Science.gov

Sample records for alamos advanced fel

  1. Fabrication and characterization of cesium telluride photocathodes: A promising electron source for the Los Alamos Advanced FEL

    SciTech Connect

    Kong, S.H.; Nuguyen, D.C.; Sheffield, R.L.; Sherwood, B.A.

    1994-09-01

    The Advanced FEL at Los Alamos embodies a Y{sub 2}CsSb photocathode as an electron source. The photocathode consists of a K{sub 2}CsSb film deposited on a molybdenum plug that can be inserted into the linac of the FEL. However, because K{sub 2}CsSb is easily contaminated and has a half-life of less than a day when in use, switching to a more rugged high quantum efficiency (QE) material such as Cs{sub 2}Te is considered as a means to lengthen the beam time. Cs{sub 2}Te films were deposited on molybdenum plugs in an ultrahigh-vacuum research chamber. Several Cs{sub 2}Te films were measured in-situ for their spectral responses with a bias voltage of 90V; the resulting QEs were 12-18% at a wavelength of 254 nm, 0.2-1.2% at 334 nm, 10{sup {minus}4}-10{sup {minus}3} at 365 nm, and 10{sup {minus}7}-10{sup {minus}5} at 546 nm. For this cathode to be useful, the authors need to frequency quadruple the 1052 mn line of the Nd:YLF laser to achieve a wavelength of 263 mm. Initial studies showed that the 251-nm QE of Cs{sub 2}Te is much less sensitive to contamination than the 526-nm QE of K{sub 2}CsSb. The authors exposed Cs{sub 2}Te photocathodes to air at 10{sup {minus}4} torr for five minutes. As a result, the QEs dropped from 16-18% to 1-2% at 254 mn. However, heating the cathode to 165{degrees}C revived the QE to about 10%. They conclude that Cs{sub 2}Te is a very rugged photocathode material for use in an rf photoelectron source.

  2. Experiments on ocular tissue ablation at 5.3 and 6.0 {mu}m with the Los Alamos advanced FEL

    SciTech Connect

    Nguyen, D.C.; Ren, Q.; Hill, R.

    1995-12-31

    We investigated the ablation characteristics of a picosecond free-electron laser and compared its ablation effects on ocular tissues at 5.3 {mu}m and 6.0 {mu}m. The Advanced FEL at Los Alamos, operating in the wavelength range 4-6 {mu}m, was used for this study. The 10-{mu}s macropulse consisted of {approximately}1000 micropulses, each approximately 15 ps in length and separated from one another by 9.2 ns. The FEL beam was passed through a series of attenuator and focused to a 200-{mu}m spot in the sample with a 150-mm f.l. CaF{sub 2} lens. The energy in each macropulse ranged from 5 to 120 mJ. Five transplantable corneal-scleral buttons preserved in corneal storage media were used for this study. The tissue sample was positioned at the focused FEL beam for the ablation, and then fixed for histologic study. Corneal cuts made at 6.0 {mu}m revealed a well-defined ablation boundary. The measured lateral zone of the tissue damage was 11 {+-} 2 {mu}m. The integrity of the adjacent tissue was well maintained. By contrast, the ablation boundary of the corneal cuts made at 5.3 {mu}m appeared to be very disruptive. The collagen fiber near the ablation was thermally denatured and lost its organized structure. The lateral dimension of such effect extended out to 220 {mu}m beyond the intended cut into the surrounding tissues. We concluded that a short-pulsed laser operating at 6 {mu}m may be a potentially effective tool for cutting ocular tissues.

  3. Recent progress of the Los Alamos advanced free electron laser

    SciTech Connect

    Nguyen, D.C.; Austin, R.H.; Chan, K.C.D.; Feldman, D.W.; Goldstein, J.C.; Gierman, S.M.; Kinross-Wright, J.M.; Kong, S.H.; Plato, J.G.; Russell, S.J.

    1994-05-01

    Many industrial and research applications can benefit from the availability of a compact, user-friendly, broadly tunable and high average power free electron laser (FEL). Over the past four years, the Los Alamos Advanced FEL has been built with these design goals. The key to a compact FEL is the integration of advanced beam technologies such as a high-brightness photoinjector, a high-gradient compact linac, and permanent magnet beamline components. These technologies enable the authors to shrink the FEL size yet maintain its high average power capability. The Advanced FEL has been in operation in the near ir (4-6 {mu}m) since early 1993. Recent results of the Advanced FEL lasing at saturation and upgrades to improve its average power are presented.

  4. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    SciTech Connect

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  5. Initial performance of Los Alamos Advanced Free Electron Laser

    SciTech Connect

    Nguyen, D.C.; Baca, D.M.; Chan, K.C.D.; Cheairs, R.B.; Fortgang, C.M.; Gierman, S.M.; Johnson, W.J.D.; Holcomb, D.E.; Kinross-Wright, J.; McCann, S.W.; Meier, K.L.; Plato, J.G.; Sheffield, R.L.; Sherwood, B.A.; Sigler, F.E.; Timmer, C.A.; Warren, R.W.; Weber, M.E.; Wilson, W.L.

    1992-01-01

    We report recent results on the high-brightness electron linac and initial performance of the Advanced FEL at Los Alamos. The design and construction of the Advanced FEL beamline are based upon integration of advanced technologies such as high-brightness photoinjector, high-gradient compact linac, and permanent-magnet beamline components. With the use of microwiggler, both permanent magnet and pulsed electromagnet, and compact optical resonator, the Advanced FEL will be the first of its kind small enough to be mounted on an optical table and yet capable of providing highpower optical output spanning the near-ir and visible regions. A schematic of the Advanced FEL is shown in. The source of high-current electron pulses is a laser-gated photoelectron injector which forms-an integral part of a high-gradient 1.2-m long rf linear accelerator. The latter is capable of accelerating electrons up to 20 MeV with room temperature operation and 25 MeV at 77K. The electrons are produced in 10-ps pulses with peak currents as high as 300 A. These electron pulses are transported in a brightness-preserving beamline consisting of permanent magnet dipoles and quadrupoles. The beamline has three 30{degrees} bends. The first bend allows for the photocathode drive laser input; the second allows for the FEL output and the third turns the electron beam into the floor for safety reasons. Additional information on the design physics of the Advanced FEL can be found elsewhere.

  6. Initial performance of Los Alamos Advanced Free Electron Laser

    SciTech Connect

    Nguyen, D.C.; Baca, D.M.; Chan, K.C.D.; Cheairs, R.B.; Fortgang, C.M.; Gierman, S.M.; Johnson, W.J.D.; Holcomb, D.E.; Kinross-Wright, J.; McCann, S.W.; Meier, K.L.; Plato, J.G.; Sheffield, R.L.; Sherwood, B.A.; Sigler, F.E.; Timmer, C.A.; Warren, R.W.; Weber, M.E.; Wilson, W.L.

    1992-09-01

    We report recent results on the high-brightness electron linac and initial performance of the Advanced FEL at Los Alamos. The design and construction of the Advanced FEL beamline are based upon integration of advanced technologies such as high-brightness photoinjector, high-gradient compact linac, and permanent-magnet beamline components. With the use of microwiggler, both permanent magnet and pulsed electromagnet, and compact optical resonator, the Advanced FEL will be the first of its kind small enough to be mounted on an optical table and yet capable of providing highpower optical output spanning the near-ir and visible regions. A schematic of the Advanced FEL is shown in. The source of high-current electron pulses is a laser-gated photoelectron injector which forms-an integral part of a high-gradient 1.2-m long rf linear accelerator. The latter is capable of accelerating electrons up to 20 MeV with room temperature operation and 25 MeV at 77K. The electrons are produced in 10-ps pulses with peak currents as high as 300 A. These electron pulses are transported in a brightness-preserving beamline consisting of permanent magnet dipoles and quadrupoles. The beamline has three 30{degrees} bends. The first bend allows for the photocathode drive laser input; the second allows for the FEL output and the third turns the electron beam into the floor for safety reasons. Additional information on the design physics of the Advanced FEL can be found elsewhere.

  7. Control of linear accelerator noise in the Los Alamos free-electron laser (FEL)

    SciTech Connect

    Lynch, M.T.

    1986-01-01

    The Los Alamos FEL requires tight control of the amplitudes and phases of the fields in two linear accelerator tanks to obtain stable lasing. The accelerator control loops must establish constant, stable, repeatable amplitudes and phases of the rf fields and must have excellent bandwidth to control high-frequency noise components. A model of the feedback loops has been developed that agrees well with measurements and allows easy substitution of components and circuits, thus reducing breadboarding requirements. The model permits both frequency and time-domain analysis. This paper describes the accelerator control scheme and our model and discusses the control of noise in feedback loops, showing how low-frequency-noise components (errors) can be corrected, but high-frequency-noise components (errors) are actually amplified by the feedback circuit. Measurements of noise in both open- and closed-loop modes are shown and comparison is made with results from the model calculations.

  8. Initial performance of Los Alamos Advanced Free Electron Laser

    SciTech Connect

    Nguyen, D.C.; Austin, R.H.; Chan, K.C.D.

    1993-09-01

    The Los Alamos compact Advanced FEL has lased at 4.7 and 5.2 {mu}m with a 1-cm period wiggler and a high-brightness electron beam at 16.8 and 15.8 MeV, respectively. The measured electron beam normalized emittance is 1.7 {pi}{center_dot}mm{center_dot}mrad at a peak current of 100 A, corresponding to a beam brightness greater than 2 {times} 10{sup 12} A/m{sup 2}rad{sup 2}. Initial results indicate that the AFEL small signal gain is {approximately}8% at 0.3 nC (30 A peak). The maximum output energy is 7 mJ over a 2-{mu}s macropulse. The AFEL performance can be significantly enhanced by improvements in the rf and drive laser stability.

  9. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Dalla Betta, G.-F.; Pancheri, L.; Verzellesi, G.; Xu, H.; Mendicino, R.; Benkechkache, M. A.

    2015-02-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 104 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC.

  10. Seeded FEL Amplifier-Buncher in the 0.5-9 THz for Advanced Accelerators

    SciTech Connect

    Tochitsky, S. Ya.; Reiche, S.; Sung, C.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.; Kelly, R.

    2009-01-22

    Longitudinal modulation of a relativistic electron beam in the THz range is important for advanced laser- or beam-driven plasma accelerators operating in the 10{sup 16}-10{sup 18} cm{sup -3} plasma density range. We describe a single-pass FEL amplifier-buncher which is under construction at the UCLA Neptune laboratory. Microbunching on the 0.5-3 THz frequency scale is achieved during the process of a resonant FEL interaction between an electron beam and a THz seed pulse. A narrow-band, low-power THz seed source based on the frequency mixing of CO{sub 2} laser lines in a GaAs nonlinear crystal is built and fully characterized. The THz radiation pulse generated by this source will be guided through a hollow waveguide inside the planar FEL undulator driven by a regular photoinjector. By using a time-dependent FEL code GENESIS 1.3, we optimized the undulator parameters and analyzed the dynamics of the modulated electron beam. At present, the THz FEL microbuncher is being built and we update the status of the project.

  11. Results from the Advanced Photon Source SASE FEL project

    SciTech Connect

    Milton, S.

    2000-07-05

    Measurements of self-amplified spontaneous emission (SASE) at 530 nm were made at the Advanced Photon Source (APS) low-energy undulator test line facility (LEUTL). Exponential growth of the optical signal as a function of distance was measured and compared to theoretical estimates. SASE was first observed using a beam generated from a photocathode rf gun system. It was later repeated using beam from a thermonic rf gun system. Following a brief description of the LEUTL facility, they present their results and initial analysis.

  12. Towards an advanced hadron facility at Los Alamos

    NASA Astrophysics Data System (ADS)

    Thiessen, Henry A.

    1988-11-01

    In the 1987 AHF Workshop, it was pointed out that activation of the accelerator is a serious problem. At this workshop, it was suggested that a new type of slow extraction system is needed to reduce the activation. We report on the response to this need. The Los Alamos plan is reviewed including as elements the long lead-time R&D in preparation for a 1993 construction start, a menu of accelerator designs, improved losses at injection and extraction time, active participation in the development of PSR, an accelerated hardware R&D program, and close collaboration with TRIUMF. We review progress on magnets and power supplies, on ceramic vacuum chambers, and on ferrite-tuned rf systems. We report on the plan for a joint TRIUMF-Los Alamos main-ring cavity to be tested in PSR in 1989. The problem of beam losses is discussed in detail and a recommendation for a design procedure for the injection system is made. This recommendation includes taking account of single Coulomb scattering, a painting scheme for minimizing foil hits, and a collimator and dump system for containing the expected spills. The slow extraction problem is reviewed and progress on an improved design is discussed. The problem of designing the accelerators for minimum operation and maintenance cost is briefly discussed. The question of the specifications for an advanced hadron facility is raised and it is suggested that the Los Alamos Proposal of a dual energy machine—1.6 GeV and 60 GeV—is a better match to the needs of the science program than the single-energy proposals made elsewhere. It is suggested that design changes need be made in all of the world's hadron facility proposals to prepare for high-intensity operation.

  13. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    SciTech Connect

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  14. About the scheme of the infrared FEL system for the accelerator based on HF wells

    SciTech Connect

    Kabanov, V.S.; Dzergach, A.I.

    1995-12-31

    Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.

  15. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  16. Physics design for the ATA (Advanced Test Accelerator) tapered wiggler 10. 6. mu. FEL (Free-Electron Laser) amplifier experiment

    SciTech Connect

    Fawley, W.M.

    1985-05-09

    The design and construction of a high-gain, tapered wiggler 10.6 ..mu.. Free Electron Laser (FEL) amplifier to operate with the 50 MeV e-beam is underway. This report discussed the FEL simulation and the physics motivations behind the tapered wiggler design and initial experimental diagnostics.

  17. Towards short wavelengths FELs workshop

    SciTech Connect

    Ben-Zvi, I.; Winick, H.

    1993-12-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  18. The APS SASE FEL : modeling and code comparison.

    SciTech Connect

    Biedron, S. G.

    1999-04-20

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  19. Advances in and uses of gamma-ray field instrumentation at Los Alamos

    SciTech Connect

    Halbig, J.K.; Klosterbuer, S.F.; Russo, P.A.; Sprinkle, J.K. Jr.; Smith, S.E.; Ianakiev, K.

    1994-02-01

    We are developing a set of tools to be used by the Safeguards Assay Group to solve problems found in safeguards and the domestic nuclear industry. The tools are also applicable to problems dealing with the environment, defense, and other areas of national and international interest. We have used extensively the advances in hardware and software since our last multichannel analyzer (MCA) development activities over a decade ago. We are also using our experience with and feedback from users of our previous instruments. In analyzing the instrument needs of our constituents and the characteristics of our previous instruments, which we think have inhibited their broader use, we have concluded that uses for an MCA-type instrument are widely varied and fundamentally changing,and that any new instruments should include a versatile, widely used hardware interface, which is as independent as possible of hardware standards, and which is readily interfaced to the computers or controllers rapidly evolving in the commercial sector. In addition, software tools must be provided that allow Los Alamos, users, and third parties to quickly and conveniently develop software specific to the user or the measurement to control the basic instrument we develop. This paper deals mainly with a miniature and modular multi-channel analyzer (M{sup 3}CA) and its applications.

  20. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  1. Analysis of FEL optical systems with grazing incidence mirrors

    SciTech Connect

    Knapp, C.E.; Viswanathan, V.K.; Bender, S.C.; Appert, Q.D.; Lawrence, G.; Barnard, C.

    1986-01-01

    The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock-up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.

  2. Strong focusing influence on high gain FEL characteristics

    SciTech Connect

    Smirnov, A.; Varfolomeev, A.

    1995-12-31

    The use of intrinsic alternating focusing in a linac-driven FEL with planar undulator is considered numerically. The analysis is done on the basis of TDA code for soft X-ray FEL with FD lattice implementing focusing of quadrupole and periodic sextupole type. The influence of the focusing (type and phase advance) on FEL performance and the reasons of difference in FEL performance for focusing of two kinds are analyzed. A possibility of some kind of beam conditioning for intrinsic focusing is discussed.

  3. Two FEL`s in one

    SciTech Connect

    Epp, V.; Nikitin, M.

    1995-12-31

    A new scheme for a FEL operation is proposed. The conventional principle of FEL operation is means that the electron bunch passes through the interaction area of FEL only in one direction. We suggest another possible layout which implies that the electron bunch makes a turn after leaving the wiggler and entries the wiggler at the same end. Actually the wiggler is a kind of a bridge between two storage rings. The electron bunches on the orbit are expected to be adjusted in the way that after one of them leaves the wiggler, another one enters in the opposite direction and in the proper phase with the wave pulse emitted by the previous bunch. So the electron bunch comes in interaction with the amplified electromagnetic wave in both directions i.e. twice per period. It is especially important for the short wavelength FELs, because each reflection from the mirror causes a significant losses of the wave magnitude. The proposed design gives one interaction per each reflection instead of one interaction per two reflections in the traditional scheme. Another way to realize the suggested principle of operating is to insert the wiggler in the electron-positron storage ring. But this layout can be less efficient because of low intensity of the positron beam. The comparison study of radiation from different types of described double wigglers is fulfilled. The synchronization problems are discussed in this paper.

  4. The BESSY FEL project

    NASA Astrophysics Data System (ADS)

    Abo-Bakr, M.; Anders, W.; Bahrdt, J.; Bakker, R. J.; Eberhardt, W.; Faatz, B.; Follath, R.; Gaupp, A.; von Hartrott, M.; Jaeschke, E.; Krämer, D.; Kuske, P.; Martin, M.; Müller, R.; Prange, H.; Reiche, S.; Sandner, W.; Senf, F.; Will, I.; Wüstefeld, G.

    2002-05-01

    Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) plans to construct a linac-based single-pass FEL as an addition to its existing third generation storage-ring-based light-source. The project aims to obtain an FEL-based user-facility that covers the VUV and soft X-ray spectral range (20 eV⩽ℏ ω⩽1 keV). At present, the design stage is funded as a collaboration between BESSY, DESY, the Hahn-Meitner-Institute in Berlin, and the Max-Born-Institute in Berlin. This stage focuses on optimization of the FEL as a user light-source, both with respect to its capabilities and in its performance. Important issues are: stability, seeding options of the SASE FEL, wavelength-tunability, synchronization with external laser sources and, on a longer time-scale, the generation of ultra-short (<20 fs RMS) optical pulses.

  5. Seeded FEL Microbunching Experiments at the UCLA Neptune Laboratory

    SciTech Connect

    Tochitsky, S. Ya.; Musumeci, P.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.

    2010-11-04

    Seeded high-gain FELs, which can generate very powerful radiation pulses in a relatively compact undulator and simultaneously modulate the electron beam longitudinally at the seed wavelength, are important tools for advanced accelerator development. A single-pass 0.5-9 THz FEL amplifier-buncher driven by a regular photoinjector is being built at the UCLA Neptune Laboratory. FEL interactions at 340 {mu}m (1 THz) are considered for the first experiment, since time-resolved measurements of longitudinal current distribution of the bunched beam using the RF deflecting cavity are possible. A design of a 0.2-2.0 {mu}m FEL using the same undulators is presented. In this case the FEL is driven by a high-peak current beam from the laser-plasma accelerator tunable in the 100-300 MeV range.

  6. FEL phased array configurations

    NASA Astrophysics Data System (ADS)

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  7. Transverse effects in UV FELs

    SciTech Connect

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-12-31

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium`s UV FEL.

  8. Performance of the KHI FEL device at FEL-SUT

    NASA Astrophysics Data System (ADS)

    Yokoyama, M.; Oda, F.; Nomaru, K.; Koike, H.; Sobajima, M.; Miura, H.; Kawai, M.; Kuroda, H.

    2002-05-01

    FEL lasing with the saturated power in the wavelength of 4-16 μm was achieved by using the KHI (Kawasaki Heavy Industries, Ltd.) FEL device. The macro-pulse length of the electron beam was improved by using the LaB 6 cathode instead of the dispenser cathode as a cathode of the OCS RF-gun. The improvement yielded the saturated FEL power with the macro-pulse length of 0.5-1.5 μs. The FEL energy was 2-40 mJ. The measured FEL output powers were in agreement with the values which were taken into account Piovella's theory.

  9. FEL Beamline for Wide Tunable Range and Beam Sharing System at Kyoto University

    SciTech Connect

    Bakr, Mahmoud; Yoshida, K.; Higashimura, K.; Ueda, S.; Kinjo, R.; Sonobe, T.; Kii, T.; Masuda, K.; Ohgaki, H.; Zen, H.

    2010-02-03

    A mid-infrared free electron laser (MIR-FEL) facility (KU-FEL: Kyoto University Free Electron Laser) has been constructed for developing energy materials in Institute of Advanced Energy (IAE), Kyoto University. The tunable range of KU-FEL was estimated as 5-13.2 {mu}m by numerical calculation to design the MIR-FEL transport line for application purposes. Aiming to increase the number of FEL users with different desires we decided to develop an FEL beam sharing system that is useful for multi-utilization at different end-stations. The transport line and the beam sharing system has been designed and constructed to the user stations. Applications of the MIR-FEL in the renewable energy research at Kyoto University will start as well.

  10. Infrared FEL photochemistry: Multiple-photon dissociation of freon gas

    NASA Astrophysics Data System (ADS)

    Newnam, B. E.; Early, J. W.; Lyman, J. L.

    Wavelength tunability, synchrotron sidebands, and picosecond pulse structure are inherent FEL characteristics that should be advantageous for photochemistry involving infrared multiple-photon photodissociation. Tuned to an absorption resonance, the FEL sideband structure will overlap the broad, excited-state spectral absorption and should lead to enhanced dissociation. The Los Alamos APEX FEL was operated with and without sidebands to test this hypothesis on CFCl3 (Freon 11), an inert chlorofluorocarbon widely used in refrigeration systems and one of the gases implicated as depleting the ozone in the Earth's stratospheric layer. The FEL wavelength was set at the C-Cl stretch absorption resonance at 11.8-microns, the oscillator cavity length was detuned first to minimize and then to maximize the spectral bandwidth, and the beam was focused through a pair of test cells (1.0 Torr Freon + 1.7 Torr air). Comparison of final and initial absorbance spectra indicated the CFCl3 photodissociation yield was 1.2% for the cell exposed with sideband spectra (3% FWHM) and 9-ns micropulse separation. Negligible effect was seen without sidebands, albeit at lower total beam fluence. Although the result of this single experiment is not large enough to be conclusive, it does provide a basis for optimizing the FEL temporal and spectral parameters to attain higher photodissociation yield in future tests.

  11. Scientific Advancements and Technological Developments of High P-T Neutron Diffraction at LANSCE, Los Alamos

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Daemen, L. L.; Zhang, J.

    2003-12-01

    In-situ high P-T neutron diffraction experiments provide unique opportunities to study the crystal structure, hydrogen bonding, magnetism, and thermal parameters of light elements (eg. H, Li, B) and heavy elements (eg. Ta, U, Pu,), that are virtually impossible to determine with x-ray diffraction techniques. For example, thermoelasticity and Debye-Waller factor as function of pressure and temperature can be derived using in-situ high P-T neutron diffraction techniques. These applications can also be extended to a much broader spectrum of scientific problems. For instance, puzzles in Earth science such as the carbon cycle and the role of hydrous minerals for water exchange between lithosphere and biosphere can be directly addressed. Moreover, by introducing in-situ shear, texture of metals and minerals accompanied with phase transitions at high P-T conditions can also be studied by high P-T neutron diffraction. We have successfully conducted high P-T neutron diffraction experiments at LANSCE and achieved simultaneous high pressures and temperatures of 10 GPa and 1500 K. With an average 3-6 hours of data collection, the diffraction data are of sufficiently high quality for the determination of structural parameters and thermal vibrations. We have studied hydrous mineral (MgOD), perovskite (K.15,Na.85)MgF3, clathrate hydrates (CH4-, CO2-, and H2-), metals (Mo, Al, Zr), and amorphous materials (carbon black, BMG). The aim of our research is to accurately map bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. Studies based on high-pressure neutron diffraction are important for multi-disciplinary science and we welcome researchers from all fields to use this advanced technique. We have developed a 500-ton toroidal press, TAP-98, to conduct simultaneous high P-T neutron diffraction experiments inside of HIPPO (High-Pressure and Preferred-Orientation diffractometer). We have also developed a large gem-crystal anvil cell, ZAP-01

  12. FEL-accelerator related diagnostics

    SciTech Connect

    Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

    2007-08-02

    Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

  13. The VISA FEL undulator

    SciTech Connect

    Carr, R.; Cornacchia, M.; Emma, P.

    1998-08-01

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulator comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff, or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than {+-}50 {micro}m per field gain length.

  14. THE VISA FEL UNDULATOR

    SciTech Connect

    CARR,R.; CORNACCHIA,M.; EMMA,P.; NUHN,H.D.; FULAND,R.; JOHNSON,E.; RAKOWSKY,G.; LIDIA,S.; BERTOLINI,L.; LIBKIND,M.; FRIGOLA,P.; PELLEGRINI,C.; ROSENZWEIG,J.

    1998-08-16

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulator comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than {+-}50 pm per field gain length.

  15. Tapered undulators for SASE FELs

    NASA Astrophysics Data System (ADS)

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2002-05-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  16. Saturation and pulsed FEL dynamics

    SciTech Connect

    Giannessi, L.; Mezi, L.

    1995-12-31

    The behavior of a FEL operating in the saturated pulsed regime, may be reproduced by the linear FEL integral equation, suitably modified to include saturation effects through a gain depression coefficient depending on the laser intensity. This simple method allows to evaluate several FEL parameters like gain, efficiency, band-width and optical pulse duration as functions of the optical cavity length, only with a numerical integration. The predictions have been compared with available experimental and numerical data, and the method has been applied to estimate the operating characteristics of some planned FEL experiments.

  17. Tapered undulator for SASE FELs

    SciTech Connect

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2001-09-14

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  18. Free Electron Lasers - Proceedings of the Beijing Fel Seminar

    NASA Astrophysics Data System (ADS)

    Chen, Jiaer; Xie, Jialin; Du, Xiangwan; Zhao, Kui

    1989-03-01

    The Table of Contents for the full book PDF is as follows: * Preface to the Series * Preface * Seminar Opening Speech * Seminar Closing Address * SECTION 1. RF LINAC BASED FEL * Richard H. Pantell * Free-Electron Lasers * Gas-Loading the FEL * High-Efficiency, High-Power Free-Electron Lasers * A Tunable Submillimeter-to-Far-Infrared Coherent Radiation Source * Kwok-Chi Dominic Chan * Recent Results from the Los Alamos Free Electron Laser * Short-Range Wakefield Effects in RF-Based Free-Electron Laser * Long-Range Wakefield Effects in RF-Based Free-Electron Laser * High-Brightness Injectors For RF-Driven Free-Electron Lasers * Computer Codes for Wakefield Analysis in RF-Based Free-Electron Laser * George R. Neil * The TRW RF Accelerator FEL Program * Superconducting Linac FEL Technology * Design Considerations of RF Oscillators * Chun-Ching Shih * Development of Multicomponent Wiggler Free Electron Lasers * Free Electron Laser Resonator * SECTION 2. INDUCTION LINAC BASED FEL * Richard J. Briggs * Overview of FEL Development with Induction Linacs at LLNL * Overview of Linear Induction Accelerators * High Current Electron-Beam Transport in Induction Linacs * Thaddeus J. Orzechowski * An Introduction to the Physics of High-Gain Free-Electron Lasers * Harmonics and Optical Guiding in Free Electron Lasers * The Electron Laser Facility: A millimeter Wave Free-Electron Laser Amplifier * The Electron Laser Facility: Measurement of Modes, Harmonics, Parametric Dependence, and Phase Shift * Paladin: A 10.6 μm Free-Electron Laser Amplifier * Aspects of Linear Induction Accelerator Technology * List of Participants

  19. Recent Research with the Detector for Advanced Neutron Capture Experiments (dance) at the LOS Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.

    2014-09-01

    The DANCE detector at Los Alamos is a 160 element, nearly 4π BaF2 detector array designed to make measurements of neutron capture on rare or radioactive nuclides. It has also been used to make measurements of gamma-ray multiplicity following capture and gamma-ray output from fission. Several examples of measurements are briefly discussed.

  20. The SwissFEL Experimental Laser facility.

    PubMed

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described. PMID:27577769

  1. Comparison of integrated numerical experiments with accelerator and FEL experiments

    SciTech Connect

    Thode, L.E.; Carlsten, B.E.; Chan, K.C.D.; Cooper, R.K.; Elliott, J.C.; Gitomer, S.J.; Goldstein, J.C.; Jones, M.E.; McVey, B.D.; Schmitt, M.J.; Takeda, H.; Tokar, R.L.; Wang, T.S.; Young, L.M.

    1991-01-01

    Even at the conceptual level the strong coupling between the laser subsystem elements, such as the accelerator, wiggler, optics, and control, greatly complicates the understanding and design of an FEL. Given the requirements for a high-performance FEL, the coupling between the laser subsystems must be included in the design approach. To address the subsystem coupling the concept of an integrated numerical experiment (INEX) has been implemented. Unique features of the INEX approach are consistency and numerical equivalence of experimental diagnostic. The equivalent numerical diagnostics mitigates the major problem of misinterpretation that often occurs when theoretical and experimental data are compared. A complete INEX model has been applied to the 10{mu}m high-extraction-efficiency experiment at Los Alamos and the 0.6-{mu}m Burst Mode experiment at Boeing Aerospace. In addition, various subsets of the INEX model have been compared with a number of other experiments. Overall, the agreement between INEX and the experiments is very good. With the INEX approach, it now appears possible to design high-performance FELS for numerous applications. The first full-scale test of the INEX approach is the Los Alamos HIBAF experiment. The INEX concept, implementation, and validation with experiments are discussed. 28 refs., 13 figs., 1 tab.

  2. Short wavelength FELS

    SciTech Connect

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  3. Future metrology needs for FEL reflective optics.

    SciTech Connect

    Assoufid, L.

    2000-09-21

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed.

  4. The Stanford Picosecond FEL Center

    SciTech Connect

    Schwettman, H.A.; Smith, T.I.; Swent, R.L.

    1995-12-31

    In the past two years, FELs have decisively passed the threshold of scientific productivity. There are now six FEL facilities in the United States and Europe, each delivering more than 2000 hours of FEL beam time per year. at the present time approximately 100 papers are published each in referred journals describing optics experiments performed with FELs. Despite the recent success there are important challenges the FEL facilities must address. At Stanford these challenges include: (1) Providing sufficient experimental time at reasonable cost: At Stanford we provide 2000 hours of experimental time per year at a cost of approximately $500 per hour: We are now studying options for markedly increasing experimental time and decreasing cost per hour. (2) Competing effectively with conventional lasers in the mid-IR: Despite the NRC report we do not intend to concede the mid-IR to conventional lasers. FELs are capable of providing optical beams of exceptional quality and stability, and they can also be remarkable flexible devices. Improvements in our superconducting linac driver and our optical beam conditioning systems will dramatically enhance our FEL experimental capabilities. (3) making the transition from first generation to second generation experiments: Important pump-probe and photon echo experiments have been performed at Stanford and others are feasible using present capabilities. None-the-less we are now investing substantial experimental time to improving signal-to-noise and developing other optical cababilities. (4) Extending operation to the far-infrared where the FEL is unique inits capabilities: {open_quotes}FIREFLY{close_quotes} will extend our FEL capabilities to 100 microns. We are now seeking funds for optical instrumentation. (5) Creating and maintaining a good environment for graduate students.

  5. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  6. Echo-Enabled Harmonic Generation for Seeded FELs

    SciTech Connect

    Stupakov, G.; /SLAC

    2011-05-19

    In the x-ray wavelengths, the two leading FEL concepts are the self-amplified spontaneous emission (SASE) configuration and the high-gain harmonic generation (HGHG) scheme. While the radiation from a SASE FEL is coherent transversely, it typically has rather limited temporal coherence. Alternatively, the HGHG scheme allows generation of fully coherent radiation by up-converting the frequency of a high-power seed laser. However, due to the relatively low up-frequency conversion efficiency, multiple stages of HGHG FEL are needed in order to generate x-rays from a UV laser. The up-frequency conversion efficiency can be greatly improved with the recently proposed echo-enabled harmonic generation (EEHG) technique. In this work we will present the concept of EEHG, and address some practically important issues that affect the performance of the seeding. We show how the EEHG can be incorporated in the FEL scheme and what is the expected performance of the EEHG seeded FEL. We will then briefly describe the first proof-of-principle EEHG experiment carried out at the Next Linear Collider Test Accelerator (NLCTA) at SLAC. We will also discuss latest advances in the echo-scheme approach, and refer to subsequent modifications of the original concept.

  7. Feasibility studies of a compact mm-wave linac FEL

    SciTech Connect

    Nassiri, A.; Kustom, R.L.; Kang, Y.W.; Song, J.

    1995-12-31

    Short wavelength FELs impose stringent requirements on the quality of the electron beams. The key factor in obtaining a single-pass UV or x-ray FEL is the generation of small emittance electron beams with ultra-high brightness. The pioneering work at Los Alamos National Laboratory in the last decade has resulted in a dramatic improvement in the production of high electron beam brightness and small beam emittance using rf photocathode gun. The lower bound on the emittance of a 1-nC bunch without any emittance compensation is on the order of 3 {pi} mm-mrad. This is well within the emittance requirement being considered here. Although the original R&D work at Argonne, in collaboration with the University of Illinois at Chicago and University of Wisconsin-Madison, has produced encouraging results in the area of rf structure design, x-ray mask fabrication, and LIGA processing (Lithography, Electroforming, and Molding), the goal to prove feasibility has not yet been achieved. In this paper, we will present feasibility studies for a compact single-pass mm-linac FEL based on LIGA technology. This system will consist of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period.

  8. Electron beam effects in a UV FEL

    SciTech Connect

    Wong, R.K.; Blau, J.; Colson, W.B.

    1995-12-31

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a free electron laser (FEL) is designed to produce ultraviolet (UV) light. A four-dimensional FEL simulation studies the effects of betatron oscillations, external focusing, and longitudinal pulse compression of the electron beam on the FEL performance.

  9. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  10. Measuring FEL Radiation Properties at VISA-FEL

    SciTech Connect

    Cornacchia, Massimo

    2002-08-21

    The VISA (Visible to Infrared SASE Amplifier) SASE free electron laser has been successfully operated at the Accelerator Test Facility (ATF) at BNL. High gain and saturation were observed at 840 nm. We describe here the diagnostic system, experimental procedures and data reduction algorithms, as the FEL performance was measured along the length of the undulator. We also discuss selected spectral radiation measurements.

  11. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  12. Gigawatt, femtosecond VUV pulses from a SASE FEL: Photon beam characterisation and first applications

    NASA Astrophysics Data System (ADS)

    Tiedtke, K.

    2002-11-01

    Parallel to the enormous progress in optical and conventional X-ray lasers there have also been tremendous advances in the field of Free Electron Lasers (FELs) based on the principle of Self-Amplified Spontaneous Emission (SASE). At the TESLA Test Facility (TTF FEL) at DESY, a linac-driven SASE FEL has produced short pulses with GW peak power in the wavelengths range of 80-120 nm. The radiation pulse length has been adjusted between 30 fs and 200 fs. Currently an energy upgrade of the TTF linear accelerator to 1 GeV is being prepared which will make radiation wavelengths down to 6 nm available for users.

  13. UV FEL Processing - A Unique Opportunity

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1996-05-01

    The ability of UV light to transfrom materials was recognized in the early years of this century. Ever since, its use for processing has been re-investigated each time a new UV light source technology has become available. Especially exciting results in the surface modi- fication of metals and polymers, and in micromachining were found with the short, intense, single-wavelength pulses from excimer lasers. However, as with previous advances, the cost of excimer laser light and their maximum unit size limited their commercialization to high value applications, mostly in medicine and electronics manufacturing. An analysis of the demonstrated potential mass applications suggests that the horizon for commercialization appears to be at an energy cost below 0.5 cents/kJ of light and at a unit capacity above 10 kW. An analysis of light source technologies points to a free electron laser (FEL) based on a superconducting radiofrequency (SRF) accelerator as the only real prospect for reaching this goal. The FEL's picosecond pulse length and high peak power offer further advantages for micro- machining. Progress is being made toward a 1 kW technology demonstration.

  14. Synchronously injected amplifiers, a novel approach to high-average-power FEL

    SciTech Connect

    Nguyen, D.C.; Fortgang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Sheffield, R.L.

    1996-11-01

    Two new FEL ideas based on synchronously injected amplifiers are described. Both of these rely on the synchronous injection of the optical signal into a high-gain, high-efficiency tapered wiggler. The first concept, called Regenerative Amplifier FEL (RAFEL), uses an optical feedback loop to provide a coherent signal at the wiggler entrance so that the optical power can reach saturation rapidly. The second idea requires the use of a uniform wiggler in the feedback loop to generate light that can be synchronously injected back into the first wiggler. The compact Advanced FEL is being modified to implement the RAFEL concept. We describe future operation of the Advanced FEL at high average current and discuss the possibility of generating 1 kW average power.

  15. X-band prebunched FEL amplifier

    SciTech Connect

    Saito, Kazuyoshi; Takayama, Ken; Ozaki, Toshiyuki

    1995-12-31

    Following the successful results of the ion-channel-guiding FEL experiments, we began a new experiment {open_quotes}prebunched FEL{close_quotes}. It is an FEL driven by prebunched beams, whose configuration is a normal FEL system with a prebuncher like the bunching section of a klystron. There are two purposes in this prebunched FEL system; (1) Demonstration of a compact/efficient FEL. Attaining the saturation power level with a short wiggler length (compact wiggler) and enhancing the power through the remaining wiggler length by wiggler tapering (high efficiency FEL). (2) Experimental simulation of multi-stage FELs in the FEL-TBA. Examination of FEL interactions with prebunched injection beams, especially, about the controllability of the output RF phase by changing the RF phase of the input seed power to the wiggler. Recent experimental results show: (1) The saturation power of 120MW has been attained at the wiggler length of 1.1m by 1.5MeV prebunched beams with a 45%-modulated 750A current. However, enhanced power has not been observed yet by wiggler tapering. (2) The current modulation of the injection beam (1.5MeV-500A) becoming higher than 30%, the adjustable range of the output RF phase was limitted less than 40 degrees by the input power of 60kW only. Detail explanations of design concept, theoretical and experimental results will be presented at the conference.

  16. Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL

    SciTech Connect

    Chae, Y.C.

    1998-09-01

    A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetric electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.

  17. Short wavelength FELs using the SLAC linac

    NASA Astrophysics Data System (ADS)

    Winick, H.; Bane, K.; Boyce, R.; Cobb, J.; Loew, G.; Morton, P.; Nuhn, H.-D.; Paterson, J.; Pianetta, P.; Raubenheimer, T.; Seeman, J.; Tatchyn, R.; Vylet, V.; Pellegrini, C.; Rosenzweig, J.; Travish, G.; Prosnitz, D.; Scharlemann, E. T.; Halbach, K.; Kim, K.-J.; Schlueter, R.; Xie, M.; Bonifacio, R.; De Salvo, L.; Pierini, P.

    1994-08-01

    order of magnitude by compressing the bunch to a lenght of about 0.2 ps (rms). Techniques for beam transport, acceleration, and compression without emittance dilution have been developed at SLAC as part of the linear-collider project (J. Seeman, Advances of Accelerator Physics and Technologies, ed. H. Schopper (World Scientific, Singapore, 1993 [9]). The undulator length required to saturate the laser varies from about 15 m for a 100 nm FEL to about 60 m at 3 nm. Initial experiments, at wavelengths down to about 50 nm are planned using the 25-m long Paladin undulator now located at LLNL. In a proposed future LCLS R&D facility the short wavelength light pulses are distributed to multiple end stations using grazing-incidence mirrors. About 10 14 photons per pulse can be produced at a 120 Hz rate, corresponding to average brightness levels of about 10 21 photons/s/mm 2/mrad 2 within 0.1% BW and peak brightness levels of about 10 31 photons/s/mm 2/mrad 2 within 0.1% BW. Peak power levels are several hundred megawatts to several gigawatts. Electron energies required range from about 500 MeV for the 100 nm FEL to about 7 GeV for 3 nm.

  18. Saturation Measurements of a Visible SASE FEL

    SciTech Connect

    Carr, Roger

    2002-08-14

    VISA (Visible to Infrared SASE Amplifier) is an FEL designed to obtain high gain at a radiation wavelength of 800 nm. Large gain is achieved by driving the FEL with the 71 MeV, high brightness beam of the Accelerator Test Facility (ATF) and using a novel, strong focusing, 4 m long undulator with a gap of 6 mm and a period of 1.8 cm. We report measurements of exponential gain, saturation, and spectra of the FEL radiation intensity.

  19. Saturation Measurements of a Visible SASE FEL

    NASA Astrophysics Data System (ADS)

    Tremaine, A.; Frigola, P.; Murokh, A.; Pellegrini, C.; Reiche, S.

    2002-08-01

    VISA (Visible to Infrared SASE Amplifier) is an FEL designed to obtain high gain at a radiation wavelength of 800 nm. Large gain is achieved by driving the FEL with the 71 MeV, high brightness beam of the Accelerator Test Facility (ATF) and using a novel, strong focusing, 4m long undulator with a gap of 6 mm and a period of 1.8 cm. We report measurements of exponential gain, saturation, and spectra of the FEL radiation intensity.

  20. Super ACO FEL oscillation at 300 nm

    NASA Astrophysics Data System (ADS)

    Nutarelli, D.; Garzella, D.; Renault, E.; Nahon, L.; Couprie, M. E.

    2000-05-01

    Some recent improvements, involving both the optical cavity mirrors and the positron beam dynamics in the storage ring, have allowed us to achieve a laser oscillation at 300 nm on the Super ACO Storage Ring FEL. The Super ACO storage ring is operated at 800 MeV which is the nominal energy for the usual synchrotron radiation users, and the highest energy for a storage ring FEL. The lasing at 300 nm could be kept during 2 h per injection, with a stored current ranging between 30 and 60 mA. The FEL characteristics are presented here. The longitudinal stability and the FEL optics behaviour are also discussed.

  1. Prospects for the FEL (Free Electron Laser)

    SciTech Connect

    Sessler, A.M.

    1989-04-01

    The future for FELs depends upon the very large number of applications which is envisioned for them. These grow out of the FEL extensive range of wavelengths, tunability, and high power capability. High power requires demonstration of optical guiding. Tunability has already been demonstrated. And the effort to extend the range of wavelengths is ever ongoing. The future will also bring more work on gas-loaded FELs, on electromagnetic wigglers, and on harmonic generation. We can, also, look forward to observation of various new effects, a few of which will be described. Finally, a list of various FEL projects around the world will be given. 12 refs., 5 figs., 8 tabs.

  2. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  3. Compact FEL`s based on slow wave wigglers

    SciTech Connect

    Riyopoulos, S.

    1995-12-31

    Slow waves excited in magnetron-type cavities are attractive canditates as wigglers for compact Free Electron Lasers. Because of group velocities much below the speed of light, slow waves offer an order of magnitude increase in FEL gain under given circulating power in the wiggler resonator, compared to fast wave wigglers of similar period. In addition, they offer the versatility of operation either at modest beam energy via upshifing of the fundamental wavelength, or at low beam energy benefiting from the submillimeter wiggler harmonics. Because the main electron undulation is in the transverse direction for all spatial harmonics, the radiated power is increased by a factor {gamma}{sup 2} relative to the Smith-Purcell approach that relies on axial electron undulation. Technical advantages offered by magnetron-type wiggles are: the generation of the wiggler microwaves and the FEL interaction take place inside the same cavity, avoiding the issue of high power coupling between cavities; the excitation of wiggler microwaves relies on distributed electron emission from the cavity wall and does not require separate beam injection.

  4. Recent developments in CrystFEL 1

    PubMed Central

    White, Thomas A.; Mariani, Valerio; Brehm, Wolfgang; Yefanov, Oleksandr; Barty, Anton; Beyerlein, Kenneth R.; Chervinskii, Fedor; Galli, Lorenzo; Gati, Cornelius; Nakane, Takanori; Tolstikova, Alexandra; Yamashita, Keitaro; Yoon, Chun Hong; Diederichs, Kay; Chapman, Henry N.

    2016-01-01

    CrystFEL is a suite of programs for processing data from ‘serial crystallography’ experiments, which are usually performed using X-ray free-electron lasers (FELs) but also increasingly with other X-ray sources. The CrystFEL software suite has been under development since 2009, just before the first hard FEL experiments were performed, and has been significantly updated and improved since then. This article describes the most important improvements which have been made to CrystFEL since the first release version. These changes include the addition of new programs to the suite, the ability to resolve ‘indexing ambiguities’ and several ways to improve the quality of the integrated data by more accurately modelling the underlying diffraction physics. PMID:27047311

  5. Integrated computer simulation on FIR FEL dynamics

    SciTech Connect

    Furukawa, H.; Kuruma, S.; Imasaki, K.

    1995-12-31

    An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.

  6. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  7. Initial electron-beam characterizations for the Los Alamos APEX Facility

    SciTech Connect

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O'Shea, P.G. ); Fiorito, R.B.; Rule, D.W. )

    1991-01-01

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus minus} 0.2%), and drive laser phase stability (< 2 ps (rms)). 10 refs.

  8. Progress at the Jefferson Laboratory FEL

    SciTech Connect

    Tennant, Christopher

    2009-01-01

    As the only currently operating free electron laser (FEL) based on a CW superconducting energy recovering linac (ERL), the Jefferson Laboratory FEL Upgrade remains unique as an FEL driver. The present system represents the culmination of years of effort in the areas of SRF technology, ERL operation, lattice design, high power optics and DC photocathode gun technology. In 2001 the FEL Demo generated 2.1 kW of laser power. Following extensive upgrades, in 2006 the FEL Upgrade generated 14.3 kW of laser power breaking the previous world record. The FEL Upgrade remains a valuable testbed for studying a variety of collective effects, such as the beam breakup instability, longitudinal space charge and coherent synchrotron radiation. Additionally, there has been exploration of operation with lower injection energy and higher bunch charge. Recent progress and achievements in these areas will be presented, and two recent milestones â installation of a UV FEL and establishment of a DC gun test s

  9. A photocathode rf gun design for a mm-wave linac-based FEL

    SciTech Connect

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  10. Enhancing FEL Power with Phase Shifters

    SciTech Connect

    Ratner, Daniel; Chao, Alex; Huang, Zhirong; /SLAC

    2010-07-30

    Tapering the undulator parameter is a well-known method for maintaining the resonant condition past saturation, and increasing Free Electron Laser (FEL) efficiency. In this paper, we demonstrate that shifting the electron bunch phase relative to the radiation is equivalent to tapering the undulator parameter. Using discrete phase changes derived from optimized undulator tapers for the Linac Coherent Light Source (LCLS) x-ray FEL, we show that appropriate phase shifts between undulator sections can reproduce the power enhancement of undulator tapers. Phase shifters are relatively easy to implement and operate, and could be used to aid or replace undulator tapers in optimizing FEL performance.

  11. Fused rock from Köfels, Tyrol

    USGS Publications Warehouse

    Milton, Daniel J.

    1964-01-01

    The vesicular glass from Köfels, Tyrol, contains grains of quartz that have been partially melted but not dissolved in the matrix glass. This phenomenon has been observed in similar glasses formed by friction along a thrust fault and by meteorite impact, but not in volcanic glasses. The explosion of a small nuclear device buried behind a steep slope produced a geologic structure that is a good small-scale model of that at Köfels. Impact of a large meteorite would have an effect analogous to that of a subsurface nuclear explosion and is the probable cause of the Köfels feature.

  12. SASE FEL Polarization Control Using Crossed Undulator

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; /SLAC

    2008-09-30

    There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed undulator scheme for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90{sup o} rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light--with over 80% polarization--near the FEL saturation.

  13. Proposed UV FEL user facility at BNL

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, I.; Di Mauro, L. F.; Krinsky, S.; White, M. G.; Yu, L. H.

    1991-07-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of an UV FEL operating in the wavelength range from visible to 1000 Å. Nanocoulomb electron pulses will be generated at a laser photocathode rf gun at a repetition rate of 10 kHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL consists of an exponential growth section followed by a tapered section. The amplifier input is a harmonic of a tunable visible laser generated either by nonlinear optical material or the nonlinearity of the FEL itself. The FEL output in 10 -4 bandwidth is 1 mJ per pulse, resulting in an average power of 10 W. The availability of radiation with these characteristics would open up new opportunities in photochemistry, biology and nonlinear optics, as discussed in a recent workshop held at BNL.

  14. Concepts for UV-FEL optics

    SciTech Connect

    Johnson, E.D.

    1993-11-01

    Brookhaven National Laboratory has developed a design for an ultra-violet free electron laser facility utilizing a seeded amplifier approach. Since the accelerator is a single pass device, resonator and outcoupler mirrors which are a difficult aspect of oscillator FEL designs are not required. The result is a source of high peak power VUV radiation with the mode structure, bandwidth and frequency stability of the input seed laser. The accelerator provides pulses of radiation at up to 10 kHz, so to maximize the utilization of the source, novel optical systems to share the radiation had to be developed. These include specialized alignment, beam transport, order sorting, and multiplexing optics. In addition, FEL on FEL pump-probe experiments are made possible by a variable optical delay of up to 10 ns operating in the wavelength range of 200 to 75 nm. Some aspects of the FEL design are also described to clarify the constraints and choices for the optical system.

  15. Towards attosecond X-ray pulses from the FEL

    SciTech Connect

    Zholents, Alexander A.; Fawley, William M.

    2004-07-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10{sup 18} sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results.

  16. Temporal characteristics of a SASE FEL.

    SciTech Connect

    Li, Y,; Huang, Z.; Kim, K.-J.; Lewellen, J.; Milton, S. V.; Sajaev, V.

    2003-01-01

    We have performed a single-shot, time-resolved measurement of the output field of a SASE FEL using the frequency-resolved optical gating (FROG) technique. The measurement reveals the phase and the amplitude of the SASE output as functions of time and frequency, hence enables us to perform a full characterization of the SASE FEL output. We examined both the single-shot field evolution as well as the statistics over multiple shots on the phase and intensity evolution.

  17. Ther FERMI FEL project at TRIESTE

    SciTech Connect

    Walker, R.P.; Bulfone, D.; Cargnello, F.

    1995-12-31

    The goal of the FERMI project - Free Electron Radiation and Matching Instrumentation - is to construct a new user facility for FEL radiation beams covering a broad spectral range (2-250 {mu}m) to complement the high brightness VUV/Soft-Xray radiation available from the ELETTRA synchrotron radiation facility at Trieste. A unique feature of the project will be the possibility of carrying out {open_quote}pump-probe{close_quote} experiments using synchronized radiation beams from FERMI and ELETTRA on the same sample. The project was launched at a meeting with Italian FEL experts held in Trieste on the 18th November 1994, chaired by C. Rubbia, as a collaboration between Sincrotrone Trieste, ENEA (Frascati), INFN (Frascati) and the University of Naples (Department of Electronic Engineering). The facility will make use of an existing linac, that forms part of the ELETTRA injection system, and a hall into which the beam can be extracted. In addition, for the first phase of the project equipment will be used from the suspended INFN/ENEA {open_quote}SURF{close_quote} FEL experiment, including the undulator, beam transport magnets and optical cavity. In this first International FEL Conference report on the project, we summarize the main features of the project, concentrating in particular on the most recent activities, including: results of measurements of the linac beam in the FEL mode of operation, further studies of the electron beam transport system including possibilities for bunch length manipulations, and further numerical calculations of the FEL performance.

  18. Technological Challenges to X-Ray FELs

    SciTech Connect

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.

  19. Technological challenges to X-ray FELs

    NASA Astrophysics Data System (ADS)

    Nuhn, Heinz-Dieter

    2000-05-01

    There is strong interest in the development of X-ray Free Electron Lasers (X-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent X-rays. An X-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-ray FEL user-facilities around the 0.1 nm wavelength regime (LCLS at SLAC, TESLA X-ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments at longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-ray FEL projects.

  20. Los Alamos National Laboratory.

    ERIC Educational Resources Information Center

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  1. Status report on the development of a high-power UV/IR FEL at CEBAF

    SciTech Connect

    Benson, S.; Bohn, C.; Dylla, H.F.

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  2. Three-Dimensional Analysis of Frequency-Chirped FELs

    SciTech Connect

    Huang, Z.; Ding, Y.; Wu, J.; /SLAC

    2010-09-14

    Frequency-chirped free-electron lasers (FELs) are useful to generate a large photon bandwidth or a shorter x-ray pulse duration. In this paper, we present a three-dimensional analysis of a high-gain FEL driven by the energy-chirped electron beam. We show that the FEL eigenmode equation is the same for a frequency-chirped FEL as for an undulator-tapered FEL. We study the transverse effects of such FELs including mode properties and transverse coherence.

  3. Stockpile Stewardship: Los Alamos

    SciTech Connect

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2012-01-26

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  4. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2014-08-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  5. Optical tailoring of xFEL beams

    SciTech Connect

    West, Gavin; Coffee, R.

    2015-08-20

    There is an inherent exibility unique to free electron lasers (FELs) that lends well to experimental approaches normally too difficult for other light sources to accomplish. This includes the ability to optically shape the electron bunch prior to final its acceleration for the final FEL process. Optical pulse shaping of the electron bunch can enable both femtosecond and attosecond level FEL pulse control. Pulse shaping is currently implemented, not optically but mechanically, in LCLS-I with an adjustable foil slit that physically spoils the momentum phase of the electron bunch. This selectively suppresses the downstream FEL process ofspoiled electrons. Such a mechanical spoiling method fails for both the soft x-ray regime as well as the high repetition rates that are planned in LCLS-II. Our proposed optical spoiling method circumvents this limitation by making use of the existing ultrafast laser beam that is typically used for adjusting the energy spread for the initial electron bunch. Using Fourier domain shaping we can nearly arbitrarily shape the laser pulses to affect the electron bunch. This can selectively spoil electrons within each bunch. Here we demonstrate the viability of this approach with a programmable acousto-optic dispersive filter. This method is not only well suited for LCLS-II but also has several advantages over mechanical spoiling, including lack of radiation concerns, experiment specific FEL pulse shapes, and real-time adjustment for applications that require high duty-cycle variation such as lock-in amplification of small signals.

  6. Design study of a longer wavelength FEL for FELIX

    SciTech Connect

    Lin, L.; Oepts, D.; Meer, A.F.G. van der

    1995-12-31

    We present a design study of FEL3, which will extend the FELIX spectral range towards a few hundred microns. A rectangular waveguide will be used to reduce diffraction losses. Calculations show that with a waveguide gap of 1 cm, only one sinusoidal mode along the guided direction can exist within the FEL gain bandwidth, thus excluding group velocity dispersion and lengthening of short radiation pulses. To incorporate FEL3 in the existing FELIX facility, two options are being considered: to combine FEL3 with FEL1 by insertion of a waveguide into FEL1, and to build a dedicated third beam line for FEL3 after the two linacs. Expected FEL performance: gain, spectrum, power, pulse shape, etc., will be presented based on numerical simulations.

  7. An FEL design code running on Mathcad(trademark)

    NASA Astrophysics Data System (ADS)

    Nguyen, D. C.; Gierman, S. M.; Oshea, P. G.

    We present a simple computer code called FEL-CAD that runs on the Mathcad(trademark) software. FEL-CAD gives estimates of the expected performance of a low-gain Compton FEL oscillator driven by an rf linac. The code provides fast, albeit approximate, answers to basic FEL design questions. Scaling can be done by varying the wiggler, the linac, the electron beam and the optical resonator parameters.

  8. Designs for optical components related to the Los Alamos Free-Electron Laser

    SciTech Connect

    Byrd, D.A.; Bender, S.C.

    1993-07-01

    Several optomechanical tasks for the Los Alamos National Laboratory`s (LANL) Free-Electron Laser (FEL) were set by the envisioned project goals as early as 1988. Unfortunately, the FEL project has been set aside due to funding constraints. The tasks reported on here required extensive modeling for final adaptability into the FEL environment. The systems to be described are best identified as (1) a Brewster attenuation device, (2) an optical mode relay lens system, (3) a spectral harmonics band-filtering system, (4) a 25-nm micropulse spectrometer system, (5) a 12.5-nm micropulse spectrometer system, (6) a 0.6-nm micropulse spectrometer system, and (7) a reflective mode profile rotator. The Brewster attenuation device was successfully used inside the FEL resonator. The optical mode relay lens system, spectral harmonics band filtering system, and reflective mode profile rotator were completed but never used. The 25-nm micropulse spectrometer was optically and mechanically completed, but the detector electronics were never finished. The 12.5- and 0.6-nm micropulse spectrometers were never assembled, due to hardware that was common to the 25-nm system. These systems will be described in the order listed above. The nominal wavelength of operation for the listed systems is 3.0 {mu}m, except for the harmonics filtering which works on the subharmonics of 3.0 {mu}m. All of these systems were operated remotely due to the harsh radioactive/x-ray optical environment during FEL operation.

  9. Photon Beam Diagnostics for VISA FEL

    SciTech Connect

    Murokh, A.; Pellegrini, C.; Rosenzweig, J.; Frigola, P.; Musumeci, P.; Tremaine, A.; Babzien, M.; Ben-Zvi, I.; Doyuran, A.; Johnson, E.; Skaritka, J.; Wang, X.J.; Van Bibber, K.; Hill, J.M.; LeSage, G.P.; Nguyen, D.; Cornacchia, M.

    1999-11-05

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison of the experimental results with theory and simulations.

  10. First Lasing of the Regenerative Amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Ebrahim, N.A.

    1998-08-17

    The Regenerative Amplifier Free-Electron Laser (RAFEL) is a high-gain RF-linac FEL capable of producing high optical power from a compact design. The combination of a high-gain and small optical feedback enables the FEL to reach saturation and produce a high optical power and high extraction efficiency without risk of optical damage to the mirrors. This paper summarizes the first lasing of the Regenerative Amplifier FEL and describes recent experimental results. The highest optical energy achieved thus far at 16.3 {micro}m is 1.7 J over an 9-{micro}s macropulse, corresponding to an average power during the macropulse of 190 kW. They deduce an energy of 1.7 mJ in each 16 ps micropulse, corresponding to a peak power of 110 MW.

  11. PixFEL: developing a fine pitch, fast 2D X-ray imager for the next generation X-FELs

    NASA Astrophysics Data System (ADS)

    Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M. A.; Dalla Betta, G.-F.; Mendicino, R.; Pancheri, L.; Verzellesi, G.; Xu, H.

    2015-10-01

    The PixFEL project is conceived as the first stage of a long term research program aiming at the development of advanced X-ray imaging instrumentation for applications at the free electron laser (FEL) facilities. The project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging by exploring cutting-edge solutions for sensor development, for integration processes and for readout channel architectures. The main focus is on the development of the fundamental microelectronic building blocks for detector readout and on the technologies for the assembly of a multilayer module with minimum dead area. This work serves the purpose of introducing the main features of the project, together with the simulation results leading to the first prototyping run.

  12. Undulators for short wavelength FEL amplifiers

    SciTech Connect

    Schlueter, R.

    1994-08-01

    Issues critical to the design of undulators for use in short wavelength FEL amplifiers, such as attainable on-axis field strength, device compactness, field quality, required magnetic gap, and strong focusing schemes, are discussed. The relative strength of various undulator technologies, including pure permanent magnet, hybrid, warm electromagnetic, pulsed, and superconducting electromagnetic devices in both helical and planar configurations are reviewed. Favored design options for proposed short wavelength FELs, such as the Linac Coherent Light Source at SLAC and the DUV Free-Electron Laser at BNL, are presented.

  13. Undulators for short wavelength FEL amplifiers

    SciTech Connect

    Schlueter, R.D.

    1994-12-01

    Issues critical to the design of undulators for use in short wavelength FEL amplifiers, such as attainable on-axis field strength, device compactness, field quality, required magnetic gap, and strong focusing schemes, are discussed. The relative strength of various undulator technologies, including pure permanent magnet, hybrid, warm electromagnetic, pulsed, and superconducting electromagnetic devices in both helical and planar configurations are reviewed. Favored design options for proposed short wavelength FELs, such as the Linac Coherent Light Source at SLAC and the DUV Free-Electron Laser at BNL, are presented.

  14. Chirped pulse amplification at VISA-FEL

    NASA Astrophysics Data System (ADS)

    Agustsson, R.; Andonian, G.; Babzien, M.; Ben-Zvi, I.; Frigola, P.; Huang, J.; Murokh, A.; Palumbo, L.; Pellegrini, C.; Reiche, S.; Rosenzweig, J.; Travish, G.; Vicario, C.; Yakimenko, V.

    2004-08-01

    Chirped beam manipulations are of the great interest to the free electron laser (FEL) community as potential means of obtaining ultra short X-ray pulses. The experiment is under way at the accelerator test facility (ATF) at Brookhaven National Laboratory (BNL) to study the FEL process limits with the under-compressed chirped electron beam. High gain near-saturation SASE operation was achieved with the strongly chirped beam (˜2.8% head-to-tail). The measured beam dynamics and SASE properties are presented, as well as the design parameters for the next round of experiment utilizing the newly installed UCLA/ATF chicane compressor.

  15. Longitudinal stabilisation of bunched beams in a FEL storage ring

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Palumbo, L.; Dattoli, G.; Mezi, L.; Renieri, A.; Voykov, G. K.

    1997-02-01

    Experimental observations on FEL Storage Rings (Aco, Super-Aco, VEPP3, TERAS) have shown that in a storage ring with an operating FEL there is a mutual effect between the FEL operational mode and the beam longitudinal distribution. The main effects are the birth of a macro-temporal structure of the FEL radiation and a suppression of the synchrotron sidebands, evidence of beam stabilisation against the microwave instabilities. In this paper we discuss the main features of the beam dynamics analysed with a simulation code recently developed, which includes the FEL-beam interaction. Furtherly, we propose an heuristic model which enable to describe in a simple way the overall system.

  16. A high-power compact regenerative amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-08-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction (< 10%) of the optical power into a high-gain ({approximately}10{sup 5} in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept.

  17. Some novel features of an FEL oscillator with tapered undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way.

  18. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    SciTech Connect

    Straub, K.D.; Barnett, G.; Burnham, B.

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  19. FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL.

    ERIC Educational Resources Information Center

    BAIR, ROBERT A.; AND OTHERS

    THE OPERATION OF THE FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL IN HANFORD, CALIFORNIA, IS DESCRIBED. OF GENERAL CONCERN WAS THE PREPARATION OF CULTURALLY DEPRIVED CHILDREN FOR SCHOOL EXPERIENCES AND FOR FUTURE EMPLOYMENT. A MAJOR GOAL WAS TO IMPROVE THE SELF-IMAGE OF THE CHILDREN AND TO ASSIST THE PARENTS AND CHILDREN IN PROVIDING…

  20. Evaluation of the FEL+ Program, Final Report.

    ERIC Educational Resources Information Center

    Evaluation and Training Inst., Los Angeles, CA.

    An external evaluation of the Family English Literacy, Plus (FEL+) program of the Sweetwater Union High School District (California) is presented. Program objectives included: (1) development and implementation of curriculum and activities integrating technology-assisted instruction into the existing literacy program; (2) increasing parent/child…

  1. FEL-based transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I. P.; Pedersoli, E.; Principi, E.; Svetina, C.; Parisse, P.; Casolari, F.; Danailov, M. B.; Kiskinova, M.; Masciovecchio, C.

    2015-05-01

    In this manuscript we report on a compact experimental set-up ("mini-TIMER") conceived for transient grating (TG) experiments based on free electron laser (FEL) radiation. This set-up has been tested at the seeded FEL facility FERMI (Elettra, Trieste, Italy) and allowed us to observe the first FEL-stimulated TG signal. This experimental result is of the greatest relevance in the context of developing coherent non-linear optical methods into the extreme ultraviolet (EUV) and soft X-ray (SXR) range. Such a challenging task will be addressed in the next future at FERMI by using the present set-up and the forthcoming EIS-TIMER beamline, which is being installed at FERMI and will start the commissioning phase in the second semester 2015. The possibility to use TGs generated by FEL radiation at sub-optical wavelengths would allow developing EUV/SXR four-wave-mixing (FWM) applications, so far considered only theoretically and widely believed to be potentially able to provide major breakthroughs in several fields of science.

  2. A compact FEL upconverter of coherent radiation

    SciTech Connect

    Liu, Y.; Marshall, T.C.

    1995-12-31

    The objective is to generate a powerful millimeter-wave FEL signal in a single pass, using a coherent microwave source (24GHz) to prebunch the electron beam for a harmonically-related wave (72GHz). We use the Columbia FEL facility, operating the electron beam at 600kV, 100A; undulator period = 1.85cm and 250G (K = 0.25); electron beam diameter = 3mm inside a 8.5 mm ID drift tube; guiding field of 8800G. Under these conditions, both the microwave signal (5kW input) and the millimeter signal will show travelling-wave gain in the TE11 mode. We report initial experimental results for the millimeter wave spectrum and find an overall power gain of {approximately}20 for the 24GHz input wave. Also presented will be numerical solutions of the wave growth using the FEL equations with slippage. This device has the advantage of producing a high-power FEL output in a single-pass travelling-wave configuration, obtaining a millimeter wave which is phase-referenced to a coherent laboratory source.

  3. UCSB FEL user mode adaption project

    NASA Astrophysics Data System (ADS)

    Jaccarino, Vincent

    1992-04-01

    This research sponsored by the SDIO Biomedical and Materials Sciences FEL Program held the following objectives: Provide a facility in which in-house and outside user research in the materials and biological sciences can be carried out in the Far Infrared using-the unique properties of the UCSB electrostatic accelerator-driven FEL; Develop and implement new FEL concepts and FIR technology and encourage the transfer and application of this research; Train graduate students, post doctoral researchers and technical personnel in varied aspects of scientific user disciplines, FEL science and FIR technology in a cooperative, interdisciplinary environment. In summary, a free electron laser facility has been developed which is operational from 200 GHz, (6.6 cm exp -1), to 4.8 THz, (160 cm exp -1) tunable under computer control and able to deliver kilowatts of millimeter wave and far-infrared power. This facility has a well equipped user lab that has been used to perform ground breaking experiments in scientific areas as diverse as bio-physics. Nine graduate students and post doctoral researchers have been trained in the operation, use and application of these free-electron lasers.

  4. FEL potential of eRHIC

    SciTech Connect

    Litvinenko, V.N.; Ben-Zvi, I.; Hao, Y.; Kao, C-C.; Kayran, D.; Murphy, J.B.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2010-08-23

    Brookhaven National Laboratory plans to build a 5-to-30 GeV energy-recovery linac (ERL) for its future electron-ion collider, eRHIC. In past few months, the Laboratory turned its attention to the potential of this unique machine for free electron lasers (FELS), which we initially assessed earlier. In this paper, we present our current vision of a possible FEL farm, and of narrow-band FEL-oscillators driven by this accelerator. eRHIC, the proposed electron-ion collider at BNL, takes advantage of the existing Relativistic Heavy Ion Collider (RHIC) complex. Plans call for adding a six-pass super-conducting (SRF) ERL to this complex to collide polarized- and unpolarized- electron beams with heavy ions (with energies up to 130 GeV per nucleon) and with polarized protons (with energies up to 325 GeV). RHIC, with a circumference of 3.834 km, has three-fold symmetry and six straight sections each {approx} 250 m long. Two of these straight sections will accommodate 703-MHz SRF linacs. The maximum energy of the electron beam in eRHIC will be reached in stages, from 5 GeV to 30 GeV, by increasing the lengths of its SRF linacs. We plan to install at the start the six-pass magnetic system with small gap magnets. The structure of the eRHIC's electron beam will be identical with that of its hadron beam, viz., 166 bunches will be filled, reserving about a one-microsecond gap for the abort kicker. With modest modifications, we can assure that eRHIC's ERL will become an excellent driver for continuous wave (CW) FELs (see Fig.1). The eRHIC's beam structure will support the operation of several such FELs in parasitic mode.

  5. Partial covariance mapping techniques at FELs

    NASA Astrophysics Data System (ADS)

    Frasinski, Leszek

    2014-05-01

    The development of free-electron lasers (FELs) is driven by the desire to access the structure and chemical dynamics of biomolecules with atomic resolution. Short, intense FEL pulses have the potential to record x-ray diffraction images before the molecular structure is destroyed by radiation damage. However, even during the shortest, few-femtosecond pulses currently available, there are some significant changes induced by massive ionisation and onset of Coulomb explosion. To interpret the diffraction images it is vital to gain insight into the electronic and nuclear dynamics during multiple core and valence ionisations that compete with Auger cascades. This paper focuses on a technique that is capable to probe these processes. The covariance mapping technique is well suited to the high intensity and low repetition rate of FEL pulses. While the multitude of charges ejected at each pulse overwhelm conventional coincidence methods, an improved technique of partial covariance mapping can cope with hundreds of photoelectrons or photoions detected at each FEL shot. The technique, however, often reveals spurious, uninteresting correlations that spoil the maps. This work will discuss the strengths and limitations of various forms of covariance mapping techniques. Quantitative information extracted from the maps will be linked to theoretical modelling of ionisation and fragmentation paths. Special attention will be given to critical experimental parameters, such as counting rate, FEL intensity fluctuations, vacuum impurities or detector efficiency and nonlinearities. Methods of assessing and optimising signal-to-noise ratio will be described. Emphasis will be put on possible future developments such as multidimensional covariance mapping, compensation for various experimental instabilities and improvements in the detector response. This work has been supported the EPSRC, UK (grants EP/F021232/1 and EP/I032517/1).

  6. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  7. GINGER simulations of short-pulse effects in the LEUTL FEL

    SciTech Connect

    Huang, Z.; Fawley, W.M.

    2001-07-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.

  8. A proposed VUV oscillator-based FEL upgrade at Jefferson Lab

    SciTech Connect

    Benson, S. V.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.

    2011-09-20

    Advances in superconducting linac technology offer the possibility of an upgrade of the Jefferson Lab Free Electron Laser (JLab FEL) facility to an oscillator-based VUV-FEL that would produce 6 x 10{sup 12} coherent 100 eV photons per pulse at multi-MHz repetition rates in the fundamental. At present JLab operates a pair of oscillator-based continuous-wave Free Electron Lasers (FELs) as a linac-based next generation light source in the IR and UV, with sub-picosecond pulses up to 75 MHz. Harmonics upwards of 10 eV are produced and the fully coherent nature of the source results in peak and average brightness values that are several orders of magnitude higher than storage rings. The accelerator uses an energy recovered linac design for efficiency of operation. New style superconducting linac cryomodules with higher gradient, combined with a new injector and beam transport system allow the development of the FEL to higher photon energies.

  9. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    SciTech Connect

    Brice, R.; Carton, D.; Rhyne, T.

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  10. On a theory of an FEL oscillator with multicomponent undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Some novel results of a theory of an FEL oscillator with multicomponent undulator are presented. Two popular FEL oscillator configuration are under consideration: optical klystron and FEL oscillator with a prebuncher and tapered main undulator. Using similarity techniques, universal formulae and plots are obtained which allow one to calculate the FEL oscillator lasing conditions an output parameters at saturation. A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way. In particular, at smooth increasing of the tapering depth, the lasing frequency may change by a leap and lasing occurs at another local maximum of the gain curve. This effect influences significantly on the FEL oscillator operation at saturation. As a result, generally accepted method of undulator tapering (for instance, by decreasing undulator field at fixed period) provides an efficiency increase only in a narrow range of the parameters of tapering. We show that in some cases, so called {open_quotes}negative tapering{close_quotes} (for instance, by increasing undulator field at fixed period) has a benefit against traditional tapering method. Ignoring of these basic features of the FEL oscillator with the tapered undulator have led many FEL research groups to nonoptimal design of the FEL experiments and incorrect interpretation of the obtained results.

  11. Present status and recent results from the APS SASE FEL

    NASA Astrophysics Data System (ADS)

    Lewellen, J. W.; Milton, S. V.; Gluskin, E.; Arnold, N. D.; Benson, C.; Berg, W.; Biedron, S. G.; Borland, M.; Chae, Y.-C.; Dejus, R. J.; Hartog, P. K. Den; Deriy, B.; Erdmann, M.; Eidelman, Y. I.; Hahne, M. W.; Huang, Z.; Kim, K.-J.; Li, Y.; Lumpkin, A. H.; Makarov, O.; Moog, E. R.; Nassiri, A.; Sajaev, V.; Soliday, R.; Tieman, B. J.; Trakhtenberg, E. M.; Vasserman, I. B.; Vinokurov, N. A.; Wiemerslage, G.; Yang, B. X.

    2002-05-01

    The Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source, Argonne National Laboratory, is intended to demonstrate the basic operation of a SASE-based free-electron laser. Goals include comparison of experimental results with theoretical predictions and scaling laws, identification of problems relevant to fourth-generation light source construction and operation and the means of addressing them, the development of operational and diagnostic techniques to optimize SASE FEL performance and increase repeatability from run to run, and performance of initial pioneering experiments capable of exploiting the unique properties of the laser. The basic layout and operational philosophy of the LEUTL experiment is presented. A summary of past results, including saturation, is reviewed, and a description of recent results is presented. We conclude with future plans, which include pressing to shorter wavelengths and incorporating user experiments into the LEUTL experimental program.

  12. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    SciTech Connect

    Jing, C.; Power, J.; Zholents, A. )

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  13. The Los Alamos primer

    SciTech Connect

    Serber, R.

    1992-01-01

    This book contains the 1943 lecture notes of Robert Serber. Serber was a protege of J. Robert Oppenheimer and member of the team that built the first atomic bomb - reveal what the Los Alamos scientists knew, and did not know, about the terrifying weapon they were building.

  14. Next Generation Endstation for Concurrent Measurements of Charged Products and Photons in LCLS FEL Experiments

    NASA Astrophysics Data System (ADS)

    Osipov, T.; Rolles, D.; Bostedt, C.; Castagna, J.-C.; Hartmann, R.; Bozek, J. D.; Schlichting, I.; Strüder, L.; Ullrich, J.; Berrah, N.

    2012-11-01

    We are designing and building the next generation multi-purpose instrumentation especially adapted to accommodate unique large-area, single-photon counting pnCCD detectors together with advanced many-particle ion and electron imaging spectrometers (reaction microscope, REMI; velocity map imaging, VMI; magnetic bottle) for simultaneous detection of scattered and fluorescent photons and charged particles in experiments at the LCLS FEL.

  15. Beam Conditioning for FELs: Consequences and Methods

    SciTech Connect

    Wolski, Andrzej; Penn, Gregory; Sessler, Andrew; Wurtele, Jonathan

    2003-10-09

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance, and allows stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced up to a factor of two. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in effective emittance. Various conditioners are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. We discuss the prospects for conditioners based on laser and plasma systems.

  16. Beam conditioning for FELs: Consequences and methods

    SciTech Connect

    Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.

    2004-06-29

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of two or more. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

  17. Numerical study of X-ray FELS including quantum fluctuation

    NASA Astrophysics Data System (ADS)

    Reiche, S.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-06-01

    One of the fundamental limitations towards achieving very short wavelength in a self amplified spontaneous emission free electron laser (SASE FEL) is connected with the energy diffusion in the electron beam due to quantum fluctuations of undulator radiation. Parameters of the LCLS and TESLA X-ray FEL projects are very close to this limit and there exists necessity in upgrading FEL simulation codes for optimization of SASE FEL for operation at a shortest possible wavelength. In this report we describe a one-dimensional FEL simulation code taking into account the effects of incoherent undulator radiation. Using similarity techniques we have calculated universal functions describing degradation of the FEL process due to quantum fluctuations of undulator radiation.

  18. Optical Klystron Enhancement to SASE X-ray FELs

    SciTech Connect

    Ding, Yuantao; Emma, Paul; Huang, Zhirong; Kumar, Vinit

    2006-04-07

    The optical klystron enhancement to self-amplified spontaneous emission (SASE) free electron lasers (FELs) is studied in theory and in simulations. In contrast to a seeded FEL, the optical klystron gain in a SASE FEL is not sensitive to any phase mismatch between the radiation and the microbunched electron beam. The FEL performance with the addition of four optical klystrons located at the undulator long breaks in the Linac Coherent Light Source (LCLS) shows significant improvement if the uncorrelated energy spread at the undulator entrance can be controlled to a very small level. In addition, FEL saturation at shorter x-ray wavelengths (around 1.0 A) within the LCLS undulator length becomes possible. We also discuss the application of the optical klystron in a compact x-ray FEL design that employs relatively low electron beam energy together with a shorter-period undulator.

  19. EXPERIMENTAL CHARACTERIZATION OF SEEDED FEL AMPLIFIER AT THE NSLS SDL.

    SciTech Connect

    WATANABE, T.; LIU, D.; MURPHY, J.B.; ROSE, J.; SHAFTAN, T.; TSANG, T.; WANG, X.J.; YU, L.H.

    2005-08-21

    Experimental characterization of a near-IR FEL amplifier at the NSLS SDL is presented in this report. SASE was observed from 0.8-1 {micro}m with 5 orders of magnitude gain. We have experimentally demonstrated saturation of a laser seeded FEL amplifier and control of the FEL output by the seed laser. Nonlinear harmonics have also been explored. The FEL pulse length for the first three harmonics was experimentally characterized and the increase of the FEL pulse length with harmonic number was observed for the first time. Computer simulation confirmed that the observed wide spectrum of the laser seeded FEL is due to the positive chirp of the seed laser.

  20. Duke storage rink UV/VUV FEL: Status and prospects

    SciTech Connect

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J.

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  1. INTRA-UNDULATOR MEASUREMENTS AT VISA FEL.

    SciTech Connect

    MUROKH,A.; FRIGOLA,P.; ET AL; JOHNSON,E.; WANG,X.J.; YAKIMENKO,V.

    2000-08-13

    We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.

  2. Intra-undulator measurements at VISA FEL

    SciTech Connect

    Murokh, A; Frigola, P; Pellegrini, C; Rosenzweig, J; Tremaine, A; Johnson, E; Wang, X J; Yakimenko, V; Klaisner, L; Nuhn, H D; Toor, A

    2000-08-10

    We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.

  3. Simulation of a regenerative MW FEL amplifier

    SciTech Connect

    Nguyen, R.T.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    Both oscillator and regenerative amplifier configurations are being studied to optimize the design of a MW class FEL. The regenerative amplifier uses a longer undulator and relies on higher extraction efficiency to achieve high average power, whereas the oscillator is a more compact overall design requiring the transport of the high energy electron beam around bends for energy recovery. Using parameters extrapolated from the 1 kW LANL regenerative amplifier, simulations study the feasibility of achieving 1 MW average power.

  4. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  5. Nonlinear harmonic generation in the STARS FEL

    NASA Astrophysics Data System (ADS)

    Abo-Bakr, M.; Goldammer, K.; Kamps, T.; Knobloch, J.; Kuske, B.; Leitner, T.; Meseck, A.

    2008-08-01

    BESSY proposes to build STARS, an FEL to demonstrate cascaded High Gain Harmonic Generation (HGHG). In two HGHG stages, a laser source of 700-900 nm is converted down to a wavelength of 40-70 nm. The STARS facility consists of a normal-conducting RF photoinjector, three superconducting TESLA-type acceleration modules, a magnetic bunch compressor and two stages of HGHG, each consisting of a modulator, dispersive chicane and a radiator. At the entrance of the undulator section, the beam energy is 325 MeV and the peak current is about 500 A. With these parameters, the STARS FEL reaches saturation with a peak power of 100-350 MW. A superradiant mode is also foreseen which boosts the radiation power to the GW-level. Due to nonlinear harmonic generation (NHG), free electron lasers also radiate coherently at higher harmonics of the FEL resonant frequency. STARS can hence extend its output range to even shorter wavelengths. This paper presents studies of the STARS harmonic content in the wavelength range of 6-20 nm. Seeding with high harmonic generation pulses at 32 nm is also discussed.

  6. Short wavelength FELs using the SLAC linac

    SciTech Connect

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops.

  7. Staged energy cascades for the LUX FEL

    SciTech Connect

    Penn, G.

    2004-07-27

    Designs and simulation studies for harmonic cascades, consisting of multiple stages of harmonic generation in free electron lasers (FELs), are presented as part of the LUX R&D project to design ultrafast, high photon energy light sources for basic science. Beam energies of 1.1, 2.1, and 3.1 GeV, corresponding to each pass through a recirculating linac, have independent designs for the harmonic cascade. Simulations were performed using the GENESIS FEL code, to obtain predictions for the performance of these cascades over a wide range of photon energies in terms of the peak power and laser profile. The output laser beam consists of photon energies of up to 1 keV, with durations of the order of 200 fs or shorter. The contribution of shot noise to the laser output is minimal, however fluctuations in the laser and electron beam properties can lead to variations in the FEL output. The sensitivity of the cascade to electron beam properties and misalignments is studied, taking advantage of the fact that GENESIS is a fully 3-dimensional code.

  8. A proposed visible FEL Facility at Boeing

    SciTech Connect

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  9. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  10. FEL Trajectory Analysis for the VISA Experiment

    SciTech Connect

    Nuhn, Heinz-Dieter

    1998-10-06

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, and post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.

  11. Computer modelling of statistical properties of SASE FEL radiation

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-06-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY.

  12. Start-Up of FEL Oscillator from Shot Noise

    SciTech Connect

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-25

    In free-electron laser (FEL) oscillators, as inself-amplified spontaneous emission (SASE) FELs, the buildup of cavitypower starts from shot noise resulting from the discreteness ofelectronic charge. It is important to do the start-up analysis for thebuild-up of cavity power in order to fix the macropulse width from theelectron accelerator such that the system reaches saturation. In thispaper, we use the time-dependent simulation code GINGER [1]toperformthis analysis. We present results of this analysis for theparameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2]beingbuilt atRRCAT.

  13. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    SciTech Connect

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander; Sheffield, Richard L.

    2015-05-04

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of the different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.

  14. A pure permanent magnet-two plane focusing-tapered wiggler for a high average power FEL

    SciTech Connect

    Fortgang, C.M.

    1996-11-01

    A high-average power FEL is under construction at Los Alamos. The FEL will have aspects of both an oscillator and a SASE (self-amplified spontaneous emission) device. That is, a high-gain and high- extraction efficiency wiggler will be used with a very low-Q optical resonator. FEL simulations reveal that a tapered wiggler with two- plane focusing is required to obtain desired performance. The wiggler is comprised of a I meter long untapered section followed by a 1 meter tapered section. The taper is achieved with the magnetic gap and not the wiggler period which is constant at 2 cm. The gap is tapered from 5.9 mm to 8.8 mm. The, gap, rather than the period, is tapered to avoid vignetting of the 16 {mu}m optical beam. Two-plane focusing is necessary to maintain high current density and thus high gain through out the 2 meter long wiggler. Several magnetic designs have been considered for the wiggler. The leading candidate approach is a pure permanent wiggler with pole faces that are cut to roughly approximate the classical parabolic pole face design. Focusing is provided by the sextupole component of the wiggler magnetic field and is often called ``natural`` or ``betatron`` focusing. Details of the design will be presented.

  15. Design Studies for a High-Repetition-Rate FEL Facility at LBNL.

    SciTech Connect

    CORLETT, J.; BELKACEM, A.; BYRD, J. M.; FAWLEY, W.; KIRZ, J.; LIDIA, S.; MCCURDY, W.; PADMORE, H.; PENN, G.; POGORELOV, I.; QIANG, J.; ROBIN, D.; SANNIBALE, F.; SCHOENLEIN, R.; STAPLES, J.; STEIER, C.; VENTURINI, M.; WAN, W.; WILCOX, R.; ZHOLENTS, A.

    2007-10-04

    Lawrence Berkeley National Laboratory (LBNL) is working to address the needs of the primary scientific Grand Challenges now being considered by the U.S. Department of Energy, Office of Basic Energy Sciences: we are exploring scientific discovery opportunities, and new areas of science, to be unlocked with the use of advanced photon sources. A partnership of several divisions at LBNL is working to define the science and instruments needed in the future. To meet these needs, we propose a seeded, high-repetition-rate, free-electron laser (FEL) facility. Temporally and spatially coherent photon pulses, of controlled duration ranging from picosecond to sub-femtosecond, are within reach in the vacuum ultraviolet (VUV) to soft X-ray regime, and LBNL is developing critical accelerator physics and technologies toward this goal. We envision a facility with an array of FELs, each independently configurable and tunable, providing a range of photon-beam properties with high average and peak flux and brightness.

  16. Where Would Economics Education Be without Rendigs Fels?

    ERIC Educational Resources Information Center

    Siegfried, John J.; And Others

    1994-01-01

    Discusses the career of Rendigs Fels from his first academic appointment in 1948 until the present. Concludes that Fels is one of a small number of respected economists who have made interest, involvement, and research in the teaching of economics an important and respectable part of the profession. (CFR)

  17. Facts of Environmental Life (FEL): A Projective Counseling Technique.

    ERIC Educational Resources Information Center

    Golden, James R.; Parker, Joseph P.

    This paper presents the Facts of Environmental Life (FEL), a counseling technique which incorporates the action sociogram and the Adlerian concept of purposeful behavior. The use of the FEL materials, i.e., a life space board, standing figures of varying sizes, and blocks and barricades representing emotional blocks, is illustrated. Instructions…

  18. Proposed uv-FEL user facility at BNL

    SciTech Connect

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750{Angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs.

  19. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  20. High harmonic generation in undulators for FEL

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.

    2016-02-01

    The analytical study of the undulator radiation (UR), accounting for major sources of the spectral line broadening is presented. Analytical expressions for the UR spectrum and intensity are obtained. They demonstrate possibilities of the compensation of the divergency by the constant magnetic component. Some examples of single and double frequency undulators are considered. Generation of harmonics is studied with account for homogeneous and inhomogeneous broadening in real devices. The obtained results with account for all broadening sources are applied for evaluation of free electron laser (FEL) performance and compared with those, obtained with the ideal undulator.

  1. Gain results for low voltage FEL

    SciTech Connect

    Shaw, A.; Stuart, R.A.; Al-Shamma`a, A.

    1995-12-31

    We have designed and constructed a low voltage (130 kV) FEL system capable of operating in the microwave frequency range for which the electron beam current is cw (rather than pulsed) in time at a level of {approximately} 12 mA. The gain of this system has been measured as a function of the electron beam accelerating voltage and current level, and the input microwave frequency (8-10 GHz). The results are compared with the predictions of a simple theoretical model.

  2. Feedback Requirements for SASE-FELs

    SciTech Connect

    Loos, Henrik; /SLAC

    2012-07-06

    The operation of a Self Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) at soft and hard X-ray wavelengths driven by a high brightness electron beam imposes strong requirements on the stability of the accelerator and feedback systems are necessary to both guarantee saturation of the SASE process as well as a stable photon beam for user experiments. Diagnostics for the relevant transverse and longitudinal beam parameters are presented and various examples of feedback systems for bunches with low repetition rate as well as systems for intra bunch train feedbacks are discussed.

  3. Diagnostics for the CEBAF FEL Injector

    NASA Astrophysics Data System (ADS)

    Kehne, D.; Engwall, D.; Jordan, K.; Benson, S.; Bohn, C.; Cardman, L.; Douglas, D.; Happek, U.; Krafft, G. A.; Neil, G.; Sinclair, C.

    1996-04-01

    A test stand for the 10 MeV, 5 mA average current injector for the CEBAF FEL is currently under construction. The injector tests will progress through two phases. The first phase will be devoted to characterizing the gun transverse and longitudinal emittance performance as a function of bunch charge, beam size, and energy. The goal of the second phase is to achieve the nominal requirements of the 10 MeV injector, including bunch length, emittance, charge per bunch, and energy stability. This paper summarizes the diagnostics planned to be used in these experiments.

  4. Method for separating FEL output beams from long wavelength radiation

    DOEpatents

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  5. Transverse-coherence properties of the FEL at the LCLS

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; Ocko, Samuel A.; /MIT, Cambridge, Dept. Phys.

    2010-09-02

    The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.

  6. FEL gain optimisation and spontaneous radiation

    SciTech Connect

    Bali, L.M.; Srivastava, A.; Pandya, T.P.

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  7. The GALAXIE all-optical FEL project

    SciTech Connect

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  8. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in-use FEL for certain in-use vehicles, subject to the provisions of this section. Note that § 1037... intended to address circumstances in which it is in the public interest to apply a higher in-use FEL based... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's...

  9. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FEL based on forfeiting an appropriate number of emission credits. (b) FELs. When applying... forfeit CO2 emission credits based on the difference between the in-use FEL and the otherwise...

  10. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FEL based on forfeiting an appropriate number of emission credits. (b) FELs. When applying... forfeit CO2 emission credits based on the difference between the in-use FEL and the otherwise...

  11. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in-use FEL for certain in-use vehicles, subject to the provisions of this section. Note that § 1037... intended to address circumstances in which it is in the public interest to apply a higher in-use FEL based... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's...

  12. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in-use FEL for certain in-use vehicles, subject to the provisions of this section. Note that § 1037... intended to address circumstances in which it is in the public interest to apply a higher in-use FEL based... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's...

  13. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FEL based on forfeiting an appropriate number of emission credits. (b) FELs. When applying... forfeit CO2 emission credits based on the difference between the in-use FEL and the otherwise...

  14. Optics-free x-ray FEL oscillator

    SciTech Connect

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  15. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  16. Optimization of high average power FEL beam for EUV lithography

    NASA Astrophysics Data System (ADS)

    Endo, Akira

    2015-05-01

    Extreme Ultraviolet Lithography (EUVL) is entering into high volume manufacturing (HVM) stage, with high average power (250W) EUV source from laser produced plasma at 13.5nm. Semiconductor industry road map indicates a scaling of the source technology more than 1kW average power by high repetition rate FEL. This paper discusses on the lowest risk approach to construct a prototype based on superconducting linac and normal conducting undulator, to demonstrate a high average power 13.5nm FEL equipped with optimized optical components and solid state lasers, to study FEL application in EUV lithography.

  17. CEBAF UV/IR FEL subsystem testing and validation program

    SciTech Connect

    G.R. Neil; S.V. Benson; H.F. Dylla; H. Liu

    1995-01-01

    A design has been established for IR and UV FELs within the Laser Processing Consortium's (LPC) program for development and application of high-average-power FELs for materials processing. Hardware prototyping and testing for the IR portion of the system are underway. The driver portion has been designed based on the superconducting radio-frequency (SRF) technology now seeing large-scale application in the commissioning of CEBAF, the Continuous Electron Beam Accelerator Facility, where LPC activities are centered. As of July 1994, measurements of beam performance confirm SRF's benefits in beam quality and stability, which are applicable to high-average-power FELs.

  18. High-power FEL design issues - a critical review

    SciTech Connect

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G.

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  19. Where do we stand with high gain FEL simulations?

    NASA Astrophysics Data System (ADS)

    Travish, Gil

    1997-06-01

    Computer technology improvements have allowed for more complete and detailed free electron laser simulations, yet the demands of the large number of new experiments and proposed projects has outpaced the capability and availability of present codes. This paper, based on a talk given at the conference of these proceedings, presents a brief assessment of Free Electron Laser (FEL) codes, their availability and features, as well as some opinions on what direction the FEL code community should take for the near future. The discussion of FEL codes is restricted here to ones for high gain amplifiers: no codes for oscillators, waveguides or exotic configurations are considered.

  20. Characterization of an 800 nm SASE FEL at Saturation

    SciTech Connect

    Nuhn, Heinz-Dieter

    2002-11-13

    VISA (Visible to Infrared SASE Amplifier) is an FEL (Free Electron Laser) designed to saturate at a radiation wavelength of 800 nm within a 4-m long, strong focusing undulator. Large gain is achieved by driving the FEL with the 72 MeV, high brightness beam of BNL's Accelerator Test Facility (ATF). We present measurements that demonstrate saturation in addition to the frequency spectrum of the FEL radiation. Energy, gain length and spectral characteristics are compared and shown to agree with simulation and theoretical predictions.

  1. Los Alamos National Laboratory

    SciTech Connect

    Dogliani, Harold O

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  2. Stochastic Temporal Properties of the SASE FEL

    SciTech Connect

    Krinsky, S.

    2009-08-23

    We review the statistical description of the chaotic time evolution of the radiation from a self-amplified spontaneous-emission free-electron laser in the linear region before saturation. A high-gain, self-amplified spontaneous-emission (SASE) free-electron laser (FEL) [1, 2], based on modern beam technology, has the advantage of operating without a resonator and hence is capable of generating coherent radiation with wavelength down to the x-ray region. The LCLS at SLAC has recently achieved high gain and saturation at 1.5 {angstrom} [3]. A review of SASE theory can be found in ref. [4]. In this paper, we have considered the linear regime before saturation. In the nonlinear saturation regime, SASE is no longer a Gaussian process and analytic treatment is very difficult. A valuable numerical simulation analysis of the statistical behavior in the nonlinear regime can be found in ref. [10,11].

  3. The Jefferson lab FEL driver ERLs

    SciTech Connect

    Douglas, David R.; Tennant, Christopher D.

    2013-11-01

    Jefferson Lab has - for over a decade - been operating high power IR and UV FELs using CW energy recovering linacs based on DC photocathode electron sources and CEBAF SRF technology. These machines have unique combinations of beam quality, power, and operational flexibility, and thus offer significant opportunity for experiments that use low and medium energy (several tens - few hundreds of MeV) electron beams. We will describe the systems and detail their present and near-term (potential) performance. Recent internal-target analysis and validation testing will be discussed, and schemes for single- and two-pass fixed target operation described. An introduction to subsequent discussions of beam quality and upgrade paths to polarized operation/higher energy will be given.

  4. Optical modeling of the Jefferson Laboratory IR demo FEL

    NASA Astrophysics Data System (ADS)

    Neil, George R.; Benson, Stephen V.; Shinn, Michelle D.; Davidson, Paul C.; Kloeppel, Peter K.

    1997-05-01

    The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The accelerator system for this IR demo includes a 10 MeV photocathode-based injector, a 32 MeV CEBAF-style superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of picosecond pulses at 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been modeled using the GLADR code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distortion for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed.

  5. Optical modeling of the Jefferson Lab IR Demo FEL

    SciTech Connect

    G. Neil; S. Benson; Michelle D. Shinn; P. Davidson; P. Kloppel

    1997-01-01

    The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of pecosecond pulses at a 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been mode led using the GLAD code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distorium for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed.

  6. NATIONAL HIGH MAGENTIC FIELD LABORATORY FEL INJECTOR DESIGN CONSIDERATION

    SciTech Connect

    Pavel Evtushenko; Stephen Benson; David Douglas; George Neil

    2007-06-25

    A Numerical study of beam dynamics was performed for two injector systems for the proposed National High Magnetic Field Laboratory at the Florida State University (FSU) Free Electron Laser (FEL) facility. The first considered a system consisting of a thermionic DC gun, two buncher cavities operated at 260 MHz and 1.3 GHz and two TESLA type cavities, and is very similar to the injector of the ELBE Radiation Source. The second system we studied uses a DC photogun (a copy of JLab FEL electron gun), one buncher cavity operated at 1.3 GHz and two TESLA type cavities. The study is based on PARMELA simulations and takes into account operational experience of both the JLab FEL and the Radiation Source ELBE. The simulations predict the second system will have a much smaller longitudinal emittance. For this reason the DC photo gun based injector is preferred for the proposed FSU FEL facility.

  7. Proposed UV-FEL user facility at BNL

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, I.; Dimauro, L. F.; Krinsky, S.; White, M. G.; Yu, L. H.

    1990-11-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 1000 A. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL consists of an exponential growth section followed by a tapered section. The amplifier input is a harmonic of a tunable visible laser generated either by nonlinear optical material or the non-linearity of the FEL itself. The FEL output in 10(exp -4) bandwidth is 1 mJ per pulse, resulting in an average power of 10 watts. The availability of radiation with these characteristics would open up new opportunities in photochemistry, biology and non linear optics, as discussed in a recent workshop held at BNL.

  8. Proposed UV-FEL user facility at BNL

    SciTech Connect

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.

    1990-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 1000{angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL consists of an exponential growth section followed by a tapered section. The amplifier input is a harmonic of a tunable visible laser generated either by nonlinear optical material or the non-linearity of the FEL itself. The FEL output in 10{sup {minus}4} bandwidth is 1 mJ per pulse, resulting in an average power of 10 watts. The availability of radiation with these characteristics would open up new opportunities in photochemistry, biology and non linear optics, as discussed in a recent workshop held at BNL. 10 refs., 4 figs., 1 tab.

  9. Optical properties of infrared FELs from the FELI Facility II

    SciTech Connect

    Saeki, K.; Okuma, S.; Oshita, E.

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  10. Results of the VISA SASE FEL Experiment at 840 nm

    SciTech Connect

    Murokh, A.

    2004-01-20

    VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission FEL, which achieved saturation at 840 nm within a single-pass 4-m undulator. A gain length shorter than 18 cm has been obtained, yielding the gain of 2 x 10{sup 8} at saturation. The FEL performance, including spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. The results are compared to 3-D SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL system. Detailed agreement between simulations and experimental results is obtained over the wide range of the electron beam parameters.

  11. Results of the VISA SASE FEL experiment at 840 nm

    NASA Astrophysics Data System (ADS)

    Murokh, A.; Agustsson, R.; Babzien, M.; Ben-Zvi, I.; Bertolini, L.; van Bibber, K.; Carr, R.; Cornacchia, M.; Frigola, P.; Hill, J.; Johnson, E.; Klaisner, L.; Le Sage, G.; Libkind, M.; Malone, R.; Nuhn, H.-D.; Pellegrini, C.; Reiche, S.; Rakowsky, G.; Rosenzweig, J.; Ruland, R.; Skaritka, J.; Toor, A.; Tremaine, A.; Wang, X.; Yakimenko, V.

    2003-07-01

    VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission FEL, which achieved saturation at 840 nm within a single-pass 4-m undulator. A gain length shorter than 18 cm has been obtained, yielding the gain of 2×10 8 at saturation. The FEL performance, including spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. The results are compared to 3-D SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL system. Detailed agreement between simulations and experimental results is obtained over the wide range of the electron beam parameters.

  12. The performance of the Duke FEL storage ring

    SciTech Connect

    Wu, Y.; Burnham, B.; Litvinenko, V.N.

    1995-12-31

    The commissioning of the Duke FEL storage ring has been completed. During commissioning, we have conducted a series of performance measurements on the storage ring lattice and the electron beam parameters. In this paper, we will discuss the techniques used in the measurements, present measurement results, and compare the measured parameters with the design specifications. In addition, we will present the expected OK-4 FEL performance based on the measured beam parameters.

  13. Los Alamos National Laboratory Overview

    SciTech Connect

    Neu, Mary

    2010-06-02

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  14. Study of waveguide resonators for FEL operating at submillimeter wavelengths

    SciTech Connect

    Yakover, I.M.; Pinhasi, Y.; Gover, A.

    1995-12-31

    This paper presents theoretical results of waveguide resonator study for FEL operating at the submillimeter wavelength region. Because of increased ohmic losses it is harder to obtain high Q waveguide cavities at these wavelengths. The following unconventional multimode waveguides: metal-dielectric, corrugated and curved parallel plates, were considered. The type and structure of the operating modes were determined and their attenuation constant, effective mode area and wave impedance were calculated. On the basis of this analysis small-signal gain simulations were made. We have performed a parametric study of the various FEL oscillator cavity designs based on the parameters of the Israeli Tandem FEL experiment. It was found that an FEL utilizing unconventional waveguides has much better performance in comparison to an FEL based on conventional multimode rectangular and circular waveguides. In particular, promising design parameters for a sub-mm wavelength FEL utilizing a metal-dielectric waveguide were identified: gain of 45%/Amp and ohmic losses of 2% at frequency 300 GHz, and gain of 20%/Amp and ohmic losses 1% at frequency 675 GHz.

  15. Photon Source Capabilities of the Jefferson Lab FEL

    SciTech Connect

    Benson, S. V.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.

    2013-03-22

    Jefferson Lab operates a superconducting energy recovered linac which is operated with CW RF and which powers oscillator-based IR and UV Free Electron Lasers (FELs) with diffraction limited sub-picosecond pulses with >10{sup 13} photons per pulse (1.0%BW) at pulse repetition frequencies up to 75 MHz. Useful harmonics extend into the vacuum ultraviolet (VUV). Based on FEL model calculations validated using this facility, we have designed both an oscillator-based VUV-FEL that would produce 6 10{sup12} coherent (0.5% BW) 100 eV photons per pulse at multi-MHz repetition rates in the fundamental, and a dual FEL configuration that would allow simultaneous lasing lasing at THz and UV wavelengths. The VUV-FEL would utilize a novel high gain, low Q cavity, while the THz source would be an FEL oscillator with a short wiggler providing diffraction limited pulses with pulse energy exceeding 50 microJoules. The THz source would use the exhaust beam from a UVFEL. Such multiphoton capabilities would provide unique opportunities for out of equilibrium dynamical studies at time-scales down to 50 fs. The fully coherent nature of all these sources results in peak and average brightness values that are many orders of magnitude higher than storage rings. We acknowledge support from the Commonwealth of Virginia. Jefferson Lab is supported by the U.S. DOE under Contract No. DE-AC05-84-ER40150.

  16. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-08-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed in [1] and named two-stage SASE FEL. The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator could be realized using Bragg reflections from crystals. Proposed scheme of monochromator is illustrated for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is defined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are by three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  17. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-12-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed by Feldhaus et al. (Opt. Commun. 140 (1997) 341) and named "two-stage SASE FEL". The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator can be realized using Bragg reflections from crystals. We propose a scheme of monochromator with a bandwidth of 20 meV for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is determined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  18. Description of FEL3D: A three dimensional simulation code for TOK and FEL

    SciTech Connect

    Dutt, S.; Friedman, A.; Gover, A.

    1988-10-20

    FEL3D is a three dimensional simulation code, written for the purpose of calculating the parameters of coherent radiation emitted by electrons in an undulator. The program was written predominantly for simulating the coherent super-radiant harmonic frequency emission of electrons which are being bunched by an external laser beam while propagating in an undulator magnet. This super-radiant emission is to be studied in the TOK (transverse optical klystron) experiment, which is under construction in the NSLS department at Brookhaven National Laboratory. The program can also calculate the stimulated emission radiometric properties of a free electron laser (FEL) taking into account three dimensional effects. While this application is presently limited to the small gain operation regime of FEL's, extension to the high gain regime is expected to be relatively easy. The code is based on a semi-analytical concept. Instead of a full numerical solution of the Maxwell-Lorentz equations, the trajectories of the electron in the wiggler field are calculated analytically, and the radiation fields are expanded in terms of free space eigen-modes. This approach permits efficient computation, with a computation time of about 0.1 sec/electron on the BNL IBM 3090. The code reflects the important three dimensional features of the electron beam, the modulating laser beam, and the emitted radiation field. The statistical approach is based on averaging over the electron initial conditions according to a given distribution function in phase space, rather than via Monte-Carlo simulation. The present version of the program is written for uniform periodic wiggler field, but extension to nonuniform fields is straightforward. 4 figs., 5 tabs.

  19. An induction linac developed for FEL application

    NASA Astrophysics Data System (ADS)

    de Mascureau, J.; Anthouard, Ph.; Bardy, J.; Eyharts, Ph.; Eyl, P.; Launspach, J.; Thevenot, M.; Villate, D.

    1992-07-01

    An induction linac is being studied and built at CESTA for FEL application. At first we studied the induction technology and namely the high-voltage (HV) generators and the induction cells. A HV generator designed to feed the cells with calibrated pulses (150 kV, 50 ns, δV/V < 1%) has been built using a resonant charging system and magnetic switches. This generator is planned for kHz repetition-rate operation. A prototype induction cell has also been built and tested with a cable generator. An electron injector (1.5 MeV, 1.5kA) has been designed and is now under test: it uses ten induction cells and a thermionic dispenser cathode. Numerical codes have been developed and simulations have been compared with experimental results for HV generators, induction cells, and the injector. An induction accelerating module has been studied and we plan to have the accelerator working at 3 MeV in 1992.

  20. Electron Beam Diagnostics Of The JLAB UV FEL

    SciTech Connect

    Evtushenko, Pavel; Benson, Stephen; Biallas, George; Coleman, James; Dickover, Cody; Douglas, David; Marchlik, Matthew; Sexton, Daniel; Tennant, Christopher

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.

  1. 77 FR 75660 - Agency Information Collection Activities; Proposed Collection; Comments Requested: FEL Out-of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... Collection; Comments Requested: FEL Out-of-Business Records ACTION: 30-day notice. The Department of Justice...: FEL Out of Business Records. (3) Form Number: None. Bureau of Alcohol, Tobacco, Firearms...

  2. 77 FR 63340 - Agency Information Collection Activities; Proposed Collection; Comments Requested: FEL Out-of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... Collection; Comments Requested: FEL Out-of-Business Records ACTION: 60-Day Notice. The Department of Justice... Information Collection: New collection. (2) Title of the Form/Collection: FEL Out-of-Business Records....

  3. Temporal characterization of the Stanford Mid-IR FEL by frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-02-01

    We measure the time-dependent intensity and phase of laser pulses from the Stanford Mid-IR FEL. We present the first measurements of near-transform-limited, linearly chirped, and sideband modulated FEL pulses.

  4. Seeded quantum FEL at 478 keV

    SciTech Connect

    Guenther, M. M.; Jentschel, M.; Thirolf, P. G.; Seggebrock, T.; Habs, D.

    2012-07-09

    We present for the first time the concept of a seeded {gamma} quantum Free-Electron-Laser (QFEL) at 478 keV, which has very different properties compared to a classical. The basic concept is to produce a highly brilliant {gamma} beam via SASE. To produce highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of such a {gamma} beam are novel refractive {gamma}-lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. The energy of the {gamma} beam is 478 keV, corresponding to a wavelength in the sub-Angstrom regime (1/38 A). To realize a coherent {gamma} beam at 478 keV, it is necessary to use a quantum FEL design. At such high radiation energies a classical description of the {gamma}-FEL becomes wrong.

  5. Effect of free electron laser (FEL) irradiation on tooth dentine

    NASA Astrophysics Data System (ADS)

    Ogino, Seiji; Awazu, Kunio; Tomimasu, Takio

    1996-12-01

    Free electron laser (FEL) gives high efficiency for the photo-induced effects when the laser is tuned to the absorption maximum of target materials. The effect on dentine was investigated using the FEL tuned to 9.4 micrometers , which is an absorption maximum of phosphoric acid in infrared region. As a result, irradiated dentine surface which was amorphous had changed to the recrystalized structure by the spectroscopic analysis of IR absorption and x-ray diffraction. Furthermore, the atomic ratio of P/Ca had reduced from 0.65 to 0.60. These results indicated that 9.4micrometers -FEL irradiation caused the selective ablation of phosphoric acid ion and the reconstruction of disordered atoms.

  6. A high-average-power FEL for industrial applications

    SciTech Connect

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability and pulse structure. 4 refs., 3 figs., 2 tabs.

  7. FERMI@Elettra FEL Design Technical Optimization Final Report

    SciTech Connect

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno,Giovanni; Graves, William

    2006-07-31

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI{at}ELETTRA project. The FERMI{at}ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn.

  8. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  9. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  10. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  11. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  12. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  13. Undulators for the BESSY SASE-FEL Project

    SciTech Connect

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Kuske, B.; Meseck, A.; Scheer, M.

    2004-05-12

    BESSY plans to build a SASE-FEL facility for the energy range from 20 eV to 1000 eV. The energy range will be covered by three APPLE II type undulators with a magnetic length of about 60 m each. This paper summarizes the basic parameters of the FEL-undulators. The magnetic design will be presented. A modified APPLE II design will be discussed which provides higher fields at the expense of reduced horizontal access. GENESIS simulations give an estimate on the tolerances for the beam wander and for gap errors.

  14. Beam transport design for a recirculating-linac FEL driver

    SciTech Connect

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-07-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed.

  15. Quasi-isochronous storage ring for enhanced FEL performance

    SciTech Connect

    Ohgaki, H.; Robin, D.; Yamazaki, Y.

    1995-08-01

    A compact storage ring is designed to be used as a driver for an FEL. This ring can be operated very close to zero momentum compaction factor ({alpha}) to increase the electron density and thus the gain of the FEL. In order to control {alpha} with zero dispersion in the straight sections the authors use an inverted dipole located between the bending magnets and 4-families of quadrupoles. By using 3-families of sextupoles they can control the 2 transverse chromaticities and 2nd order momentum compaction. They find that the ring has sufficient dynamic aperture for good performance.

  16. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    SciTech Connect

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  17. A Parameter Optimization for a National SASE FEL Facility

    SciTech Connect

    Yavas, O.; Yigit, S.

    2007-04-23

    The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.

  18. Resonance hard radiation in a gas-loaded FEL

    SciTech Connect

    Gevorgian, L.A.

    1995-12-31

    The process of induced radiation under the condition when the relativistic beam oscillation frequency coincides with the plasma frequency of the FEL filling gas, is investigated. Such a resonance results in a giant enhancement of interaction between electrons and photons providing high gain in the hard FEL frequency region. Meanwhile the spectralwidth of the spontaneous radiation is broadened significantly. A method is proposed for maintaining the synchronism between the electron oscillation frequency and the medium plasma frequency, enabling to transform the electron energy into hard radiation with high efficiency.

  19. The Mark III IR FEL: Improvements in performance and operation

    SciTech Connect

    Barnett, G.A.; Madey, J.M.J.; Straub, K.D.

    1995-12-31

    The Mark III IR FEL has been upgraded by the installation of a new thermionic microwave gun. The new gun yields a reduced emittance and allows operation at a higher repetition rate and an increased electron macropulse length. The RF system of the Mark III has also been phase-locked to the RF systemof the adjacent storage ring driver for the laboratory`s short-wavelength FEL sources, making possible two-color UV-IR pump probe experiments. In this paper, the design and performance of the new gun are presented and the implications of the improvements investigated.

  20. Progress in the injector for FEL at CIAE

    SciTech Connect

    Tianlu Yang; Wenzhen Zhou; Shinian Fu

    1995-12-31

    An intense current RF-linac for the far-infrared FEL is now under construction at CIAE. The normalized brightness of 3.4 x 10{sup 9} A/(m-rad) was obtained from the injector of the linac. An acceleration section with 9 cells will be connected with the injector to provide an electron beam for the 200 {mu}m FEL oscillator. In this paper, the late results from the injector beam test will be reported. The physical design and research progress in the acceleration section, beam transport, undulator as well as optical cavity will be introduced respectively.

  1. A Test of Superradiance in an FEL Experiment

    SciTech Connect

    Boyce, R

    2004-12-14

    We describe the design of an FEL Amplifier Test Experiment (FATE)1 to demonstrate the superradiant short bunch regime of a Free Electron Laser in the 1-3 {micro}m wavelength range starting from noise. The relevance to the LCLS X-ray FEL [1] proposal is discussed and numerical simulations are shown. It is numerically demonstrated for the first time with the 2-D code GINGER, that clean-up of noise in the superradiant regime occurs even at low power levels.

  2. INITIAL GAIN MEASUREMENTS OF A 800 NM SASE FEL, VISA.

    SciTech Connect

    FRIGOLA,P.; MUROKH,A.; ET AL; BABZIEN,M.; BEN-ZVI,I.; JOHNSON,E.; MALONE,R.

    2000-08-13

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  3. Initial Gain Measurements of a 800nm SASE FEL, VISA

    SciTech Connect

    Carr, Roger

    2002-08-14

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  4. Initial Gain Measurements of a 800nmm SASE FEL, VISA

    NASA Astrophysics Data System (ADS)

    Tremaine, A.; Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.

    2002-08-01

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focussing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50mm. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  5. Initial gain measurements of an 800 nm SASE FEL, VISA

    NASA Astrophysics Data System (ADS)

    Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.; Reiche, S.; Rosenzweig, J.; Tremaine, A.; Babzien, M.; Ben-Zvi, I.; Johnson, E.; Malone, R.; Rakowsky, G.; Skaritka, J.; Wang, X. J.; Van Bibber, K. A.; Bertolini, L.; Hill, J. M.; Le Sage, G. P.; Libkind, M.; Toor, A.; Carr, R.; Cornacchia, M.; Klaisner, L.; Nuhn, H.-D.; Ruland, R.; Nguyen, D. C.

    2001-12-01

    The Visible to Infrared SASE Amplifier (VISA) FEL is designed to obtain high gain at a radiation wavelength of 800 nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72 MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6 mm and a period of 1.8 cm. To obtain large gain the beam and undulator axis have to be aligned to better than 5 μm. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  6. RFQ development at Los Alamos

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Stokes, R.H.

    1982-01-01

    The basic principles of the radio-frequency quadrupole (RFQ) linac are reviewed and a summary of past and present Los Alamos work is presented. Some beam-dynamics effects, important for RFQ design, are discussed. A design example is shown for xenon and a brief discussion of low-frequency RFQ structures is given.

  7. Application of the green function formalism to nonlinear evolution of the low gain FEL oscillator

    SciTech Connect

    Shvets, G.; Wurtele, J.S.; Gardent, D.

    1995-12-31

    A matrix formalism for the optical pulse evolution in the frequency domain, is applied to the nonlinear regime of operation. The formalism was previously developed for studies of the linear evolution of the low-gain FEL oscillator with an arbitrary shape of the electron beam. By varying experimentally controllable parameters, such as cavity detunning and cavity losses, different regimes of operation of the FEL oscillator, such as a steady state saturation and limit cycle saturation, are studied numerically. It is demonstrated that the linear supermodes, numerically obtained from the matrix formalism, provide an appropriate framework for analyzing the periodic change in the output power in the limit cycle regime. The frequency of this oscillation is related to the frequencies of the lowest-order linear supermodes. The response of the output radiation to periodic variation of the electron energy is studied. It is found that the response is enhanced when the frequency of the energy variation corresponds to the difference of per-pass phase advances of the lowest linear supermodes. Finally, various nonlinear models are tested to capture the steady state saturation and limit cycle variation of the EM field in the oscillator cavity.

  8. The Physics and Applications of High Brightness Beams: Working Group C Summary on Applications to FELS

    SciTech Connect

    Nuhn, Heinz-Dieter

    2003-03-19

    This is the summary of the activities in working group C, ''Application to FELs,'' which was based in the Bithia room at the Joint ICFA Advanced Accelerator and Beam Dynamics Workshop on July 1-6, 2002 in Chia Laguna, Sardinia, Italy. Working group C was small in relation to the other working groups at that workshop. Attendees include Enrica Chiadroni, University of Rome ape with an identical pulse length. ''La Sapienza'', Luca Giannessi, ENEA, Steve Lidia, LBNL, Vladimir Litvinenko, Duke University, Patrick Muggli, UCLA, Alex Murokh, UCLA, Heinz-Dieter Nuhn, SLAC, Sven Reiche, UCLA, Jamie Rosenzweig, UCLA, Claudio Pellegrini, UCLA, Susan Smith, Daresbury Laboratory, Matthew Thompson, UCLA, Alexander Varfolomeev, Russian Research Center, plus a small number of occasional visitors. The working group addressed a total of nine topics. Each topic was introduced by a presentation, which initiated a discussion of the topic during and after the presentation. The speaker of the introductory presentation facilitated the discussion. There were six topics that were treated in stand-alone sessions of working group C. In addition, there were two joint sessions, one with working group B, which included one topic, and one with working group C, which included two topics. The presentations that were given in the joint sessions are summarized in the working group summary reports for groups B and D, respectively. This summary will only discuss the topics that were addressed in the stand-alone sessions, including Start-To-End Simulations, SASE Experiment, PERSEO, ''Optics Free'' FEL Oscillators, and VISA II.

  9. Design study of a 7 kW, visible wavelength FEL

    SciTech Connect

    Chen, S.C.; Danly, B.G.; Temkin, R.J.; Wurtele, J.; Yang, B.

    1990-01-01

    The MIT Lincoln Laboratory is investigating the possibility of building a free electron laser (FEL) operating at an average power of about 7 kW at wavelengths of 500--600 nm. Additional specifications for the FEL include a bandwidth of less than 0.1 cm{sup {minus}1} and a micropulse separation of less than 10 ns. The design study has investigated the basic design parameters of the FEL including an analysis of the electron accelerator, beam line, wiggler and optical cavity. A nonlinear model of the FEL has been used to calculate the FEL gain and efficiency. The required output power appears achievable from an FEL operating at more than 1% efficiency with a conventional RF accelerator. Details of the FEL design are presented in this report which represent the final report for the year from September 1, 1989 to August 31, 1990. 28 refs., 13 figs., 5 tabs.

  10. Three-dimensional simulation of a hole-coupled FEL oscillator

    SciTech Connect

    Krishnagopal, S.; Xie, M.; Kim, K.J.; Sessler, A.

    1991-08-01

    The performance of a two-mirror resonator with holes for out-coupling has been examined in a previous study in which the FEL gain was neglected, but the geometrical effect of the wiggler aperture was included in the optical calculation. The phenomenon of mode degeneracy was found to occur, that has serious implications for the stability of performance when the FEL gain is included. We have developed a FEL oscillator code based on TDA'', a three-dimensional FEL amplifier code, to study the mode characteristics in the presence of an FEL. We find that the interaction of the radiation and the FEL has an important, and positive, impact on the mode-profile and related cavity performance parameters. In particular, mode degeneracy is not expected to be a serious problem for reasonable FEL oscillator designs. 8 refs., 4 figs., 1 tab.

  11. The physics of FEL in an infinite electron beam

    SciTech Connect

    Wang, G.; Litvinenko, V.N.; Webb, S.

    2010-10-07

    We solve linearized Vlasov-Maxwell FEL equations for a 3-D perturbation in the infinite electron beam with Lorentzian energy distributions using paraxial approximation. We present analytical solutions for various initial perturbations and discuss the effect of optical guiding in such system.

  12. Dispersion relations for 1D high-gain FELs

    SciTech Connect

    Webb, S.D.; Litvinenko, V.N.

    2010-08-23

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  13. A new cucurbitacin from Picria fel-terrae.

    PubMed

    Zou, J-M; Wang, L-S; Ma, X-M; Guo, Y-J; Shi, R-B

    2006-06-01

    A new cucurbitacin, picfeltarraenone II (1) as well as four known cucurbitacins, picfeltarraegenin I (2), picfeltarraenin IA (3), picfeltarraenin IB (4), and picfeltarraenin IV (5), have been isolated and characterized from the whole plant of Picria fel-terrae. The purity of picfeltarraenin IA has been determined by TLC and HPLC. PMID:16864449

  14. Efficiency optimization in a FEL with fields` nonadiabatic tapering

    SciTech Connect

    Goncharov, I.A.; Belyavskiy, E.D.; Silivra, A.A.

    1995-12-31

    Amplification of an electromagnetic wave in free electron lasers with a reversed guide field and right-hand polarized wiggler field is investigated both analytically and numerically. An effect of electron bunch trapping by the high frequency electromagnetic field is used for efficiency optimization. On the basis of motion stability criteria a possibility of bunches trapping by FEL parameters nonadiabatic (experimentally realizable) tapering is shown. The stability analysis of electron motion is based on Lyapunov theory for autonomy systems. A particle simulation is carried out for FEL parameters close to the experimental ones (relativistic factor {gamma}=4.75, wiggler field strength B{sub w}= 2.8 kG, guide field strength B{sub o}= -1.4 kG, operation wavelength {lambda}=6.2 mm) for the case of wiggler field tapering. Theoretically predicted rule of wiggler field tapering corresponding to FEL efficiency of 55% is approximated by stepped functions. For the experimentally realizable tapering it is found that FEL efficiency can be over 40%.

  15. Numerical simulations of x-ray generation in miltisectional FELs

    SciTech Connect

    Pitatelev, M.M.

    1995-12-31

    The process of x-ray generation in milticomponent FELs with alternate undulator and dispersion sections is investigate. The coptuter simulation was fulfilled for the ultrarelativistic electron beams. It was shown that the use of much number of dispersion sections allows to increase the gain considerably and to use more short magnetic systems.

  16. Status of the project of Novosibirsk high power FEL

    SciTech Connect

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G.

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  17. TESLA FEL Gun simulations with PARMELA and MAFIA

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Schuett, Petra

    1997-02-01

    The most recent simulation results of the DESY TESLA FEL gun are presented. Two codes are used: PARMELA and MAFIA. Since the two use different schemes in particle simulations, we will address their differences and try to give an explanation for them.

  18. Optimization Studies of the FERMI at ELETTRA FEL Design

    SciTech Connect

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.; Graves,William

    2005-08-25

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation including vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported.

  19. RFQ development at Los Alamos

    SciTech Connect

    Armstrong, D.D.; Cornelius, W.D.; Purser, F.O.; Jameson, R.A.; Wangler, T.P.

    1984-01-01

    We report recent progress on the two radio-frequency quadrupole (RFQ) structures being developed at Los Alamos. First, we report on the second 425-MHz RFQ for H/sup -/ acceleration, which is being built in a research effort to understand and further develop the RFQ. Second, we discuss progress on the 80-MHz cw RFQ for deuterons, which is being built for the Fusion Materials Irradiation Test (FMIT) facility.

  20. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    SciTech Connect

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-09-28

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab.

  1. Output characteristics of SASE-driven short wavelength FEL`s

    SciTech Connect

    Fawley, W.M.

    1997-02-01

    This paper investigates various properties of the ``microspikes`` associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with{ital P(w)} approaching a constant, asymptotic value. This is in marked contrast to the exponential gain regime where the spectrum steadily narrows, {ital P(w)} grows, and the central wavelength remains constant with {ital z}. Via use of a spectrogram diagnostic {ital S(w,t)}, it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct ``sinews`` whose widths AA remain approximately constant but whose central wavelengths can ``chirp`` by varying a small extent with {ital t}.

  2. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    SciTech Connect

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  3. Next Generation Instrumentation: LAMP -- LCLS - ASG - Michigan - Project for Novel Science with the LCLS FEL

    NASA Astrophysics Data System (ADS)

    Osipov, T.; Rolles, D.; Bostedt, C.; Castagna, J.-C.; Hartmann, R.; Bozek, J. D.; Schlichting, I.; Strüder, L.; Ullrich, J.; Berrah, N.

    2011-05-01

    We are designing and building the next generation multi-purpose instrumentation especially adapted to accommodate unique large-area, single-photon counting pnCCD detectors together with advanced many-particle ion and electron imaging spectrometers (reaction microscope, REMI; velocity map imaging, VMI; magnetic bottle) for simultaneous detection of scattered and fluorescent photons and charged particles in experiments at the LCLS FEL. The new end-station presents improvements to the existing CAMP instrument, such as extended range and flexibility of detector positioning and control, better vacuum level, more convenient sample changing procedure, better temperature control, more versatility with pump-probe laser in- and out-coupling, etc. The instrument will be available to any scientist and is planned to be commissioned in the second half of 2012. This work is funded by the DoE, Sc, BES, LCLS and Max Planck Society.

  4. Optical techniques for electron-beam characterizations on the APS SASE FEL project

    SciTech Connect

    Lumpkin, A.H.; Yang, B.X.; Berg, W.J.; White, M.; Lewellen, J.W.; Milton, S.V.

    1998-09-01

    At the Advanced Photon Source (APS) the injector linac`s DC thermionic gun is being supplemented by a low-emittance rf thermionic gun that will support the SASE FEL project. To address the anticipated smaller beam sizes, the standard Chromox beam-profiling screens are being complemented by optical transition radiation (OTR) and Ce-doped YAG single-crystal converters. Direct comparisons of the effective conversion efficiency, spatial resolution, and time response of the three converter screen types have been performed using the DC thermionic gun`s beam accelerated to 400 to 650 MeV. An apparent blurring of observed beam size with increasing incident charge areal density in the YAG crystal was observed for the first time. Only the OTR was prompt enough for the few-ps domain micropulse bunch length measurements performed with a stream camera. Initial beam images of the rf-thermionic gun beam have also been obtained.

  5. Initial results from the Los Alamos photoinjector-driven free-electron laser

    NASA Astrophysics Data System (ADS)

    O'Shea, P. G.; Bender, S. C.; Byrd, D. A.; Carlsten, B. E.; Early, J. W.; Feldman, D. W.; Feldman, R. B.; Johnson, W. J. D.; Lumpkin, A. H.; Schmitt, M. J.; Springer, R. W.; Stein, W. E.; Zaugg, T. J.

    1992-07-01

    We report initial results on the APEX (APLE prototype experiment) photoinjector-driven infrared free-electron laser (FEL). The APEX FEL is operating in support of a Boeing Aerospace and Electronics/Los Alamos National Laboratory collaboration to build the average power laser experiment (APLE). Our system uses a high quantum efficiency (3-7%) multi-alkali photocathode, illuminated with a frequency-doubled Nd:YLF mode locked laser at 21.7 MHz. The photocathode is located in this first cell of a six-cell 1.3 GHz, 6 MeV photoinjector that feeds a linac with a final energy up to 40 MeV. Because the illuminating laser pulse on our photocathode is short (10 ps), no pulse compression is required in the linac. Emittance measurements made after the second linac tank at 15 MeV have shown that a normalized emittance (for 90% of the particles) of less than 50π mm mrad can be achieved at a peak micropulse current of 300 A. Our initial lasing has been at a wavelength of 3.6 μm over a 30 μs macropulse with an electron beam energy of 35 MeV and a 2.7 cm period permanent magnet wiggler. We are continuing to characterize and optimize our system, with particular emphasis on understanding and minimizing electron beam emittance-growth mechanisms, and subsequently improving the quality of the beam delivered to the wiggler.

  6. Initial results from the Los Alamos photoinjector-driven free-electron laser

    NASA Astrophysics Data System (ADS)

    Oshea, P. G.; Bender, S. C.; Byrd, D. A.; Carlsten, B. E.; Early, J. W.; Feldman, D. W.; Feldman, R. B.; Johnson, W. J. D.; Lumpkin, A. H.; Schmitt, M. J.

    We report initial lasing results on the APEX (APLE Prototype Experiment) photoinjector-driven infrared free-electron laser (FEL). The APEX FEL is operating in supporting a Boeing Aerospace and Electronics/Los Alamos National Laboratory collaboration to build the Average Power Laser Experiment (APLE). Our system uses a high quantum efficiency (3-7 percent) multi-alkali photocathode, illuminated with a frequency-doubled Nd:YLF mode locked laser at 21.7 MHz. The photocathode is located in this first cell of a six-cell 1.3 GHz, 6 MeV photoinjector that feeds a linac with a final energy of up to 40 MeV. Because the illuminating laser pulse on our photocathode is short (10 ps), no pulse compression is required in the linac. Emittance measurements made after the second linac tank at 15 MeV have shown that a normalized emittance (for 90 percent of the particles) of less than 50 (pi) mm-mrad can be achieved at a peak micropulse current of 300 A. Our initial lasing has been at a wavelength of 3.6 microns over a 30 micron macropulse with an electron beam energy of 35 MeV and a 2.7 cm period permanent magnet wiggler. We are continuing to characterize and optimize our system, with particular emphasis on understanding and minimizing electron beam emittance growth mechanisms, and subsequently improving the quality of the beam delivered to the wiggler.

  7. Field Encapsulation Library The FEL 2.2 User Guide

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  8. Studies of Resistive Wall Heating at JLAB FEL

    SciTech Connect

    Li, Rui; Benson, Stephen V.

    2013-06-01

    When the JLAB FEL is under CW operation, it had been observed that temperature rises over the wiggler vacuum chamber, presumably as the result of the power deposition on the resistive wall of the wiggler chamber. Previous analyses have been done on the resistive wall impedance for various cases, such as DC, AC, and anomalous skin effects*. Here we report an investigation on the beam kinetic energy losses for each of these cases. This study includes the non-ultrarelativistic effect on resistive wall loss, for both round pipe and parallel plates. We will present the comparison of our results with the measured data obtained during CW operation of the JLAB FEL. Other possible factors contributing to the measured heating will also be discussed.

  9. Progress with FEL-based coherent electron cooling

    SciTech Connect

    Litvinenko,V.; Ben-Zvi, I.; Blaskiewicz, M.; Hao, Y.; Kayran, D.; Pozdeyev, E.; Wang, G.; Bell, G.; Bruhwiler, D.; Sobol, A.; Shevchenko, O.; Vinokurov, N.A.; Derbenev, Y.; Reiche, S.

    2008-08-24

    Cooling intense high-energy hadron beams remains a major challenge for accelerator physics. Synchrotron radiation is too feeble, while efficiency of two other cooling methods falls rapidly either at high bunch intensities (i.e. stochastic cooling of protons) or at high energies (i.e. e-cooling). The possibility of coherent electron cooling, based on high-gain FEL and ERL, was presented at last FEL conference [1]. This scheme promises significant increases in luminosities of modern high-energy hadron and electron-hadron colliders, such as LHC and eRHIC. In this paper we report progress made in the past year on the development of this scheme of coherent electron cooling (CeC), results of analytical and numerical evaluation of the concept as well our prediction for LHC and RHIC. We also present layout for proof-of-principle experiment at RHIC using our R&D ERL which is under construction.

  10. FEL POTENTIAL OF THE HIGH CURRENT ERLs AT BNL.

    SciTech Connect

    KAYRAN,D.; BEN-ZVI, I.; LITVINENKO, V.; POZDEYEV, E.; MATVEENKO, A.; SHEVCHENKO, O.; VINOKUROV, N.

    2007-08-26

    An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing concepts for high-energy electron cooling and electron-ion colliders. This ERL prototype will be used as a test bed to study issues relevant for very high current ERLs. High average current and high performance of electron beam with some additional components make this ERL an excellent driver for high power far infrared Free Electron Laser (FEL). A possibility for future up-grade to a two-pass ERL is considered. We present the status and our plans for construction and commissioning of the ERL. We discus a FEL potential based on electron beam provided by BNL ERL.

  11. First lasing of the IR upgrade FEL at Jefferson lab

    SciTech Connect

    Christopher Behre; Stephen Benson; George Biallas; James Boyce; Christopher Curtis; David Douglas; H. Dylla; L. Dillon-townes; Richard Evans; Albert Grippo; Joseph Gubeli; David Hardy; John Heckman; Carlos Hernandez-Garcia; Tommy Hiatt; Kevin Jordan; Nikolitsa Merminga; George Neil; Joseph Preble; Harvey Rutt; Michelle D. Shinn; Timothy Siggins; Hiroyuki Toyokawa; David W. Waldman; Richard Walker; Neil Wilson; Byung Yunn; Shukui Zhang

    2004-08-01

    We report initial lasing results from the IR Upgrade FEL at Jefferson Lab[1]. The electron accelerator was operated with low average current beam at 80 MeV. The time structure of the beam was 120 pC bunches at 4.678 MHz with up to 750 {micro}sec pulses at 2Hz. Lasing was established over the entire wavelength range of the mirrors (5.5-6.6 {micro}m). The detuning curve length, turn-on time, and power were in agreement with modeling results assuming a 1 psec FWHM micropulse. The same model predicts over 10 kW of power output with 10 mA of beam and 10% output coupling, which is the ultimate design goal of the IR Upgrade FEL. The behavior of the laser while the dispersion section strength was varied was found to qualitatively match predictions. Initial CW lasing results also will be presented.

  12. Energy stability in a high average power FEL

    SciTech Connect

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples.

  13. Cavity-mirror degradation in the deep-UV FEL

    SciTech Connect

    Yamada, K.; Yamazaki, T.; Sei, N.

    1995-12-31

    It is known that the degradation of dielectric multilayer mirrors used in short wavelength free-electron lasers (FELs) is caused by the carbon contamination on the mirror surface and the defects inside the dielectrics. We reported last year that the degraded dielectric multilayer mirrors can be repaired with both surface treatment by RF-induced oxygen plasma and thermal annealing. However, such a mirror degradation is still one of the most critical issues in the deep ultraviolet (UV) FELs, because the fundamental undulator radiation resonating in the laser cavity, the intensity of which is much higher than that of higher harmonics, can be sufficiently energetic to cause the mirror degradation through photochemical reactions. We are investigating the mirror degradation mainly in the deep UV region down to 240 nm. The experimental results will be shown. The mirror degradation mechanism will be discussed.

  14. Beam transport for an SRF recirculating-linac FEL

    SciTech Connect

    Neuffer, D.; Douglas, D.; Li, Z.

    1995-12-31

    The beam transport system for the CEBAF UV Demo FEL includes a two-pan transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that contact we discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tuneable, nearly-isochronous, large-momentum-acceptance import systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Issues such as injection and final energies, number of passes, linac focusing effects, beam separation, chronicity management, and stability constraints are critical. Various possible designs are discussed. Particle tracking results exploring the design options are also reported.

  15. Serial snapshot crystallography for materials science with SwissFEL

    SciTech Connect

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; Tamura, Nobumichi; Pattison, Philip; Abela, Rafael; McCusker, Lynne B.

    2015-04-21

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of data can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.

  16. FEL gain calculation for imperfectly matched electron beams

    NASA Astrophysics Data System (ADS)

    Swent, R. L.; Berryman, K. W.

    1995-04-01

    We present here the details of an analytical small-signal gain calculation. The analysis builds on the basic one-dimensional analytical calculation by modeling the effects of finite electron beam size and imperfect matching of the electron beam to the wiggler. The calculation uses TRANSPORT [SLAC-91, Rev. 2 (1977)] parameters to describe the electron beam in order to easily take the output of beam transport calculations and use them as the input for FEL gain calculations. The model accepts an arbitrary TRANSPORT beam and includes the effects of energy spread, beam size, betatron oscillations, and focussing in the wiggle plane. The model has allowed us to calculate the range over which our FEL can be tuned by changing the electron energy alone (i.e., without changing any magnets).

  17. A wiggler magnet for FEL low voltage operation

    SciTech Connect

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  18. Design considerations on a high-power VUV FEL

    SciTech Connect

    Ciocci, F.; Dattoli, G.; Angelis, A. De; Garosi, F.; Giannessi, L.; Torre, A.; Faatz, B.; Ottaviani, P.L.

    1995-07-01

    The authors explore the feasibility conditions of a high-power FEL operating in the VUV region (below 100 nm) and exploiting a coupled oscillator triplicator configuration. A high quality beam from a linac is passed through a FEL oscillator and produces laser radiation at 240 nm. The same beam is extracted and then injected into a second undulator tuned at the third harmonic of the first. The bunching produced in the oscillator allows the start up of the laser signal in the second section which operates as an amplifier. The authors discuss the dynamical behavior of the system and the dependence of the output power on the characteristics of the e-beam and of the oscillator. The possibility of enhancing the output power, adding a tapered section to the second undulator, is finally analyzed.

  19. Locking Lasers to RF in an Ultra Fast FEL

    SciTech Connect

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-02

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  20. AN EXPERIMENTAL TEST OF SUPERRADIANCE IN A SINGLE PASS SEEDED FEL.

    SciTech Connect

    WATANABE, T.; LIU, D.; MURPHY, J.B.; ROSE, J.; SHAFTAN, T.; TSANG, T.; WANG, X.J.; YU, L.H.

    2005-08-21

    Superradiance and nonlinear evolution of a FEL pulse in a single-pass FEL were experimentally demonstrated at the National Synchrotron Light Source (NSLS) Source Development Laboratory (SDL). The experiment was performed using a 1.5 ps high-brightness electron beam and a 100fs Ti:Sapphire seed laser. The seed laser and electron beam interact in the 10 meter long NISUS undulator with a period of 3.89 cm. The FEL spectrum, energy and pulse length along the undulator were measured. FEL saturation was observed, and gain of more the 200 (relative to seed laser) was measured. Both FEL spectrum widening and pulse length shortening were observed; FEL pulses as short as 65 fs FWHM were measured. The superradiance and nonlinear evolution were also simulated using the numerical code GENESIS1.3 yielding good agreement with the experimental results.

  1. Proposal for a IR waveguide SASE FEL at the PEGASUS injector

    NASA Astrophysics Data System (ADS)

    Reiche, S.; Rosenzweig, J.; Telfer, S.

    2001-12-01

    Free Electron Lasers up to the visible regime are dominated by diffraction effects, resulting in a radiation size much larger than the electron beam. Thus the effective field amplitude at the location of the electron beam, driving the FEL process, is reduced. By using a waveguide, the radiation field is confined within a smaller aperture and an enhancement of the FEL performance can be expected. The PEGASUS injector at UCLA will be capable to provide the brilliance needed for an IR SASE FEL. The experiment Power Enhanced Radiation Source Experiment Using Structures (PERSEUS) is proposed to study the physics of a waveguide SASE FEL in a quasi 1D environment, where diffraction effects are strongly reduced as it is the case only for future FELs operating in the VUV and X-ray regime. The expected FEL performance is given by this presentation.

  2. Transverse Gradient Undulators and FEL operating with large energy spread

    NASA Astrophysics Data System (ADS)

    Ciocci, F.; Dattoli, G.; Sabia, E.

    2015-12-01

    Undulators exhibiting a gradient of the field in the transverse direction have been proposed to mitigate the effects of the gain dilution in Free Electron Laser devices operating with large energy spread. The actual use of the device depends on the realization of a field distribution with quasi-vanishing quadrupolar terms in the tapering directions. We analyze the effect of a Transverse Gradient Undulator on the FEL operation and critically review the possibility of an appropriate field implementation.

  3. Evolution of longitudinal modes in low voltage FEL

    SciTech Connect

    Stuart, R.A.; Al-Shamma`a, A.; Shaw, A.

    1995-12-31

    A low voltage FEL operating at 130 kV which can be run cw with a continuous electron beam current level up to 12 mA has been constructed for the X-Band microwave range (8-12 GHz). In this poster, we will report on the dependence on time, after the electron beam is switched on, of the growth and competition of those longitudinal modes in the cavity having nett gain.

  4. Simulation of waveguide FEL oscillator using RF linac

    SciTech Connect

    Kuruma, S.; Asakawa, M.; Imasaki, K.

    1995-12-31

    One dimensional multifrequency simulation code for waveguide mode FEL has been developed. Using this simulation code, we analyzed the spontaneous emission from electron micropulse from RF Linac. It is found that some parameters both high and low frequency waveguide modes are growing simultaneously, so the two radiation pulses are generated and amplified. And the experimental data for cavity length detuning of the radiation power are analyzed.

  5. Los Alamos Science: Number 16

    SciTech Connect

    Cooper, N.G.

    1988-01-01

    It was an unusually stimulating day and a half at Los Alamos when two Nobel Laureates in physiology, a leading paleontologist, and a leading bio-astrophysicist came together to discuss ''Unsolved Problems in the Science of Life,'' the topic of the second in a series of special meetings sponsored by the Fellows of the Laboratory. Just like the first one on ''Creativity in Science,'' this colloquium took us into a broader arena of ideas and viewpoints than is our usual daily fare. To contemplate the evolution and mysteries of intelligent life from the speakers' diverse points of view at one time, in one place was indeed a rare experience.

  6. Optical alignment and diagnostics for the ATF microundulator FEL oscillator

    SciTech Connect

    Babzien, M.; Ben-Zvi, I.; Fang, J.M.

    1995-12-31

    The microundulator FEL oscillator has a wiggler period of 8.8 mm, and is designed for initial lasing at 0.5 microns with a 50 MeV electron beam. The design and performance of the optical diagnostics and alignment are discussed. A HeNe coalignment laser is mode-matched to the resonator cavity for transverse alignment. Interference fringes are observed in the cavity with a pellicle, allowing an alignment tolerance of +/- 10 micro-radians. The same pellicle is used to produce transition radiation by the electron beam. This enables precise transverse alignment of the electron beam to the resonator axis. The HeNe laser is also used to align the wiggler by backlighting its bore. This method aligns the wiggler to the optic axis to a tolerance of +/- 50 microns. A frequency-doubled,pulsed Nd:YAG laser that produces the electron bunch train is also mode-matched to the FEL cavity. The cavity length is adjusted to resonate with this pulse train. Light from the FEL is transported to the diagnostic room using two separate paths: one for the single pass spontaneous emission, and the second for the multipass cavity output. Several diagnostics (CCD camera, photodiode, photomultiplier tube, joulemeter, spectrometer, and streak camera) are used to characterize the light. These instruments measure light energy per micropulse ranging from 10 femto-Joules to 10 micro-Joules.

  7. Lightning control system using high power microwave FEL

    SciTech Connect

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    1995-12-31

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightning control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.

  8. Simulation of FEL pulse length calculation with THz streaking method.

    PubMed

    Gorgisyan, I; Ischebeck, R; Prat, E; Reiche, S; Rivkin, L; Juranić, P

    2016-05-01

    Having accurate and comprehensive photon diagnostics for the X-ray pulses delivered by free-electron laser (FEL) facilities is of utmost importance. Along with various parameters of the photon beam (such as photon energy, beam intensity, etc.), the pulse length measurements are particularly useful both for the machine operators to measure the beam parameters and monitor the stability of the machine performance, and for the users carrying out pump-probe experiments at such facilities to better understand their measurement results. One of the most promising pulse length measurement techniques used for photon diagnostics is the THz streak camera which is capable of simultaneously measuring the lengths of the photon pulses and their arrival times with respect to the pump laser. This work presents simulations of a THz streak camera performance. The simulation procedure utilizes FEL pulses with two different photon energies in hard and soft X-ray regions, respectively. It recreates the energy spectra of the photoelectrons produced by the photon pulses and streaks them by a single-cycle THz pulse. Following the pulse-retrieval procedure of the THz streak camera, the lengths were calculated from the streaked spectra. To validate the pulse length calculation procedure, the precision and the accuracy of the method were estimated for streaking configuration corresponding to previously performed experiments. The obtained results show that for the discussed setup the method is capable of measuring FEL pulses with about a femtosecond accuracy and precision. PMID:27140142

  9. Influence of electron beam halos on the FEL performance

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Reiche, S.

    1999-06-01

    For single-pass free-electron lasers (FEL), such as amplifiers and SASE devices, saturation of the radiation power has to be reached within the length of the undulator. Therefore, detailed knowledge of electron beam parameters is crucial. So far, simulations have been performed with a given rms emittance and energy spread. At short radiation wavelengths, bunch compressors are used to compress the electron beam to achieve the desired high peak currents. In addition, external focusing along the entire undulator is used to maintain a constant small radius. The rotation of phase space due to compression might lead to a significant part of the bunch in tails that could increase the gain length. Furthermore, it is in general not possible to match both the beam core and the tail to the focusing structure. In this contribution, the influence of these tails, both transverse and in energy, on the FEL performance will be investigated. Simulations will be performed for beam parameters that have been assumed for the TESLA Test Facility FEL at DESY.

  10. Simulation of FEL pulse length calculation with THz streaking method

    PubMed Central

    Gorgisyan, I.; Ischebeck, R.; Prat, E.; Reiche, S.; Rivkin, L.; Juranić, P.

    2016-01-01

    Having accurate and comprehensive photon diagnostics for the X-ray pulses delivered by free-electron laser (FEL) facilities is of utmost importance. Along with various parameters of the photon beam (such as photon energy, beam intensity, etc.), the pulse length measurements are particularly useful both for the machine operators to measure the beam parameters and monitor the stability of the machine performance, and for the users carrying out pump–probe experiments at such facilities to better understand their measurement results. One of the most promising pulse length measurement techniques used for photon diagnostics is the THz streak camera which is capable of simultaneously measuring the lengths of the photon pulses and their arrival times with respect to the pump laser. This work presents simulations of a THz streak camera performance. The simulation procedure utilizes FEL pulses with two different photon energies in hard and soft X-ray regions, respectively. It recreates the energy spectra of the photoelectrons produced by the photon pulses and streaks them by a single-cycle THz pulse. Following the pulse-retrieval procedure of the THz streak camera, the lengths were calculated from the streaked spectra. To validate the pulse length calculation procedure, the precision and the accuracy of the method were estimated for streaking configuration corresponding to previously performed experiments. The obtained results show that for the discussed setup the method is capable of measuring FEL pulses with about a femtosecond accuracy and precision. PMID:27140142