters were fabricated by powder metallurgy (P/M) process combined with hot extrusion. The effects of pre-oxidization treatment of n-SiCp on the microstructure and tensile properties of 0.5 vol % n-SiCp/AT81 composites were investigated accordingly. The distribution of n-SiCp with different pre-oxidation parameters was homogeneous in the composites. Moreover, it was found that a thin MgAl2O4 layer formed at the interface when the n-SiCp were pre-oxidized at 1073 K for 2 h, while the MgAl2O4 layer became much thicker with pre-oxidization temperature increasing to 1273 K for 2 h. After an appropriate pre-oxidization treatment of n-SiCp at 1073 K for 2 h, the as-extruded 0.5 vol % n-SiCp/AT81 composites exhibited an enhanced strength. It was found that the yield strength (YS) and ultimate tensile strength (UTS) increased from 168 MPa and 311 MPa to 255 MPa and 393 MPa compared with the as-extruded AT81 alloy, reflecting 51.8% and 26.4% increments, respectively. The improvement of mechanical properties should be mainly attributed to the grain refinement and homogeneous distribution of n-SiCp in the composites. Moreover, a well-bonded interface and the formation of an appropriate amount of interfacial product (MgAl2O4) benefited the material’s mechanical properties. PMID:28774083

  11. Effect of Low-Melting Metals (Pb, Bi, Cd, In) on the Structure, Phase Composition, and Properties of Casting Al-5% Si-4% Cu Alloy

    NASA Astrophysics Data System (ADS)

    Yakovleva, A. O.; Belov, N. A.; Bazlova, T. A.; Shkalei, I. V.

    2018-01-01

    The effect of low-melting metals (Pb, Bi, Cd, In) on the structure, phase composition, and properties of the Al-5% Si-4% Cu alloy was studied using calculations. Polythermal sections have been reported, which show that the considered systems are characterized by the presence of liquid regions and monotectic reactions. The effect of low-melting metals on the microstructure and hardening of base alloy in the cast and heat-treated states has been studied.

  12. A Combined Precipitation, Yield Stress, and Work Hardening Model for Al-Mg-Si Alloys Incorporating the Effects of Strain Rate and Temperature

    NASA Astrophysics Data System (ADS)

    Myhr, Ole Runar; Hopperstad, Odd Sture; Børvik, Tore

    2018-05-01

    In this study, a combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys known as NaMo has been further developed to include the effects of strain rate and temperature on the resulting stress-strain behavior. The extension of the model is based on a comprehensive experimental database, where thermomechanical data for three different Al-Mg-Si alloys are available. In the tests, the temperature was varied between 20 °C and 350 °C with strain rates ranging from 10-6 to 750 s-1 using ordinary tension tests for low strain rates and a split-Hopkinson tension bar system for high strain rates, respectively. This large span in temperatures and strain rates covers a broad range of industrial relevant problems from creep to impact loading. Based on the experimental data, a procedure for calibrating the different physical parameters of the model has been developed, starting with the simplest case of a stable precipitate structure and small plastic strains, from which basic kinetic data for obstacle limited dislocation glide were extracted. For larger strains, when work hardening becomes significant, the dynamic recovery was linked to the Zener-Hollomon parameter, again using a stable precipitate structure as a basis for calibration. Finally, the complex situation of concurrent work hardening and dynamic evolution of the precipitate structure was analyzed using a stepwise numerical solution algorithm where parameters representing the instantaneous state of the structure were used to calculate the corresponding instantaneous yield strength and work hardening rate. The model was demonstrated to exhibit a high degree of predictive power as documented by a good agreement between predictions and measurements, and it is deemed well suited for simulations of thermomechanical processing of Al-Mg-Si alloys where plastic deformation is carried out at various strain rates and temperatures.

  13. Local melting in Al-Mg-Zn-alloys

    NASA Astrophysics Data System (ADS)

    Droenen, Per-Erik; Ryum, Nils

    1994-03-01

    The internal melting of several Al-Mg-Zn-alloys has been studied by rapid upquenching in a salt bath of specimens slowly cooled at a rate of 2 °C/h down to 375 °C. The melting reaction was studied metallographically in the light- and electron-scanning microscope, and local concentrations were measured in the microprobe. Local melting of both the equilibrium phases T and η was observed to occur. There were, however, essential differences between the melting kinetics for the two phases. While the T-phase particles melted spontaneously at temperatures at or above the invariant temperature, 489 °C, and after some period of time at lower temperatures, the η-phase particles either melted spontaneously at or above the invariant temperature, T - 475 °C, or dissolved into the matrix at temperatures below 475 °C. This difference in behavior can be accounted for if the α(Al)-η section is not a quasi-binary section. The industrial implications of the internal melting in these alloys are discussed and compared to the same reaction in the Al-Mg-Si alloys. A model is developed in the Appendix to quantify the different behaviors of these two classes of alloys.

  14. The isothermal fatigue behavior of a unidirectional SiC/Ti composite and the Ti alloy matrix

    NASA Technical Reports Server (NTRS)

    Gayda, John, Jr.; Gabb, Timothy P.; Freed, Alan D.

    1989-01-01

    The high temperature fatigue behavior of a metal matrix composite (MMC) consisting of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced by 33 vol percent of continuous unidirectional SiC fibers was experimentally and analytically evaluated. Isothermal MMC fatigue tests with constant amplitude loading parallel to the fiber direction were performed at 300 and 550 C. Comparative fatigue tests of the Ti-15-3 matrix alloy were also conducted. Composite fatigue behavior and the in-situ stress state of the fiber and matrix were analyzed with a micromechanical model, the Concentric Cylinder Model (CCM). The cyclic stress-strain response of the composite was stable at 300 C. However, an increase in cyclic mean strain foreshortened MMC fatigue life at high strain ranges at 550 C. Fatigue tests of the matrix alloy and CCM analyses indicated this response was associated with stress relaxation of the matrix in the composite.

  15. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Österreicher, Johannes Albert; Kumar, Manoj

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopymore » images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.« less

  16. EBSD investigation of the effect of the solidification rate on the nucleation behavior of eutectic components in a hypoeutectic Al-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Mohsen Sadrossadat, S.; Johansson, Sten; Peng, Ru Lin

    2012-06-01

    This article represents a study of the influence of the solidification rate on the crystallographic orientation of eutectic components with respect to the primary α-Al in the tested hypoeutectic alloy. Electron backscattering diffraction (EBSD) patterns were produced from the Al-Si cast specimens that were solidified with different cooling rates and prepared via ion etch polishing as a complementary method after mechanical polishing. The results indicated a strong orientation relationship between the primary α-Al and eutectic Al phase at all cooling rates. It was also found that the silicon eutectic flakes were heterogeneously nucleated in the interdendritic eutectic liquid. The increase of the cooling rate from 2 to 80 mm/min was found to be effective in lowering the intensity of the relationship between the primary α-Al and eutectic Al phases, and changing the misorientation angle clustering between the primary α-Al and eutectic Si phases in the interval from 41-60° to lower angle intervals.

  17. Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaeili, Shahrzad; Lloyd, David J.

    2005-11-15

    Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results frommore » a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods.« less

  18. Al-Si-Cu/TiN multilayer interconnection and Al-Ge reflow sputtering technologies for quarter-micron devices

    NASA Astrophysics Data System (ADS)

    Kikkawa, Takamaro; Kikuta, Kuniko

    1993-05-01

    Issues of interconnection technologies for quarter-micron devices are the reliability of metal lines with quarter-micron feature sizes and the formation of contact-hole-plugs with high aspect ratios. This paper describes a TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure as a quarter-micron interconnection technology and aluminum-germanium (Al-Ge) reflow sputtering as a contact-hole filling technology. The TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure could suppress stress-induced voiding and improve the electromigration mean-time to failure. These improvements are attributed to the fact that the grain boundaries for the Al-Si-Cu film and the interfaces between the Al-Si-Cu and the TiN films are strengthened by the rigid intermetallic compound, TiAl3. The Al-Ge alloy reflow sputtering is a candidate for contact- and via-hole filling technologies in terms of reducing fabrication costs. The Al-Ge reflow sputtering achieved low temperature contact hole filling at 300 degree(s)C. Contact holes with a diameter of 0.25 micrometers and aspect ratio of 4 could be filled. This is attributed to the low eutectic temperature for Al-Ge (424 degree(s)C) and the effect of thin polysilicon underlayer on the enhancement of Al-Ge reflow.

  19. The Effect of Chilling and Ce Addition on the Microstructure and Mechanical Properties of Al-23Si Alloy

    NASA Astrophysics Data System (ADS)

    Vijeesh, V.; Narayan Prabhu, K.

    2017-01-01

    The present work involves the study of the effect of varying concentration of Ce addition on microstructure and mechanical properties of Al-23%Si alloys. Melt-treated alloys were solidified in copper, brass, stainless steel molds to assess the effect of cooling rate. The effect on microstructure was assessed by measuring the fineness of primary silicon and eutectic silicon particle characteristics. The Ce melt treatment transformed the coarse and irregular primary silicon into refined polyhedral silicon crystals, and the effect was more significant at higher cooling rates. Although the melt treatment had refined the eutectic silicon at lower cooling rates, it did not show any considerable effect on the eutectic silicon at higher cooling rates. The mechanical properties of the alloy increased significantly with increase in cooling rates and cerium concentration. Analysis of the results and literature reveals that the refined primary silicon was formed as a result of an invariant reaction between Ce compounds and primary silicon at higher temperatures.

  20. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  1. SiC (SCS-6) Fiber Reinforced-Reaction Formed SiC Matrix Composites: Microstructure and Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.

    1997-01-01

    Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.

  2. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  3. Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Abbass, Muna Khethier

    2018-02-01

    The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.

  4. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    NASA Astrophysics Data System (ADS)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  5. Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Rahimian, Mehdi; Ketabchi, Mostafa; Parvin, Nader; Yaghinali, Parisa; Carreño, Fernando

    2016-10-01

    The strengthening mechanisms in nanostructured Al/SiCp composite deformed to high strain by a novel severe plastic deformation process, accumulative press bonding (APB), were investigated. The composite exhibited yield strength of 148 MPa which was 5 and 1.5 times higher than that of raw aluminum (29 MPa) and aluminum-APB (95 MPa) alloys, respectively. A remarkable increase was also observed in the ultimate tensile strength of Al/SiCp-APB composite, 222 MPa, which was 2.5 and 1.2 times greater than the obtained values for raw aluminum (88 MPa) and aluminum-APB (180 MPa) alloys, respectively. Analytical models well described the contribution of various strengthening mechanisms. The contributions of grain boundary, strain hardening, thermal mismatch, Orowan, elastic mismatch, and load-bearing strengthening mechanisms to the overall strength of the Al/SiCp microcomposite were 64.9, 49, 6.8, 2.4, 5.4, and 1.5 MPa, respectively. Whereas Orowan strengthening mechanism was considered as the most dominating strengthening mechanism in Al/SiCp nanocomposites, it was negligible for strengthening the microcomposite. Al/SiCp nanocomposite showed good agreement with quadratic summation model; however, experimental results exhibited good accordance with arithmetic and compounding summation models in the microcomposite. While average grain size of the composite reached 380 nm, it was less than 100 nm in the vicinity of SiC particles as a result of particle-stimulated nucleation mechanism.

  6. Length scale of the dendritic microstructure affecting tensile properties of Al-(Ag)-(Cu) alloys

    NASA Astrophysics Data System (ADS)

    Duarte, Roberto N.; Faria, Jonas D.; Brito, Crystopher; Veríssimo, Nathalia C.; Cheung, Noé; Garcia, Amauri

    2016-12-01

    The dependence of tensile properties on the length scale of the dendritic morphology of Al-Cu, Al-Ag and Al-Ag-Cu alloys is experimentally investigated. These alloys were directionally solidified (DS) under a wide range of cooling rates (Ṫ), permitting extensive microstructural scales to be examined. Experimental growth laws are proposed relating the primary dendritic arm spacing, λ1 to Ṫ and tensile properties to λ1. It is shown that the most significant effect of the scale of λ1 on the tensile properties is that of the ternary alloy, which is attributed to the more homogeneous distribution of the eutectic mixture for smaller λ1 and by the combined reinforcement roles of the intermetallics present in the ternary eutectic: Al2Cu and nonequilibrium Ag3Al.

  7. Wear Resistance Enhancement of Ti-6Al-4 V Alloy by Applying Zr-Modified Silicide Coatings

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Hu, Guangzhong; Tian, Jin; Tian, Wei; Xie, Wenling; Li, Xiulan

    2018-03-01

    Zr-modified silicide coatings were prepared on Ti-6Al-4 V alloy by pack cementation process to enhance its wear resistance. The microstructure and wear properties of the substrate and the coatings were comparatively investigated using GCr15 and Al2O3 as the counterparts under different sliding loads. The obtained Zr-modified silicide coating had a multilayer structure, consisting of a thick (Ti, X)Si2 (X represents Al, Zr and V elements) outer layer, a TiSi middle layer and a Ti5Si4 + Ti5Si3 inner layer. The micro-hardness of the coating was much higher than the substrate and displayed a decrease tendency from the coating surface to the interior. Sliding against either GCr15 or Al2O3 balls, the coatings showed superior anti-friction property to the Ti-6Al-4 V alloy, as confirmed by its much lower wear rate under each employed sliding condition.

  8. Texture and mechanical properties of Al-0.5Mg-1.0Si-0.5Cu alloy sheets manufactured via a cross rolling method

    NASA Astrophysics Data System (ADS)

    Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin

    2012-04-01

    The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001}<100> and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.

  9. Structure and magnetic properties of amorphous and nanocrystalline Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloys

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Kim, H.-Y.; Louzguine, D. V.; Nishiyama, N.; Shen, B.; Inoue, A.

    2004-07-01

    Crystallisation behaviour and magnetic properties of as-spun and annealed Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy is a strong candidate for high temperature magnetic application.

  10. Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites

    NASA Astrophysics Data System (ADS)

    Huo, Shiyan; Xie, Lijing; Xiang, Junfeng; Pang, Siqin; Hu, Fang; Umer, Usama

    2018-02-01

    Molecular dynamics (MD) models for the study on the mechanical properties of β-SiC particles-reinforced aluminum matrix nano-composites (Al/SiC nano-composites) are established. The nano-composites in the model are fabricated by a powder metallurgy (P/M) process, followed by a hot isostatic pressing and then annealing to room temperature. The fabricated nano-composites have dense and even distributions of reinforced particles. Then representative volume elements (RVEs) of the fabricated nano-composites are built by adding periodic boundary conditions (PBCs). In this way, RVEs with different volume fractions and particle sizes of SiC are produced and put into the simulation of tension tests. The elasticity and strength in single axial tension obtained from MD analysis are in good agreement with those calculated according to the rule of mixture. It is found that the dispersion of SiC particles into the Al matrix leads to a significant enhancement in the strength of nano-composites compared to pure Al, which is also dramatically affected by both the volume fraction and particle size. Additionally, the Al/SiC nano-composites with finer SiC particles get greater enhancement in the mechanical behavior than those with coarser ones. MD analysis clearly shows the contributions of load-transfer effect, thermal mismatch strengthening and Orowan strengthening to the strengthening of Al/SiC nano-composites.

  11. Quasicrystal-reinforced Mg alloys.

    PubMed

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-04-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.

  12. Synthesis of As-Cast Ti-Al-V Alloy from Titanium-Rich Material by Thermite Reduction

    NASA Astrophysics Data System (ADS)

    Cheng, Chu; Dou, Zhi He; Zhang, Ting An; Zhang, Hui Jie; Yi, Xin; Su, Jian Ming

    2017-10-01

    We present a novel methodology for preparing as-cast Ti-Al-V alloy directly from titanium-rich material through a thermite reduction. The new method is shown to be feasible through a thermodynamics and dynamics analysis. The as-cast Ti-Al-V alloys synthesized from titanium dioxide, rutile, and high-titanium slag were analyzed by an x-ray diffractometer, a scanning electron microscope, an inductively coupled plasma emission spectrometer, and an oxygen/nitrogen/hydrogen analyzer. The results indicate that the alloy is composed of a Ti-Al-V matrix and Al2O3 inclusions. The Al and V contents in the matrix are close to the mass ratio of Ti-6Al-4V (Al: 5.5-6.8 wt.%, V: 3.5-4.5 wt.%). The Si and Fe in the alloys synthesized from rutile and high-titanium slag can be used as alloying elements in low-cost titanium alloys. The present method is expected to be useful for preparing Ti-Al-V alloys at a low production cost.

  13. Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-02-01

    Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.

  14. Advanced Class of FML on the Base Al-Li Alloy 1441 with Lower Density

    NASA Astrophysics Data System (ADS)

    Antipov, V. V.; Senatorova, O. G.; Lukina, N. F.

    Structure, composition, properties combination of specimens and components, a number of technological parameters for production of advanced FML based on high-modulus Al-Li 1441 alloy (E 79 GPa) with reduced density (d 2.6 g/m3) and optimized adhesive prepreg reinforced with high-strength high-modulus VMP glass fibres are described. Service life 1441 alloy provides the possibility of manufacture of thin sheets (up to 0.3 mm), clad and unclad. Moreover, some experience on the usage of 1441 T1, T11 sheets and shapes in Be 200 and Be 103 aircraft was accumulated. The class of FML materials based on Al-Li alloy provide an 5% improvement in weight efficiency and stiffness of skin structures as compared with those made from FML with conventional Al-Cu-Mg (2024T3 a.o.) and Al-Zn-Mg-Cu (7475T76 a.o.) alloys.

  15. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostaed, A., E-mail: alimostaed@yahoo.com; Saghafian, H.; Mostaed, E.

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal,more » the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.« less

  16. First principles study of the ground state properties of Si, Ga, and Ge doped Fe50Al50

    NASA Astrophysics Data System (ADS)

    Pérez, Carlos Ariel Samudio; dos Santos, Antonio Vanderlei

    2018-06-01

    The first principles calculation of the structural, electronic and associated properties of the Fe50Al50 alloy (B2 phase) doped by s-p elements (Im = Si, Ga, and Ge) are performed as a function of the atomic concentration on the basis of the Full Potential Linear Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k code. The Al substitution by Im (Si and Ge) atoms (principally at a concentration of 6.25 at%) induces a pronounced redistribution of the electronic charge leading to a strong Fe-Im interaction with covalent bonding character. At the same time, decrease the lattice volume (V) while increase the bulk modulus (B). For the alloys containing Ga, the Fe-Ga interaction is also observed but the V and B of the alloy are very near to that of pure Fe-Al alloy. The magnetic moment and hyperfine parameters observed at the lattice sites of studied alloys also show variations, they increase or decrease in relation to that in Fe50Al50 according to the Im that substitutes Al.

  17. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    NASA Astrophysics Data System (ADS)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  18. Enhancing Corrosion and Wear Resistance of AA6061 by Friction Stir Processing with Fe78Si9B13 Glass Particles

    PubMed Central

    Guo, Lingyu; Liu, Yan; Shen, Kechang; Song, Chaoqun; Yang, Min; Kim, Kibuem; Wang, Weimin

    2015-01-01

    The AA6061-T6 aluminum alloy samples including annealed Fe78Si9B13 particles were prepared by friction stir processing (FSP) and investigated by various techniques. The Fe78Si9B13-reinforced particles are uniformly dispersed in the aluminum alloy matrix. The XRD results indicated that the lattice parameter of α-Al increases and the preferred orientation factors F of (200) plane of α-Al reduces after friction stir processing. The coefficient of thermal expansion (CTE) for FSP samples increases at first with the temperature but then decreases as the temperature further increased, which can be explained by the dissolving of Mg and Si from β phase and Fe78Si9B13 particles. The corrosion and wear resistance of FSP samples have been improved compared with that of base metal, which can be attributed to the reduction of grain size and the CTE mismatch between the base metal and reinforced particles by FSP, and the lubrication effect of Fe78Si9B13 particles also plays a role in improving wear resistance. In particular, the FSP sample with reinforced particles in amorphous state exhibited superior corrosion and wear resistance due to the unique metastable structure. PMID:28793492

  19. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    NASA Astrophysics Data System (ADS)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  20. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.

    PubMed

    Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G

    2006-08-28

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  1. Friction and Wear of Monolithic and Fiber Reinforced Silicon-Ceramics Sliding Against IN-718 Alloy at 25 to 800 C in Atmospheric Air at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1988-01-01

    The friction and wear of monolithic and fiber reinforced Si-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C was measured. The monolithic materials tested were silicon carbide (SiC), fused silica (SiO2), syalon, silicon nitride (Si3N4) with W and Mg additives, and Si3N4 with Y2O3 additive. At 25 C fused silica had the lowest friction while Si3N4 (W,Mg type) had the lowest wear. At 800 C syalon had the lowest friction while Si3N4 (W,Mg type) and syalon had the lowest wear. The SiC/IN-718 couple had the lowest total wear at 25 C. At 800 C the fused silica/IN-718 couple exhibited the least total wear. SiC fiber reinforced reaction bonded silicon nitride (RBSN) composite material with a porosity of 32 percent and a fiber content of 23 vol percent had a lower coefficient of friction and wear when sliding parallel to the fiber direction than in the perpendicular at 25 C. The coefficient of friction for the carbon fiber reinforced borosilicate composite was 0.18 at 25 C. This is the lowest of all the couples tested. Wear of this material was about two decades smaller than that of the monolithic fused silica. This illustrates the large improvement in tribological properties which can be achieved in ceramic materials by fiber reinforcement. At higher temperatures the oxidation products formed on the IN-718 alloy are transferred to the ceramic by sliding action and forms a thin, solid lubricant layer which decreases friction and wear for both the monolithic and fiber reinforced composites.

  2. Relationship between Defect Size and Fatigue Life Distributions in Al-7 Pct Si-Mg Alloy Castings

    NASA Astrophysics Data System (ADS)

    Tiryakioğlu, Murat

    2009-07-01

    A new method for predicting the variability in fatigue life of castings was developed by combining the size distribution for the fatigue-initiating defects and a fatigue life model based on the Paris-Erdoğan law for crack propagation. Two datasets for the fatigue-initiating defects in Al-7 pct Si-Mg alloy castings, reported previously in the literature, were used to demonstrate that (1) the size of fatigue-initiating defects follow the Gumbel distribution; (2) the crack propagation model developed previously provides respectable fits to experimental data; and (3) the method developed in the present study expresses the variability in both datasets, almost as well as the lognormal distribution and better than the Weibull distribution.

  3. Characterization and Mechanical Properties of 2014 Aluminum Alloy Reinforced with Al2O3p Composite Produced by Two-Stage Stir Casting Route

    NASA Astrophysics Data System (ADS)

    Bharath, V.; Ajawan, Santhrusht S.; Nagaral, Madev; Auradi, Virupaxi; Kori, Shivaputrappa Amarappa

    2018-02-01

    Metal matrix composites (MMC's) form appropriate choice of materials where there is a demand for stiffness, strength combined with low weight for different applications. The applications of Aluminum based MMC's as engineering materials has been exceedingly increased in almost all industrial sectors. Aluminum strengthened with Al2O3p gives excellent physical and mechanical properties like high hardness, low density, high electrical conductivity etc., which are generally used in the field of aerospace, automobile and industrial applications. In present work, an attempt is being made to integrate 2014 Al alloy with Al2O3p by two stage stir casting with addition level of reinforcement maintained at 9 and 12 wt%. Microstructural characterization carried out using scanning electron microscopy showed fairly uniform distribution of Al2O3p with grain refinement of the matrix. These prepared composites are mechanically characterized as per the ASTM standards using computerized universal testing machine. Improvements in tensile strength, density and hardness of the prepared composites were observed with increase in the reinforcement wt%. Percentage improvements of 5.09% (9 wt%), 17.65% (12 wt%) in terms of tensile strength and 29.18% (9 wt%), 43.69% (12 wt%) in terms of hardness were obtained respectively.

  4. Interdiffusion behavior of U3Si2 with FeCrAl via diffusion couple studies

    NASA Astrophysics Data System (ADS)

    Hoggan, Rita E.; He, Lingfeng; Harp, Jason M.

    2018-04-01

    Uranium silicide (U3Si2) is a candidate to replace uranium oxide (UO2) as light water reactor (LWR) fuel because of its higher thermal conductivity and higher fissile density relative to the current standard, UO2. A class of Fe, Cr, Al alloys collectively known as FeCrAl alloys that have superior mechanical and oxidation resistance are being considered as an alternative to the standard Zirconium based LWR cladding. The interdiffusion behavior between FeCrAl and U3Si2 is investigated in this study. Commercially available FeCrAl, along with U3Si2 pellets were placed in diffusion couples. Individual tests were ran at temperatures ranging from 500 °C to 1000 °C for 30 h and 100 h. The interdiffusion was analyzed with an optical microscope, scanning electron microscope, and transmission electron microscope. Uniform and planar interdiffusion layers along the material interface were illustrated with backscatter electron micrographs and energy-dispersive X-ray spectroscopy. Electron diffraction was used to validate phases present in the system, including distinct U2Fe3Si/UFe2 and UFeSi layers at the material interface. U and Fe diffused far into the FeCrAl and U3Si2 matrix, respectively, in the higher temperature tests. No interaction was observed at 500 °C for 30 h.

  5. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.

    PubMed

    Danoix, F; Miller, M K; Bigot, A

    2001-10-01

    Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.

  6. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    NASA Astrophysics Data System (ADS)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-12-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  7. Grindability of cast Ti-6Al-4V alloyed with copper.

    PubMed

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p < 0.05) higher G-indexes compared with CP Ti and Co-Cr at any rotational speed except for the lowest speed (500 m/min). At 500 m/min, the G-index of Ti-6Al-4V-Cu increased as the amount of alloyed copper increased. The 4% Cu and 10% Cu alloys had significantly greater G-indexes than did 1% Cu and Ti-6Al-4V at the highest rotational speed (1250 m/min). Increasing the percentage of alloyed copper and the circumferential speed also increased the G-ratio. A slight reduction in ductility due to alloying Ti-6Al-4V with copper improved the grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  8. Investigation on mechanical behavior and material characteristics of various weight composition of SiCp reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman

    2018-02-01

    Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.

  9. Carbon nanotube reinforced aluminum based nanocomposite fabricated by thermal spray forming

    NASA Astrophysics Data System (ADS)

    Laha, Tapas

    The present research concentrates on the fabrication of bulk aluminum matrix nanocomposite structures with carbon nanotube reinforcement. The objective of the work was to fabricate and characterize multi-walled carbon nanotube (MWCNT) reinforced hypereutectic Al-Si (23 wt% Si, 2 wt% Ni, 1 wt% Cu, rest Al) nanocomposite bulk structure with nanocrystalline matrix through thermal spray forming techniques viz. plasma spray forming (PSF) and high velocity oxy-fuel (HVOF) spray forming. This is the first research study, which has shown that thermal spray forming can be successfully used to synthesize carbon nanotube reinforced nanocomposites. Microstructural characterization based on quantitative microscopy, scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and X ray photoelectron spectroscopy (XPS) confirms (i) retention and macro/sub-macro level homogenous distribution of multiwalled carbon nanotubes in the Al-Si matrix and (ii) evolution of nanostructured grains in the matrix. Formation of ultrathin beta-SiC layer on MWCNT surface, due to chemical reaction of Si atoms diffusing from Al-Si alloy and C atoms from the outer walls of MWCNTs has been confirmed theoretically and experimentally. The presence of SiC layer at the interface improves the wettability and the interfacial adhesion between the MWCNT reinforcement and the Al-Si matrix. Sintering of the as-sprayed nanocomposites was carried out in an inert environment for further densification. As-sprayed PSF nanocomposite showed lower microhardness compared to HVOF, due to the higher porosity content and lower residual stress. The hardness of the nanocomposites increased with sintering time due to effective pore removal. Uniaxial tensile test on CNT-bulk nanocomposite was carried out, which is the first ever study of such nature. The tensile test results showed inconsistency in the data attributed to inhomogeneous

  10. XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4

    NASA Astrophysics Data System (ADS)

    Grosvenor, A. P.; Bellhouse, E. M.; Korinek, A.; Bugnet, M.; McDermid, J. R.

    2016-08-01

    X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.

  11. Evaluation of precipitation hardening in TiC-reinforced Ti2AlNb-based alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-ran; Cai, Qi; Liu, Yong-chang; Ma, Zong-qing; Li, Chong; Li, Hui-jun

    2018-04-01

    Ti2AlNb-based alloys with 0.0wt%, 0.6wt%, and 2.0wt% carbon nanotube (CNT) addition were fabricated from spherical Ti-22Al-25Nb powder by sintering in the B2 single-phase region. Phase identification and microstructural examination were performed to evaluate the effect of carbon addition on the hardness of the alloys. Carbon was either in a soluble state or in carbide form depending on its concentration. The acicular carbides formed around 1050°C were identified as TiC and facilitated the transformation of α2 + B2 → O. The TiC was located within the acicular O phase. The surrounding O phase was distributed in certain orientations with angles of 65° or 90° O phase particles. The obtained alloy was composed of acicular O, Widmanstatten B2 + O, and acicular TiC. As a result of the precipitation of carbides as well as the O phase, the hardness of the alloy with 2.0wt% CNT addition increased to HV 429 ± 9.

  12. Influence of ECAP temperature on the formability of a particle reinforced 2017 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Härtel, M.; Frint, P.; F-X Wagner, M.

    2017-03-01

    Severe plastic deformation methods are commonly used to increase the strength of materials by generating ultrafine-grained microstructures. The application of these methods to Al-Cu alloys is, however, difficult because of their poor formability at room temperature. An additional reduction of formability of such alloys occurs when ceramic particles are added as reinforcement: this often triggers shear localization and crack initiation during ECAP. This is the main reason why equal-channel angular pressing (ECAP) of aluminum matrix composites (AMCs) can generally only be performed at elevated temperatures and using ECAP dies with a channel angle larger than 90° (e.g. 120°). In this study we present a brief first report on an alternative approach for the improvement of the formability of an AMC (AA2017, 10 % SiC): ECAP at low temperatures. We show that, using a temperature of -60 °C and a channel angle of 90° (corresponding to an equivalent strain of 1.1), ECAP of the AMC can be successfully performed without material failure. The mechanical properties of the strongly deformed AMC are analyzed by tensile testing. Our results indicate that the increased formability of the AMC at low temperatures can be attributed to the suppression of unstable plastic flow that affects formability at room temperature.

  13. Solidification and Morphological Evolution of Al-Si Eutectics in Convector-Diffusive Conditions

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching Hua; Arnold, Brad; Choa, Fow-Sen; Mandal, K. D.

    2017-01-01

    The Al-Si material system is an important and has been studied for over half century with a focus on industrial applications in high strength and high conductivity alloys. A great deal of researches have been focused on controlling the morphology and hence performance through the addition of small impurities and by processing conditions. Most of the structure-property correlations are based on the post solidified micromorphology and growth conditions. This material system is unique and has been explored for heat spreader, controlling coefficient of expansion by adjusting composition of silicon and in designing composites. The Al-Si system is very interesting system for understanding the dendritic (Al-rich side) eutectic transition. Recently this system has been of great interest because of its applications in designing heat spreader, low temperature flux to grow SiC large substrates and in controlling the coefficient of expansion of Al-based alloys. We have performed extensive experiments to understand eutectic transition and to understand the morphological evolution in presence of impurities. We will discuss the results of dendritic transition into faceted long grains in convector-diffusive conditions. In this presentation we will present morphological transition in presence of carbon impurity and development of novel morphology.

  14. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    PubMed Central

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Ghosh, Gautam; Liaw, Peter K.

    2015-01-01

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution body-centered-cubic iron for high-temperature application in fossil-energy power plants. In this study, we investigate the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy at 700–950 °C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent on differences in the matrix/precipitate compositions. Our results profile the ripening process in multicomponent alloys by illustrating controlling factors of interfacial energy, diffusivities, and element partitioning. The study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service. PMID:26537060

  15. A study on wear resistance and microcrack of the Ti 3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Li, Jianing; Chen, Chuanzhong; Squartini, Tiziano; He, Qingshan

    2010-12-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  16. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  17. Wettability of Molten Aluminum-Silicon Alloys on Graphite and Surface Tension of Those Alloys at 1273 K (1000 °C)

    NASA Astrophysics Data System (ADS)

    Mao, Weiji; Noji, Takayasu; Teshima, Kenichiro; Shinozaki, Nobuya

    2016-06-01

    The wettability of molten aluminum-silicon alloys with silicon contents of 0, 6, 10, and 20 mass pct on graphite substrates by changing the placing sequence of aluminum and silicon and the surface tension of those alloys were investigated at 1273 K (1000 °C) using the sessile drop method under vacuum. The results showed that the wetting was not affected by changing the placing sequence of the Al-Si alloys on the graphite substrates. The wettability was not improved significantly upon increasing the Si content from 0 to 10 mass pct, whereas a notable decrease of 22 deg in the contact angle was observed when increasing the Si content from 10 to 20 mass pct. This was attributed to the transformation of the interfacial reaction product from Al4C3 into SiC, provided the addition of Si to Al was sufficient. It was verified that the liquid Al can wet the SiC substrate very well in nature, which might explain why the occurrence of SiC would improve the wettability of the Al-20 mass pct Si alloy on the graphite substrate. The results also showed that the surface tension values of the molten Al-Si alloys decreased monotonously with an increase in Si content, being 875, 801, 770, and 744 mN/m for molten Al, Al-6 mass pct Si, Al-10 mass pct Si, and Al-20 mass pct Si alloys, respectively.

  18. Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding.

    PubMed

    Göken, Mathias; Höppel, Heinz Werner

    2011-06-17

    Accumulative roll bonding (ARB) is a very attractive process for processing large sheets to achieve ultrafine-grained microstructure and high strength. Commercial purity Al and many Al alloys from the 5xxx and the precipitation strengthened 6xxx alloy series have been successfully processed by the ARB process into an ultrafine-grained state and superior ductility have been achieved for some materials like technical purity Al. It has also been shown that the ARB process can be successfully used to produce multi-component materials with tailored properties by reinforcement or grading, respectively. This allows optimizing the properties based on two or more materials/alloys. For example, to achieve high corrosion resistance and good visual surface properties it is interesting to produce a composite of two different Al alloys, where for example a high strength alloy of the 5xxx series is used as the core material and a 6xxx series alloy as the clad material. It has been shown that such a composite achieves more or less the same strength as the core material although 50% of the composite consists of the significant softer clad alloy. Furthermore, it has been found, that the serrated yielding which typically appears in 5xxx series alloys and limits applications as outer skin materials completely disappears. Moreover, the ARB process allows many other attractive ways to design new composites and graded material structures with unique properties by the introduction of particles, fibres and sheets. Strengthening with nanoparticles for example is a very attractive way to improve the properties and accelerate the grain refining used in the severe plastic deformation process. With an addition of only 0.1 vol.-% Al2O3 nanoparticles a significantly accelerated grain refinement has been found which reduces the number of ARB passes necessary to achieve the maximum in strength. The paper provides a short review on recent developments in the field of ARB processing for producing

  19. Precipitation of silicon from splat-cooled Al-Si alloys

    NASA Technical Reports Server (NTRS)

    Matyja, H.; Russell, K. C.; Grant, N. J.; Giessen, B. C.

    1975-01-01

    Splat cooled Al-Si solid solutions with 1 to 11 at.% Si were prepared and their precipitation kinetics were studied by transmission electron microscopy. The time required for appearance of particles visible at a magnification of 35,000 times was determined at temperatures between 248 K and 573 K. The resulting Arrhenius plots yielded activation energies ranging from 55 to 40 plus or minus 2kJ/mol over the composition range. Precipitate densities were higher and denuded zones of 100 to 150 nm were narrower than in comparable solid quenched samples. The activation energies are explained in terms of excess point defect concentrations.

  20. Internal damping due to dislocation movements induced by thermal expansion mismatch between matrix and particles in metal matrix composites. [Al/SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girand, C.; Lormand, G.; Fougeres, R.

    In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's,more » stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.« less

  1. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP.

    PubMed

    Naizabekov, A B; Andreyachshenko, V A; Kocich, Radim

    2013-01-01

    The presented article deals with the effects of equal channel angular pressing (ECAP) with a newly adjusted die geometry on the microstructure and mechanical properties of the Al-Si-Mn-Fe alloy. This alloy was subjected to two modes of heat treatment followed by the ECAP process, which led to partial back pressure (ECAP-PBP). Ultra-fine grained (UFG) structure formed through ECAP-PBP process has been studied by methods of optical as well as electron microscopy. The obtained results indicate that quenched alloys, in comparison to slowly cooled alloys, do not contain large brittle particles which subsequently initiate a premature creation of cracks. It was shown that the mechanical properties of these alloys after such processing depend first and foremost on the selected type of heat treatment and on the number of performed passes. The maximum of ultimate tensile strength (417 MPa) was obtained for quenched alloy after 3 passes. On the other hand, maximum ductility was found in slowly cooled alloy after second pass. Further passes reduced strength due to the brittle behavior of excluded particles. One of the partial findings is that there is only a small dependency of the resulting size of grains on previously applied thermal processing. The minimum grain sizes were obtained after 3 passages, where their size ranged between 0.4 and 0.8 μm. The application of quick cooling after heat processing due to the occurrence of finer precipitates in the matrix seems to produce better results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Investigation on Mechanical and Fatigue behaviour of Aluminium Based SiC/ZrO2 Particle Reinforced MMC

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Govindaraju, N.; Suryanarayan, C. P.

    2018-04-01

    The study is the work on Aluminium Metal Matrix Composites (MMC’s), which have wider applications in automobile, aerospace and defense industries, hi-tech engineering and power transmission due to their lightweight, high strength and other unique properties. The Aluminium Matrix Composites (AMC’s) refer to a kind of light weight high performance Aluminium centric material system. AMC’s consist of a non-metallic reinforcement which when included into aluminium matrix offers an advantage over the base material. Reinforcements like SiC, B4C, Al2O3, TiC, TiB2, TiO2 are normally preferred to improve mechanical properties of such composites. Here Aluminium 6061 is preferred as matrix material, while silicon carbide (SiC) and Zirconium di-oxide (ZrO2) is selected as reinforcement compounds. Conventional Stir casting procedure is employed to fabricate the necessary composites compositions, which are I. Al:SiC::100:5 and II. Al:ZrO2:SiC::100:3:2. Experimental results depict that the composition II provides higher hardness of 53.6 RHN as opposed to 45.8 RHN of composition I. In tensile strength composition II demonstrates 96.43 N/mm2 as opposed to 67.229 N/mm2 tensile strength of composition II. The fatigue test indicate a expected number of life cycles to failure of 105 cycles for composition II and over 104 cycles for composition I, at stress ranges of 79.062 MPa and 150.651 MPa respectively.

  3. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    NASA Technical Reports Server (NTRS)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  4. Laser dispersing of ceramic powders into Al-alloys

    NASA Astrophysics Data System (ADS)

    Jendrzejewski, Rafał; Van Acker, Karel; Vanhoyweghen, Dirk

    2007-02-01

    The general objective of the work was formation of highly wear resistant metal matrix composite (MMC) surface layers on aluminium based Al 6061 alloy by means of laser dispersing. The surface of the substrate is locally melted by the high power diode laser beam and simultaneously powder particles are injected into molten material. The optimal process parameter window for the laser dispersing of SiC in Al 6061 has been found. The measured values of the wear rates of the sample with dispersed SiC particles are about seven times lower than that of the reference Al-substrates. Results show that laser dispersing is highly promising technology to improve the surface, mainly wear properties of light metals. However the possibilities of industrial application are still limited due to considerable laser beam power and preheating temperature applied as well low productivity because of low scanning speed, and therefore further investigations are required.

  5. Growth of amorphous and epitaxial ZnSiP 2–Si alloys on Si

    DOE PAGES

    Martinez, Aaron D.; Miller, Elisa M.; Norman, Andrew G.; ...

    2018-01-30

    ZnSiP 2is a wide band gap material lattice matched with Si, with potential for Si-based optoelectronics. Here, amorphous ZnSiP 2–Si alloys are grown with tunable composition. Films with Si-rich compositions can be crystallized into epitaxial films.

  6. A Comparative Study of Thermal Conductivity and Tribological Behavior of Squeeze Cast A359/AlN and A359/SiC Composites

    NASA Astrophysics Data System (ADS)

    Shalaby, Essam. A. M.; Churyumov, Alexander. Yu.; Besisa, Dina. H. A.; Daoud, A.; Abou El-khair, M. T.

    2017-07-01

    A comparative study of thermal and wear behavior of squeeze cast A359 alloy and composites containing 5, 10 and 15 wt.% AlN and SiC particulates was investigated. It was pointed out that A359/AlN composites have a superior thermal conductivity as compared to A359 alloy or even to A359/SiC composites. Composites wear characteristics were achieved by pins-on-disk instrument over a load range of 20-60 N and a sliding speed of 2.75 m/s. Results showed that A359/AlN and A359/SiC composites exhibited higher wear resistance values compared to A359 alloy. Moreover, A359/AlN composites showed superior values of wear resistance than A359/SiC composites at relatively high loads. Friction coefficients and contact surface temperature for A359/AlN specimens decreased as AlN content increased, while they increased for A359/SiC. Investigations of worn surfaces revealed that A359/AlN composites were covered up by aluminum nitrides and iron oxides, which acted as smooth layers. However, A359/SiC composites were mainly covered only by iron oxides. The superior thermal conductivity and the significant wear resistance of the developed A359/AlN composites provided a high durable material suitable for industrial applications.

  7. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  8. Preferential site occupancy of alloying elements in TiAl-based phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holec, David, E-mail: david.holec@unileoben.ac.at; Reddy, Rajeev K.; Klein, Thomas

    2016-05-28

    First principles calculations are used to study the preferential occupation of ternary alloying additions into the binary Ti-Al phases, namely, γ-TiAl, α{sub 2}-Ti{sub 3}Al, β{sub o}-TiAl, and B19-TiAl. While the early transition metals (TMs, group IVB, VB, and VIB elements) prefer to substitute for Ti atoms in the γ-, α{sub 2}-, and B19-phases, they preferentially occupy Al sites in the β{sub o}-TiAl. Si is, in this context, an anomaly, as it prefers to sit on the Al sublattice for all four phases. B and C are shown to prefer octahedral Ti-rich interstitial positions instead of substitutional incorporation. The site preferencemore » energy is linked with the alloying-induced changes of energy of formation, hence alloying-related (de)stabilisation of the phases. We further show that the phase-stabilisation effect of early TMs on β{sub o}-phase has a different origin depending on their valency. Finally, an extensive comparison of our predictions with available theoretical and experimental data (which is, however, limited mostly to the γ-phase) shows a consistent picture.« less

  9. Microstructure and degradation behavior of forged Fe-Mn-Si alloys

    NASA Astrophysics Data System (ADS)

    Xu, Zhigang; Hodgson, Michael A.; Cao, Peng

    2015-03-01

    This work presents a comparative study of a series of Fe-Mn-Si alloys proposed as degradable biomaterials for medical applications. Five Fe-28wt.%Mn-xSi (where x = 0 to 8 wt.%) alloys were fabricated by an arc-melting method. All the as-cast alloys were subsequently subjected to homogenization treatment and hot forging. The microstructure and phase constituents were investigated. It is found that the grain size of the as-forged alloys ranged approximately from 30 to 50 μm. The as-forged Fe-Mn-Si alloys containing Si from 2 to 6 wt.% was comprised of duplex martensitic ɛ and austenitic γ phases; however, the Si-free and 8 wt.% Si alloys only consisted of a single γ phase. After 30 days of static immersion test in a simulated body fluid (SBF) medium, it is found that pitting and general corrosion occur on the sample surfaces. Potentiodynamic analysis reveals that the degradation rate of the Fe-Mn-Si alloys increased gradually with Si content up to 6 wt.%, beyond which the degradation slows down.

  10. Influence of gating design on microstructure and fluidity of thin sections AA320.0 cast hypo-eutectic Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Ramadan, Mohamed

    2018-05-01

    Influence of gating design especially number of ingrates on microstructure and fluidity of thin sections of 2, 4, 6 mm AA320.0 cast hypo-eutectic Al-Si alloy was evaluated for sand casting molding technique. Increasing the number of ingates improves the microstructe to be fine and more globular. About 87 μm of α-Al grain size, 0.6 α-Al grain sphericity and 37 μm dendrite arm spacing DAS are achieved by using 4 ingates in gating system. Increasing the number of ingates up to 3 increases hardness, filling area and related fluditiy of all cast samples. The minimum thickness of 2.5 mm for each ingate should be considered in order to successfully production of high quality light weight thin sections castings in sand mold.

  11. Effect of Cold Forging on Microstructure and MechanicalProperties of Al/SiC Composites

    NASA Astrophysics Data System (ADS)

    Hanamantraygouda, M. B.; Shivakumar, B. P., Dr; Siddappa, P. N.; Sampathkumar, L.; Prashanth, L.

    2018-02-01

    The objective of this work was to investigate the effect of cold forging on mechanical properties and microstructural study of Al MMCs, at different wt% of SiC and forging cycle. The Al-SiC composite material was fabricated by stir casting method at different weight percentage of SiC such as 2.5, 5, 7.5 and 10%. Further, the deformation characteristics during open-die forging of Al-SiC composite at cold conditions was investigated. Cast and forged composite material was subjected to hardness test, tensile test and impact test. The grain size, microstructure behaviour was investigated using optical microscope. The results show that hardness and strength of Al-SiC composite increases and ductility decreases as compared to Al alloy in both as-cast and forged conditions. Optical microscope images showed that the distribution of SiC in Al matrix was more homogeneous in a forged composite as compared to cast one and reduction of porosity was found. Further, it showed that due to forging cycle the grain size was reduced by 30% to 35% from initial size.

  12. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  13. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys

    PubMed Central

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-01-01

    Ti–Al–Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti–Al–Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti–10Al–20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti5Si3 silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5. PMID:28772824

  14. Influence of surface morphology and UFG on damping and mechanical properties of composite reinforced with spinel MgAl{sub 2}O{sub 4}-SiC core-shell microcomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Subhash; Pal, Kaushik, E-mail: pl_kshk@yaho

    Interface between ceramic particulate and matrix is known to control the response of the materials and functionality of the composite. Among numerous physical properties, grain structure of the materials has also played a significant role in defining the behaviour of metal matrix composites. Usually, silicon carbide (SiC) particles show poor interfacial wettability in aluminium melt. Herein, we were successfully synthesized magnesium oxide (MgO) and nanocrystalline magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel coated silicon carbide (SiC) core-shell micro-composites through sol-gel technique to improve the wettability of dispersoids. Core-shell structures of submicron size were thoroughly investigated by various characterization techniques. Further, aluminiummore » matrix composites incorporated with pristine SiC, MgO grafted SiC and MgAl{sub 2}O{sub 4} grafted SiC particles were fabricated by stir casting technique, respectively. Additionally, as-cast composites were processed via friction stir processing (FSP) technique to observe the influence of grain refinement on mechanical and damping properties. Electron back scattered diffraction (EBSD), Field emission scanning electron microscopy (FE-SEM) and X-ray energy dispersion spectroscopy (EDX) analysis were conducted for investigating grain size refinement, adequate dispersion, stability and de-agglomeration of encapsulated SiC particles in aluminium matrix. The mechanical as well as thermal cyclic (from − 100 to 400 °C) damping performance of the as-cast and friction stir processed composites were studied, respectively. Finally, the enhanced properties were attributable to reduced agglomeration, stabilization and proper dispersion of the tailored SiC particles Al matrix. - Highlights: •Synthesizing a novel coating layer of MgO and MgAl{sub 2}O{sub 4} spinel onto SiC particles •Significant improvement in UTS and hardness by reinforcing tailored SiC in Al •Significant grain refinements were obtained

  15. Microstructure and Phase Stability of Single Crystal NiAl Alloyed with Hf and Zr

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Dickerson, R. M.; Garg, A.; Noebe, R. D.; Whittenberger, J. D.; Nathal, M. V.; Darolia, R.

    1996-01-01

    Six near stoichiometric, NiAl single-crystal alloys, with 0.05-1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Nil6X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (beta') was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.

  16. Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy

    NASA Astrophysics Data System (ADS)

    Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting wear test on pin on disc wear testing machine. Wear test parameters such as the load and the speed were varied by keeping one constant and varying the other respectively. It was observed that the coefficient of friction is high for as cast condition due to the brittle microstructure. After T6 heat treatment the precipitates formed such as the Chinese scripts and the Mg2Si blocks got modified that lead to improvement in the hardness and the wear resistance. This reduces the coefficient of friction.

  17. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; ...

    2015-11-05

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution bodycentered- cubic iron for high-temperature application in fossil-energy power plants. In this study, the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy was investigated at 700 - 950°C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent to differences in the matrix/precipitate compositions. The results profile the ripening process in multicomponent alloys bymore » illustrating controlling factors (i.e., interfacial energy, diffusivities, and element partitioning). As a result, the study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service.« less

  18. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    NASA Astrophysics Data System (ADS)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  19. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    DOE PAGES

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; ...

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less

  20. Structure and microhardness of Al-Si-Cu-Ni alloy after severe plastic deformation and high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Shvets, Karina; Khalikova, Gulnara; Korznikova, Elena; Trifonov, Vadim

    2015-10-01

    The effect of severe plastic deformation by high-pressure torsion (HPT) and subsequent annealing on the microstructure and microhardness of squeeze casting Al-22%Si-3%Cu-1.7%Ni alloy was investigated. HPT was performed at room temperature with 5 rotations under the pressure of 4 GPa. Annealing temperature range varied from 300 to 500°C for 5 min. HPT resulted in refinement and partial dissolution of the primary silicon and intermetallic particles in aluminum matrix and structure fragmentation that caused the microhardness increase. Subsequent annealing lead to the decomposition of the supersaturated solid solution that took place simultaneously with recovery and recrystallization of the fragmented structure. Increase of annealing temperature resulted in decrease of microhardness values.

  1. Quasicrystal-reinforced Mg alloys

    PubMed Central

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-01-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg–Zn–Y and Mg–Zn–Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg–Zn–Y alloys, the co-presence of I and Ca2Mg6Zn3 phases by addition of Ca can significantly enhance formability, while in Mg–Zn–Al alloys, the co-presence of the I-phase and Mg2Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg–Zn–Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg–Zn–Al–Sn alloys is attributed to the presence of finely distributed Mg2Sn and I-phase particles embedded in the α-Mg matrix. PMID:27877660

  2. Investigation on the Effect of Sub-Zero Treatment on Micro-Hardness and Microstructure of GTAW Welded Al-Si-Mg-Mn Alloy

    NASA Astrophysics Data System (ADS)

    Devanathan, R.; Yuvarajan, D.; Christopher Selvam, D.; Venkatamuni, T.

    2018-02-01

    In this work, the effect of sub-zero treatment on the mechanical properties of an Al-Si-Mg-Mn alloy welded by GTAW (gas tungsten arc welding) leads to significant softening in the welded region. The latter is due to melting and resolidification in the welded region, which have resulted in decomposition of the strengthening precipitates. The experiments were performed on GTAW welded plates of 6 mm thickness by varying the heat inputs, namely, of 370, 317.1, 277.5, 246.4, and 222 J/mm, and sub-zero treatment time periods. The Sub-Zero treatment was performed at-45°C using dry ice; hardness and microstructure investigations were performed in the welded region of the Al‒Si-Mg-Mn alloy that was studied in two different conditions, namely, as-welded and in that formed after post weld sub-zero treatment with artificial aging. It was found that the post weld Sub-Zero treatment followed by artificial aging had led to realization of significantly higher hardness values in the welded region due to the recurrence of the precipitation sequence.

  3. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    NASA Astrophysics Data System (ADS)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the

  4. Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-feng; Guo, Ming-xing; Cao, Ling-yong; Wang, Fei; Zhang, Ji-shan; Zhuang, Lin-zhong

    2015-07-01

    The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstructural observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio ( r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geometry value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001}<110> and Goss {110}<001> orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H{001}<110> orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.

  5. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  6. Investigation of Parametric Influence on the Properties of Al6061-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Adebisi, A. A.; Maleque, M. A.; Bello, K. A.

    2017-03-01

    The influence of process parameter in stir casting play a major role on the development of aluminium reinforced silicon carbide particle (Al-SiCp) composite. This study aims to investigate the influence of process parameters on wear and density properties of Al-SiCp composite using stir casting technique. Experimental data are generated based on a four-factors-five-level central composite design of response surface methodology. Analysis of variance is utilized to confirm the adequacy and validity of developed models considering the significant model terms. Optimization of the process parameters adequately predicts the Al-SiCp composite properties with stirring speed as the most influencing factor. The aim of optimization process is to minimize wear and maximum density. The multiple objective optimization (MOO) achieved an optimal value of 14 wt% reinforcement fraction (RF), 460 rpm stirring speed (SS), 820 °C processing temperature (PTemp) and 150 secs processing time (PT). Considering the optimum parametric combination, wear mass loss achieved a minimum of 1 x 10-3 g and maximum density value of 2.780g/mm3 with a confidence and desirability level of 95.5%.

  7. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    NASA Technical Reports Server (NTRS)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  8. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.

  9. Effect of laser pulsing on the composition measurement of an Al-Mg-Si-Cu alloy using three-dimensional atom probe.

    PubMed

    Sha, G; Ringer, S P

    2009-04-01

    The effect of laser pulse energy on the composition measurement of an Al-Mg-Si-Cu alloy (AA6111) specimen has been investigated over a base temperature range of 20-80K and a voltage range of 2.5-5kV. Laser pulse energy must be sufficiently higher to achieve pulse-controlled field evaporation, which is at least 0.9nJ with a beam spot size of about 5microm, providing an equivalent voltage pulse fraction, approximately 14% at 80K for the alloy specimen. In contrast to the cluster composition, the measured specimen composition is sensitive to base temperature and laser energy changes. The exchange charge state under the influence of laser pulsing makes the detection of Si better at low base temperature, but detection of Cr and Mn is better at a higher temperature and using higher laser energy. No such effect occurs for detection of Mg and Cu under laser pulsing, although Mg concentration is sensitive to the analysis temperature under voltage pulsing. Mass resolution at full-width half-maximum is sensitive to local taper angle near the apex, but has little effect on composition measurement.

  10. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  11. Ostwald ripening of faceted Si particles in an Al-Si-Cu melt

    DOE PAGES

    Shahani, A. J.; Xiao, X.; Skinner, K.; ...

    2016-07-04

    The microstructural evolution of an Al-Si-Cu alloy during Ostwald ripening is imaged via synchrotron-based, four-dimensional (i.e., space and time resolved) X-ray tomography. Samples of composition Al-32 wt%Si-15 wt%Cu were annealed isothermally at 650 °C, in the two-phase solid-liquid regime, while tomographic projections were collected in situ over the course of five hours. Advances in experimental methods and computational approaches enable us to characterize the local interfacial curvatures and velocities during ripening. The sequence of three-dimensional reconstructions and interfacial shape distributions shows highly faceted Si particles in a copper-enriched liquid, that become increasingly isotropic or rounded over time. In addition, wemore » find that the coarsening rate constant is approximately the same in the binary and ternary systems. By coupling these experimental measurements with CALPHAD modeling and ab initio molecular dynamics simulation, we assess the influence of Cu on the coarsening process. Lastly, we find the unusual “pinning” of microstructure at the junction between rough and smooth interfaces and suggest a mechanism for this behavior.« less

  12. Proton irradiation studies on Al and Al5083 alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P.; Gayathri, N.; Bhattacharya, M.; Gupta, A. Dutta; Sarkar, Apu; Dhar, S.; Mitra, M. K.; Mukherjee, P.

    2017-10-01

    The change in the microstructural parameters and microhardness values in 6.5 MeV proton irradiated pure Al and Al5083 alloy samples have been evaluated using different model based techniques of X-ray diffraction Line Profile Analysis (XRD) and microindendation techniques. The detailed line profile analysis of the XRD data showed that the domain size increases and saturates with irradiation dose both in the case of Al and Al5083 alloy. The corresponding microstrain values did not show any change with irradiation dose in the case of the pure Al but showed an increase at higher irradiation doses in the case of Al5083 alloy. The microindendation results showed that unirradiated Al5083 alloy has higher hardness value compared to that of unirradiated pure Al. The hardness increased marginally with irradiation dose in the case of Al5083, whereas for pure Al, there was no significant change with dose.

  13. Study on the Anti-Poison Performance of Al–Y–P Master Alloy for Impurity Ca in Aluminum Alloys

    PubMed Central

    Zuo, Min; Dong, Yu; Zhao, Degang; Wang, Yan; Teng, Xinying

    2017-01-01

    In this article, the anti-poison performance of novel Al–6Y–2P master alloy for impurity Ca in hypereutectic Al–Si alloys was investigated in detail. According to the microstructural analysis, it can be found that the primary Si and eutectic Si particles could be relatively modified and refined. In order to investigate the influence mechanism of Ca on the limited refinement performance of Al–6Y–2P master alloy, types of Al–xSi–2Ca–3Y–1P (x = 0, 6, 12, 18, and 30) alloys were prepared. It is observed that Ca takes the form of more stable Ca3P2 compounds by reacting with YP, and the surface of Ca3P2 particles are unsmooth, and even some have wrinkles in Al Al–2Ca–3Y–1P alloy. With the increase of Si content in Al–xSi–2Ca–3Y–1P (x = 6, 12, 18 and 30) systems, the multi-encapsulation structures, i.e., the phosphide (AlP and YP), hexagonal Al2Si2Ca, the Al3Si2Y2 or primary Si from inside to outside in order were examined.The excapsulation of YP and AlP caused by Al2Si2Ca might be the reason for the limited refinement effect of Al–6Y–2P master alloy for hypereutectic Al–18Si alloys. PMID:29186862

  14. Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al-Mg-Si nanostructured under severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Mavlyutov, A. M.; Kasatkin, I. A.; Murashkin, M. Yu.; Valiev, R. Z.; Orlova, T. S.

    2015-10-01

    The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al-Mg-Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ0.2 = 325-410 MPa) and electrical conductivity (55-52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 1013 to 5 × 1013 m-2) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.

  15. Deformation behaviour of Rheocast A356 Al alloy at microlevel considering approximated RVEs

    NASA Astrophysics Data System (ADS)

    Islam, Sk. Tanbir; Das, Prosenjit; Das, Santanu

    2015-03-01

    A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.

  16. Development of Tough, Strong, and Pest-Resistant MoSi2-(Beta)Si3N4 Composites for High-Temperature Structural Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Choi, S. R.; Whittenberger, J. D.; Salem, J. A.; Noebe, R. D.

    2001-01-01

    A new MoSi2-base composite was developed that contains in-situ reinforcement of whisker-type beta-Si3N4 grains in a MoSi2 matrix. The advantages of this in-situ reinforced MoSi2-Si3N4 are lower density, higher fracture toughness and better strength than typical MoSi2 alloys, combined with excellent environmental and pest resistance. The average fracture toughness of the in-situ reinforced material determined by one technique was 12.2 MPa.m(exp 1/2) compared to 4.9 to 5.5 MPa.m(exp 1/2) for similar materials with the exception that the beta-Si3N4 had a blocky morphology as opposed to the whisker-like morphology typical of the in-situ toughened material. This MoSi2-(beta)Si3N4 was also resistant to pesting at intermediate temperatures (400 to 600 C) even when precracked or under applied load; conditions that would quickly reduce typical MoSi2 alloys to oxidized powder.

  17. Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys

    NASA Astrophysics Data System (ADS)

    Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.

    2005-02-01

    Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.

  18. Nial-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor); Whittenberger, John D. (Inventor); Lowell, Carl E. (Inventor)

    1997-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 mm to about 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAY and FeAl.

  19. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    NASA Technical Reports Server (NTRS)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  20. Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)

    DTIC Science & Technology

    2014-08-15

    AFRL-RX-WP-JA-2014-0177 REACTIVE SPARK PLASMA SINTERING (SPS) OF NITRIDE REINFORCED TITANIUM ALLOY COMPOSITES (POSTPRINT) Jaimie S...titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and...lcomReactive spark plasma sintering (SPS) of nitride reinforced titanium alloy compositeshttp://dx.doi.org/10.1016/j.jallcom.2014.08.049 0925-8388

  1. Processing of In-Situ Al-AlN Metal Matrix Composites via Direct Nitridation Method

    DTIC Science & Technology

    1998-04-01

    to prepare the aluminum melts with desired chemical compositions. Table 1. Chemical compositions of the starting materials. Alloy Mg Fe Cr Si Ni Al...Al 0.001 0.11 0.001 0.04 0.005 bal. Alloy Al Fe Cr Si Ni Mg Mg 0.01 0.12 0.001 0.03 0.006 bal. The ingots were initially cut to chunks with...hours. Figure 26 shows the optical micrographs obtained from the ingots after nitridation reaction of the alloys initially containing Al- 5wt .% Si

  2. Crystal growth velocity in deeply undercooled Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.

    2012-02-01

    The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L ≈ 1505 and 1387 K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni-Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10 at.% Si, resulting in the remarkable decrease of growth velocity.

  3. Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2017-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.

  4. Parameter optimization and evaluation of mechanical and thermal properties of nanographene reinforced Al 6060 surface composite using FSP

    NASA Astrophysics Data System (ADS)

    Kalyanamanohar, V.; Appalachari, D. Gireesh Chandra

    2018-04-01

    Friction stir processing (FSP) is emerging as a promising technique for making surface composites. FSP can improve surface properties such as hardness, strength, ductility, corrosion resistance, fatigue life and formability without affecting the bulk properties of the material. The literatures reported that FSP can produces very fine equiaxed and homogeneous grain structure for different Al alloys. Al 6060 is heat treatable alloy which has high thermal and electrical properties than remaining Al alloys. Al 6060 is being used where high rate of heat exchange is needed i.e. engine cylinders, heat exchangers etc. As derived from the carbon materials, like graphene and CNTs dissipates heat rapidly that improves the life of the engine cylinders and heat exchangers. In this work, nanographene is reinforced in the Al 6060 using friction stir processing at different rotational speeds, traverse speeds, and at constant load and tool tilt angle. After processed, the effect of process parameters on microstructure of the surface composite was investigated. The SEM studies shows that the FSP produces very fine and homogenous grain structure and it is observed that smaller grain size structure is obtained at lower traverse speed and higher rotational speeds. Significant improvement in ultimate tensile strength(22.9%) and hardness (22.44%) when compared friction stir processed plate at 1400 rotational speed and 20mm/min traverse speed with base Al 6060 plate. Coefficient of thermal expansion test of nanographene reinforced Al 6060 shows 7.33% decrease in its coefficient of thermal expansion as graphene has tendency to reduce the anisotropic nature.

  5. Reduction in the formation temperature of Poly-SiGe alloy thin film in Si/Ge system

    NASA Astrophysics Data System (ADS)

    Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Sarguna, R. M.; Magudapathy, P.; Ilango, S.

    2018-04-01

    The role of deposition temperature in the formation of poly-SiGe alloy thin film in Si/Ge system is reported. For the set ofsamples deposited without any intentional heating, initiation of alloying starts upon post annealingat ˜ 500 °C leading to the formation of a-SiGe. Subsequently, poly-SiGe alloy phase could formonly at temperature ≥ 800 °C. Whereas, for the set of samples deposited at 500 °C, in-situ formation of poly-SiGe alloy thin film could be observed. The energetics of the incoming evaporated atoms and theirsubsequent diffusionsin the presence of the supplied thermal energy is discussed to understand possible reasons for lowering of formation temperature/energyof the poly-SiGe phase.

  6. Effect of wear parameters on dry sliding behavior of Fly Ash/SiC particles reinforced AA 2024 hybrid composites

    NASA Astrophysics Data System (ADS)

    Bhaskar Kurapati, Vijaya; Kommineni, Ravindra

    2017-09-01

    In the present work AA 2024 alloy reinforced with mixtures of SiC and Fly Ash (FA) particles of 70 µm (5, 10 and 15 wt. %) are fabricated using the stir casting method. Both reinforcements are added in equal weight proportions. The wear test specimens are prepared from both the alloy and composite castings in the dimensions of Ф 4 mm and 30 mm lengths by the wire cut EDM process. The dry sliding wear properties of the prepared composites at room temperature are estimated by pin-on-disc wear testing equipment. The wear characteristics of the composites are studied by conducting the dry sliding wear test over loads of 0.5 Kgf, 1.0 Kgf, 1.5 Kgf, a track diameter of 60 mm and sliding times of 15 min, 30 min, 45min. The experimental results shows that the wear decreases with an increase in the weight percentage of FA and SiC particles in the matrix. Additionally wear increases with an increase in load and sliding time. Further, it is found that the wear resistance of the AA2024-Hybrid composites is higher than that of the AA2024 matrix.

  7. Structural, Electronic and Elastic Properties of Half-Heusler Alloys CrNiZ (Z = Al, Si, Ge and As)

    NASA Astrophysics Data System (ADS)

    Zitouni, A.; Benstaali, W.; Abbad, A.; Lantri, T.; Bouadjemi, B.; Aziz, Z.

    2018-06-01

    In the present work, a self-consistent ab-initio calculation using the full- potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT) was used to study the structural, electronic, magnetic and elastic properties of the half Heusler alloys CrNiZ (Z = Al, Si, Ge and As) in three phases ( α, β and γ phases). The generalized gradient approximation (GGA) described by Perdew-Burke-Ernzerhof (PBE) was used. The results obtained for the spin-polarized band structure and the density of states show a halfmetallic behavior for the four compounds. The elastic constants ( C ij ) show that our compounds are ductile, stiff and anisotropic.

  8. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, P.Y.; Dai, S.L.; Chai, S.C.

    2000-05-10

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10{sup {minus}3}). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10{sup {minus}2}, however, their densitiesmore » are usually great than 5 x 10{sup 3} kg m{sup {minus}3}, or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process.« less

  9. Effects of Sintering and Extrusion on the Microstructures and Mechanical Properties of a SiC/Al-Cu Composite

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Shen, Rujuan; Song, Min

    2012-03-01

    This article studied the effects of sintering and extrusion on the microstructures and mechanical properties of SiC particle reinforced Al-Cu alloy composite produced by powder metallurgy method. It has been shown that both extrusion and increasing sintering temperature can significantly improve the strength and plasticity of the composite. The extrusion and increase of the sintering temperature can break up the oxide coating on the matrix powder surfaces, decrease the number of pores, accelerate the elements' diffusion and increase the density and particle interfacial bonding strength, thus significantly improve the mechanical properties of the composite. The strength and hardness of the composite increase and the elongation decreases with increasing the aging time at under-aged stage, while the strength and hardness start to decrease and the elongation starts to increase with increasing the aging time at over-aged stage due to the formation and growth of the secondary strengthening precipitates in the Al-Cu matrix.

  10. Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications

    NASA Astrophysics Data System (ADS)

    Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.

    2006-12-01

    Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.

  11. Electronic structures of Al-Si clusters and the magic number structure Al8Si4

    NASA Astrophysics Data System (ADS)

    Du, Ning; Su, Mingzhi; Chen, Hongshan

    2018-02-01

    The low-energy structures of Al8Sim (m = 1-6) have been determined by using the genetic algorithm combined with density functional theory and the Second-order Moller-Plesset perturbation theory (MP2) models. The results show that the close-packed structures are preferable in energy for Al-Si clusters and in most cases there exist a few isomers with close energies. The valence molecular orbitals, the orbital level structures and the electron localisation function (ELF) consistently demonstrate that the electronic structures of Al-Si clusters can be described by the jellium model. Al8Si4 corresponds to a magic number structure with pronounced stability and large energy gap; the 40 valence electrons form closed 1S21P61D102S21F142P6 shells. The ELF attractors also suggest weak covalent Si-Si, Si-Al and Al-Al bonding, and doping Si in aluminium clusters promotes the covalent interaction between Al atoms.

  12. Dissolution of Si in Molten Al with Gas Injection

    NASA Astrophysics Data System (ADS)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which

  13. Effects of Electromagnetic Stirring on the Microstructure and High-Temperature Mechanical Properties of a Hyper-eutectic Al-Si-Cu-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Jang, Youngsoo; Choi, Byounghee; Kang, Byungkeun; Hong, Chun Pyo

    2015-02-01

    A liquid treatment method by electromagnetic stirring was applied to a hyper-eutectic Al-15wt pctSi-4wt pctCu-3wt pctNi alloy for the piston manufacturing with diecasting process in order to improve high-temperature mechanical properties of the piston heads. The mechanical properties, such as hardness, high-temperature tensile stress, thermal expansion, and high-temperature relative wear resistance, were estimated using the specimens taken from the liquid-treated diecast products, and the results were compared with those of a conventional metal-mold-cast piston.

  14. Effect of Low-Temperature Thermomechanical Treatment on the Structure and Mechanical, Fatigue and Corrosion Characteristics of Sheets from an Alloy of the Al - Mg - Si - Cu - Zn System

    NASA Astrophysics Data System (ADS)

    Makhsidov, V. V.; Kolobnev, N. I.; Kochubey, A. Ya.; Fomina, M. A.; Zamyatin, V. M.; Pushin, V. G.

    2014-11-01

    The effect of deformation on the structure, strength and fatigue properties, stresses on the surface and sensitivity to intercrystalline corrosion of sheets from alloy 1370 of the Al -Mg - Si - Cu - Zn system with one-side cladding is investigated. Application of deformation to sheets of alloy 1370 between the stages of artificial aging lowers the depth of penetration of ICC (≤ 0.10 mm) and raises the fatigue characteristics (by up to a factor of 2) at a high level of mechanical properties.

  15. Characterization of rodlike structures in Si-Ge-GaP alloys

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Jesser, W. A.; Rosi, F. D.

    1996-07-01

    High-temperature microstructure of Si-Ge alloys containing 10-15 mole % GaP were studied. Quenching the 80/20 Si-Ge alloy (80 at. % Si) from above 1125 °C and the 50/50 Si-Ge alloy (50 at. % Si) from above 1025 °C resulted in a duplex microstructure. The two-phase regions consisted of a regular array of rodlike structures (GaP) in a Si-Ge matrix whereas the monophase regions were pure Si-Ge. These rodlike structures were found to lie along the [001] direction and result in {002} spots in a [100] electron diffraction pattern. The ``rods'' were about 35 and 45 nm in diameter in the case of the 80/20 and 50/50 alloy, respectively. These structures are not stable on annealing and do not form when the solidification rate is decreased.

  16. The microstructure, mechanical stress, texture, and electromigration behavior of Al-Pd alloys

    NASA Astrophysics Data System (ADS)

    Rodbell, K. P.; Knorr, D. B.; Mis, J. D.

    1993-06-01

    As the minimum feature size of interconnect lines decreases below 0.5 urn, the need to control the line microstructure becomes increasingly important. The alloy content, deposition process, fabrication method, and thermal history all determine the microstructure of an interconnect, which, in turn, affects its performance and reliability. The motivation for this work was to characterize the microstructure of various sputtered Al-Pd alloys (Al-0.3wt.%Pd, Al-2Cu-0.3Pd, and Al-0.3Nb-0.3Pd) vs sputtered Al-Cu control samples (Al-0.5Cu and Al-2Cu) and to assess the role of grain size, mechanical stress, and crystallographic texture on the electromigration behavior of submicrometer wide lines. The grain size, mechanical stress, and texture of blanket films were measured as a function of annealing. The as-deposited film stress was tensile and followed a similar stress history on heating for all of the films; on cooling, however, significant differences were observed between the Al-Pd and Al-Cu films in the shape of their stress-temperature-curves. A strong (111) crystallographic texture was typically found for Al-Cu films deposited on SiO2. A stronger (111) texture resulted when Al-Cu was deposited on 25 nm titanium. Al-0.3Pd films, however, exhibited either a weak (111) or (220) texture when deposited on SiO2, which reverted to a strong (111) texture when deposited on 25 nm titanium. The electromigration lifetimes of passivated, ≈0.7 μm wide lines at 250°C and 2.5 × 106 A/cm2 for both single and multi-level samples (separated with W studs) are reported. The electromigration behavior of Al-0.3Pd was found to be less dependent on film microstructure than on the annealing atmosphere used, i.e. forming gas (90% N2-10%H2) annealed Al-0.3Pd films were superior to all of the alloys investigated, while annealing in only N2 resulted in poor lifetimes.

  17. Experimental Studies on Al (5.7% Zn) Alloy based Hybrid MMC

    NASA Astrophysics Data System (ADS)

    Shivaprakash, Y. M.; Ramu, H. C.; Chiranjivee; Kumar, Roushan; Kumar, Deepak

    2018-02-01

    In this investigation, an attempt is made to disperse SiC (20-25 microns) and Gr (15-20 microns) in the aluminium alloy having Zn, Mg and coper as major alloying elements. The composite is further subjected to mechanical testing to determine various properties like hardness, tensile strength and wear resistance. The alloy and composite samples were tested in the un heat treated conditions. All the tests were done at the laboratory conditions as per ASTM standards. The Pin-On-Disc tribometer is used to test the two-body abrasive sliding wear behaviour in dry conditions. The wear pattern is analysed by the optical images of worn surface taken in an inverted metallurgical microscope. The calculated density is found to be reducing as the SiC and Gr quantity is increased in the base alloy. The as cast Al alloy was found to be having highest hardness. The introduction of SiC tend to increase the hardness and UTS, since Gr is also introduced simultaneously which tends to reduce the hardness and UTS of composite. The composite having highest quantity of Gr showed superior wear resistance which is mainly because the Gr particulates provide an inbuilt lubricating properties to composite. The analysis of images of worn surface showed the abrasive and delamination pattern of wear. The composites developed in the present work can be used in the automobile and aerospace parts that are light in weight and require self-lubricating properties to enhance the wear resistance.

  18. Processing and properties of SiC whisker- and particulate-reinforced reaction bonded Si3N4

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Ewart, L.; Haggerty, J.; Cai, Z. Q.; Ritter, J.; Nair, S.

    1991-01-01

    The microstructure and mechanical properties of reaction bonded Si3N4 (RBSN) reinforced with SiC whiskers of particles were investigated using RBSN composites made from colloidally pressed octanol dispersions of high-purity Si powders mixed with either SiC whiskers or alpha-SiC particles. Results of investigations, revealing high conversions of Si to Si3N4, specific surface areas, and constant relative densities and strengths, showed that the uniform microstructure and small flaw size of the matrix were maintained in the composites and that no degradation of the reinforcements was taking place. Neither the monolithic nor the composite materials exhibited R-curve behavior. A modest increase in fracture toughness was observed only in the RBSN containing 33 vol pct SiC(p).

  19. TEM study of {beta} Prime precipitate interaction mechanisms with dislocations and {beta} Prime interfaces with the aluminium matrix in Al-Mg-Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.

    The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less

  20. Friction and wear of oxide-ceramic sliding against IN-718 nickel base alloy at 25 to 800 C in atmospheric air

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Deadmore, Daniel L.

    1989-01-01

    The friction and wear of oxide-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C were measured. The oxide materials tested were mullite (3Al2O3.2SiO2); lithium aluminum silicate (LiAlSi(x)O(y)); polycrystalline monolithic alpha alumina (alpha-Al2O3); single crystal alpha-Al2O3 (sapphire); zirconia (ZrO2); and silicon carbide (SiC) whisker-reinforced Al2O3 composites. At 25 C the mullite and zirconia had the lowest friction and the polycrystalline monolithic alumina had the lowest wear. At 800 C the Al2O3-8 vol/percent SiC whisker composite had the lowest friction and the Al2O3-25 vol/percent SiC composite had the lowest wear. The friction of the Al2O3-SiC whisker composites increased with increased whisker content while the wear decreased. In general, the wear-resistance of the ceramics improve with their hardness.

  1. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  2. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    PubMed

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  3. Study of distribution of Carbon nanotube in Al-CNT nanocomposite synthesized via Spark-Plasma sintering

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Laha, T.

    2018-03-01

    In the present study, first ever attempt has been made to develop physically functionalized multiwalled carbon nanotube (MWCNT) reinforced Al-11 5Si alloy nanocomposites synthesized via novel consolidation technique viz spark plasma sintering (SPS). There is a recent trend in employing carbon nanotubes (CNTs), an allotrope of carbon, as reinforcement for high strength structural metallic composite materials, as these cylindrical nano-fibers poses extremely unique mechanical properties such as very high elastic modulus (~ 300 GPa to 1.5 TPa) as well as tensile strength (~150 GPa). However, it has remained as an ever-existing problem to achieve a porosity-free nanocrystalline matrix with homogenously dispersed CNTs, owing to the very high coagulation tendency of CNTs. The gas-atomized, spherical Al-11.5Si alloy powders (1-8 μm) were subjected to high energy ball milling for the purpose of achieving nanocrystallinity in the powders. The improvement in MWCNT dispersion was effort by treating the MWCNTs with a physical surfactant, sodium dodecyl sulfate (SDS). The nano-grained ball-milled Al-Si powders with varying MWCNT content (0.5 and 1 wt%) were consolidated via spark plasma sintering in order to retain the nano-sized grains in the Al-Si matrix, attributed to the faster and highly effective sintering kinetics of the sintering techniques. FESEM study shows problem of MWCNT agglomeration persists by addition of non-SDS treated as pristine MWCNT in the composite. After treated with SDS, MWCNTs are well separated out from each other and as a result of that good morphological and mechanical property such as high hardness value obtained after analysis. Detailed TEM study of the 0.5wt% MWCNT reinforced SPS nanocomposite revealed that the distribution of CNTs in the matrix. Mechanical analysis study of the nanocomposite attributes higher hardness in case of SDS treated CNT reinforced nanocomposite owing to less agglomeration problem of the CNT in the matrix. Nano

  4. Effect of Ag and Cu Contents on the Age Hardning Behavior of Al-Zn-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Watanabe, Katsumi; Kawabata, Tokimasa; Ikeno, Susumu; Yoshida, Tomoo; Murakami, Satoshi; Matsuda, Kenji

    Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg-Si alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2 at.% and 0.2at.%, respectively. The age-hardening behavior and microstructures of those alloys were investigated by hardness measurement, high resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) technique. Ag or Cu added alloy showed higher peak hardness than Ag or Cu free alloy. According to addition of Ag or Cu, the number density of the precipitates increased than Ag or Cu free alloy.

  5. Wetting and Interfacial Reactivity of Zn-Coated Steel Products with Cu-Si, Cu-Sn and Al-Si Filler Metals for Laser Brazing Application

    NASA Astrophysics Data System (ADS)

    Koltsov, Alexey; Cretteur, Laurent

    2018-03-01

    The laser brazing process is successfully applied in automotive industry for joining of roofs and hatchbacks of vehicles. The bad wetting of the brazing alloy during the process can lead to the formation of random external porosities which are not allowed on visible parts. This paper describes the wettability and reactivity mechanisms at short contact time of Cu and Al matrix brazing alloys with different reactive elements (Si, Sn) on different steel products such as hot-dip galvanized steels, galvannealed steel and bare steel. Wetting experiments were carried out by the dispensed drop technique. The effects of alloying elements and brazing alloy matrix on interfacial reactivity are discussed. It was found that Cu matrix containing 3 wt.% Si is the most favorable for short time liquid/solid adhesion relatively to the other studied brazing alloy compositions. The brazing ability of different steel products is well correlated with the wettability and interfacial reactivity results.

  6. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  7. Durability Assessment of TiAl Alloys

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.

    2008-01-01

    The durability of TiAl is a prime concern for the implementation of TiAl into aerospace engines. Two durability issues, the effect of high temperature exposure on mechanical properties and impact resistance, have been investigated and the results are summarized in this paper. Exposure to elevated temperatures has been shown to be detrimental to the room temperature ductility of gamma alloys with the most likely mechanisms being the ingress of interstitials from the surface. Fluorine ion implantation has been shown to improve the oxidation resistance of gamma alloys, and ideally it could also improve the environmental embrittlement of high Nb content TiAl alloys. The effect of F ion implantation on the surface oxidation and embrittlement of a third generation, high Nb content TiAl alloy (Ti-45Al-5Nb-B-C) were investigated. Additionally, the ballistic impact resistance of a variety of gamma alloys, including Ti-48Al-2Cr- 2Nb, Ti-47Al-2Cr-2Nb, ABB-2, ABB-23, NCG359E, 95A and Ti-45Al-5Nb-B-C was accessed. Differences in the ballistic impact properties of the various alloys will be discussed, particularly with respect to their manufacturing process, microstructure, and tensile properties.

  8. Effect of Cold-rolling on Mechanical Properties and Microstructure of an Al-12%Si-0.2%Mg Alloy

    NASA Astrophysics Data System (ADS)

    Liao, Hengcheng; Cai, Mingdong; Jing, Qiumin; Ding, Ke

    2011-11-01

    Effect of multi-pass cold-rolling on the mechanical properties and microstructure of a near-eutectic Al-12%Si-0.2%Mg casting alloy was investigated. Optical microscopy, SEM, and TEM were employed to resolve the as-rolled microstructure, and the microstructure of samples after aging treatment. It has been found that Brinell hardness increases considerably with rolling reduction ratio; and further annealing leads to a remarkable drop in hardness. Two mechanisms, namely precipitation hardening and recovery softening, were found to develop simultaneously in the subsequent aging treatment following cold rolling. In contrast, recovery softening dominated the aging of cold-rolled specimen with prior intermediate annealing. Tensile properties were also performed to measure the effect of cold rolling and subsequent aging treatment.

  9. Study on Preparing Al2O3 Particles Reinforced ZL109 Composite by in Situ Reaction of Fe2O3/Al System

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yu, Huashun; Zhao, Qi; Wang, Haitao; Min, Guanghui

    Al2O3 particles reinforced ZL109 composite was prepared by in situ reaction between Fe2O3 and Al. The phases were identified by XRD and the microstructures were observed by SEM and TEM. The Al2O3 particles in sub-micron size distribute uniformly in the matrix and Fe displaced from the in situ reaction forms net-like alloy phases with Cu, Ni, Al, Mn ect. The hardness and the tensile strength at room temperature of the composites have a small increase compared with the matrix. However, the tensile strength at 350°C can reach 92.18 MPa, which is 18.87 MPa higher than that of the matrix. The mechanism of the reaction in the Fe2O3/Al system was studied by DSC. The reaction between Fe2O3 and Al involves two steps. The first step in which Fe2O3 reacts with Al to form FeO and Al2O3 takes place at the matrix alloy melting temperature. The second step in which FeO reacts with Al to form Fe and Al2O3 takes place at a higher temperature.

  10. Prediction of Fatigue Crack Growth of Repaired Al-alloy Structures with Double Sides

    NASA Astrophysics Data System (ADS)

    Benachour, M.; Benachour, N.; Benguediab, M.; Seriari, F. Z.

    During navigation, aircrafts are subject to fatigue damage. In order to rehabilitate damaged structures some techniques are often used to resolve this problem. Efficient repair technique, called composite patch repair, was used to reinforce the damaged structures and stop cracks. In this paper, effect of composite patch repair (Boron/Epoxy) on fatigue crack growth (FCG) was investigated on 2219 T62 Al-alloy. Effects of double patch repair in single notch tensile specimen (SENT) on FCG were studied and compared to single patch repair. Results show beneficial effect of patch repair on fatigue life and FCGR in comparison with the un-patched specimen. In addition, effect of mean stress characterized by stress ratio was highlighted. Fatigue behavior of investigated Al-alloy was compared.

  11. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  12. Primary Dendrite Arm Spacings in Al-7Si Alloy Directionally Solidified on the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.

  13. Designing Gamma TiAl Alloys (K5 Based) for Use at 840 C and Above

    NASA Technical Reports Server (NTRS)

    Kim, Young-Won; Kim, Sang-Lan

    2002-01-01

    The objective of this program was to investigate how carbon additions and Al content variation affects RT tensile properties and creep performance in gamma TiAl alloys. On the basis of the results from the work four alloys were selected within the composition range of Ti-(44.7-47.0) Al-(1.0-1.7)Cr-3.0Nb-0.2W-0.2B-(0.23-0.43)C-(0, 0.2)Si. Through extensive annealing/aging experiments, detailed observations of microstructure evolution, property measurements and analyses, comprehensive understanding was made in the carbide formation process. It was found that creep properties depend on the distribution of carbide particles, which is controlled not only by the aging process but also the amount ratio fo Al and carbon. From the results and analysis, new creep-resistant alloy compositions are suggested for further development.

  14. Effects of stress concentration on the fatigue strength of 7003-T5 aluminum alloy butt joints with weld reinforcement

    NASA Astrophysics Data System (ADS)

    Zhu, Zongtao; Li, Yuanxing; Zhang, Mingyue; Hui, Chen

    2015-03-01

    7003-T5 Aluminum (Al) alloy plates with a thickness of 5 mm are welded by gas metal arc welding (GMAW) method in this work. In order to investigate the influence of stress concentration introduced by weld reinforcement on fatigue strength, the stress concentration factor of the butt joint is calculated. Microscopic and X-ray techniques were utilized to make sure there are no weld defects with large size in butt weld, which can induce extra stress concentration. The cyclic stress - number of cycles to failure (S-N) curves of the joints with and without the welder were obtained by fatigue testing, and the results show that the fatigue strength of 7003-T5 Al alloy butt joints with the weld reinforcement is 50 MPa, which is only 45% of the joints without the weld reinforcement. Fracture surface observation indicated that the fatigue source and propagation are dissimilar for the specimens with and without the welder due to the stress concentration at the weld root. The stress concentration with a factor of 1.7 has great effect on the fatigue strength, but little influence on the tensile strength.

  15. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  16. Experimental wear behavioral studies of as-cast and 5 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load based on taguchi method

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the present study, an experimental study of the volumetric wear behaviour of Aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 5Hr homogenized with T6 heat treatment is carried out at constant load. The Pin on disc apparatus was used to carry out the sliding wear test. Taguchi method based on L-16 orthogonal array was employed to evaluate the data on the wear behavior. Signal-to-noise ratio among the objective of smaller the better and mean of means results were used. General regression model is obtained by correlation. Lastly confirmation test was completed to compose a comparison between the experimental results foreseen from the mention correlation. The mathematical model reveals the load has maximum contribution on the wear rate compared to speed. Scanning Electron Microscope was used to analyze the worn-out wear surfaces. Wear results show that 5Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance as compared to as cast samples.

  17. Experimental analysis of volumetric wear behavioural and mechanical properties study of as cast and 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy at constant load

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.

  18. Fracture behavior of reinforced aluminum alloy matrix composites using thermal imaging tools

    NASA Astrophysics Data System (ADS)

    Avdelidis, N. P.; Exarchos, D.; Vazquez, P.; Ibarra-Castanedo, C.; Sfarra, S.; Maldague, X. P. V.; Matikas, T. E.

    2016-05-01

    In this work the influence of the microstructure at the vicinity of the interface on the fracture behavior of particulate-reinforced aluminum alloy matrix composites (Al/SiCp composites) is studied by using thermographic tools. In particular, infrared thermography was used to monitor the plane crack propagation behavior of the materials. The deformation of solid materials is almost always accompanied by heat release. When the material becomes deformed or is damaged and fractured, a part of the energy necessary to initiate and propagate the damage is transformed in an irreversible way into heat. The thermal camera detects the heat wave, generated by the thermo-mechanical coupling and the intrinsic dissipated energy during mechanical loading of the sample. By using an adapted detector, thermography records the two dimensional "temperature" field as it results from the infrared radiation emitted by the object. The principal advantage of infrared thermography is its noncontact, non-destructive character. This methodology is being applied to characterise the fracture behavior of the particulate composites. Infrared thermography is being used to monitor the plane crack propagation behavior of such materials. Furthermore, an innovative approach to use microscopic measurements using IR microscopic lenses was attempted, in order to enable smaller features (in the micro scale) to be imaged with accuracy and assurance.

  19. Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia.

    PubMed

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2017-11-01

    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.

  20. Laser Powder Welding of a Ti52Al46.8Cr1Si0.2Titanium Aluminide Alloy at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Smal, C. A.; Meacock, C. G.; Rossouw, H. J.

    2011-04-01

    A method for the joining of a Ti52Al46.8Cr1Si0.2Titanium Aluminide alloy by laser powder welding is presented. The technique acts to join materials by consolidating powder with focused laser beam to form weld beads that fill a V joint. In order to avoid the occurrence of residual thermal stresses and hence cracking of the brittle material, the weld plates were heated to a temperature of 1173 K (= 900 °C) by an ohmic heating device, welded and then slowly cooled to produce pore and crack free welds.

  1. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemmens, B.

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe{sub 4}Al{sub 13}) and η (Fe{sub 2}Al{sub 5}) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dipmore » aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.« less

  2. Mechanical and physical properties of AlSi10Mg processed through selective laser melting

    NASA Astrophysics Data System (ADS)

    Raus, A. A.; Wahab, M. S.; Ibrahim, M.; Kamarudin, K.; Ahmed, Aqeel; Shamsudin, S.

    2017-04-01

    In the past few decade, Additive Manufacturing (AM) has become popular and substantial to manufacture direct functional parts in varieties industrial applications even in very challenging like aerospace, medical and manufacturing sectors. Selective Laser Melting (SLM) is one of the most efficient technique in the additive Manufacturing (AM) which able to manufacture metal component directly from Computer Aided Design (CAD) file data. Accuracy, mechanical and physical properties are essentials requirement in order to meet the demand of those engineering components. In this paper, the mechanical properties of SLM manufactured AlSi10Mg samples such as hardness, tensile strength, and impact toughness are investigated and compared to conventionally high pressure die cast A360 alloy. The results exposed that the hardness and the yield strength of AlSi10Mg samples by SLM were increased by 42% and 31% respectively to those of conventionally high pressure die cast A360 alloy even though without comprehensive post processing methods. It is also discovered that AlSi10Mg parts fabricated by SLM achieved the highest density of 99.13% at the best setting parameters from a previous study of 350 watts laser power, 1650 mm/s scanning speed and hatching distance 0.13 mm.

  3. Preliminary Results on FeCrAl Alloys in the As-received and Welded State Designed to Have Enhanced Weldability and Radiation Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang

    2015-09-30

    The present report summarizes and discusses the recent results on developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability. The alloys used for these investigations are modern FeCrAl alloys based on a Fe-13Cr-5Al-2Mo-0.2Si-0.05Y alloy (in wt.%, designated C35M). Development efforts have focused on assessing the influence of chemistry and microstructure on the fabricability and performance of these newly developed alloys. Specific focus was made to assess the weldability, thermal stability, and radiation tolerance.

  4. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-03-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  5. Microstructure and improved magnetocaloric properties: LaFeSi/LaAl magnets prepared by spark plasma sintering technique

    NASA Astrophysics Data System (ADS)

    Fan, W. B.; Hou, Y. H.; Ge, X. J.; Huang, Y. L.; Luo, J. M.; Zhong, Z. C.

    2018-03-01

    Bulk LaFeSi magnets with the addition of LaAl alloy showing excellent performance were prepared by the spark plasma sintering (SPS) technique. The effects of heat treatment and various amounts of LaAl on the microstructure and magnetocaloric properties were investigated in details. It was found that appropriate amounts of LaAl can promote the peritectic reaction, and LaFeSi magnets with a high 1:13 phase amount can be obtained. Due to the unfavorable effects of Al in the peritectic reaction, excess addition of LaAl alloy was not beneficial to the formation of the 1:13 phase. The addition of 5 wt.% LaAl was most favorable to the formation of the 1:13 phase. Furthermore, heat treatment had important effects on the formation of the 1:13 phase and magnetocaloric performance. For SPSed LaFeSi magnets with 5 wt.% LaAl, the maximum values of magnetic entropy change (-ΔS M)max and refrigerating capacity (RC) are 18.07 J · kg-1 · K-1 and 327.55 J · kg-1 under the field changes of 0-5 T, respectively. The variation of Curie temperature (T C) depended on the joint effects from the antiferromagnetic interaction between Fe-Al atoms and the ferromagnetic interaction between Fe-Fe atoms.

  6. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    PubMed Central

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-01-01

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found. PMID:28773536

  7. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.

    PubMed

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-05-25

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  8. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  9. Atomistic Modeling of RuAl and (RuNi) Al Alloys

    NASA Technical Reports Server (NTRS)

    Gargano, Pablo; Mosca, Hugo; Bozzolo, Guillermo; Noebe, Ronald D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Atomistic modeling of RuAl and RuAlNi alloys, using the BFS (Bozzolo-Ferrante-Smith) method for alloys is performed. The lattice parameter and energy of formation of B2 RuAl as a function of stoichiometry and the lattice parameter of (Ru(sub 50-x)Ni(sub x)Al(sub 50)) alloys as a function of Ni concentration are computed. BFS based Monte Carlo simulations indicate that compositions close to Ru25Ni25Al50 are single phase with no obvious evidence of a miscibility gap and separation of the individual B2 phases.

  10. SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics

    NASA Astrophysics Data System (ADS)

    El Dirani, Houssein; Monat, Christelle; Brision, Stéphane; Olivier, Nicolas; Jany, Christophe; Letartre, Xavier; Pu, Minhao; Girouard, Peter D.; Hagedorn Frandsen, Lars; Semenova, Elizaveta; Katsuo Oxenløwe, Leif; Yvind, Kresten; Sciancalepore, Corrado

    2018-02-01

    In this communication, we report on the design, fabrication, and testing of Silicon Nitride on Insulator (SiNOI) and Aluminum-Gallium-Arsenide (AlGaAs) on silicon-on-insulator (SOI) nonlinear photonic circuits for continuum generation in Silicon (Si) photonics. As recently demonstrated, the generation of frequency continua and supercontinua can be used to overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogeneous integration of III-V on SOI lasers for datacom and telecom applications. By using the Kerr nonlinearity of monolithic silicon nitride and heterointegrated GaAs-based alloys on SOI, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. In our work, we present paths to energy-efficient continua generation on silicon photonics circuits. Notably, we demonstrate spectral broadening covering the full C-band via Kerrbased self-phase modulation in SiNOI nanowires featuring full process compatibility with Si photonic devices. Moreover, AlGaAs waveguides are heterointegrated on SOI in order to dramatically reduce (x1/10) thresholds in optical parametric oscillation and in the power required for supercontinuum generation under pulsed pumping. The manufacturing techniques allowing the monolithic co-integration of nonlinear functionalities on existing CMOS-compatible Si photonics for both active and passive components will be shown. Experimental evidence based on self-phase modulation show SiNOI and AlGaAs nanowires capable of generating wide-spanning frequency continua in the C-Band. This will pave the way for low-threshold power-efficient Kerr-based comb- and continuum- sources featuring compatibility with Si photonic integrated circuits (Si-PICs).

  11. Effect of hot plastic deformation on the structural state of a Al-10%SiC composite

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Vichuzhanin, D. I.; Michurov, N. S.; Smirnov, A. S.

    2017-12-01

    The paper studies the microstructure of honeycomb aluminum matrix composites with a granulated Al-Zn-Cu-Mg alloy matrix filled SiC particles amounting to 10 vol % after hot plastic deformation at near-solidus temperatures. It demonstrates the possibility of the collapse of the SiC filler network and the formation of filler clusters separated from each other.

  12. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-05-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  13. A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure

    NASA Astrophysics Data System (ADS)

    McCullough, R. R.; Jordon, J. B.; Brammer, A. T.; Manigandan, K.; Srivatsan, T. S.; Allison, P. G.; Rushing, T. W.

    2014-01-01

    In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.

  14. Metallographic assessment of Al-12Si high-pressure die casting escalator steps.

    PubMed

    Vander Voort, George Frederic; Suárez-Peña, Beatriz; Asensio-Lozano, Juan

    2014-10-01

    A microstructural characterization study was performed on high-pressure die cast specimens extracted from escalator steps manufactured from an Al-12 wt.% Si alloy designed for structural applications. Black and white, color light optical imaging and scanning electron microscopy techniques were used to conduct the microstructural analysis. Most regions in the samples studied contained globular-rosette primary α-Al grains surrounded by an Al-Si eutectic aggregate, while primary dendritic α-Al grains were present in the surface layer. This dendritic microstructure was observed in the regions where the melt did not impinge directly on the die surface during cavity filling. Consequently, microstructures in the surface layer were nonuniform. Utilizing physical metallurgy principles, these results were analyzed in terms of the applied pressure and filling velocity during high-pressure die casting. The effects of these parameters on solidification at different locations of the casting are discussed.

  15. Cryogenic and elevated temperature strengths of an Al-Zn-Mg-Cu alloy modified with Sc and Zr

    NASA Astrophysics Data System (ADS)

    Senkova, S. V.; Senkov, O. N.; Miracle, D. B.

    2006-12-01

    The effect of minor additions of Sc and Zr on tensile properties of two developmental Al-Zn-Mg-Cu alloys was studied in the temperature range -196°C to 300°C. Due to the presence of Sc and Zr in a fine dispersoid form, both low-temperature and elevated temperature strengths of these alloys are much higher than those of similar 7000 series alloys that do not contain these elements. After short holding times (up to 10 hours) at 205°C, the strength of these alloys is higher than those of high-temperature Al alloys 2219-T6 and 2618-T6; however, the latter alloys show better strength after longer holding times. It is suggested that additional alloying of the Sc-containing Al-Zn-Mg-Cu alloys with other dispersoid-forming elements, such as Ni, Fe, Mn, and Si, with a respective decrease in the amounts of Zn and Mg may further improve the elevated temperature strength and decrease the loss of strength with extended elevated temperature exposure.

  16. Influence of hysteresis effect on properties of reactively sputtered TiAlSiN films

    NASA Astrophysics Data System (ADS)

    Gao, Fangyuan; Li, Guang; Xia, Yuan

    2018-02-01

    This article reports on the hysteresis effect in TiAlSiN films prepared by an intermediate frequency magnetron. The discharge voltages for different metallic alloy targets varying with nitrogen flow rate were systematically investigated, under a constant pressure provided by sputtering gas. The hysteresis transition was introduced by the sudden changes in sputtering rate, fraction of compound formation, phase composition and mechanical properties. The result was shown that: the initial growth rate aD in metallic mode was 4 times faster than that in supersaturated state. The optimized stoichiometric TiAl(Si)Nx=1 films containing 50 at.% N were founded in the transition region. The discussion on the plasma characteristics caused by hysteresis process showed that the TiN(111) texture could be increased by applying higher particle bombarding energy. The hardness of TiAlSiN film was strongly influenced by the orientation, which depended on the loading history of nitrogen. The superior TiAlSiN film with hardness 33 GPa could be prepared during the nitrogen unloading for same nitrogen flow rates.

  17. Composite strengthening. [of nonferrous, fiber reinforced alloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.

    1976-01-01

    The mechanical behavior of unidirectionally reinforced metals is examined, with particular attention to fabrication techniques for artificial composites and eutectic alloys and to principles of fiber reinforcement. The properties of artificial composites are discussed in terms of strength of fiber composites, strength of ribbon-reinforced composites, crack initiation, crack propagation, and creep behavior. The properties of eutectic composites are examined relative to tensile strength, compressive strength, fracture, high-temperature strength, and fatigue. In the case of artificial composites, parallelism of fibers, good bonding between fibers and matrix, and freedom of fibers from damage are all necessary to ensure superior performance. For many eutectic systems there are stringent boundary conditions relative to melt purity and superheat, atmosphere control, temperature gradient, and growth rate in order to provide near-perfect alignment of the reinforcements with a minimum of growth defects.

  18. High Temperature Oxidation Studies on Alloys Containing Dispersed Phase Particles and Clarification of the Mechanism of Growth of SiO2.

    DTIC Science & Technology

    1986-08-28

    beneath the Cr 0 layer. ’ 2~ 2 3 Nickel and cobalt based alloys were also tested with additions of Si N. . IN 3 4 particles and were found to behave in a...additions of Si ION, a high temperature compound found in the P*~~ 4 f°.-0 Si"Ali-O-N system, to cobalt - chromium alloys4 The particular SiAlON used in...a chromium spinel appeared as a product aLong with CrO0 Fe0. and Fe0 . At higher chromium concentrations Fe 0 was eliminat das a- detectable product

  19. Dynamic nanomechanical properties of novel Si-rich intermetallic coatings growth on a medical 316 LVM steel by hot dipping in a hypereutectic Al-25Si alloy.

    PubMed

    Frutos, E; González-Carrasco, J L

    2015-06-01

    This aim of this study is to determine the elastoplastic properties of Ni-free Al3FeSi2 intermetallic coatings grown on medical stainless steel under different experimental conditions. Elastoplastic properties are defined by the plasticity index (PI), which correlates the hardness and the Young's modulus. Special emphasis is devoted to correlate the PI with the wear resistance under sliding contact, determined by scratch testing, and fracture toughness, determined by using a novel method based on successive impacts with small loads. With regard to the substrate, the developed coatings are harder and exhibit a lower Young's reduced modulus, irrespective of the experimental conditions. It has been shown that preheating of the samples prior to hot dipping and immersion influences the type and volume fraction of precipitates, which in turn also affect the nanomechanical properties. The higher the preheating temperature is, the greater the Young's reduced modulus is. For a given preheating condition, an increase of the immersion time yields a decrease in hardness. Although apparent friction coefficients of coated specimens are smaller than those obtained on AISI 316 LVM, they increase when using preheating or higher immersion times during processing, which correlates with the PI. The presence of precipitates produces an increase in fracture toughness, with values greater than those presented by samples processed on melted AlSi alloys with lower Si content (12 wt%). Therefore, these intermetallic coatings could be considered "hard but tough", suitable to enhance the wear resistance, especially when using short periods of immersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  1. a Calorimetric Study of the Precipitation Hardening Mechanisms in AN Al-Cu-Mg-Si Alloy

    NASA Astrophysics Data System (ADS)

    Hayoune, Abdelali

    2013-08-01

    The precipitation phenomena and the related hardening in an Al-Cu-Mg-Si alloy were studied by calorimetry, X-ray diffraction analysis and microhardness measurements. The main calorimetric peaks were identified to be due to β‧‧, θ‧ and Q‧ phases precipitation. The hardening during aging at room temperature and 160°C, was respectively, explained by atomic clusters and GP zones formation and by GP zones and β‧‧/θ‧ phases coprecipitation. Although the mechanical properties variation during aging at 200°C is simple, the corresponding microstructural evolution is complex: on the basis of the DSC results, the increasing of microhardness values, is mainly due to the coprecipitation of GP zones and β‧‧/θ‧ phases, however, the maximum hardening is explained by the coexistence of β‧‧/θ‧ and θ‧‧ phases. Another important conclusion is that during aging at 160°C and 200°C, the θ‧ phase is essentially developed from GP zones.

  2. Substitutional alloy of Ce and Al

    PubMed Central

    Zeng, Qiao-Shi; Ding, Yang; Mao, Wendy L.; Luo, Wei; Blomqvist, Andreas; Ahuja, Rajeev; Yang, Wenge; Shu, Jinfu; Sinogeikin, Stas V.; Meng, Yue; Brewe, Dale L.; Jiang, Jian-Zhong; Mao, Ho-kwang

    2009-01-01

    The formation of substitutional alloys has been restricted to elements with similar atomic radii and electronegativity. Using high-pressure at 298 K, we synthesized a face-centered cubic disordered alloy of highly dissimilar elements (large Ce and small Al atoms) by compressing the Ce3Al intermetallic compound >15 GPa or the Ce3Al metallic glass >25 GPa. Synchrotron X-ray diffraction, Ce L3-edge absorption spectroscopy, and ab initio calculations revealed that the pressure-induced Kondo volume collapse and 4f electron delocalization of Ce reduced the differences between Ce and Al and brought them within the Hume-Rothery (HR) limit for substitutional alloying. The alloy remained after complete release of pressure, which was also accompanied by the transformation of Ce back to its ambient 4f electron localized state and reversal of the Kondo volume collapse, resulting in a non-HR alloy at ambient conditions. PMID:19188608

  3. The effects of a SiO2 coating on the corrosion parameters cpTi and Ti-6Al-7Nb alloy

    PubMed Central

    Basiaga, Marcin; Walke, Witold; Paszenda, Zbigniew; Karasiński, Paweł; Szewczenko, Janusz

    2014-01-01

    The aim of this paper was to evaluate the usefulness of the sol-gel method application, to modificate the surface of the Ti6Al7Nb alloy and the cpTi titanium (Grade 4) with SiO2 oxide, applied on the vascular implants to improve their hemocompatibility. Mechanical treatment was followed by film deposition on surface of the titanium samples. An appropriate selection of the process parameters was verified in the studies of corrosion, using potentiodynamic and impedance method. A test was conducted in the solution simulating blood vessels environment, in simulated body fluid at t = 37.0 ± 1 °C and pH = 7.0 ± 0.2. Results showed varied electrochemical properties of the SiO2 film, depending on its deposition parameters. Correlations between corrosion resistance and layer adhesion to the substrate were observed, depending on annealing temperature. PMID:25482412

  4. A study of metal-ceramic wettability in SiC-Al using dynamic melt infiltration of SiC

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1993-01-01

    Pressure-assisted infiltration with a 2014 Al alloy of plain and Cu-coated single crystal platelets of alpha silicon carbide was used to study particulate wettability under dynamic conditions relevant to pressure casting of metal-matrix composites. The total penetration length of infiltrant metal in porous compacts was measured at the conclusion of solidification as a function of pressure, infiltration time, and SiC size for both plain and Cu-coated SiC. The experimental data were analyzed to obtain a threshold pressure for the effect of melt intrusion through SiC compacts. The threshold pressure was taken either directly as a measure of wettability or converted to an effective wetting angle using the Young-Laplace capillary equation. Cu coating resulted in partial but beneficial improvements in wettability as a result of its dissolution in the melt, compared to uncoated SiC.

  5. The effect of oxide film properties on the corrosion behavior of SiC/Al metal-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golledge, S.L.

    1991-01-01

    Oxide growth on pure aluminum, aluminum alloy 6061, and the aluminum-based metal matrix composite SiC/AA6061 was studied, and the properties of the oxides related to the pit-initiation behavior of the materials. The objectives of the work were to identify the effect of alloying elements and SiC reinforcement on the oxide film, and to better understand how the oxide properties control pit initiation behavior. To this end, electrochemical and optical studies of the materials were carried out in a buffered sodium/boric acid solution at pH values of 8.4 and 7.2. The alloy and metal-matrix composite showed a slightly lesser tendency tomore » pit than pure aluminum, as measured by the pitting potential. The oxide on the composite was less resistant to pit initiation, and was found to exhibit slower repassivation rates than the other materials. The repassivation behavior and resistance to pit initiation were quite similar in the case of the alloy and the pure aluminum. Induction times for pit initiation were consistent with the predictions of Heusler's model for the breakdown of passivity.« less

  6. Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects

    PubMed Central

    Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2012-01-01

    The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated. PMID:28348301

  7. Improving the characteristics of foundry alloys AlSiCuMg during manufacturing

    NASA Astrophysics Data System (ADS)

    Fragoso, Bruno Filipe Marques

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de

  8. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalay, Yunus Eren

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occursmore » under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T 0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T 0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from each other

  9. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy

    PubMed Central

    Dong, Zhenbiao; Ning, Congqin

    2017-01-01

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys. PMID:29088083

  10. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part I Microstructure evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to themore » dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.« less

  11. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part I Microstructure evolution

    DOE PAGES

    Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres; ...

    2017-03-06

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to themore » dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.« less

  12. Effect of Al–5Ti–C Master Alloy on the Microstructure and Mechanical Properties of Hypereutectic Al–20%Si Alloy

    PubMed Central

    Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun; Xu, Yangtao

    2014-01-01

    Al–5Ti–C master alloy was prepared and used to modify hypereutectic Al–20%Si alloy. The microstructure evolution and mechanical properties of hypereutectic Al–20%Si alloy with Al–5Ti–C master alloy additions (0, 0.4, 0.6, 1.0, 1.6 and 2.0 wt%) were investigated. The results show that, Al–5Ti–C master alloy (0.6 wt%, 10 min) can significantly refine both eutectic and primary Si of hypereutectic Al–20%Si alloy. The morphology of the primary Si crystals was significantly refined from a coarse polygonal and star-like shape to a fine polyhedral shape and the grain size of the primary Si was refined from roughly 90–120 μm to 20–50 μm. The eutectic Si phases were modified from a coarse platelet-like/needle-like structure to a fine fibrous structure with discrete particles. The Al–5Ti–C master alloy (0.6 wt%, 30 min) still has a good refinement effect. The ultimate tensile strength (UTS), elongation (El) and Brinell hardness (HB) of Al–20%Si alloy modified by the Al–5Ti–C master alloy (0.6 wt%, 10 min) increased by roughly 65%, 70% and 51%, respectively, due to decreasing the size and changing the morphology on the primary and eutectic Si crystals. The change in mechanical properties corresponds to evolution of the microstructure. PMID:28788509

  13. Evaluation of Solute Clusters Associated with Bake-Hardening Response in Isothermal Aged Al-Mg-Si Alloys Using a Three-Dimensional Atom Probe

    NASA Astrophysics Data System (ADS)

    Aruga, Yasuhiro; Kozuka, Masaya; Takaki, Yasuo; Sato, Tatsuo

    2014-12-01

    Temporal changes in the number density, size distribution, and chemical composition of clusters formed during natural aging at room temperature and pre-aging at 363 K (90 °C) in an Al-0.62Mg-0.93Si (mass pct) alloy were evaluated using atom probe tomography. More than 10 million atoms were examined in the cluster analysis, in which about 1000 clusters were obtained for each material after various aging treatments. The statistically proven records show that both number density and the average radius of clusters in pre-aged materials are larger than in naturally aged materials. It was revealed that the fraction of clusters with a low Mg/Si ratio after natural aging for a short time is higher than with other aging treatments, regardless of cluster size. This indicates that Si-rich clusters form more easily after short-period natural aging, and that Mg atoms can diffuse into the clusters or possibly form another type of Mg-Si cluster after prolonged natural aging. The formation of large clusters with a uniform Mg/Si ratio is encouraged by pre-aging. It can be concluded that an increase of small clusters with various Mg/Si ratios does not promote the bake-hardening (BH) response, whereas large clusters with a uniform Mg/Si ratio play an important role in hardening during the BH treatment at 443 K (170 °C).

  14. Electron-beam-induced structure transformation of the quasicrystalline phases of the Al 62Cu 20Co 15Si 3 alloy

    NASA Astrophysics Data System (ADS)

    Reyes-Gasga, J.; R. Garcia, G.; Jose-Yacaman, M.

    1995-02-01

    Some details on the phase transformation experienced by the quasicrystalline phases of the Al 62Cu 20Co 15Si 3 alloy under a 400 kV electron beam are given. The transition is observed in situ with a high resolution electron microscope and recorded on video tape. The results show that the electron beam radiation produces a sequence of changes similar to the ones observed in an ion-beam-induced amorphization process. Considering electron radiation damage analysis, the results agree well with the "flip-flop" model [Coddens, Bellisent, Calvayrac and Ambroise (1991) Europhys. Lett.16, 271] where the transition from a quasicrystalline phase to a crystalline phase is produced by atomic displacements but not in a cascade way.

  15. A design-centered approach in developing Al-Si-based light-weight alloys with enhanced fatigue life and strength

    NASA Astrophysics Data System (ADS)

    Fan, Jinghong; Hao, Su

    2004-01-01

    Material heterogeneities and discontinuities such as porosity, second phase particles, and other defects at meso/micro/nano scales, determine fatigue life, strength, and fracture behavior of aluminum castings. In order to achieve better performance of these alloys, a design-centered computer-aided renovative approach is proposed. Here, the term “design-centered” is used to distinguish the new approach from the traditional trial-and-error design approach by formulating a clear objective, offering a scientific foundation, and developing a computer-aided effective tool for the alloy development. A criterion for tailoring “child” microstructure, obtained by “parent” microstructure through statistical correlation, is proposed for the fatigue design at the initial stage. A dislocations pileup model has been developed. This dislocation model, combined with an optimization analysis, provides an analytical-based solution on a small scale for silicon particles and dendrite cells to enhance both fatigue performance and strength for pore-controlled castings. It can also be used to further tailor microstructures. In addition, a conceptual damage sensitivity map for fatigue life design is proposed. In this map there are critical pore sizes, above which fatigue life is controlled by pores; otherwise it is controlled by other mechanisms such as silicon particles and dendrite cells. In the latter case, the proposed criteria and the dislocation model are the foundations of a guideline in the design-centered approach to maximize both the fatigue life and strength of Al-Si-based light-weight alloy.

  16. Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Chen, D. L.; Shaha, S. K.

    2013-07-01

    Existing heat treatment standards do not properly define tempers for thin-walled castings that solidified with high solidification rates. Recently emerged casting processes such as vacuum high pressure die casting should not require long solution treatment times due to the fine microstructures arising from rapid solidification rates. The heat treatment studies involving rapidly solidified samples with secondary dendrite arm spacing between 10 and 35 μm were conducted for solution times between 30 min and 9 h and temperatures of 510 and 525 °C and for various aging parameters. The metallurgical analysis revealed that an increase in microstructure refinement could enable a reduction of solution time up to 88%. Solution treatment resulted in the dissolution of Al2Cu and Al5Mg8Si6Cu2, while Fe- and TiZrV-based phases remained partially in the microstructure. The highest strength of approximately 351 ± 9.7 and 309 ± 3.4 MPa for the UTS and YS, respectively, was achieved for a 2-step solution treatment at 510 and 525 °C in the T6 peak aging conditions, i.e., 150 °C for 100 h. The T6 temper did not yield dimensionally stable microstructure since exceeding 250 °C during in-service operation could result in phase transformation corresponding to the over-aging reaction. The microstructure refinement had a statistically stronger effect on the alloy strength than the increase in solutionizing time. Additionally, thermal analysis and dilatometer results were presented to assess the dissolution of phases during solution treatment, aging kinetics as well as dimensional stability.

  17. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  18. Infiltration sintering properties of Ni-4B-4Si(wt.%) alloy powders

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Zhang, X. C.; Wang, F. L.; Zou, J. T.

    2018-01-01

    The Ni-4B-4Si(wt.%) alloy powders were infiltrated into the nickel skeletons, the effects of sintering temperatures (1050-1150 °C) and skeletons (loose and compact nickel powders) on the microstructures and hardness of the sintered alloys were investigated. The Ni-B-Si alloy sintered at 1100 °C consisted of γ-Ni and Ni3B, and Si mainly solid soluted in the γ-Ni. The loose nickel powders favored to the infiltration of Ni-B-Si liquid alloy into the nickel skeletons, the sintered alloys exhibited dense microstructures and good interfacial bonding with Ni substrates. The interfacial hardness was equal to that of the sintered alloys and Ni substrates. Loose nickel powders ensured the density and interfacial bonding of the sintered alloys, the infiltration sintering process can be simplified and easily applied to practice.

  19. Effect of Al2O3sf addition on the friction and wear properties of (SiCp+Al2O3sf)/Al2024 composites fabricated by pressure infiltration

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Zhang, Gong-zhen; Cui, Wei; Ren, Shu-bin; Wang, Qian-jin; Qu, Xuan-hui

    2018-03-01

    Aluminum (Al) 2024 matrix composites reinforced with alumina short fibers (Al2O3sf) and silicon carbide particles (SiCp) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al2O3sf on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al2O3sf, characterized by the ratio of Al2O3sf to SiCp, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al2O3sf to SiCp was increased from 0 to 1, the rate of wear mass loss ( K m) and coefficients of friction (COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the K m increased rapidly and the wear mechanism became adhesive wear.

  20. SiAlON COATINGS OF SILICON NITRIDE AND SILICON CARBIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan W. Nowok; John P. Hurley; John P. Kay

    2000-06-01

    the SiAlON-Y ceramic and/or creation of a space-charge region at the SiAlON-YAG interface. Both features originate from a secondary phase of YAG formed during the SiAlON-Y glass corrosion process. Conventional oxidation-protection coatings for metallic materials in high-temperature corrosive environments are typically formed by applying a slurry mixture to the surface followed by a high-temperature furnace cure. During the cure, the coating reacts with the alloy to form a layer typically 25 to 50 {micro}m{sup 3} thick. Generally, coating thickness is one critical microstructural parameter that influences its performance; therefore, its optimization is an important aspect of coating technology. The aim of the present research program is (1) to produce a thin SiAlON-YAG ceramic coating with a high quality of interface, (2) to understand the major experimental characteristics for creating a good bonding between a substrate and a thin coating, and (3) to explain why the Al{sub 5}Y{sub 3}O{sub 12} phase increases SiAlON-Y ceramic alkali corrosion resistance. To produce the SiAlON-Y coating on silicon nitride ceramic with a YAG layer, a slurry mixture of SiAlON-Y components was designed. The research program was extended to Y{sub 2}SiO{sub 5} coating to get preliminary information on the Si{sub 3}N{sub 4}-Y{sub 2}SiO{sub 5} interface microstructure. It was expected that this phase would have a very low porosity. Generally, coatings that contain ductile phases such as Y{sub 2}SiO{sub 5} can produce low-porosity coatings.« less

  1. 3-Dimensional Microstructure of Al-Al3Ti Alloy Severely Deformed by ECAP

    NASA Astrophysics Data System (ADS)

    Sato, Hisashi; Hishikawa, Takahisa; Makino, Yuuki; Kunimine, Takahiro; Watanabe, Yoshimi

    Microstructure of Al-Al3Ti alloy deformed by Equal-Channel-Angular Pressing (ECAP) is 3-dimensionally investigated. Especially, distribution of Al3Ti particles is focused in this study. The Al-Al3Ti alloy has coarse Al3Ti platelet particles in α-Al matrix. When the Al-Al3Ti alloy is deformed by ECAP under route A, fine Al3Ti platelet particles are observed. These Al3Ti platelet particles are aligned along to deformation axis, and its plane normal is perpendicular to the deformation axis. On the other hand, Al-Al3Ti alloy ECAPed under route Bc forms several groups consisted of fine Al3Ti platelet particles. Moreover, longitudinal size of the Al3Ti particle groups is close to that of initial Al3Ti particles with 4-pass ECAP specimen. These distribution behaviors of the Al3Ti particle can be explained by plastic flow of α-Al matrix. Finally, it is concluded that distribution of Al3Ti particle in Al-Al3Ti alloy by ECAP is controlled by plastic deformation of α-Al matrix.

  2. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.

    PubMed

    Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin

    2017-10-31

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  3. Fabrication and Mechanical Behavior of Ex Situ Mg-Based Bulk Metallic Glass Matrix Composite Reinforced with Electroless Cu-Coated SiC Particles.

    PubMed

    Wang, Xin; Zhao, Lichen; Hu, Ximei; Cheng, Yongjian; Liu, Shuiqing; Chen, Peng; Cui, Chunxiang

    2017-11-30

    Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg 54 Cu 26.5 Ag 8.5 Gd 11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg 54 Cu 26.5 Ag 8.5 Gd 11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.

  4. Nanoprecipitates and Their Strengthening Behavior in Al-Mg-Si Alloy During the Aging Process

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Wenqing

    2017-04-01

    The different nanoprecipitates formed in a 6061 aluminum alloy during aging at 453 K (180 °C), with or without 168 hours of pre-natural aging (NA), and the age-hardening response of the alloy were investigated by atom probe tomography (APT) and hardness testing. A hardness plateau developed between 2 and 8 hours in both the artificial aging (AA) and artificial aging with pre-natural aging (NAAA) samples. The hardness of NAAA samples was lower than that of AA samples when artificially aged for the same time. A 168-hour NA led to the formation of solute atom clusters in the matrix. The NA accelerated the precipitation kinetics of the following AA. The solute atom clusters gave the highest hardness increment per unit volume fraction. The β″ precipitates were dominant in the samples at the hardness plateau. The average normalized Mg:Si ratios of the solute atom clusters and GP zones were near 1. The average Mg:Si ratio of β″ precipitates increased from 1.3 to 1.5 upon aging for 2 hours. The microstructural evolution of samples with or without NA and its influence on the strengthening effects are discussed based on the experimental results.

  5. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  6. Role of bismuth on solidification, microstructure and mechanical properties of a near eutectic Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Farahany, Saeed; Ourdjini, Ali; Bakar, Tuty Asma Abu; Idris, Mohd Hasbullah

    2014-09-01

    Computer aided thermal analysis and microstructural observation showed that addition of bismuth (Bi) within the range of 0.25 and 2 wt% produced a greater effect on the Al-Si eutectic phase than on primary aluminium and Al2Cu phases. Results showed that with addition of 1 wt% Bi the eutectic silicon structure was refined from flake-like morphology into lamellar. Bi refines rather than modifies the Si structure and increases the Al-Si eutectic fraction solid and more significantly there was no fading even up to 180 min of melt holding. Transmission electron microscopy study showed that the Si twin spacing decreased from 160 to 75 nm which is likely attributed to the refining effect of Bi. It was also found that addition of 1 wt% Bi increased the tensile strength, elongation and the absorbed energy for fracture due to the refined eutectic silicon structure.

  7. Effect of Alloying Elements on Nb-Rich Portion of Nb-Si-X Ternary Systems and In Situ Crack Observation of Nb-Si-Based Alloys

    NASA Astrophysics Data System (ADS)

    Miura, Seiji; Hatabata, Toru; Okawa, Takuya; Mohri, Tetsuo

    2014-03-01

    To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.

  8. Structural, Mechanical, and Magnetic Properties of W Reinforced FeCo Alloys

    NASA Astrophysics Data System (ADS)

    Li, Gang; Corte-Real, Michelle; Yarlagadda, Shridhar; Vaidyanathan, Ranji; Xiao, John; Unruh, Karl

    2002-03-01

    Despite their superior soft magnetic properties, the poor mechanical properties of FeCo alloys have limited their potential use in rotating machines operating at elevated temperatures. In an attempt to address this shortcoming we have prepared bulk FeCo alloys at near equiatomic compositions reinforced by a relatively small volume fraction of continuous W fibers. These materials have been assembled by consolidating individual FeCo coated W fibers at elevated temperatures and moderate pressures. The mechanical and magnetic properties of the fiber reinforced composites have been studied and correlated with results of microstructural characterization.

  9. Corrosion behaviour and biocompatibility of a novel Ni-free intermetallic coating growth on austenitic steel by hot dipping in an Al-12.6%Si alloy.

    PubMed

    Arenas, M A; Frutos, E; Saldaña, L; Conde, A; Labajos-Broncano, L; González-Martín, M L; González-Carrasco, J L; Vilaboa, N

    2011-04-01

    Commercial 316 LVM austenitic stainless steel samples have been coated by immersion in a bath of molten Al-12.6%Si alloy for 120 s. The coating consists of the Al(12)(Fe,Cr)(3)Si(2) intermetallic. In vitro corrosion behaviour has been evaluated in the Ringer's solution by means of potentiodynamic curves and electrochemical impedance spectroscopy. The results reveal that the coated specimens exhibit lower susceptibility to localised corrosion with respect to the substrate. XPS analysis suggests that the ennoblement of the pitting potential is due to the formation of a chromium oxyhydroxide containing passive layer. The intermetallic coating shows a good biocompatibility, as demonstrated by culturing human mesenchymal stem cells isolated from bone marrow which attached, grew and differentiated to the osteoblastic lineage to a similar extent on coated and bare steels. In summary, this study proposes a method that generates Ni-free coatings of the stainless steel with useful properties for biomedical applications.

  10. FSW between Al alloy and Mg Alloy: the comparative study

    NASA Astrophysics Data System (ADS)

    Jagadeesha, C. B.

    2017-04-01

    It is difficult to fusion weld Al alloy to Mg alloy, so by experimental optimization procedure (EOP) optimum parameters for FSW between Al alloy and Mg alloy were determined and experiment conducted using these parameters resulted in not only sound weld but also highest strength weld for 5 mm thickness of the alloys plates. One can arrive to optimum parameters by following the EOP in case of similar and dissimilar materials FSW, such as Al alloy and Mg alloy FSW. It has observed that tensile sample having least thickness intermetallics (IMs) layer has highest strength compared to sample with larger thickness of intermetallics layer and also it has observed that weld of lesser thickness plates have strength higher than welds of larger thickness plates. It has observed that, Vickers hardness in WN i.e. on the region containing layers of IMs is considerably higher, which leads to emerge of new type of laminated composite materials. It has observed that, it is the least thickness IMs layers in the weld are responsible for higher strength of weld not the ductility of the IMs formed owing to the insertion of intermediate material in the weld. It has found that coefficient of friction is =0.25, in case of bead on plate welding of Mg alloy.

  11. Electroless Cu/Ni Plating on Graphite Flake and the Effects to the Properties of Graphite Flake/Si/Al Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Peng, Xuanyi; Yang, Yiwen; Wu, Haiwei; Sun, Xu; Han, Xiaopeng

    2018-03-01

    Proper process and parameter were investigated to coat Cu or Ni on graphite flake (Gf) by electroless plating. Microstructural characterization indicated that the Cu/Ni was coated on the Gf uniformly and comprehensively. Then aluminum matrix composites reinforced with Si and graphite were fabricated by a unique vacuum gas pressure infiltration. The thermal conductivity and mechanical properties of the composites, both with and without Cu or Ni coating layers on the graphite surface, have been studied. The obtained results indicated that the mechanical property of the Cu or Ni coated Gf/Si/Al composites dramatically increased, as compared with the non-coated Gf/Si/Al composite. In the meantime, Cu or Ni coated Gf proved to have better wettability and interfacial bonding with the aluminum matrix, which were expected to be a highly sustainable and dispersible reinforcement for metal matrix composites.

  12. Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.

    1996-01-01

    Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.

  13. Effect of heat treatment on interfacial and mechanical properties of A6022/A7075/A6022 roll-bonded multi-layer Al alloy sheets

    NASA Astrophysics Data System (ADS)

    Cha, Joon-Hyeon; Kim, Su-Hyeon; Lee, Yun-Soo; Kim, Hyoung-Wook; Choi, Yoon Suk

    2016-09-01

    Multi-layered Al alloy sheets can exhibit unique properties by the combination of properties of component materials. A poor corrosion resistance of high strength Al alloys can be complemented by having a protective surface with corrosion resistant Al alloys. Here, a special care should be taken regarding the heat treatment of multi-layered Al alloy sheets because dissimilar Al alloys may exhibit unexpected interfacial reactions upon heat treatment. In the present study, A6022/A7075/A6022 sheets were fabricated by a cold roll-bonding process, and the effect of the heat treatment on the microstructure and mechanical properties was examined. The solution treatment gave rise to the diffusion of Zn, Mg, Cu and Si elements across the core/clad interface. In particular, the pronounced diffusion of Zn, which is a major alloying element (for solid-solution strengthening) of the A7075 core, resulted in a gradual hardness change across the core/clad interface. Mg2Si precipitates and the precipitate free zone were also formed near the interface after the heat treatment. The heat-treated sheet showed high strengths and reasonable elongation without apparent deformation misfit or interfacial delamination during the tensile deformation. The high strength of the sheet was mainly due to the T4 and T6 heat treatment of the A7075 core.

  14. Experimental Research on Selective Laser Melting AlSi10Mg Alloys: Process, Densification and Performance

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Wei, Zhengying; Wei, Pei; Chen, Shenggui; Lu, Bingheng; Du, Jun; Li, Junfeng; Zhang, Shuzhe

    2017-12-01

    In this work, a set of experiments was designed to investigate the effect of process parameters on the relative density of the AlSi10Mg parts manufactured by SLM. The influence of laser scan speed v, laser power P and hatch space H, which were considered as the dominant parameters, on the powder melting and densification behavior was also studied experimentally. In addition, the laser energy density was introduced to evaluate the combined effect of the above dominant parameters, so as to control the SLM process integrally. As a result, a high relative density (> 97%) was obtained by SLM at an optimized laser energy density of 3.5-5.5 J/mm2. Moreover, a parameter-densification map was established to visually select the optimum process parameters for the SLM-processed AlSi10Mg parts with elevated density and required mechanical properties. The results provide an important experimental guidance for obtaining AlSi10Mg components with full density and gradient functional porosity by SLM.

  15. Structure and Mechanical Properties of the AlSi10Mg Alloy Samples Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Li, Xiaodan; Ni, Jiaqiang; Zhu, Qingfeng; Su, Hang; Cui, Jianzhong; Zhang, Yifei; Li, Jianzhong

    2017-11-01

    The AlSi10Mg alloy samples with the size of 14×14×91mm were produced by the selective laser melting (SLM) method in different building direction. The structures and the properties at -70°C of the sample in different direction were investigated. The results show that the structure in different building direction shows different morphology. The fish scale structures distribute on the side along the building direction, and the oval structures distribute on the side vertical to the building direction. Some pores in with the maximum size of 100 μm exist of the structure. And there is no major influence for the build orientation on the tensile properties. The tensile strength and the elongation of the sample in the building direction are 340 Mpa and 11.2 % respectively. And the tensile strength and the elongation of the sample vertical to building direction are 350 Mpa and 13.4 % respectively

  16. Microstructure and phase analyses of melt-spun Si-Ni base anode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Jeon, Sung Min; Song, Jong Jin; Kim, Sun-I.; Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-01-01

    Si-based anode composite materials have been studied to improve the performance and the durability of Li-ion secondary batteries in this study. Si-Ni-Al, Si-Ni-Cu and Si-Ni-Cu-Al base alloys were designed and rapidly solidified at the cooling rate of about 106 °C/sec by optimizing the melt spinning. The ribbons were characterized using FE-SEM equipped with EDS, X-ray diffractometer and HR-TEM. The thin ribbons of Si-Ni-Al alloy consisted of nano-sized Si particles and amorphous matrix, which was regarded as an ideal microstructure for the anode material. At the wheel side of the ribbon, 20-30 nm of Si particles were formed (Zone A); whereas at the air side relatively large Si particles were distributed (Zone B). The Si-Ni-Cu alloy showed coarser Si particles than the Si-Ni-Al alloy, and its matrix consisted of NiSi2, Cu3Si and amorphous structures. Finally, the microstructure of the Si-Ni-Cu-Al alloy strips was composed of coarse Si particles, CuNi, Al4Cu9, NiSi2, and unknown phases, and the size of those Si particles were too large to be used for the anode materials.

  17. Microstructure-property relationships in Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 2

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    The microstructure and mechanical properties of the ultrahigh strength Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049, were studied. Specifically, the microstructural features along with tensile strength, weldability, Young's modulus and fracture toughness were studied for Weldalite (tm) 049 type alloys with Li contents ranging from 1.3 to 1.9 wt. pct. The tensile properties of Weldalite 049 and Weldalite 049 reinforced with TiB2 particles fabricated using the XD (tm) process were also evaluated at cryogenic, room, and elevated temperatures. In addition, an experimental alloy, similar in composition to Weldalite 049 but without the Ag+Mg, was fabricated. The microstructure of this alloy was compared with that of Weldalite 049 in the T6 condition to assess the effect of Ag+Mg on nucleation of strengthening phases in the absence of cold work.

  18. Simulation of automotive wrist pin joint and tribological studies of tin coated Al-Si alloy, metal matrix composites and nitrogen ceramics under mixed lubrication

    NASA Astrophysics Data System (ADS)

    Wang, Qian

    Development of automotive engines with high power output demands the application of high strength materials with good tribological properties. Metal matrix composites (MMC's) and some nitrogen ceramics are of interest to replace some conventional materials in the piston/pin/connecting rod design. A simulation study has been developed to explore the possibility to employ MMC's as bearing materials and ceramics as journal materials, and to investigate the related wear mechanisms and the possible journal bearing failure mechanisms. Conventional tin coated Al-Si alloy (Al-Si/Sn) have been studied for the base line information. A mixed lubrication model for journal bearing with a soft coating has been developed and applied to the contact and temperature analysis of the Al-Si/Sn bearing. Experimental studies were performed to reveal the bearing friction and wear behavior. Tin coating exhibited great a advantage in friction reduction, however, it suffered significant wear through pitting and debonding. When the tin wore out, the Al-Si/steel contact experienced higher friction. A cast and P/M MMC's in the lubricated contact with case hardened steel and ceramic journals were studied experimentally. Without sufficient material removal in the conformal contact situation, MMC bearings in the MMC/steel pairs gained weight due to iron transfer and surface tribochemical reactions with the lubricant additives and contact failure occurred. However, the MMC/ceramic contacts demonstrated promising tribological behavior with low friction and high wear resistance, and should be considered for new journal bearing design. Ceramics are wear resistant. Ceramic surface roughness is very crucial when the journals are in contact with the tin coated bearings. In contact with MMC bearings, ceramic surface quality and fracture toughness seem to play some important roles in affecting the friction coefficient. The wear of silicon nitride and beta sialon (A) journals is pitting due to grain

  19. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Babu, J. S. S.; Kang, C. G.

    2014-05-01

    Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

  20. Simultaneous measurements of photoemission and morphology of various Al alloys during mechanical deformation

    NASA Astrophysics Data System (ADS)

    Cai, M.; Li, W.; Dickinson, J. T.

    2006-11-01

    We report simultaneous measurements of strain and photoelectron emission from high purity Al (1350), Al-Mg (5052), Al-Mn (3003), Al-Cu (2024), and Al-Mg-Si (6061) alloys under uniaxial tension due to pulsed excimer laser radiation (248nm). The emission of low-energy photoelectrons is sensitive to deformation-induced changes in surface morphology, including the formation of slip lines and slip bands. Alloy composition and surface treatment significantly influence the photoemission during deformation. Surface oxide enhances the signal-to-noise level during photoemission measurement. In the early stage of deformation (strain ⩽0.04), photoemission intensity increases gradually in a nonlinear fashion. While subsequent photoemission increases almost linearly with strain until failure in samples with thin oxide layer (˜31Å), there are two linear segments of photoemission for the samples with oxide of 45Å. The onset of strain localization corresponds to the intersection point of two linear segments, usually at a strain of 0.08-0.20. A constitutive model incorporating microstructure evolution and work hardening during tensile deformation is proposed to qualitatively interpret the growth of the photoemission as a function of strain. Photoemissions from various alloys are interpreted in the light of surface treatment, work function, composition, and microstructural development during deformation.