Science.gov

Sample records for alamos nuclear rocket

  1. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    SciTech Connect

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.

  2. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    NASA Technical Reports Server (NTRS)

    Hynes, Michael V.

    1993-01-01

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  3. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2015-01-05

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  4. Los Alamos Novel Rocket Design Flight Tested

    SciTech Connect

    Tappan, Bryce

    2014-10-23

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  5. Nuclear rocket plume studies

    NASA Astrophysics Data System (ADS)

    Hastings, Daniel

    1993-05-01

    A description and detailed computational analysis of a vortex cleaning system designed to remove radioactive material from the plumes of nuclear rockets is included. The proposed system is designed to remove both particulates and radioactive gaseous material from the plume. A two part computational model is used to examine the system's ability to remove particulates, and the results indicate that under some conditions, the system can remove over 99% of the particles in the flow. Two critical parameters which govern the effectiveness of the system are identified and the information necessary to estimate cleaning efficiencies for particles of known sizes and densities is provided. A simple steady analytical solution is also developed to examine the system's ability to remove gaseous radioactive material. This analysis, while inconclusive, suggests that the swirl rates necessary to achieve useful efficiencies are too high to be achieved in any practical manner. Therefore, this system is probably not suitable for use, with gaseous radioactive material. It was concluded that the system can cause negligible specific impulse losses, though there may be a substantial mass penalty associated with its use.

  6. Safe testing nuclear rockets economically

    SciTech Connect

    Howe, S. D.; Travis, B. J.; Zerkle, D. K.

    2002-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the RoverMERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

  7. Gas Core Nuclear Rocket Feasibility Project

    NASA Technical Reports Server (NTRS)

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.

  8. Gas core nuclear rocket feasibility project

    SciTech Connect

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-09-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.

  9. Unique nuclear thermal rocket engine

    SciTech Connect

    Culver, D.W. ); Rochow, R. )

    1993-01-15

    Earlier this year Aerojet Propulsion Division (APD) introduced a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars. This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection (E-D) rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1)Reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2)Eliminate need for a new, uncooled nozzle throat material suitable for long life application; (3)Practical provision for reactor power control; and (4)Use near term, long life turbopumps.

  10. Unique nuclear thermal rocket engine

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Rochow Wilcox Space; Nuclear Systems, Richard

    1993-01-01

    Earlier this year Aerojet Propulsion Division (APD) introduced a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars. This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection (E-D) rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1)Reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2)Eliminate need for a new, uncooled nozzle throat material suitable for long life application; (3)Practical provision for reactor power control; and (4)Use near term, long life turbopumps.

  11. Unique nuclear thermal rocket engine

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Rochow, Richard

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps.

  12. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  13. Nuclear Thermal Rocket - An Established Space Propulsion Technology

    NASA Astrophysics Data System (ADS)

    Klein, Milton

    2004-02-01

    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  14. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael

    2009-01-01

    A detailed description of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) is presented. The contents include: 1) Design Requirements; 2) NTREES Layout; 3) Data Acquisition and Control System Schematics; 4) NTREES System Schematic; and 5) NTREES Setup.

  15. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  16. Computational modeling of nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Peery, Steven D.

    1993-01-01

    The topics are presented in viewgraph form and include the following: rocket engine transient simulation (ROCETS) system; ROCETS performance simulations composed of integrated component models; ROCETS system architecture significant features; ROCETS engineering nuclear thermal rocket (NTR) modules; ROCETS system easily adapts Fortran engineering modules; ROCETS NTR reactor module; ROCETS NTR turbomachinery module; detailed reactor analysis; predicted reactor power profiles; turbine bypass impact on system; and ROCETS NTR engine simulation summary.

  17. Nuclear Forensics at Los Alamos National Laboratory

    SciTech Connect

    Podlesak, David W; Steiner, Robert E.; Burns, Carol J.; LaMont, Stephen P.; Tandon, Lav

    2012-08-09

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  18. History of the Development of NERVA Nuclear Rocket Engine Technology

    SciTech Connect

    David L. Black

    2000-06-04

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably.

  19. Development of nuclear rocket engine technology

    SciTech Connect

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs.

  20. Dual mode nuclear rocket system applications.

    NASA Technical Reports Server (NTRS)

    Boretz, J. E.; Bell, J. M.; Plebuch, R. K.; Priest, C. C.

    1972-01-01

    Mission areas where the dual-mode nuclear rocket system is superior to nondual-mode systems are demonstrated. It is shown that the dual-mode system is competitive with the nondual-mode system even for those specific missions and particular payload configurations where it does not have a clear-cut advantage.

  1. Program For Optimization Of Nuclear Rocket Engines

    NASA Technical Reports Server (NTRS)

    Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.

    1994-01-01

    NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.

  2. Heat transfer in a nuclear rocket engine

    SciTech Connect

    Konyukhov, G.V.; Petrov, A.I.

    1995-02-01

    Special features of heat transfer in the reactor of a nuclear rocket engine (NRE) are dealt with. It is shown that the design of the cooling system of the NRE reactor is governed by its stability to small deviations of the parameters from the corresponding calculated values and the possibility of compensating for effects due to nonuniformities and distrubances of various types and scales.

  3. The beginnings. [Of Nuclear Engine for Rocket Vehicles Application

    SciTech Connect

    Bohl, R.J.; Kirk, W.L.; Holman, R.R.; Westinghouse Electric Corp., Pittsburgh, PA )

    1989-06-01

    The development of the nuclear rocket engine called NERVA (Nuclear Engine for Rocket Vehicle Application) is described. The choice of fuel element, required rocket parameters, NERVA project objectives, division of responsibilities among different organizations, and NERVA design configuration are reviewed. Progress that has been made in the development of NERVA is addressed.

  4. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    SciTech Connect

    Emrich, William J. Jr.

    2008-01-21

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  5. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  6. Design considerations in clustering nuclear rocket engines

    NASA Technical Reports Server (NTRS)

    Sager, Paul H.

    1992-01-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  7. Nuclear rocket using indigenous Martian fuel NIMF

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert

    1991-01-01

    In the 1960's, Nuclear Thermal Rocket (NTR) engines were developed and ground tested capable of yielding isp of up to 900 s at thrusts up to 250 klb. Numerous trade studies have shown that such traditional hydrogen fueled NTR engines can reduce the inertial mass low earth orbit (IMLEO) of lunar missions by 35 percent and Mars missions by 50 to 65 percent. The same personnel and facilities used to revive the hydrogen NTR can also be used to develop NTR engines capable of using indigenous Martian volatiles as propellant. By putting this capacity of the NTR to work in a Mars descent/acent vehicle, the Nuclear rocket using Indigenous Martian Fuel (NIMF) can greatly reduce the IMLEO of a manned Mars mission, while giving the mission unlimited planetwide mobility.

  8. Steady Nuclear Combustion in Rockets

    NASA Technical Reports Server (NTRS)

    Saenger, E.

    1957-01-01

    The astrophysical theory of stationary nuclear reactions in stars is applied to the conditions that would be met in the practical engineering cases that would differ from the former, particularly with respect to the much lower combustion pressures, dimensions of the reacting volume, and burnup times. This application yields maximum rates of hear production per unit volume of reacting gas occurring at about 10(exp 8) K in the cases of reactions between the hydrogen isotopes, but yields higher rates for heavier atoms. For the former, with chamber pressures of the order of 100 atmospheres, the energy production for nuclear combustion reaches values of about 10(exp 4) kilocalories per cubic meter per second, which approaches the magnitude for the familiar chemical fuels. The values are substantially lower for heavier atoms, and increase with the square of the combustion pressure. The half-life of the burnup in the fastest reactions may drop to values as low as those for chemical fuels so that, despite the high temperature, the radiated energy can remain smaller than the energy produced, particularly if an inefficiently radiating (i.e., easily completely ionized reacting material like hydrogen), is used. On the other hand, the fraction of completely ionized particles in the gases undergoing nuclear combustion must not exceed a certain upper limit because the densities (approximately 10(exp -10) grams per cubic centimeter)) lie in the range of high vacua and only for the previously mentioned fraction of nonionized particles can mean free paths be retained small enough so that the chamber diameters of several dozen meters will suffice. Under these conditions it appears that continuously maintained stable nuclear reactions at practical pressures and dimensions are fundamentally possible and their application can be visualized as energy sources for power plants and propulsion units.

  9. Droplet Core Nuclear Rocket (DCNR)

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    The most basic design feature of the droplet core nuclear reactor is to spray liquid uranium into the core in the form of droplets on the order of five to ten microns in size, to bring the reactor to critical conditions. The liquid uranium fuel ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor to about one and a half meters from the top. High temperature hydrogen is expanded through a nozzle to produce thrust. The hydrogen pressure in the system can be somewhere between 50 and 500 atmospheres; the higher pressure is more desirable. In the lower core region, hydrogen is tangentially injected to serve two purposes: (1) to provide a swirling flow to protect the wall from impingement of hot uranium droplets: (2) to generate a vortex flow that can be used for fuel separation. The reactor is designed to maximize the energy generation in the upper region of the core. The system can result in and Isp of 2000 per second, and a thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 150 metric tons.

  10. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    SciTech Connect

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564

  11. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  12. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  13. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  14. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  15. Particle bed reactor nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Ludewig, Hans

    1991-01-01

    The particle bed reactor nuclear rocket concept consists of fuel particles (in this case (U,Zr)C with an outer coat of zirconium carbide). These particles are packed in an annular bed surrounded by two frits (porous tubes) forming a fuel element; the outer one being a cold frit, the inner one being a hot frit. The fuel element are cooled by hydrogen passing in through the moderator. These elements are assembled in a reactor assembly in a hexagonal pattern. The reactor can be either reflected or not, depending on the design, and either 19 or 37 elements, are used. Propellant enters in the top, passes through the moderator fuel element and out through the nozzle. Beryllium used for the moderator in this particular design to withstand the high radiation exposure implied by the long run times.

  16. Lunar mission design using nuclear thermal rockets

    SciTech Connect

    Stancati, M.L.; Collins, J.T. ); Borowski, S.K. )

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits.

  17. Laminar flow instability in nuclear rockets

    SciTech Connect

    Black, D.L. )

    1993-01-20

    Laminar flow instability (LFI) is a rarely encountered phenomenon, occurring in gaseous heated channels with high exit-to-inlet temperature ratios and a laminar Reynolds Number at the channel exit, as may be experienced in a nuclear rocket. Analytical techniques were developed and programmed for parametric evaluation that had been previously validated by comparison with available experimental data. The four types of transients associated with LFI are described in terms of the governing equations. Parametric evaluations of solid core prismatic and particle bed fuel configurations were made to determine their sensitivities to LFI from temperature ratio, flow rate, orificing, transition Reynolds Number, pressure level, presence of an exit sonic nozzle, power density and heat flux shape. The flow rate at the point of neutral stability and the growth rate of the excursive transient are calculated. The full power design point and the cooldown phases of operation were both evaluated.

  18. Lunar mission design using Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Stancati, Michael L.; Collins, John T.; Borowski, Stanley K.

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits.

  19. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    NASA Technical Reports Server (NTRS)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  20. Nuclear thermal rockets using indigenous extraterrestrial propellants

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1990-01-01

    A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS.

  1. Estimates of the radiation environment for a nuclear rocket engine

    SciTech Connect

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-12-31

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments.

  2. The Los Alamos nuclear safeguards and nonproliferation technology development program

    SciTech Connect

    Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

    1994-04-01

    For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

  3. Economical Mars Exploration Supported by a Nuclear Thermal Rocket

    NASA Astrophysics Data System (ADS)

    Howe, S. D.; O'Brien, R. C.

    2012-06-01

    A nuclear thermal rocket (NTR) developed for human Mars missions could act as a "mother ship" and carry multiple unmanned platforms to Mars for independent deployment. Use of the NTR could increase the science per dollar for each Earth launch.

  4. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    ScienceCinema

    Favalli, Andrea; Swinhoe, Martyn

    2014-06-02

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  5. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    SciTech Connect

    Favalli, Andrea; Swinhoe, Martyn

    2013-06-03

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  6. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  7. The Los Alamos National Laboratory Nuclear Vision Project

    SciTech Connect

    Arthur, E.D.; Wagner, R.L. Jr.

    1996-09-01

    Los Alamos National Laboratory has initiated a project to examine possible futures associated with the global nuclear enterprise over the course of the next 50 years. All major components are included in this study--weapons, nonproliferation, nuclear power, nuclear materials, and institutional and public factors. To examine key issues, the project has been organized around three main activity areas--workshops, research and analyses, and development of linkages with other synergistic world efforts. This paper describes the effort--its current and planned activities--as well as provides discussion of project perspectives on nuclear weapons, nonproliferation, nuclear energy, and nuclear materials focus areas.

  8. Nuclear Thermal Rocket (NTR) Development Risk Communication

    NASA Technical Reports Server (NTRS)

    Kim, Tony

    2014-01-01

    There are clear advantages of development of a Nuclear Thermal Rocket (NTR) for a crewed mission to Mars. NTR for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse (approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration. However, "NUCLEAR" is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. Communication of nuclear safety will be critical to the success of the development of the NTR. Why is there a fear of nuclear? A bomb that can level a city is a scary weapon. The first and only times the Nuclear Bomb was used in a war was on Hiroshima and Nagasaki during World War 2. The "Little Boy" atomic bomb was dropped on Hiroshima on August 6, 1945 and the "Fat Man" on Nagasaki 3 days later on August 9th. Within the first 4 months of bombings, 90- 166 thousand people died in Hiroshima and 60-80 thousand died in Nagasaki. It is important to note for comparison that over 500 thousand people died and 5 million made homeless due to strategic bombing (approximately 150 thousand tons) of Japanese cities and war assets with conventional non-nuclear weapons between 1942- 1945. A major bombing campaign of "firebombing" of Tokyo called "Operation Meetinghouse" on March 9 and 10 consisting of 334 B-29's dropped approximately1,700 tons of bombs around 16 square mile area and over 100 thousand people have been estimated to have died. The declaration of death is very

  9. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  10. CAC - NUCLEAR THERMAL ROCKET CORE ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Clark, J. S.

    1994-01-01

    One of the most important factors in the development of nuclear rocket engine designs is to be able to accurately predict temperatures and pressures throughout a fission nuclear reactor core with axial hydrogen flow through circular coolant passages. CAC is an analytical prediction program to study the heat transfer and fluid flow characteristics of a circular coolant passage. CAC predicts as a function of time axial and radial fluid conditions, passage wall temperatures, flow rates in each coolant passage, and approximate maximum material temperatures. CAC incorporates the hydrogen properties model STATE to provide fluid-state relations, thermodynamic properties, and transport properties of molecular hydrogen in any fixed ortho-para combination. The program requires the general core geometry, the core material properties as a function of temperature, the core power profile, and the core inlet conditions as function of time. Although CAC was originally developed in FORTRAN IV for use on an IBM 7094, this version is written in ANSI standard FORTRAN 77 and is designed to be machine independent. It has been successfully compiled on IBM PC series and compatible computers running MS-DOS with Lahey F77L, a Sun4 series computer running SunOS 4.1.1, and a VAX series computer running VMS 5.4-3. CAC requires 300K of RAM under MS-DOS, 422K of RAM under SunOS, and 220K of RAM under VMS. No sample executable is provided on the distribution medium. Sample input and output data are included. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. CAC was developed in 1966, and this machine independent version was released in 1992. IBM-PC and IBM are registered trademarks of International Business Machines. Lahey F77L is a registered trademark of Lahey Computer Systems, Inc. SunOS is a trademark of Sun Microsystems, Inc. VMS is a trademark of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  11. The solid-core heat-exchanger nuclear rocket program

    SciTech Connect

    Malenfant, R.E.

    1994-12-31

    As measured by the results of its accomplishments, the nuclear rocket program was a success. Why, then, was it cancelled? In my opinion, the cancellation resulted from the success of the Apollo program. President Kennedy declared that putting a man on the moon by 1969 would be a national objective. Upon the Apollo program`s completion, space spectaculars lost their attraction, and the manned exploration of Mars, which could have been accomplished with nuclear rockets, was shelved. Perhaps another generation of physicists and engineers will experience the thrill and satisfaction of participating in a nuclear-propulsion-based program for space exploration in decades to come.

  12. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    SciTech Connect

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-20

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.

  13. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance characteristics of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.

  14. Nuclear thermal rocket nozzle testing and evaluation program

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.

  15. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  16. Analytical study of nozzle performance for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    A parametric study has been conducted by the NASA-Lewis Rocket Engine Design Expert System for the convergent-divergent nozzle of the Nuclear Thermal Rocket system, which uses a nuclear reactor to heat hydrogen to high temperature and then expands it through the nozzle. It is established by the study that finite-rate chemical reactions lower performance levels from theoretical levels. Major parametric roles are played by chamber temperature and chamber pressure. A maximum performance of 930 sec is projected at 2700 K, and of 1030 at 3100 K.

  17. A case for Mars: A case for nuclear thermal rockets

    SciTech Connect

    Neuman, J.E.; Van Haaften, D.H.; Madsen, W.W.

    1990-01-01

    It is now possible to make general comparisons of candidate propulsion systems for human exploration of Mars. Preliminary review indicates that the propulsion system most likely to meet all mission requirements is the Nuclear Thermal Rocket (NTR). Advanced cryogenic chemical propulsion systems achieve a maximum specific impulse (Isp) of about 470 seconds. The Nuclear Engine for Rocket Vehicle Application (NERVA) program of the 1960's built engines with Isp's of about 825 seconds. Performance of an NTR depends on achievable materials temperatures, but materials has progressed significantly since the 1960's. Also, some of the current research undertaken to improve chemical rocket performance, such as aerobraking or schemes to minify payload, applies to an NTR as well, although it is not essential. The NTR is reusable, and can be developed into a complete space transportation system. Only 3--4% of the nuclear fuel would be used in a Mars mission, and an engine can be used until about 40% of the fuel is expended. Nuclear thermal rockets can take mankind to the moon, to Mars, and beyond, but development must begin now. There is potential for orderly growth into nuclear concepts far beyond NERVA. Using chemical propulsion for lunar missions and delaying NTR development will only result in higher costs and delayed or cancelled Mars missions.

  18. NEW EMPLOYEES ON THE JOB - DONALD E HEGBERG OF THE NUCLEAR REACTOR DIVISION DISCUSSES NUCLEAR ROCKET

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NEW EMPLOYEES ON THE JOB - DONALD E HEGBERG OF THE NUCLEAR REACTOR DIVISION DISCUSSES NUCLEAR ROCKET FUEL ELEMENT EXPERIMENT WITH CHARLES L YOUNGER - THE DISCUSSION IS PREPATORY TO CONDUCTING THE EXPERIMENT AT THE PLUM BROOK STATION REACTOR FACILITY

  19. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  20. U.S./CIS eye joint nuclear rocket venture

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcilwain, Melvin C.; Smetanikov, Vladimir; D'Yakov, Evgenij K.; Pavshuk, Vladimir A.

    1993-01-01

    An account is given of the significance for U.S. spacecraft development of a nuclear thermal rocket (NTR) reactor concept that has been developed in the (formerly Soviet) Commonwealth of Independent States (CIS). The CIS NTR reactor employs a hydrogen-cooled zirconium hydride moderator and ternary carbide fuels; the comparatively cool operating temperatures associated with this design promise overall robustness.

  1. Nuclear rocket engine design based on the particle bed reactor

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Mughabghab, S.; Lazareth, O. Jr.; Schmidt, E.; Maise, G. )

    1993-01-01

    A nuclear thermal rocket (NTR) engine design based on the particle-bed reactor (PBR) concept is described in this paper. This engine is designed to satisfy a mission to Mars and thus must develop a thrust of [approximately]1.75 (6) N. This requirement is satisfied if the reactor generates 2000 MW of power.

  2. Computational fluid dynamics studies of nuclear rocket performance

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Kim, Suk C.; Benson, Thomas J.

    1994-01-01

    A CFD analysis of a low pressure nuclear rocket concept is presented with the use of an advanced chemical kinetics, Navier-Stokes code. The computations describe the flow field in detail, including gas dynamic, thermodynamic and chemical properties, as well as global performance quantities such as specific impulse. Computational studies of several rocket nozzle shapes are conducted in an attempt to maximize hydrogen recombination. These Navier-Stokes calculations, which include real gas and viscous effects, predict lower performance values than have been reported heretofore.

  3. Computational fluid dynamics studies of nuclear rocket performance

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Benson, Thomas J.; Kim, Suk C.

    1991-01-01

    A CFD analysis of a low pressure nuclear rocket concept is presented with the use of an advanced chemical kinetics, Navier-Stokes code. The computations describe the flow field in detail,including gas dynamic, thermodynamic and chemical properties, as well as global performance quantities such as specific impulse. Computational studies of several rocket nozzle shapes are conducted in an attempt to maximize hydrogen recombination. These Navier-Stokes calculations, which include real gas and viscous effects, predict lower performance values than have been reported heretofore.

  4. Computational neutronic analysis of the nuclear vapor thermal rocket engine

    SciTech Connect

    Dugan, E.T.; Watanabe, Y.; Kuras, S.; Maya, I.; Diaz, N.J. )

    1992-01-01

    Calculational procedures and results are presented for the neutronic analysis of the Nuclear Vapor Thermal Reactor (NVTR) rocket engine. The NVTR, in a rocket engine, uses modified NERVA geometry and systems with the solid fuel replaced by highly enriched (>85%) uranium tetrafluoride (UF[sub 4]) vapor. In the NVTR, the hydrogen propellant is the primary coolant, is physically separated from the UF[sub 4] vapor (which is not circulated), is maintained at high pressure (50 to 100 atm), and exits the core at 3100 to 3500 K.

  5. Pressure Fed Nuclear Thermal Rockets for space missions

    SciTech Connect

    Leyse, C.F. , Idaho Falls, ID ); Madsen, W.W.; Ramsthaler, J.H.; Schnitzler, B.G. )

    1989-08-01

    The National Space Policy includes a long range goal of expanding human presence and activity beyond Earth orbit into the solar system. This has renewed interest in the potential application of Nuclear Thermal Rockets (NTR) to space flight, particularly for human expeditions to the Moon and Mars. Recent NASA studies consider applications of the previously developed NERVA (Nuclear Engine for Rocket Vehicle Application) technology and the more advanced gas core reactors and show their potential advantages in reducing the initial mass in Earth orbit (IMEO) compared to advanced chemical rocket engines. Application of NERVA technology will require reestablishing the prior technological base or extending it to an advanced NERVA type engine, while the gas core NTR will require an extensive high risk research and development program. A technology intermediate between NERVA and the gas core NTR is a low pressure engine based on solid fuel, a Pressure Fed NTR (PFNTR). In addition to the simplicity of the gas pressurized engine cycle, the PFNTR takes advantage of the dissociation of hydrogen-the increases in specific impulse become significant as the chamber pressure decreases below 1.0 MPa (10 atmospheres) and the chamber temperature increases above 3000 K. The developmental status of technology applicable to a Pressure Fed Nuclear Thermal Rocket (PFNTR) lies between that of the NERVA engine and the gas core NTR (GCNTR). This document investigates PFNTR performance and provides typical mission analyses.

  6. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    SciTech Connect

    Robert C. O'Brien

    2001-09-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  7. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  8. Nuclear rocket propulsion. NASA plans and progress, FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space explorer initiative (SEI) human and robotic missions to the moon and Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.

  9. Ground test facility for SEI nuclear rocket engines

    SciTech Connect

    Harmon, C.D.; Ottinger, C.A.; Sanchez, L.C.; Shipers, L.R.

    1992-08-01

    Nuclear Thermal Propulsion (NTP) has been identified as a critical technology in support of the NASA Space Exploration Initiative (SEI). In order to safely develop a reliable, reusable, long-lived flight engine, facilities are required that will support ground tests to qualify the nuclear rocket engine design. Initial nuclear fuel element testing will need to be performed in a facility that supports a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power of a flight weight reactor/engine. Ground testing of nuclear rocket engines is not new. New restrictions mandated by the National Environmental Protection Act of 1970, however, now require major changes to be made in the manner in which reactor engines are now tested. These new restrictions now preclude the types of nuclear rocket engine tests that were performed in the past from being done today. A major attribute of a safely operating ground test facility is its ability to prevent fission products from being released in appreciable amounts to the environment. Details of the intricacies and complications involved with the design of a fuel element ground test facility are presented in this report with a strong emphasis on safety and economy.

  10. Auditing nuclear weapons quality programs at Los Alamos

    SciTech Connect

    Davis, A.H.

    1988-01-01

    Some of the problems involved in introducing quality assurance on a broad scale in a national laboratory are discussed. A philosophy of how QA can be utilized beneficially in research and development activities is described briefly, and our experiences at Los Alamos in applying QA to nuclear weapons activities are outlines. The important role of audits is emphasized; audits are used not merely to determine the effectiveness of QA programs but also to explain and demonstrate the usefulness of QA to a generally sceptical body of engineers and scientists. Finally, some ways of easing the application of QA in the future are proposed. 1 ref.

  11. Rover nuclear rocket engine program: Overview of rover engine tests

    NASA Technical Reports Server (NTRS)

    Finseth, J. L.

    1991-01-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  12. Thermohydraulic modeling of the nuclear thermal rocket: The KLAXON code

    SciTech Connect

    Hall, M.L.; Rider, W.J.; Cappiello, M.W. )

    1992-01-01

    Nuclear thermal rockets (NTRs) have been proposed as a means of propulsion for the Space Exploration Initiative (SEI, the manned mission to Mars). The NTR derives its thrust from the expulsion of hot supersonic hydrogen gas. A large tank on the rocket stores hydrogen in liquid or slush form, which is pumped by a turbopump through a nuclear reactor to provide the necessary heat. The path that the hydrogen takes is most circuitous, making several passes through the reactor and the nozzle itself (to provide cooling), as well as two passes through the turbopump (to transfer momentum). The proposed fuel elements for the reactor have two different configurations: solid prismatic fuel and particle-bed fuel. There are different design concerns for the two types of fuel, but there are also many fluid flow aspects that they share. The KLAXON code was used to model a generic NTR design from the inlet of the reactor core to the exit from the nozzle.

  13. NERVA-Derived Concept for a Bimodal Nuclear Thermal Rocket

    SciTech Connect

    Fusselman, Steven P.; Frye, Patrick E.; Gunn, Stanley V.; Morrison, Calvin Q.; Borowski, Stanley K.

    2005-02-06

    The Nuclear Thermal Rocket is an enabling technology for human exploration missions. The 'bimodal' NTR (BNTR) provides a novel approach to meeting both propulsion and power requirements of future manned and robotic missions. The purpose of this study was to evaluate tie-tube cooling configurations, NTR performance, Brayton cycle performance, and LOX-Augmented NTR (LANTR) feasibility to arrive at a point of departure BNTR configuration for subsequent system definition.

  14. Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code

    SciTech Connect

    Hall, M.L.; Rider, W.J.; Cappiello, M.W.

    1992-07-01

    The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper.

  15. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  16. Nuclear rockets: High-performance propulsion for Mars

    SciTech Connect

    Watson, C.W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

  17. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  18. Nuclear thermal rocket workshop reference system Rover/NERVA

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  19. Open cycle gas core nuclear rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert

    1991-01-01

    The open cycle gas core engine is a nuclear propulsion device. Propulsion is provided by hot hydrogen which is heated directly by thermal radiation from the nuclear fuel. Critical mass is sustained in the uranium plasma in the center. It has typically 30 to 50 kg of fuel. It is a thermal reactor in the sense that fissions are caused by absorption of thermal neutrons. The fast neutrons go out to an external moderator/reflector material and, by collision, slow down to thermal energy levels, and then come back in and cause fission. The hydrogen propellant is stored in a tank. The advantage of the concept is very high specific impulse because you can take the plasma to any temperature desired by increasing the fission level by withdrawing or turning control rods or control drums.

  20. Bimodal Nuclear Thermal Rocket Analysis Developments

    NASA Technical Reports Server (NTRS)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  1. Low Pressure Nuclear Thermal Rocket (LPNTR) concept

    NASA Technical Reports Server (NTRS)

    Ramsthaler, J. H.

    1991-01-01

    A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs.

  2. Analysis of a Nuclear Enhanced Airbreathing Rocket for Earth to Orbit Applications

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Landrum, D. Brian; Brown, Norman (Technical Monitor)

    2001-01-01

    The proposed engine concept is the Nuclear Enhanced Airbreathing Rocket (NEAR). The NEAR concept uses a fission reactor to thermally heat a propellant in a rocket plenum. The rocket is shrouded, thus the exhaust mixes with ingested air to provide additional thermal energy through combustion. The combusted flow is then expanded through a nozzle to provide thrust.

  3. Advanced nuclear rocket engine mission analysis

    SciTech Connect

    Ramsthaler, J.; Farbman, G.; Sulmeisters, T.; Buden, D.; Harris, P.

    1987-12-01

    The use of a derivative of the NERVA engine developed from 1955 to 1973 was evluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower life cycle costs (LCC) than an advanced chemical stage for performing low earth orbit (LEO) to geosynchronous orbit (GEO0 missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advanced accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. An examination of technical data from the Rover/NERVA program indicated that development of the NERVA stage has a low technical risk, and the potential for high reliability and safe operation. The data indicated the NERVA engine had a great flexibility which would permit a single stage to perform all Air Force missions.

  4. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  5. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  6. Analytical study of nozzle performance for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.

  7. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  8. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  9. Safety aspects of ground testing for large nuclear rockets

    SciTech Connect

    Goldman, M.I.

    1988-02-01

    Present nuclear rocket reactors under test in Nevada are operated at nominal power levels of 1000 Mw. It does not seem unreasonable in the future to anticipate reactors with power levels in the range up to 5,000 Mw for space applications. It has been shown that the normal testing of large nuclear rocket engines at NRDS could impose some restrictions on the fuel performance which would not otherwise be required by space flight operation. The only apparent alternative would require a capability for decontaminating effluent gases prior to release to the atmosphere. In addition to the source restrictions, tests will almost certainly be controlled by wind and atmospheric stability conditions, and the requirements for monitoring and control of off-site exposures will be much more stringent than those presently in force. An analysis of maximum accidents indicates that projections of present credible occurrences cannot be tolerated in larger engine tests. The apparent alternatives to a significant (order of magnitude or better) reduction in credible accident consequences, are the establishment of an underground test facility, a facility in an area equivalent to the Pacific weapons proving ground, or in space.

  10. Synthesis of calculational methods for design and analysis of radiation shields for nuclear rocket systems

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.

    1969-01-01

    Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.

  11. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2013-01-01

    A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.

  12. Injection of Nuclear Rocket Engine Exhaust into Deep Unsaturated Zones

    NASA Astrophysics Data System (ADS)

    Cooper, C. A.; Decker, D.

    2008-05-01

    Nuclear rocket engine technology is being considered as a means of interplanetary vehicle propulsion for a manned mission to Mars. To achieve this, a test and development facility must be constructed to safely run nuclear engines. The testing of nuclear engines in the 1950's and 1960's was accomplished by exhausting the engine gases into the atmosphere, a practice that is no longer acceptable. Injection into deep unsaturated zones of radioactive exhaust gases and water vapor associated with the testing of nuclear rocket engines is being considered as a way of sequestering radionuclides from the environment. Numerical simulations were conducted to determine the ability of an unsaturated zone with the hydraulic properties of Frenchman Flat alluvium at the Nevada Test Site to contain gas-phase radionuclides. Gas and water vapor were injected for two hours at rates of 14.5 kg s-1 and 15 kg s-1, respectively, in an interval between 100 and 430 m below the land surface into alluvium with an intrinsic permeability of 10-11 m2 and porosity of 0.35. The results show that during a test of an engine, radionuclides with at least greater than 10-year half-lives may reach the land surface within several years after injection. Radionuclide transport is primarily controlled by the upward pressure gradient from the point of injection to the lower (atmospheric) pressure boundary condition at the land surface. Radionuclides with half-lives on the order of days should undergo enough decay prior to reaching the land surface. A cooling water vapor injected into the unsaturated zone simultaneously with the exhaust gas will condense within several meters of the injection point and drain downward toward the water table. However, the nearly horizontal hydraulic groundwater gradient present in several of the basins at NTS should limit lateral migration of radionuclides away from the vicinity of injection.

  13. Nuclear accident dosimetry studies at Los Alamos National Laboratory

    SciTech Connect

    Casson, W.H.; Buhl, T.E.; Upp, D.L.

    1995-12-01

    Two critical assemblies have been characterized at the Los Alamos Critical Experiments Facility (LACEF) for use in testing nuclear accident dosimeters and related devices. These device, Godiva IV and SHEBA II, have very different characteristics in both operation and emitted neutron energy spectra. The Godiva assembly is a bare metal fast burst device with a hard spectrum. This spectrum can be modified by use of several shields including steel, concrete, and plexiglas. The modified spectra vary in both average neutron energy and in the specific distribution of the neutron energies in the intermediate energy range. This makes for a very favorable test arrangement as the response ratios between different activation foils used in accident dosimeters are significantly altered such as the ratio between gold, copper, and sulfur elements. The SHEBA device is a solution assembly which has both a slow ramp and decay period and a much softer spectrum. The uncertainly introduced in the response of fast decay foils such as indium can therefore be evaluated into the test results. The neutron energy spectrum for each configuration was measured during low power operations with a multisphere system. These measurements were extended to high dose pulsed operation by use of TLDs moderated TLDs, and special activation techniques. The assemblies were used in the testing of several accident dosimetry devices in studies modeled after the Nuclear Accident Dosimetry Studies that were conducted at Oak Ridge National Laboratory for about 25 years using the Health Physics Research Reactor. It is our intention to conduct these studies approximately annually for the evaluation of the nuclear accident dosimeter systems currently in use within the DOE, alternative systems used internationally, and new dosimeter designs being developed or considered for field application. Participation in selected studies will be open to all participants.

  14. Numerical study of nozzle wall cooling for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Kim, Suk C.; Stubbs, Robert M.

    1993-01-01

    The flowfields and performance of nuclear thermal rockets, which utilize radiation and film-cooling to cool the nozzle extension, are studied by solving the Navier-Stokes equations and species equations. The thrust level of the rocket for the present study is about 75,000 lb(f) for a chamber pressure of 68 atm(l,000 psi) and a chamber temperature of 2700 K. The throat radius of the nozzle is 0.0936 m and the area ratios of the nozzles are 300 and 500. It is assumed that the flow is chemically frozen and the turbulence is simulated by the modified Baldwin-Lomax turbulence model. The calculated results for various area ratios and film mass-flow rates are presented as Mach number contours, variations of nozzle wall temperature, exit profiles, and vacuum specific impulses. The present study shows that by selecting the flow rate of the film-cooling hydrogen and area ratio of the nozzle correctly, high area ratio nozzle extensions can be cooled effectively with radiation and film-cooling without significant penalty in performance.

  15. The Story of the Nuclear Rocket: Back to the Future

    NASA Astrophysics Data System (ADS)

    Dewar, James A.

    2002-01-01

    The United States had a nuclear rocket development program from 1955-1973 called Project Rover/NERVA. Twenty reactor tests demonstrated conclusively the superiority, flexibility and reliability of nuclear rocket engines over their chemical counterparts. This paper surveys the technical accomplishments from that perspective, to help illustrate why many call for the program's reestablishment. Most focus on the large NERVA, but this review will consider the little known Small Nuclear Engine. KIWI-B1B was one of the first tests in which nuclear rockets demonstrated their superiority. It ejected its core as it rose to 1000MW (a megawatt equals 50 pounds of thrust). This seems contradictory, how can a `failure' demonstrate superiority? Precisely in this: the reactor remained controllable going to and from 1000MW, still ejecting its core, but still turning out power. That gave insurance to a mission. A solid or liquid chemical engine suffering similar damage would likely shutdown or blow up. KIWI-TNT and Phoebus-1A had planned and unplanned accidents. That verified the safety of nuclear engines in launch operations. NRX/EST and XE-Prime proved they could startup reliably under their own power in a simulated space environment and change power without loss of specific impulse or control, from 20MW to 1000MW and back. That gave flexibility for mid-course corrections, maneuvering between orbits or breaking into orbit. Pewee and the Nuclear Furnace tested fuels to achieve 10 hours of engine operation with 60 recycles (stops and starts). That meant an engine could perform multiple missions. Work started on fuels promising1000 seconds of specific impulse. That meant increased power and payload capacity and speed. This contrasts with the 450 seconds of LOX/LH2. The NERVA of 1971 would be 1500MW, with 10/60 capability and 825 seconds of a specific impulse. Later generation NERVAs would be in excess of 1000 seconds, 3000MW and 10/60. The Nixon Administration cancelled it in 1971

  16. Reducing the risk to Mars: The gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  17. Reducing the risk to Mars: The gas core nuclear rocket

    NASA Astrophysics Data System (ADS)

    Howe, S. D.; Devolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. We have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  18. Particle bed reactor central to SDI nuclear rocket project

    SciTech Connect

    Asker, J.R.

    1991-04-01

    A classified SDI project designated 'Timberwind' and funded with an estimated $7-8 billion over the project's life is charged with the development and flight testing of nuclear reactor-powered rockets. Timberwind's novel 'particle-bed reactor' technology will employ small pellets of reactor fuel to heat a low molecular weight working fluid, such as hydrogen. The fuel pellets would be 0.5 mm in diameter and may be composed of a kernel of fissionable U together with a carbon alloy, coated by layers of carbon and a sealant. A covering of zirconium carbide would prevent chemical degradation of the pellets by the hydrogen working fluid. Performace projection comparisons are conducted for Timberwind, an advanced Atlas-Centaur, and an advanced Titan launch vehicle.

  19. XNR2000---A near term nuclear thermal rocket concept

    SciTech Connect

    Peery, S.D.; Parsley, R.C. ); Anghaie, S.; Feller, G.J. )

    1993-01-20

    A conceptual nuclear thermal rocket (NTR), the XNR2000, has been developed that is powered by a fast spectrum, cermet fueled reactor core. The baseline XNR2000 system delivers 25000 Ibf of thrust at a specific impulse of 900 seconds. The cermet fueled reactor heats hydrogen propellant to a maximum temperature of 2668K in a two-pass reactor flow configuration. Thermal hydraulic and neutronic analyses were performed to assess the basic design characteristics of the reactor core and engine system. Temperature, flow, and pressure distribution throughout the engine system at full power operating conditions were also determined. The two-pass reactor design and the utilization of cermet fuels allow for a compact and high power density 25000 Ibf thrust system with a thrust to weight ratio of larger than 5.3. This paper summarizes the XNR2000 conceptual design, the supporting thermal hydraulic and neutronic analyses, and the rational that lead to the baseline design.

  20. An Analysis of Nuclear-Rocket Nozzle Cooling

    NASA Technical Reports Server (NTRS)

    Robbins, William H.; Bachkin, Daniel; Medeiros, Arthur A.

    1960-01-01

    A nuclear-rocket regenerative-cooling analysis was conducted over a range of reactor power of 46 to 1600 megawatts and is summarized herein. Although the propellant (hydrogen) is characterized by a large heat-sink capacity, an analysis of the local heat-flux capability of the coolant at the nozzle throat indicated that, for conventional values of system pressure drop, the cooling capability was inadequate to maintain a selected wall temperature of 1440 R. Several techniques for improving the cooling capability were discussed, for example, high pressure drop, high wall temperature, refractory wall coatings, thin highly conductive walls, and film cooling. In any specific design a combination of methods will probably be utilized to achieve successful cooling.

  1. Reducing the risk to Mars: The gas core nuclear rocket

    SciTech Connect

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-15

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. We have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  2. Reducing the risk to Mars: The gas core nuclear rocket

    SciTech Connect

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-12-31

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  3. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  4. Nuclear thermal rocket propulsion application to Mars missions

    NASA Technical Reports Server (NTRS)

    Emrich, W. J., Jr.; Young, A. C.; Mulqueen, J. A.

    1991-01-01

    Options for vehicle configurations are reviewed in which nuclear thermal rocket (NTR) propulsion is used for a reference mission to Mars. The scenario assumes an opposition-class Mars transfer trajectory, a 435-day mission, and the use of a single nuclear engine with 75,000 lbs of thrust. Engine parameters are examined by calculating mission variables for a range of specific impulses and thrust/weight ratios. The reference mission is found to have optimal values of 925 s for the specific impulse and thrust/weight ratios of 4.0 and 0.06 for the engine and total stage ratios respectively. When the engine thrust/weight ratio is at least 4/1 the most critical engine parameter is engine specific impulse for reducing overall stage weight. In the context of this trans-Mars three-burn maneuver the NTR engine with an expander engine cycle is considered a more effective alternative than chemical/aerobrake and other propulsion options.

  5. Exhaust gas treatment in testing nuclear rocket engines

    SciTech Connect

    Zweig, H.R.; Fischler, S.; Wagner, W.R. )

    1993-01-15

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  6. Integrated propulsion and power modeling for bimodal nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Clough, Joshua

    Bimodal nuclear thermal rocket (BNTR) engines have been shown to reduce the weight of space vehicles to the Moon, Mars, and beyond by utilizing a common reactor for propulsion and power generation. These savings lead to reduced launch vehicle costs and/or increased mission safety and capability. Experimental work of the Rover/NERVA program demonstrated the feasibility of NTR systems for trajectories to Mars. Numerous recent studies have demonstrated the economic and performance benefits of BNTR operation. Relatively little, however, is known about the reactor-level operation of a BNTR engine. The objective of this dissertation is to develop a numerical BNTR engine model in order to study the feasibility and component-level impact of utilizing a NERVA-derived reactor as a heat source for both propulsion and power. The primary contribution is to provide the first-of-its-kind model and analysis of a NERVA-derived BNTR engine. Numerical component models have been modified and created for the NERVA reactor fuel elements and tie tubes, including 1-D coolant thermodynamics and radial thermal conduction with heat generation. A BNTR engine system model has been created in order to design and analyze an engine employing an expander-cycle nuclear rocket and Brayton cycle power generator using the same reactor. Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVA-derived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation. Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube

  7. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  8. Nuclear forensics of special nuclear material at Los Alamos: three recent studies

    SciTech Connect

    Tandon, Lav; Gallimore, David L; Garduon, Katherine; Keller, Russell C; Kuhn, Kevin J; Lujan, Elmer J; Martinez, Alexander; Myers, Steven C; Moore, Steve S; Porterfield, Donivan R; Schwartz, Daniel S; Spencer, Khalil J; Townsend, Lisa E; Xu, Ning

    2010-01-01

    Nuclear forensics of special nuclear materials is a highly specialized field because there are few analytical laboratories in the world that can safely handle nuclear materials, perform high accuracy and precision analysis using validated analytical methods. The goal of nuclear forensics is to establish an unambiguous link between illicitly trafficked nuclear material and its origin. The Los Alamos National Laboratory Nuclear Materials Signatures Program has implemented a graded 'conduct of operations' type approach for determining the unique nuclear, chemical, and physical signatures needed to identify the manufacturing process, intended use, and origin of interdicted nuclear material. In our approach an analysis flow path was developed for determining key signatures necessary for attributing unknown materials to a source. This analysis flow path included both destructive (i.e., alpha spectrometry, ICP-MS, ICP-AES, TIMS, particle size distribution, density and particle fractionation) and non-destructive (i.e., gamma-ray spectrometry, optical microscopy, SEM, XRD, and x-ray fluorescence) characterization techniques. Analytical techniques and results from three recent cases characterized by this analysis flow path along with an evaluation of the usefulness of this approach will be discussed in this paper.

  9. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    SciTech Connect

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  10. Assessment of the advantages and feasibility of a nuclear rocket

    SciTech Connect

    Howe, S.D.

    1985-01-01

    The feasibility of rebuilding and testing a nuclear thermal rocket (NTR) for the Mars mission has been investigated. Calculations indicate that an NTR would substantially reduce the earth-orbit assembled mass compared to LOX/LH/sub 2/ systems. The mass savings were 36% and 65% for the cases of total aerobraking and of total propulsive braking respectively. Consequently, the cost savings for a single mission of using an NTR, if aerobraking is feasible, are probably insufficient to warrant the NTR development. If multiple missions are planned or if propulsive braking is desired at Mars and/or at Earth, then the savings of about $7B will easily pay for the NTR development. Estimates of the cost of rebuilding a NTR were based on the previous NERVA program's budget plus additional costs to develop a flight ready engine. The total cost to build the engine would be between $4 to 5B. The concept of developing a full-power test stand at Johnston Atoll in the Pacific appears very feasible. The added expense of building facilities on the island should be less than $1.4B.

  11. Hydrogen recombination kinetics and nuclear thermal rocket performance prediction

    SciTech Connect

    Wetzel, K.K.; Solomon, W.C.

    1994-07-01

    The rate constants for the hydrogen three-body collisional recombination reaction with atomic and molecular hydrogen acting as third bodies have been determined by numerous investigators during the past 30 yr, but these rates exhibit significant scatter. The discrepancies in the rate constants determined by different investigators are as great as two orders of magnitude in the temperature range of interest for nuclear thermal rocket (NTR) operation, namely, 2000-3300 K. The impact of this scatter on our ability to predict the specific impulse (I(sub sp)) delivered by a 30-klbf NTR has been determined for chamber pressures and temperatures from, respectively, 20-1000 psia and 2700-3300 K. The variation in I(sub sp) produced by using the different rate constants is as great as 10%, or 100 s. This variation also obscures the influence of chamber pressure on I(sub sp); using fast kinetics, low pressures yield significantly improved performance, while using slow or nominal kinetics, the pressure dependence of I(sub sp) is negligible. Because the flow composition freezes at very small area ratios, optimization of the nozzle contour in the near-throat region maximizes recombination. Vibrational relaxation is found to produce negligible losses in I(sub sp). 36 refs.

  12. Nuclear thermal rocket plume interactions with spacecraft. Final report

    SciTech Connect

    Mauk, B.H.; Gatsonis, N.A.; Buzby, J.; Yin, X.

    1997-05-01

    This is the first study that has treated the Nuclear Thermal Rocket (NTR) effluent problem in its entirety, beginning with the reactor core, through the nozzle flow, to the plume backflow. The summary of major accomplishments is given below: (1) Determined the NTR effluents that include neutral, ionized and radioactive species, under typical NTR chamber conditions. Applied an NTR chamber chemistry model that includes conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (2) Performed NTR nozzle flow simulations using a Navier-Stokes solver. We assumed frozen chemistry at the chamber conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (3) Performed plume simulations using a Direct Simulation Monte Carlo (DSMC) code with chemistry. In order to account for radioactive trace species that may be important for contamination purposes we developed a multi-weighted DSMC methodology. The domain in our simulations included large regions downstream and upstream of the exit. Inputs were taken from the Navier-Stokes solutions.

  13. Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets

    SciTech Connect

    Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.

    2007-01-30

    Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.

  14. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  15. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the

  16. Performance Capability of Single-Cavity Vortex Gaseous Nuclear Rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert G.

    1963-01-01

    An analysis was made to determine the maximum powerplant thrust-to-weight ratio possible with a single-cavity vortex gaseous reactor in which all the hydrogen propellant must diffuse through a fuel-rich region. An assumed radial temperature profile was used to represent conduction, convection, and radiation heat-transfer effects. The effect of hydrogen property changes due to dissociation and ionization was taken into account in a hydrodynamic computer program. It is shown that, even for extremely optimistic assumptions of reactor criticality and operating conditions, such a system is limited to reactor thrust-to-weight ratios of about 1.2 x 10(exp -3) for laminar flow. For turbulent flow, the maximum thrust-to-weight ratio is less than 10(exp -3). These low thrusts result from the fact that the hydrogen flow rate is limited by the diffusion process. The performance of a gas-core system with a specific impulse of 3000 seconds and a powerplant thrust-to-weight ratio of 10(exp -2) is shown to be equivalent to that of a 1000-second advanced solid-core system. It is therefore concluded that a single-cavity vortex gaseous reactor in which all the hydrogen must diffuse through the nuclear fuel is a low-thrust device and offers no improvement over a solid-core nuclear-rocket engine. To achieve higher thrust, additional hydrogen flow must be introduced in such a manner that it will by-pass the nuclear fuel. Obviously, such flow must be heated by thermal radiation. An illustrative model of a single-cavity vortex system employing supplementary flow of hydrogen through the core region is briefly examined. Such a system appears capable of thrust-to-weight ratios of approximately 1 to 10. For a high-impulse engine, this capability would be a considerable improvement over solid-core performance. Limits imposed by thermal radiation heat transfer to cavity walls are acknowledged but not evaluated. Alternate vortex concepts that employ many parallel vortices to achieve higher

  17. Frequency Estimates for Aircraft Crashes into Nuclear Facilities at Los Alamos National Laboratory (LANL)

    SciTech Connect

    George D. Heindel

    1998-09-01

    In October 1996, the Department of Energy (DOE) issued a new standard for evaluating accidental aircraft crashes into hazardous facilities. This document uses the method prescribed in the new standard to evaluate the likelihood of this type of accident occurring at Los Alamos National Laboratory's nuclear facilities.

  18. High Performance Ultra-light Nuclear Rockets for NEO (Near Earth Objects) Interaction Missions

    SciTech Connect

    Powell, J.; Maise, G.; Ludewig, H.; Todosow, M.

    1996-12-31

    The performance capabilities and technology features of ultra compact nuclear thermal rockets based on very high power density ({approximately} 30 Megawatts per liter) fuel elements are described. Nuclear rockets appear particularly attractive for carrying out missions to investigate or intercept Near Earth Objects (NEOS) that potentially could impact on the Earth. Many of these NEO threats, whether asteroids or comets, have extremely high closing velocities, i.e., tens of kilometers per second relative to the Earth. Nuclear rockets using hydrogen propellant enable flight velocities 2 to 3 times those achievable with chemical rockets, allowing interaction with a potential NEO threat at a much shorter time, and at much greater range. Two versions of an ultra compact nuclear rocket based on very high heat transfer rates are described: the PBR (Particle Bed Reactor), which has undergone substantial hardware development effort, and MITEE (Miniature Reactor Engine) which is a design derivative of the PBR. Nominal performance capabilities for the PBR are: thermal power - 1000 MW thrust - 45,000 lbsf, and weight - 500 kg. For MITEE, nominal capabilities are: thermal power - 100 MW; thrust {approx} 4500 lbsf, and weight - 50 kg. Development of operational PBR/MITEE systems would enable spacecraft launched from LEO (Low Earth Orbit) to investigate intercept NEO`s at a range of {approximately} 100 million kilometers in times of {approximately} 30 days.

  19. An historical perspective of the NERVA nuclear rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  20. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  1. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    SciTech Connect

    Robbins, W.H.; Finger, H.B.

    1991-07-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  2. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    SciTech Connect

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  3. Initial Operation and Shakedown of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.

  4. The nuclear option

    SciTech Connect

    Herken, G.

    1992-03-01

    A development history and current status evaluation are presented for nuclear-thermal rocket propulsion systems applicable to interplanetary flight. While the most advanced current chemical rocket engines, such as the SSMEs of the Space Shuttle, produce specific impulses of the order of 450 secs, a nuclear-thermal rocket engine tested at Los Alamos in 1969 generated 845 secs; such specific impulse improvements could represent weeks or months of interplanetary travel time. Attention is given to the achievements of the historical Nuclear Engine for Rocket Vehicle Application, Helios, and Orion design programs, as well as to the current Vehicle for Interplanetary Space Transportation Applications, which is fusion-based.

  5. "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2004-01-01

    The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.

  6. Los Alamos National Laboratory standard nuclear material container

    SciTech Connect

    Stone, Timothy A

    2009-01-01

    The shut down of United States (U.S.) nuclear-weapons production activities in the early 1990s left large quantities of nuclear materials throughout the U.S. Department of Energy (DOE) complex in forms not intended for long-term storage. In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 94-1, which called for the stabilization and disposition of 'thousands of containers of plutonium-bearing liquids and solids' in the DOE complex, including LANL in the nuclear-weapons-manufacturing pipeline when manufacturing ended. This resulted in the development of the 3013 standard with container requirements for long term storage (up to 50 years). A follow on was the Criteria For Interim Storage of Plutonium Bearing Materials, Charles B. Curtis, in 1996 to address storage other than the 3013 standard for shorter time frames. In January 2000, the DNFSB issued Recommendation 2000-1, which stated the need for LANL to repackage 'about one ton of plutonium metal and oxide,' declared excess to Defense Program (DP) needs. The DNFSB recommended that LANL 'stabilize and seal within welded containers with an inert atmosphere the plutonium oxides ... which are not yet in states conforming to the long-term storage envisaged by DOE-STD-3013,' and that they '... enclose existing and newly-generated legacy plutonium metal in sealed containers with an inert atmosphere,' and 'remediate and/or safely store the various residues.' Recommendation 2000-1, while adding to the number of items needing remediation, also reiterated the need to address remaining items from 1994-1 in a timely fashion. Since timetables slipped, the DNFSB recommended that the Complex 'prioritize and schedule tasks according to the consideration of risks.' In March 2005, the DNFSB issued Recommendation 2005-1. This recommendation addresses the need for a consistent set of criteria across the DOE complex for the interim storage of nuclear material packaged outside an engineered barrier. The

  7. The open-cycle gas-core nuclear rocket engine - Some engineering considerations.

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyk, L. C.

    1971-01-01

    A preliminary design study of a conceptual 6000-MW open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 44,200 lb and a specific impulse of 4400 sec. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel) and the waste heat rejection system were considered conceptually and were sized.

  8. The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.

  9. Research on fission induced plasmas and nuclear pumped lasers at the Los Alamos Scientific Laboratory

    NASA Technical Reports Server (NTRS)

    Helmick, H. H.

    1979-01-01

    A program of research on gaseous uranium and uranium plasmas is being conducted at The Los Alamos Scientific Laboratory under sponsorship of the National Aeronautics and Space Administration. The objective of this work is twofold: (1) to demonstrate the proof of principle of a gaseous uranium fueled reactor, and (2) pursue fundamental research on nuclear pumped lasers. The relevancy of the two parallel programs is embodied in the possibility of a high-performance uranium plasma reactor being used as the power supply for a nuclear pumped laser system. The accomplishments in the two above fields are summarized

  10. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    SciTech Connect

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

  11. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    NASA Technical Reports Server (NTRS)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  12. Thermal hydraulic design analysis of ternary carbide fueled square-lattice honeycomb nuclear rocket engine

    SciTech Connect

    Furman, Eric M.; Anghaie, Samim

    1999-01-22

    A computational analysis is conducted to determine the optimum thermal-hydraulic design parameters for a square-lattice honeycomb nuclear rocket engine core that will incorporate ternary carbide based uranium fuels. Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of processing solid solution, ternary carbide fuels such as (U, Zr, Nb)C, (U, Zr, Ta)C, (U, Zr, Hf)C and (U, Zr, W)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. A parametric analysis is conducted to examine how core geometry, fuel thickness and the propellant flow area effect the thermal performance of the nuclear rocket engine. The principal variables include core size (length and diameter) and fuel element dimensions. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. A nuclear rocket engine simulation code is developed and used to examine the system performance as well as the performance of the main reactor core components. The system simulation code was originally developed for analysis of NERVA-Derivative and Pratt and Whitney XNR-2000 nuclear thermal rockets. The code is modified and adopted to the square-lattice geometry of the new fuel design. Thrust levels ranging from 44,500 to 222,400 N (10,000 to 50,000 lbf) are considered. The average hydrogen exit temperature is kept at 2800 K, which is well below the melting point of these fuels. For a nozzle area ratio of 300 and a thrust chamber pressure of 4.8 Mpa (700 psi), the specific impulse is 930 s. Hydrogen temperature and pressure distributions in the core and the fuel maximum temperatures are calculated.

  13. How useful is neutron diffusion theory for nuclear rocket engine design

    SciTech Connect

    Hilsmeier, T.A.; Aithal, S.M.; Aldemir, T. )

    1992-01-01

    Correct modeling of neutron leakage and geometry effects is important in the design of a nuclear rocket engine because of the need for small reactor cores in space applications. In principle, there are generalized procedures that can account for these effects in a reliable manner (e.g., a three-dimensional, continuous-energy Monte Carlo calculation with all core components explicitly modeled). However, these generalized procedures are not usually suitable for parametric design studies because of the long computational times required, and the feasibility of using faster running, more approrimate neutronic modeling approaches needs to be investigated. Faster running neutronic models are also needed for simulator development to assess the engine performance during startup and power level changes. This paper investigates the potential of the few-group diffusion approach for nuclear rocket engine core design and optimization by comparing the k[sub eff] and power distributions obtained by the MCNP code against those obtained from the LEOPARD and 2DB codes for the particle bed reactor (PBR) concept described. The PBRs have been identified as one of the two near-term options for nuclear thermal propulsion by the joint National Aeronautics and Space Administration (NASA)/US Department of Energy/US Department of Defense program that was recently set up at the NASA Lewis Research Center to develop a flight-rated nuclear rocket engine by the 2020s.

  14. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    NASA Technical Reports Server (NTRS)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  15. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  16. Dynamic analysis of an open-cycle gas-core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Kieffer, A. W.

    1973-01-01

    Reactivity and flow disturbances were used to investigate the transient response of a conceptual open cycle gas core nuclear rocket engine. The disturbances were made with the system initially operating at its steady state design point. Results of the study show that the feedbacks associated with the propellant density and propellant temperature have a dominant effect on the response of the system. Furthermore, there appears to be a rather limited range of values of these propellant feedback coefficients for which the gas core nuclear rocket has a stable response. The system was rather insensitive to a fuel flow rate disturbance, whereas a similar disturbance in the propellant flow rate caused large changes in reactor power. For a similar disturbance in the propellant flow rate caused large changes in reactor power. For most reactivity and flow rate disturbances, the response showed oscillations of various intensity.

  17. Nuclear thermal rocket clustering: 1, A summary of previous work and relevant issues

    SciTech Connect

    Buksa, J.J.; Houts, M.G.

    1991-07-14

    A general review of the technical merits of nuclear thermal rocket clustering is presented. A summary of previous analyses performed during the Rover program is presented and used to assess clustering in the context of projected Space Exploration Initiative missions. A number of technical issues are discussed including cluster reliability, engine-out operation, neutronic coupling, shutdown core power generation, shutdown reactivity requirements, reactor kinetics, and radiation shielding. 7 refs., 3 figs., 2 tabs.

  18. A fusion-driven gas core nuclear rocket

    SciTech Connect

    Kammash, T.; Godfroy, T.

    1998-01-15

    A magnetic confinement scheme is investigated as a potential propulsion device in which thrust is generated by a propellant heated by radiation emanating from a fusion plasma. The device in question is the gasdynamic mirror (GDM) machine in which a hot dense plasma is confined long enough to generate fusion energy while allowing a certain fraction of its charged particle population to go through one end to a direct converter. The energy of these particles is converted into electric power which is recirculated to sustain the steady state operation of the system. The injected power heats the plasma to thermonuclear temperatures where the resulting fusion energy appears a charged particle power, neutron power, and radiated power in the form of bremsstrahlung and synchrotron radiation. The neutron power can be converted through a thermal converter to electric power that can be combined with the direct converter power before being fed into the injector. The radiated power, on the other hand, can be used to heat a hydrogen propellant introduced into the system at a specified pressure and mass flow rate. This propellant can be pre-heated by regeneratively cooling the (mirror) nozzle or other components of the system if feasible, or by an electrothermal unit powered by portions of the recirculated power. Using a simple heat transfer model that ignores the heat flux to the wall, and assuming total absorption of radiation energy by the propellant it is shown that such a gas core rocket is capable of producing tens of kilonewtons of thrust and several thousands of seconds of specific impulse. It is also shown that the familiar Kelvin-Helmholtz instability which arises from the relative motion of the neutral hydrogen to the ionized fuel is not likely to occur in this system due to the presence of the confining magnetic field.

  19. A fusion-driven gas core nuclear rocket

    NASA Astrophysics Data System (ADS)

    Kammash, T.; Godfroy, T.

    1998-01-01

    A magnetic confinement scheme is investigated as a potential propulsion device in which thrust is generated by a propellant heated by radiation emanating from a fusion plasma. The device in question is the gasdynamic mirror (GDM) machine in which a hot dense plasma is confined long enough to generate fusion energy while allowing a certain fraction of its charged particle population to go through one end to a direct converter. The energy of these particles is converted into electric power which is recirculated to sustain the steady state operation of the system. The injected power heats the plasma to thermonuclear temperatures where the resulting fusion energy appears a charged particle power, neutron power, and radiated power in the form of bremsstrahlung and synchrotron radiation. The neutron power can be converted through a thermal converter to electric power that can be combined with the direct converter power before being fed into the injector. The radiated power, on the other hand, can be used to heat a hydrogen propellant introduced into the system at a specified pressure and mass flow rate. This propellant can be pre-heated by regeneratively cooling the (mirror) nozzle or other components of the system if feasible, or by an electrothermal unit powered by portions of the recirculated power. Using a simple heat transfer model that ignores the heat flux to the wall, and assuming total absorption of radiation energy by the propellant it is shown that such a gas core rocket is capable of producing tens of kilonewtons of thrust and several thousands of seconds of specific impulse. It is also shown that the familiar Kelvin-Helmholtz instability which arises from the relative motion of the neutral hydrogen to the ionized fuel is not likely to occur in this system due to the presence of the confining magnetic field.

  20. The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2013-03-01

    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required

  1. Orbital transfer of large space structures with nuclear electric rockets

    NASA Technical Reports Server (NTRS)

    Silva, T. H.; Byers, D. C.

    1980-01-01

    This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.

  2. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  3. An Overview of the Los Alamos Program on Asteroid Mitigation by a Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Weaver, R.; Gisler, G. R.; Plesko, C. S.; Ferguson, J.

    2014-12-01

    Los Alamos National Laboratory is standing up a new program to address the mitigation of a potentially hazardous objects (PHO) by using nuclear explosives. A series of efforts at Los Alamos have been working this problem for the last few years in an informal fashion. We now have a funded program to dedicate time to this important mission. The goal of our project is to study the effectiveness of using a nuclear explosive to mitigate (alter orbit or destroy) an PHO on an Earth crossing path. We are also pursuing studies of impact hazards should the international leadership decide not to organize a mission for active mitigation of a PHO. Such impact hazards are characterized as local, regional or global. Impact hazards include: a direct hit in an urban area (potentially catastrophic but highly unlikely); the generation a significant tsunami from an ocean impact close to a coastline and regional and global effects from medium to large impactors. Previous studies at Los Alamos have looked at 2D and 3D simulations in the deep ocean from large bolides, as well as impacts that have global consequences. More recent work has included radiation-hydrodynamic simulations of momentum transfer (and enhancement) from a low energy (10 kt) stand-off source, as well as surface and subsurface high energy explosions (100 kt - 10 Mt) for example PHOs. The current program will carefully look at two main aspects of using a standoff nuclear source: 1) a computational study for the optimum height-of-burst (HOB) of a stand-off burst using our best energy coupling techniques for both neutrons and x-rays; and 2) as a function of the nuclear energy produced and the HOB what is the optimum energy field: neutrons or x-rays. This team is also working with NNSA and NASA Goddard to compare numerical results for these complicated simulations on a well defined series of test problems involving both kinetic impactors and stand-off nuclear energy sources. Results will be shown by the co-authors on

  4. Nuclear Thermal Rocket - Arc Jet Integrated System Model

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, William

    2016-01-01

    In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.

  5. Review of coaxial flow gas core nuclear rocket fluid mechanics

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  6. Design Considerations for the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Kirk, Daniel

    2006-01-01

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today s best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Currently, such a simulator is nearing completion at the Marshall Space Flight Center, and will shortly be used in the future to evaluate a wide variety of he1 element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the Nuclear Thermal Rocket Element Environmental Simulator or NTREES and some of the design considerations which were considered prior to and during its construction.

  7. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  8. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    SciTech Connect

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.

  9. Fifty-one years of Los Alamos Spacecraft

    SciTech Connect

    Fenimore, Edward E.

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  10. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  11. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  12. Analysis of plume backflow around a nozzle lip in a nuclear rocket

    NASA Astrophysics Data System (ADS)

    Chung, Chan H.; Kim, Suk C.; Stubbs, Robert M.; de Witt, Kenneth J.

    1993-06-01

    The structure of the flow around a nuclear thermal rocket nozzle lip has been investigated using the direct simulation Monte Carlo method. Special attention has been paid to the behavior of a small amount of harmful particles that may be present in the rocket exhaust gas. The harmful fission product particles are modeled by four inert gases whose molecular weights are in a range of 4 131. Atomic hydrogen, which exists in the flow due to the extremely high nuclear fuel temperature in the reactor, is also included. It is shown that the plume backflow is primarily determined by the thin subsonic fluid layer adjacent to the surface of the nozzle lip, and that the inflow boundary in the plume region has negligible effect on the backflow. It is also shown that a relatively large amount of the lighter species is scattered into the backflow region while the amount of the heavier species becomes negligible in this region due to extreme separation between the species. Results indicate that the backscattered molecules are very energetic and are fast-moving along the surface in the backflow region near the nozzle lip.

  13. The Rationale/Benefits of Nuclear Thermal Rocket Propulsion for NASA's Lunar Space Transportation System

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1994-01-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  14. Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket

    SciTech Connect

    Christie, Robert J.; Plachta, David W.

    2006-01-20

    Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.

  15. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    NASA Technical Reports Server (NTRS)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  16. Acoustic Analysis of Plutonium and Nuclear Weapon Components at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Saleh, T. A.; Reynolds, J. J.; Rowe, C. A.; Freibert, F. J.; Ten Cate, J. A.; Ulrich, T. J.; Farrow, A. M.

    2012-12-01

    One of the primary missions of Los Alamos National Laboratory is to use science based techniques to certify the nuclear weapons stockpile of the United States. As such we use numerous NDE techniques to monitor materials and systems properties in weapons. Two techniques will be discussed in this presentation, Acoustic Resonance Spectroscopy (ARS) and Acoustic Emission (AE). ARS is used to observe manufacturing variations or changes in the plutonium containing component (pit) of the weapon system. Both quantitative and qualitative comparisons can be used to determine variation in the pit components. Piezoelectric transducer driven acoustic resonance experiments will be described along with initial qualitative and more complex analysis and comparison techniques derived from earthquake analysis performed at LANL. Similarly, AE is used to measure the time of arrival of acoustic signals created by mechanical events that can occur in nuclear weapon components. Both traditional time of arrival techniques and more advanced techniques are used to pinpoint the location and type of acoustic emission event. Similar experiments on tensile tests of brittle phases of plutonium metal will be described.

  17. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  18. Material handling for the Los Alamos National Laboratory Nuclear Material Storage Facility

    SciTech Connect

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-04-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels.

  19. Nuclear Material Recovery at Los Alamos National Laboratory Using TechXtract{reg_sign} Decontamination Technology

    SciTech Connect

    Fay, S.; Dennison, D.; Fife, K.; Punjak, W.

    1999-09-12

    One mission of the Los Alamos National Laboratory (LANL) is to affect pollution prevention and waste minimization surrounding operations at their Plutonium Facility. Efforts are underway and technologies are being deployed to capture the actinide at the source thereby reducing the amount of nuclear material leaving the facility as transuranic waste. Traditional processing alternatives for decontamination, such as strong acid leaching and surface brushing have not achieved the desired recovery efficiencies for plastic or non-actinide metal matrices. Much of the nuclear material present is fixed in the matrix, and is not susceptible to recovery with surface cleaning techniques. In addition, the relatively large secondary waste volumes associated with the acid leaching have persuaded LANL to evaluate alternative recovery methods. The purpose of this paper is to describe the development and testing of a prototype chemical decontamination and co-precipitation process installed at the Los Al amos Plutonium Facility that is based on the patented TechXtract{reg_sign} system developed by Active Environmental Technologies Inc. (AET). The technology was enhanced under a PRDA contract awarded by DOE in 1997.

  20. Design analysis and risk assessment for a single stage to orbit nuclear thermal rocket

    NASA Astrophysics Data System (ADS)

    Labib, Satira I.

    Recent advances in high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This thesis describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1-15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 700 seconds. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. At the same power level, the 40 cm reactor results in the lowest radiation dose rate of the three reactors. Radiation dose rates decrease to background levels ~3.5 km from the launch site. After a one-year decay time, all of the activated materials produced by an NTR launch would be classified as Class A low-level waste. The activation of air produces significant amounts of argon-41 and nitrogen-16 within 100 m of the launch. The derived air concentration, DAC, from the activation products decays to less than unity within two days, with only argon-41 remaining. After 10 minutes of full power operation the 120 cm core corresponding to a 15 MT payload contains 2.5 x 1013, 1.4 x 1012, 1.5 x 1012, and 7.8 x 10 7 Bq of 131I, 137Cs, 90Sr, and 239Pu respectively. The decay heat after shutdown increases with increasing reactor power with a maximum decay heat of 108 kW immediately after shutdown for the 15 MT payload.

  1. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  2. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  3. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    SciTech Connect

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program

  4. Bleed cycle propellant pumping in a gas-core nuclear rocket engine system

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Easley, A. J.

    1972-01-01

    The performance of ideal and real staged primary propellant pumps and bleed-powered turbines was calculated for gas-core nuclear rocket engines over a range of operating pressures from 500 to 5000 atm. This study showed that for a required engine operating pressure of 1000 atm the pump work was about 0.8 hp/(lb/sec), the specific impulse penalty resulting from the turbine propellant bleed flow as about 10 percent; and the heat required to preheat the propellant was about 7.8 MN/(lb/sec). For a specific impulse above 2400 sec, there is an excess of energy available in the moderator due to the gamma and neutron heating that occurs there. Possible alternative pumping cycles are the Rankine or Brayton cycles.

  5. Decay heat removal from a Particle Bed Reactor Nuclear Thermal Rocket engine

    SciTech Connect

    Gustafson, E.

    1993-06-01

    Nuclear Thermal Rockets used in propulsion systems for planetary exploration will generate significant amounts of heat following normal engine shutdown due to the buildup of and decay of radioactive fission products. The amount of energy that is generated as decay heat is approximately 2-5 percent of the energy released during nominal operation. Various schemes are possible for removing this heat, including using primary coolant (hydrogen) to cool the reactor. Depending on the amount of coolant required, this may result in a large weight penalty for the mission. This paper quantifies the amount of decay heat that must be removed from the engine, shows the resulting impact on the vehicle design for particular missions, and examines possible approaches for reducing the amount of coolant required for decay heat removal. The costs and benefits of these schemes will be shown for several different missions. The missions that will be considered include both manned Mars missions and unmanned planetary exploration missions. 6 refs.

  6. A unique nuclear thermal rocket engine using a particle bed reactor

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.

    1992-01-01

    Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.

  7. KINETIC -- a system code for analyzing Nuclear Thermal Propulsion rocket engine transients

    SciTech Connect

    Schmidt, E.; Lazareth, O.; Ludewig, H.

    1993-07-01

    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of control elements (drums or rods). The worth of the control clement and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  8. Kinetic---a system code for analyzing nuclear thermal propulsion rocket engine transients

    SciTech Connect

    Schmidt, E.; Lazareth, O.; Ludewig, H. )

    1993-01-20

    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel, coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of controls element (drums or rods). The worth of the control element and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  9. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  10. Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine

    SciTech Connect

    Guo, X.; Wehrmeyer, J.A.

    1997-01-01

    A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-{var_epsilon} model, RNG k-{var_epsilon} model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained. {copyright} {ital 1997 American Institute of Physics.}

  11. Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Wehrmeyer, Joseph A.

    1997-01-01

    A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-ɛ model, RNG k-V model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained.

  12. Instabilities in uranium plasma and the gas-core nuclear rocket engine

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1972-01-01

    The nonlinear evolution of unstable sound waves in a uranium plasma has been calculated using a multiple time-scale asymptotic expansion scheme. The fluid equations used include the fission power density, radiation diffusion, and the effects of the changing degree of ionization of the uranium atoms. The nonlinear growth of unstable waves is shown to be limited by mode coupling to shorter wavelength waves which are damped by radiation diffusion. This mechanism limits the wave pressure fluctuations to values of order delta P/P approximates 0.00001 in the plasma of a typical gas-core nuclear rocket engine. The instability is thus not expected to present a control problem for this engine.

  13. Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.

    1973-01-01

    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.

  14. Design, qualification and operation of nuclear rockets for safe Mars missions

    NASA Astrophysics Data System (ADS)

    Buden, D.; Madsen, W. W.; Olson, T. S.; Redd, L. R.

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This is greatly enhanced if the system specifications take into account safety from initiation of the design. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include the following: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood, and the safety margins will be well established and confirmed by tests.

  15. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  16. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  17. Nuclear Thermal Rocket/vehicle design options for future NASA missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1995-09-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  18. Gas core nuclear thermal rocket engine research and development in the former USSR

    SciTech Connect

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept.

  19. A comparison of nuclear thermal rocket development cost and schedule for piloted missions to Mars

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Borowski, Stanley K.; Sefcik, Robert J.; Miller, Thomas J.

    1993-01-01

    In Fiscal Year 1992, NASA led a team, including DOE, universities, and industry, that evaluated various schedule and cost scenarios for development of nuclear thermal rocket propulsion systems for piloted Mars exploration. This paper summarizes the results of two of these studies: (1) a so-called 'Fast Track' approach, that would result in technology readiness level 6 (TRL-6-system ground testing complete) by the year 2000, and (2) a slower program that results in TRL-6 by 2006. Both scenarios included a concurrent engineering approach. Costs and schedules for the two scenarios are compared. In addition to the six-year schedule delay, the TRL-6 in 2006 scenario is estimated to increase the cost of the program from $4.7 billion to $5.8 billion (in real-year dollars). On the positive side, the technical program should be better, since nuclear testing of fuel elements may be possible prior to concept down-select, resulting in a more informed decision.

  20. A preliminary stage configuration for a low pressure nuclear thermal rocket (LPNTR)

    SciTech Connect

    Leyse, C.F.; Madsen, W.W.; Neuman, J.E.; Ramsthaler, J.H.; Schnitzler, B.G.

    1990-01-01

    A low pressure nuclear thermal rocket (LPNTR) is configured to meet the requirements of a nuclear stage for manned Mars exploration. Safety, reliability and performance are given equal consideration in selecting the stage configuration. Preliminary trade studies are conducted to size the engine thrust and determine the thrust chamber pressure. A weight breakdown and mechanical configuration for the selected LPNTR concept are defined. A seven engine stage configuration is selected which gives a two engine out capability and eliminates the need for engine gimbaling. The stage can be ground assembled and launched as a unit including tankage for trans Earth injection and Earth orbital capture. The tankage is configured to eliminate the need for an inert shield. The small engine will be cheaper to develop than a single engine providing full thrust, and will be compatible with stages for Earth orbital, Lunar and deep space missions. Mission analyses are presented with engine operation in a high thrust mode and in a dual range high thrust-low thrust mode. Mass savings over a reference NERVA stage are projected to be 45--55% for the high thrust operating mode and 50--60% for the dual range mode. Potential exists for further increases in performance by optimizing the thrust chamber/nozzle design. 6 refs., 10 figs., 5 tabs.

  1. Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets

    SciTech Connect

    Fittje, James E.; Buehrle, Robert J.

    2006-01-20

    The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data.

  2. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  3. Stockpile Stewardship: Los Alamos

    SciTech Connect

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2012-01-26

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  4. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2014-08-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  5. Near Earth Asteroid Human Mission Possibilities Using Nuclear Thermal Rocket (NTR) Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR is a proven technology that generates high thrust and has a specific impulse (Isp (is) approximately 900 s) twice that of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - all the requirements needed for a human mission to Mars. Ceramic metal fuel was also evaluated as a backup option. In NASA's recent Mars Design reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program - the 25 klbf 'Pewee' engine is sufficient for a human Mars mission when used in a clustered engine configuration. The 'Copernicus crewed NTR Mars transfer vehicle design developed for DRA 5.0 has significant capability that can enable reusable '1-year' round trip human missions to candidate near Earth asteroids (NEAs) like 1991 JW in 2027, or 2000 SG344 and Apophis in 2028. A robotic precursor mission to 2000 SG344 in late 2023 could provide an attractive Flight Technology Demonstration of a small NTR engine that is scalable to the 25 klbf-class engine used for human missions 5 years later. In addition to the detailed scientific data gathered from on-site inspection, human NEA missions would also provide a valuable 'check out' function for key elements of the NTR transfer vehicle (its propulsion module, TransHab and life support systems, etc.) in a 'deep space' environment prior to undertaking the longer duration Mars orbital and landing missions that

  6. Assessment of the advantages and feasibility of a nuclear rocket for a manned Mars mission

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1986-01-01

    The feasibility of rebuilding and testing a nuclear thermal rocket (NTR) for the Mars mission was investigted. Calculations indicate that an NTR would substantially reduce the Earth-orbit assemble mass compared to LOX/LH2 systems. The mass savings were 36 and 65% for the cases of total aerobraking and of total propulsive braking respectively. Consequently, the cost savings for a single mission of using an NTR, if aerobraking is feasible, are probably insufficient to warrant the NTR development. If multiple missions are planned or if propulsive braking is desired at Mars and/or at Earth, then the savings of about $7 billion will easily pay for the NTR. Estimates of the cost of rebuilding a NTR were based on the previous NERVA program's budget plus additional costs to develop a flight ready engine. The total cost to build the engine would be between $4 to 5 billion. The concept of developing a full-power test stand at Johnston Atoll in the Pacific appears very feasible. The added expense of building facilities on the island should be less than $1.4 billion.

  7. Structural Analyses of the Support Trusses for the Nuclear Thermal Rocket Engines and Drop Tanks

    NASA Astrophysics Data System (ADS)

    Myers, David E.; Kosareo, Daniel N.

    2006-01-01

    Finite element structural analyses were performed on the support trusses of the Nuclear Thermal Rocket (NTR) engines and drop tanks to verify that the proper amount of mass was allocated for these components in the vehicle sizing model. The verification included a static stress analysis, a modal analysis, and a buckling analysis using the MSC/NASTRAN™ structural analysis software package. In addition, a crippling stress analysis was performed on the truss beams using a handbook equation. Two truss configurations were examined as possible candidates for the drop tanks truss while a baseline was examined for the engine support thrust structure. For the drop tanks trusses, results showed that both truss configurations produced similar results although one performed slightly better in buckling. In addition, it was shown that the mass allocated in the vehicle sizing model was adequate although the engine thrust structure may need to be modified slightly to increase its lateral natural frequency above the minimum requirement of 8 Hz that is specified in the Delta IV Payload Planners Guide.

  8. Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Cataldo, R. L.

    2001-01-01

    The high specific impulse (I (sub sp)) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I (sub sp)) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.

  9. Mars mission opportunity and transit time sensitivity for a nuclear thermal rocket propulsion application

    SciTech Connect

    Young, A.C.; Mulqueen, J.A.; Nishimuta, E.L.; Emrich, W.J. )

    1993-01-10

    President George Bush's 1989 challenge to America to support the Space Exploration Initiative (SEI) of Back to the Moon and Human Mission to Mars'' gives the space industry an opportunity to develop effective and efficient space transportation systems. This paper presents stage performance and requirements for a nuclear thermal rocket (NTR) Mars transportation system to support the human Mars mission of the SEI. Two classes of Mars mission profiles are considered in developing the NTR propulsion vehicle performance and requirements. The two Mars mission classes include the opposition class and conjunction class. The opposition class mission is associated with relatively short Mars stay times ranging from 30 to 90 days and total mission duration of 350 to 600 days. The conjunction class mission is associated with much longer Mars stay times ranging from 500 to 600 days and total mission durations of 875 to 1,000 days. Vehicle mass scaling equations are used to determine the NTR stage mass, size, and performance range required for different Mars mission opportunities and for different Mars mission durations. Mission opportunities considered include launch years 2010 to 2018. The 2010 opportunity is the most demanding launch opportunity and the 2018 opportunity is the least demanding opportunity. NTR vehicle mass and size sensitivity to NTR engine thrust level, engine specific impulse, NTR engine thrust-to-weight ratio, and Mars surface payload are presented. NTR propulsion parameter ranges include those associated with NERVA, particle bed reactor (PBR), low-pressure, and ceramic-metal-type engine design.

  10. Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions

    NASA Astrophysics Data System (ADS)

    Borowski, S. K.; Cataldo, R. L.

    2001-01-01

    The high specific impulse (I sp) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I sp) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.

  11. Nuclear-accident dosimetry: measurements at the Los Alamos SHEBA critical assembly

    SciTech Connect

    Vasilik, D.G.; Martin, R.W.; Fuller, D.

    1981-07-01

    Criticality dosimeters were exposed to different degraded neutron and gamma-ray energy spectra from the Los Alamos Solution High Energy Burst Assembly (SHEBA). The liquid critical test assembly was operated in the continuous mode to provide a mixed source of neutron and gamma-ray radiation for the evaluation of Los Alamos criticality detector systems. Different neutron and gamma-ray spectra were generated by operating the reactor (a) shielded by 12 cm of Lucite, (b) unshielded, (c) shielded by 20 cm of concrete, and (d) shielded by 15 cm of steel. This report summarizes the dosimetry measurements conducted for these different configurations. In-air measurements were conducted with shielded and unshielded area and personnel dosimeters. Phantom measurements were made using personnel dosimeters. Combined blood-sodium and hair sulfur activation measurements of absorbed dose were also made. In addition, indium foils placed on phantoms were evaluated for the purpose of screening personnel for radiation exposure.

  12. Water supply for the Nuclear Rocket Development Station at the U.S. Atomic Energy Commission's Nevada Test Site

    USGS Publications Warehouse

    Young, Richard Arden

    1972-01-01

    The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere ; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topopah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures; however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of ground water in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average

  13. Nuclear and Astrophysics Data from the T2 Group at Los Alamos National Laboratory (LANL)

    DOE Data Explorer

    The T-2 Nuclear Information Service provides access to a variety of nuclear data, including ENDF/B cross sections, radioactive decay data, astrophysics data, photoatomic data, charged particle data, thermal neutron data, and a Nuclear Data Viewer. The data are useful for both nuclear science and nuclear engineering. The codes area gives information on computer codes used in the T-2 Group's nuclear data work.

  14. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of "zero-gravity" (0-g) experienced by cosmonauts and astronauts during their approximately 0.5-1.2 year long stays in LEO (Low Earth Orbit). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity (AG) Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced "bimodal" nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (I (sub sp)) capability of approximately 900 s - twice that of today's best chemical rockets. The AG/MTV concepts using conventional NTP carry twin cylindrical "ISS-type" habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own "closed" secondary helium-xenon gas loop and Brayton rotating unit that can generate tens of kilowatts (kW (sub e)) of spacecraft electrical power during the mission coast phase eliminating the need for large PVAs. A single inflatable

  15. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    SciTech Connect

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  16. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    NASA Technical Reports Server (NTRS)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  17. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    SciTech Connect

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-12-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation.

  18. TRANSFER OF EXCESS NUCLEAR MATERIAL FROM LOS ALAMOS TO SAVANNAH RIVER SITE FOR LONG-TERM DISPOSITION

    SciTech Connect

    C. W. HOTH; L. A. FOSTER; T. F YARBRO

    2001-06-01

    Los Alamos National Laboratory is preparing excess nuclear material for shipment to Savannah River Site (SRS) for final disposition. Prior to shipment the nuclear material will be stabilized and packaged to meet strict criteria. The criterion that must be met include: (1) the DOE stabilization, packaging and storage requirements for plutonium bearing materials, DOE-STD-3013, (2) shipping container packaging requirements, (3) SRS packaging and storage criteria, and (4) DOE Material Disposition criteria for either immobilization or MOX reactor fuel. Another issue in preparing for this transfer is the DOE certification of shipping containers and the availability of shipping containers. This transfer of the nuclear material is fully supported by the EM, DP and NN Sections of the DOE, as well as, by LANL and SRS, yet a strong collaboration is needed to meet all established requirements relating to stabilization, packaging, shipment, storage and final disposition. This paper will present the overall objectives, the issues and the planned strategy to accomplish this nuclear material transfer.

  19. Pursuing community-oriented primary care in a Russian closed nuclear city: the Sarov-Los Alamos community health partnership.

    PubMed

    Rhyne, Robert L; Hertzman, Philip A

    2002-11-01

    The Russian health care system historically has not relied on medical evidence to guide practice, uses centralized management, and is burdened by overspecialization. In 1999, a community health partnership was established between Sarov, Russia, and Los Alamos, NM, 2 cities linked by their nuclear weapons histories. Health problems addressed include asthma and diabetes, pediatric dental caries, low prevalence of breastfeeding, and adolescent drug abuse and sexually transmitted diseases. A community-oriented primary care approach was adopted that includes (1) implementing a "train the trainers" strategy to educate health professionals and lay people, (2) adapting established clinical practice guidelines based on local resources, (3) restricting use of expensive or limited resources, and (4) securing commitments from local government for expendable supplies and medications. PMID:12406797

  20. Congreve Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The British fired Congreve rockets against the United States in the War of 1812. As a result Francis Scott Key coined the phrase the 'rocket's red glare.' Congreve had used a 16-foot guide stick to help stabilize his rocket. William Hale, another British inventor, invented the stickless rocket in 1846. The U.S. Army used the Hale rocket more than 100 years ago in the war with Mexico. Rockets were also used to a limited extent by both sides in the American Civil War.

  1. Rocket Flight.

    ERIC Educational Resources Information Center

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  2. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    SciTech Connect

    Ballard, Richard O.

    2006-01-20

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.

  3. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Ballard, RIchard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  4. Crew radiation dose from the plume of a high impulse gas-core nuclear rocket during a Mars mission.

    NASA Technical Reports Server (NTRS)

    Masser, C. C.

    1971-01-01

    Analytical calculations are performed to determine the radiation dose rate and total dose to the crew of a gas-core nuclear rocket from the fission fragments located throughout the plume volume. The radiation dose from the plume fission fragments to two crew locations of 100 and 200 meters from the nozzle exit are calculated. It is found that, in the case of the most probable fission fragment retention time of 100 seconds, the crew must be protected from the radiation dose. Five centimeters of lead shielding would reduce the radiation dose by two orders of magnitude thereby protecting the crew. The increase in vehicle weight would be insignificant (7150 kg to a vehicle gross weight of 0.94 million kg).

  5. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented `Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Ballard, Richard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the ``Fundamental Root Causes'' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.

  6. Nuclear Thermal Rocket/Stage Technology Options for NASA's Future Human Exploration Missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1994-07-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners and designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (Isp ~ 850-1000 seconds) and engine thrust-to-weight ratio (~ 3-10), the NTR can also be configured as a ``dual mode'' system capable of generating stage electrical power. At present, NASA is examining a variety of mission applications for the NTR ranging from an expendable, ``single burn'' trans-lunar injection (TLI) stage for NASA's ``First Lunar Outpost'' (FLO) mission to all propulsive, ``multi-burn,'' spacecraft supporting a ``split cargo/piloted sprint'' Mars mission architecture. Two ``proven'' solid core NTR concepts are examined -one based on NERVA (Nuclear Engine for Rocket Vehicle Application)-derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide ``twisted ribbon'' fuel form developed by the Commonwealth of Independent States (CIS). Integrated systems and mission study results are used in designing ``aerobraked'' and ``all propulsive'' Mars vehicle concepts which are mass-, and volume-compatible with both a reference 240 metric tonne (t) heavy lift launch vehicle (HLLV) and a smaller 120 t HLLV option. For the ``aerobraked'' scenario, the 2010 piloted mission determines the size of the expendable trans-Mars injection (TMI) stage which is a growth version of the FLO TLI stage. An ``all-propulsive'' Moon/Mars mission architecture is also described which uses common ``modular'' engine and stage hardware consisting of: (1) clustered 15 thousand pounds force (klbf) NDR or CIS engines; (2) two ``standardized'' liquid hydrogen (LH2) tank sizes; and (3) ``dual mode'' NTR and refrigeration system technologies for long duration missions. The ``modular'' NTR approach can form the basis for a ``faster, safer, and cheaper'' space transportation system for tomorrow's piloted missions to the Moon and Mars.

  7. Inspection of alleged design and construction deficiencies in the Nuclear Materials Storage Facility at the Los Alamos National Laboratory

    SciTech Connect

    1997-01-16

    On June 8, 1994, the Office of Inspections, Office of Inspector General (OIG), Department of Energy (DOE), received a letter dated May 31, 1994, from a complainant concerning the Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory. The complainant alleged that the NMSF, completed in 1987, was so poorly designed and constructed that it was never usable and that DOE proposed to gut the entire facility and sandblast the walls. According to the complainant, ``these errors are so gross as to constitute professional malpractice in a commercial design setting.`` The complainant further stated that ``DOE proposes to renovate this facility to store large amounts of plutonium (as much as 30 metric tons, by some accounts), and it is imperative that the public receive some assurance that this waste will not recur and that the facility will be made safe.`` The purpose of our inspection was to determine if the allegations regarding the design and construction of the NMSF were accurate, and if so, to determine if the Government could recover damages from the Architect/Engineer and/or the construction contractor. We also reviewed the Department`s proposed actions to renovate the NMSF.

  8. Assessment of the facilities on Jackass Flats and other Nevada test site facilities for the new nuclear rocket program

    NASA Astrophysics Data System (ADS)

    Chandler, George; Collins, Donald; Dye, Ken; Eberhart, Craig; Hynes, Michael; Kovach, Richard; Ortiz, Robert; Perea, Jake; Sherman, Donald

    1993-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research & Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. In particular we have assumed that the program goal will be to certify a full engine system design as flight test ready. All nuclear and non-nuclear components will be individually certified as ready for such a test at sites remote from the NRDA facilities, the components transported to NRDA, and the engine assembled. We also assume that engines of 25,000-100,000 lb thrust levels will be tested with burn times of 1 hour or longer. After a test, the engine will be disassembled, time critical inspections will be executed, and a selection of components will be transported to remote inspection sites. The majority of the components will be stored for future inspection at Jackass Flats. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about 253M which includes additional contractor fees related to indirect

  9. Documents and related materials associated with the contents and the origin of the Los Alamos technical series and the national nuclear energy series

    SciTech Connect

    Hammel, E.F.

    1996-04-01

    The rationale for preparing this document arose from the fact that the author (who worked in D-Building during WWII) was asked to contribute a short article on {open_quotes}Plutonium Metallurgy at Los Alamos During the War{close_quotes} for inclusion in the 50th anniversary book, {open_quotes}Behind Tall Fences,{close_quotes} published in 1993 by the J.R. Oppenheimer Memorial Committee. I agreed, believing that all of the source material needed was readily available in the Los Alamos Technical Series, a detailed account of all of the R&D carried out at Los Alamos from 1943 to 1945. The obvious place to start was the LANL Report Library. As will be seen by the perusing the following memoranda and reports (which were assembled one at a time by following up successive leads), it finally turned out that, of all six chapters of Vol. 10, {open_quotes}Metallurgy,{close_quotes} of which Cyril S. Smith was the general editor, the only one {open_quotes}not yet issued{close_quotes} was Chapter I on {open_quotes}Plutonium Metallurgy,{close_quotes} which had been assigned to Eric R. Jette, the wartime Group Leader of the Plutonium Metallurgy Group. Jette left Los Alamos at the end of August 1956 to join the Union Carbide Research Institute in Tarrytown, New York, where he was director until June 1962 when he retired to his valley home in Pojoaque. In February 1963, he was awarded the US Atomic Energy Commission citation for meritorious contributions to the Nuclear Energy Program; shortly thereafter he died. Before accepting the fact that Chapter I did not exist, the present author undertook to find out as much as possible about the Los Alamos Technical Series, including the circumstances relating to its preparation. The related memos, etc., once retrieved, seemed worth preserving in a single report-hence this document.

  10. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    SciTech Connect

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  11. Overview of laser technology at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Lewis, G. K.; Cremers, D. A.

    Los Alamos National Laboratory has had a long history of involvement in laser sciences and has been recognized both for its large laser programs and smaller scale developments in laser technology and applications. The first significant program was with the Rover nuclear-based rocket propulsion system in 1968 to study laser initiated fusion. From here applications spread to programs in laser isotope separation and development of large lasers for fusion. These programs established the technological human resource base of highly trained laser physicists, engineers, and chemists that remain at the Laboratory today. Almost every technical division at Los Alamos now has some laser capability ranging from laser development, applications, studies on nonlinear processes, modeling and materials processing. During the past six years over eight R&D-100 Awards have been received by Los Alamos for development of laser-based techniques and instrumentation. Outstanding examples of technology developed include LIDAR applications to environmental monitoring, single molecule detection using fluorescence spectroscopy, a laser-based high kinetic energy source of oxygen atoms produced by a laser-sustained plasma, laser-induced breakdown spectroscopy (LIBS) for compositional, analysis, thin film high temperature superconductor deposition, multi-station laser welding, and direct metal deposition and build-up of components by fusing powder particles with a laser beam.

  12. Overview of laser technology at Los Alamos National Laboratory

    SciTech Connect

    Lewis, G.K.; Cremers, D.A.

    1994-09-01

    Los Alamos National Laboratory has had a long history of involvement in laser sciences and has been recognized both for its large laser programs and smaller scale developments in laser technology and applications. The first significant program was with the Rover nuclear-based rocket propulsion system in 1968 to study laser initiated fusion. From here applications spread to programs in laser isotope separation and development of large lasers for fusion. These programs established the technological human resource base of highly trained laser physicists, engineers, and chemists that remain at the Laboratory today. Almost every technical division at Los Alamos now has some laser capability ranging from laser development, applications, studies on nonlinear processes, modeling and materials processing. During the past six years over eight R&D-100 Awards have been received by Los Alamos for development of laser-based techniques and instrumentation. Outstanding examples of technology developed include LIDAR applications to environmental monitoring, single molecule detection using fluorescence spectroscopy, a laser-based high kinetic energy source of oxygen atoms produced by a laser-sustained plasma, laser-induced breakdown spectroscopy (LIBS) for compositional, analysis, thin film high temperature superconductor deposition, multi-station laser welding, and direct metal deposition and build-up of components by fusing powder particles with a laser beam.

  13. Fuel containment and stability in the gas core nuclear rocket. Final report, April 15, 1993--April 14, 1994

    SciTech Connect

    Kammash, T.

    1996-02-01

    One of the most promising approaches to advanced propulsion that could meet the objectives of the Space Exploration Initiative (SEI) is the open cycle gas core nuclear rocket (GCR). The energy in this device is generated by a fissioning uranium plasma which heats, through radiation, a propellant that flows around the core and exits through a nozzle, thereby converting thermal energy into thrust. Although such a scheme can produce very attractive propulsion parameters in the form of high specific impulse and high thrust, it does suffer from serious physics and engineering problems that must be addressed if it is to become a viable propulsion system. Among the major problems that must be solved are the confinement of the uranium plasma, potential instabilities and control problems associated with the dynamics of the uranium core, and the question of startup and fueling of such a reactor. In this paper, the authors focus their attention on the problems of equilibria and stability of the uranium care, and examine the potential use of an externally applied magnetic field for these purposes. They find that steady state operation of the reactor is possible only for certain care profiles that may not be compatible with the radiative aspect of the system. The authors also find that the system is susceptible to hydrodynamic and acoustic instabilities that could deplete the uranium fuel in a short time if not properly suppressed.

  14. Coolant flows in prismatic fuel and particle bed nuclear reactors for rocket applications

    NASA Astrophysics Data System (ADS)

    Bohachevsky, Ihor O.

    1993-01-01

    Semiempirical expressions for pressure losses in prismatic and particle bed reactors for nuclear propulsion are combined with the geometric characteristics of core configurations and coolant flow patterns. The results are used to illustrate a limitation on the coolant velocity and to develop a unified approach to a quantitative comparison of merits and demerits of different reactor core concepts intended for space applications.

  15. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  16. An investigation of dual-mode operation of a nuclear-thermal rocket engine

    SciTech Connect

    Kirk, W.L.; Hedstrom, J.C.; Moore, S.W.; McFarland, R.D.; Merrigan, M.A.; Buksa, J.J.; Cappiello, M.W.; Hanson, D.L.; Woloshun, K.A.

    1991-06-01

    A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on Rover-type reactors has been completed. Earlier studies have indicated that dual-mode systems appear attractive for electrical power levels of a few kilowatts. However, at the megawatt electrical power level considered in this study, it appears that extensive modifications to the nuclear-thermal engines would be required, the feasibility of which is unclear. Mass competitiveness at high electrical power levels is also uncertain. Further study of reactor and shield design in conjuction with mission and vehicle studies is necessary in order to determine a useful dual-mode power range. 9 refs., 20 figs., 4 tabs.

  17. Rockets Away!

    ERIC Educational Resources Information Center

    Kaahaaina, Nancy

    1997-01-01

    Describes a project that involved a rocket-design competition where students played the roles of McDonnell Douglas employees competing for NASA contracts. Provides a real world experience involving deadlines, design and performance specifications, and budgets. (JRH)

  18. ``Bimodal'' Nuclear Thermal Rocket (BNTR) Propulsion for an Artificial Gravity HOPE Mission to Callisto

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; McGuire, Melissa L.; Mason, Lee M.; Gilland, James H.; Packard, Thomas W.

    2003-01-01

    This paper summarizes the results of a year long, multi-center NASA study which examined the viability of nuclear fission propulsion systems for Human Outer Planet Exploration (HOPE). The HOPE mission assumes a crew of six is sent to Callisto. Jupiter's outermost large moon, to establish a surface base and propellant production facility. The Asgard asteroid formation, a region potentially rich in water-ice, is selected as the landing site. High thrust BNTR propulsion is used to transport the crew from the Earth-Moon L1 staging node to Callisto then back to Earth in less than 5 years. Cargo and LH2 ``return'' propellant for the piloted Callisto transfer vehicle (PCTV) is pre-deployed at the moon (before the crew's departure) using low thrust, high power, nuclear electric propulsion (NEP) cargo and tanker vehicles powered by hydrogen magnetoplasmadynamic (MPD) thrusters. The PCTV is powered by three 25 klbf BNTR engines which also produce 50 kWe of power for crew life support and spacecraft operational needs. To counter the debilitating effects of long duration space flight (~855 days out and ~836 days back) under ``0-gE'' conditions, the PCTV generates an artificial gravity environment of ``1-gE'' via rotation of the vehicle about its center-of-mass at a rate of ~4 rpm. After ~123 days at Callisto, the ``refueled'' PCTV leaves orbit for the trip home. Direct capsule re-entry of the crew at mission end is assumed. Dynamic Brayton power conversion and high temperature uranium dioxide (UO2) in tungsten metal ``cermet'' fuel is used in both the BNTR and NEP vehicles to maximize hardware commonality. Technology performance levels and vehicle characteristics are presented, and requirements for PCTV reusability are also discussed.

  19. Air-Powered Rockets.

    ERIC Educational Resources Information Center

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  20. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions

    NASA Astrophysics Data System (ADS)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza

    2006-01-01

    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  1. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 3: Nuclear thermal rocket vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  2. Nuclear Thermal Rocket/Vehicle Characteristics And Sensitivity Trades For NASA's Mars Design Reference Architecture (DRA) 5.0 Study

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2009-01-01

    This paper summarizes Phase I and II analysis results from NASA's recent Mars DRA 5.0 study which re-examined mission, payload and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal rocket (NTR) propulsion was again identified as the preferred in-space transportation system over chemical/aerobrake because of its higher specific impulse (I(sub sp)) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit (IMLEO) which is important for reducing the number of Ares-V heavy lift launches and overall mission cost. DRA 5.0 features a long surface stay (approximately 500 days) split mission using separate cargo and crewed Mars transfer vehicles (MTVs). All vehicles utilize a common core propulsion stage with three 25 klbf composite fuel NERVA-derived NTR engines (T(sub ex) approximately 2650 - 2700 K, p(sub ch) approximately 1000 psia, epsilon approximately 300:1, I(sub sp) approximately 900 - 910 s, engine thrust-toweight ratio approximately 3.43) to perform all primary mission maneuvers. Two cargo flights, utilizing 1-way minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crewed MTV during the next mission opportunity (approximately 26 months later). The cargo payload elements aerocapture (AC) into Mars orbit and are enclosed within a large triconicshaped aeroshell which functions as payload shroud during launch, then as an aerobrake and thermal protection system during Mars orbit capture and subsequent entry, descent and landing (EDL) on Mars. The all propulsive crewed MTV is a 0-gE vehicle design that utilizes a fast conjunction trajectory that allows approximately 6-7 month 1-way transit times to and from Mars. Four 12.5 kW(sub e) per 125 square meter rectangular photovoltaic arrays provide the crewed MTV with

  3. Analytical Investigation of the Effect of Turbopump Design on Gross-Weight Characteristics of a Hydrogen-Propelled Nuclear Rocket

    NASA Technical Reports Server (NTRS)

    Rohlik, Harold E.; Crouse, James E.

    1959-01-01

    The effect of turbopump design on rocket gross weight was investigated for a high-pressure bleed-type hydrogen-reactor long-range rocket with a fixed mission. Axial-flow, mixed-flow, and centrifugal pumps driven by single and twin turbines were considered. With an efficiency of 0.7 assumed for all pumps, the lowest rocket gross weights were obtained with an axial-flow or a mixed-flow pump driven by a single turbine of at least eight stages. All turbopump combinations could be used, however, with gross weight varying less than 8 percent for a given payload. Turbopump efficiencies have a significant effect on the ratio of gross weight to payload with the magnitude of the effect determined by the ratio of rocket structural weight to total propellant weight. One point in pump efficiency is worth 0.2 percent in gross weight for a given payload with a structural weight parameter of 0.1 and 0.6 percent with a structural weight parameter of 0.2. Turbine and pump weights are much less significant in terms of gross-to-pay weight ratio than the efficiencies of these components. One point in pump efficiency is equivalent to approximately 13 percent in pump weight, while 1 point in turbine efficiency is equivalent to about 7 percent in turbine weight.

  4. Internship at Los Alamos National Laboratory

    SciTech Connect

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  5. Cleanup of a Department of Energy Nonreactor Nuclear Facility: Experience at the Los Alamos National Laboratory High Pressure Tritium Laboratory

    SciTech Connect

    Horak, H.L.

    1995-02-01

    On October 25, 1990, Los Alamos National Laboratory (LANL) ceased programmatic operations at the High Pressure Tritium Laboratory (HPTL). Since that time, LANL has been preparing the facility for transfer into the Department of Energy`s (DOE`s) Decontamination and Decommissioning Program. LANL staff now has considerable operational experience with the cleanup of a 40-year-old facility used exclusively to conduct experiments in the use of tritium, the radioactive isotope of hydrogen. Tritium and its compounds have permeated the HPTL structure and equipment, have affected operations and procedures, and now dominate efforts at cleanup and disposal. At the time of shutdown, the HPTL still had a tritium inventory of over 100 grams in a variety of forms and containers.

  6. Supersonic-combustion rocket

    NASA Technical Reports Server (NTRS)

    Weber, R. J.; Franciscus, L. C. (Inventor)

    1973-01-01

    A supersonic combustion rocket is provided in which a small rocket motor is substituted for heavy turbo pumps in a conventional rocket engine. The substitution results in a substantial reduction in rocket engine weight. The flame emanating from the small rocket motor can act to ignite non-hypergolic fuels.

  7. Quantitative x-ray diffraction analyses of samples used for sorption studies by the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    Yucca Mountain, Nevada, is currently being investigated to determine its suitability to host our nation`s first geologic high-level nuclear waste repository. As part of an effort to determine how radionuclides will interact with rocks at Yucca Mountain, the Isotope and Nuclear Chemistry (INC) Division of Los Alamos National Laboratory has conducted numerous batch sorption experiments using core samples from Yucca Mountain. In order to understand better the interaction between the rocks and radionuclides, we have analyzed the samples used by INC with quantitative x-ray diffraction methods. Our analytical methods accurately determine the presence or absence of major phases, but we have not identified phases present below {approximately}1 wt %. These results should aid in understanding and predicting the potential interactions between radionuclides and the rocks at Yucca Mountain, although the mineralogic complexity of the samples and the lack of information on trace phases suggest that pure mineral studies may be necessary for a more complete understanding. 12 refs., 1 fig., 1 tab.

  8. Hybrid Rocket Propulsion for Sounding Rocket Applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A discussion of the H-225K hybrid rocket motor, produced by the American Rocket Company, is given. The H-225K motor is presented in terms of the following topics: (1) hybrid rocket fundamentals; (2) hybrid characteristics; and (3) hybrid advantages.

  9. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  10. American Rocket Society

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In addition to Dr. Robert Goddard's pioneering work, American experimentation in rocketry prior to World War II grew, primarily in technical societies. This is an early rocket motor designed and developed by the American Rocket Society in 1932.

  11. Los Alamos National Laboratory.

    ERIC Educational Resources Information Center

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  12. Los Alamos personnel and area criticality dosimeter systems

    SciTech Connect

    Vasilik, D.G.; Martin, R.W.

    1981-06-01

    Fissionable materials are handled and processed at the Los Alamos National Laboratory. Although the probability of a nuclear criticality accident is very remote, it must be considered. Los Alamos maintains a broad spectrum of dose assessment capabilities. This report describes the methods employed for personnel neutron, area neutron, and photon dose evaluations with passive dosimetry systems.

  13. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A 10,000-pound thrust hybrid rocket motor is tested at Stennis Space Center's E-1 test facility. A hybrid rocket motor is a cross between a solid rocket and a liquid-fueled engine. It uses environmentally safe solid fuel and liquid oxygen.

  14. Dumbo: A pachydermal rocket motor

    NASA Technical Reports Server (NTRS)

    Kirk, Bill

    1991-01-01

    A brief historical account is given of the Dumbo nuclear reactor, a type of folded flow reactor that could be used for rocket propulsion. Much of the information is given in viewgraph form. Viewgraphs show details of the reactor system, fuel geometry, and key characteristics of the system (folded flow, use of fuel washers, large flow area, small fuel volume, hybrid modulator, and cermet fuel).

  15. ENDF-related Nuclear Data from the T-2 Group (T-2 Nuclear Information Service) at Los Alamos National Laboratory (LANL)

    DOE Data Explorer

    The T-2 Nuclear Information Service provides access to a variety of nuclear data, including ENDF/B cross sections, radioactive decay data, astrophysics data, photoatomic data, charged particle data, thermal neutron data, a Map to the Nuclides, and a Nuclear Data Viewer. The T-2 Group is a participating member of the U.S. Nuclear Data Program. ENDF/B-VII information presented here includes: • ENDF/B-VII Neutron Data • ENDF/BVII Thermal Scattering Data • ENDF/B-VII Proton Data • ENDF/B-VII Photonuclear Data Each of these sections of the website is an index to the contents of the specifically named ENDF/B-VII library of data. Links in each index provide access to more information about the individual materials, including raw and interpreted views of the ENDF file, and PDF plots of the cross sections and distributions. Also provided is a section of information and graphs related to the Energy Balance of ENDF/B-VII and table of neutron Kerma data. [Information taken from http://t2.lanl.gov/data/data.html

  16. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  17. Sounding rockets in Antarctica

    NASA Technical Reports Server (NTRS)

    Alford, G. C.; Cooper, G. W.; Peterson, N. E.

    1982-01-01

    Sounding rockets are versatile tools for scientists studying the atmospheric region which is located above balloon altitudes but below orbital satellite altitudes. Three NASA Nike-Tomahawk sounding rockets were launched from Siple Station in Antarctica in an upper atmosphere physics experiment in the austral summer of 1980-81. The 110 kg payloads were carried to 200 km apogee altitudes in a coordinated project with Arcas rocket payloads and instrumented balloons. This Siple Station Expedition demonstrated the feasibility of launching large, near 1,000 kg, rocket systems from research stations in Antarctica. The remoteness of research stations in Antarctica and the severe environment are major considerations in planning rocket launching expeditions.

  18. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  19. Rocket pollution reduction system

    SciTech Connect

    Geisler, R.L.

    1994-01-04

    A system is provided for reducing the emissions of hydrochloric acid (HCl) from solid fuel rockets, especially during ground disposal. An aqueous solution of an alkali metal hydroxide is injected as a mist into the rocket chamber as the rocket fuel is burned. The reaction of the alkali metal with hydrogen chloride (HCl) produces a salt and thereby minimizes the presence of hydrochloric acid in the rocket exhaust. An injected neutralizing material which reduces hydrochloric acid, but which produces less thrust than an equal weight of rocket fuel, can be injected into an operating rocket which carries a payload high above the earth, with the injected material being injected only while the rocket is at a lower altitude when hydrochloric acid is most undesirable. The injected material can be produced by a small auxiliary rocket device whose exhaust is delivered directly to the main rocket chamber, and with the exhaust of the auxiliary rocket device including a high proportion of magnesium to react with the hydrochloric acid with minimal degradation of rocket performance. 4 figs.

  20. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  1. Kauai Test Facility two experiment rocket campaign. [Kauai Test Facility; Two Experiment Rocket Campaign

    SciTech Connect

    Not Available

    1991-01-01

    The Kauai Test Facility (KTF) is a Department of Energy (DOE) owned facility located at Barking Sands, on the west coast of the island of Kauai, Hawaii. The KTF has a rocket preparation and launching capability for both rail-launched and vertical-launched capability for both rail-launched and vertical-launched rockets. Launches primarily support high altitude scientific research and re-entry vehicle systems and carry experimental non-nuclear payloads. This environmental assessment (EA) has been prepared for the Two Experiment Rocket Campaign, during which the STRYPI/LACE (STRYPI is not an acronym -- its the name of the rocket; LACE is the acronym for Low Altitude Compensation Experiment) and the RAP-501 (Rocket Accelerated Penetration) will be flown in conjunction from the KTF in February 1991 to reduce costs. There have been numerous rocket campaigns at the KTF in prior years that have used the same motors to be used in the current two experiment rocket campaign. The main difference noted in this environmental documentation is that the two rockets have not previously been flown in conjunction. Previous National Environmental Policy Act (NEPA) approvals of launches using these motors were limited to different and separate campaigns with diverse sources of funding. 2 figs., 5 tabs.

  2. Performance potential of gas-core and fusion rockets - A mission applications survey.

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Willis, E. A., Jr.

    1971-01-01

    This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-

  3. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  4. New Generation of Los Alamos Opacity Tables

    NASA Astrophysics Data System (ADS)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  5. Energy production using fission fragment rockets

    NASA Astrophysics Data System (ADS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: approximately twice the efficiency if the fission fragment energy can be directly converted into electricity; reduction of the buildup of a fission fragment inventory in the reactor could avoid a Chernobyl type disaster; and collection of the fission fragments outside the reactor could simplify the waste disposal problem.

  6. Advanced nuclear thermal propulsion concepts

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  7. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  8. Life Saving Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    By 1870, American and British inventors had found other ways to use rockets. For example, the Congreve rocket was capable of carrying a line over 1,000 feet to a stranded ship. In 1914, an estimated 1,000 lives were saved by this technique.

  9. Model Rockets and Microchips.

    ERIC Educational Resources Information Center

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  10. Postal Rocket Stamps

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the 19th Century, experiments in America, Europe, and elsewhere attempted to build postal rockets to deliver mail from one location to another. The idea was more novel than successful. Many stamps used in these early postal rockets have become collector's items.

  11. Rockets -- Part II.

    ERIC Educational Resources Information Center

    Leitner, Alfred

    1982-01-01

    If two rockets are identical except that one engine burns in one-tenth the time of the other (total impulse and initial fuel mass of the two engines being the same), which rocket will rise higher? Why? The answer to this question (part 1 response in v20 n6, p410, Sep 1982) is provided. (Author/JN)

  12. The Los Alamos primer

    SciTech Connect

    Serber, R.

    1992-01-01

    This book contains the 1943 lecture notes of Robert Serber. Serber was a protege of J. Robert Oppenheimer and member of the team that built the first atomic bomb - reveal what the Los Alamos scientists knew, and did not know, about the terrifying weapon they were building.

  13. Indians Repulse British With Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the early introduction of rockets to Europe, they were used only as weapons. Enemy troops in India repulsed the British with rockets. Later, in Britain, Sir William Congreve developed a rocket that could fire to about 9,000 feet. The British fired Congreve rockets against the United States in the War of 1812.

  14. Another Look at Rocket Thrust

    ERIC Educational Resources Information Center

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  15. Baking Soda and Vinegar Rockets

    NASA Astrophysics Data System (ADS)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-02-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors1,2 that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the experimentally measured rocket height. Baking soda and vinegar rockets present fewer safety concerns and require a smaller launch area than rapid combustion chemical rockets. Both kits were of nearly identical design, costing ˜20. The rockets required roughly 30 minutes of assembly time consisting of mostly taping the soft plastic fuselage to the Styrofoam nose cone.

  16. Upper Los Alamos canyon fact sheet

    SciTech Connect

    Berger, Jeffrey H

    2007-01-01

    Los Alamos National Laboratory is planning to make environmental assessments in portions of Upper Los Alamos Canyon. Upper Los Alamos Canyon is one of the areas included in the 2005 Consent Order agreed to by Los Alamos National Laboratory, the National Nuclear Security Administration, and the New Mexico Environment Department. As such, it must be evaluated for potential contamination. The area is located within and south of the Los Alamos townsite in Technical Areas 00, 01, 03, 32, 41, 43, and 61 of Los Alamos National Laboratory and includes a total of 115 solid waste management units and areas of concern. This area was home to some of the earliest operations at Los Alamos, dating from the 1940s. Of the 115 solid-waste management units and areas of concern, 54 have been addressed previously. The remaining 61 are the focus of this project. These include septic tanks and outfalls, sanitary and industrial waste lines, storm drains, soil contamination areas, landfill and surface disposal areas, transformer sites, and incinerators. The Consent Order requires the Laboratory to evaluate historical work sites for the potential presence of residual contamination. It also requires the Laboratory to identify and implement corrective actions should contamination be found. The Laboratory began performing these types of activities in the 1990s. The Upper Los Alamos Canyon project entails: (1) collecting soil and rock samples using the most efficient and least-invasive methods practicable; (2) defining the nature and extent of any residual contamination associated with each solid waste management unit or area of concern; and (3) gathering additional data if needed to evaluate potential remedial alternatives. A variety of methods, including studies of engineering drawings, nonintrusive geophysical surveys, and trenching, may be used to identify the final sampling locations. The field team then determines which collection method to use at each location, based on such site

  17. ASTRID rocket flight test

    SciTech Connect

    Whitehead, J.C.; Pittenger, L.C.; Colella, N.J.

    1994-07-01

    On February 4, 1994, we successfully flight tested the ASTRID rocket from Vandenberg Air Force Base. The technology for this rocket originated in the Brilliant Pebbles program and represents a five-year development effort. This rocket demonstrated how our new pumped-propulsion technology-which reduced the total effective engine mass by more than one half and cut the tank mass to one fifth previous requirements-would perform in atmospheric flight. This demonstration paves the way for potential cost-effective uses of the new propulsion system in commercial aerospace vehicles, exploration of the planets, and defense applications.

  18. Los Alamos Team Demonstrates Bottle Scanner Technology

    SciTech Connect

    Espy, Michelle; Schultz, Larry

    2014-05-06

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  19. Los Alamos Team Demonstrates Bottle Scanner Technology

    ScienceCinema

    Espy, Michelle; Schultz, Larry

    2014-06-02

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  20. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  1. Rocket engine numerical simulation

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.

  2. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Stennis Space Center conducts a test on a hybrid rocket motor fed by a liquid oxygen turbopump. The test occurred at the E-1 test facility. The test was believed to be the first of its kind in the world.

  3. Antares Rocket Lifts Off!

    NASA Video Gallery

    NASA commercial space partner Orbital Sciences Corp. of Dulles, Va., launched its Cygnus cargo spacecraft aboard its Antares rocket at 10:58 a.m. EDT Wednesday from the Mid-Atlantic Regional Spacep...

  4. Robust Rocket Engine Concept

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1995-01-01

    The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.

  5. Rocketing into Adaptive Inquiry.

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Dowling, Thomas W.

    2002-01-01

    Defines adaptive inquiry and argues for employing this method which allows lessons to be shaped in response to student needs. Illustrates this idea by detailing an activity in which teams of students build rockets. (DDR)

  6. Rocket University at KSC

    NASA Technical Reports Server (NTRS)

    Sullivan, Steven J.

    2014-01-01

    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  7. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  8. Infrasound Rocket Signatures

    NASA Astrophysics Data System (ADS)

    Olson, J.

    2012-09-01

    This presentation reviews the work performed by our research group at the Geophysical Institute as we have applied the tools of infrasound research to rocket studies. This report represents one aspect of the effort associated with work done for the National Consortium for MASINT Research (NCMR) program operated by the National MASINT Office (NMO) of the Defense Intelligence Agency (DIA). Infrasound, the study of acoustic signals and their propagation in a frequency band below 15 Hz, enables an investigator to collect and diagnose acoustic signals from distant sources. Absorption of acoustic energy in the atmosphere decreases as the frequency is reduced. In the infrasound band signals can propagate hundreds and thousands of kilometers with little degradation. We will present an overview of signatures from rockets ranging from small sounding rockets such as the Black Brandt and Orion series to larger rockets such as Delta 2,4 and Atlas V. Analysis of the ignition transients provides information that can uniquely identify the motor type. After the rocket ascends infrasound signals can be used to characterize the rocket and identify the various events that take place along a trajectory such as staging and maneuvering. We have also collected information on atmospheric shocks and sonic booms from the passage of supersonic vehicles such as the shuttle. This review is intended to show the richness of the unique signal set that occurs in the low-frequency infrasound band.

  9. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  10. Review of liquid metal heat pipe work at Los Alamos

    SciTech Connect

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs.

  11. ROCKET PORT CLOSURE

    DOEpatents

    Mattingly, J.T.

    1963-02-12

    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  12. General view of the Solid Rocket Booster's (SRB) Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Rockets in World War I

    NASA Technical Reports Server (NTRS)

    2004-01-01

    World War I enlisted rockets once again for military purposes. French pilots rigged rockets to the wing struts of their airplanes and aimed them at enemy observation balloons filled with highly inflammable hydrogen.

  14. Rocket motor aeroacoustics

    NASA Astrophysics Data System (ADS)

    Hegde, U. G.; Strahle, W. C.

    1983-10-01

    Vibration problems in solid propellant rocket motors are investigated. A class of interior flows modelled to simulate flow conditions inside rocket motor cavities is considered. Turbulence generated pressure fluctuations are shown to consist of two components - acoustic and hydrodynamics. The Bernoulli enthalpy theory of aeroacoustics is employed to extract acoustic pressure spectra from experimentally obtained turbulence data and acoustic impedance values at flow boundaries. The effects of turbulence intensities, sidewall acoustic impedance, axial mass blowing distribution, length to diameter ratio of the cavity and different mass flux on the acoustic pressure level are investigated. Typical pressure levels, under rocket motor conditions, are calculated using the A/B model of propellant response. Estimates of the hydrodynamic component of the pressure fluctuation are provided for the case of fully developed turbulent pipe flow terminated by a choked nozzle.

  15. The development of the atomic bomb, Los Alamos

    SciTech Connect

    Seidel, R.W.

    1993-11-01

    The historical presentation begins with details of the selection of Los Alamos as the site of the Army installation. Wartime efforts of the Army Corps of Engineers, and scientists to include the leader of Los Alamos, Robert Oppenheimer are presented. The layout and construction of the facilities are discussed. The monumental design requirements of the bombs are discussed, including but not limited to the utilization of the second choice implosion method of detonation, and the production of bomb-grade nuclear explosives. The paper ends with a philosophical discussion on the use of nuclear weapons.

  16. Advanced liquid rockets

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    A program to substitute iridium coated rhenium for silicide coated niobium in thrust chamber fabrications is reviewed. The life limiting phenomena in each of these material systems is also reviewed. Coating cracking and spalling is not a problem with iridium-coated rhenium as in silicide-coated niobium. Use of the new material system enables an 800 K increase in thruster operating temperature from around 1700 K for niobium to 2500 K for rhenium. Specific impulse iridium-coated rhenium rockets is nominally 20 seconds higher than comparable niobium rockets in the 22 N class and nominally 10 seconds higher in the 440 N class.

  17. Baking Soda and Vinegar Rockets

    ERIC Educational Resources Information Center

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  18. Rocket center Peenemuende - Personal memories

    NASA Technical Reports Server (NTRS)

    Dannenberg, Konrad; Stuhlinger, Ernst

    1993-01-01

    A brief history of Peenemuende, the rocket center where Von Braun and his team developed the A-4 (V-2) rocket under German Army auspices, and the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes, is presented. Emphasis is placed on the expansion of operations beginning in 1942.

  19. Critical partnerships: Los Alamos, universities, and industry

    SciTech Connect

    Berger, C.L.

    1997-04-01

    Los Alamos National Laboratory, situated 35 miles northwest of Santa Fe, NM, is one of the Department of Energy`s three Defense Programs laboratories. It encompasses 43 square miles, employees approximately 10,000 people, and has a budget of approximately $1.1B in FY97. Los Alamos has a strong post-cold war mission, that of reducing the nuclear danger. But even with that key role in maintaining the nation`s security, Los Alamos views partnerships with universities and industry as critical to its future well being. Why is that? As the federal budget for R&D comes under continued scrutiny and certain reduction, we believe that the triad of science and technology contributors to the national system of R&D must rely on and leverage each others capabilities. For us this means that we will rely on these partners to help us in 5 key ways: We expect that partnerships will help us maintain and enhance our core competencies. In doing so, we will be able to attract the best scientists and engineers. To keep on the cutting edge of research and development, we have found that partnerships maintain the excellence of staff through new and exciting challenges. Additionally, we find that from our university and corporate partners we often learn and incorporate {open_quotes}best practices{close_quotes} in organizational management and operations. Finally, we believe that a strong national system of R&D will ensure and enhance our ability to generate revenues.

  20. This Is Rocket Science!

    NASA Astrophysics Data System (ADS)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  1. Liquid rocket engine turbines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included.

  2. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust. The test was the first test ever anywhere outside Russia of a Russian designed and built engine.

  3. Hybrid rocket instability

    NASA Technical Reports Server (NTRS)

    Greiner, B.; Frederick, R. A., Jr.

    1993-01-01

    The paper provides a brief review of theoretical and experimental studies concerned with hybrid rocket instability. The instabilities discussed include atomization and mixing instabilities, chuffing instabilities, pressure coupled combustion instabilities, and vortex shedding. It is emphasized that the future use of hybrid motor systems as viable design alternatives will depend on a better understanding of hybrid instability.

  4. Hybrid rocket instability

    NASA Astrophysics Data System (ADS)

    Greiner, B.; Frederick, R. A., Jr.

    1993-06-01

    The paper provides a brief review of theoretical and experimental studies concerned with hybrid rocket instability. The instabilities discussed include atomization and mixing instabilities, chuffing instabilities, pressure coupled combustion instabilities, and vortex shedding. It is emphasized that the future use of hybrid motor systems as viable design alternatives will depend on a better understanding of hybrid instability.

  5. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  6. Water Rocket Workout.

    ERIC Educational Resources Information Center

    Esler, William K.; Sanford, Daniel

    1989-01-01

    Water rockets are used to present Newton's three laws of motion to high school physics students. Described is an outdoor activity which uses four students per group. Provides a launch data sheet to record height, angle of elevation, amount of water used, and launch number. (MVL)

  7. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  8. This "Is" Rocket Science!

    ERIC Educational Resources Information Center

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  9. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  10. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  11. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  12. Solid rocket motors

    NASA Technical Reports Server (NTRS)

    Carpenter, Ronn L.

    1993-01-01

    Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.

  13. Dr. Goddard Transports Rocket

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Dr. Robert H. Goddard tows his rocket to the launching tower behind a Model A Ford truck, 15 miles northwest of Roswell, New Mexico. 1930- 1932. Dr. Goddard has been recognized as the 'Father of American Rocketry' and as one of three pioneers in the theoretical exploration of space. Robert Hutchings Goddard was born in Worcester, Massachusetts, on October 15, 1882. He was a theoretical scientist as well as a practical engineer. His dream was the conquest of the upper atmosphere and ultimately space through the use of rocket propulsion. Dr. Goddard, who died in 1945, was probably as responsible for the dawning of the Space Age as the Wright Brothers were for the begining of the Air Age. Yet his work attracted little serious attention during his lifetime. When the United States began to prepare for the conquest of space in the 1950's, American rocket scientists began to recognize the debt owed to the New England professor. They discovered that it was virtually impossible to construct a rocket or launch a satellite without acknowledging the work of Dr. Goddard. This great legacy was covered by more than 200 patents, many of which were issued after his death.

  14. Thermal rocketing and the Laser Geodynamic Satellite (LAGEOS-1)

    SciTech Connect

    Miller, W.A.

    1997-08-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. LAGEOS is the most accurately tracked satellite in orbit. It is a totally passive, dense spherical satellite covered with 426 cube corner reflectors. Besides its great utility in measuring the Earth`s length of day and polar wobble, this satellite can be used to measure, for the first time, the general relativistic frame-dragging effect. Of the five dominant error sources in such an experiment, the largest one involves surface interaction of thermal forces (thermal rocketing) and its influence on the orbital nodal precession. The project objective was to enhance an already available theoretical model (computer code) developed at Los Alamos based on new optical-spin data obtained at the University of Maryland. The project objective was met and the enhanced code will serve as the new spin-dynamics model for future LAGEOS satellite missions.

  15. Rockets using Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

  16. Los Alamos National Laboratory

    SciTech Connect

    Dogliani, Harold O

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  17. Environmental Programs at Los Alamos National Laboratory

    SciTech Connect

    Jones, Patricia

    2012-07-11

    Summary of this project is: (1) Teamwork, partnering to meet goals - (a) Building on cleanup successes, (b) Solving legacy waste problems, (c) Protecting the area's environment; (2) Strong performance over the past three years - (a) Credibility from four successful Recovery Act Projects, (b) Met all Consent Order milestones, (c) Successful ramp-up of TRU program; (3) Partnership between the National Nuclear Security Administration's Los Alamos Site Office, DOE Carlsbad Field Office, New Mexico Environment Department, and contractor staff enables unprecedented cleanup progress; (4) Continued focus on protecting water resources; and (5) All consent order commitments delivered on time or ahead of schedule.

  18. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  19. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  20. Hybrid rocket performance

    NASA Astrophysics Data System (ADS)

    Frederick, Robert A., Jr.

    1992-12-01

    A hybrid rocket is a system consisting of a solid fuel grain and a gaseous or liquid oxidizer. Figure 1 shows three popular hybrid propulsion cycles that are under current consideration. NASA MSFC has teamed with industry to test two hybrid propulsion systems that will allow scaling to motors of potential interest for Titan and Atlas systems, as well as encompassing the range of interest for SEI lunar ascent stages and National Launch System Cargo Transfer Vehicle (NLS CTV) and NLS deorbit systems. Hybrid systems also offer advantages as moderate-cost, environmentally acceptable propulsion system. The objective of this work was to recommend a performance prediction methodology for hybrid rocket motors. The scope included completion of: a literature review, a general methodology, and a simplified performance model.

  1. Hybrid rocket performance

    NASA Technical Reports Server (NTRS)

    Frederick, Robert A., Jr.

    1992-01-01

    A hybrid rocket is a system consisting of a solid fuel grain and a gaseous or liquid oxidizer. Figure 1 shows three popular hybrid propulsion cycles that are under current consideration. NASA MSFC has teamed with industry to test two hybrid propulsion systems that will allow scaling to motors of potential interest for Titan and Atlas systems, as well as encompassing the range of interest for SEI lunar ascent stages and National Launch System Cargo Transfer Vehicle (NLS CTV) and NLS deorbit systems. Hybrid systems also offer advantages as moderate-cost, environmentally acceptable propulsion system. The objective of this work was to recommend a performance prediction methodology for hybrid rocket motors. The scope included completion of: a literature review, a general methodology, and a simplified performance model.

  2. Sirius-5 experimental rocket

    NASA Astrophysics Data System (ADS)

    Kerstein, A.; Omersel, P.; Goljuf, L.; Zidaric, M.

    1981-09-01

    After giving a historical account of multistage rocket development in Yugoslavia, a status report is presented for the three-stage Sirius-5 program. The rocket is composed of: (1) a solid-propellant first stage, consisting of a cluster of eight standard motors yielding 220 kN thrust for 1.3 sec; (2) a mixed amines/inhibited red fuming nitric acid, bipropellant second stage generating 50 kN thrust; and (3) a third stage of the same design as the second but with only 62 kg of fuel, by contrast to 168 kg. Among the design principles adhered to are: minimization of the number of components, conservative design margins, and specifications for key subsystems based on demonstration programs. The primary use of this system is in amateur rocketry, being able to carry a 20 kg payload to 150 km.

  3. Advanced rocket propulsion

    NASA Astrophysics Data System (ADS)

    Obrien, Charles J.

    1993-02-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  4. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  5. Los Alamos National Laboratory Overview

    SciTech Connect

    Neu, Mary

    2010-06-02

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  6. Small rocket tornado probe

    SciTech Connect

    Colgate, S.A.

    1982-01-01

    A (less than 1 lb.) paper rock tornado probe was developed and deployed in an attempt to measure the pressure, temperature, ionization, and electric field variations along a trajectory penetrating a tornado funnel. The requirements of weight and materials were set by federal regulations and a one-meter resolution at a penetration velocity of close to Mach 1 was desired. These requirements were achieved by telemetering a strain gage transducer for pressure, micro size thermister and electric field, and ionization sensors via a pulse time telemetry to a receiver on board an aircraft that digitizes a signal and presents it to a Z80 microcomputer for recording on mini-floppy disk. Recording rate was 2 ms for 8 channels of information that also includes telemetry rf field strength, magnetic field for orientation on the rocket, zero reference voltage for the sensor op amps as well as the previously mentioned items also. The absolute pressure was recorded. Tactically, over 120 h were flown in a Cessna 210 in April and May 1981, and one tornado was encountered. Four rockets were fired at this tornado, missed, and there were many equipment problems. The equipment needs to be hardened and engineered to a significant degree, but it is believed that the feasibility of the probe, tactics, and launch platform for future tornado work has been proven. The logistics of thunderstorm chasing from a remote base in New Mexico is a major difficulty and reliability of the equipment another. Over 50 dummy rockets have been fired to prove trajectories, stability, and photographic capability. Over 25 electronically equipped rockets have been fired to prove sensors transmission, breakaway connections, etc. The pressure recovery factor was calibrated in the Air Force Academy blow-down tunnel. There is a need for more refined engineering and more logistic support.

  7. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2004-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  8. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2003-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.

  9. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2008-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  10. Excitation by rockets

    NASA Technical Reports Server (NTRS)

    Tammadge, C. E.

    1975-01-01

    Standard methods of excitation are not always practical when a single mode of known frequency requires investigation. This form of investigation is often required on a modified aircraft. A new method of excitation was developed and proved in flight, which consists of firing small rocket charges attached to the aircraft structure. Damping values at gradually increasing airspeeds are obtained, as in Stick Jerk tests, and flutter speeds predicted.

  11. Solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.; Shafer, J. I.; Behm, J. W.; Strand, L. D. (Inventor)

    1973-01-01

    The characteristics of a solid propellant rocket engine with a controlled rate of thrust buildup to a desired thrust level are discussed. The engine uses a regressive burning controlled flow solid propellant igniter and a progressive burning main solid propellant charge. The igniter is capable of operating in a vacuum and sustains the burning of the propellant below its normal combustion limit until the burning propellant surface and combustion chamber pressure have increased sufficiently to provide a stable chamber pressure.

  12. Microfabricated Liquid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)

    2003-01-01

    Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.

  13. Two-Dimensional Motions of Rockets

    ERIC Educational Resources Information Center

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  14. Nuclear propulsion tradeoffs for manned Mars missions

    SciTech Connect

    Walton, L.A.; Malloy, J.D. )

    1991-01-05

    A conjunction class split/sprint manned Mars exploration mission was studied to evaluate tradeoffs in performance characteristics of nuclear thermal rockets. A Particle Bed Reactor-based nuclear thermal rocket was found to offer a 38% to 52% total mass savings compared with a NERVA-based nuclear thermal rocket for this mission. This advantage is primarily due to the higher thrust-to-weight ratio of the Particle Bed Reactor nuclear rocket. The mission is enabled by nuclear thermal rockets. It cannot be performed practically using chemical propulsion.

  15. Nuclear propulsion tradeoffs for manned Mars missions

    NASA Astrophysics Data System (ADS)

    Walton, Lewis A.; Malloy W Nuclear Technologies, John D.

    1991-01-01

    A conjunction class split/sprint manned Mars exploration mission was studied to evaluate tradeoffs in performance characteristics of nuclear thermal rockets. A Particle Bed Reactor-based nuclear thermal rocket was found to offer a 38% to 52% total mass savings compared with a NERVA-based nuclear thermal rocket for this mission. This advantage is primarily due to the higher thrust-to-weight ratio of the Particle Bed Reactor nuclear rocket. The mission is enabled by nuclear thermal rockets. It cannot be performed practically using chemical propulsion.

  16. Nuclear propulsion tradeoffs for manned Mars missions

    NASA Astrophysics Data System (ADS)

    Walton, Lewis A.; Malloy, John D.

    A conjunction class split/sprint manned Mars exploration mission was studied to evaluate tradeoffs in performance characteristics of nuclear thermal rockets. A Particle Bed Reactor-based nuclear thermal rocket was found to offer a 38 to 52 percent total mass savings compared with a NERVA-based nuclear thermal rocket for this mission. This advantage is primarily due to the higher thrust-to-weight ratio of the Particle Bed Reactor nuclear rocket. The mission is enabled by nuclear thermal rockets. It cannot be performed practically using chemical propulsion.

  17. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  18. Beginnings of rocket development in the czech lands (Czechoslovakia)

    NASA Astrophysics Data System (ADS)

    Plavec, Michal

    2011-11-01

    Although the first references are from the 15th Century when both Hussites and crusaders are said to have used rockets during the Hussite Wars (also known as the Bohemian Wars) there is no strong evidence that rockets were actually used at that time. It is worth noting that Konrad Kyeser, who described several rockets in his Bellifortis manuscript written 1402-1405, served as advisor to Bohemian King Wenceslas IV. Rockets were in fact used as fireworks from the 16th century in noble circles. Some of these were built by Vavřinec Křička z Bitý\\vsky, who also published a book on fireworks, in which he described how to build rockets for firework displays. Czech soldiers were also involved in the creation of a rocket regiment in the Austrian (Austro-Hungarian) army in the first half of the 19th century. The pioneering era of modern rocket development began in the Czech lands during the 1920s. The first rockets were succesfully launched by Ludvík Očenášek in 1930 with one of them possibly reaching an altitude of 2000 metres. Vladimír Mandl, lawyer and author of the first book on the subject of space law, patented his project for a stage rocket (vysokostoupající raketa) in 1932, but this project never came to fruition. There were several factories during the so-called Protectorate of Bohemia and Moravia in 1939-1945, when the Czech lands were occupied by Nazi Germany, where parts for German Mark A-4/V-2 rockets were produced, but none of the Czech technicians or constructors were able to build an entire rocket. The main goal of the Czech aircraft industry after WW2 was to revive the stagnant aircraft industry. There was no place to create a rocket industry. Concerns about a rocket industry appeared at the end of the 1950s. The Political Board of the Central Committee of the Czechoslovak Communist Party started to study the possibilities of creating a rocket industry after the first flight into space and particularly after US nuclear weapons were based in Italy

  19. ISS Update: VASIMR Plasma Rocket

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Ken Bollweg, VASIMR Project Manager, about VASIMR (Variable Specific Impulse Magnetoplasma Rocket), recent testing progress and future applications. ...

  20. Electric rockets get a boost

    SciTech Connect

    Ashley, S.

    1995-12-01

    This article reports that xenon-ion thrusters are expected to replace conventional chemical rockets in many nonlaunch propulsion tasks, such as controlling satellite orbits and sending space probes on long exploratory missions. The space age dawned some four decades ago with the arrival of powerful chemical rockets that could propel vehicles fast enough to escape the grasp of earth`s gravity. Today, chemical rocket engines still provide the only means to boost payloads into orbit and beyond. The less glamorous but equally important job of moving vessels around in space, however, may soon be assumed by a fundamentally different rocket engine technology that has been long in development--electric propulsion.

  1. If Only Newton Had a Rocket.

    ERIC Educational Resources Information Center

    Hammock, Frank M.

    1988-01-01

    Shows how model rocketry can be included in physics curricula. Describes rocket construction, a rocket guide sheet, calculations and launch teams. Discusses the relationships of basic mechanics with rockets. (CW)

  2. Micro-Rockets for the Classroom.

    ERIC Educational Resources Information Center

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  3. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  4. Rocket + Science = Dialogue

    NASA Technical Reports Server (NTRS)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  5. Rocket Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul

    1999-01-01

    A comprehensive, automated, and user-friendly software program was developed to predict the noise and ignition over-pressure environment generated during the launch of a rocket. The software allows for interactive modification of various parameters affecting the generated noise environment. Predictions can be made for different launch scenarios and a variety of vehicle and launch mount configurations. Moreover, predictions can be made for both near-field and far-field locations on the ground and any position on the vehicle. Multiple engine and fuel combinations can be addressed, and duct geometry can be incorporated efficiently. Applications in structural design are addressed.

  6. ION ROCKET ENGINE

    DOEpatents

    Ehlers, K.W.; Voelker, F. III

    1961-12-19

    A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

  7. Status of optical model activities at Los Alamos National Laboratory

    SciTech Connect

    Young, P.G.

    1995-12-01

    An update will be given of activities at Los Alamos National Laboratory aimed at developing optical model potentials for applied calculations. Recent work on a coupled-channels potential for neutron reactions on {sup 241,243}Am and spherical neutron potential updates for {sup 56}Fe and {sup 59}Co will be presented, together with examples of their application in nuclear reaction calculations with the GNASH code system. New potentials utilized in evaluations at Livermore for {sup 12}C, {sup 14}N and {sup 16}O are described and additional potentials from earlier analyses at Los Alamos of Ti, V, and Ni data are made available for possible inclusion in the Reference Input Parameter Library (RIPL) for nuclear model calculations of nuclear data. Specific activities directed at development of the optical potential segment of the RIPL will be summarized.

  8. Coal-Fired Rocket Engine

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

  9. Otrag rocket experiments in Africa

    NASA Technical Reports Server (NTRS)

    1978-01-01

    West German rocket manufacturers are testing their products in Zaire. Hundreds of pipes (12 m x 80 cm) are bundled together inside the test missiles, which are fired into Zaire's prairie. The reactions of neighboring nations, as well as leading countries of the world, are presented concerning the rocket tests.

  10. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  11. Nuclear Propulsion for Space, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Schwenk, Francis C.

    The operation of nuclear rockets with respect both to rocket theory and to various fuels is described. The development of nuclear reactors for use in nuclear rocket systems is provided, with the Kiwi and NERVA programs highlighted. The theory of fuel element and reactor construction and operation is explained with particular reference to rocket…

  12. Mars Rocket Propulsion System

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  13. Rhenium Rocket Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  14. Acoustic/infrasonic rocket engine signatures

    NASA Astrophysics Data System (ADS)

    Tenney, Stephen M.; Noble, John M.; Whitaker, Rodney W.; ReVelle, Douglas O.

    2003-09-01

    Infrasonics offers the potential of long-range acoustic detection of explosions, missiles and even sounds created by manufacturing plants. The atmosphere attenuates acoustic energy above 20 Hz quite rapidly, but signals below 10 Hz can propagate to long ranges. Space shuttle launches have been detected infrasonically from over 1000 km away and the Concorde airliner from over 400 km. This technology is based on microphones designed to respond to frequencies from .1 to 300 Hz that can be operated outdoors for extended periods of time with out degrading their performance. The US Army Research Laboratory and Los Alamos National Laboratory have collected acoustic and infrasonic signatures of static engine testing of two missiles. Signatures were collected of a SCUD missile engine at Huntsville, AL and a Minuteman engine at Edwards AFB. The engines were fixed vertically in a test stand during the burn. We will show the typical time waveform signals of these static tests and spectrograms for each type. High resolution, 24-bit data were collected at 512 Hz and 16-bit acoustic data at 10 kHz. Edwards data were recorded at 250 Hz and 50 Hz using a Geotech Instruments 24 bit digitizer. Ranges from the test stand varied from 1 km to 5 km. Low level and upper level meteorological data was collected to provide full details of atmospheric propagation during the engine test. Infrasonic measurements were made with the Chaparral Physics Model 2 microphone with porous garden hose attached for wind noise suppression. A B&K microphone was used for high frequency acoustic measurements. Results show primarily a broadband signal with distinct initiation and completion points. There appear to be features present in the signals that would allow identification of missile type. At 5 km the acoustic/infrasonic signal was clearly present. Detection ranges for the types of missile signatures measured will be predicted based on atmospheric modeling. As part of an experiment conducted by ARL

  15. Operation Argus. Sounding rocket measurements - Project Jason

    SciTech Connect

    Beavers, J.L.; Allen, L.; Dennis, J.L.; Welch, J.A.; Walton, R.B.

    1984-08-31

    The general objective was to measure the distribution of beta particles originating from the Argus shots and subsequently trapped in the earth's magnetic field. This was accomplished with the aid of high-altitude sounding rockets containing radiation counters. The flux of high-energy electrons was measured as a function of: (1) magnetic latitude from 23 to 39 degrees; (2) altitude from sea level to 900 km; (3) electron energy; (4) time after the nuclear explosion; and (5) angular distribution with respect to magnetic field.

  16. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    SciTech Connect

    Stange, Sy; Mayo, Douglas R.; Herrera, Gary D.; McLaughlin, Anastasia D.; Montoya, Charles M.; Quihuis, Becky A.; Trujillo, Julio B.; Van Pelt, Craig E.; Wenz, Tracy R.

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  17. NASA Now: Rocket Engineering

    NASA Video Gallery

    What’s the difference between fission and fusion? What are the applications & benefits of nuclear power & propulsion at NASA? How can NASA gain nuclear energy’s benefits for space exploration? ...

  18. Nuclear Thermal Propulsion (NTP)

    NASA Video Gallery

    NASA's history with nuclear thermal propulsion (NTP) technology goes back to the earliest days of the Agency. The Manned Lunar Rover Vehicle and the Nuclear Engine for Rocket Vehicle Applications p...

  19. RFQ development at Los Alamos

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Stokes, R.H.

    1982-01-01

    The basic principles of the radio-frequency quadrupole (RFQ) linac are reviewed and a summary of past and present Los Alamos work is presented. Some beam-dynamics effects, important for RFQ design, are discussed. A design example is shown for xenon and a brief discussion of low-frequency RFQ structures is given.

  20. Rocket/launcher structural dynamics

    NASA Technical Reports Server (NTRS)

    Ferragut, N. J.

    1976-01-01

    The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.

  1. Exergy Analysis of Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, Andrew; Mesmer, Bryan; Watson, Michael D.

    2015-01-01

    Exergy is defined as the useful work available from a system in a specified environment. Exergy analysis allows for comparison between different system designs, and allows for comparison of subsystem efficiencies within system designs. The proposed paper explores the relationship between the fundamental rocket equation and an exergy balance equation. A previously derived exergy equation related to rocket systems is investigated, and a higher fidelity analysis will be derived. The exergy assessments will enable informed, value-based decision making when comparing alternative rocket system designs, and will allow the most efficient configuration among candidate configurations to be determined.

  2. Dynamic characterization of solid rockets

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural dynamics of solid rockets in-general was studied. A review is given of the modes of vibration and bending that can exist for a solid propellant rocket, and a NASTRAN computer model is included. Also studied were the dynamic properties of a solid propellant, polybutadiene-acrylic acid-acrylonitrile terpolymer, which may be used in the space shuttle rocket booster. The theory of viscoelastic materials (i.e, Poisson's ratio) was employed in describing the dynamic properties of the propellant. These studies were performed for an eventual booster stage development program for the space shuttle.

  3. Process Modeling and Analysis for Radioactive Solid Waste Management at Los Alamos

    SciTech Connect

    Kornreich, D.E.; Parker, R.Y.; Gonzales-Lujan, J.M.

    2006-07-01

    Los Alamos National Laboratory has created a discrete-event simulation model of the nuclear waste drum characterization operations the 'processing/inspection - Los Alamos model of drums equivalent' ({pi} a la mode). This model takes drum inventory data, process-related information, and planned processing priorities related to the solid-waste management operations at Los Alamos to assess the resulting characterization process and resulting schedule for drum shipments to the Waste Isolation Pilot Plant. The model tracks the drum inventory, material inventory, and equipment as a function of time. Data from the model and some sample results are presented in this paper. (authors)

  4. Penetrating radiation: applications at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  5. Space Nuclear Propulsion Systems and Applications

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1972-01-01

    The basic principles of the operation of a nuclear rocket engine are reviewed along with a summary of the early history. In addition, the technology status in the nuclear rocket program for development of the flight-rated NERVA engine is described, and applications for this 75,000-pound thrust engine and the results of nuclear stage studies are presented. Advanced research and supporting technology activities in the nuclear rocket program are also summarized.

  6. World Data Center A (rockets and satellites) catalogue of data. Volume 1, part A: Sounding rockets

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A cumulative listing of all scientifically successful rockets that have been identified from various sources is presented. The listing starts with the V-2 rocket launched on 7 March 1947 and contains all rockets identified up to 31 December 1971.

  7. Navigating the Rockets Educator Guide

    NASA Video Gallery

    In this brief video overview, learn how to navigate the Rockets Educator Guide. Get a glimpse of the resources available in the guide, including a pictorial history, an overview of the physics cont...

  8. Small Solid Rocket Motor Test

    NASA Video Gallery

    It was three-two-one to brilliant fire as NASA's Marshall Space Flight Center tested a small solid rocket motor designed to mimic NASA's Space Launch System booster. The Mar. 14 test provides a qui...

  9. Solid rocket motor internal insulation

    NASA Technical Reports Server (NTRS)

    Twichell, S. E. (Editor); Keller, R. B., Jr.

    1976-01-01

    Internal insulation in a solid rocket motor is defined as a layer of heat barrier material placed between the internal surface of the case propellant. The primary purpose is to prevent the case from reaching temperatures that endanger its structural integrity. Secondary functions of the insulation are listed and guidelines for avoiding critical problems in the development of internal insulation for rocket motors are presented.

  10. Solid Rocket Motor Acoustic Testing

    SciTech Connect

    Rogers, J.D.

    1999-03-31

    Acoustic data are often required for the determination of launch and powered flight loads for rocket systems and payloads. Such data are usually acquired during test firings of the solid rocket motors. In the current work, these data were obtained for two tests at a remote test facility where we were visitors. This paper describes the data acquisition and the requirements for working at a remote site, interfacing with the test hosts.

  11. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    SciTech Connect

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclear Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been corrected

  12. High-energy density physics at Los Alamos

    NASA Astrophysics Data System (ADS)

    Byrnes, P.

    1993-03-01

    This brochure describes the facilities of the Above Ground Experiments 2 (AGEX 2) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of the United States. The mission of the AGEX 2 program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high pressure and temperature. The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide--including our own Trident and Mercury lasers--to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in a wide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures.

  13. Small rocket flowfield diagnostic chambers

    NASA Technical Reports Server (NTRS)

    Morren, Sybil; Reed, Brian

    1993-01-01

    Instrumented and optically-accessible rocket chambers are being developed to be used for diagnostics of small rocket (less than 440 N thrust level) flowfields. These chambers are being tested to gather local fluid dynamic and thermodynamic flowfield data over a range of test conditions. This flowfield database is being used to better understand mixing and heat transfer phenomena in small rockets, influence the numerical modeling of small rocket flowfields, and characterize small rocket components. The diagnostic chamber designs include: a chamber design for gathering wall temperature profiles to be used as boundary conditions in a finite element heat flux model; a chamber design for gathering inner wall temperature and static pressure profiles; and optically-accessible chamber designs, to be used with a suite of laser-based diagnostics for gathering local species concentration, temperature, density, and velocity profiles. These chambers were run with gaseous hydrogen/gaseous oxygen (GH2/GO2) propellants, while subsequent versions will be run on liquid oxygen/hydrocarbon (LOX/HC) propellants. The purpose, design, and initial test results of these small rocket flowfield diagnostic chambers are summarized.

  14. Improved hybrid rocket fuel

    NASA Technical Reports Server (NTRS)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  15. Liquid rocket engine nozzles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The nozzle is a major component of a rocket engine, having a significant influence on the overall engine performance and representing a large fraction of the engine structure. The design of the nozzle consists of solving simultaneously two different problems: the definition of the shape of the wall that forms the expansion surface, and the delineation of the nozzle structure and hydraulic system. This monography addresses both of these problems. The shape of the wall is considered from immediately upstream of the throat to the nozzle exit for both bell and annular (or plug) nozzles. Important aspects of the methods used to generate nozzle wall shapes are covered for maximum-performance shapes and for nozzle contours based on criteria other than performance. The discussion of structure and hydraulics covers problem areas of regeneratively cooled tube-wall nozzles and extensions; it treats also nozzle extensions cooled by turbine exhaust gas, ablation-cooled extensions, and radiation-cooled extensions. The techniques that best enable the designer to develop the nozzle structure with as little difficulty as possible and at the lowest cost consistent with minimum weight and specified performance are described.

  16. RFQ development at Los Alamos

    SciTech Connect

    Armstrong, D.D.; Cornelius, W.D.; Purser, F.O.; Jameson, R.A.; Wangler, T.P.

    1984-01-01

    We report recent progress on the two radio-frequency quadrupole (RFQ) structures being developed at Los Alamos. First, we report on the second 425-MHz RFQ for H/sup -/ acceleration, which is being built in a research effort to understand and further develop the RFQ. Second, we discuss progress on the 80-MHz cw RFQ for deuterons, which is being built for the Fusion Materials Irradiation Test (FMIT) facility.

  17. Rocket Science 101 Interactive Educational Program

    NASA Technical Reports Server (NTRS)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  18. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  19. Marshall Team Recreates Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.

  20. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    SciTech Connect

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  1. Historic Manhattan Project Sites at Los Alamos

    ScienceCinema

    McGehee, Ellen

    2014-05-22

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.

  2. Small-Scale Rocket Motor Test

    NASA Video Gallery

    Engineers at NASA's Marshall Space Flight Center in Huntsville, Ala. successfully tested a sub-scale solid rocket motor on May 27. Testing a sub-scale version of a rocket motor is a cost-effective ...

  3. Summary of safeguards interactions between Los Alamos and Chinese scientists

    SciTech Connect

    Eccleston, G.W.

    1994-04-20

    Los Alamos has been collaborating since 1984 with scientists from the Chinese Institute of Atomic Energy (CIAE) to develop nuclear measurement instrumentation and safeguards systems technologies that will help China support implementation of the nonproliferation treaty (NPT). To date, four Chinese scientists have visited Los Alamos, for periods of six months to two years, where they have studied nondestructive assay instrumentation and learned about safeguards systems and inspection techniques that are used by International Atomic Energy Agency (IAEA) inspectors. Part of this collaboration involves invitations from the CIAE to US personnel to visit China and interact with a larger number of Institute staff and to provide a series of presentations on safeguards to a wider audience. Typically, CIAE scientists, Beijing Institute of Nuclear Engineering (BINE) staff, and officials from the Government Safeguards Office attend the lectures. The BINE has an important role in developing the civilian nuclear power fuel cycle. BINE is designing a reprocessing plant for spent nuclear fuel from Chinese nuclear Power reactors. China signed the nonproliferation treaty in 1992 and is significantly expanding its safeguards expertise and activities. This paper describes the following: DOE support for US and Chinese interactions on safeguards; Chinese safeguards; impacts of US-China safeguards interactions; and possible future safeguards interactions.

  4. Automated Rocket Propulsion Test Management

    NASA Technical Reports Server (NTRS)

    Walters, Ian; Nelson, Cheryl; Jones, Helene

    2007-01-01

    The Rocket Propulsion Test-Automated Management System provides a central location for managing activities associated with Rocket Propulsion Test Management Board, National Rocket Propulsion Test Alliance, and the Senior Steering Group business management activities. A set of authorized users, both on-site and off-site with regard to Stennis Space Center (SSC), can access the system through a Web interface. Web-based forms are used for user input with generation and electronic distribution of reports easily accessible. Major functions managed by this software include meeting agenda management, meeting minutes, action requests, action items, directives, and recommendations. Additional functions include electronic review, approval, and signatures. A repository/library of documents is available for users, and all items are tracked in the system by unique identification numbers and status (open, closed, percent complete, etc.). The system also provides queries and version control for input of all items.

  5. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  6. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  7. Saving Lives With Rocket Power

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Thiokol Propulsion uses NASA's surplus rocket fuel to produce a flare that can safely destroy land mines. Through a Memorandum of Agreement between Thiokol and Marshall Space Flight Center, Thiokol uses the scrap Reusable Solid Rocket Motor (RSRM) propellant. The resulting Demining Device was developed by Thiokol with the help of DE Technologies. The Demining Device neutralizes land mines in the field without setting them off. The Demining Device flare is placed next to an uncovered land mine. Using a battery-triggered electric match, the flare is then ignited. Using the excess and now solidified rocket fuel, the flare burns a hole in the mine's case and ignites the explosive contents. Once the explosive material is burned away, the mine is disarmed and no longer dangerous.

  8. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    A technology program aimed at improving the performance of low thrust chemical rockets for spacecraft onboard applications is reviewed. Navier-Stokes analyses of low Reynolds number rocket flows have been compared with local flow property measurements obtained using Rayleigh and Raman diagnostics in a 100 N gaseous hydrogen/gaseous oxygen rocket. It is indicated that computational domain should include the near injector flow and that the shear layer combustion model needs improvement. The system analyses and technical efforts intended to develop a technology base for higher performance propellants are presented. A LOX/hydrazine engine is demonstrated to have a 95 percent theoretical c-star which translates into a projected vacuum specific impulse of 345 seconds at an area ratio of 204:1.

  9. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale. PMID:27219742

  10. Emergency egress fixed rocket package

    NASA Technical Reports Server (NTRS)

    Allen, Margaret A. (Inventor)

    1989-01-01

    A method of effecting the in-flight departure of an astronaut from a shuttle craft, and apparatus is presented. A plurality of removeable compartment covers are provided, behind which rocket assemblies are stowed. To actuate the system, the astronaut pulls off a tab from one of the compartments which exposes a cannister having a lanyard with a hook. The lanyard extends around a spring biased sleeve with a safety lever preventing rocket ignition until the hook is moved by the astronaut. Upward movement of the hook allows the trigger mechanism to actuate the system resulting in the rods projecting out of the hatch. When the lanyard becomes taut, a lanyard elongation detector transmits a signal to the firing mechanisms to fire the rocket.

  11. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a

  12. Rocket study of auroral processes

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.

    1981-01-01

    Abstracts are presented of previously published reports analyzing data from three Echo 3 rocket flights. Particle experiments designed for the Terrier-Malmute flight, the Echo 5 flight, and the Norwegian Corbier Ferdinand 50 flight are described and their flight performance evaluated. Theoretical studies on auroral particle precipitation are reviewed according to observations made in three regions of space: (1) the region accessible to rockets and low altitude satellites (few hundred to a few thousand kilometers); (2) the region extending from 4000 to 8000 km (S3-3 satellite range); and (3) near the equatorial plane (geosynchronous satellite measurements). Questions raised about auroral arc formation are considered.

  13. Helping HAN for hybrid rockets

    NASA Astrophysics Data System (ADS)

    Ramohalli, Kumar; Dowler, Warren

    1995-01-01

    Hydroxyl amine nitrate (HAN) is a powerful oxidizer for hybrid rocket flight motors. Miscible with water up to 95% by mass, it also has high density and has been extensively characterized for materials compatibility, safety, transportation, storage and handling. Before any serious attempt to use the proposed oxidizer in hybrids, though, the usual performance figures must first be obtained. The simplest are time-independent, equilibrium rocket performance numbers that include chamber temperature, temperature at the nozzle throat, and key species in the exhaust. These numbers must be followed by several other important performance evaluation, including burning rates, pressure dependence, susceptibility to instabilities and temperature sensitivity.

  14. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The paper describes the Advanced Solid Rocket Motor (ASRM) that is being developed to replace, in 1997, the Redesigned Solid Rocket Motor which currently boosts the Space Shuttle. The ASRM will contain features to improve motor safety (fewer potential leak paths, improved seal materials, stronger case material, and fewer nozzle and case joints), an improved ignition system using through-bulkhead initiators, and highly reproducible manufacturing and inspection techniques with a large number of automated procedures. The ASRM will be able to deliver 12,000 lbs greater payloads to any given orbit of the Shuttle. There are also environmental improvements, realized by waste propellant recovery.

  15. Rocket Launch Trajectory Simulations Mechanism

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul E.; Hauss, Sharon; Voska, N. (Technical Monitor)

    2002-01-01

    The design and development of a Trajectory Simulation Mechanism (TSM) for the Launch Systems Testbed (LST) is outlined. In addition to being one-of-a-kind facility in the world, TSM serves as a platform to study the interaction of rocket launch-induced environments and subsequent dynamic effects on the equipment and structures in the close vicinity of the launch pad. For the first time, researchers and academicians alike will be able to perform tests in a laboratory environment and assess the impact of vibroacoustic behavior of structures in a moving rocket scenario on ground equipment, launch vehicle, and its valuable payload or spacecraft.

  16. Los Alamos Science: Number 16

    SciTech Connect

    Cooper, N.G.

    1988-01-01

    It was an unusually stimulating day and a half at Los Alamos when two Nobel Laureates in physiology, a leading paleontologist, and a leading bio-astrophysicist came together to discuss ''Unsolved Problems in the Science of Life,'' the topic of the second in a series of special meetings sponsored by the Fellows of the Laboratory. Just like the first one on ''Creativity in Science,'' this colloquium took us into a broader arena of ideas and viewpoints than is our usual daily fare. To contemplate the evolution and mysteries of intelligent life from the speakers' diverse points of view at one time, in one place was indeed a rare experience.

  17. Premature ignition of a rocket motor.

    SciTech Connect

    Moore, Darlene Ruth

    2010-10-01

    During preparation for a rocket sled track (RST) event, there was an unexpected ignition of the zuni rocket motor (10/9/08). Three Sandia staff and a contractor were involved in the accident; the contractor was seriously injured and made full recovery. The data recorder battery energized the low energy initiator in the rocket.

  18. F. Gomez Arias' rocket vehicle project

    NASA Technical Reports Server (NTRS)

    Carreras, R.

    1977-01-01

    Research done by Spanish pioneer rocket scientists in the 19th century was investigated with major emphasis placed on F. Gomez Arias' rocket vehicle project. Arias, considered the world's first designer of rocket propelled, manned aircraft, was interested in solving the problem of space navigation. Major concerns included ascent and direction of heavier-than-airmachines, as well as ascent and direction of balloons.

  19. The United States sounding rocket program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The United States sounding rocket program is discussed. The program is concerned with the fields of solar physics, galactic astronomy, fields and particles, ionospheric physics, aeronomy, and meteorology. Sounding rockets are described with respect to propulsion systems, gross weight, and capabilities. Instruments used to conduct ionospheric probing missions are examined. Results of previously conducted sounding rocket missions are included.

  20. Measuring Model Rocket Engine Thrust Curves

    ERIC Educational Resources Information Center

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  1. The Swedish Rocket Corps, 1833 - 1845

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.

    1977-01-01

    Rockets for pyrotechnic displays used in Sweden in the 19th century are examined in terms of their use in war situations. Work done by the Swedish chemist J. J. Berzelius, who analyzed and improved the propellants of such rockets, and the German engineer, Martin Westermaijer, who researched manufacturing techniques of these rockets is also included.

  2. Analyzing Flows In Rocket Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Walton, J. T.; Mcguire, M.

    1994-01-01

    CAC is analytical prediction program to study heat-transfer and fluid-flow characteristics of circular coolant passage. Predicts, as function of time, axial and radial fluid conditions, temperatures of passage walls, rates of flow in each coolant passage, and approximate maximum material temperatures. Written in ANSI standard FORTRAN 77.

  3. United States Nuclear Rocket Company (USNRC)

    NASA Technical Reports Server (NTRS)

    Hardin, L. A.

    2014-01-01

    Historically, the development of advanced space technology has been accomplished by the federal government providing funding to commercial companies through the standard contracting process. Although recently, commercial space ventures, such as Space X, have begun to develop enhanced commercial space launch capabilities, and many companies provide space related services - including satellite development and operations, advanced technology development still requires (and should require) participation by the federal agency assigned this role - the National Aeronautics and Space Administration (NASA). However, this standard funding model may not be the most efficient and stable means of developing the advanced technology systems. And while the federal government does not need to be involved in areas where private industry can reasonably operate, it should remain the leader in supporting the development of new and advanced space technologies to further increase our national capability. And as these technologies mature, then private industry can begin the commercialization process, freeing up resources and funds for NASA to develop the next generations of advanced space technology. In fact, simply examining the last decades of space technology development shows that there is room for improvement. Part of the problem is that there are realistically two space frontiers. There is the commercialization frontier (the realm of Space X and others) and the exploratory frontier (the realm of NASA.). Often technologies that can support the exploratory frontier can also immediately support the commercialization frontier. Yet, these technologies are still developed under the standard model of federal funding and contracting. Is that really the best way to proceed? In this paper, the argument is put forward that a new process is required, a new paradigm. A consortium of federal agencies as well as commercial companies is needed - in a collaborative rather than a contractual relationship.

  4. Adventures in scientific nuclear diplomacy

    SciTech Connect

    Hecker, Siegfried S.

    2014-05-09

    A former director of Los Alamos National Laboratory offers a first-person perspective on the important contributions scientists can make toward improving the safety and security of nuclear materials and reducing the global nuclear dangers in an evolving world.

  5. Adventures in scientific nuclear diplomacy

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.

    2014-05-01

    A former director of Los Alamos National Laboratory offers a first-person perspective on the important contributions scientists can make toward improving the safety and security of nuclear materials and reducing the global nuclear dangers in an evolving world.

  6. Nuclear thermal propulsion program overview

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  7. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2015-01-05

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  8. Los Alamos Explosives Performance Key to Stockpile Stewardship

    SciTech Connect

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  9. Optimum rocket propulsion for energy-limited transfer

    NASA Technical Reports Server (NTRS)

    Zuppero, Anthony; Landis, Geoffrey A.

    1991-01-01

    In order to effect large-scale return of extraterrestrial resources to Earth orbit, it is desirable to optimize the propulsion system to maximize the mass of payload returned per unit energy expended. This optimization problem is different from the conventional rocket propulsion optimization. A rocket propulsion system consists of an energy source plus reaction mass. In a conventional chemical rocket, the energy source and the reaction mass are the same. For the transportation system required, however, the best system performance is achieved if the reaction mass used is from a locally available source. In general, the energy source and the reaction mass will be separate. One such rocket system is the nuclear thermal rocket, in which the energy source is a reactor and the reaction mass a fluid which is heated by the reactor and exhausted. Another energy-limited rocket system is the hydrogen/oxygen rocket where H2/O2 fuel is produced by electrolysis of water using a solar array or a nuclear reactor. The problem is to choose the optimum specific impulse (or equivalently exhaust velocity) to minimize the amount of energy required to produce a given mission delta-v in the payload. The somewhat surprising result is that the optimum specific impulse is not the maximum possible value, but is proportional to the mission delta-v. In general terms, at the beginning of the mission it is optimum to use a very low specific impulse and expend a lot of reaction mass, since this is the most energy efficient way to transfer momentum. However, as the mission progresses, it becomes important to minimize the amount of reaction mass expelled, since energy is wasted moving the reaction mass. Thus, the optimum specific impulse will increase with the mission delta-v. Optimum I(sub sp) is derived for maximum payload return per energy expended for both the case of fixed and variable I(sub sp) engines. Sample missions analyzed include return of water payloads from the moons of Mars and of

  10. Commercial Development Suborbital Rocket Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The enclosed report provides information on the sixth flight of the Consort suborbital rocket series. Consort 6 is currently scheduled for launch on February 19, 1993, with lift off at 11:00 a.m., Mountain Time. It will carry seven materials and biotechnology experiments, two accelerometer systems, a controller and battery packs in a module nearly 12 feet tall and weighing approximately 1,004 pounds. Consort 6 will reach an apogee of approximately 200 miles providing about 7 minutes of microgravity time. The entire mission, from launch to touchdown, is expected to last approximately 15 minutes. The Consort series is part of a unique suborbital rocket launch services program conducted by the Office of Advanced Concepts and Technology (OACT) in conjunction with its Centers for the Commercial Development of Space (CCDS). This service is managed through the Consortium for Materials Development in Space (CMDS), a CCDS based University of Alabama in Huntsville (UAH). at the This suborbital rocket program provides CCDS investigators with a microgravity environment to achieve commercial development objectives, or to test developmental hardware or techniques in preparation for orbital flights or additional follow-on work. Rocket and launch services for Consort 6, including use of the Starfire 1 launch vehicle, are provided by EER Systems Corporation. Integration of the payload into Starfire 1 will be handled by McDonnell Douglas Space Systems Company.

  11. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  12. Solid rocket motor witness test

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.

    1991-01-01

    The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.

  13. The Need for Faster Rockets

    NASA Video Gallery

    The rockets NASA has used have been great, but they can’t take us far enough, fast enough to get us to places we haven’t been before like Mars or beyond. A solution is to use plasma as propulsi...

  14. Liquid propellant rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  15. Laser-heated rocket studies

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.; Wu., P. K. S.; Caledonia, G. E.; Pirri, A. N.

    1976-01-01

    CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient.

  16. Launch Excitement with Water Rockets

    ERIC Educational Resources Information Center

    Sanchez, Juan Carlos; Penick, John

    2007-01-01

    Explosions and fires--these are what many students are waiting for in science classes. And when they do occur, students pay attention. While we can't entertain our students with continual mayhem, we can catch their attention and cater to their desires for excitement by saying, "Let's make rockets." In this activity, students make simple, reusable…

  17. Rocket Ignition Demonstrations Using Silane

    NASA Technical Reports Server (NTRS)

    Pal, Sibtosh; Santoro, Robert; Watkins, William B.; Kincaid, Kevin

    1998-01-01

    Rocket ignition demonstration tests using silane were performed at the Penn State Combustion Research Laboratory. A heat sink combustor with one injection element was used with gaseous propellants. Mixtures of silane and hydrogen were used as fuel, and oxygen was used as oxidizer. Reliable ignition was demonstrated using fuel lead and and a swirl injection element.

  18. Radiation/convection coupling in rocket motors and plumes

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Saladino, A. J.

    1993-01-01

    The three commonly used propellant systems - H2/O2, RP-1/O2, and solid propellants - primarily radiate as molecular emitters, non-scattering small particles, and scattering larger particles, respectively. Present technology has accepted the uncoupling of the radiation analysis from that of the flowfield. This approximation becomes increasingly inaccurate as one considers plumes, interior rocket chambers, and nuclear rocket propulsion devices. This study will develop a hierarchy of methods which will address radiation/convection coupling in all of the aforementioned propulsion systems. The nature of the radiation/convection coupled problem is that the divergence of the radiative heat flux must be included in the energy equation and that the local, volume-averaged intensity of the radiation must be determined by a solution of the radiative transfer equation (RTE). The intensity is approximated by solving the RTE along several lines of sight (LOS) for each point in the flowfield. Such a procedure is extremely costly; therefore, further approximations are needed. Modified differential approximations are being developed for this purpose. It is not obvious which order of approximations are required for a given rocket motor analysis. Therefore, LOS calculations have been made for typical rocket motor operating conditions in order to select the type approximations required. The results of these radiation calculations, and the interpretation of these intensity predictions are presented herein.

  19. Experiment of rocket-ram annular combustor

    NASA Astrophysics Data System (ADS)

    Yatsuyanagi, N.; Sakamoto, H.; Sato, K.; Ono, F.; Sasaki, M.; Takahashi, M.

    In this experiment, the double-nozzle type of rocket-ram annular combustor with a total thrust of 5kN was designed and tested with varying ratios of thrust produced by rocket and ram. Thrust and pressure distribution along the common expansion nozzle, i.e., the ram combustor nozzle, were measured to investigate the effect of interaction of the two expansion gases on thrust. Enhancement of specific impulse was verified by the experiments. That is, the specific impulse gains in rocket-ram parallel operation, the ratio of rocket thrust to ram thrust being 50 to 50, were found to be 190 percent of gains in pure rocket operation.

  20. Pegasus Rocket Model

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable

  1. Nuclear Propulsion in Space (1968)

    ScienceCinema

    None

    2014-06-17

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  2. Nuclear Propulsion in Space (1968)

    SciTech Connect

    2012-06-23

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  3. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2014-06-25

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  4. Los Alamos, Toshiba probing Fukushima with cosmic rays

    SciTech Connect

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  5. Los Alamos PC estimating system

    SciTech Connect

    Stutz, R.A.; Lemon, G.D.

    1987-01-01

    The Los Alamos Cost Estimating System (QUEST) is being converted to run on IBM personal computers. This very extensive estimating system is capable of supporting cost estimators from many different and varied fields. QUEST does not dictate any fixed method for estimating. QUEST supports many styles and levels of detail estimating. QUEST can be used with or without data bases. This system allows the estimator to provide reports based on levels of detail defined by combining work breakdown structures. QUEST provides a set of tools for doing any type of estimate without forcing the estimator to use any given method. The level of detail in the estimate can be mixed based on the amount of information known about different parts of the project. The system can support many different data bases simultaneously. Estimators can modify any cost in any data base.

  6. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    SciTech Connect

    Redondo, Antonio

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  7. Rocket vehicle targeting for the PLACES ionospheric plasma test series

    NASA Astrophysics Data System (ADS)

    Rollstin, L. R.

    1984-02-01

    The PLACES (Position Location And Communication Effects Simulations) test program, conducted in December 1980 at Eglin Gulf Test Range, involved a series of ionospheric releases of barium/barium-nitrate vapor. The Defense Nuclear Agency sponsored program investigated effects of a structured ionospheric plasma (similar to that produced by a high-altitude nuclear explosion) on satellite navigation systems and provided in situ measurement of plasma structure. Terrier-Tomahawk rocket systems boosted the barium payloads, beacon payloads (plasma occultation experiment), and probe payloads (plasma in situ measurement). Drifting plasma tracking procedures, beacon- and probe-vehicle targeting procedures, and vehicle flight test results are presented.

  8. Los Alamos safeguards program overview and NDA in safeguards

    SciTech Connect

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented.

  9. Gamma-ray isotopic analysis development at Los Alamos

    SciTech Connect

    Thomas E. Sampson

    1999-11-01

    This report describes the development history and characteristics of software developed in the Safeguards Science and Technology group at Los Alamos for gamma-ray isotopic analysis. This software analyzes the gamma-ray spectrum from measurements performed on actinide samples (principally plutonium and uranium) of arbitrary size, geometry, and physical and chemical composition. The results are obtained without calibration using only fundamental tabulated nuclear constants. Characteristics of the current software versions are discussed in some detail and many examples of implemented measurement systems are shown.

  10. Tiger Team Assessment of the Los Alamos National Laboratory

    SciTech Connect

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  11. Los Alamos contribution to target diagnostics on the National Ignition Facility

    SciTech Connect

    Mack, J.M.; Baker, D.A.; Caldwell, S.E.

    1994-07-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ``phase I diagnostics.`` Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given.

  12. Nuclear Physics Made Very, Very Easy

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1968-01-01

    The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.

  13. Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  14. Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  15. Preliminary guided rocket feasibility study

    NASA Technical Reports Server (NTRS)

    Nolan, M. B.; Celmer, J. J.

    1973-01-01

    The feasibility of actively guiding sounding rockets to reduce impact dispersion has been investigated. The theoretical probability of range safety thrust termination for several high performance rockets was combined with the cost of acquiring the extended range at White Sands Missile Range (WSMR) to establish a guidance system price ceiling of $20K per flight. Guiding the Black Brant VC (BBVC) for the first five seconds of flight results in sufficient dispersion reduction to impact within the standard range boundaries at WSMR. The guidance system thrust level required to statically control the vehicle to a nominal-wind weighted trajectory for five seconds is between 150-200 pounds. A six-degree-of-freedom trajectory program with guidance simulation capability has been developed and the equations are presented.

  16. Theory for Plasma Rocket Propulsion

    NASA Astrophysics Data System (ADS)

    Grabbe, Crockett

    2009-11-01

    Electrical propulsion of rockets is developing potentially into the use of 3 different thrusters for future long-distance space missions that primarily involve plasma dynamics. These are the Magnetoplasmadynamic (MPD) Thruster, the Plasma Induction Thruster (PID), and the VASIMIR Thruster. The history of the development of electrical propulsion into these prospects and the current research of particularly the VASIMIR Thruster are reviewed. Theoretical questions that need to be addressed in that development are explored.

  17. Liquid rocket engine turbopump gears

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Design and fabrication of gear drives for rocket engine turbopumps are described in the sequence encountered during the design process as follows: (1) selection of overall arrangement; (2) selection of gear type; (3) preliminary sizing; (4) lubrication system design; (5) detail tooth design; (6) selection of gear materials; and (7) gear fabrication and testing as it affects the design. The description is oriented towards the use of involute spur gears, although reference material for helical gears is also cited.

  18. Fluid mechanics of spinning rockets

    NASA Astrophysics Data System (ADS)

    Flandro, G. A.; Vanmoorhem, W. K.; Shorthill, R.; Chen, K.; Woolsey, M.

    1987-01-01

    This report presents the results of a detailed investigation of the influence of time-dependent combustion gas flows on the attitude dynamics of spinning rocket propelled space vehicles. The work was motivated by a need to understand the origins of a potentially serious system performance problem first detected in the PAM-D series of spin stabilized upper stages. Small wobbling (often referred to as nutation or coning) is induced during separation of the rocket motor burn. The growth ceased abruptly at motor burnout, and final cone angles as large as 17 deg were reached in some flights. The same phenomenon was encountered in two flights of the PAM-DII, a similar vehicle utilizing a larger motor. Conventional theories of spinning rocket dynamics failed to explain this behavior. Since the telemetry data shows that the severity of the problem depends on spacecraft mass properties and other system parameters, it is crucial that the origins of the instability be understood completely in order that serious mission degradation can be avoided in future orbit raising operations. A costly interim fix, which sidesteps the need to understand the physical origins of the problem, is the use of a strap-on nutation control system as used in the Air Force SGS II missions.

  19. Rocket Engine Altitude Simulation Technologies

    NASA Technical Reports Server (NTRS)

    Woods, Jody L.; Lansaw, John

    2010-01-01

    John C. Stennis Space Center is embarking on a very ambitious era in its rocket engine propulsion test history. The first new large rocket engine test stand to be built at Stennis Space Center in over 40 years is under construction. The new A3 Test Stand is designed to test very large (294,000 Ibf thrust) cryogenic propellant rocket engines at a simulated altitude of 100,000 feet. A3 Test Stand will have an engine testing chamber where the engine will be fired after the air in the chamber has been evacuated to a pressure at the simulated altitude of less than 0.16 PSIA. This will result in a very unique environment with extremely low pressures inside a very large chamber and ambient pressures outside this chamber. The test chamber is evacuated of air using a 2-stage diffuser / ejector system powered by 5000 lb/sec of steam produced by 27 chemical steam generators. This large amount of power and flow during an engine test will result in a significant acoustic and vibrational environment in and around A3 Test Stand.

  20. Solar rocket system concept analysis

    NASA Technical Reports Server (NTRS)

    Boddy, J. A.

    1980-01-01

    The use of solar energy to heat propellant for application to Earth orbital/planetary propulsion systems is of interest because of its performance capabilities. The achievable specific impulse values are approximately double those delivered by a chemical rocket system, and the thrust is at least an order of magnitude greater than that produced by a mercury bombardment ion propulsion thruster. The primary advantage the solar heater thruster has over a mercury ion bombardment system is that its significantly higher thrust permits a marked reduction in mission trip time. The development of the space transportation system, offers the opportunity to utilize the full performance potential of the solar rocket. The requirements for transfer from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) was examined as the return trip, GEO to LEO, both with and without payload. Payload weights considered ranged from 2000 to 100,000 pounds. The performance of the solar rocket was compared with that provided by LO2-LH2, N2O4-MMH, and mercury ion bombardment systems.

  1. GREECE Sounding Rocket Mission Overview

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R.; Grubbs, G. A., II; Bonnell, J. W.; Ogasawara, K.; Hampton, D. L.; Jahn, J. M.; Donovan, E.; Gustavsson, B.; Lanchester, B. S.; McHarg, M. G.; Spanswick, E.; Trondsen, T. S.; Valek, P. W.

    2014-12-01

    On 03 March 2014 at 11:09:50 UT the Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) sounding rocket successfully launched from Poker Flat, Alaska . It reached an apogee of approximately 335 km over the native village of Venetie during a dynamic post-midnight auroral event. A wide range of precipitating electrons were measured with the Acute Precipitating Electron Spectrometer (APES) and Medium-energy Electron SPectrometer (MESP), cumulatively covering 300 ev to 200 keV in varying time resolutions. DC to low frequency electric and magnetic fields were measured at the same time and a langmuir probe was also employed. In addition to the on board instrumentation a suite of ground based imagers was deployed under apogee. We used several electron-multiplying charge-coupled devices (EMCCDs) with different filters and field of views imaging along magnetic zenith. This yielded multi-emission line information about the auroral brightness at the magnetic footprint of the rocket critical for our main goal of exploring the correlation of the sheer flows often observed in high resolution imagery during aurora and the in situ signatures of precipitating particles and waves. The instruments used will be discussed in further detail along with preliminary results of an event rich in particle and wave signatures.

  2. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    SciTech Connect

    Martin, Olga

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  3. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    SciTech Connect

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  4. "Reminiscences of Los Alamos": Narrative, Critical Theory, and the Organizational Subject.

    ERIC Educational Resources Information Center

    Taylor, Bryan C.

    1990-01-01

    Examines autobiographical narratives of three scientists from the wartime Los Alamos Laboratory. Finds an organizational structure manifest in ideological discourses for nuclear practice and sensemaking, permitting rationalization for working identities and labor objectives. Considers implications for the critical study of organizational…

  5. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    NASA Astrophysics Data System (ADS)

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-03-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%.

  6. Nuclear gas core propulsion research program

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.; Dugan, Edward T.; Anghaie, Samim

    1993-01-01

    Viewgraphs on the nuclear gas core propulsion research program are presented. The objectives of this research are to develop models and experiments, systems, and fuel elements for advanced nuclear thermal propulsion rockets. The fuel elements under investigation are suitable for gas/vapor and multiphase fuel reactors. Topics covered include advanced nuclear propulsion studies, nuclear vapor thermal rocket (NVTR) studies, and ultrahigh temperature nuclear fuels and materials studies.

  7. Total Quality Management and nuclear weapons: A historian`s perspective

    SciTech Connect

    Meade, R.A.

    1993-11-01

    Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.

  8. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  9. Low thrust chemical rocket technology

    NASA Astrophysics Data System (ADS)

    Schneider, Steven J.

    1992-11-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  10. Sunset at the ALaMO

    NASA Video Gallery

    A new color all-sky camera has opened its eyes at the ALaMO, or Automated Lunar and Meteor Observatory, at NASA's Marshall Space Flight Center in Huntsville, Ala. Watch its inaugural video below, s...

  11. Environmental surveillance at Los Alamos during 1994

    SciTech Connect

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  12. New Rad Lab for Los Alamos

    ScienceCinema

    None

    2010-01-08

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  13. Publications of Los Alamos research 1988

    SciTech Connect

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A.

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  14. New Rad Lab for Los Alamos

    SciTech Connect

    2008-08-06

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  15. Rocket Engine Numerical Simulator (RENS)

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1997-01-01

    Work is being done at three universities to help today's NASA engineers use the knowledge and experience of their Apolloera predecessors in designing liquid rocket engines. Ground-breaking work is being done in important subject areas to create a prototype of the most important functions for the Rocket Engine Numerical Simulator (RENS). The goal of RENS is to develop an interactive, realtime application that engineers can utilize for comprehensive preliminary propulsion system design functions. RENS will employ computer science and artificial intelligence research in knowledge acquisition, computer code parallelization and objectification, expert system architecture design, and object-oriented programming. In 1995, a 3year grant from the NASA Lewis Research Center was awarded to Dr. Douglas Moreman and Dr. John Dyer of Southern University at Baton Rouge, Louisiana, to begin acquiring knowledge in liquid rocket propulsion systems. Resources of the University of West Florida in Pensacola were enlisted to begin the process of enlisting knowledge from senior NASA engineers who are recognized experts in liquid rocket engine propulsion systems. Dr. John Coffey of the University of West Florida is utilizing his expertise in interviewing and concept mapping techniques to encode, classify, and integrate information obtained through personal interviews. The expertise extracted from the NASA engineers has been put into concept maps with supporting textual, audio, graphic, and video material. A fundamental concept map was delivered by the end of the first year of work and the development of maps containing increasing amounts of information is continuing. Find out more information about this work at the Southern University/University of West Florida. In 1996, the Southern University/University of West Florida team conducted a 4day group interview with a panel of five experts to discuss failures of the RL10 rocket engine in conjunction with the Centaur launch vehicle. The

  16. Edward Teller Returns to LOS Alamos

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.

    2010-01-01

    I was asked to share some reflections of Edward Teller's return to Los Alamos during my directorship. I met Teller late in his life. My comments focus on that time and they will be mostly in the form of stories of my interactions and those of my colleagues with Teller. Although the focus of this symposium is on Teller's contributions to science, at Los Alamos it was never possible to separate Teller's science from policy and controversy ...

  17. Focused Rocket-Ejector RBCC Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.

  18. NASA Sounding Rockets and Hi-C

    NASA Video Gallery

    The Sounding Rockets Program Office (SRPO), located at NASA Goddard Space Flight Center's Wallops Flight Facility, provides suborbital launch vehicles, payload development, and field operations sup...

  19. The four INTA-300 rocket prototypes

    NASA Astrophysics Data System (ADS)

    Calero, J. S.

    1985-03-01

    A development history and performance capability assessment is presented for the INTA-300 'Flamenco' sounding rocket prototype specimens. The Flamenco is a two-stage solid fuel rocket, based on British sounding rocket technology, that can lift 50 km payloads to altitudes of about 300 km. The flight of the first two prototypes, in 1974 and 1975, pointed to vibration problems which reduced the achievable apogee, and the third prototype's flight was marred by a premature detonation that destroyed the rocket. The fourth Flamenco flight, however, yielded much reliable data.

  20. A miniature solid propellant rocket motor

    SciTech Connect

    Grubelich, M.C.; Hagan, M.; Mulligan, E.

    1997-08-01

    A miniature solid-propellant rocket motor has been developed to impart a specific motion to an object deployed in space. This rocket motor effectively eliminated the need for a cold-gas thruster system or mechanical spin-up system. A low-energy igniter, an XMC4397, employing a semiconductor bridge was used to ignite the rocket motor. The rocket motor was ground-tested in a vacuum tank to verify predicted space performance and successfully flown in a Sandia National Laboratories flight vehicle program.

  1. Post-Cold War Science and Technology at Los Alamos

    NASA Astrophysics Data System (ADS)

    Browne, John C.

    2002-04-01

    Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances

  2. Los Alamos Laser Eye Investigation.

    SciTech Connect

    Odom, C. R.

    2005-01-01

    A student working in a laser laboratory at Los Alamos National Laboratory sustained a serious retinal injury to her left eye when she attempted to view suspended particles in a partially evacuated target chamber. The principle investigator was using the white light from the flash lamp of a Class 4 Nd:YAG laser to illuminate the particles. Since the Q-switch was thought to be disabled at the time of the accident, the principal investigator assumed it would be safe to view the particles without wearing laser eye protection. The Laboratory Director appointed a team to investigate the accident and to report back to him the events and conditions leading up to the accident, equipment malfunctions, safety management causal factors, supervisory and management action/inaction, adequacy of institutional processes and procedures, emergency and notification response, effectiveness of corrective actions and lessons learned from previous similar events, and recommendations for human and institutional safety improvements. The team interviewed personnel, reviewed documents, and characterized systems and conditions in the laser laboratory during an intense six week investigation. The team determined that the direct and primary failures leading to this accident were, respectively, the principle investigator's unsafe work practices and the institution's inadequate monitoring of worker performance. This paper describes the details of the investigation, the human and institutional failures, and the recommendations for improving the laser safety program.

  3. Atom Interferometry on Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Seidel, S. T.; Lachmann, M. D.; Becker, D.; Grosse, J.; Popp, M. A.; Wang, J. B.; Wendrich, T.; Rasel, E. M.; Quantus Collaboration

    2015-09-01

    Atom interferometry in microgravity offers the possibility to perform high precision measurements of inertial forces complementary to experiments based on classical test masses. The ultimate goal is to perform these quantum measurements in space on board dedicated satellite missions. To reach this, a series of pathfinder microgravity experiments with cold atoms were build. The latest installment of these are conducted on sounding rockets. Here we give a short motivation of atom interferometry in space, an overview of the techniques used, and an introduction of the current mission MAIUS- 1.

  4. Casting propellant in rocket engine

    NASA Technical Reports Server (NTRS)

    Roach, J. E.; Froehling, S. C. (Inventor)

    1976-01-01

    A method is described for casting a solid propellant in the casing of a rocket engine having a continuous wall with a single opening which is formed by leaves of a material which melt at a temperature of the propellant and with curved edges concentric to the curvature of the spherical casing. The leaves are inserted into the spherical casing through the opening forming a core having a greater width than the width of the single opening and with curved peripheral edges. The cast propellant forms a solid mass and then heated to melt the leaves and provide a central opening with radial projecting flutes.

  5. Reusable Rocket Engine Maintenance Study

    NASA Technical Reports Server (NTRS)

    Macgregor, C. A.

    1982-01-01

    Approximately 85,000 liquid rocket engine failure reports, obtained from 30 years of developing and delivering major pump feed engines, were reviewed and screened and reduced to 1771. These were categorized into 16 different failure modes. Failure propagation diagrams were established. The state of the art of engine condition monitoring for in-flight sensors and between flight inspection technology was determined. For the 16 failure modes, the potential measurands and diagnostic requirements were identified, assessed and ranked. Eight areas are identified requiring advanced technology development.

  6. Generic magnetic fusion rocket model

    SciTech Connect

    Santarius, J.F.; Logan, B.G.

    1993-06-01

    A generic magnetic fusion rocket model is developed and used to explore the limits of fusion propulsion systems. Two fusion fuels are examined, D-T and D-(He-3), and the D-(He-3) fuel cycle is found to give a higher specific power in almost all parameter regimes. The key findings are that (1) magnetic fusion should ultimately be able to deliver specific powers of about 10 kW/kg and (2) specific powers of 15 kW/kg could be achieved with only modest extrapolations of present technology. 9 refs.

  7. High-Temperature Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.

    1994-01-01

    Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.

  8. The Advanced Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  9. Rocket engine condition monitoring system

    SciTech Connect

    Hagar, S.K.; Alcock, J.F.

    1989-01-01

    It is expected that the Rocket Engine Condition Monitoring System (RECMS) program will define engine monitoring technologies and an integration approach which can be applied to engine development in support of advanced launch system objectives. The RECMS program approaches engine monitoring as a system which is fully integrated with the engine controller, vehicle monitoring system, and ground processing systems to ensure mission success in addition to engine reliability. The system components are monitored through health and performance sensors; they are analyzed with the diagnostic and prognostic algorithms and demonstrated by system testing with hardware from other advanced development programs.

  10. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  11. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    SciTech Connect

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-01-01

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents.

  12. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    SciTech Connect

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-02-01

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents.

  13. The United Kingdom rocket and balloon program

    NASA Astrophysics Data System (ADS)

    Delury, J. T.

    1980-06-01

    The United Kingdom civilian scientific balloon and rocket program for 1979, 1980, 1981 are summarized and the areas of scientific interest for the period 1981 to 1985 are mentioned. Ten balloons up to 40 cu m to be launched from the USA or Australia and launches of up to ten 7.5 in. diameter Petrel rockets are planned.

  14. Rocket investigations of the auroral electrojet

    NASA Technical Reports Server (NTRS)

    Davis, T. N.

    1973-01-01

    Five Nike-Tomahawk rockets were flown to measure perturbations in the magnitude of the geomagnetic field due to auroral electrojets. The dates and locations of the rocket launches are given along with a brief explanation of payloads and instrumentation. Papers published as a result of the project are listed. An abstract is included which outlines the scientific results from one of the flights.

  15. Ionospheric shock waves triggered by rockets

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Lin, J. T.; Chen, C. H.; Liu, J. Y.; Sun, Y. Y.; Kakinami, Y.; Matsumura, M.; Chen, W. H.; Liu, H.; Rau, R. J.

    2014-09-01

    This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC) derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK) Taepodong-2 and 2013 South Korea (SK) Korea Space Launch Vehicle-II (KSLV-II) rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100-600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800-1200 m s-1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800-1200 m s-1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  16. Development Status of Reusable Rocket Engine

    NASA Astrophysics Data System (ADS)

    Yoshida, Makoto; Takada, Satoshi; Naruo, Yoshihiro; Niu, Kenichi

    A 30-kN rocket engine, a pilot engine, is being developed in Japan. Development of this pilot engine has been initiated in relation to a reusable sounding rocket, which is also being developed in Japan. This rocket takes off vertically, reaches an altitude of 100 km, lands vertically at the launch site, and is launched again within several days. Due to advantage of reusability, successful development of this rocket will mean that observation missions can be carried out more frequently and economically. In order to realize this rocket concept, the engines installed on the rocket should be characterized by reusability, long life, deep throttling and health monitoring, features which have not yet been established in Japanese rocket engines. To solve the engineering factors entitled by those features, a new design methodology, advanced engine simulations and engineering testing are being focused on in the pilot engine development stage. Especially in engineering testing, limit condition data is acquired to facilitate development of new diagnostic techniques, which can be applied by utilizing the mobility of small-size hardware. In this paper, the development status of the pilot engine is described, including fundamental design and engineering tests of the turbopump bearing and seal, turbine rig, injector and combustion chamber, and operation and maintenance concepts for one hundred flights by a reusable rocket are examined.

  17. Rocket-in-a-Duct Performance Analysis

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1999-01-01

    An axisymmetric, 110 N class, rocket configured with a free expansion between the rocket nozzle and a surrounding duct was tested in an altitude simulation facility. The propellants were gaseous hydrogen and gaseous oxygen and the hardware consisted of a heat sink type copper rocket firing through copper ducts of various diameters and lengths. A secondary flow of nitrogen was introduced at the blind end of the duct to mix with the primary rocket mass flow in the duct. This flow was in the range of 0 to 10% of the primary massflow and its effect on nozzle performance was measured. The random measurement errors on thrust and massflow were within +/-1%. One dimensional equilibrium calculations were used to establish the possible theoretical performance of these rocket-in-a-duct nozzles. Although the scale of these tests was small, they simulated the relevant flow expansion physics at a modest experimental cost. Test results indicated that lower performance was obtained at higher free expansion area ratios and longer ducts, while, higher performance was obtained with the addition of secondary flow. There was a discernable peak in specific impulse efficiency at 4% secondary flow. The small scale of these tests resulted in low performance efficiencies, but prior numerical modeling of larger rocket-in-a-duct engines predicted performance that was comparable to that of optimized rocket nozzles. This remains to be proven in large-scale, rocket-in-a-duct tests.

  18. Air-breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie depicts the Rocketdyne static test of an air-breathing rocket. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's advanced Transportation Program at the Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  19. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  20. Ignition transient analysis of solid rocket motor

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1990-01-01

    To predict pressure-time and thrust-time behavior of solid rocket motors, a one-dimensional numerical model is developed. The ignition phase of solid rocket motors (time less than 0.4 sec) depends critically on complex interactions among many elements, such as rocket geometry, heat and mass transfer, flow development, and chemical reactions. The present model solves the mass, momentum, and energy equations governing the transfer processes in the rocket chamber as well as the attached converging-diverging nozzle. A qualitative agreement with the SRM test data in terms of head-end pressure gradient and the total thrust build-up is obtained. Numerical results show that the burning rate in the star-segmented head-end section and the erosive burning are two important parameters in the ignition transient of the solid rocket motor (SRM).

  1. Hybrid Rocket Experiment Station for Capstone Design

    NASA Technical Reports Server (NTRS)

    Conley, Edgar; Hull, Bethanne J.

    2012-01-01

    Portable hybrid rocket motors and test stands can be seen in many papers but none have been reported on the design or instrumentation at such a small magnitude. The design of this hybrid rocket and test stand is to be small and portable (suitcase size). This basic apparatus will be used for demonstrations in rocket propulsion. The design had to include all of the needed hardware to operate the hybrid rocket unit (with the exception of the external Oxygen tank). The design of this project includes making the correlation between the rocket's thrust and its size, the appropriate transducers (physical size, resolution, range, and cost), compatability with a laptop analog card, the ease of setup, and its portability.

  2. Subsonic Glideback Rocket Demonstrator Flight Testing

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  3. Acoustic Measurements of Small Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  4. A Flight Demonstration of Plasma Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  5. Low gravity investigations in suborbital rockets

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C.; Lundquist, Charles A.

    1990-01-01

    Two series of suborbital rocket missions are outlined which are intended to support materials and biotechnology investigations under microgravity conditions and enhance commercial rocket activity. The Consort series of missions employs the two-stage Starfire I rocket and recovery systems as well as a payload of three sealed or vented cylindrical sections. The Consort 1 and 2 missions are described which successfully supported six classes of experiments each. The Joust program is the second series of rocket missions, and the Prospector rocket is employed to provide comparable payload masses with twice as much microgravity time as the Consort series. The Joust and Consort missions provide 6-8 and 13-15 mins, respectively, of microgravity flight to support such experiments as polymer processing, scientific apparatus testing, and electrodeposition.

  6. Rocket Observations of IC 405

    NASA Astrophysics Data System (ADS)

    France, K.; McCandliss, S. R.; Feldman, P. D.; Burgh, E. B.

    2001-12-01

    We present the preliminary results from a NASA/JHU sounding rocket mission (36.198 UG), launched on 09 February 2001 at 21:00 MST, to obtain a long slit (200\\arcsec x 12\\arcsec) spectrum of the reflection nebula IC 405 in the 900 -- 1400 Å wavelength region. Several pointings within the nebula were obtained, including a high quality (S/N ≈ 10-15 at R = 300) spectrum of the central star, HD 34078, which clearly shows absorption from molecular hydrogen (H2). Observations of the nebula reveal a surface brightness to stellar flux ratio that rises by two orders of magnitude between 1400 and 900 Å. This is in contrast with the relatively flat nebular dust scattering observed during a prior sounding rocket observation of the reflection nebula NGC 2023. We will also present additional nebular pointings within IC 405, including a region observed by the Hopkins Ultraviolet Telescope showing evidence of H2 fluorescent emission. These observations were supported by NASA grant NAG5-5122 to the Johns Hopkins University.

  7. Colorado Hydrogen Imaging Rocket Payload

    NASA Astrophysics Data System (ADS)

    Burgh, Eric B.; France, K.

    2009-01-01

    We present the design for a rocket-borne narrow-band far-ultraviolet imaging telescope. It will measure the spatial distribution of photo-excited molecular hydrogen emission nearby hot stars by utilizing multi-layer reflection coatings, similar to those used in previous NASA experiments, to obtain two images during a flight: one with a narrow-band filter that captures the 1575/1608A emission features (the "on-band" filter), and a second one that measures the dust-scattered stellar continuum at 1800A (the "off-band" filter). The difference image will then isolate the molecular hydrogen emission by subtracting the underlying scattered-light background. This would be a large improvement over existing studies at ultraviolet wavelengths for which many individual pointings with spectroscopic apertures are required to map the region of interest. These data will complete the picture, combined with far-ultraviolet spectra and near-infrared observations of vibrational emission that we will obtain from ground-based instrumentation, of the physical conditions in sites of recent and on-going star formation. A sounding rocket payload such as this provides the opportunity to perform niche science that other facilities cannot as well as advances the readiness of junior researchers to assume leadership roles on future NASA space flight missions.

  8. Solid Rocket Booster-Illustration

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  9. Status of Monte Carlo at Los Alamos

    SciTech Connect

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time.

  10. Publications of Los Alamos Research, 1983

    SciTech Connect

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L.

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  11. Publications of Los Alamos research 1980

    SciTech Connect

    Salazar, C.A.; Willis, J.K.

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  12. SEDs at Los Alamos: A Personal Memoir

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2001-03-01

    I have written this personal memoir approximately 55 years after the events I describe. It is based almost exclusively on memory, since apart from the diary I kept while on Tinian, I have few documents concerning it. It covers my service in the U.S. Army's Special Engineering Detachment (SED) in Oak Ridge and Los Alamos in 1944-45, on Tinian island, the launching pad for the bombing raids on Japan, in the summer and fall of 1945, and my return to Los Alamos until my discharge in January 1946.

  13. Plutonium 238 facilities at Los Alamos

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    1991-01-01

    Plutonium 238 operations at Los Alamos are performed at the Plutonium Facility (TA-55), the Chemistry and Metallurgy Research (CMR) Building, and the Radioisotope Fuels Impact Test Facility. The plutonium 238 facilities at Los Alamos support a wide variety of heat source activities including development of new fuel forms and containment materials, research on the high temperature properties of containment materials, investigation of the high temperature compatibility of fuels with potential container materials, processing plutonium 238 fuel forms, manufacture of heat sources under quality assurance surveillance, and performing safety testing on heat sources and radioisotope thermoelectric generators.

  14. Plutonium-238 facilities at Los Alamos

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    Plutonium-238 operations at Los Alamos are performed at the Plutonium Facility (TA-55), the Chemistry and Metallurgy Research (CMR) Building, and the Radioisotope Fuels Impact Test Facility. The plutonium-238 facilities at Los Alamos support a wide variety of heat source activities including development of new fuel forms and containment materials, research on the high temperature properties of containment materials, investigation of the high temperature compatibility of fuels with potential container materials, processing plutonium-238 fuel forms, manufacture of heat sources under quality assurance surveillance, and performing safety testing on heat sources and radioisotope thermoelectric generators.

  15. Radiative forcing caused by rocket engine emissions

    NASA Astrophysics Data System (ADS)

    Ross, Martin N.; Sheaffer, Patti M.

    2014-04-01

    Space transportation plays an important and growing role in Earth's economic system. Rockets uniquely emit gases and particles directly into the middle and upper atmosphere where exhaust from hundreds of launches accumulates, changing atmospheric radiation patterns. The instantaneous radiative forcing (RF) caused by major rocket engine emissions CO2, H2O, black carbon (BC), and Al2O3 (alumina) is estimated. Rocket CO2 and H2O emissions do not produce significant RF. BC and alumina emissions, under some scenarios, have the potential to produce significant RF. Absorption of solar flux by BC is likely the main RF source from rocket launches. In a new finding, alumina particles, previously thought to cool the Earth by scattering solar flux back to space, absorb outgoing terrestrial longwave radiation, resulting in net positive RF. With the caveat that BC and alumina microphysics are poorly constrained, we find that the present-day RF from rocket launches equals 16 ± 8 mW m-2. The relative contributions from BC, alumina, and H2O are 70%, 28%, and 2%. respectively. The pace of rocket launches is predicted to grow and space transport RF could become comparable to global aviation RF in coming decades. Improved understanding of rocket emission RF requires more sophisticated modeling and improved data describing particle microphysics.

  16. Earth-to-Orbit Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Beaurain, Andre; Souchier, Alain; Moravie, Michel; Sackheim, Robert L.; Cikanek, Harry A., III

    2003-01-01

    The Earth-to-orbit (ETO) phase of access to space is and always will be the first and most critical phase of all space missions. This first phase of all space missions has unique characteristics that have driven space launcher propulsion requirements for more than half a century. For example, the need to overcome the force of the Earth s gravity in combination with high levels of atmospheric drag to achieve the initial orbital velocity; i.e., Earth parking orbit or =9 km/s, will always require high thrust- to-weight (TN) propulsion systems. These are necessary with a T/W ratio greater than one during the ascent phase. The only type of propulsion system that can achieve these high T/W ratios are those that convert thermal energy to kinetic energy. There are only two basic sources of onboard thermal energy: chemical combustion-based systems or nuclear thermal-based systems (fission, fusion, or antimatter). The likelihood of advanced open-cycle, nuclear thermal propulsion being developed for flight readiness or becoming environmentally acceptable during the next century is extremely low. This realization establishes that chemical propulsion for ET0 launchers will be the technology of choice for at least the next century, just as it has been for the last half century of rocket flight into space. The world s space transportation propulsion requirements have evolved through several phases over the history of the space program, as has been necessitated by missions and systems development, technological capabilities available, and the growth and evolution of the utilization of space for economic, security, and science benefit. Current projections for the continuing evolution of requirements and concepts may show how future space transportation system needs could be addressed. The evolution and projections will be described in detail in this manuscript.

  17. Investigation of excess thyroid cancer incidence in Los Alamos County

    SciTech Connect

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980`s. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report.

  18. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    SciTech Connect

    Salmon, M.; Goen, L.K.

    1995-12-01

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper.

  19. Rocket Ozone Data Recovery for Digital Archival

    NASA Astrophysics Data System (ADS)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  20. Pressurization systems for liquid rockets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Guidelines for the successful design of pressurization systems for main propulsion, auxiliary propulsion, and attitude control systems for boosters, upper stages, and spacecraft were presented, drawing on the wealth of design experience that has accumulated in the development of pressurization systems for liquid rockets operational in the last 15 years. The design begins with a preliminary phase in which the system requirements are received and evaluated. Next comes a detail-design and integration phase in which the controls and the hardware components that make up the system are determined. The final phase, design evaluation, provides analysis of problems that may arise at any point in the design when components are combined and considered for operation as a system. Throughout the monograph, the design tasks are considered in the order and manner in which the designer must handle them.

  1. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael D. (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The phenolic in the tape is cured and the end of the wrap is machined. The remainder of the mandrel is wrapped with a third silica tape. The resin in the third tape is cured and the assembly is machined. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  2. Solid rocket motor temperature sensitivity

    SciTech Connect

    Osborn, J.R.; Heister, S.D.

    1994-11-01

    The temperature sensitivity of the propellant and the solid rocket motor are described by several different temperature sensitivity coefficients. This enabled the derivation of three different relationships for the temperature sensitivity coefficient pi(sub K). To demonstrate this, two different propellants were used wherein the values of pi(sub K) were generated and compared. It was observed that the expressions are of equal complexity and offer ease of use. All involve only the burning rate data and the use of the parameters in St. Roberts burning rate low. It is also suggested that the most general expression for the sensitivity coefficient should be used since it is a true pi(sub K) relationship having the partial derivatives taken with the motor geometry held constant. 11 refs.

  3. Heterogeneous fuel for hybrid rocket

    NASA Technical Reports Server (NTRS)

    Stickler, David B. (Inventor)

    1996-01-01

    Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.

  4. J-2S rocket engine

    NASA Astrophysics Data System (ADS)

    Vilja, J. O.; Briley, G. L.; Murphy, T. H.

    1993-06-01

    The principal design characteristics and features of the J-2S rocket engine, developed as a simpler and more robust version of the J-2 engine, are described. The J-2S is a 265,000-lb vacuum thrust engine that delivers 436 sec vacuum thrust with a nozzle expansion ratio of 40 and operates at a chamber pressure of 1,200 psi. The most unique feature of the J-2S is that it incorporates a main chamber tap-off cycle which eliminates the need for a gas generator. Another simplification for the J-2S is the adoption of a centrifugal fuel turbopump to replace the J-2's axial turbopump. A schematic of the J-2S, engine test results, and performance options are presented.

  5. NASA sounding rockets, 1958 - 1968: A historical summary

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1971-01-01

    The development and use of sounding rockets is traced from the Wac Corporal through the present generation of rockets. The Goddard Space Flight Center Sounding Rocket Program is discussed, and the use of sounding rockets during the IGY and the 1960's is described. Advantages of sounding rockets are identified as their simplicity and payload simplicity, low costs, payload recoverability, geographic flexibility, and temporal flexibility. The disadvantages are restricted time of observation, localized coverage, and payload limitations. Descriptions of major sounding rockets, trends in vehicle usage, and a compendium of NASA sounding rocket firings are also included.

  6. Rocket thrust variation with foamed liquid propellants

    NASA Technical Reports Server (NTRS)

    Morrell, G

    1957-01-01

    An analysis is presented on a method for varying rocket thrust by varying the bulk density of the propellants. This density variation was accomplished by uniformly dispersing an inert, insoluble gas in the liquid propellants. Only qualitative agreement with theory was obtained from preliminary experiments with a 1000-pound-thrust ammonia - nitric acid rocket engine; the required experimental gas-flow rates were two to six times greater than those predicted by theory. It was demonstrated, however, that this method of rocket-thrust variation is feasible.

  7. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  8. Detection of Metallic Compounds in Rocket Plumes

    NASA Astrophysics Data System (ADS)

    Rogers, Chris; Dunn, Dr. Robert

    1998-04-01

    Recent experiments using metal mixed in hydroxyl-terminated polybutadiene (HTPB) fuel grains in small hybrid rocket indicates ion detectors may be effective in detection of metallic compounds in rocket plumes. We wanted to ascertain the extent to which the presence of metallic compounds in rocket plumes could be detected using ion probes and Gaussian rings. Charges that collide with or pass near the intruding probe are detected. Gaussian rings, short insulated cylindrical Gaussian surfaces, enclose the plume without intruding into the plume. Charges in the plume are detected by currents they induce in the cylinder.

  9. Latest rocket measurements of the solar constant

    NASA Technical Reports Server (NTRS)

    Duncan, C. H.; Willson, R. C.; Kendall, J. M.; Harrison, R. G.; Hickey, J. R.

    1982-01-01

    Three rocket flights which carried a payload of absolute radiometers to measure the solar constant with an accuracy of plus or minus 0.5 per cent have been accomplished. Several of the rocket radiometers were duplicates of those aboard the Solar Maximum Mission and Nimbus spacecrafts. The values for the solar constant obtained by the rocket sensors for the three flight dates indicate an increase between the first and latter two flights approximately equivalent to the uncertainty of the measurements. The values for the solar constant for the three flights are 1367, 1372 and 1374 W/sq m.

  10. Rocket Barge on the Pearl River

    NASA Technical Reports Server (NTRS)

    1966-01-01

    During the early 1970's French settlers once cautiously sailed up the beautiful Pearl River in Hancock County looking for a New World home. Later, swashbuckling pirates took refuge in this historic stream in South Mississippi after raiding merchant ships. Today, a different cargo leaves a wake in the blue waters en route to National Aeronautics and Space Administration's Mississippi Test Facility. The huge barge being pushed above contains the free world's largest rocket booster, on its way to the national rocket testing facility for extensive captive firings. Later versions of this huge rocket, first satge of the Apollo/Saturn V, will boost the first Americans to the Moon.

  11. Dr. Robert H. Goddard and His Rockets

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Dr. Robert H. Goddard and liquid oxygen-gasoline rocket in the frame from which it was fired on March 16, 1926, at Auburn, Mass. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  12. Early Spin-Stabilised Rockets - the Rockets of Bergrat Heinrich Gottlob Kuhn

    NASA Astrophysics Data System (ADS)

    Fricke, H.-D.

    19th century's war rockets were at first stabilised by sticks, but these sticks produced a very uncertain flight path and it often happened that rockets changed their direction and even flew back to their firing position. So very many early inventors in Europe, America, and British-India tried to stabilise the rocket's flight in a better way. They tried fins and even rotation but they did not succeed. It is said in history that William Hale was the first who succeeded in constructing a spin stabilised (i.e. rotating) rocket which worked. But before him, in the thirties of that century, a German amateur rocket inventor succeeded as well and secretly proved his stickless rotating rockets in trials for Prussian officers and some years later officially for Saxon artillery officers. His invention was then bought by the kingdom of Saxony, but these were never use in the field because of lack of money.

  13. 75 FR 67711 - Extension of Scoping Period for the Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos... construction and operation of the nuclear facility portion of the Chemistry and Metallurgy Research...

  14. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  15. Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets

    NASA Astrophysics Data System (ADS)

    Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph

    Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.

  16. Proceedings of the Los Alamos neutrino workshop

    SciTech Connect

    Boehm, F.; Stephenson, G.J. Jr.

    1982-08-01

    A workshop on neutrino physics was held at Los Alamos from June 8 to 12, 1981. The material presented has been provided in part by the organizers, in part by the chairmen of the working sessions. Closing date for contributions was October 1981.

  17. Induction inserts at the Los Alamos PSR

    SciTech Connect

    King-Yuen Ng

    2002-09-30

    Ferrite-loaded induction tuners installed in the Los Alamos Proton Storage Ring have been successful in compensating space-charge effects. However, the resistive part of the ferrite introduces unacceptable microwave instability and severe bunch lengthening. An effective cure was found by heating the ferrite cores up to {approx} 130 C. An understanding of the instability and cure is presented.

  18. Los Alamos waste drum shufflers users manual

    SciTech Connect

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-08-24

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of {sup 235}U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual.

  19. Los Alamos Fires From Landsat 7

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 9, 2000, the Landsat 7 satellite acquired an image of the area around Los Alamos, New Mexico. The Landsat 7 satellite acquired this image from 427 miles in space through its sensor called the Enhanced Thematic Mapper Plus (ETM+). Evident within the imagery is a view of the ongoing Cerro Grande fire near the town of Los Alamos and the Los Alamos National Laboratory. Combining the high-resolution (30 meters per pixel in this scene) imaging capacity of ETM+ with its multi-spectral capabilities allows scientists to penetrate the smoke plume and see the structure of the fire on the surface. Notice the high-level of detail in the infrared image (bottom), in which burn scars are clearly distinguished from the hotter smoldering and flaming parts of the fire. Within this image pair several features are clearly visible, including the Cerro Grande fire and smoke plume, the town of Los Alamos, the Los Alamos National Laboratory and associated property, and Cerro Grande peak. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false color image where vegetation appears as bright to dark green (bottom image). Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. The areas recently burned appear black. Dark red to bright red patches, or linear features within the burned area, are the hottest and possibly actively burning areas of the fire. The fire is spreading downslope and the front of the fire is readily detectable about 2 kilometers to the west and south of Los Alamos. Combining ETM+ channels 3, 2, and 1 provides a true-color image of the greater Los Alamos region (top image). Vegetation is generally dark to medium green. Forested areas are very dark green

  20. Behind the Scenes: 'Fishing' For Rockets

    NASA Video Gallery

    In this episode of NASA "Behind the Scenes," go on board the two ships -- Liberty Star and Freedom Star -- which retrieve the shuttle's solid rocket boosters after every launch. Astronaut Mike Mass...