Science.gov

Sample records for alamos plutonium processing

  1. Plutonium 238 facilities at Los Alamos

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    1991-01-01

    Plutonium 238 operations at Los Alamos are performed at the Plutonium Facility (TA-55), the Chemistry and Metallurgy Research (CMR) Building, and the Radioisotope Fuels Impact Test Facility. The plutonium 238 facilities at Los Alamos support a wide variety of heat source activities including development of new fuel forms and containment materials, research on the high temperature properties of containment materials, investigation of the high temperature compatibility of fuels with potential container materials, processing plutonium 238 fuel forms, manufacture of heat sources under quality assurance surveillance, and performing safety testing on heat sources and radioisotope thermoelectric generators.

  2. Plutonium-238 facilities at Los Alamos

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    Plutonium-238 operations at Los Alamos are performed at the Plutonium Facility (TA-55), the Chemistry and Metallurgy Research (CMR) Building, and the Radioisotope Fuels Impact Test Facility. The plutonium-238 facilities at Los Alamos support a wide variety of heat source activities including development of new fuel forms and containment materials, research on the high temperature properties of containment materials, investigation of the high temperature compatibility of fuels with potential container materials, processing plutonium-238 fuel forms, manufacture of heat sources under quality assurance surveillance, and performing safety testing on heat sources and radioisotope thermoelectric generators.

  3. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    SciTech Connect

    Malanify, J.J.; Amsden, D.C.

    1982-08-01

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy.

  4. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    SciTech Connect

    Graf, W.L.

    1996-10-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab.

  5. Seismic margins assessment of the plutonium processing facility Los Alamos National Laboratory

    SciTech Connect

    Goen, L.K.; Salmon, M.W.

    1995-12-01

    Results of the recently completed seismic evaluation at the Los Alamos National Laboratory site indicate a need to consider seismic loads greater than design basis for many structures systems and components (SSCs). DOE Order 5480.28 requires that existing SSCs be evaluated to determine their ability to withstand the effects of earthquakes when changes in the understanding of this hazard results in greater loads. In preparation for the implementation of DOE Order 5480.28 and to support the update of the facility Safety Analysis Report, a seismic margin assessment of SSCs necessary for a monitored passive safe shutdown of the Plutonium Processing Facility (PF-4) was performed. The seismic margin methodology is given in EPRI NP-6041-SL, ``A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1)``. In this methodology, high confidence of low probability of failure (HCLPF) capacities for SSCs are estimated in a deterministic manner. For comparison to the performance goals given in DOE Order 5480.28, the results of the seismic margins assessment were used to estimate the annual probability of failure for the evaluated SSCs. In general, the results show that the capacity for the SSCs comprising PF-4 is high. This is to be expected for a newer facility as PF-4 was designed in the early 1970`s. The methodology and results of this study are presented in this paper.

  6. PLUTONIUM METALLOGRAPHY AT LOS ALAMOS

    SciTech Connect

    PEREYRA, RAMIRO A.; LOVATO, DARRYL

    2007-01-08

    with metallographic polishing lubricants, solvents, or chemicals. And water being one of the most reactive solutions, is not used in the preparation. Figure 2 shows an example of a plutonium sample in which an oxide film has formed on the surface due to overexposure to solutions. it has been noted that nucleation of the hydride/oxide begins around inclusions and samples with a higher concentration of impurities seem to be more susceptible to this reaction. Figure 3 shows examples of small oxide rings, forming around inclusions. Lastly, during the cutting, grinding, or polishing process there is enough stress induced in the sample that the surface can transform from the soft face-centered-cubic delta phase (30 HV) to the strain-induced monoclinic alpha{prime} phase (300 HV). Figure 4 and 5 shows cross-sectional views of samples in which one was cut using a diamond saw and the other was processed through 600 grit. The white layers on the edges is the strain induced alpha{prime} phase. The 'V' shape indentation in Figure 5 was caused by a coarser abrasive which resulted in transformations to a depth of approximately 20 {micro}m. Another example of the transformation sensitivity of plutonium can be seen in Figure 6, in which the delta phase has partly transformed to alpha{prime} during micro hardness indentation.

  7. Los Alamos Plutonium Facility newly generated TRU waste certification

    SciTech Connect

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-02-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory`s (LANL`s) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form.

  8. Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin

    SciTech Connect

    Marsh, S.F.; Mann, M.J.

    1987-05-01

    For almost 30 years, Los Alamos National Laboratory has used anion exchange in nitric acid as the major aqueous process or the recovery and purification of plutonium. One of the few disadvantages of this system is the particularly slow rate at which the anionic nitrato complex of Pu(IV) equilibrates with the resin. The Nuclear Materials Process Technology Group at Los Alamos recently completed an ion exchange development program that focused on improving the slow sorption kinetics that limits this process. A comprehensive investigation of modern anion exchange resins identified porosity and bead size as the properties that most influence plutonium sorption kinetics. Our study found that small beads of macroporous resin produced a dramatic increase in plutonium process efficiency. The Rocky Flats Plant has already adopted this improved ion exchange technology, and it currently is being evaluated for use in other DOE plutonium-processing facilities.

  9. Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977

    SciTech Connect

    Mullins, L.J.; Morgan, A.N.

    1981-12-01

    This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed.

  10. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  11. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    PubMed

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. PMID:23078914

  12. Upgrade of the Los Alamos Plutonium Facility control system

    SciTech Connect

    Pope, N.G.; Turner, W.J.; Brown, R.E.; Bibeau, R.A.; Davis, R.R.; Hogan, K.

    1996-05-01

    After 20 yrs service, the Los Alamos Plutonium Facility is undergoing an upgrade to its aging Facility Control System. The new system design includes a network of redundantly-paired programmable logic controllers that will interface with about 2200 field data points. The data communications network that has been designed includes a redundant, self-healing fiber optic data highway as well as a fiber optic ethernet. Commercially available human-machine interface software running on a UNIX-based system displays facility subsystem status operator X-terminals. Project design features, methods, costs, and schedule are discussed.

  13. Plutonium recovery at the Los Alamos Scientific Laboratory

    SciTech Connect

    Christensen, E.L.

    1980-06-01

    Research programs have led to the adoption of procedures for all phases of plutonium recovery and purification. This report discusses some of the many procedures required to recover and purify the plutonium contained in the residues generated by LASL research, process development, and production activities. The report also discusses general plant facilities, the liquid and gaseous effluents, and solid waste management practices at the New Plutonium Facility, TA-55. Many of the processes or operations are merely steps in preparing the feed for one of the purification systems. For example, the plutonium is currently removed from noncombustibles in the pickling operation with an HNO/sub 3/ leach. The HNO/sub 3/ leach solution is the product of this operation and is sent to one of the nitrate anion-exchange systems for concentration and purification.

  14. STRIPPING PROCESS FOR PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-10-01

    A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

  15. PROCESS FOR PURIFYING PLUTONIUM

    DOEpatents

    Mastick, D.F.; Wigner, E.P.

    1958-05-01

    A method is described of separating plutonium from small amounts of uranium and other contaminants. An acidic aqueous solution of higher valent plutonium and hexavalent uranium is treated with a soluble iodide to obtain the plutonium in the plus three oxidation state while leaving the uranium in the hexavalent state, adding a soluble oxalate such as oxalic acid, and then separating the insoluble plus the plutonium trioxalate from the solution.

  16. PLUTONIUM CLEANING PROCESS

    DOEpatents

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  17. PROCESS OF PRODUCING SHAPED PLUTONIUM

    DOEpatents

    Anicetti, R.J.

    1959-08-11

    A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.

  18. PLUTONIUM PROCESSING OPTIMIZATION IN SUPPORT OF THE MOX FUEL PROGRAM

    SciTech Connect

    GRAY, DEVIN W.; COSTA, DAVID A.

    2007-02-02

    After Los Alamos National Laboratory (LANL) personnel completed polishing 125 Kg of plutonium as highly purified PuO{sub 2} from surplus nuclear weapons, Duke, COGEMA, Stone, and Webster (DCS) required as the next process stage, the validation and optimization of all phases of the plutonium polishing flow sheet. Personnel will develop the optimized parameters for use in the upcoming 330 kg production mission.

  19. PROCESS OF OXIDIZING PLUTONIUM

    DOEpatents

    Coryell, C.D.

    1959-08-25

    The oxidation of plutonium to the plus six valence state is described. The oxidation is accomplished by treating the plutonium in aqueous solution with a solution above 0.01 molar in argentic ion, above 1.1 molar in nitric acid, and above 0.02 molar in argentous ion.

  20. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Anderson, H.H.; Asprey, L.B.

    1960-02-01

    A process of separating plutonium in at least the tetravalent state from fission products contained in an aqueous acidic solution by extraction with alkyl phosphate is reported. The plutonium can then be back-extracted from the organic phase by contact with an aqueous solution of sulfuric, phosphoric, or oxalic acid as a complexing agent.

  1. Plutonium process control using an advanced on-line gamma monitor for uranium, plutonium, and americium

    SciTech Connect

    Marsh, S.F.; Miller, M.C.

    1987-05-01

    An on-line gamma monitor has been developed to profile uranium, plutonium, and americium in waste and product streams of the anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The gamma monitor employs passive gamma spectrometry to measure /sup 241/Am and /sup 239/Pu, based on their 59.5-keV and 129-keV gamma rays, respectively. Because natural and depleted uranium present in typical process streams have no gamma rays suitable for measurement by such passive methods, uranium measurement requires a novel and less direct technique. Plutonium-241, which is always present in plutonium processed at Los Alamos, decays primarily by beta emission to form /sup 241/Am. However, a small fraction of /sup 241/Pu decays by alpha emission to 6.8-day /sup 237/U. The short half-life and 208-keV gamma energy of /sup 237/U make it an ideal radiotracer to mark the position of macro amounts of uranium impurity in the separation process. The real-time data obtained from an operating process allow operators to optimize many process parameters. The gamma monitor also provides a permanent record of the daily performance of each ion exchange system. 2 refs., 12 figs.

  2. Disposition of Mixed Waste Organics at the Los Alamos Plutonium Facility

    SciTech Connect

    Ortiz, E.M.; Coriz, F.; Schreiber, S.B.; Balkey, S.; Yarbro, S.L.

    1999-02-01

    Twenty-six organic solution items totaling 37 L had been stored in the Plutonium Facility vault at the Los Alamos National Laboratory, some for up to 18 years. They were residues from analytical analyses of radioactive solutions. All items had a Resource Conservation and Recovery Act (RCRA) defined hazardous waste combined with special nuclear materials (SNM) and were stored as a mixed waste in a vault room pending disposition. Seventeen items had plutonium concentrations above established discard limits for organics. Due to their age, the containers were not suitable for long-term storage because a container failure would contaminate the vault area and personnel. Therefore, an aqueous-based flowsheet was developed to remove the plutonium so that the items could be discarded. The procedure was a wash with either sodium fluoride and/or potassium hydroxide solution followed by absorbing the discardable organic residues on vermiculite. When this approach did not work permission was obtained to discard the items as a transuranic (TRU) mixed waste without further treatment. The remaining nine solution items were consolidated into two items, repackaged, and stored for future disposition. The overall effort required approximately four months to disposition all the items. This report details the administrative and regulatory requirements that had to be addressed, the results of processing, and the current status of the items.

  3. Los Alamos plutonium facility applied systems integration project status report for period ending August 31, 1981

    SciTech Connect

    Shirk, D.G.; Bearse, R.C.; Marshall, R.S.; Baker, A.L.; Thomas, C.C. Jr.

    1982-02-01

    The conceptual design of an on-line, near-real-time nondestructive assay instrumentation network for the Los Alamos Plutonium Facility is complete. Analysis of instrument history data indicates that the instrument certification procedures need improvement. Analysis of exhaust filter data has led to the derivation of a buildup prediction equation that is a function of throughput. This suggests that development of a generalized model is possible. A number of routine reports are now available from the Plutonium Facility/Los Alamos Safeguards System including inventories and active reports.

  4. Selecting a plutonium vitrification process

    SciTech Connect

    Jouan, A.

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  5. Multisphere neutron spectroscopy measurements at the Los Alamos National Laboratory Plutonium Facility

    SciTech Connect

    Harvey, W.F.; Hajnal, F.

    1993-06-01

    Multisphere neutron spectroscopy methods are applied to measure representative working fields within the Los Alamos National Laboratory (LANL) Plutonium Facility. This facility hosts dynamic processes, which include the fabrication of {sup 238}Pu heat sources for radioisotope generators used to power space equipment and a variety of plutonium research programs that involve recovery, hydrofluorination, and metal production. Neutron fluence per unit lethargy, as a function of neutron energy measured for locations throughout this facility, are described. Dosimeter/remmeter response functions [e.g., determined for a 22.8-cm-diameter neutron rem detector (NRD), an Anderson/Braun-type neutron ``Snoopy`` monitor, track-etch CR-39, BDI-100 bubble detectors, and Kodak type A nuclear track emulsion film, (NTA)] are folded into these spectra to calculate absolute response values of counts, tracks, or bubbles per unit-dose equivalent. The relative response values per unit- dose equivalent for bare and albedo {sup 6}LiF-based thermoluminescent dosimeters (TLDs) are also calculated to estimate response scenarios encountered with use of the LANL-TLD. These results are further compared to more conventional methods of estimating neutron spectral energies such as the ``9-to-3 ratio`` method.

  6. PROCESS MODELING AND ANALYSIS FOR RECOVERY OF PUBE SOURCES AT LOS ALAMOS

    SciTech Connect

    D. KORNREICH; ET AL

    2000-11-01

    Los Alamos National Laboratory maintains one of the premier plutonium processing facilities in the country. The plutonium facility supports several defense- and nondefense-related missions. This paper describes process-modeling efforts focused on the operations related to the Radioactive Source Recovery Program, which recovers the plutonium from plutonium-beryllium neutron sources. This program accomplishes at least two goals: it is evidence of good stewardship of a national resource, plutonium, and destroys a potential health hazard, the neutron source, by separating the plutonium from the beryllium in sources that are no longer being used in various industries or the military. We examine the processes related to source recovery operations in terms of throughput, ionizing radiation exposure to workers, and mass balances using two discrete-event simulation tools: Extend{trademark}, which is commercially available; and ProMoS, which is in-house software specifically tailored for modeling nuclear-materials operations.

  7. Training and exercises of the Emergency Response Team at the Los Alamos Plutonium Facility

    SciTech Connect

    Yearwood, D.D.

    1988-01-01

    The Los Alamos National Laboratory Plutonium Facility has an active Emergency Response Team. The Emergency Response Team is composed of members of the operating and support groups within the Plutonium Facility. In addition to their initial indoctrination, the members are trained and certified in first-aid, CPR, fire and rescue, and the use of self-contained-breathing-apparatus. Training exercises, drills, are conducted once a month. The drills consist of scenarios which require the Emergency Response Team to apply CPR and/or first aid. The drills are performed in the Plutonium Facility, they are video taped, then reviewed and critiqued by site personnel. Through training and effective drills and the Emergency Response Team can efficiently respond to any credible accident which may occur at the Plutonium Facility. 3 tabs.

  8. Plutonium Oxide Process Capability Work Plan

    SciTech Connect

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  9. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    SciTech Connect

    Stange, Sy; Mayo, Douglas R.; Herrera, Gary D.; McLaughlin, Anastasia D.; Montoya, Charles M.; Quihuis, Becky A.; Trujillo, Julio B.; Van Pelt, Craig E.; Wenz, Tracy R.

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  10. PROCESS OF SEPARATING PLUTONIUM FROM URANIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-09-01

    A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

  11. Plutonium dissolution process

    DOEpatents

    Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.

    1994-01-01

    A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.

  12. Ceramification: A plutonium immobilization process

    SciTech Connect

    Rask, W.C.; Phillips, A.G.

    1996-05-01

    This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures with additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.

  13. PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION

    DOEpatents

    Whal, A.C.

    1958-04-15

    A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.

  14. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  15. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Potratz, H.A.

    1958-12-16

    A process for the separation of plutonium from uranlum and other associated radioactlve fission products ls descrlbed conslstlng of contacting an acid solution containing plutonium in the tetravalent state and uranium in the hexavalent state with enough ammonium carbonate to form an alkaline solution, adding cupferron to selectlvely form plutonlum cupferrlde, then recoverlng the plutonium cupferride by extraction with a water lmmiscible organic solvent such as chloroform.

  16. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    SciTech Connect

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations of H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.

  17. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  18. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  19. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    SciTech Connect

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R; Decker, Diana L; Walker, Laurie F; Colletti, Lisa M; Spencer, Khalil J; Peterson, Dominic S; Herrera, Jaclyn A; Wong, Amy S

    2010-01-01

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  20. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  1. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  2. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  3. Acoustic Analysis of Plutonium and Nuclear Weapon Components at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Saleh, T. A.; Reynolds, J. J.; Rowe, C. A.; Freibert, F. J.; Ten Cate, J. A.; Ulrich, T. J.; Farrow, A. M.

    2012-12-01

    One of the primary missions of Los Alamos National Laboratory is to use science based techniques to certify the nuclear weapons stockpile of the United States. As such we use numerous NDE techniques to monitor materials and systems properties in weapons. Two techniques will be discussed in this presentation, Acoustic Resonance Spectroscopy (ARS) and Acoustic Emission (AE). ARS is used to observe manufacturing variations or changes in the plutonium containing component (pit) of the weapon system. Both quantitative and qualitative comparisons can be used to determine variation in the pit components. Piezoelectric transducer driven acoustic resonance experiments will be described along with initial qualitative and more complex analysis and comparison techniques derived from earthquake analysis performed at LANL. Similarly, AE is used to measure the time of arrival of acoustic signals created by mechanical events that can occur in nuclear weapon components. Both traditional time of arrival techniques and more advanced techniques are used to pinpoint the location and type of acoustic emission event. Similar experiments on tensile tests of brittle phases of plutonium metal will be described.

  4. Retrofit of an Engineered Glove-port to a Los Alamos National Laboratory's Plutonium Facility Glovebox

    SciTech Connect

    Rael, P.E.D.; Cournoyer, M.E.Ph.D.; Chunglo, S.D.; Vigil, T.J.; Schreiber, P.E.S.

    2008-07-01

    At the Los Alamos National Laboratory's Plutonium Facility (TA-55), various isotopes of plutonium along with other actinides are routinely handled such that the spread of radiological contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox coupled with adequate negativity providing primary confinement). The current technique for changing glovebox gloves are the weakest part of this engineering control. 1300 pairs of gloves are replaced each year at TA-55, generating approximately 500 m{sup 3}/yr of transuranic (TRU) waste and Low Level Waste (LLW) waste that represents an annual disposal cost of about 4 million dollars. By retrofitting the LANL 8'' glove-port ring, a modern 'Push-Through' technology is utilized. This 'Push-Through' technology allows relatively fast glove changes to be done by operators with much less training and experience and without breaching containment. A dramatic reduction in waste is realized; exposure of the worker to residual contamination reduced, and the number of breaches due to installation issues is eliminated. In the following presentation, the evolution of the 'Push- Through' technology, the features of the glove-port retrofit, and waste savings are discussed. (author)

  5. Plutonium Chemistry in the UREX+ Separation Processes

    SciTech Connect

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  6. A Study of the Stability and Characterization Plutonium Dioxide and Chemical Characterization [of] Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash

    SciTech Connect

    Ray, A.K.; Boettger, J.C.; Behrens, Robert G.

    1999-11-29

    In the presentation ''A Study of the Stability and Characterization of Plutonium Dioxide'', the authors discuss their recent work on actinide stabilities and characterization, in particular, plutonium dioxide PuO{sub 2}. Earlier studies have indicated that PuO{sub 2} has the fluorite structure of CaF{sub 2} and typical oxide semiconductor properties. However, detailed results on the bulk electronic structure of this important actinide oxide have not been available. The authors have used all-electron, full potential linear combinations Gaussian type orbitals fitting function (LCGTO-FF) method to study PuO{sub 2}. The LCGTO-FF technique characterized by its use of three independent GTO basis sets to expand the orbitals, charge density, and exchange-correlation integral kernels. Results will be presented on zero pressure using both the Hedin-Lundquist local density approximation (LDA) model or the Perdew-Wang generalized gradient approximation (GGA) model. Possibilities of different characterizations of PuO{sub 2} will be explored. The paper ''Chemical Characterization Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash'' describes the results of a comprehensive study of the chemical characteristics of virgin, calcined and fluorinated incinerator ash produced at the Rocky Flats Plant and at the Los Alamos National Laboratory prior to 1988. The Rocky Flats and Los Alamos virgin, calcined, and fluorinated ashes were also dissolved using standard nitrate dissolution chemistry. Corresponding chemical evaluations were preformed on the resultant ash heel and the results compared with those of the virgin ash. Fluorination studies using FT spectroscopy as a diagnostic tool were also performed to evaluate the chemistry of phosphorus, sulfur, carbon, and silicon containing species in the ash. The distribution of plutonium and other chemical elements with the virgin ash, ash heel, fluorinated ash, and fluorinated ash heel particulates were studied in detail using

  7. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  8. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    DOEpatents

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  9. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  10. Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report September 2012

    SciTech Connect

    McLaughlin, Anastasia Dawn; Storey, Bradford G.; Bowidowicz, Martin; Robertson, William G.; Hobson, Beverly F.

    2012-10-22

    In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

  11. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  12. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  13. An MCNP model of glove boxes in a plutonium processing facility

    SciTech Connect

    Dooley, D.E.; Kornreich, D.E.

    1998-12-31

    Nuclear material processing usually occurs simultaneously in several glove boxes whose primary purpose is to contain radioactive materials and prevent inhalation or ingestion of radioactive materials by workers. A room in the plutonium facility at Los Alamos National Laboratory has been slated for installation of a glove box for storing plutonium metal in various shapes during processing. This storage glove box will be located in a room containing other glove boxes used daily by workers processing plutonium parts. An MCNP model of the room and glove boxes has been constructed to estimate the neutron flux at various locations in the room for two different locations of the storage glove box and to determine the effect of placing polyethylene shielding around the storage glove box. A neutron dose survey of the room with sources dispersed as during normal production operations was used as a benchmark to compare the neutron dose equivalent rates calculated by the MCNP model.

  14. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  15. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  16. PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION

    DOEpatents

    Wolter, F.J.; Diehl, H.C. Jr.

    1958-01-01

    This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

  17. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    SciTech Connect

    Martinez, B.; Montoya, A.; Klein, W.

    1999-02-01

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date.

  18. 10 CFR 140.107 - Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... processing plutonium for use in plutonium processing and fuel fabrication plants and furnishing insurance... plutonium processing and fuel fabrication plants and furnishing insurance policies as proof of financial... death, or loss of or damage to property, or loss of use of property, arising out of or resulting...

  19. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  20. Processing of Non-PFP Plutonium Oxide in Hanford Plants

    SciTech Connect

    Jones, Susan A.; Delegard, Calvin H.

    2011-03-10

    Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford’s Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400°C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFP’s Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)3•9H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

  1. Development of the Direct Fabrication Process for Plutonium Immobilization

    SciTech Connect

    Congdon, J.W.

    2001-07-10

    The current baseline process for fabricating pucks for the Plutonium Immobilization Program includes granulation of the milled feed prior to compaction. A direct fabrication process was demonstrated that eliminates the need for granulation.

  2. Plutonium-238 processing at Savannah River Plant

    SciTech Connect

    Burney, G.A.

    1983-01-01

    Plutonium-238 is produced by irradiating NpO/sub 2/-Al cermet slugs or tubes with neutrons. The neptunium-237 is produced as a by-product when natural or enriched uranium is irradiated with neutrons. The neptunium is separated by solvent extraction and ion exchange and precipitated as neptunium oxalate. Neptunium oxalate is calcined to neptunium oxide and fabricated into targets for irradiation. The irradiation conditions are controlled to produce plutonium with 80 to 90 wt % /sup 238/Pu.

  3. PROCESS FOR PRODUCTION OF PLUTONIUM FROM ITS OXIDES

    DOEpatents

    Weissman, S.I.; Perlman, M.L.; Lipkin, D.

    1959-10-13

    A method is described for obtaining a carbide of plutonium and two methods for obtaining plutonium metal from its oxides. One of the latter involves heating the oxide, in particular PuO/sub 2/, to a temperature of 1200 to 1500 deg C with the stoichiometrical amount of carbon to fornn CO in a hard vacuum (3 to 10 microns Hg), the reduced and vaporized plutonium being collected on a condensing surface above the reaction crucible. When an excess of carbon is used with the PuO/sub 2/, a carbide of plutonium is formed at a crucible temperature of 1400 to 1500 deg C. The process may be halted and the carbide removed, or the reaction temperature can be increased to 1900 to 2100 deg C at the same low pressure to dissociate the carbide, in which case the plutonium is distilled out and collected on the same condensing surface.

  4. Pyrochemical Glovebox Line Replacement and Modernization Effort at Los Alamos National Laboratory Plutonium Facility.

    SciTech Connect

    Dennison, D. K.; McNeese, James A.; Cantrell, W. S.; Garcia, R. E.

    2002-01-01

    Los Alamos National Laboratory (LANL), as part of the stockpile stewardship mission, is developing the capability to manufacture replacement pits for the United States nuclear weapon stockpile. Part of this effort requires that the various manufacturing activities formerly performed at the Rocky Flats be reconstructed at LANL, modernized to improve operation, and re-certified for pit production. Part of this effort requires that new pyrochemical metal production facilities be installed in TA-55 to replace existing outdated equipment. The purpose of this effort is design, build/procure, assemble, cold test, and support installation activities for ten pyrochemical processing gloveboxes and processing support equipment for insertion into a selected PF-4 laboratory. Eight of the gloveboxes will be connected to a common trolley tunnel with a state-of-the-art automated transport system that can access each glovebox. Five of those gloveboxes will be designed to accommodate standard water-cooled pyrochemical processing furnaces with appropriate lift mechanisms for handling the furnace products and processing hardware. Another glovebox will be designed to accommodate an improved breaking press that will be designed/procured to break alpha metal up to a thickness of l-inch, eliminate introduction of hydraulic oil to the glovebox environment, provide appropriate shielding for prevention of glovebox damage due to shrapnel projectiles, and use interchangeable impact tools in order to be able to process both contaminated and clean metals with the same machine. In addition, a storage glovebox and a distillation glovebox (already developed) will be attached to the transport system. Two other gloveboxes, one accommodating two casting furnaces and another storage glovebox, will be installed in the laboratory independent of the transport system. A transfer system (trolley) will be incorporated to handle material flow between the pyrochemical furnace gloveboxes, the press glovebox

  5. Automated monitoring of in-process plutonium concentration

    SciTech Connect

    Rebagay, T.V.; Huff, G.A.; Hofstetter, K.J.

    1982-01-01

    An automated low-level plutonium monitor capable of measuring total and isotopic plutonium abundances in solutions is described. To demonstrate near real-time assay of in-process plutonium, we installed a monitor on a flowing stream of a laboratory experimental facility. The stream was composed of uranium and plutonium in nitric acid at concentrations typical of a plant using a Purex flowsheet modified to permit coprocessing of spent nuclear fuel. The plutonium isotopic abundances were typical of those found in light water reactor grade fuel. The plutonium isotopic concentrations in the stream with the exception of /sup 242/Pu were determined by direct lambda-ray spectrometry. The /sup 242/Pu abundance was calculated by isotope correlation techniques. Additional data were obtained on coprocessed uranium-plutonium solutions denatured with fission products (/sup 103/Ru, /sup 144/Ce//sup 144/Pr, and /sup 95/Zr//sup 95/Nb). /sup 239/Pu and /sup 240/Pu concentrations can be determined to within 2% and 5%, respectively, of the concentrations determined by mass spectrometry.

  6. Process development testing in support of the plutonium immobilization program

    SciTech Connect

    Herman, C; Ebbinghaus, B

    2000-02-11

    As an integral part of the plutonium disposition program, formulation and process development is being performed for the immobilization of surplus plutonium in a titanate-based ceramic. Small-scale process prototypic and lab-scale functionally prototypic equipment have been tested to help define the immobilization process. The testing has included non-radioactive surrogates and actual actinide oxides contained in the immobilized form. A summary of the process development studies, as well as the formulation studies relevant to the process, will be provided.

  7. 10 CFR 140.107 - Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium processing and fuel fabrication plants and furnishing insurance policies as proof of financial protection. 140.107 Section 140.107 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL...

  8. 10 CFR 140.107 - Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium processing and fuel fabrication plants and furnishing insurance policies as proof of financial protection. 140.107 Section 140.107 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL...

  9. CHARACTERIZATION OF CURRENTLY GENERATED TRANUSRANIC WASTE AT THE LOS ALAMOS NATIONAL LABORATORY'S PLUTONIUM PRODUCTION FACILITY

    SciTech Connect

    Dodge, Robert L.; Montoya, Andy M.

    2003-02-27

    By the time the Waste Isolation Pilot Plant (WIPP) completes its Disposal Phase in FY 2034, the Department of Energy (DOE) will have disposed of approximately 109,378 cubic meters (m3) of Transuranic (TRU) waste in WIPP (1). If DOE adheres to its 2005 Pollution Prevention Goal of generating less than 141m3/yr of TRU waste, approximately 5000 m3 (4%) of that TRU waste will be newly generated (2). Because of the overwhelming majority (96%) of TRU waste destined for disposal at WIPP is legacy waste, the characterization and certification requirements were developed to resolve those issues related to legacy waste. Like many other DOE facilities Los Alamos National Laboratory (LANL) has a large volume (9,010m3) of legacy Transuranic Waste in storage (3). Unlike most DOE facilities LANL will generate approximately 140m3 of newly generated TRU waste each year3. LANL's certification program was established to meet the WIPP requirements for legacy waste and does not take advantage of the fundamental differences in waste knowledge between newly generated and legacy TRU waste.

  10. Plutonium

    NASA Astrophysics Data System (ADS)

    Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

    The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

  11. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  12. Ceramic process equipment for the immobilization of plutonium

    SciTech Connect

    Armantrout, G; Brummond, W; Maddux. P

    1998-07-24

    Lawrence Livermore National Laboratory is developing a ceramic form for immobilizing excess US plutonium. The process used to produce the ceramic form is similar to the fabrication process used in the production of MOX fuel. In producing the ceramic form, the uranium and plutonium oxides are first milled to less than 20 microns. The milled actinide powder then goes through a mixing-blending step where the ceramic precursors, made from a mixture of calcined TiO2, Ca(OH)2, HfO2 and Gd03, are blended with the milled actinides. A subsequent granulation step ensures that the powder will flow freely into the press and die set. The pressed ceramic material is then sintered. The process parameters for the ceramic fabrication steps to make the ceramic form are less demanding than equivalent processing steps for MOX fuel fabrication. As an example, the pressing pressure for MOX is in excess of 137.0 MPa, whereas the pressing pressure for the ceramic form is only 13.8 MPa. This translates into less die wear for the ceramic material pressing. Similarly, the sintering temperatures and times are also different. MOX is sintered at 1,700°C in 4% H2 for a 24 hour cycle. The ceramic form is sintered at 1350°C in argon or air for a 15 hour cycle. Lawrence Livermore National Laboratory is demonstrating this ceramic fabrication process with a series of processing validation steps: first, using cerium as a surrogate for the plutonium and uranium, second, using uranium with thorium as the plutonium surrogate, and third, with plutonium. to this particle size is necessary to ensure essentially complete reaction of the plutonium with the ceramic precursors in subsequent sintering operations. Larger particles will only partially react, leaving islands of plutonium-rich minerals or unreacted plutonium oxide encased in the mineral structure. While this may be acceptable for the desired repository performance, it complicates the form

  13. TRUEX processing of plutonium analytical solutions at Argonne National Laboratory

    SciTech Connect

    Chamberlain, D.B.; Conner, C.; Hutter, J.C.; Leonard, R.A.; Wygmans, D.G.; Vandegrift, G.F.

    1995-12-31

    The TRUEX (TRansUranic EXtraction) solvent extraction process was developed at Argonne National Laboratory (ANL) for the Department of Energy. A TRUEX demonstration completed at ANL involved the processing of analytical and experimental waste generated there and at the New Brunswick Laboratory. A 20-stage centrifugal contactor was used to recover plutonium, americium, and uranium from the waste. Approximately 84 g of plutonium, 18 g of uranium, and 0.2 g of americium were recovered from about 118 liters of solution during four process runs. Alpha decontamination factors as high as 65,000 were attained, which was especially important because it allowed the disposal of the process raffinate as a low-level waste. The recovered plutonium and uranium were converted to oxide; the recovered americium solution was concentrated by evaporation to approximately 100 ml. The flowsheet and operational procedures were modified to overcome process difficulties. These difficulties included the presence of complexants in the feed, solvent degradation, plutonium precipitation, and inadequate decontamination factors during startup. This paper will discuss details of the experimental effort.

  14. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    SciTech Connect

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  15. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  16. PROCESS OF REDUCING PLUTONIUM TO TETRAVALENT TRIVALENT STATE

    DOEpatents

    Mastick, D.F.

    1960-05-10

    The reduction of hexavalent and tetravalert plutonium ions to the trivalent state in strong nitric acid can be accomplished with hydrogen peroxide. The trivalent state may be stabilized as a precipitate by including oxalate or fluoride ions in the solution. The acid should be strong to encourage the reduction from the plutonyl to the trivalent state (and discourage the opposed oxidation reaction) and prevent the precipitation of plutonium peroxide, although the latter may be digested by increasing the acid concentration. Although excess hydrogen peroxide will oxidize plutonlum to the plutonyl state, complete reduction is insured by gently warming the solution to break down such excess H/ sub 2/O/sub 2/. The particular advantage of hydrogen peroxide as a reductant lies in the precipitation technique, where it introduces no contaminating ions. The process is adaptable to separate plutonium from uranium and impurities by proper adjustment of the sequence of insoluble anion additions and the hydrogen peroxide addition.

  17. Controllability of plutonium concentration for FBR fuel at a solvent extraction process in the PUREX process

    SciTech Connect

    Enokida, Youichi; Kitano, Motoki; Sawada, Kayo

    2013-07-01

    Typical Purex solvent extraction systems for the reprocessing of spent nuclear fuel have a feed material containing dilute, 1% in weight, plutonium, along with uranium and fission products. Current reprocessing proposals call for no separation of the pure plutonium. The work described in this paper studied, by computer simulation, the fundamental feasibility of preparing a 20% concentrated plutonium product solution from the 1% feed by adjusting only the feed rates and acid concentrations of the incoming streams and without the addition of redox reagents for the plutonium. A set of process design flowsheets has been developed to realize a concentrated plutonium solution of a 20% stream from the dilute plutonium feed without using redox reagents. (authors)

  18. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    SciTech Connect

    Nash, C. A.

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  19. 10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... plutonium processing and fuel fabrication plant is required to have and maintain financial protection in the... use plutonium at two or more plutonium processing and fuel fabrication plants at the same location... protection covers all such plants at the location....

  20. 10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... plutonium processing and fuel fabrication plant is required to have and maintain financial protection in the... use plutonium at two or more plutonium processing and fuel fabrication plants at the same location... protection covers all such plants at the location....

  1. 10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... plutonium processing and fuel fabrication plant is required to have and maintain financial protection in the... use plutonium at two or more plutonium processing and fuel fabrication plants at the same location... protection covers all such plants at the location....

  2. Decontamination and demolition of a former plutonium processing facility`s process exhaust system, firescreen, and filter plenum buildings

    SciTech Connect

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-03-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases.

  3. 1. VIEW LOOKING NORTHWEST AT BUILDING 776/777, THE PLUTONIUM PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING NORTHWEST AT BUILDING 776/777, THE PLUTONIUM PROCESSING BUILDING, DURING CONSTRUCTION. (4/10/56) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  4. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    DOEpatents

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  5. Geomorphology of plutonium in the Northern Rio Grande

    SciTech Connect

    Graf, W.L.

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  6. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  7. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  8. A Novel Methodology for Processing of Plutonium-Bearing Waste as Ammonium Plutonium(III)-Oxalate

    SciTech Connect

    Sali, Sanjay Krishnarao; Noronha, Donal Marshal; Mhatre, Hemakant Ramkrishna; Mahajan, Murlidhar Anna; Chander, Keshav; Aggarwal, Suresh Kumar; Venugopal, Venkatarama

    2005-09-15

    A novel methodology has been developed for the recovery of Pu from different types of waste solutions generated during various operations involved in the chemical quality control/assurance of nuclear fuels. The method is based on the precipitation of Pu as ammonium plutonium(III)-oxalate and involves the adjustment of acidity of the Pu solution to 1 N, the addition of ascorbic acid (0.05 M) to reduce Pu to Pu(III), followed by the addition of (NH{sub 4}){sub 2}SO{sub 4} (0.5 M) and a stoichiometric amount of saturated oxalic acid maintaining a 0.2 M excess of oxalic acid concentration in the supernatant. The precipitate was characterized by X-ray powder diffraction and thermal and chemical analysis and was found to have the composition NH{sub 4}Pu(C{sub 2}O{sub 4}){sub 2}.3H{sub 2}O. This compound can be easily decomposed to PuO{sub 2} on heating in air at 823 K. Decontamination factors of U, Fe, and Cr determined showed quantitative removal of these ions during the precipitation of Pu as ammonium plutonium(III)-oxalate.A semiautomatic assembly based on the transfer of solutions by suction arrangement was designed and fabricated for processing large volumes of Pu solution. This assembly reduced the corrosion of the glove-box material and offered the advantage of lower radiation exposure to the working personnel.

  9. Process Modeling and Analysis for Radioactive Solid Waste Management at Los Alamos

    SciTech Connect

    Kornreich, D.E.; Parker, R.Y.; Gonzales-Lujan, J.M.

    2006-07-01

    Los Alamos National Laboratory has created a discrete-event simulation model of the nuclear waste drum characterization operations the 'processing/inspection - Los Alamos model of drums equivalent' ({pi} a la mode). This model takes drum inventory data, process-related information, and planned processing priorities related to the solid-waste management operations at Los Alamos to assess the resulting characterization process and resulting schedule for drum shipments to the Waste Isolation Pilot Plant. The model tracks the drum inventory, material inventory, and equipment as a function of time. Data from the model and some sample results are presented in this paper. (authors)

  10. Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States

    SciTech Connect

    Scherer, Carolynn P; Long, Jon D

    2010-09-28

    In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD

  11. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    SciTech Connect

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  12. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    SciTech Connect

    LaFrate, P.; Elliott, J.; Valasquez, M.

    1996-11-15

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail.

  13. RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)

    SciTech Connect

    MINETTE, M.J.

    2007-05-30

    The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

  14. PROCESS OF TREATING URANIUM HEXAFLUORIDE AND PLUTONIUM HEXAFLUORIDE MIXTURES WITH SULFUR TETRAFLUORIDE TO SEPARATE SAME

    DOEpatents

    Steindler, M.J.

    1962-07-24

    A process was developed for separating uranium hexafluoride from plutonium hexafluoride by the selective reduction of the plutonium hexafluoride to the tetrafluoride with sulfur tetrafluoride at 50 to 120 deg C, cooling the mixture to --60 to -100 deg C, and volatilizing nonreacted sulfur tetrafluoride and sulfur hexafluoride formed at that temperature. The uranium hexafluoride is volatilized at room temperature away from the solid plutonium tetrafluoride. (AEC)

  15. High temperature adsorption process for solidification of plutonium and neptunium

    SciTech Connect

    Korchenkin, K.; Mashkin, A.; Nardova, A.

    1995-12-31

    The problem of plutonium and neptunium converting into solid form has been considered. It was recently been discovered that plutonium and neptunium absorbed well on inorganic porous matrices (silica gel) under definite conditions. In the work presented in this paper plutonium and neptunium sorption on silica gel followed by calcining saturated granules was experimentally investigated. Calcination may proceed at the different temperatures to give the solid dustless plutonium and neptunium compounds suitable both for controlled temporary storage (with possible return radionuclides in nuclear fuel cycle) and for long life disposal.

  16. PROCESS USING BISMUTH PHOSPHATE AS A CARRIER PRECIPITATE FOR FISSION PRODUCTS AND PLUTONIUM VALUES

    DOEpatents

    Finzel, T.G.

    1959-03-10

    A process is described for separating plutonium from fission products carried therewith when plutonium in the reduced oxidation state is removed from a nitric acid solution of irradiated uranium by means of bismuth phosphate as a carrier precipitate. The bismuth phosphate carrier precipitate is dissolved by treatment with nitric acid and the plutonium therein is oxidized to the hexavalent oxidation state by means of potassium dichromate. Separation of the plutonium from the fission products is accomplished by again precipitating bismuth phosphate and removing the precipitate which now carries the fission products and a small percentage of the plutonium present. The amount of plutonium carried in this last step may be minimized by addition of sodium fluoride, so as to make the solution 0.03N in NaF, prior to the oxidation and prccipitation step.

  17. PROCESS OF REMOVING PLUTONIUM VALUES FROM SOLUTION WITH GROUP IVB METAL PHOSPHO-SILICATE COMPOSITIONS

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.

    1957-10-29

    A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.

  18. PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE

    DOEpatents

    Thomas, J.R.

    1958-08-26

    >Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.

  19. SEPARATION OF PLUTONIUM FROM FISSION PRODUCTS BY A COLLOID REMOVAL PROCESS

    DOEpatents

    Schubert, J.

    1960-05-24

    A method is given for separating plutonium from uranium fission products. An acidic aqueous solution containing plutonium and uranium fission products is subjected to a process for separating ionic values from colloidal matter suspended therein while the pH of the solution is maintained between 0 and 4. Certain of the fission products, and in particular, zirconium, niobium, lanthanum, and barium are in a colloidal state within this pH range, while plutonium remains in an ionic form, Dialysis, ultracontrifugation, and ultrafiltration are suitable methods of separating plutonium ions from the colloids.

  20. Recovery of Plutonium from Refractory Residues Using a Sodium Peroxide Pretreatment Process

    SciTech Connect

    Rudisill, T.S.

    2003-10-23

    The recycle of plutonium from refractory residues is a necessary activity for the nuclear weapon production complex. Traditionally, high-fired plutonium oxide (PuO2) was leached from the residue matrix using a nitric acid/fluoride dissolving flowsheet. The recovery operations were time consuming and often required multiple contacts with fresh dissolving solution to reduce the plutonium concentration to levels where residual solids could be discarded. Due to these drawbacks, the development of an efficient process for the recovery of plutonium from refractory materials is desirable. To address this need, a pretreatment process was developed. The development program utilized a series of small-scale experiments to optimize processing conditions for the fusion process and demonstrate the plutonium recovery efficiency using ceramic materials developed as potential long-term storage forms for PuO2 and an incinerator ash from the Rocky Flats Environmental Technology Site (Rocky Flats) as te st materials.

  1. Design of the Laboratory-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Orton, Robert D.; Rapko, Brian M.; Smart, John E.

    2015-05-01

    This report describes a design for a laboratory-scale capability to produce plutonium oxide (PuO2) for use in identifying and validating nuclear forensics signatures associated with plutonium production, as well as for use as exercise and reference materials. This capability will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including PuO2 dissolution, purification of the Pu by ion exchange, precipitation, and re-conversion to PuO2 by calcination.

  2. Plutonium production story at the Hanford site: processes and facilities history

    SciTech Connect

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  3. Conversion of plutonium scrap and residue to boroilicate glass using the GMODS process

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Rudolph, J.; Elam, K.R.; Ferrada, J.J.

    1995-11-28

    Plutonium scrap and residue represent major national and international concerns because (1) significant environmental, safety, and health (ES&H) problems have been identified with their storage; (2) all plutonium recovered from the black market in Europe has been from this category; (3) storage costs are high; and (4) safeguards are difficult. It is proposed to address these problems by conversion of plutonium scrap and residue to a CRACHIP (CRiticality, Aerosol, and CHemically Inert Plutonium) glass using the Glass Material Oxidation and Dissolution System (GMODS). CRACHIP refers to a set of requirements for plutonium storage forms that minimize ES&H concerns. The concept is several decades old. Conversion of plutonium from complex chemical mixtures and variable geometries into a certified, qualified, homogeneous CRACHIP glass creates a stable chemical form that minimizes ES&H risks, simplifies safeguards and security, provides an easy-to-store form, decreases storage costs, and allows for future disposition options. GMODS is a new process to directly convert metals, ceramics, and amorphous solids to glass; oxidize organics with the residue converted to glass; and convert chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, and other materials to glass. GMODS is an enabling technology that creates new options. Conventional glassmaking processes require conversion of feeds to oxide-like forms before final conversion to glass. Such chemical conversion and separation processes are often complex and expensive.

  4. Plutonium aging

    SciTech Connect

    Olivas, J.D.

    1999-03-01

    The author describes the plutonium aging program at the Los Alamos National Laboratory. The aging of plutonium components in the US nuclear weapons stockpile has become a concern due to several events: the end of the cold war, the cessation of full scale underground nuclear testing as a result of the Comprehensive Test Ban Treaty (CTBT) and the closure of the Rocky Flats Plant--the site where the plutonium components were manufactured. As a result, service lifetimes for nuclear weapons have been lengthened. Dr. Olivas will present a brief primer on the metallurgy of plutonium, and will then describe the technical approach to ascertaining the long-term changes that may be attributable to self-radiation damage. Facilities and experimental techniques which are in use to study aging will be described. Some preliminary results will also be presented.

  5. USING 3-D MODELING TO IMPROVE THE EFFICIENCY FOR REMOVING PLUTONIUM PROCESSING EQUIMENT FROM GLOVEBOXES AT THE PLUTONIUM FINISHANG PLANT

    SciTech Connect

    CROW SH; KYLE RN; MINETTE MJ

    2008-07-15

    The Plutonium Finishing Plant at the Department of Energy's Hanford Site in southeastern Washington State began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in production lines, consisting primarily of hundreds of gloveboxes. Over the years, these gloveboxes and attendant processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked with cleaning out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D and D workers is the use of 3-D models to make the process of cleaning out the radioactive gloveboxes more efficient. The use of 3-D models has significantly improved the work-planning process by giving workers a clear image of glovebox construction and composition, which in turn is used to determine cleanout methods and work sequences. The 3-D visual products also enhance safety by enabling workers to more easily identify hazards and implement controls. Further, the ability to identify and target the removal of radiological material early in the D and D process provides substantial dose reduction for the workers.

  6. CONCENTRATION PROCESS FOR PLUTONIUM IONS, IN AN OXIDATION STATE NOT GREATER THAN +4, IN AQUEOUS ACID SOLUTION

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-06-14

    A process for concentrating plutonium is given in which plutonium is first precipitated with bismuth phosphate and then, after redissolution, precipitated with a different carrier such as lanthanum fluoride, uranium acetate, bismuth hydroxide, or niobic oxide.

  7. Sampling and Analysis of the Headspace Gas in 3013 Type Plutonium Storage Containers at Los Alamos National Laboratory

    SciTech Connect

    Jackson, Jay M.; Berg, John M.; Hill, Dallas D.; Worl, Laura A.; Veirs, Douglas K.

    2012-07-11

    Department of Energy (DOE) sites have packaged approximately 5200 3013 containers to date. One of the requirements specified in DOESTD-3013, which specifies requirements for packaging plutonium bearing materials, is that the material be no greater than 0.5 weight percent moisture. The containers are robust, nested, welded vessels. A shelf life surveillance program was established to monitor these cans over their 50 year design life. In the event pressurization is detected by radiography, it will be necessary to obtain a head space gas sample from the pressurized container. This technique is also useful to study the head space gas in cans selected for random destructive evaluation. The atmosphere is sampled and the hydrogen to oxygen ratio is measured to determine the effects of radiolysis on the moisture in the container. A system capable of penetrating all layers of a 3013 container assembly and obtaining a viable sample of the enclosed gas and an estimate of internal pressure was designed.

  8. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, Xiangdong; Einziger, Robert E.

    1997-01-01

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  9. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, X.; Einziger, R.E.

    1997-08-12

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  10. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, X.; Einziger, R.E.

    1997-01-28

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  11. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    SciTech Connect

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  12. Processes for metal extraction

    NASA Technical Reports Server (NTRS)

    Bowersox, David F.

    1992-01-01

    This report describes the processing of plutonium at Los Alamos National Laboratory (LANL), and operation illustrating concepts that may be applicable to the processing of lunar materials. The toxic nature of plutonium requires a highly closed system for processing lunar surface materials.

  13. 10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Amount of financial protection required for plutonium... of financial protection required for plutonium processing and fuel fabrication plants. (a) Each holder of a license issued pursuant to part 70 of this chapter to possess and use plutonium at...

  14. 10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Amount of financial protection required for plutonium... of financial protection required for plutonium processing and fuel fabrication plants. (a) Each holder of a license issued pursuant to part 70 of this chapter to possess and use plutonium at...

  15. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect

    French, Sean B.; Shuman, Rob

    2012-04-18

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  16. Automated on-line plutonium concentration monitor for process control and safeguards

    SciTech Connect

    Rebagay, T.V.; Huff, G.A.; Hofstetter, K.J.

    1981-03-12

    A near real-time inventory can be achieved using the monitor. Since the stream being monitored is the aqueous effluent of the electropulse column, the plutonium profile of this column for a given flowsheet condition could be evaluated. Changes in process parameters that influence the kinetics and efficiency of the purification cycle can be performed in real time. This characteristic of the monitor is very valuable in process control and verification of plutonium inventory. The technique of assaying the plutonium content of the stream sequentially enhances rapid optimization of the flowsheet and also improves timeliness of detection in the event of an attempt to divert the plutonium or in case of column upsets.

  17. Characterization of plutonium in ground water near the idaho chemical processing plant

    USGS Publications Warehouse

    Cleveland, J.M.

    1982-01-01

    Plutonium is present in very low concentrations in ground water near the disposal well at the Idaho Chemical Processing Plant but was not detected in waters at greater distances. Because of the absence of strong complexing agents, the plutonium is present as an uncomplexed (perhaps hydrolyzed) tetravalent species, which is readily precipitated or sorbed by basalt or sediments along the ground-water flow path.

  18. Status of plutonium ceramic immobilization processes and immobilization forms

    SciTech Connect

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.; Jostsons, A.

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  19. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones

  20. Gas pycnometry for density determination of plutonium parts

    SciTech Connect

    Collins, S.; Randolph, H.W.

    1997-08-19

    The traditional method for plutonium density determination is by measuring the weight loss of the component when it is immersed in a liquid of known density, Archimedes` Principle. The most commonly used heavy liquids that are compatible for plutonium measurement are freon and monobromobenzene, but these pose serious environmental and health hazards. The contaminated liquid is also a radiological waste concern with difficult disposition. A gaseous medium would eliminate these environmental and health concerns. A collaborative research effort between the Savannah River Technology Center and Los Alamos National Laboratory was undertaken to determine the feasibility of a gaseous density measurement process for plutonium hemishells.

  1. Experiences with Non-traditional Bioassay Methods in a Plutonium Processing Line

    SciTech Connect

    La Bone, T.R.

    2003-10-17

    An incident in an Savannah River Site (SRS) plutonium processing line (FB-Line) in 1999 highlighted the fact insoluble forms of plutonium exist at SRS that may not be readily monitored with the routine bioassay programs traditionally used at this site. To address this issue, a study was conducted in FB-Line with 21 participants for a year ending in July 2002. The purpose of the study was to examine the use of three non-traditional monitoring methods and, based on this experience, recommend a routine bioassay program that is capable of monitoring workers potentially exposed to insoluble plutonium. These non-traditional monitoring methods are personal air sampling (PAS), thermal ionization mass spectrometry (TIMS) of urine samples, and routine fecal bioassay. The main conclusions and recommendations of the study are: (1) A routine TIMS urine bioassay program, which is called the enhanced bioassay program (EBP), is recommended for workers in SRS facilities that have a reasonable potential for exposure to insoluble forms of plutonium. (2) Under certain conditions the EBP could result in onerous work restrictions. A contingency plan involving the use of PAS is recommended in this case. PAS is also recommended for workers who have had historic intakes of plutonium that interfere with the detection and interpretation of future intakes of insoluble plutonium. (3) For the EBP to be successful it must be used only for those workers who have a reasonable potential for exposure to insoluble plutonium, and these workers must take all necessary precautions to avoid cross-contamination of the urine (and follow-up fecal) samples. (4) Fecal bioassay is an important tool for follow-up to abnormal events, but routine fecal bioassay is not recommended. (5) The PAS data clearly shows that workers are exposed to low levels of airborne plutonium, but the participants appear to be unlikely to exceed a committed effective dose equivalent of 100 mrem from these exposures.

  2. Plutonium scrap waste processing based on aqueous nitrate and chloride media

    SciTech Connect

    Navratil, J D

    1985-05-13

    A brief review of plutonium scrap aqueous waste processing technology at Rocky Flats is given. Nitric acid unit operations include dissolution and leaching, anion exchange purification and precipitation. Chloride waste processing consists of cation exchange and carbonate precipitation. Ferrite and carrier precipitation waste treatment processes are also described. 3 figs.

  3. Basis document for PFP plutonium nitrate ion exchange process in Room 228A

    SciTech Connect

    Risenmay, H.R.

    1997-04-23

    The PFP facility currently has approximately 4300 liters of plutonium nitrate solution in storage. This material will be calcined by the Vertical Denigration Calciner (VDC) located in room 230C. However, part of the material needs to be purified to remove constituents that will interfere with the calcination process. An Ion Exchange process using Reillex{trademark} HPQ anion exchange resin was tested by the Plutonium Process Support Laboratories (PPSL) (I). The Ion exchange process is to be installed in glovebox HC-7 in room 228A/234-5Z. The plutonium separated from the interfering constituents will be in a concentrated condition ready to be calcined by the VDC in room 230C. The oxide product of the VDC will be placed into the 2736-Z vaults for long term storage.

  4. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  5. Adaptation of the IBM ECR (electric cantilever robot) robot to plutonium processing applications

    SciTech Connect

    Armantrout, G.A.; Pedrotti, L.R. ); Halter, E.A.; Crossfield, M. )

    1990-12-01

    The changing regulatory climate in the US is adding increasing incentive to reduce operator dose and TRU waste for DOE plutonium processing operations. To help achieve that goal the authors have begun adapting a small commercial overhead gantry robot, the IBM electric cantilever robot (ECR), to plutonium processing applications. Steps are being taken to harden this robot to withstand the dry, often abrasive, environment within a plutonium glove box and to protect the electronic components against alpha radiation. A mock-up processing system for the reduction of the oxide to a metal was prepared and successfully demonstrated. Design of a working prototype is now underway using the results of this mock-up study. 7 figs., 4 tabs.

  6. Materials measurement and accounting in an operating plutonium conversion and purification process. Phase I. Process modeling and simulation. [PUCSF code

    SciTech Connect

    Thomas, C.C. Jr.; Ostenak, C.A.; Gutmacher, R.G.; Dayem, H.A.; Kern, E.A.

    1981-04-01

    A model of an operating conversion and purification process for the production of reactor-grade plutonium dioxide was developed as the first component in the design and evaluation of a nuclear materials measurement and accountability system. The model accurately simulates process operation and can be used to identify process problems and to predict the effect of process modifications.

  7. Preliminary process simulation and analysis of GMODS: Processing of plutonium surplus materials

    SciTech Connect

    Ferrada, J.J.; Nehls, J.W. Jr.; Welch, T.D.; Giardina, J.L.; Forsberg, C.W.; Maliyekkel, A.T.

    1996-01-02

    To address growing concerns in the areas of arms control, control of fissile materials, waste management, and environment and health, the US Department of Energy is studying and evaluating various options for the control and disposal of surplus fissile materials (SFMs). One of the options under consideration is the Glass Material Oxidation and Dissolution System (GMODS) which directly converts plutonium-bearing materials such as metals, ceramics, and organics into a durable-high-quality glass for long-term storage or a waste form for disposal. This study undertook the development of a computer simulation of the GMODS process using FLOW. That computer simulation was used to perform an assessment of how GMODS would handle the treatment of plutonium, rich scrap (RS) and lead scrap (LS), and identify critical process parameters. Among the key process parameters affecting the glass formation were processing temperatures, additives, and the effects of varying them on the final product. This assessment looked at the quantity of glass produced, the quality of the final glass form, and the effect of blending different groups of the feed streams on the glass produced. The model also provided a way to study the current process assumptions and determine in which areas more experimental studies are required. The simulation showed that the glass chemistry postulated in the models is workable. It is expected that the glass chemistry assumed during the modeling process can be verified by the results of the laboratory experiments that are currently being conducted relating to the GMODS process.Further waste characterization, especially of the SFM waste streams not studied in this report, will provide more nearly accurate results and give a more detailed evaluation of the GMODS process.

  8. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  9. CSER 00-003 Criticality Safety Evaluation report for PFP Magnesium Hydroxide Precipitation Process for Plutonium Stabilization Glovebox 3

    SciTech Connect

    LAN, J.S.

    2000-07-13

    This Criticality Safety Evaluation Report analyzes the stabilization of plutonium/uranium solutions in Glovebox 3 using the magnesium hydroxide precipitation process at PFP. The process covered are the receipt of diluted plutonium solutions into three precipitation tanks, the precipitation of plutonium from the solution, the filtering of the plutonium precipitate from the solution, the scraping of the precipitate from the filter into boats, and the initial drying of the precipitated slurry on a hot plate. A batch (up to 2.5 kg) is brought into the glovebox as plutonium nitrate, processed, and is then removed in boats for further processing. This CSER establishes limits for the magnesium hydroxide precipitation process in Glovebox 3 to maintain criticality safety while handling fissionable material.

  10. Analysis of civilian processing programs in reduction of excess separated plutonium and high-enriched uranium

    SciTech Connect

    Persiani, P.J.

    1995-12-31

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials.

  11. Development of a Sodium Peroxide Pretreatment Process for the Recovery of Plutonium from Refractory Residues

    SciTech Connect

    Rudisill, T.S.

    2001-10-19

    The generation of refractory materials containing residual amounts of plutonium and other actinides was a frequent byproduct of nuclear weapon production activities. The focus of this work was the development and demonstration of optimal processing conditions for the fusion of refractory PuO2 with Na2O2.

  12. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  13. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    SciTech Connect

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  14. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    SciTech Connect

    Wayne, David M.

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  15. Geochemical Processes Controlling Chromium Transport in the Vadose Zone and Regional Aquifer, Los Alamos, New Mexico

    NASA Astrophysics Data System (ADS)

    Longmire, P.; Ding, M.; Rearick, M.; Vaniman, D.; Katzman, D.

    2008-12-01

    The environmental aqueous geochemistry of Cr is of considerable interest to physical scientists and toxicologists in quantifying the fate and transport of this metal in surface and subsurface environments. Chromium(VI) solutions were released from cooling towers to a stream channel within Sandia Canyon at Los Alamos National Laboratory, NM from 1956 to 1971. These solutions have migrated 293 m depth through the vadose zone, containing several saturated zones, to the regional water table. Concentrations of total dissolved Cr, mainly as Cr(VI), in the regional aquifer range between 0.17 to 8.46 mM. The regional aquifer is characterized by calcium-sodium-bicarbonate solution, contains dissolved oxygen (0.09 to 0.22 mM), and has a circumneutral pH (6.8 to 8.3). Geochemical processes controlling the fate and transport of Cr in groundwater at Los Alamos include a combination of adsorption and precipitation reactions within aquifer systems. Vadose zone material containing hydrous ferric oxide, smectite, silica glass, and calcite widely range in their ability to adsorb Cr(VI) under basic pH conditions. Overall, the vadose zone at Los Alamos is relatively oxidizing, however, basalt flows are locally reducing with respect to Fe. Ferrous iron concentrated within the Cerros del Rio basalt has been shown through batch experiments to reduce Cr(VI) to Cr(III) resulting in precipitation of chromium(III) hydroxide. Regional aquifer material, consisting of silicates, oxides, and calcite, vary in the amount of Fe(II) available in reactive minerals to effectively reduce Cr(VI) to Cr(III). The results of our studies (1) directly assess the relationship between mineralogical characterization and transport behavior of Cr using site-specific hydrogeologic material and (2) provide site-specific adsorption and precipitation parameters obtained through the experiments to refine the fate and transport modeling of Cr within the vadose zone and regional aquifer. Natural attenuation of Cr at Los

  16. Unreviewed Safety Question Determination for TOPAZ II uranium fuel pellet production at the Plutonium Handling Facility (PF-4), Technical Area 55, Los Alamos National Laboratory

    SciTech Connect

    Gordon, D.J.P.

    1993-09-29

    Enriched uranium oxide, nitride, and carbide fuel pellets have been produced at PF-4 since the facility became operational in the late 1970s. The TOPAZ II reactors require fuel enriched to 97% uranium-235. Approximately 75 kilograms (kgs) of uranium will be processed per year in support of this program. The amount of fuel processed per year at PF-4 will not be increased for these programs, but the batch size will be increased to approximately 3 kgs of uranium. The current DOE-approved Final Safety Analysis Report (FSAR) calls for batches containing 45 grams (gms) of plutonium-239 and 172 gms of uranium-235. The impact of increasing the uranium batch size on the facility authorization basis is analyzed in the attached Safety Evaluation Worksheet. In addition, the structural modification for the transformer and vacuum pump installation, required to support the operation, is evaluated. Based on the attached Safety Evaluation, it has been determined that the change in uranium batch size does not constitute an Unreviewed Safety Question (USQ), the increase in uranium batch size does not increase the probability or consequences of any accidents previously analyzed and does not create the possibility for a new type of accident or reduce the margin of safety in the Operational Safety Requirements (OSRs). Similarly, the structural modifications required for the transformer and vacuum pump installation do not increase the probability or consequence of any accident previously analyzed and do not create the possibility for a new type of accident or reduce any margin of safety in the OSRS.

  17. DEVELOPMENT AND IMPLEMENTATION OF THE LOS ALAMOS NATIONAL LABORATORY INDEPENDENT SAR REVIEW PROCESS.

    SciTech Connect

    J. BUECK; T. MARTH

    2001-05-01

    Contractor independent review of contractor prepared safety documents has ceased as a requirement under DOE orders. However, a recent study to determine root causes of the poor quality and extremely long approval times for Los Alamos National Laboratory nuclear safety document has identified such a review as a crucial step in ensuring quality. LANL has teamed with the DOE Field Office to reinstate an independent review process modeled after DOE-STD-1104. A review guide has been prepared predicated on the content of DOE-STD-3009. Discipline has been enforced to ensure that comments reflect important issues and that resolution of the comment is possible. Safety management at both LANL and DOE have embraced this concept. This process has been exercised and has resulted in improvements in safety analysis quality and a degree of uniformity between DOE and LANL reviews.

  18. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-25

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

  19. PROCESS OF TREATING OR FORMING AN INSOLUBLE PLUTONIUM PRECIPITATE IN THE PRESENCE OF AN ORGANIC ACTIVE AGENT

    DOEpatents

    Balthis, J.H.

    1961-07-18

    Carrier precipitation processes for the separation of plutonium from fission products are described. In a process in which an insoluble precipitate is formed in a solution containing plutonium and fission products under conditions whereby plutonium is carried by the precipitate, and the precipitate is then separated from the remaining solution, an organic surface active agent is added to the mixture of precipitate and solution prior to separation of the precipitate from the supernatant solution, thereby improving the degree of separation of the precipitate from the solution.

  20. Reactor options for disposition of excess weapon plutonium: Selection criteria and decision process for assessment

    SciTech Connect

    Edmunds, T.; Buonpane, L.; Sicherman, A.; Sutcliffe, W.; Walter, C.; Holman, G.

    1994-01-01

    DOE is currently considering a wide range of alternatives for disposition of excess weapon plutonium, including using plutonium in mixed oxide fuel for light water reactors (LWRs). Lawrence Livermore National Laboratory (LLNL) has been tasked to assist DOE in its efforts to develop a decision process and criteria for evaluating the technologies and reactor designs that have been proposed for the fission disposition alternative. This report outlines an approach for establishing such a decision process and selection criteria. The approach includes the capability to address multiple, sometimes conflicting, objectives, and to incorporate the impact of uncertainty. The approach has a firm theoretical foundation and similar approaches have been used successfully by private industry, DOE, and other government agencies to support and document complex, high impact technology choice decisions. Because of their similarity and relatively simple technology, this report focuses on three light water reactors studied in Phase 1 of the DOE Plutonium Disposition Study. The decision process can be extended to allow evaluation of other reactor technologies and disposition options such as direct disposal and retrievable storage.

  1. Thermal Cycling Absorption Process (TCAP): Instrument and Simulation Development Status at Los Alamos National Laboratory

    SciTech Connect

    Arias, Angela A.; Schmierer, Eric N.; Gettemy, Donald; Howard, David W.; Wermer, Joseph R.; Tuggle, Dale G.

    2005-07-15

    The Thermal Cycling Absorption Process (TCAP) Project at Los Alamos National Laboratory has been a collaborative effort with Savannah River Site to demonstrate the Tube-in-Tube (TnT) column design and to improve TCAP science. TnT TCAP is an alternative design which uses a liquid to thermally cycle the metal hydride packed column. Inert gas displacement tests and deuterium pulse tests have been performed on the TnT TCAP column. The inert gas displacement tests are designed to measure plug flow in the column while the deuterium pulse tests determine the separation ability of the column. A residual gas analyzer measures the gases in the exit stream and the experimental results are compared with pulse test model results.

  2. PREPARATION OF PLUTONIUM TRIFLUORIDE

    DOEpatents

    Burger, L.L.; Roake, W.E.

    1961-07-11

    A process of producing plutonium trifluoride by reacting dry plutonium(IV) oxalate with chlorofluorinated methane or ethane at 400 to 450 deg C and cooling the product in the absence of oxygen is described.

  3. Russian youth forum special session: Youth and the global political challenges of plutonium

    SciTech Connect

    Browne, J.C.

    1998-12-31

    This paper, given by the director of the Los Alamos National Laboratory, briefly points out the unusual properties of plutonium, for example, its most unusual electronic structure, its sensitivity to changes in temperature, pressure, and chemical alloying, and its great propensity for oxygen and hydrogen. The combination of nuclear and electronic processes it undergoes complicate the behavior also.

  4. Waste reduction and process improvements in the analysis of plutonium by x-ray fluorescence

    SciTech Connect

    Worley, Christopher G; Sodweberg, Constance B; Townsend, Lisa E

    2009-01-01

    Significant modifications were made to a sample preparation process for quantifying gallium in plutonium metal by wavelength dispersive X-ray fluorescence. These changes were made to minimize waste and improve process safety and efficiency. Sample sizes were reduced, cheaper sample preparation acids were used, and safety improvements were implemented. Using this modified process, results from analyzing a batch oftest samples indicated that relative precision and accuracy were {approx}0.2% and {approx}0.1% respectively, which is comparable to that obtained using the older, established sample preparation method.

  5. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-02-01

    Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

  6. Plutonium Immobilization Puck Handling

    SciTech Connect

    Kriikku, E.

    1999-01-26

    The Plutonium Immobilization Project (PIP) will immobilize excess plutonium and store the plutonium in a high level waste radiation field. To accomplish these goals, the PIP will process various forms of plutonium into plutonium oxide, mix the oxide powder with ceramic precursors, press the mixture into pucks, sinter the pucks into a ceramic puck, load the pucks into metal cans, seal the cans, load the cans into magazines, and load the magazines into a Defense Waste Processing Facility (DPWF) canister. These canisters will be sent to the DWPF, an existing Savannah River Site (SRS) facility, where molten high level waste glass will be poured into the canisters encapsulating the ceramic pucks. Due to the plutonium radiation, remote equipment will perform these operations in a contained environment. The Plutonium Immobilization Project is in the early design stages and the facility will begin operation in 2005. This paper will discuss the Plutonium Immobilization puck handling conceptual design and the puck handling equipment testing.

  7. Plutonium immobilization -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-02-17

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  8. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.

    1989-04-01

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  9. Customer service model for waste tracking at Los Alamos National Laboratory

    SciTech Connect

    Dorries, Alison M; Montoya, Andrew J; Ashbaugh, Andrew E

    2010-11-10

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  10. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  11. Plutonium microstructures. Part 1

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1981-09-01

    This report is the first of three parts in which Los Alamos and Lawrence Livermore National Laboratory metallographers exhibit a consolidated set of illustrations of inclusions that are seen in plutonium metal as a consequence of inherent and tramp impurities, alloy additions, and thermal or mechanical treatments. This part includes illustrations of nonmetallic and intermetallic inclusions characteristic of major impurity elements as an aid to identifying unknowns. It also describes historical aspects of the increased purity of laboratory plutonium samples, and it gives the composition of the etchant solutions and describes the etching procedure used in the preparation of each illustrated sample. 25 figures.

  12. High-Precision Plutonium Isotopic Compositions Measured on Los Alamos National Laboratory’s General’s Tanks Samples: Bearing on Model Ages, Reactor Modelling, and Sources of Material. Further Discussion of Chronometry

    SciTech Connect

    Spencer, Khalil J.; Rim, Jung Ho; Porterfield, Donivan R.; Roback, Robert Clifford; Boukhalfa, Hakim; Stanley, Floyd E.

    2015-06-29

    In this study, we re-analyzed late-1940’s, Manhattan Project era Plutonium-rich sludge samples recovered from the ''General’s Tanks'' located within the nation’s oldest Plutonium processing facility, Technical Area 21. These samples were initially characterized by lower accuracy, and lower precision mass spectrometric techniques. We report here information that was previously not discernable: the two tanks contain isotopically distinct Pu not only for the major (i.e., 240Pu, 239Pu) but trace (238Pu ,241Pu, 242Pu) isotopes. Revised isotopics slightly changed the calculated 241Am-241Pu model ages and interpretations.

  13. Study of the potential use of carburized niobium in plutonium processing

    SciTech Connect

    Johnson, M.J. |; Soderquist, S.D.; Axler, K.M.

    1998-12-01

    Carburized refractory metals, especially tantalum, have been shown to possess properties useful for application as hardware in the plutonium-processing environment. These applications are driven in part by a desire to minimize the production of radioactively contaminated waste. The current use of ceramics as containment materials for Pu processing are not ideal due to the short service life of the hardware, placing an additional burden on the contaminated waste stream. Carburized niobium has been examined for use as an improved hardware material. The Nb-C system is analogous to the previously studied Ta-C system. The low density of niobium relative to tantalum will improve the ergonomics of the glovebox environment. The choice of the Nb-C system will be supported by a thermodynamic and kinetic analysis. Preliminary results of the processing investigation also will be presented.

  14. Flexible process options for the immobilisation of residues and wastes containing plutonium

    SciTech Connect

    Stewart, M.W.A.; Moricca, S.A.; Day, R. A.; Begg, B. D.; Scales, C. R.; Maddrell, E. R.; Eilbeck, A. B.

    2007-07-01

    Residues and waste streams containing plutonium present unique technical, safety, regulatory, security, and socio-political challenges. In the UK these streams range from lightly plutonium contaminated materials (PCM) through to residue s resulting directly from Pu processing operations. In addition there are potentially stocks of Pu oxide powders whose future designation may be either a waste or an asset, due to their levels of contamination making their reuse uneconomic, or to changes in nuclear policy. While waste management routes exist for PCM, an immobilisation process is required for streams containing higher levels of Pu. Such a process is being developed by Nexia Solutions and ANSTO to treat and immobilise Pu waste and residues currently stored on the Sellafield site. The characteristics of these Pu waste streams are highly variable. The physical form of the Pu waste ranges from liquids, sludges, powders/granules, to solid components (e.g., test fuels), with the Pu present as an ion in solution, as a salt, metal, oxide or other compound. The chemistry of the Pu waste streams also varies considerably with a variety of impurities present in many waste streams. Furthermore, with fissile isotopes present, criticality is an issue during operations and in the store or repository. Safeguards and security concerns must be assessed and controlled. The process under development, by using a combination of tailored waste form chemistry combined with flexible process technology aims to develop a process line to handle a broad range of Pu waste streams. It aims to be capable of dealing with not only current arisings but those anticipated to arise as a result of future operations or policy changes. (authors)

  15. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    SciTech Connect

    Watts, Joe A; Smith, Paul H; Psaras, John D; Jarvinen, Gordon D; Costa, David A; Joyce, Jr., Edward L

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  16. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, John P.; Miller, William E.

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  17. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, J.P.; Miller, W.E.

    1987-11-05

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  18. PROCESS FOR EXTRACTING NEPTUNIUM AND PLUTONIUM FROM NITRIC ACID SOLUTIONS OF SAME CONTAINING URANYL NITRATE WITH A TERTIARY AMINE

    DOEpatents

    Sheppard, J.C.

    1962-07-31

    A process of selectively extracting plutonium nitrate and neptunium nitrate with an organic solution of a tertiary amine, away from uranyl nitrate present in an aqueous solution in a maximum concentration of 1M is described. The nitric acid concentration is adjusted to about 4M and nitrous acid is added prior to extraction. (AEC)

  19. Notice of Construction for the Magnesium Hydroxide Precipitation Process at the Plutonium Finishing Plant (PFP)

    SciTech Connect

    JANSKY, M.T.

    1999-12-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40, Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem per year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also will constitute EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with the Construction and operation activities involving the magnesium hydroxide precipitation process of plutonium solutions within the Plutonium Finishing Plant (PFP).

  20. PREPARATION OF PLUTONIUM HALIDES

    DOEpatents

    Davidson, N.R.; Katz, J.J.

    1958-11-01

    A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

  1. Dissolution of Neptunium and Plutonium Oxides Using a Catalyzed Electrolytic Process

    SciTech Connect

    Hylton, TD

    2004-10-25

    This report discusses the scoping study performed to evaluate the use of a catalyzed electrolytic process for dissolving {sup 237}Np oxide targets that had been irradiated to produce {sup 238}Pu oxide. Historically, these compounds have been difficult to dissolve, and complete dissolution was obtained only by adding hydrofluoric acid to the nitric acid solvent. The presence of fluoride in the mixture is undesired because the fluoride ions are corrosive to tank and piping systems and the fluoride ions cause interferences in the spectrophotometric analyses. The goal is to find a dissolution method that will eliminate these issues and that can be incorporated into a processing system to support the domestic production and purification of {sup 238}Pu. This study evaluated the potential of cerium(IV) ions, a strong oxidant, to attack and dissolve the oxide compounds. In the dissolution process, the cerium(IV) ions are reduced to cerium(III) ions, which are not oxidants. Therefore, an electrolytic process was incorporated to continuously convert cerium(III) ions back to cerium(IV) ions so that they can dissolve more of the oxide compounds. This study showed that the neptunium and plutonium oxides were successfully dissolved and that more development work should be performed to optimize the procedure.

  2. PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM

    DOEpatents

    Fried, S.; Baumbach, H.L.

    1959-12-01

    A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

  3. METHOD OF MAINTAINING PLUTONIUM IN A HIGHER STATE OF OXIDATION DURING PROCESSING

    DOEpatents

    Thompson, S.G.; Miller, D.R.

    1959-06-30

    This patent deals with the oxidation of tetravalent plutonium contained in an aqueous acid solution together with fission products to the hexavalent state, prior to selective fission product precipitation, by adding to the solution bismuthate or ceric ions as the oxidant and a water-soluble dichromate as a holding oxidant. Both oxidant and holding oxidant are preferably added in greater than stoichiometric quantities with regard to the plutonium present.

  4. In search of plutonium: A nonproliferation journey

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried

    2010-02-01

    In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

  5. ELECTRODEPOSITION OF PLUTONIUM

    DOEpatents

    Wolter, F.J.

    1957-09-10

    A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.

  6. Processing of the MCC K-26 Plutonium-bearing Sludges to Recover Weapons-grade Plutonium That is Not Under Any Treaty or Monitoring Agreement

    SciTech Connect

    Jardin, L J; Kudinov, K G; Tretyakov, A A; Bondin, V V; Sorokin, Y P; Manakova, L F; Shvedov, A A; Aloy, A S; Borisov, G B; Gupalo, T A

    2001-12-12

    Russian Federation (RF) and United States (US) collaborations from July 1998 through July 2001 conducted investigations of the Pu-bearing sludges in storage at the Mining Chemical Combine (MCC) K-26 site in order to dispose of weapons-grade plutonium and decommission the radiochemical plant. This RF work resulted in the recovery of approximately 20 kg of weapons-grade plutonium (and {approx}19 MT of uranium) from the sludges which was stored as oxide. Another method investigated and partially developed as joint collaborative efforts during this time period was direct immobilization of plutonium with no recovery of plutonium. This method melts the untreated recovered sludges by microwave ultrahigh frequency (UHF) heating with glass formers. After cooling, melter-crucibles of vitrified sludge are stored on site in underground cavities for eventual disposal in a geologic repository. Cost and technical feasibility studies of the two methods show that direct immobilization (i.e., vitrification) of the plutonium-containing sludge is the preferred alternative. It is also preferred from the ecological point of view. However, RF funding alone is insufficient to continue this work, and US funding has been suspended. It appears unlikely that development of full scale vitrification technologies for the plutonium-bearing sludges can be undertaken without continuing support from the US or from others. Thus, the only demonstrated technology for the MCC for removing weapons-grade plutonium in sludges will remain recovery and extraction of plutonium for storage and reuse for the indefinite future. It is estimated the about 1200 to 1800 kg of weapons plutonium are in the sludges that must be removed and treated as part of the MCC facility decommissioning. This specific plutonium is not covered under any current monitoring or treaty agreement between the RF and the US.

  7. Processing of the MCC K26 Plutonium-Bearing Sludges to Recover Weapons-Grade Plutonium That is Not Under any Treaty or Monitoring Agreement

    SciTech Connect

    Jardine, L. J.; Kudinov, K. G.; Tretyakov, A. A.; Bondin, V. V.; Sorokin, Y. P.; Manakova, L. F.; Shvedov, A. A.; Aloy, A. S.; Borisov, G. B.; Gupalo, T. A.

    2002-02-26

    Russian Federation (RF) and United States (US) collaborations from July 1998 through July 2001 conducted investigations of the Pu-bearing sludges in storage at the Mining Chemical Combine (MCC) K-26 site in order to dispose of weapons-grade plutonium and decommission the radiochemical plant. This RF work resulted in the recovery of approximately 20 kg of weapons-grade plutonium (and {approx}19 MT of uranium) from the sludges which was stored as oxide. Another method investigated and partially developed as joint collaborative efforts during this time period was direct immobilization of plutonium with no recovery of plutonium. This method melts the untreated recovered sludges by microwave ultrahigh frequency (UHF) heating with glass formers. After cooling, melter-crucibles of vitrified sludge are stored on site in underground cavities for eventual disposal in a geologic repository. Cost and technical feasibility studies of the two methods show that direct immobilization (i.e., vitrification)of the plutonium-containing sludge is the preferred alternative. It is also preferred from the ecological point of view. However, RF funding alone is insufficient to continue this work, and US funding has been suspended. It appears unlikely that development of full scale vitrification technologies for the plutonium-bearing sludges can be undertaken without continuing support from the US or from others. Thus, the only demonstrated technology for the MCC for removing weapons-grade plutonium in sludges will remain recovery and extraction of plutonium for storage and reuse for the indefinite future. It is estimated the about 1200 to 1800 kg of weapons plutonium are in the sludges that must be removed an d treated as part of the MCC facility decommissioning. This specific plutonium is not covered under any current monitoring or treaty agreement between the RF and the US.

  8. Plutonium Immobilization Canister Loading

    SciTech Connect

    Hamilton, E.L.

    1999-01-26

    This disposition of excess plutonium is determined by the Surplus Plutonium Disposition Environmental Impact Statement (SPD-EIS) being prepared by the Department of Energy. The disposition method (Known as ''can in canister'') combines cans of immobilized plutonium-ceramic disks (pucks) with vitrified high-level waste produced at the SRS Defense Waste Processing Facility (DWPF). This is intended to deter proliferation by making the plutonium unattractive for recovery or theft. The envisioned process remotely installs cans containing plutonium-ceramic pucks into storage magazines. Magazines are then remotely loaded into the DWPF canister through the canister neck with a robotic arm and locked into a storage rack inside the canister, which holds seven magazines. Finally, the canister is processed through DWPF and filled with high-level waste glass, thereby surrounding the product cans. This paper covers magazine and rack development and canister loading concepts.

  9. Extraction and recovery of plutonium and americium from nitric acid waste solutions by the TRUEX process - continuing development studies

    SciTech Connect

    Leonard, R.A.; Vandegrift, G.F.; Kalina, D.G.; Fischer, D.F.; Bane, R.W.; Burris, L.; Horwitz, E.P.; Chiarisia, R.; Diamond, H.

    1985-09-01

    This report summarizes the work done to date on the application of the TRUEX solvent extraction process for removing and separately recovering plutonium and americium from a nitric acid waste solution containing these elements, uranium, and a complement of inert metal ions. This simulated waste stream is typical of a raffinate from a tributyl phosphate (TBP)-based solvent extraction process for removing uranium and plutonium from dissolved plutonium-containing metallurgical scrap. The TRUEX process solvent in these experiments was a solution of TBP and octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in carbon tetrachloride. A flowsheet was designed on the basis of measured batch distribution ratios to reduce the TRU content of the solidified raffinate to less than or equal to 10 nCi/g and was tested in a countercurrent experiment performed in a 14-stage Argonne-model centrifugal contractor. The process solvent was recycled without cleanup. An unexpectedly high evaporative loss of CCl/sub 4/ resulted in concentration of the active extractant, CMPO, to nearly 0.30M in the solvent. Results are consistent with this higher CMPO concentration. The raffinate contained only 2 nCi/g of TRU, but the higher CMPO concentration resulted in reduced effectiveness in the stripping of americium from the solvent. Conditions can be easily adjusted to give high yields and good separation of americium and plutonium. Experimental studies of the hydrolytic and gamma-radiolytic degradation of the TRUEX-CCl/sub 4/ showed that solvent degradation would be (1) minimal for a year of processing this typical feed, which contained no fission products, and (2) could be explained almost entirely by hydrolytic and radiolytic damage to TBP. Even for gross amounts of solvent damage, scrubbing with aqueous sodium carbonate solution restored the original americium extraction and stripping capability of the solvent. 43 refs., 5 figs., 36 tabs.

  10. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOEpatents

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  11. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  12. THE SUITABILITY OF SODIUM PEROXIDE FUSION FOR PRODUCTION-SCALE PLUTONIUM PROCESSING OPERATIONS

    SciTech Connect

    Pierce, R.; Edwards, T.

    2010-10-26

    Sodium peroxide (Na{sub 2}O{sub 2}) fusion is a method that offers significant benefits to the processing of high-fired plutonium oxide (PuO{sub 2}) materials. Those benefits include reduction in dissolution cycle time, decrease in residual solids, and reduction of the potential for generation of a flammable gas mixture during dissolution. Implementation of Na{sub 2}O{sub 2} fusion may also increase the PuO{sub 2} throughput in the HB-Line dissolving lines. To fuse a material, Na{sub 2}O{sub 2} is mixed with the feed material in a crucible and heated to 600-700 C. For low-fired and high-fired PuO{sub 2}, Na{sub 2}O{sub 2} reacts with PuO{sub 2} to form a compound that readily dissolves in ambient-temperature nitric acid without the use of potassium fluoride. The Savannah River National Laboratory (SRNL) demonstrated the feasibility of Na{sub 2}O{sub 2} fusion and subsequent dissolution for the processing of high-fired PuO{sub 2} materials in HB-Line. Testing evaluated critical dissolution characteristics and defined preliminary process parameters. Based on experimental measurements, a dissolution cycle can be complete in less than one hour, compared to the current processing time of 6-10 hours for solution heating and dissolution. Final Pu concentrations of 30-35 g/L were produced without the formation of precipitates in the final solution.

  13. Apparatus and process for the electrolytic reduction of uranium and plutonium oxides

    DOEpatents

    Poa, David S.; Burris, Leslie; Steunenberg, Robert K.; Tomczuk, Zygmunt

    1991-01-01

    An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fills both containers, the level of the electrolyte in the first container being above the top of the second container so that the electrolyte can be circulated between the containers. The anode is positioned in the first container while the cathode is located in the second container. Means are provided for passing an inert gas into the electrolyte near the lower end of the anode to sparge the electrolyte and to remove gases which form on the anode during the reduction operation. Means are also provided for mixing and stirring the electrolyte in the first container to solubilize the metal oxide in the electrolyte and to transport the electrolyte containing dissolved oxide into contact with the cathode in the second container. The cell is operated at a temperature below the melting temperature of the metal product so that the metal forms as a solid on the cathode.

  14. Plutonium controversy

    SciTech Connect

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  15. Renovation of the hot press in the Plutonium Experimental Facility

    SciTech Connect

    Congdon, J.W.; Nelson, G.H.

    1990-03-05

    The Plutonium Experimental Facility (PEF) will be used to develop a new fuel pellet fabrication process and to evaluate equipment upgrades. The facility was used from 1978 until 1982 to optimize the parameters for fuel pellet production using a process which was developed at Los Alamos National Laboratory. The PEF was shutdown and essentially abandoned until mid-1987 when the facility renovations were initiated by the Actinide Technology Section (ATS) of SRL. A major portion of the renovation work was related to the restart of the hot press system. This report describes the renovations and modifications which were required to restart the PEF hot press. The primary purpose of documenting this work is to help provide a basis for Separations to determine the best method of renovating the hot press in the Plutonium Fuel Fabrication (PuFF) facility. This report also includes several SRL recommendations concerning the renovation and modification of the PuFF hot press. 4 refs.

  16. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  17. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    SciTech Connect

    Barnes, J.W.; Yarbro, S.L.

    1987-01-01

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel.

  18. Experience making mixed oxide fuel with plutonium from dismantled weapons

    SciTech Connect

    Blair, H.T.; Ramsey, K.B.

    1995-12-31

    Mixed depleted UO{sub 2} and PuO{sub 2} (MOX) pellets prototypic of fuel proposed for use in commercial power reactors were made with plutonium recovered from dismantled weapons. We characterized plutonium dioxide powders that were produced at the Los Alamos and Lawrence Livermore National Laboratories (LANL and LLNL) using various methods to recover the plutonium from weapons parts and to convert It to oxide. The gallium content of the PUO{sub 2} prepared at LANL was the same as in the weapon alloy while the content of that prepared at LLNL was less. The MOX was prepared with a five weight percent plutonium content. We tested various MOX powders milling methods to improve homogeneity and found vibratory milling superior to ball milling. The sintering behavior of pellets made with the PuO{sub 2} from the two laboratories was similar. We evaluated the effects of gallium and of erbium and gadolinium, that are added to the MOX fuel as deplorable neutron absorbers, on the pellet fabrication process and an the sintered pellets. The gallium content of the sintered pellets was <10 ppm, suggesting that the gallium will not be an issue in the reactor, but that it will be an Issue in the operation of the fuel fabrication processing equipment unless it is removed from the PuO{sub 2} before it is blended with the UO{sub 2}.

  19. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  20. Progress on plutonium stabilization

    SciTech Connect

    Hurt, D.

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  1. PROCESS FOR SEGREGATING URANIUM FROM PLUTONIUM AND FISSION-PRODUCT CONTAMINATION

    DOEpatents

    Ellison, C.V.; Runion, T.C.

    1961-06-27

    An aqueous nitric acid solution containing uranium, plutonium, and fission product values is contacted with an organic extractant comprised of a trialkyl phosphate and an organic diluent. The relative amounts of trialkyl phosphate and uranium values are controlled to achieve a concentration of uranium values in the organic extractant of at least 0.35 moles uranium per mole of trialkyl phosphate, thereby preferentially extracting uranium values into the organic extractant.

  2. HENC performance evaluation and plutonium calibration

    SciTech Connect

    Menlove, H.O.; Baca, J.; Pecos, J.M.; Davidson, D.R.; McElroy, R.D.; Brochu, D.B.

    1997-10-01

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996.

  3. CSAR 79-034 ADDENDUM 2, storing the man-basket in the process cell in 236-Z Building, Plutonium Finishing Plant/Plutonium Reclamation Facility

    SciTech Connect

    Chiao, T.

    1994-10-25

    The man-basket is stored in the Plutonium Reclamation Facility canyon area and this addendum reports on a technical evaluation for the storage inside the canyon to ensure consistency with the requirements of the Nuclear Criticality Safety Manual, WHC-CM-4-29.

  4. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  5. Plutonium recovery from organic materials

    DOEpatents

    Deaton, R.L.; Silver, G.L.

    1973-12-11

    A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)

  6. The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities

    SciTech Connect

    Hopkins, A.; Minette, M.; Sorenson, D.; Heineman, R.; Gerber, M.; Charboneau, S.; Bond, F.

    2006-07-01

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  7. CHALLENGES OF PRESERVING HISTORIC RESOURCES DURING THE D & D OF HIGHLY CONTAMINATED HISTORICALLY SIGNIFICANT PLUTONIUM PROCESS FACILITIES

    SciTech Connect

    HOPKINS, A.M.

    2006-03-17

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that ere included or eligible for inclusion in the National Register. In an agreement between the DOE'S Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Sitewide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  8. METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-11-13

    A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

  9. Waste reduction process improvements in the analysis of plutonium by x-ray fluorescence: results from multiple data sets

    SciTech Connect

    Worley, Christopher G; Soderberg, Constance B; Townsend, Lisa E

    2010-01-01

    To minimize waste, improve process safety, and minimize costs, modifications were implemented to a method for quantifying gallium in plutonium metal using wavelength dispersive X-ray fluorescence. These changes included reducing sample sizes, reducing ion exchange process volumes, using cheaper reagent grade acids, eliminating the use of HF acid, and using more robust containment film for sample analysis. Relative precision and accuracy achieved from analyzing multiple aliquots from a single parent sample were {approx}0.2% and {approx}0.1% respectively. The same precision was obtained from analyzing a total of four parent materials, and the average relative accuracy from all the samples was 0.4%, which is within programmatic uncertainty requirements.

  10. Plutonium immobilization feed batching system concept report

    SciTech Connect

    Erickson, S.

    2000-07-19

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas.

  11. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    SciTech Connect

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  12. Plutonium pyrophoricity

    SciTech Connect

    Stakebake, J.L.

    1992-06-02

    A review of the published literature on ignition and burning of plutonium metal was conducted in order to better define the characteristic of pyrophoric plutonium. The major parameter affecting ignition is the surface area/mass ratio of the sample. Based on this parameter, plutonium metal can be classified into four categories: (1) bulk metal, (2) film and foils, (3) chips and turnings, and (4) powder. Other parameters that can alter the ignition of the metal include experimental, chemical, physical, and environmental effects. These effects are reviewed in this report. It was concluded from this review that pyrophoric plutonium can be conservatively defined as: Plutonium metal that will ignite spontaneously in air at a temperature of 150{degrees}C or below in the absence of external heat, shock, or friction. The 150{degrees}C temperature was used to compensate for the self-heating of plutonium metal. For a practical definition of whether any given metal is pyrophoric, all of the factors affecting ignition must be considered.

  13. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  14. Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy

    SciTech Connect

    Behrens, R.G.; Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J.

    1995-09-01

    This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO{sub 2}PuO{sub 2{minus}x}, and Pu{sub 4}O{sub 7} phases, of about 1{mu}m or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 {mu}m to liberate the plutonium from the surrounding inert matrix.

  15. Plutonium immobilization -- Can loading. Revision 1

    SciTech Connect

    Kriikku, E.

    2000-03-13

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  16. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  17. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  18. Plutonium in Concentrated Solutions

    SciTech Connect

    Clark, Sue B.; Delegard, Calvin H.

    2002-08-01

    Complex, high ionic strength media are used throughout the plutonium cycle, from its processing and purification in nitric acid, to waste storage and processing in alkaline solutions of concentrated electrolytes, to geologic disposal in brines. Plutonium oxidation/reduction, stability, radiolysis, solution and solid phase chemistry have been studied in such systems. In some cases, predictive models for describing Pu chemistry under such non-ideal conditions have been developed, which are usually based on empirical databases describing specific ion interactions. In Chapter 11, Non-Ideal Systems, studies on the behavior of Pu in various complex media and available model descriptions are reviewed.

  19. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  20. Direct oxide reduction (DOR) solvent salt recycle in pyrochemical plutonium recovery operations

    SciTech Connect

    Fife, K.W.; Bowersox, D.F.; Davis, C.C.; McCormick, E.D.

    1987-02-01

    One method used at Los Alamos for producing plutonium metal is to reduce the oxide with calcium metal in molten CaCl/sub 2/ at 850/sup 0/C. The solvent CaCl/sub 2/ from this reduction step is currently discarded as low-level radioactive waste because it is saturated with the reaction by-product, CaO. We have developed and demonstrated a molten salt technique for rechlorinating the CaO, thereby regenerating the CaCl/sub 2/ and incorporating solvent recycle into the batch PuO/sub 2/ reduction process. We discuss results from the process development experiments and present our plans for incorporating the technique into an advanced design for semicontinuous plutonium metal production.

  1. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  2. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  3. The Tiger Team Process in the Rebaselining of the Plutonium Finishing Plant (PFP)

    SciTech Connect

    BAILEY, R.W.

    2000-02-01

    This paper will describe the integrated, teaming approach and planning process utilized by the Tiger Team in the development of the IPMP. This paper will also serve to document the benefits derived from this implementation process.

  4. Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual

    SciTech Connect

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

  5. Plutonium and Uranium Atom Ratios and Activity Levels in Cochiti Lake Bottom Sediments Provided by Pueblo de Cochiti

    SciTech Connect

    Gallaher, B.M.; Efurd, D.W.; Rokop, D.J.; Benjamin, T.M.

    1999-05-01

    Historical operations at the Los Alamos National Laboratory have contaminated stream sediments with plutonium and other radionuclides. A small portion of these contaminated sediments has been carried by floods into the Rio Grande drainage system, eventually to be trapped by Cochiti Lake located on Pueblo de Cochiti lands approximately 8 km downstream of the Laboratory. In this study, lake bottom sediment samples provided by the Pueblo de Cochiti were analyzed by thermal ionization mass spectrometry to determine plutonium and uranium activity levels and isotopic atom ratios. This specialized analytical method allows us to take isotopic fingerprints of radionuclides found in the sediment and to determine how much plutonium and uranium came from the Laboratory and how much was deposited by worldwide fallout or is natural. Two distinct types of samples were processed: segments of a continuous vertical core of the entire accumulated sediment sequence and other samples from across the lake bottom at the water/sediment interface. Based on measurement of the {sup 240}Pu/{sup 239}Pu atom ratio, Laboratory-derived plutonium is present in eight of nine samples at the core site. On a depth-weighted basis, approximately one-half of the {sup 239}Pu and {sup 240}Pu came from early operations at the Laboratory; the remaining plutonium came from fallout dispersed by above-ground nuclear tests. In contrast to the core site, the samples from the other locations showed little or no evidence of Laboratory-derived plutonium, with more than 90 percent of the plutonium attributable to fallout. The overall amount of plutonium in all the samples is of the same magnitude as other reservoirs in the region. The net increase in plutonium over upstream reservoirs unaffected by Laboratory activities is a maximum of 0.014 pCi/g or 3.5 times. All of the samples reflect natural uranium compositions. Laboratory-derived uranium is not identifiable, presumably because the sediment contains abundant

  6. A Preponderance of Elastic Properties of Alpha Plutonium Measured Via Resonant Ultrasound Spectroscopy

    SciTech Connect

    Saleh, Tarik A.; Farrow, Adam M.; Freibert, Franz J.

    2012-06-06

    Samples of {alpha} plutonium were fabricated at the Los Alamos National Laboratory's Plutonium Facility. Cylindrical samples were machined from cast pucks. Precision immersion density and resonant ultrasound spectroscopy (RUS) measurements were completed on 27 new samples, yielding elastic moduli measurements. Mechanical tests were performed in compression yielding stress-strain curves as a function of rate, temperature and phase.

  7. PLUTONIUM CONTAMINATION VALENCE STATE DETERMINATION USING X-RAY ABSORPTION FINE STRUCTURE PERMITS CONCRETE RECYCLE

    SciTech Connect

    Ervin, P. F.; Conradson, S. D.

    2002-02-25

    This paper describes the determination of the speciation of plutonium contamination present on concrete surfaces at the Rocky Flats Environmental Technology Site (RFETS). At RFETS, the plutonium processing facilities have been contaminated during multiple events over their 50 year operating history. Contamination has resulted from plutonium fire smoke, plutonium fire fighting water, milling and lathe operation aerosols, furnace operations vapors and plutonium ''dust'' diffusion.

  8. Overview of Modeling and Simulations of Plutonium Aging

    SciTech Connect

    Schwartz, A J; Wolfer, W G

    2007-04-24

    . The alpha particle traverses the lattice, slowly loosing energy through electronic excitations, acquiring two electrons to become a helium atom, then finally coming to rest approximately 10 microns away with the generation of a few-hundred Frenkel pairs. The uranium recoil immediately displaces a couple-thousand Pu atoms from their original lattice sites. This process, which occurs at a rate of approximately 41 parts-per-million per year, is the source of potential property changes in aging plutonium. Plutonium aging encompasses many areas of research: radiation damage and radiation effects, diffusion of point defects, impurities and alloying elements, solid state phase transformations, dislocation dynamics and mechanical properties, equations of state under extreme pressures, as well as surface oxidation and corrosion. Theory, modeling, and computer simulations are involved to various degrees in many of these areas. The joint research program carried out at Lawrence Livermore National Laboratory and Los Alamos National Laboratory encompassed experimental measurements of numerous properties of newly fabricated reference alloys, archival material that have accumulated the effects of several decades of radioactive decay, and accelerated aging alloys in which the isotropic composition was adjusted to increase the rate of self-irradiation damage. In particular, the physical and chemical processes of nuclear materials degradation were to be studied individually and in great depth. Closely coupled to the experimental efforts are theory, modeling, and simulations. These efforts, validated by the experiments, aim to develop predictive models to evaluate the effects of age on the properties of plutonium. The need to obtain a scientific understanding of plutonium aging has revitalized fundamental research on actinides and plutonium in particular. For example, the experimental discovery of superconductivity in Pu-based compounds, the observation of helium bubbles in naturally

  9. Applying modular concepts to process and authorization basis issues for plutonium residue stabilization

    SciTech Connect

    Hildner, R.A.; Zygmunt, S.J.

    1996-07-01

    A recent study completed for the Rocky Flats Environmental Technology Site proved that it is feasible to use modular, skid-mounted processes for disposition of Category 1 quantities of nuclear materials. This would allow personnel to assemble, test, and authorize the processes outside of the nuclear material management area. Besides having cost and schedule advantages, this technology reduces the uncertainty and risk in applications involving disposition of materials and facilities. This paper explains the previous research into modular skid-mounted processes and suggests various future applications of the technology.

  10. Plutonium story

    SciTech Connect

    Seaborg, G T

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  11. Plutonium Story

    DOE R&D Accomplishments Database

    Seaborg, G. T.

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  12. Design-only conceptual design report: Plutonium Immobilization Plant

    SciTech Connect

    DiSabatino, A A

    2000-05-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The Plutonium Immobilization Plant will be located at the Savannah River Site pursuant to the Surplus Plutonium Disposition Final Environmental Impact Statement Record of Decision, January 4, 2000. This document reflects a new facility using the ceramic immobilization technology and the can-in-canister approach. The Plutonium Immobilization Plant accepts plutonium oxide from pit conversion and plutonium and plutonium oxide from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors; it must also be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses a new building, the Plutonium Immobilization Plant, which will receive and store feed materials, convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize the plutonium oxide in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister. The existing Defense Waste Processing Facility is used for the pouring of high-level waste glass into the canisters. The Plutonium Immobilization Plant uses existing Savannah River Site infrastructure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. This design-only conceptual design report also provides the cost for a Plutonium Immobilization Plant which would process

  13. ALARA Design Review for the Resumption of the Plutonium Finishing Plant (PFP) Cementation Process Project Activities

    SciTech Connect

    DAYLEY, L.

    2000-06-14

    The requirements for the performance of radiological design reviews are codified in 10CFR835, Occupational Radiation Protection. The basic requirements for the performance of ALARA design reviews are presented in the Hanford Site Radiological Control Manual (HSRCM). The HSRCM has established trigger levels requiring radiological reviews of non-routine or complex work activities. These requirements are implemented in site procedures HNF-PRO-1622 and 1623. HNF-PRO-1622 Radiological Design Review Process requires that ''radiological design reviews [be performed] of new facilities and equipment and modifications of existing facilities and equipment''. In addition, HNF-PRO-1623 Radiological Work Planning Process requires a formal ALARA Review for planned activities that are estimated to exceed 1 person-rem total Dose Equivalent (DE). The purpose of this review is to validate that the original design for the PFP Cementation Process ensures that the principles of ALARA (As Low As Reasonably Achievable) were included in the original project design. That is, that the design and operation of existing Cementation Process equipment and processes allows for the minimization of personnel exposure in its operation, maintenance and decommissioning and that the generation of radioactive waste is kept to a minimum.

  14. Plutonium Immobilization Can Inspection System

    SciTech Connect

    Kriikku, E.

    2000-12-12

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) as part of Department of Energy's two-track approach for the disposition of weapons-usable plutonium. The PIP will utilize the ceramic can-in-canister technology in a process that mixes plutonium with ceramic formers and neutron absorbers, presses the mixture into a ceramic puck-like form, sinters the pucks in a furnace, loads the pucks into cans, and places the cans into large canisters. The canisters will subsequently be filled with high level waste glass in the Defense Waste Processing Facility for eventual disposal in a geologic repository. This paper will discuss the PIP can inspection components, control system, and test results.

  15. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  16. A process-based model for the partitioning of soluble, suspended particulate and bed sediment fractions of plutonium and caesium in the eastern Irish Sea.

    PubMed

    Vives I Batlle, J; Bryan, S; McDonald, P

    2008-01-01

    A dynamic model of plutonium behaviour in the marine environment has been developed, representing the oxidation state distribution and partitioning of plutonium between the soluble, colloidal, suspended particulate and seabed sediment fractions. With simple re-parameterisation, this model can also be applied to (137)Cs. The model, which is calibrated and validated against field data, has been used to predict concentrations of Pu(alpha) and (137)Cs in both water and seabed sediments from the vicinity of the Sellafield Ltd. reprocessing plant in Cumbria, UK. The model predicts that sediment reworking and transport are the key environmental processes as the Sellafield Pu(alpha) and (137)Cs discharge continues to decline. Inventory calculations generated by the model are consistent with previous estimations. For a hypothetical post-discharge scenario, the concentrations of these radionuclides in both seawater and surface sediments are predicted to decrease sharply, concurrent with a downward vertical migration of the activity retained in sediments. PMID:17719705

  17. DECONTAMINATION OF PLUTONIUM FOR FLUORIDE AND CHLORIDE DURING OXALATE PRECIPITATION, FILTRATION AND CALCINATION PROCESSES

    SciTech Connect

    Kyser, E.

    2012-07-25

    Due to analytical limitations for the determination of fluoride (F) and chloride (Cl) in a previous anion exchange study, an additional study of the decontamination of Pu from F and Cl by oxalate precipitation, filtration and calcination was performed. Anion product solution from the previous impurity study was precipitated as an oxalate, filtered, and calcined to produce an oxide for analysis by pyrohydrolysis for total Cl and F. Analysis of samples from this experiment achieved the purity specification for Cl and F for the proposed AFS-2 process. Decontamination factors (DF's) for the overall process (including anion exchange) achieved a DF of {approx}5000 for F and a DF of {approx}100 for Cl. Similar experiments where both HF and HCl were spiked into the anion product solution to a {approx}5000 {micro}g /g Pu concentration showed a DF of 5 for F and a DF of 35 for Cl across the combined precipitation-filtration-calcination process steps.

  18. Design and operation of a remotely operated plutonium waste size reduction and material handling process

    SciTech Connect

    Stewart, III, J A; Charlesworth, D L

    1986-01-01

    Noncombustible /sup 238/Pu and /sup 239/Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant, and is being retrievably stored there. As part of the long-term plant to process the stored waste and current waste for permanent disposal, a remote size reduction and material handling process is being cold-tested at Savannah River Laboratory. The process consists of a large, low-speed shredder and material handling system, a remote worktable, a bagless transfer system, and a robotically controlled manipulator. Initial testing of the shredder and material handling system and a cycle test of the bagless transfer system has been completed. Fabrication and acceptance testing of the Telerobat, a robotically controlled manipulator has been completed. Testing is scheduled to begin in 3/86. Design features maximizing the ability to remotely maintain the equipment were incorporated. Complete cold-testing of the equipment is scheduled to be completed in 1987.

  19. Hazards Analysis for the Plutonium Finishing Plant (PFP) Polycube Stabilization Process

    SciTech Connect

    HIMES, D.A.

    2002-01-30

    The scope of the HazOp included activities starting with the retrieval of the polycube storage containers from the vaults in the 2736-2 Building. The final process is either transfer of the stabilized materials to the Room 235B Glovebox HA-53BTS Bagless Transfer System (BTS) for welding into a Bagless Transfer Can (BTC) or, transfer of Stabilized materials to Glovebox HC-18M for placement into slip-lid cans to be sealed out and canned in two clean cans, the last one being a 7411. Food Pack Can (FPC). The Seal-out process is performed from either glovebox HC-18M or HC-13MD.

  20. Nuclear Forensics at Los Alamos National Laboratory

    SciTech Connect

    Podlesak, David W; Steiner, Robert E.; Burns, Carol J.; LaMont, Stephen P.; Tandon, Lav

    2012-08-09

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  1. METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Beede, R.L.; Hopkins, H.H. Jr.

    1959-11-17

    C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

  2. Purification and neutron emission reduction of 238Plutonium oxide by nitrate anion exchange processing

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Brock, J.; Nixon, J. Z.; Moniz, P.; Silver, G.; Ramsey, K. B.

    2001-02-01

    The use of ion exchange during the aqueous purification of 238Pu oxide results in low levels of uranium, thorium, and americium in the product oxide. Neutron emission rates are also reduced in the product oxide. Fluorine introduced during the dissolution of impure fuel increases the neutron emission rate of the product oxide due to the 238Pu-19F alpha/n reaction. Treating the 238Pu solution with aluminum nitrate prior to ion exchange reduces the neutron emission rate in the product oxide. Data are presented to show that neutron emission rates and concentrations of uranium, thorium, and americium are reduced by ion exchange processing. .

  3. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  4. Development of the Low-Pressure Hydride/Dehydride Process

    SciTech Connect

    Rueben L. Gutierrez

    2001-04-01

    The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

  5. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  6. Los Alamos National Laboratory

    SciTech Connect

    Dogliani, Harold O

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  7. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  8. Additional short-term plutonium urinary excretion data from the 1945-1947 plutonium injection studies

    SciTech Connect

    Moss, W.D.; Gautier, M.A.

    1986-01-01

    The amount of plutonium excreted per day following intravenous injection was shown to be significantly higher than predicted by the Langham power function model. Each of the Los Alamos National Laboratory notebooks used to record the original analytical data was studied for details that could influence the findings. It was discovered there were additional urine excretion data for case HP-3. This report presents the additional data, as well as data on case HP-6. (ACR)

  9. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    SciTech Connect

    Cournoyer, Michael E; Nixon, Archie E; Dodge, Robert L; Fife, Keith W; Sandoval, Arnold M; Garcia, Vincent E

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National

  10. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  11. Recycle of scrap plutonium-238 oxide fuel to support future radioisotope applications

    NASA Astrophysics Data System (ADS)

    Schulte, Louis D.; Purdy, Geraldine M.; Jarvinen, Gordon D.; Ramsey, Kevin; Silver, Gary L.; Espinoza, Jacob; Rinehart, Gary H.

    1998-01-01

    The Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory has initiated a development program to recover & purify plutonium-238 oxide from impure feed sources in a glove box environment. A glove box line has been designed and a chemistry flowsheet developed to perform this recovery task at large scale. The initial demonstration effort focused on purification of 238PuO2 fuel by HNO3/HF dissolution, followed by plutonium(III) oxalate precipitation and calcination to an oxide. Decontamination factors for most impurities of concern in the fuel were very good, producing 238PuO2 fuel significantly better in purity than specified by General Purpose Heat Source (GPHS) fuel powder specifications. A sufficient quantity of purified 238PuO2 fuel was recovered from the process to allow fabrication of a GPHS unit for testing. The results are encouraging for recycle of relatively impure plutonium-238 oxide and scrap residue items into fuel for useful applications. The high specific activity of plutonium-238 magnifies the consequences and concerns of radioactive waste generation. This work places an emphasis on development of waste minimization technologies to complement the aqueous processing operation. Results from experiments on neutralized solutions of plutonium-238 resulted in decontamination to about 1 millicurie/L. Combining ultrafiltration treatment with addition of a water-soluble polymer designed to coordinate Pu, allowed solutions to be decontaminated to about 1 microcurie/L. Efforts continue to develop a capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify 238PuO2 fuel.

  12. Development program to recycle and purify plutonium-238 oxide fuel from scrap

    NASA Astrophysics Data System (ADS)

    Schulte, Louis D.; Silver, Gary L.; Avens, Larry R.; Jarvinen, Gordon D.; Espinoza, Jacob; Foltyn, Elizabeth M.; Rinehart, Gary H.

    1997-01-01

    Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory (LANL) has initiated a development program to recover & purify plutonium-238 oxide from impure sources. A glove box line has been designed and a process flowsheet developed to perform this task on a large scale. Our initial effort has focused on purification of 238PuO2 fuel that fails to meet General Purpose Heat Source (GPHS) specifications because of impurities. The most notable non-actinide impurity was silicon, but aluminum, chromium, iron and nickel were also near or in excess of limits specified by GPHS fuel powder specifications. 234U was by far the largest actinide impurity observed in the feed material because it is the daughter product of 238Pu by alpha decay. An aqueous method based on nitric acid was selected for purification of the 238PuO2 fuel. All aqueous processing used high purity reagents, and was performed in PTFE apparatus to minimize introduction of new contaminants. Impure 238PuO2 was finely milled, then dissolved in refluxing HNO3/HF and the solution filtered. The dissolved 238Pu was adjusted to the trivalent state by an excess of reducing reagents to compensate for radiolytic effects, precipitated as plutonium(III) oxalate, and recovered by filtration. The plutonium(III) oxalate was subsequently calcined to convert the plutonium to the oxide. Decontamination factors for silicon, phosphorus and uranium were excellent. Decontamination factors for aluminum, chromium, iron and nickel were very good. The purity of the 238PuO2 recovered from this operation was significantly better than specifications. Efforts continue to develop the capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify 238PuO2 fuel in a glove box environment. Plutonium-238 materials targeted for recovery includes impure oxide and scrap items that are lean in 238Pu values.

  13. Los Alamos National Laboratory.

    ERIC Educational Resources Information Center

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  14. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... for use in plutonium processing and fuel fabrication plants and furnishing proof of financial... death, or loss of or damage to property, or loss of use of property, arising out of or resulting...

  15. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... for use in plutonium processing and fuel fabrication plants and furnishing proof of financial... death, or loss of or damage to property, or loss of use of property, arising out of or resulting...

  16. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... for use in plutonium processing and fuel fabrication plants and furnishing proof of financial... death, or loss of or damage to property, or loss of use of property, arising out of or resulting...

  17. METHOD OF REDUCING PLUTONIUM WITH FERROUS IONS

    DOEpatents

    Dreher, J.L.; Koshland, D.E.; Thompson, S.G.; Willard, J.E.

    1959-10-01

    A process is presented for separating hexavalent plutonium from fission product values. To a nitric acid solution containing the values, ferrous ions are added and the solution is heated and held at elevated temperature to convert the plutonium to the tetravalent state via the trivalent state and the plutonium is then selectively precipitated on a BiPO/sub 4/ or LaF/sub 3/ carrier. The tetravalent plutonium formed is optionally complexed with fluoride, oxalate, or phosphate anion prior to carrier precipitation.

  18. Work and disproportionation for aqueous plutonium.

    PubMed

    Silver, G L

    2003-10-01

    The relation of two plutonium work integrals has recently been illustrated. One of the integrals applies to the work of disproportionation of tetravalent plutonium in 1 M acid and the other to the work of oxidation of plutonium from the trivalent to a higher oxidation state. This paper generalizes the disproportionation work integral so that it can be applied to tetravalent plutonium at any acid concentration. An equation is provided that can be used to verify work estimations obtained by integration. It applies to oxidation and disproportionation processes and it is easy to use. PMID:14522227

  19. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  20. URANOUS IODATE AS A CARRIER FOR PLUTONIUM

    DOEpatents

    Miller, D.R.; Seaborg, G.T.; Thompson, S.G.

    1959-12-15

    A process is described for precipitating plutonium on a uranous iodate carrier from an aqueous acid solution conA plutonium solution more concentrated than the original solution can then be obtained by oxidizing the uranium to the hexavalent state and dissolving the precipitate, after separating the latter from the original solution, by means of warm nitric acid.

  1. RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Goeckermann, R.H.

    1961-04-01

    A process is given for recovering plutonium from an aqueous nitric acid zirconium-containing solution of an acidity between 0.2 and 1 N by adding fluoride anions (1.5 to 5 mg/l) and precipitating the plutonium with an excess of hydrogen peroxide at from 53 to 65 deg C.

  2. Qualification of the Savannah River National Laboratories Coulometer, Model SRNL-Rev. 2 (Serial # SRNL-003 Coulometer) for use in Process 3401a, Plutonium Assay by Controlled Coulometer

    SciTech Connect

    Tandon, Lav; Colletti, Lisa M.; Drake, Lawrence R.; Lujan, Elmer J. W.; Garduno, Katherine

    2012-08-22

    This report discusses the process used to prove in the SRNL-Rev.2 coulometer for isotopic data analysis used in the special plutonium material project. In May of 2012, the PAR 173 coulometer system that had been the workhorse of the Plutonium Assay team since the early 1970s became inoperable. A new coulometer system had been purchased from Savannah River National Laboratory (SRNL) and installed in August of 2011. Due to funding issues the new system was not qualified at that time. Following the failure of the PAR 173, it became necessary to qualify the new system for use in Process 3401a, Plutonium Assay by Controlled Coulometry. A qualification plan similar to what is described in PQR -141a was followed. Experiments were performed to establish a statistical summary of the performance of the new system by monitoring the repetitive analysis of quality control sample, PEOL, and the assay of plutonium metals obtained from the Plutonium Exchange Program. The data for the experiments was acquired using work instructions ANC125 and ANC195. Figure 1 shows approximately 2 years of data for the PEOL material obtained using the PAR 173. The required acceptance criteria for the sample are that it returns the correct value for the quality control material of 88.00% within 2 sigma (95% Confidence Interval). It also must meet daily precision standards that are set from the historical data analysis of decades of data. The 2 sigma value that is currently used is 0.146 % as evaluated by the Statistical Science Group, CCS-6. The average value of the PEOL quality control material run in 10 separate days on the SRNL-03 coulometer is 87.98% with a relative standard deviation of 0.04 at the 95% Confidence interval. The date of data acquisition is between 5/23/2012 to 8/1/2012. The control samples are run every day experiments using the coulometer are carried out. It is also used to prove an instrument is in statistical control before any experiments are undertaken. The total number of

  3. Stockpile Stewardship: Los Alamos

    SciTech Connect

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2012-01-26

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  4. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2014-08-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  5. Characterization of Representative Materials in Support of Safe, Long Term Storage of Surplus Plutonium in DOE-STD-3013 Containers

    SciTech Connect

    Narlesky, Joshua E.; Stroud, Mary Ann; Smith, Paul Herrick; Wayne, David M.; Mason, Richard E.; Worl, Laura A.

    2013-02-15

    The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.

  6. Zone refining of plutonium metal

    SciTech Connect

    1997-05-01

    The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

  7. Modeling of Diffusion of Plutonium in Other Metals and of Gaseous Species in Plutonium-Based Systems

    SciTech Connect

    Bernard R. Cooper; Gayanath W. Fernando; S. Beiden; A. Setty; E.H. Sevilla

    2004-07-02

    Establish standards for temperature conditions under which plutonium, uranium, or neptunium from nuclear wastes permeates steel, with which it is in contact, by diffusion processes. The primary focus is on plutonium because of the greater difficulties created by the peculiarities of face-centered-cubic-stabilized (delta) plutonium (the form used in the technology generating the waste).

  8. Migration of Sr-20, Cs-137, and Pu-239/240 in Canyon below Los Alamos outfall

    SciTech Connect

    Murphy, J.M.; Mason, C.F.V.; Boak, J.M.; Longmire, P.A.

    1996-04-01

    Technical Area-21 (TA-21) of Los Alamos National Laboratory (LANL) is on a mesa bordered by two canyons DP Canyon and Los Alamos (LA) Canyon. DP Canyon is a small semiarid watershed with a well defined channel system where the stream flow is ephemeral. TA-21 has had a complex history of waste disposal as research to determine the chemical and metallurgical properties of nuclear materials occurred here from 1945-1978. Due to these operations, the TA-21 mesa top and bordering canyons have been monitored and characterized by the LANL Environmental Restoration Program. Results identify radionuclide values at outfall. 21-011 (k) which exceed Screening Action Levels, and points along DP Canyon which exceed regional background levels. The radiocontaminants considered in this study are strontium-90, cesium-137, and plutonium-239. This research examines sediment transport and speciation of radionuclide contaminant migration from a source term named SWMU 21-011 (k) down DP Canyon. Three dimensional surface plots of data from 1977-1994 are used to portray the transport and redistribution of radioactive contaminants in an alluvial stream channel. An overall decrease in contamination concentration since 1983 has been observed which could be due to more stringent laboratory controls and also to the removal of main plutonium processing laboratories to another site.

  9. SNM holdup assessment of Los Alamos exhaust ducts. Final report

    SciTech Connect

    Marshall, R.S.

    1994-02-01

    Fissile material holdup in glovebox and fume hood exhaust ducting has been quantified for all Los Alamos duct systems. Gamma-based, nondestructive measurements were used to quantify holdup. The measurements were performed during three measurement campaigns. The first campaign, Phase I, provided foot-by-foot, semiquantitative measurement data on all ducting. These data were used to identify ducting that required more accurate (quantitative) measurement. Of the 280 duct systems receiving Phase I measurements, 262 indicated less than 50 g of fissile holdup and 19 indicated fissile holdup of 50 or more grams. Seven duct systems were measured in a second campaign, called Series 1, Phase II. Holdup estimates on these ducts ranged from 421 g of {sup 235}U in a duct servicing a shut-down uranium-machining facility to 39 g of {sup 239}Pu in a duct servicing an active plutonium-processing facility. Measurements performed in the second campaign proved excessively laborious, so a third campaign was initiated that used more efficient instrumentation at some sacrifice in measurement quality. Holdup estimates for the 12 duct systems measured during this third campaign ranged from 70 g of {sup 235}U in a duct servicing analytical laboratories to 1 g of {sup 235}U and 1 g of {sup 239}Pu in a duct carrying exhaust air to a remote filter building. These quantitative holdup estimates support the conclusion made at the completion of the Phase I measurements that only ducts servicing shut-down uranium operations contain about 400 g of fissile holdup. No ventilation ducts at Los Alamos contain sufficient fissile material holdup to present a criticality safety concern.

  10. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.